WorldWideScience

Sample records for murine cell-mediated immunity

  1. Therapeutic immunization strategies against cervical cancer : induction of cell-mediated immunity in murine models

    NARCIS (Netherlands)

    Bungener, Laura Barbara

    2004-01-01

    The aim of the study described in this thesis is the development of a therapeutic immunization strategy against cervical cancer and pre-malignant precursor lesions of cervical cancer (CIN lesions). Cervical cancer is caused by high risk human papillomavirus (HPV). Two of the early proteins of high

  2. The Major Players in Adaptive Immunity-Cell-mediated Immunity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. The Major Players in Adaptive Immunity - Cell-mediated Immunity. Asma Ahmed Banishree Saha Anand Patwardhan Shwetha Shivaprasad Dipankar Nandi. General Article Volume 14 Issue 6 June 2009 pp 610-621 ...

  3. Cell mediated immunity in patients with osteosarcoma

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.

    1975-01-01

    Because of the difficulty of obtaining suitable material, earlier studies on cell mediated immunity in the radium patients failed to include positive controls. Recently we were fortunate in obtaining samples of lymphocytes from two suitable patients who had had amputations for spontaneous osteosarcoma six months previously. Lymphocytes from both of these patients showed cytotoxicity to cultured cells derived from a human osteogenic sarcoma but not to normal fibroblasts. These results help to validate our test for early detection of osteosarcoma in the radium patients using measurements of cytotoxicity

  4. Successful Therapy of Murine Visceral Leishmaniasis with Astrakurkurone, a Triterpene Isolated from the Mushroom Astraeus hygrometricus, Involves the Induction of Protective Cell-Mediated Immunity and TLR9

    Science.gov (United States)

    Mallick, Suvadip; Dutta, Aritri; Chaudhuri, Ankur; Mukherjee, Debasri; Dey, Somaditya; Halder, Subhadra; Ghosh, Joydip; Mukherjee, Debarati; Sultana, Sirin Salma; Biswas, Gunjan; Lai, Tapan Kumar; Patra, Pradyumna; Sarkar, Indranil; Chakraborty, Sibani; Saha, Bhaskar; Acharya, Krishnendu

    2016-01-01

    In our previous report, we showed that astrakurkurone, a triterpene isolated from the Indian mushroom Astraeus hygrometricus (Pers.) Morgan, induced reactive oxygen species, leading to apoptosis in Leishmania donovani promastigotes, and also was effective in inhibiting intracellular amastigotes at the 50% inhibitory concentration of 2.5 μg/ml. The aim of the present study is to characterize the associated immunomodulatory potentials and cellular activation provided by astrakurkurone, leading to effective antileishmanial activity in vitro and in vivo. Astrakurkurone-mediated antileishmanial activity was evaluated by real-time PCR and flow cytometry. The involvement of Toll-like receptor 9 (TLR9) was studied by in vitro assay in the presence of a TLR9 agonist and antagonist and by in silico modeling of a three-dimensional structure of the ectodomain of TLR9 and its interaction with astrakurkurone. Astrakurkurone caused a significant increase in TLR9 expression of L. donovani-infected macrophages along with the activation of proinflammatory responses. The involvement of TLR9 in astrakurkurone-mediated amastigote killing has been evidenced from the fact that a TLR9 agonist (CpG, ODN 1826) in combination with astrakurkurone enhanced the amastigote killing, while a TLR9 antagonist (bafilomycin A1) alone or in combination with astrakurkurone curbed the amastigote killing, which could be further justified by in silico evidence of docking between mouse TLR9 and astrakurkurone. Astrakurkurone was found to reduce the parasite burden in vivo by inducing protective cytokines, gamma interferon and interleukin 17. Moreover, astrakurkurone was nontoxic toward peripheral blood mononuclear cells of immunocompromised patients with visceral leishmaniasis. Astrakurkurone, a nontoxic antileishmanial, enhances the immune efficiency of host cells, leading to parasite clearance in vitro and in vivo. PMID:26883702

  5. Changes in cell-mediated immunity in patients undergoing radiotherapy

    International Nuclear Information System (INIS)

    Rafla, S.; Yang, S.J.; Meleka, F.

    1978-01-01

    The cell-mediated immune status of 147 patients who received radiotherapy was evaluated using in vitro tests (PHA, E-rosette, and spontaneous blastogenesis) both before and 6 weeks after the end of radiation. All patients have verified malignancies, involving the bronchus in 29 cases, breast in 28, female genital system in 26, head and neck in 20 and bladder in 15. Patients suffering from bronchogenic carcinomas or malignancies of the head and neck showed a relative high degree of immune suppression. Our findings indicate a trend towards some improvement in PHA reactivity, as well as in the percentage of E-rosette-forming cells after treatment, which is more noticeable in patients with pelvic or breast tumors. A relationship seems to exist between the tumor load and the immune status, which reverts to a normal pattern when the former is extinguished. Moreover, patients with poor clinical response display a profoundly depressed level of immune status without any improvement after treatment

  6. Human prealbumin fraction: effects on cell-mediated immunity and tumor rejection

    International Nuclear Information System (INIS)

    Leung, K.H.; Ehrke, M.J.; Bercsenyi, K.; Mihich, E.

    1982-01-01

    The effect of human prealbumin fraction as allogeneic cell-mediated immunity in primary sensitization cultures of murine spleen cells was studied by 3H-thymidine uptake and specific 51Cr release assays. Prealbumin caused a dose-dependent augmentation of these responses. Human serum albumin, bovine serum albumin, and calf-thymosin fraction 5 had little effect. Prealbumin was active when added on day 0 or 1 but not thereafter. Prealbumin added to effector cells from immunized mice did not change their lytic activity. Prealbumin, but not human serum albumin or thymosin fraction 5, augmented secondary cell-mediated immunity in culture after primary immunization in mice. A slow growing mammary tumor line, which originated as a spontaneous mammary tumor in a DBA/2 HaDD breeder mouse, initially grows in 100% of DBA/2J mice but is then rejected in 10 to 20% of them. When prealbumin (59 microgram/day) was given subcutaneously for 2 weeks to DBA/2J mice and the tumor implanted 2 weeks later. 78% of the mice rejected the tumor and were then resistant to a rechallenge

  7. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  8. Local cell-mediated immune reactions in cancer patients

    International Nuclear Information System (INIS)

    Bilynskij, B.T.; Vasil'ev, N.V.; Volod'ko, N.A.; Akademiya Meditsinskikh Nauk SSSR, Tomsk. Onkologicheskij Nauchnyj Tsentr)

    1988-01-01

    The analysis of 178 cases of stage I-II breast cancer showed morphological features of local cell-mediated immune reactions to be of limited prognostic value. A comparative evaluation of some characteristics of cell surface receptors, such as ability to spontaneous rosette formation with sheep erythrocytes and sensitivty to theophylline, was carried out in lymphocyte samples obtained from tumor tissue and peripheral blood of 76 cancer patients subjected to preoperative radiotherapy. The said parameters were studied in breast cancer patients of rosette-forming cell reaction to theophylline were identified, the incidence of some of them being determined by the presence or absence of regional metastases. The level and functional activity of surface receptors of tumor mononuclear cells proved to influence prognosis

  9. Cell-mediated immunity during syphilis. A review

    Science.gov (United States)

    Pavia, Charles S.; Folds, James D.; Baseman, Joel B.

    1978-01-01

    Evidence is presented which reinforces the complexity of the host-parasite interaction during the course of syphilis. Infection with Treponema pallidum evokes a complicated antibody response and an assortment of cell-mediated immune reactions in the host. It appears that humoral immunity plays a minor role towards the complete elimination of syphilitic infection while the cellular limb of the immune response may be an important host defence mechanism. Information now available indicates that a state of anergy, or immunosuppression, exists in the early stages of human and experimental rabbit syphilis based upon negative skin reactions to T. pallidum antigen(s), the abnormal histological appearance of lymphoid organs, and impaired in vitro lymphocyte reactivity. It is also evident that in the later stages of the disease cellular immunity becomes activated as delayed type skin reactions can normally be elicited in tertiary syphilitics and lymphocyte behaviour in cell culture appears normal. Several mechanisms have been invoked to explain the delay in an effective immune response against syphilitic infection and the duration of the disease: (1) a capsule-like substance on the outer surface of virulant T. pallidum may act as a barrier against treponemicidal antibody; (2) this material and other biological properties of virulent treponemes could enable spirochaetes to escape being engulfed by macrophages and other phagocytic cells; (3) antigenic competition among different treponemal antigens causing partial tolerance; (4) T. pallidum infection may bring about the elaboration of immunosuppressive substances of host or treponemal origin which inhibit the proper function of lymphocytes, macrophages, and other cell types. PMID:350348

  10. Regulation of stem-cell mediated host immunity by the sphingolipid ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Regulation of stem-cell mediated host immunity by the sphingolipid pathway ... in the generation of mature immune cells and the functioning of the surrounding ... methods with human cells and genetically engineered mice to examine how the ...

  11. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.

    Science.gov (United States)

    Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István

    2014-01-01

    In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. In vitro cell-mediated immunity assay using 125I-iododeoxyuridine

    International Nuclear Information System (INIS)

    Morris, J.E.; Graham, T.M.

    1979-01-01

    We investigated an in vitro cell-mediated immunity assay using incorporation of 125 I-iododeoxyuridine as an indicator of lymphocyte responsiveness to mitogen stimulation. The system permits the use of whole-blood cultures in rats and dogs

  13. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  14. Antigen localization controls T cell-mediated tumor immunity.

    Science.gov (United States)

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  15. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  16. IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Öhman, H.; Tiitinen, A; Halttunen, M.

    2006-01-01

    background. To study a relationship between interleukin-10 (IL-10) promoter -1082 polymorphism and cell-mediated immune response during C trachomatis infection in vitro, lymphocyte proliferation and cytokine (IL-10, IFN-gamma, TNF-alpha, IL-2, IL-4 and IL-5) secretion were analysed in subjects with different...... IL-10 genotypes. Enhanced IL-10 secretion and reduced antigen-specific lymphocyte proliferative and IFN-gamma responses were found in subjects with IL-10 -1082 GG genotype when compared to those with -1082 AA genotype. CD14+ monocytes were main source of IL-10 indicating that these cells...... are important regulators of the antigen-specific cell-mediated responses during active C trachomatis infection. We conclude that impaired cell-mediated response to C trachomatis is associated with IL-10 genotype in subjects with high IL-10 producing capacity. A comparison of immune markers between subjects...

  17. A longitudinal study of cell-mediated immunity in pigs infected with porcine parvovirus

    DEFF Research Database (Denmark)

    Ladekjaer-Mikkelsen, A.S.; Nielsen, Jens

    2002-01-01

    Porcine parvovirus (PPV) is an ubiquitous pathogen causing reproductive failure in swine. Protection against reproductive failure caused by acute PPV infection has commonly been related to the presence of specific antibodies in the dam. However, the role of cell-mediated immunity during chronic PPV...

  18. Contribution of T cell-mediated immunity to the resistance to staphlococcal infection

    International Nuclear Information System (INIS)

    Tsuda, S.; Sasai, Y.; Minami, K.; Nomoto, K.

    1978-01-01

    Abscess formation in nude mice after subcutaneous inoculation of Staphylococcus aureus (S. aureus) was more extensive and prolonged as compared with that in phenotypically normal littermates. Abscess formation in nude mice was augmented markedly by whole-body irradiation. Not only T cell-mediated immunity but also radiosensitive, nonimmune phagocytosis appear to contribute to the resistance against staphylococcal infection

  19. Cell-mediated immunity in patients with carcinoma under immunotheraphy

    International Nuclear Information System (INIS)

    Almeida, C.E.

    1985-01-01

    'In vivo' and 'in vitro' cellular immunity is evaluated in 32 patients with carcinoma under immunotheraphy with subcutaneous or endovenous glucan, transfer factor and levamisole. The immunotheraphy is done relatively by intradermal tests with common antigens, by sensitization with dinitrochlorinebenzene and lymphocytes culture from whole blood. The levels of blood serum of human T lymphotocyte soluble receptor for sheep erythrocytes are detected. (M.A.C.) [pt

  20. Combined effect of x irradiation and cell-mediated immune reaction

    International Nuclear Information System (INIS)

    Song, C.W.; Guertin, D.P.

    1978-01-01

    The combined effect of radiation and cell-mediated immune reaction on tumor cells was investigated in vitro. Mastocytoma P815-X2 cells of DBA mice either were irradiated first and subjected to immune lysis by immune splenic lymphocytes of C57Bl mice, or the tumor cells were subjected to immune reaction first and then irradiated. Cell survival was quantitated by colony formation in soft agar medium. It was observed that cellular immune damage to tumor cells did not influence the response of tumor cells to subsequent radiation. Irradiation of tumor cells first, followed by subjection of the cells to cellular immune reaction, slightly enhanced the death of the tumor cells. It appears that this enhanced death might have resulted from a relative increase in the ratio of the number of cytotoxic immune cells to the number of target tumor cells in the incubation mixture as a consequence of the decrease in the number of viable tumor cells by radiation

  1. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    Science.gov (United States)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  2. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection.

    Science.gov (United States)

    Harris, Nicola L; Loke, P'ng

    2017-12-19

    Type-2-cell-mediated immune responses play a critical role in mediating both host-resistance and disease-tolerance mechanisms during helminth infections. Recently, type 2 cell responses have emerged as major regulators of tissue repair and metabolic homeostasis even under steady-state conditions. In this review, we consider how studies of helminth infection have contributed toward our expanding cellular and molecular understanding of type-2-cell-mediated immunity, as well as new areas such as the microbiome. By studying how these successful parasites form chronic infections without overt pathology, we are gaining additional insights into allergic and inflammatory diseases, as well as normal physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    Science.gov (United States)

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  4. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models

    Science.gov (United States)

    Watson, Alan M.; Klimstra, William B.

    2017-01-01

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253

  5. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  6. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  7. Cell-mediated immunity against human retinal extract, S-antigen, and interphotoreceptor retinoid binding protein in onchocercal chorioretinopathy

    NARCIS (Netherlands)

    van der Lelij, A.; Rothova, A.; Stilma, J. S.; Hoekzema, R.; Kijlstra, A.

    1990-01-01

    Autoimmune mechanisms are thought to be involved in the pathogenesis of onchocercal chorioretinopathy. Cell-mediated immune responses to human retinal S-antigen, interphotoreceptor retinoid binding protein (IRBP), and crude retinal extract were investigated in patients with onchocerciasis from

  8. Role of very late antigen-1 in T-cell-mediated immunity to systemic viral infection

    DEFF Research Database (Denmark)

    Ørding Kauffmann, Susanne; Thomsen, Allan Randrup; Christensen, Jan Pravsgaard

    2006-01-01

    or their distribution between lymphoid and nonlymphoid organs. Regarding a functional role of VLA-1, we found that intracerebral infection of both VLA-1(-/-) and wild-type (wt) mice resulted in lethal T-cell-mediated meningitis, and quantitative and qualitative analyses of the cellular exudate did not reveal any...... significant differences between the two strains. Expression of VLA-1 was also found to be redundant regarding the ability of effector T cells to eliminate virus from internal organs of i.v. infected mice. Using delayed-type hypersensitivity (DTH) assays to evaluate subdermal CD8(+) T......, the current findings indicate that the expression of VLA-1 is not pivotal for T-cell-mediated antiviral immunity to a systemic infection....

  9. Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus

    Science.gov (United States)

    Mougeot, Francois

    2008-02-01

    Sexual ornaments might reliably indicate the ability to cope with parasites and diseases, and a better ability to mount a primary inflammatory response to a novel challenge. Carotenoid-based ornaments are amongst the commonest sexual signals of birds and often influence mate choice. Because carotenoids are immuno-stimulants, signallers may trade-off allocating these to ornamental colouration or using them for immune responses, so carotenoid-based ornaments might be particularly useful as honest indicators of immuno-compentence. Tetraonid birds, such as the red grouse Lagopus lagopus scoticus, exhibit supra-orbital yellow red combs, a conspicuous ornament which functions in intra- and inter-sexual selection. The colour of combs is due to epidermal pigmentation by carotenoids, while their size is testosterone-dependent. In this study, I investigated whether comb characteristics, and in particular, comb colour, indicated immuno-competence in free-living male red grouse. I assessed T-cell-mediated immunity using a standardised challenge with phytohaemagglutinin. Red grouse combs reflect in the red and in the ultraviolet spectrum of light, which is not visible to humans but that grouse most likely see, so I measured comb colour across the whole bird visible spectrum (300 700 nm) using a reflectance spectrometer. I found that males with bigger and redder combs, but with less ultraviolet reflectance, had greater T-cell-mediated immune response. Comb colour predicted T-cell-mediated immune response better than comb size, indicating that the carotenoid-based colouration of this ornament might reliably signal this aspect of male quality.

  10. Modulations in cell-mediated immunity of Mytilus edulis following the 'Sea Empress' oil spill

    International Nuclear Information System (INIS)

    Dyrynda, E.A.; Dyrynda, P.E.J.; Ratcliffe, N.A.; Pipe, R.K.

    1997-01-01

    The 'Sea Empress' oil tanker grounded outside Milford Haven (Wales, UK) in February 1996, spilling ∼ 70,000 tonnes of crude oil and contaminating over 100 km of coastline, causing mass mortalities and strandings of at least 11 mollusc species. Intensive field monitoring commenced after the spill, examining immunity and hydrocarbon levels in the mussel, Mytilus edulis (Mollusca: Bivalvia), a commercially-harvested species which can accumulate contaminants. Comparisons of mussels from oiled and reference sites revealed significant modulations in cell-mediated immunity. Elevations in blood cell (haemocyte) numbers and decreases in superoxide generation and phagocytosis were identified in contaminated animals. The immune response of contaminated mussels gradually improved and generally showed no significant differences compared with clean mussels after 11 weeks. By then, total hydrocarbon content in contaminated mussels had declined by 70-90%, while polycyclic aromatic hydrocarbon content had decreased by over 90%. (author)

  11. Cell-mediated immune response: a clinical review of the therapeutic potential of human papillomavirus vaccination.

    Science.gov (United States)

    Meyer, Sonja Izquierdo; Fuglsang, Katrine; Blaakaer, Jan

    2014-12-01

    This clinical review aims to assess the efficacy of human papillomavirus 16/18 (HPV16/18) vaccination on the cell-mediated immune response in women with existing cervical intraepithelial neoplasia or cervical cancer induced by HPV16 or HPV18. A focused and thorough literature search conducted in five different databases found 996 publications. Six relevant articles were chosen for further review. In total, 154 patients (>18 years of age) were enrolled in prospective study trials with 3-15 months of follow up. The vaccine applications were administered two to four times. The vaccines contained different combinations of HPV16 and HPV18 and early proteins, E6 and E7. The primary outcome was the cell-mediated immune response. Correlation to clinical outcome (histopathology) and human leukocyte antigen genes were secondary endpoints. All vaccines triggered a detectable cell-mediated immune response, some of which were statistically significant. Correlations between immunological response and clinical outcome (histopathology) were not significant, so neoplasms may not be susceptible to vaccine-generated cytotoxic T cells (CD8(+)). Prophylactic HPV vaccines have been introduced to reduce the incidence of cervical cancer in young women. Women already infected with HPV could benefit from a therapeutic HPV vaccination. Hence, it is important to continue the development of therapeutic HPV vaccines to lower the rate of HPV-associated malignancies and crucial to evaluate vaccine efficacy clinically. This clinical review represents an attempt to elucidate the theories supporting the development of an HPV vaccine with a therapeutic effect on human papillomavirus-induced malignancies of the cervix. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  12. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. The measurement of cell mediated immunity by radioimmunoassay in desensitizing treatment with acupoints for allergic asthma

    International Nuclear Information System (INIS)

    Zhou Ronglin; Luan Meiling; Wang Mingsuo; Liu Keliang

    1994-05-01

    Three mitogens consisted of PHA, PWM, LPS were used to activate lymphocytes. Lymphocyte transformation with radioisotope incorporation of 3 H-TdR was done in 20 patients with allergic asthma and 14 healthy persons as control groups. Cell mediated immune in these cases of desensitizing treatment with acupoints were studied. The experiments showed that the incorporation rates of 3 H-TdR, acupoints were studied. The experiments showed that the incorporation rates of 3 H-TdR, activated by PHA, PWM, LPS, of the allergic asthma patients were P>0.05, P 3 H-TdR in lymphocytes after desensitizing treatment with acupoints compared with that before the treatment tended to be normal. Lymphocyte transformation difference of 3 H-TdR incorporation rates between this group and A or B control groups was significant (P<0.01). This study provides scientific clinical experimental evidences for researching cell mediated immune in attack and curative effects of allergic asthma

  14. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Utke, Katrin; Kock, Holger; Schuetze, Heike

    2008-01-01

    injection site rather than to injection sites of heterologous vaccines, suggesting the antigen specificity of homing. By demonstrating CMC responses to distinct viral proteins and homing in rainbow trout, these results substantially contribute to the understanding of the teleost immune system.......To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger...... of cytotoxic cells than the N protein. Peripheral blood leukocytes (PBL) isolated from trout immunized against the G protein killed both VHSV-infected MHC class I matched (RTG-2) and VHSV-infected xenogeneic (EPC) target cells, suggesting the involvement of both cytotoxic T lymphocytes (CTL) and NK cells...

  15. Effects of chronic whole-body gamma irradiation on cell mediated immunity

    International Nuclear Information System (INIS)

    Shifrine, M.; Taylor, N.J.; Wilson, F.D.; DeRock, E.W.; Wiger, N.

    1979-01-01

    The whole blood lymphocyte stimulation test has been used to estimate the effects of chronic, whole-body, gamma irradiation in the dog. At lower dose levels, 0.07 and 0.33 R/day to cumulative dose of about 50 and 250 R, there was no change in cell mediated immunity. Dogs at high dose levels were affected. Dogs which succumbed to aplastic anemia at high doses had reduced immunological responses. Dogs which survived these high doses showed a temporary depression. When aplastic anemia was initially noted, there was a differential response to PHA and Con-A stimulation. The response to the former mitogen was profoundly reduced, but Con-A stimulated cells were unaffected, indicative of the development of radioresistant cell lines. As the dogs progressed toward aplastic anemia, all T lympocytes were negatively affected

  16. Development of a simplified and convenient assay for cell-mediated immunity to the mumps virus.

    Science.gov (United States)

    Otani, Naruhito; Shima, Masayuki; Nakajima, Kazuhiko; Takesue, Yoshio; Okuno, Toshiomi

    2014-09-01

    Because methods for measuring cell-mediated immunity (CMI) to the mumps virus are expensive, time-consuming, and technically demanding, the role of CMI in mumps virus infection remains unclear. To address this issue, we report here the development of a simplified method for measuring mumps virus-specific CMI that is suitable for use in diverse laboratory and clinical settings. A mumps vaccine was cultured with whole blood, and interferon (IFN)-γ released into the culture supernatant was measured using an enzyme-linked immunosorbent assay. IFN-γ production in blood from vaccinated subjects markedly increased in response to the vaccine and decreased before the antibody titer decreased in some cases, suggesting that this assay may be used as a simple surrogate method for measuring CMI specific for the mumps virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Influence of operation and irradiation on cell-mediated immunity in patients with oral cancer

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Tominaga, Naohiro; Tokuhisa, Michio

    1995-01-01

    To evaluate the influence of operation and irradiation on cell-mediated immunity in patients with primary oral squamous cell carcinoma, several parameters, including NK activity, LAK activity, and IL-2 production, were selected. Twenty-two patients who underwent operation and/or irradiation from 1989 to 1993 were evaluated. Perioperatively, no significant change of immunologic parameters was observed except increased number of peripheral leukocytes at two weeks after operation. Immediately and/or one month after irradiation, significantly decreased numbers of leukocytes and lymphocytes as well as significantly depressed levels of blastoid transformation of lymphocytes, LAK activity, and IL-2 production were observed. By three months after irradiation, values of immunologic parameters returned to preirradiation values. The number of monocytes and level of NK activity showed little change after irradiation. (author)

  18. Detection of herpes simplex virus type 2 (HSV-2) -specific cell-mediated immune responses in guinea pigs during latent HSV-2 genital infection.

    Science.gov (United States)

    Perry, Clarice L; Banasik, Brianne N; Gorder, Summer R; Xia, Jingya; Auclair, Sarah; Bourne, Nigel; Milligan, Gregg N

    2016-12-01

    Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Induction of cell-mediated immunity to Mycobacterium leprae in mice

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.J.; Lefford, M.J.

    1978-01-01

    The immune response of mice to armadillo-derived, irradiation-killed Mycobacterium leprae (I-ML) was investigated. Following injection of 100 microgram of I-ML into the left hind footpads of mice, a state of cell-mediated immunity (CMI) was engendered to antigens of M. leprae. The evidence for CMI was as follows: (1) development of delayed-type hypersensitivity to both human tuberculin purified protein derivative and soluble M. leprae antigens; (2) T-lymphocyte-dependent macrophage activation at the inoculation site; (3) specific systemaic resistance to the cross-reactive species M. tuberculosis; and (4) immunopotentiation of the delayed-type hypersensitivity response to an unrelated antigen. The CMI induced by I-ML in aqueous suspension was greater than that obtained with the same antigen in water-in-oil emulsion, even though the latter generated a more severe reaction at the site of immunization. I-ML also induced a stronger CMI response than the corresponding dose of heat-killed BCG.

  20. Induction of cell-mediated immunity during early stages of infection with intracellular protozoa

    Directory of Open Access Journals (Sweden)

    Gazzinelli R.T.

    1998-01-01

    Full Text Available Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host. Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.

  1. Gamma-irradiated scrub typhus immunogens: development of cell-mediated immunity after vaccination of inbred mice

    International Nuclear Information System (INIS)

    Jerrells, T.R.; Palmer, B.A.; Osterman, J.V.

    1983-01-01

    Mice immunized with three injections of gamma-irradiated Karp strain of Rickettsia tsutsugamushi were evaluated for the presence of cell-mediated immunity by using delayed-type hypersensitivity, antigen-induced lymphocyte proliferation, and antigen-induced lymphokine production. These animals also were evaluated for levels of circulating antibody after immunization as well as for the presence of rickettsemia after intraperitoneal challenge with viable Karp rickettsiae. After immunization with irradiated Karp rickettsiae, a demonstrable cell-mediated immunity was present as evidenced by delayed-type hypersensitivity responsiveness, lymphocyte proliferation, and production of migration inhibition factor and interferon by immune spleen lymphocytes. Also, a reduction in circulating rickettsiae was seen in mice immunized with irradiated rickettsiae after challenge with 1,000 50% mouse lethal doses of viable, homologous rickettsiae. All responses except antibody titer and reduction of rickettsemia were similar to the responses noted in mice immunized with viable organisms. Antibody levels were lower in mice immunized with irradiated rickettsiae than in mice immunized with viable rickettsiae. Furthermore, mice that were immunized with viable rickettsiae demonstrated markedly lower levels of rickettsemia after intraperitoneal challenge compared with either mice immunized with irradiated rickettsiae or nonimmunized mice

  2. Immune tolerance induction using fetal directed placental injection in rodent models: a murine model.

    Directory of Open Access Journals (Sweden)

    Kei Takahashi

    Full Text Available Induction of the immune response is a major problem in replacement therapies for inherited protein deficiencies. Tolerance created in utero can facilitate postnatal treatment. In this study, we aimed to induce immune tolerance towards a foreign protein with early gestational cell transplantation into the chorionic villi under ultrasound guidance in the murine model.Pregnant C57BL/6 (B6 mice on day 10 of gestation were anesthetized and imaged by high resolution ultrasound. Murine embryos and their placenta were positioned to get a clear view in B-mode with power mode of the labyrinth, which is the equivalent of chorionic villi in the human. Bone marrow cells (BMCs from B6-Green Fluorescence Protein (B6GFP transgenic mice were injected into the fetal side of the placenta which includes the labyrinth with glass microcapillary pipettes. Each fetal mouse received 2 x 105 viable GFP-BMCs. After birth, we evaluated the humoral and cell-mediated immune response against GFP.Bone marrow transfer into fetal side of placenta efficiently distributed donor cells to the fetal mice. The survival rate of this procedure was 13.5%(5 out of 37. Successful engraftment of the B6-GFP donor skin grafts was observed in all recipient (5 out of 5 mice 6 weeks after birth. Induction of anti-GFP antibodies was completely inhibited. Cytotoxic immune reactivity of thymic cells against cells harboring GFP was suppressed by ELISPOT assay.In this study, we utilized early gestational placental injection targeting the murine fetus, to transfer donor cells carrying a foreign protein into the fetal circulation. This approach is sufficient to induce both humoral and cell-mediated immune tolerance against the foreign protein.

  3. Daikenchuto ameliorates muscle hypercontractility in a murine T-cell-mediated persistent gut motor dysfunction model.

    Science.gov (United States)

    Akiho, Hirotada; Nakamura, Kazuhiko

    2011-01-01

    Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.

  4. Cell-mediated immune suppression effect of rocket kerosene through dermal exposure in mice

    Directory of Open Access Journals (Sweden)

    Bing-xin XU

    2015-10-01

    Full Text Available Objective To study the effect of cell-mediated immune suppression effect of rocket kerosene (RK through dermal application in mice. Methods Skin delayed type hypersensitivity (DTH was used to observe the relation of the RK amount the skin exposed and the cellular immune inhibitory function. Different amount of the undiluted fuel was smeared directly onto the dorsal skin of mice. Mice in negative and positive control groups were treated with acetone. After the last exposure, all the mice except those in negative control group were allergized by evenly smearing with 1% dinitrofluorobenzene (DNFB solution on their dorsum. Five days after allergy, 1% DNFB solution was smeared onto right ear of all mice to stimulate the allergic reaction. Twenty-four hours after attack, the auricle swelling, spleen index and thymus index in corresponding mice were determined. In the first series of experiments, different dosages of RK were applied once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 1ml/kg.BW×1 and 2ml/kg.BW×1 group. In the second series of experiments, the certain and same dosage of RK was applied for different times, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 0.5mL/kg.BW×2, 0.5ml/kg.BW×3, 0.5ml/kg.BW×4 and 0.5mL/kg.BW×5 group. In the third series of experiments, the different dosages of RK were applied more than once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×5, 1ml/kg.BW×5 and 2ml/kg.BW×5 group. Lymphocyte proliferation experiment in vitrowas conducted to observe the persistent time of the cell-mediated immune suppression in mice by RK dermal exposure. The lymphocyte proliferation induced by concanavalin A (Con A was analyzed by MTT assay, and T lymphocyte subsets (CD3+, CD4+ and CD

  5. Evidence of functional cell-mediated immune responses to nontypeable Haemophilus influenzae in otitis-prone children

    Science.gov (United States)

    Seppanen, Elke; Tan, Dino; Corscadden, Karli J.; Currie, Andrew J.; Richmond, Peter C.; Thornton, Ruth B.

    2018-01-01

    Otitis media (OM) remains a common paediatric disease, despite advances in vaccinology. Susceptibility to recurrent acute OM (rAOM) has been postulated to involve defective cell-mediated immune responses to common otopathogenic bacteria. We compared the composition of peripheral blood mononuclear cells (PBMC) from 20 children with a history of rAOM (otitis-prone) and 20 healthy non-otitis-prone controls, and assessed innate and cell-mediated immune responses to the major otopathogen nontypeable Haemophilus influenzae (NTHi). NTHi was a potent stimulator of inflammatory cytokine secretion from PBMC within 4 hours, with no difference in cytokine levels produced between PBMC from cases or controls. In the absence of antigen stimulation, otitis-prone children had more circulating Natural Killer (NK) cells (potitis-prone and non-otitis-prone children (potitis-prone children are functional and respond to NTHi. CD8+ T cells and NK cells from both cases and controls produced IFNγ in response to polyclonal stimulus (Staphylococcal enterotoxin B; SEB), with more IFNγ+ CD8+ T cells present in cases than controls (pOtitis-prone children had more circulating IFNγ-producing NK cells (potitis-prone children mounted innate and T cell-mediated responses to NTHi challenge that were comparable to healthy children. These data provide evidence that otitis-prone children do not have impaired functional cell mediated immunity. PMID:29621281

  6. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    Science.gov (United States)

    Sastry, Jagannadha K.

    1997-01-01

    Our proposed experiments included: (1) immunzing mice with synthetic peptides; (2) preparing spleen and lymph node cells; (3) growing them under conventional conditions as well as in the rotatory vessel in appropriate medium reconstituting with synthetic peptides and/or cytokines as needed; and (4) comparing at regular time intervals the specific CTL activity as well as helper T-cell activity (in terms of both proliferative responses and cytokine production) using established procedures in my laboratory. We further proposed that once we demonstrated the merit of rotatory vessel technology to achieve desired results, these studies would be expanded to include immune cells from non-human primates (rhesus monkeys and chimpanzees) and also humans. We conducted a number of experiments to determine CTL induction by the synthetic peptides corresponding to antigenic proteins in HIV and HPV in different mouse strains that express MHC haplotypes H-2b or H-2d. We immunized mice with 100 ug of the synthetic peptide, suspended in sterile water, and emulsified in CFA (1:1). The immune lymph node cells obtained after 7 days were restimulated by culturing in T25 flask, HARV-10, or STLV-50, in the presence of the peptide at 20 ug/ml. The results from the 5'Cr-release assay consistently revealed complete abrogation of CTL activity of cells grown in the bioreactors (both HARV and STLV), while significant antigen-specific CTL activity was observed with cells cultured in tissue culture flasks. Thus, overall the data we generated in this study proved the usefulness of the NASA-developed developed technology for understanding the known immune deficiency during space travel. Additionally, this ex vivo microgravity technology since it mimics effectively the in vivo situation, it is also useful in understanding immune disorders in general. Thus, our proposed studies in TMC-NASA contract round II application benefit from data generated in this TMC-NASA contract round I study.

  7. Genetic adjuvantation of recombinant MVA with CD40L potentiates CD8 T cell mediated immunity

    Directory of Open Access Journals (Sweden)

    Henning eLauterbach

    2013-08-01

    Full Text Available Modified vaccinia Ankara (MVA is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor (TNF superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70 early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated CTLs also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases.

  8. Murine immune responses to oral BCG immunization in the presence or absence of prior BCG sensitization.

    Science.gov (United States)

    Cross, Martin L; Lambeth, Matthew R; Aldwell, Frank E

    2010-02-01

    Oral delivery of live Mycobacterium bovis BCG in a lipid matrix invokes cell-mediated immune (CMI) responses in mice and consequent protection against pulmonary challenge with virulent mycobacteria. To investigate the influence of prior BCG sensitization on oral vaccine efficacy, we assessed CMI responses and BCG colonization of the alimentary tract lymphatics 5 months after oral vaccination, in both previously naive mice and in mice that had been sensitized to BCG by injection 6 months previously. CMI responses did not differ significantly between mice that received subcutaneous BCG followed by oral BCG and those that received either injected or oral BCG alone. In vivo BCG colonization was predominant in the mesenteric lymph nodes after oral vaccination; this colonizing ability was not influenced by prior BCG sensitization. From this murine model study, we conclude that although prior parenteral-route BCG sensitization does not detrimentally affect BCG colonization after oral vaccination, there is no significant immune-boosting effect of the oral vaccine either.

  9. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity

    Science.gov (United States)

    Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan

    2017-11-01

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.

  10. Cell-mediated immune response of synovial fluid lymphocytes to ureaplasma antigen in Reiter's syndrome

    Directory of Open Access Journals (Sweden)

    Pavlica Ljiljana

    2003-01-01

    Full Text Available INTRODUCTION Reiter's syndrome (RS is an seronegative arthritis that occurs after urogenital or enteric infection which in addition with occular and/or mucocutaneous manifestations presents complete form of disease. According to previous understanding arthritis in the RS is the reactive one, which means that it is impossible to isolate its causative agent. However, there are the more and more authors suggesting that arthritis in the urogenital form of disease is caused by the infective agent in the affected joint. This suggestion is based on numerous studies on the presence of Chlmaydia trachomatis and Ureaplasma urealyticum in the inflamed joint by using new diagnostic methods in molecular biology published in the recent literature [1-3]. Besides, numerous studies of the humoral and cell-mediated immune response to "triggering" bacteria in the affected joint have supported previous suggestions [4-7]. Aim of the study was to determine whether synovial fluid T-cells specifically recognize the "triggering" bacteria presumably responsible for the Reiter's syndrome. METHOD The 3H-thymidine uptake procedure for measuring lymphocyte responses was applied to lymphocytes derived concurrently from synovial fluid (SF and from peripheral blood (PB [8]. Ureaplasma antigen and mitogen PHA stimulated lymphocytes in 24 RS patients (24 PB samples, 9 SF samples and the results were compared with those found in 10 patients with rheumatoid arthritis (RA (10 PB samples, 5 SF samples. Preparation of ureaplasma antigen. Ureaplasma was cultured on cell-free liquid medium [9]. Sample of 8 ml was heat-inactivated for 15 minutes at 601C and permanently stirred with magnetic mixer. The sample was centrifuged at 2000 x g for 40 minutes and than deposits carefully carried to other sterile glass tubes (Corex and recentrifuged at 9000 x g for 30 minutes. The deposit was washed 3 times in sterile 0.9% NaCl, and final sediment was resuspended in 1.2 ml sterile 0.9% Na

  11. Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners

    Science.gov (United States)

    Mehta, S. K.; Pierson, D. L.; Cooley, H.; Dubow, R.; Lugg, D.

    2000-01-01

    Epstein-Barr virus (EBV) reactivation and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at 2 Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity (DTH) skin testing was used as an indicator of the CMI response, that was evaluated 2 times before winter isolation and 3 times during isolation. At all 5 evaluation times, 8 or more of the 16 subjects had a diminished CMI response. Diminished DTH was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal DTH responses for all 5 tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, during, and after the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least 1 occasion. The probability of EBV shedding increased (P = 0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (P viruses.

  12. Mathematical modeling on T-cell mediated adaptive immunity in primary dengue infections.

    Science.gov (United States)

    Sasmal, Sourav Kumar; Dong, Yueping; Takeuchi, Yasuhiro

    2017-09-21

    At present, dengue is the most common mosquito-borne viral disease in the world, and the global dengue incidence is increasing day by day due to climate changing. Here, we present a mathematical model of dengue viruses (DENVs) dynamics in micro-environment (cellular level) consisting of healthy cells, infected cells, virus particles and T-cell mediated adaptive immunity. We have considered the explicit role of cytokines and antibody in our model. We find that the virus load goes down to zero within 6 days as it is common for DENV infection. From our analysis, we have identified the important model parameters and done the numerical simulation with respect to such important parameters. We have shown that the cytokine mediated virus clearance plays a very important role in dengue dynamics. It can change the dynamical behavior of the system and causes essential extinction of the virus. Finally, we have incorporated the antiviral treatment for dengue in our model and shown that the basic reproduction number is directly proportional to the antiviral treatment effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of Zinc on Humoral and Cell-Mediated Immunity of Broilers Vaccinated Against Coccidiosis

    Directory of Open Access Journals (Sweden)

    Milad Moazeni

    2013-09-01

    Full Text Available Background: The aim of the present study was the comparison of humoral and cell-mediated immunity in ‎broilers fed with different levels of zinc during a coccidiosis challenge.‎Methods: One hundred and forty-‎four one-day-old broiler chicks were used with three ‎dietary zinc ‎(40, 120 and 200 mg/kg. At 14 d of age, all birds were inoculated orally with 5×103 sporulated oocysts of E. Tenella. ‎At ‎2, 22, 32, 42 ‎days of age, the blood serums were tested for ‎antibody titer against‎ Newcas­tle disease vaccine, using ‎the standard HI test. On day 42 the sum of nitrite ‎and nitrate based on the reduction of nitrate ‎to nitrite by cadmium ‎and white blood cell count (WBC using a hemocytometer were measured.Results: At 42 d, levels of ‎120 and 200 mg significantly (P< 0.05 increased the antibody titer in compare with the control. The peak response of CBH was observed at the level of 200 mg Zn/kg diet. Also both level of 120 and 200 mg Zn/kg diet increased WBC count and sum of nitrite and nitrate‎ in serum compared with the control.Conclusion: The levels of 120 and 200 mg Zn/kg diet could be considered as a non-pharmacologic booster of immunity in broilers chicks infected with E. Tenella.

  14. Humoral and cell-mediated immune responses to influenza vaccination in equine metabolic syndrome (EMS) horses.

    Science.gov (United States)

    Elzinga, Sarah; Reedy, Stephanie; Barker, Virginia D; Chambers, Thomas M; Adams, Amanda A

    2018-05-01

    Obesity is an increasing problem in the equine population with recent reports indicating that the percentage of overweight horses may range anywhere from 20.6-51%. Obesity in horses has been linked to more serious health concerns such as equine metabolic syndrome (EMS). EMS is a serious problem in the equine industry given its defining characteristics of insulin dysregualtion and obesity, as well as the involvement of laminitis. Little research however has been conducted to determine the effects of EMS on routine healthcare of these horses, in particular how they respond to vaccination. It has been shown that obese humans and mice have decreased immune responses to vaccination. EMS may have similar effects on vaccine responses in horses. If this is the case, these animals may be more susceptible to disease, acting as unknown disease reservoirs. Therefore, we investigated the effects of EMS on immune responses to routine influenza vaccination. Twenty-five adult horses of mixed-sex and mixed-breed (8-21 years old) horses; 13 EMS and 12 non-EMS were selected. Within each group, 4 horses served as non-vaccinate saline controls and the remaining horses were vaccinated with a commercially available equine influenza vaccine. Vaccination (influenza or saline) was administered on weeks 0 and 3, and peripheral blood samples taken on week 0 prior to vaccination and on weeks 1, 2, 3, 4, and 5 post vaccination. Blood samples were used to measure hemagglutination inhibition (HI) titers and equine influenza specific IgGa, IgGb, and IgGT levels. Blood samples were also used to isolate peripheral blood mononuclear cells (PBMCs) for analysis of cell mediated immune (CMI) responses via real-time polymerase chain reaction (RT-PCR). All horses receiving influenza vaccination responded with significant increases (P equine influenza specific antibodies following vaccination compared to saline controls. EMS did not significantly affect (P > 0.05) humoral immune responses as measured

  15. Cell-mediated immunity to herpes simplex in humans: lymphocyte cytotoxicity measured by 51Cr release from infected cells

    International Nuclear Information System (INIS)

    Russell, A.S.; Percy, J.S.; Kovithavongs, T.

    1975-01-01

    We assessed cell-mediated immunity to herpes simplex virus type 1 antigen in patients suffering from recurrent cold sores and in a series of healthy controls. Paradoxically, all those subject to recurrent herpetic infections had, without exception, evidence of cell-mediated immunity to herpes antigens. This was demonstrated by lymphocyte transformation and specific 51 Cr release from infected human amnion cells after incubation with peripheral blood mononuclear cells. Where performed, skin tests with herpes antigen were also positive. In addition, serum from these patients specifically sensitized herpes virus-infected cells to killing by nonimmune, control mononuclear cells. These tests were negative in the control patients except in a few cases, and it is suggested that these latter may be the asymptomatic herpes virus carriers previously recognized or that they may have experienced a genital infection. (U.S.)

  16. Cell-mediated and humoral immune responses in pigs following primary and challenge-exposure to Lawsonia intracellularis

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Riber, Ulla; Jensen, Tim Kåre

    2012-01-01

    not boosted by the re-inoculation, since identical intestinal IgA responses developed in response to the inoculation in both the susceptible CC pigs and the protected RE pigs. A memory recall cell-mediated immune response developed in RE pigs which was significantly stronger compared to the primary response...... responses are likely mediators of protective immunity against L. intracellularis, with CD8+ effector cells and CD4+CD8+ double positive memory T cells as main contributors to the antigen-specific IFN-γ production....

  17. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  18. THE STATE OF CELL MEDIATED IMMUNITY AMONG HEPATITIS B SURFACE ,ANTGENI CARRIERS IN IRAN,

    Directory of Open Access Journals (Sweden)

    A. MASSOUD

    1987-06-01

    Full Text Available Cell-mediated immune (CMI s t a t us and sub- popul at i ons o f pe r ipheral b l ood lymphocytes were investigated in one hundre d volunt a ry blood donors who were car r ier s of Ag • HE S A signi f i c ant decr e ase of t otal T-cells observed in HB Ag carri e rs as compared t o normal controls. The percenS t age o f active T-cells a nd B-lymphocytes did not d i f f e r signi f icant ly between the t wo groups ."nAddi t ion of aut ologous serum from HE Ag c a r r iers t o s t heir l ymphocyt e s reduced the numbe r of detectabl e cells in HE Ag carriers . This reduction coul d be due to the s presence of a r osette i nhi bitory f actor in their serum. Our studies demonstrated a failur e o f CMI among HB Ags car r i ers detected by the l e ukocyte migr ation i nhibition (LMI test. This failure cannot be attributed to the presence of HE Ag-AB complexes in their serum. It is s possible that specific failure of CMI allows the hepatitis B virus to remain harmless in carriers a Hepatitis B surface-antigen (HE Ag; Hepatitis Bs coreantigen (HE Ag and Hepatitis Be-antigen (HE Ag, c e have been established as indicating ineffectivity in viral hepatitis B ({I, 6 , 20, 28."nA number of infected individuals also developed clini cal evidence of disease and HE Ag may s the serum of some subjects for a long rema•ln present I•n time (18. It has been suggested that to a defect in CMI, the persistence of HB Ag s whether liver disease is is related present or not, and impairment of the lymphocyte response to phytohaemagglutinin (PHA in this group is presented in evide•"nnee (8, •9 , 13, 24, 25 .In contrast, other workers report a normal respons e t o PHA in healthy carriers of HE Ag and s they concludE that the defective T-cell response is relat ed to the live!' disease rather than the immune system (31. Dudley et al (8 have suggested that liver damage occurring after hepatitis B infection, may be an effect of thymus-dependent lymphocytes (12."n

  19. CHARACTERISATION OF CELL-MEDIATED IMMUNE RESPONSE IN PIGS IN A CLINICAL CHALLENGE EXPERIMENT OF A VACCINE AGAINST MYCOPLASMA HYOSYNOVIAE

    DEFF Research Database (Denmark)

    Rasmussen, Josephine Skovgaard; Riber, Ulla; Lauritsen, Klara Tølbøll

    be due to increased systemic infection in the placebo group. Cell-mediated immune response was further characterised by four colour flow cytometry analysis of peripheral blood mononuclear cells (PBMCs) before Mhs challenge (day -1) and at days 6 and 9 after challenge. IFN-γ producing cells were found...... to be CD4 and especially CD4CD8 double positive T-cells simultaneously expressing CD25. Interestingly, the proportion of CD4CD8 double positive T-cells within the total population of CD4 positive cells increased in the vaccine group after challenge, indicating that generation of specific T-cell memory had...

  20. Cell-mediated immune responses in the head-associated lymphoid tissues induced to a live attenuated avian coronavirus vaccine.

    Science.gov (United States)

    Gurjar, Rucha S; Gulley, Stephen L; van Ginkel, Frederik W

    2013-12-01

    Humoral immunity is important for controlling viral diseases of poultry, but recent studies have indicated that cytotoxic T cells also play an important role in the immune response to infectious bronchitis virus (IBV). To better understand the cell mediated immune responses to IBV in the mucosal and systemic immune compartments chickens were ocularly vaccinated with IBV. This induced a lymphocyte expansion in head-associated lymphoid tissues (HALT) and to a lesser extent in the spleen, followed by a rapid decline, probably due to homing of lymphocytes out of these organs and contraction of the lymphocyte population. This interpretation was supported by observations that changes in mononuclear cells were mirrored by that in CD3(+)CD44(+) T cell abundance, which presumably represent T effector cells. Increased interferon gamma (IFN-γ) expression was observed in the mucosal immune compartment, i.e., HALT, after primary vaccination, but shifted to the systemic immune compartment after boosting. In contrast, the expression of cytotoxicity-associated genes, i.e., granzyme A (GZMA) and perforin mRNA, remained associated with the HALT after boosting. Thus, an Ark-type IBV ocular vaccine induces a central memory IFN-γ response in the spleen while the cytotoxic effector memory response, as measured by GZMA and perforin mRNA expression, remains associated with CALT after boosting. Copyright © 2013. Published by Elsevier Ltd.

  1. Age-related changes in humoral and cell-mediated immunity in Down syndrome children living at home.

    Science.gov (United States)

    Lockitch, G; Singh, V K; Puterman, M L; Godolphin, W J; Sheps, S; Tingle, A J; Wong, F; Quigley, G

    1987-11-01

    Abnormalities of humoral and cell-mediated immunity have been described in Down syndrome but reported findings have been inconsistent. Confounding factors have included age, institutional versus home life, hepatitis B antigenemia, and zinc deficiency. To clarify this problem, we studied 64 children with Down syndrome (DS) compared with an age-matched control group. All children had always lived at home. All the DS children were negative for hepatitis B surface antigen. Serum zinc concentration in the DS group was on average 12 micrograms/dl lower than age-matched control children. They also had significantly lower levels of immunoglobulin M, total lymphocyte count, T and B lymphocytes, and T helper and suppressor cells. In vitro lymphocyte response to phytohemagglutinin and concanavalin A was significantly reduced at all ages in the DS group. Lymphocyte response to pokeweed mitogen increased with age in control children but decreased in the DS children. By 18 yr, the mean response for DS was 60000 cpm lower than controls. The DS group had significantly higher concentrations of immunoglobulins A and G than controls and the difference increased with age. Complement fractions C3 and C4 were also higher in the DS group at all ages. The number of HNK-1 positive cells was higher in the DS group than controls at all ages. When hepatitis and institutionalization are excluded as confounding factors, DS children still differ in both humoral and cell-mediated immunity from an age-matched control group.

  2. Cell-mediated immune responses differentiate infections with Brucella suis from Yersinia enterocolitica serotype O : 9 in pigs

    DEFF Research Database (Denmark)

    Riber, Ulla; Jungersen, Gregers

    2007-01-01

    Due to almost identical lipopolysaccharide (LPS) O-antigens, infections with Yersinia enterocolitica serotype 0:9 (YeO:9) cause false positive serological reactions (FPSR) in tests for Brucella and thus cause problems in National Brucella surveillance programs. As LPS are strong inducers...... of antibody responses it was hypothesized that cell-mediated immune responses to non-LPS antigens of the two bacteria can be used to separate immune responses to these two biologically very different infections. Following subclinical experimental infections with Brucella suis biovar 2, high interferon......-gamma (IFN-gamma) assay responses with a commercial Brucella melitensis antigen preparation (Brucellergene OCB) preceded the development of antibodies. High IFN-gamma responses in the seven B. suis inoculated pigs with serological evidence of infection were consistent throughout a 20-week postinoculation...

  3. Induction of human immunodeficiency virus (HIV-1 envelope specific cell-mediated immunity by a non-homologous synthetic peptide.

    Directory of Open Access Journals (Sweden)

    Ammar Achour

    2007-11-01

    Full Text Available Cell mediated immunity, including efficient CTL response, is required to prevent HIV-1 from cell-to-cell transmission. In previous investigations, we have shown that B1 peptide derived by Fourier transformation of HIV-1 primary structures and sharing no sequence homology with the parent proteins was able to generate antiserum which recognizes envelope and Tat proteins. Here we have investigated cellular immune response towards a novel non-homologous peptide, referred to as cA1 peptide.The 20 amino acid sequence of cA1 peptide was predicted using the notion of peptide hydropathic properties; the peptide is encoded by the complementary anti-sense DNA strand to the sense strand of previously described non-homologous A1 peptide. In this report we demonstrate that the cA1 peptide can be a target for major histocompatibility complex (MHC class I-restricted cytotoxic T lymphocytes in HIV-1-infected or envelope-immunized individuals. The cA1 peptide is recognized in association with different MHC class I allotypes and could prime in vitro CTLs, derived from gp160-immunized individuals capable to recognize virus variants.For the first time a theoretically designed immunogen involved in broad-based cell-immune memory activation is described. Our findings may thus contribute to the advance in vaccine research by describing a novel strategy to develop a synthetic AIDS vaccine.

  4. Evaluation of humoral and cell-mediated inducible immunity to Haemophilus ducreyi in an animal model of chancroid.

    Science.gov (United States)

    Desjardins, M; Filion, L G; Robertson, S; Kobylinski, L; Cameron, D W

    1996-01-01

    To study the mechanisms of inducible immunity to Haemophilus ducreyi infection in the temperature-dependent rabbit model of chancroid, we conducted passive immunization experiments and characterized the inflammatory infiltrate of chancroidal lesions. Polyclonal immunoglobulin G was purified from immune sera raised against H. ducreyi 35000 whole-cell lysate or a pilus preparation and from naive control rabbits. Rabbits were passively immunized with 24 or 48 mg of purified polyclonal immunoglobulin G intravenously, followed 24 h after infusion by homologous titered infectious challenge. Despite titratable antibody, no significant difference in infection or disease was observed. We then evaluated the immunohistology of lesions produced by homologous-strain challenge in sham-immunized rabbits and those protectively vaccinated by pilus preparation immunization. Immunohistochemical stains for CD5 and CD4 T-lymphocyte markers were performed on lesion sections 4, 10, 15, and 21 days from infection. Lesions of pilus preparation vaccinees compared with those of controls had earlier infiltration with significantly more T lymphocytes (CD5+) and with a greater proportion of CD4+ T lymphocytes at day 4 (33% +/- 55% versus 9.7% +/- 2%; P = 0.002), corroborating earlier sterilization (5.0 +/- 2 versus 13.7 +/- 0.71 days; P < 0.001) and lesion resolution. Intraepithelial challenge of pilus-vaccinated rabbits with 100 micrograms of the pilus preparation alone produced indurated lesions within 48 h with lymphoid and plasmacytoid infiltration, edema, and extravasation of erythrocytes. We conclude that passive immunization may not confer a vaccine effect in this model and that active vaccination with a pilus preparation induces a delayed-type hypersensitivity skin test response and confers protection through cell-mediated immunity seen as an amplified lymphocytic infiltrate and accelerated maturation of the T-lymphocyte response. PMID:8613391

  5. Effect of rosemary (Rosmarinus officinalis extract on weight, hematology and cell-mediated immune response of newborn goat kids

    Directory of Open Access Journals (Sweden)

    Borhan Shokrollahi

    2015-06-01

    Full Text Available This study aimed at evaluating the effects of different levels of rosemary (Rosmarinus officinalis extract on growth rate, hematology and cell-mediated immune response in Markhoz newborn goat kids. Twenty four goat kids (aged 7±3 days were randomly allotted to four groups with six replicates. The groups included: control, T1, T2 and T3 groups which received supplemented-milk with 0, 100, 200 and 400mg aqueous rosemary extract per kg of live body weight per day for 42 days. Body weights of kids were measured weekly until the end of the experiment. On day 42, 10 ml blood samples were collected from each kid through the jugular vein. Cell-mediated immune response was assessed through the double skin thickness after intradermal injection of phyto-hematoglutinin (PHA at day 21 and 42. No significant differences were seen in initial body weight, average daily gain (ADG and total gain. However, significant differences in globulin (P<0.05, and white blood cells (WBC (P<0.001 were observed. There were no significant differences in haemoglobin (Hb, packed cell volume (PCV, red blood cells (RBC, lymphocytes and neutrophils between the treatments. Skin thickness in response to intra dermal injection of PHA significantly increased in the treated groups as compared to the control group at day 42 (P<0.01 with the T3 group showing the highest response to PHA injection. In conclusion, the results indicated that aqueous rosemary extract supplemented-milk had a positive effect on immunity and skin thickness of newborn goat kids.

  6. Cell-mediated immunity in operable bronchial carcinoma: the effect of injecting irradiated autologous tumour cells and BCG

    International Nuclear Information System (INIS)

    Stack, B.H.R.; McSwan, N.; Stirling, J.M.

    1979-01-01

    In 52 patients undergoing tests of cell-mediated immunity before surgical resection of bronchial carcinoma a positive tuberculin test result was found in 71% compared with 68% of age - and sex-matched controls. Sensitization to DNCB occurred in 52% of 37 patients but in 78% controls. There was depression of lymphocyte transformation by PPD in 19 patients compared with controls (p=0.001), but there was no difference in lymphocyte transformation by PHA pr pokeweed mitogen between 34 patients and controls. In a pilot study patients were randomly allocated to autograft (eight) or non-autograft (seven) groups. The autograft group were given an intradermal injection of a suspension of irradiated autologous tumour-cells mixed with intradermal BCG on the day of operation. Tests of cell-mediated immunity were repeated two weeks after operation. Five patients in each group received a course of radiotherapy to the mediastinum three weeks after operation. There was a rise in a cutaneous tuberculin reactivity (p=0.08) and total leucocyte count (p=0.09) in the autograft group postoperatively with a fall in total lymphocyte and T lymphocyte counts in the non-autograft group (p<0.05). These differences, however, were not followed by any difference in the frequency of tumour recurrence or the survival rate two years after operation. The results show that the immunological surveillance mechanism is impaired even in patients with early bronchial carcinoma and that it is possible to overcome postoperative immunological depression with specific immunotherapy combined with BCG. This treatment did not produce any clinical advantage in this small number of patients and the skin lesions caused the patients considerable discomfort. (author)

  7. Partial immunity in murine by immunization with a toxoplasmic DNA ...

    African Journals Online (AJOL)

    arsenal

    2012-06-12

    Jun 12, 2012 ... vaccine can be effective in partial protection against this parasite. In this study ... that mice immunized by pcROP1 with or without alum produced high Th1 immune response compared .... antigen-specific antibodies, 96-well costar plates were coated .... vaccines against some protozoa, for example, malaria,.

  8. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    Science.gov (United States)

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  9. MMP19 is essential for T cell development and T cell-mediated cutaneous immune responses

    Czech Academy of Sciences Publication Activity Database

    Beck, Inken; Ruckert, R.; Brandt, K.; Mueller, M.S.; Sadowski, T.; Brauer, R.; Schirmacher, P.; Mentlein, R.; Sedláček, Radislav

    2008-01-01

    Roč. 3, č. 6 (2008), e2343-e2343 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : matrix metalloproteinase * T cell * immune response Subject RIV: EB - Genetics ; Molecular Biology

  10. IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Öhman, H.; Tiitinen, A; Halttunen, M.

    2006-01-01

    Chlamydia trachomatis infection induces an inflammatory response that is crucial in resolving acute infection but may also play a key role in the pathogenesis of C trachomatis associated infertility. The immune response is linked to cytokine secretion pattern which is influenced by the host genetic...

  11. Lactobacillus rhamnosus CRL1505 nasal administration improves recovery of T-cell mediated immunity against pneumococcal infection in malnourished mice.

    Science.gov (United States)

    Barbieri, N; Herrera, M; Salva, S; Villena, J; Alvarez, S

    2017-05-30

    Immunobiotic lactic acid bacteria have become an interesting alternative for the prevention of respiratory infections. Previously, we demonstrated that the nasal administration of Lactobacillus rhamnosus CRL1505, during repletion of malnourished mice, resulted in diminished susceptibility to the challenge with the respiratory pathogen Streptococcus pneumoniae. Considering the known alterations induced by malnutrition on T lymphocytes and the importance of this cell population on the protection against respiratory pathogens, we aimed to study the effect of L. rhamnosus CRL1505 nasal administration on the recovery of T cell-mediated defences against pneumococcal infection in malnourished mice under nutritional recovery. Malnourished mice received a balanced conventional diet (BCD) for seven days or BCD for seven days with nasal L. rhamnosus CRL1505 supplementation during last two days of the treatment. After the treatments mice were infected with S. pneumoniae. Flow cytometry studies were carried out in bone marrow, thymus, spleen and lung to study T cells, and Th 1 /Th 2 cytokine profiles were determined in broncho-alveolar lavages and serum. The administration of CRL1505 strain to malnourished mice under recovery reduced quantitative and qualitative alterations of CD4 + T cells in the bone marrow, thymus, spleen and lung induced by malnutrition. In addition, CRL1505 treatment augmented Th 2 -cytokines (interleukin 10 and 4) in respiratory and systemic compartments after pneumococcal infection. These results show that modulation of CD4 + T lymphocytes induced by L. rhamnosus CRL1505 has an important role in the beneficial effect induced by this strain on the recovery of malnourished mice. These data also indicate that nasally administered L. rhamnosus CRL1505 may represent a non-invasive alternative to modulate and improve the T cell-mediated immunity against respiratory pathogens in immunocompromised malnourished hosts.

  12. Phleum pratense pollen starch granules induce humoral and cell-mediated immune responses in a rat model of allergy.

    Science.gov (United States)

    Motta, A; Peltre, G; Dormans, J A M A; Withagen, C E T; Lacroix, G; Bois, F; Steerenberg, P A

    2004-02-01

    Timothy grass (Phleum pratense) pollen allergens are an important cause of allergic symptoms. However, pollen grains are too large to penetrate the deeper airways. Grass pollen is known to release allergen-bearing starch granules (SG) upon contact with water. These granules can create an inhalable allergenic aerosol capable of triggering an early asthmatic response and are implicated in thunderstorm-associated asthma. We studied the humoral (IgE) and bronchial lymph node cells reactivities to SG from timothy grass pollen in pollen-sensitized rats. Brown-Norway rats were sensitized (day 0) and challenged (day 21) intratracheally with intact pollen and kept immunized by pollen intranasal instillation by 4 weeks intervals during 3 months. Blood and bronchial lymph nodes were collected 7 days after the last intranasal challenge. SG were purified from fresh timothy grass pollen using 5 microm mesh filters. To determine the humoral response (IgE) to SG, we developed an original ELISA inhibition test, based on competition between pollen allergens and purified SG. The cell-mediated response to SG in the bronchial lymph node cells was determined by measuring the uptake of [3H]thymidine in a proliferation assay. An antibody response to SG was induced, and purified SG were able to inhibit the IgE ELISA absorbance by 45%. Pollen extract and intact pollen gave inhibitions of 55% and 52%, respectively. A cell-mediated response was also found, as pollen extract, intact pollen and SG triggered proliferation of bronchial lymph node cells. It was confirmed that timothy grass pollen contains allergen-loaded SG, which are released upon contact with water. These granules were shown to be recognized by pollen-sensitized rats sera and to trigger lymph node cell proliferation in these rats. These data provide new arguments supporting the implication of grass pollen SG in allergic asthma.

  13. Recurrent Vulvovaginal Candidiasis: Could It Be Related to Cell-Mediated Immunity Defect in Response to Candida Antigen?

    Directory of Open Access Journals (Sweden)

    Zahra Talaei

    2017-09-01

    Full Text Available Background Recurrent vulvovaginal candidiasis (RVVC is a common cause of morbidity affecting millions of women worldwide. Patients with RVVC are thought to have an underlying immunologic defect. This study has been established to evaluate cell-mediated immunity defect in response to candida antigen in RVVC cases. Materials and Methods Our cross-sectional study was performed in 3 groups of RVVC patients (cases, healthy individuals (control I and known cases of chronic mucocutaneous candidiasis (CMC (control II. Patients who met the inclusion criteria of RVVC were selected consecutively and were allocated in the case group. Peripheral blood mononuclear cells were isolated and labeled with CFSE and proliferation rate was measured in exposure to candida antigen via flow cytometry. Results T lymphocyte proliferation in response to candida was significantly lower in RVVC cases (n=24 and CMC patients (n=7 compared to healthy individuals (n=20, P0.05. Family history of primary immunodeficiency diseases (PID differed significantly among groups (P=0.01, RVVC patients has family history of PID more than control I (29.2 vs. 0%, P=0.008 but not statistically different from CMC patients (29.2 vs. 42.9%, P>0.05. Prevalence of atopy was greater in RVVC cases compared to healthy individuals (41.3 vs. 15%, P=0.054. Lymphoproliferative activity and vaginal symptoms were significantly different among RVVC cases with and without allergy (P=0.01, P=0.02. Conclusion Our findings revealed that T cells do not actively proliferate in response to Candida antigen in some RVVC cases. So it is concluded that patients with cell-mediated immunity defect are more susceptible to recurrent fungal infections of vulva and vagina. Nonetheless, some other cases of RVVC showed normal function of T cells. Further evaluations showed that these patients suffer from atopy. It is hypothesized that higher frequency of VVC in patients with history of atopy might be due to allergic response

  14. Long-term effect of whole-body X-irradiation on cell-mediated immune reaction in mice

    International Nuclear Information System (INIS)

    Norimura, Toshiyuki; Tsuchiya, Takehiko

    1989-01-01

    Age-related change in immunological activity was examined at 10 to 91 weeks following whole-body irradiation by determining the specific anti-tumor cell-mediated immunity in host mice induced and/or enhanced by local irradiation to transplanted tumor. Median survival time of the non-irradiated C3H/He female mice was 98.6 weeks while the median life-span of the mice exposed to two and four Gy of 250 kVp X-rays at the age of 10-12 weeks was shortened by 14.9 and 23.4 weeks, respectively. The rate of tumor reduction within two weeks after local irradiation to tumor and the growth inhibitory activitiy of spleen cells from tumor irradiated mice were reduced in a dose-dependent manner when assessed 10 weeks after whole-body irradiation, but recovered to the near-complete level of the non-irradiated controls within a few months, then gradually decreased with normal aging. These results suggest that the age-dependent decline of this immunological activity apears earlier in the irradiated mice as a result of whole-body X-irradiation at a young age, suggesting accelerated aging of the immune system. (author)

  15. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    Science.gov (United States)

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  16. Myeloid-derived suppressor cells mediate immune suppression in spinal cord injury.

    Science.gov (United States)

    Wang, Lei; Yu, Wei-bo; Tao, Lian-yuan; Xu, Qing

    2016-01-15

    Spinal cord injury (SCI) is characterized by the loss of motor and sensory functions in areas below the level of the lesion and numerous accompanying deficits. Previous studies have suggested that myeloid-derived suppressor cell (MDSC)-induced immune depression may play a pivotal role in the course of SCI. However, the concrete mechanism of these changes regarding immune suppression remains unknown. Here, we created an SCI mouse model to gain further evidence regarding the relationship between MDSCs following SCI and T lymphocyte suppression. We showed that in the SCI mouse model, the expanding MDSCs have the capacity to suppress T cell proliferation, and this suppression could be reversed by blocking the arginase. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Science.gov (United States)

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  18. Biochemical studies of immune RNA using a cell-mediated cytotoxicity assay

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Sellin, H.G.; Novelli, G.D.

    1980-01-01

    Immune RNA (iRNA), a subcellular macromolecular species usually prepared by phenol extraction of lymphoid tissue, can confer some manifestation(s) of cellular immunity on naive lymphocytes. Experiments were done to develop an assay system to detect activation of lymphocytes by iRNA to become cytotoxic toward tumor cells, and to study certain properties of iRNA using this system. Guinea pigs were immunized with human mammary carcinoma cells and the iRNA, prepared from spleens of animals shown by prior assay to have blood lymphocytes highly cytotoxic against the tumor cells, was assayed by ability of iRNA-activated lymphocytes to lyse /sup 51/Cr-labelled tumor cells. The ability of iRNA to activate lymphocytes to tumor cytotoxicity could only be differentiated from a cytotoxic activation by RNA preparations from unimmunized animals at very low doses of RNA. The most active iRNA preparations were from cytoplasmic subcellular fractions, extracted by a cold phenol procedure, while iRNA isolated by hot phenol methods was no more active than control RNA prepared by the same techniques. Attempts to demonstrate poly(A) sequences in iRNA were inconclusive.

  19. Plasmodium berghei: immunosuppression of the cell-mediated immune response induced by nonviable antigenic preparations

    International Nuclear Information System (INIS)

    Gross, A.; Frankenburg, S.

    1989-01-01

    In this work, plasmodial antigens were examined for their ability to suppress the cellular immune response during lethal Plasmodium berghei infection. Splenic enlargement and the number and function of white spleen cells were assessed after injection of normal mice with irradiated parasitized erythrocytes (IPE) or with parasitized erythrocytes (PE) membranes. Both IPE and PE membranes caused splenomegaly and an increase in the number of splenic white cells with concurrent alteration of the relative proportions of T cells and macrophages. The percentage of T lymphocytes was fractionally diminished, but there was a marked increase in Lyt 2.2 positive (suppressor and cytotoxic) T subsets and in the number of splenic macrophage precursors. The pathological enlargement of the spleen was induced by various plasma membrane-derived antigens containing both proteins and carbohydrates. Splenocytes of mice injected with liposomes containing deoxycholate-treated PE or PE fractions showed both diminished interleukin 2 production and a decreased response to mitogen. It appears that some of the changes in the cellular immune response during P. berghei infection are a consequence of the massive provision of a wide spectrum of antigens, capable of suppressing the immune response. Thus, it may be appropriate to evaluate the possible negative effect of parasite epitopes that are candidates for vaccine

  20. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter

    2009-01-01

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper...

  1. Phenotypic correction of Fanconi anemia cells in the murine bone marrow after carrier cell mediated delivery of lentiviral vector.

    Science.gov (United States)

    Chakkaramakkil Verghese, Santhosh; Goloviznina, Natalya A; Kurre, Peter

    2016-11-19

    Fanconi anemia (FA) is an autosomal-recessive disorder associated with hematopoietic failure and it is a candidate for hematopoietic stem cell (HSC)-directed gene therapy. However, the characteristically reduced HSC numbers found in FA patients, their ineffective mobilization from the marrow, and re-oxygenation damage during ex vivo manipulation have precluded clinical success using conventional in vitro approaches. We previously demonstrated that lentiviral vector (LV) particles reversibly attach to the cell surface where they gain protection from serum complement neutralization. We reasoned that cellular delivery of LV to the bone marrow niche could avoid detrimental losses during FA HSC mobilization and in vitro modification. Here, we demonstrate that a VSV-G pseudotyped lentivector, carrying the FANCC transgene, can be transmitted from carrier to bystander cells. In cell culture and transplantation models of FA, we further demonstrate that LV carrier cells migrate along SDF-1α gradients and transfer vector particles that stably integrate and phenotypically correct the characteristic DNA alkylator sensitivity in murine and human FA-deficient target bystander cells. Altogether, we demonstrate that cellular homing mechanisms can be harnessed for the functional phenotype correction in murine FA hematopoietic cells.

  2. Phenotypic correction of Fanconi anemia cells in the murine bone marrow after carrier cell mediated delivery of lentiviral vector

    Directory of Open Access Journals (Sweden)

    Santhosh Chakkaramakkil Verghese

    2016-11-01

    Full Text Available Abstract Fanconi anemia (FA is an autosomal-recessive disorder associated with hematopoietic failure and it is a candidate for hematopoietic stem cell (HSC-directed gene therapy. However, the characteristically reduced HSC numbers found in FA patients, their ineffective mobilization from the marrow, and re-oxygenation damage during ex vivo manipulation have precluded clinical success using conventional in vitro approaches. We previously demonstrated that lentiviral vector (LV particles reversibly attach to the cell surface where they gain protection from serum complement neutralization. We reasoned that cellular delivery of LV to the bone marrow niche could avoid detrimental losses during FA HSC mobilization and in vitro modification. Here, we demonstrate that a VSV-G pseudotyped lentivector, carrying the FANCC transgene, can be transmitted from carrier to bystander cells. In cell culture and transplantation models of FA, we further demonstrate that LV carrier cells migrate along SDF-1α gradients and transfer vector particles that stably integrate and phenotypically correct the characteristic DNA alkylator sensitivity in murine and human FA-deficient target bystander cells. Altogether, we demonstrate that cellular homing mechanisms can be harnessed for the functional phenotype correction in murine FA hematopoietic cells.

  3. Fatty acids isolated from royal jelly modulate dendritic cell-mediated immune response in vitro.

    Science.gov (United States)

    Vucevic, Dragana; Melliou, Eleni; Vasilijic, Sasa; Gasic, Sonja; Ivanovski, Petar; Chinou, Ioanna; Colic, Miodrag

    2007-09-01

    Royal jelly (RJ), especially its protein components, has been shown to possess immunomodulatory activity. However, almost nothing is known about the influence of RJ fatty acids on the immune system. In this work we studied the effect of 10-hydroxy-2-decanoic acid (10-HDA) and 3,10-dihydroxy-decanoic acid (3,10-DDA), isolated from RJ, on the immune response using a model of rat dendritic cell (DC)-T-cell cocultures. Both fatty acids, at higher concentrations, inhibited the proliferation of allogeneic T cells. The effect of 10-HDA was stronger and was followed by a decrease in interleukin-2 (IL-2) production and down-regulation of IL-2 receptor expression. Spleen DC, cultivated with 10 microg/ml of fatty acids down-regulated the expression of CD86 and the production of IL-12, but up-regulated the production of IL-10. In contrast, DC, pretreated with 100 microg/ml of 3,10-DDA, up-regulated the expression of CD86 and augmented the proliferation of allogeneic T cells. The highest dose (200 microg/ml) of both fatty acids which was non-apoptotic for both T cells and DC, down-regulated the expression of MHC class II and CD86, decreased the production of IL-12 and made these DC less allostimulatory. The immunosuppressive activity of 3,10-DDA was also confirmed in vivo, using a model of Keyhole lymphet hemocyanine immunization of rats. In conclusion, our results showed the immunomodulatory activity of RJ fatty acids and suggest that DC are a significant target of their action.

  4. CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity.

    Science.gov (United States)

    Kumamoto, Yosuke; Linehan, Melissa; Weinstein, Jason S; Laidlaw, Brian J; Craft, Joseph E; Iwasaki, Akiko

    2013-10-17

    Unlike other types of T helper (Th) responses, whether the development of Th2 cells requires instruction from particular subset of dendritic cells (DCs) remains unclear. By using an in vivo depletion approach, we have shown that DCs expressing CD301b were required for the generation of Th2 cells after subcutaneous immunization with ovalbumin (OVA) along with papain or alum. CD301b⁺ DCs are distinct from epidermal or CD207⁺ dermal DCs (DDCs) and were responsible for transporting antigen injected subcutaneously with Th2-type adjuvants. Transient depletion of CD301b⁺ DCs resulted in less effective accumulation and decreased expression of CD69 by polyclonal CD4⁺ T cells in the lymph node. Moreover, despite intact cell division and interferon-γ production, CD301b⁺ DC depletion led to blunted interleukin-4 production by OVA-specific OT-II transgenic CD4⁺ T cells and significantly impaired Th2 cell development upon infection with Nippostrongylus brasiliensis. These results reveal CD301b⁺ DDCs as the key mediators of Th2 immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  6. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    Directory of Open Access Journals (Sweden)

    Fernando dos Santos Virgilio

    2014-01-01

    Full Text Available MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.

  7. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    DEFF Research Database (Denmark)

    Uddbäck, Ida Elin Maria; Pedersen, Line M I; Pedersen, Sara R

    2016-01-01

    nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local......The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu...... (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months...

  8. The role of CD4+ T cells in cell-mediated immunity to LCMV: studies in MHC class I and class II deficient mice

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    Parameters of the virus-specific T-cell response were analysed in order to dissect the contribution of CD4+ and CD8+ T cells to cell-mediated immunity to lymphocytic choriomeningitis virus. In MHC class II deficient mice, initial T-cell responsiveness was not impaired, but virus clearance...... was delayed, and virus-specific Td activity declined more rapidly. Furthermore, class I restricted Tc memory appeared to be impaired in these mice. To directly evaluate the role of CD4+ cells in virus clearance and T-cell mediated inflammation, MHC class I deficient mice were also studied. No virus...... exudate. This low-grade response was associated with some degree of virus control as organ titres were lower in these animals than in matched T-cell deficient nu/nu mice or class I deficient mice treated with anti-CD4 monoclonal antibody. This confirms that CD4+ cells are not needed to induce a virus...

  9. Acute lethal toxicity following passive immunization for treatment of murine cryptococcosis.

    OpenAIRE

    Savoy, A C; Lupan, D M; Manalo, P B; Roberts, J S; Schlageter, A M; Weinhold, L C; Kozel, T R

    1997-01-01

    Passive immunization with monoclonal antibodies (MAbs) specific for the major capsular polysaccharide of Cryptococcus neoformans alters the course of murine cryptococcosis. During studies of passive immunization for treatment of murine cryptococcosis, we noted the occurrence of an acute, lethal toxicity. Toxicity was characterized by scratching, lethargy, respiratory distress, collapse, and death within 20 to 60 min after injection of antibody. The toxic effect was observed only in mice with ...

  10. IL-18 potentiated whole blood IFN-γ assay can identify cell-mediated immune responses towards Lawsonia intracellularis in experimentally infected pigs

    DEFF Research Database (Denmark)

    Riber, Ulla; Jakobsen, Jeanne Toft; Hvass, Henriette Cordes

    Lawsonia intracellularis is an obligate intracellular bacteria causing proliferative enteropathy (PE) in pigs. The infection causes diarrhoea, retarded growth and sudden death in pigs and is one of the most economically important diseases in the swine industry worldwide. The infection is one...... indications that cell-mediated immune responses (CMI) are important for the protection against infections with L. intracellularis and in mice models IFN-γ has been shown to play a key role in the host defence against experimental infections . In L. intracellularis infected pigs, IFN-γ is only sparsely...

  11. Disruption of Tumor Necrosis Factor Receptor-Associated Factor 5 Exacerbates Murine Experimental Colitis via Regulating T Helper Cell-Mediated Inflammation

    Directory of Open Access Journals (Sweden)

    Jian Shang

    2016-01-01

    Full Text Available Tumor necrosis factor (TNF receptor-associated factor 5 (TRAF5 is a key mediator of TNF receptor superfamily members and is important in both T helper (Th cell immunity and the regulation of multiple signaling pathways. To clarify TRAF5’s influence on inflammatory bowel diseases (IBDs, we investigated TRAF5 deficiency’s effect on dextran sulfate sodium- (DSS- induced colitis. Colitis was induced in TRAF5 knockout (KO mice and their wild-type (WT littermates by administering 3% DSS orally for 7 days. The mice were then sacrificed, and their colons were removed. Our data suggested that KO mice were more susceptible to DSS-induced colitis. TRAF5 deficiency significantly enhanced IFN-γ, IL-4, and IL-17a mRNA and protein levels in the colons of DSS-fed mice, and the mRNA expression of T-bet and GATA-3 was also markedly elevated. However, ROR-α and ROR-γt mRNA levels did not differ between DSS-induced KO and WT mice. Flow cytometry showed increased frequencies of Th2 and IFN-γ/IL-17a-coproducing CD4+ T cells in the colons of DSS-induced KO mice. Additionally, TRAF5 deficiency significantly enhanced the activation of NF-κB in CD4+ T cells after DSS administration. These results indicated that TRAF5 deficiency significantly aggravated DSS-induced colitis, most likely by regulating Th cell-mediated inflammation.

  12. Effects of in ovo exposure to PCBs (coplanar congener, kanechlor mixture, hydroxylated metabolite) on the developing cell-mediated immunity in chickens

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, J.; Matsuda, M.; Kawano, M.; Wakimoto, T. [Faculty of Agriculture, Ehime Univ., Matsuyama, Ehime (Japan); Kashima, Y. [Dept. of Hygiene, Yokohama City Univ. School of Medicine, Yokohama (Japan)

    2004-09-15

    Polychlorinated biphenyls (PCBs) are wide spread environmental contaminants and known to cause various adverse effects on health of human and wildlife. Immune system is one of the several targets for toxic effects of PCBs and its normal balance is often disrupted by the exposure of the compounds. For example, PCBs may induce immune suppression and result in increased susceptibility to bacterial and viral infections, or conversely, excessive immune enhancement may cause adverse outcomes including as autoimmune disease and anergy. Therefore immune function is regarded as one of an important endpoint in toxicological risk assessment. There are a number of studies shown that neonatal organisms perinatally exposed to polyhalogenated aromatic hydrocarbons (PHAHs) such as PCBs have severer effects on their immune system than adult. Dioxins and coplanar PCB congeners, structurally planar PHAHs are known to have high affinity for aryl hydrocarbon receptor (AhR). 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD) have the strongest affinity among such compounds and these are considered to act on immune system through AhR. On the other hand, such as non-planar PCB congeners with low affinity for AhR, which are abundantly contained in commercial PCB preparations have non-additive (antagonistic) effects on immune function. Prenatal exposure of TCDD to rodent induced abnormal lymphoid development in the thymus and thymus-dependent immune functions were remarkably disturbed. Although several experimental studies in mammals have been carried out on the developmental immunotoxicity of PCBs, there are still limited information available on avian species. Thus in this study, prenatal exposure to low level of PCBs and the effects on the developing immune system were investigated with chicken as a model animal of avian species, especially it is focused on the cell-mediated immune function.

  13. The CD8⁺ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant.

    Science.gov (United States)

    Manfredi, Francesco; di Bonito, Paola; Ridolfi, Barbara; Anticoli, Simona; Arenaccio, Claudia; Chiozzini, Chiara; Baz Morelli, Adriana; Federico, Maurizio

    2016-11-09

    We recently described the induction of an efficient CD8⁺ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8⁺ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8⁺ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIX TM adjuvant, i.e., an adjuvant composed of purified ISCOPREP TM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIX TM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8⁺ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches.

  14. The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant

    Science.gov (United States)

    Manfredi, Francesco; di Bonito, Paola; Ridolfi, Barbara; Anticoli, Simona; Arenaccio, Claudia; Chiozzini, Chiara; Baz Morelli, Adriana; Federico, Maurizio

    2016-01-01

    We recently described the induction of an efficient CD8+ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8+ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8+ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIXTM adjuvant, i.e., an adjuvant composed of purified ISCOPREPTM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIXTM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8+ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches. PMID:27834857

  15. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo

    1999-01-01

    -mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic......By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell...... LCMV infection in both strains. Concerning the outcome of intracerebral infection, no significant differences were found between iNOS-deficient and wild-type mice in the number or composition of mononuclear cells found in the cerebrospinal fluid on day 6 post-infection. Likewise, NO did not influence...

  16. T-cell-mediated immunity to lymphocytic choriomeningitis virus in beta2-integrin (CD18)- and ICAM-1 (CD54)-deficient mice

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1996-01-01

    The T-cell response to lymphocytic choriomeningitis virus was studied in mice with deficient expression of beta2-integrins or ICAM-1. In such mice, the generation of virus-specific cytotoxic T lymphocytes was only slightly impaired and bystander activation was as extensive as that observed in wild-type...... mice. T-cell-mediated inflammation, assessed as primary footpad swelling and susceptibility to intracerebral infection, was slightly compromised only in beta2-integrin-deficient mice. However, adoptive immunization of mutant mice soon after local infection did reveal a reduced capacity to support...... the inflammatory reaction, indicating that under conditions of more limited immune activation both molecules do play a role in formation of the inflammatory exudate. Finally, virus control was found to be somewhat impaired in both mutant strains. In conclusion, our results indicate that although LFA-1-ICAM-1...

  17. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    Science.gov (United States)

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-01-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988

  18. Differential immune microenvironments and response to immune checkpoint blockade amongst molecular subtypes of murine medulloblastoma

    Science.gov (United States)

    Pham, Christina D.; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M.; Yearley, Jennifer H.; Sayour, Elias J.; Pei, Yanxin; Moore, Colin; McLendon, Roger E.; Huang, Jianping; Sampson, John H.; Wechsler-Reya, Robert; Mitchell, Duane A.

    2016-01-01

    PURPOSE Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma (MB), the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and Group 3 MB for preclinical evaluation in immunocompetent C57BL/6 mice. METHODS AND RESULTS Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid derived suppressor cells and tumor-associated macrophages in murine SHH model tumors compared with Group 3 tumors. However, murine Group 3 tumors had higher percentages of CD8+ PD-1+ T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial Group 3 tumors compared to SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1+ peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3+ T cells within the tumor microenvironment. CONCLUSIONS This is the first immunologic characterization of preclinical models of molecular subtypes of MB and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. PMID:26405194

  19. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma.

    Science.gov (United States)

    Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A

    2016-02-01

    Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.

  20. Stress effect on humoral and cell mediated immune response: Indispensable part of corticosterone and cytokine in neutrophil function

    Directory of Open Access Journals (Sweden)

    Sakthivel Srinivasan

    2016-01-01

    Conclusion: This result further concludes that prior immunization of SRBC in animal’s act as a vaccination, which helps to prevent noise stress induced impairment in immune system. Orally administered I. tinctoria prevented noise altered immune system. These results also concluded that I. tinctoria supplementation could act as an immunomodulators and suggesting its therapeutic efficacy as an antistressor.

  1. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    Science.gov (United States)

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  2. Co-incubation with IL-18 potentiates antigen-specific IFN-γ response in a whole-blood stimulation assay for measurement of cell-mediated immune responses in pigs experimentally infected with Lawsonia intracellularis

    DEFF Research Database (Denmark)

    Riber, Ulla; Boesen, Henriette Toft; Jakobsen, Jeanne Toft

    2011-01-01

    The whole-blood interferon-gamma (IFN-γ) assay is a quantitative in-vitro assay for a direct read out of Ag-specific cell-mediated immune (CMI) responses to infectious diseases. The IFN-γ assay is robust in severe intracellular infections like Brucella or mycobacteria, but more difficult to evalu......The whole-blood interferon-gamma (IFN-γ) assay is a quantitative in-vitro assay for a direct read out of Ag-specific cell-mediated immune (CMI) responses to infectious diseases. The IFN-γ assay is robust in severe intracellular infections like Brucella or mycobacteria, but more difficult...

  3. Induction of cell-mediated immunity against B16-BL6 melanoma in mice vaccinated with cells modified by hydrostatic pressure and chemical crosslinking.

    Science.gov (United States)

    Eisenthal, A; Ramakrishna, V; Skornick, Y; Shinitzky, M

    1993-05-01

    In the preceding paper we have demonstrated an increase in presentation of both major histocompatibility complex antigens (MHC) and a tumor-associated antigen of the weakly immunogenic B16 melanoma by a straight-forward technique. The method consists in modulating the tumor cell membrane by hydrostatic pressure and simultaneous chemical crosslinking of the cell-surface proteins. In B16-BL6 melanoma, the induced antigenic modulation was found to persist for over 48 h, which permitted the evaluation of the ability of modified B16-BL6 cells to induce immunity against unmodified B16-BL6 cells. In the present study, we have shown that a significant systemic immunity was induced only in mice that were immunized with modified B16-BL6 melanoma cells, whereas immunization with unmodified B16-BL6 cells had only a marginal effect when compared to the results in control sham-immunized mice. The induced immunity was specific since a single immunization affected the growth of B16-BL6 tumors but had no effect on MCA 106, an antigenically unrelated tumor. The addition of interleukin-2 to the immunization regimen had no effect on the antitumor responses induced by the modified B16-BL6 cells. The cell-mediated immunity conferred by immunization with treated B16-BL6 cells was confirmed in experiments in vitro where splenocytes from immunized mice could be sensitized to proliferate by the presence of B16-BL6 cells. In addition, the altered antigenicity of these melanoma cells appeared to correlate with their increased susceptibility to specific effectors. Thus, 51Cr-labeled B16-BL6 target cells, modified by pressure and crosslinking, in comparison to control labeled target cells, were lysed in much greater numbers by effectors such as lymphokine-activated killer cells and allogeneic cytotoxic lymphocytes (anti-H-2b), while such cells remained resistant to lysis by natural killer cells. Our findings indicate that the physical and chemical modifications of the tumor cells that are

  4. Negative role of malnutrition in cell-mediated immune response: Pneumocystis jirovecii pneumonia (PCP) in a severely malnourished, HIV-negative patient with anorexia nervosa.

    Science.gov (United States)

    Hanachi, Mouna; Bohem, Vanessa; Bemer, Pauline; Kayser, Nadja; de Truchis, Pierre; Melchior, Jean-Claude

    2018-06-01

    It is generally acknowledged that malnutrition is a propensity factor for secondary infections in different clinical situations (malnutrition-associated infections in hospitalized patients and malnourished children in developing countries). However, it is not clear how malnutrition might facilitate the development of opportunistic infections in human immunodeficiency virus (HIV)-negative patients without a definite etiology (disease or treatment) of impaired cell-mediated immune response. We report here on a case of Pneumocystis jirovecii pneumonia in an HIV-negative patient suffering from anorexia nervosa with extreme malnutrition, which had a favorable outcome despite the severity of her respiratory failure. This report indicates the need for the early screening of nutritional status and rapid treatment initiation in patients with malnutrition, as well as the determination of opportunistic infections in the event of a low lymphocyte count. Copyright © 2018. Published by Elsevier Ltd.

  5. Subnormal expression of cell-mediated and humoral immune responses in progeny disposed toward a high incidence of tumors after in utero exposure to benzo[a]pyrene

    International Nuclear Information System (INIS)

    Urso, P.; Gengozian, N.

    1984-01-01

    Pregnant mice were exposed to 150 μg benzol[a]pyrene (BaP) per gram of body weight during fetogenesis (d 11-17 of gestation) and the progeny were assayed for humoral and cell mediated immune responses at different time intervals after birth. Immature offspring (1-4 wk) were severely suppressed in their ability to produce antibody (plaque-) forming cells (PFC) against sheep red blood cells (SRBC) and in the ability of their lymphocytes to undergo a mixed lymphocyte response (MLR). Lymphocytes from these progeny showed a moderate to weak capacity to inhabit production of colony-forming units (CFU) in host spleens following transfer with semiallogeneic bone marrow (BM) cells into lethally x-irradiated recipients syngeneic to the BM (in vivo graft-versus-host response, GVHR). A severe and sustained suppression in the MLR and the PFC response occurred from the fifth month up to 18 mo. The in vivo GVHR, also subnormal later in life, was not as severely suppressed as the other two parameters. Tumor incidence in the BP-exposed progeny was 8- to 10-fold higher than in those encountering corn oil alone from 18 to 24 mo of age. These data show that in utero exposure to the chemical carcinogen BaP alters development of components needed for establishing competent hemoral and cell-mediated functions of the immune apparatus and leads to severe and sustained postnatal suppression of the defense mechanism. The immunodeficiency exhibited, particularly in the T-cell compartment (MLR, GVHR), before and during the increase in tumor frequency, may provide a favorable environment for the growth of nascent neoplasms induced by BaP. 30 references, 4 figures, 2 tables

  6. alpha(4)beta(7) independent pathway for CD8(+) T cell-mediated intestinal immunity to rotavirus.

    Science.gov (United States)

    Kuklin, N A; Rott, L; Darling, J; Campbell, J J; Franco, M; Feng, N; Müller, W; Wagner, N; Altman, J; Butcher, E C; Greenberg, H B

    2000-12-01

    Rotavirus (RV), which replicates exclusively in cells of the small intestine, is the most important cause of severe diarrhea in young children worldwide. Using a mouse model, we show that expression of the intestinal homing integrin alpha(4)ss(7) is not essential for CD8(+) T cells to migrate to the intestine or provide immunity to RV. Mice deficient in ss7 expression (ss7(-/-)) and unable to express alpha(4)ss(7) integrin were found to clear RV as quickly as wild-type (wt) animals. Depletion of CD8(+) T cells in ss7(-/-) animals prolonged viral shedding, and transfer of immune ss7(-/-) CD8(+) T cells into chronically infected Rag-2-deficient mice resolved RV infection as efficiently as wt CD8(+) T cells. Paradoxically, alpha(4)ss(7)(hi) memory CD8(+) T cells purified from wt mice that had been orally immunized cleared RV more efficiently than alpha(4)ss(7)(low) CD8(+) T cells. We explained this apparent contradiction by demonstrating that expression of alpha(4)ss(7) on effector CD8(+) T cells depends upon the site of initial antigen exposure: oral immunization generates RV-specific CD8(+) T cells primarily of an alpha(4)ss(7)(hi) phenotype, but subcutaneous immunization yields both alpha(4)ss(7)(hi) and alpha(4)ss(7)(low) immune CD8(+) T cells with anti-RV effector capabilities. Thus, alpha(4)ss(7) facilitates normal intestinal immune trafficking to the gut, but it is not required for effective CD8(+) T cell immunity.

  7. Dim light at night interferes with the development of the short-day phenotype and impairs cell-mediated immunity in Siberian hamsters (Phodopus sungorus).

    Science.gov (United States)

    Aubrecht, Taryn G; Weil, Zachary M; Nelson, Randy J

    2014-10-01

    Winter is a challenging time to survive and breed outside of the tropics. Animals use day length (photoperiod) to regulate seasonally appropriate adaptations in anticipation of challenging winter conditions. The net result of these photoperiod-mediated adjustments is enhanced immune function and increased survival. Thus, the ability to discriminate day length information is critical for survival and reproduction in small animals. However, during the past century, urban and suburban development has rapidly expanded and filled the night sky with light from various sources, obscuring crucial light-dark signals, which alters physiological interpretation of day lengths. Furthermore, reduced space, increased proximity to people, and the presence of light at night may act as stressors for small animals. Whereas acute stressors typically enhance immune responses, chronic exposure to stressors often impairs immune responses. Therefore, we hypothesized that the combination of dim light at night and chronic stress interferes with enhanced cell-mediated immunity observed during short days. Siberian hamsters (Phodopus sungorus) were assigned to short or long days with dark nights (0 lux) or dim (5 lux) light at night for 10 weeks. Following 2 weeks of chronic restraint (6 hr/day), a model of chronic stress, delayed type hypersensitivity (DTH) responses were assessed. Both dim light at night and restraint reduced the DTH response. Dim light at night during long nights produced an intermediate short day phenotype. These results suggest the constant presence of light at night could negatively affect survival of photoperiodic rodents by disrupting the timing of breeding and immune responses. © 2014 Wiley Periodicals, Inc.

  8. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection

  9. Cell-mediated immunity to Plasmodium falciparum infection: evidence against the involvement of cytotoxic lymphocytes

    DEFF Research Database (Denmark)

    Theander, T G; Andersen, B J; Pedersen, B K

    1988-01-01

    stimulated PBMC from malaria-immune donors by SPag and purified protein derivative (PPD) in culture for 7 days. The PBMC were then co-incubated with P. falciparum for 48 h, and parasitaemia was determined by microscopy. Parasite growth was only significantly impaired after incubation with PBMC stimulated...... by either SPag or PPD in the presence of immune serum. Studies on subpopulations of PBMC indicated that the inhibitory cells resided among the adherent cell fraction. Furthermore we tested PBMC for cytotoxic activity against P. falciparum-infected autologous or heterologous erythrocytes. Experiments were...... done both in the absence and the presence of immune serum. Neither fresh PBMC nor PBMC activated by SPag or PPD for 7 days prior to assay were cytotoxic, indicating that cytotoxic T cells, natural killer (NK) cells, and K cells did not possess cytotoxic activity directed against parasitized...

  10. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity

    Science.gov (United States)

    Kato, Shingo; Berzofsky, Jay A.; Terabe, Masaki

    2018-01-01

    Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies. PMID:29520281

  11. Cell-mediated immunity to histocompatibility antigens : controlling factors, with emphasis on Graft-versus-host reactions in mice

    NARCIS (Netherlands)

    H. Bril (Herman)

    1984-01-01

    textabstractGraft-versus-Host (GvH) disease is characterized by weight loss, diarrhea, skin lesions, hypofunction of the immune system with concomitant infections, etc. This syndrome is potentially lethal. GvH reactions, which underly this disease, may occur when immunocompetent T lymphocytes are

  12. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture

    Directory of Open Access Journals (Sweden)

    Federico Garrido

    2017-02-01

    Full Text Available Tumor immune escape is associated with the loss of tumor HLA class I (HLA-I expression commonly found in malignant cells. Accumulating evidence suggests that the efficacy of immunotherapy depends on the expression levels of HLA class I molecules on tumors cells. It also depends on the molecular mechanism underlying the loss of HLA expression, which could be reversible/“soft” or irreversible/“hard” due to genetic alterations in HLA, β2-microglobulin or IFN genes. Immune selection of HLA-I negative tumor cells harboring structural/irreversible alterations has been demonstrated after immunotherapy in cancer patients and in experimental cancer models. Here, we summarize recent findings indicating that tumor HLA-I loss also correlates with a reduced intra-tumor T cell infiltration and with a specific reorganization of tumor tissue. T cell immune selection of HLA-I negative tumors results in a clear separation between the stroma and the tumor parenchyma with leucocytes, macrophages and other mononuclear cells restrained outside the tumor mass. Better understanding of the structural and functional changes taking place in the tumor microenvironment may help to overcome cancer immune escape and improve the efficacy of different immunotherapeutic strategies. We also underline the urgent need for designing strategies to enhance tumor HLA class I expression that could improve tumor rejection by cytotoxic T-lymphocytes (CTL.

  13. PB1 as a potential target for increasing the breadth of T-cell mediated immunity to Influenza A

    DEFF Research Database (Denmark)

    Uddbäck, Ida E M; Steffensen, Maria A; Pedersen, Sara R

    2016-01-01

    Recently, we showed that combined intranasal and subcutaneous immunization with a non-replicating adenoviral vector expressing NP of influenza A, strain PR8, induced long-standing protection against a range of influenza A viruses. However, H-2(b) mice challenged with an influenza A strain mutated...

  14. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Mandrup Jensen, Camilla Maria; Orskov, Cathrine

    2008-01-01

    The ideal vaccine induces a potent protective immune response, which should be rapidly induced, long-standing, and of broad specificity. Recombinant adenoviral vectors induce potent Ab and CD8+ T cell responses against transgenic Ags within weeks of administration, and they are among the most...

  15. ITE, a novel endogenous nontoxic aryl hydrocarbon receptor ligand, efficiently suppresses EAU and T-cell-mediated immunity.

    Science.gov (United States)

    Nugent, Lindsey F; Shi, Guangpu; Vistica, Barbara P; Ogbeifun, Osato; Hinshaw, Samuel J H; Gery, Igal

    2013-11-13

    Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans.

  16. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Lokesh; Checker, Rahul; Sharma, Deepak; Thoh, M. [Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai (India); Patil, Anand [Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai (India); Degani, M. [Institute of Chemical Technology, Matunga, Mumbai (India); Gota, Vikram [Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai (India); Sandur, Santosh K., E-mail: sskumar@barc.gov.in [Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai (India)

    2015-12-01

    Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71 and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway. - Highlights:: • Withaferin A (WA) inhibited T-cell and B-cell mediated immune responses. • WA increased basal ROS levels in lymphocytes. • WA directly interacted with GSH as studied using spectrophotometry and HPLC. • WA inhibited NF-κB nuclear translocation and binding of nuclear NF-κB to DNA. • WA inhibited induction of the graft-versus-host disease in mice.

  17. The effect of feed supplementation with zinc chelate and zinc sulphate on selected humoral and cell-mediated immune parameters and cytokine concentration in broiler chickens.

    Science.gov (United States)

    Jarosz, Łukasz; Marek, Agnieszka; Grądzki, Zbigniew; Kwiecień, Małgorzata; Kalinowski, Marcin

    2017-06-01

    The ability of poultry to withstand infectious disease caused by bacteria, viruses or protozoa depends upon the integrity of the immune system. Zinc is important for proper functioning of heterophils, mononuclear phagocytes and T lymphocytes. Numerous data indicate that the demand for zinc in poultry is not met in Poland due to its low content in feeds of vegetable origin. The aim of the study was to determine the effect of supplementation of inorganic (ZnSO 4 and ZnSO 4 + phytase enzyme), and organic forms of zinc (Zn with glycine and Zn with glycine and phytase enzyme) on selected parameters of the cellular and humoral immune response in broiler chickens by evaluating the percentage of CD3 + CD4 + , CD3 + CD8 + , CD25 + , MHC Class II, and BU-1 + lymphocytes, the phagocytic activity of monocytes and heterophils, and the concentration of IL-2, IL-10 and TNF-α in the peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. Phagocytic activity in whole blood was performed using the commercial Phagotest kit (ORPEGEN-Pharma, Immuniq, Poland). The results showed that supplementation with zinc chelates causes activation of the cellular and humoral immune response in poultry, helping to maintain the balance between the Th1 and Th2 response and enhancing resistance to infections. In contrast with chelates, the use of zinc in the form of sulphates has no immunomodulatory effect and may contribute to the development of local inflammatory processes in the digestive tract, increasing susceptibility to infection. Copyright © 2016. Published by Elsevier Ltd.

  18. Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response

    OpenAIRE

    Rasi Guido; Federici Memmo; Mercuri Luana; Zonfrillo Manuela; Andreola Federica; Vallebona Paola; Serafino Annalucia; Garaci Enrico; Pierimarchi Pasquale

    2008-01-01

    Abstract Background Besides few data concerning the antiseptic properties against a range of microbial agents and the anti-inflammatory potential both in vitro and in vivo, little is known about the influence of Eucalyptus oil (EO) extract on the monocytic/macrophagic system, one of the primary cellular effectors of the immune response against pathogen attacks. The activities of this natural extract have mainly been recognized through clinical experience, but there have been relatively little...

  19. HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response

    Science.gov (United States)

    Di Bonito, Paola; Ridolfi, Barbara; Columba-Cabezas, Sandra; Giovannelli, Andrea; Chiozzini, Chiara; Manfredi, Francesco; Anticoli, Simona; Arenaccio, Claudia; Federico, Maurizio

    2015-01-01

    We developed an innovative strategy to induce a cytotoxic T cell (CTL) immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut), which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV)-E7 with that of lentiviral virus-like particles (VLPs) incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity. PMID:25760140

  20. HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response

    Directory of Open Access Journals (Sweden)

    Paola Di Bonito

    2015-03-01

    Full Text Available We developed an innovative strategy to induce a cytotoxic T cell (CTL immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut, which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV-E7 with that of lentiviral virus-like particles (VLPs incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity.

  1. The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L.

    Science.gov (United States)

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2015-10-01

    Entomopathogenic fungi that manifest infections by overcoming insect's immune response could be a successful control agent for the house fly, Musca domestica L. which is a major domestic, medical, and veterinary pest. In this study, the immune response of house fly to Beauveria bassiana infection was investigated to reveal fundamental aspects of house fly hemocyte biology, such as hemocyte numbers and size, which is poorly understood. The total hemocyte counts (THCs) in B. bassiana-infected house fly showed an initial increase (from 6 to 9 h), followed by subsequent decrease (9 to 12 h) with increase in time of infection. The THCs was slightly greater in infected flies than the non-infected ones. Insight into relative hemocyte counts depicted a significant increase in prohemocyte (PR) and decrease in granulocyte (GR) in infected house flies compared to non-infected ones. The relative cell area of hemocyte cells showed a noticeable increase in PR and intermediate cells (ICs), while a considerable reduction was observed for plasmatocyte (PL) and GR. The considerable variation in relative cell number and cell area in the B. bassiana-infected house flies indicated stress development during infection. The present study highlights changes occurring during B. bassiana invasion to house fly leading to establishment of infection along with facilitation in understanding of basic hemocyte biology. The results of the study is expected to help in better understanding of house fly immune response during fungal infection, so as to assist production of more efficient mycoinsecticides for house fly control using B. bassiana.

  2. Recombinant Listeria monocytogenes as a Live Vaccine Vehicle for the Induction of Protective Anti-Viral Cell-Mediated Immunity

    Science.gov (United States)

    Shen, Hao; Slifka, Mark K.; Matloubian, Mehrdad; Jensen, Eric R.; Ahmed, Rafi; Miller, Jeff F.

    1995-04-01

    Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2L^d-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8^+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8^+ T cells.

  3. The cryo-thermal therapy eradicated melanoma in mice by eliciting CD4+ T-cell-mediated antitumor memory immune response.

    Science.gov (United States)

    He, Kun; Liu, Ping; Xu, Lisa X

    2017-03-23

    Tumor metastasis is a major concern in tumor therapy. In our previous studies, a novel tumor therapeutic modality of the cryo-thermal therapy has been presented, highlighting its effect on the suppression of distal metastasis and leading to long-term survival in 4T1 murine mammary carcinoma model. To demonstrate the therapeutic efficacy in other aggressive tumor models and further investigate the mechanism of long-term survival induced, in this study, spontaneous metastatic murine B16F10 melanoma model was used. The cryo-thermal therapy induced regression of implanted melanoma and prolonged long-term survival while inhibiting lung metastasis. It also promoted the activation of CD4 + CD25 - conventional T cells, while reduced the percentage of CD4 + CD25 + regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the spleen, lung and blood. Furthermore, the cryo-thermal therapy enhanced the cytolytic function of CD8 + T cells and induced differentiation of CD8 + T cells into memory stem T cell (T SCM ), and differentiation of CD4 + T cells into dominant CD4-CTL, Th1 and Tfh subsets in the spleen for 90 days after the treatment. It was found that good therapeutic effect was mainly dependent on CD4 + T cells providing a durable memory antitumor immune response. At the same time, significant increase of serum IFN-γ was also observed to provide an ideal microenvironment of antitumor immunity. Further study showed that the rejection of re-challenge of B16F10 but not GL261 tumor in the treated mice in 45 or 60 days after the treatment, implied a strong systemic and melanoma-specific memory antitumor immunity induced by the treatment. Thus the cryo-thermal therapy would be considered as a new therapeutic strategy to prevent tumor recurrence and metastasis with potential clinical applications in the near future.

  4. Hemagglutinin-based polyanhydride nanovaccines against H5N1 influenza elicit protective virus neutralizing titers and cell-mediated immunity

    Directory of Open Access Journals (Sweden)

    Ross KA

    2014-12-01

    Full Text Available Kathleen A Ross,1 Hyelee Loyd,2 Wuwei Wu,2 Lucas Huntimer,3 Shaheen Ahmed,4 Anthony Sambol,5 Scott Broderick,6 Zachary Flickinger,2 Krishna Rajan,6 Tatiana Bronich,4 Surya Mallapragada,1 Michael J Wannemuehler,3 Susan Carpenter,2 Balaji Narasimhan1 1Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; 2Animal Science, Iowa State University, Ames, IA, USA; 3Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA; 4Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; 5Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; 6Materials Science and Engineering, Iowa State University, Ames, IA, USA Abstract: H5N1 avian influenza is a significant global concern with the potential to become the next pandemic threat. Recombinant subunit vaccines are an attractive alternative for pandemic vaccines compared to traditional vaccine technologies. In particular, polyanhydride nanoparticles encapsulating subunit proteins have been shown to enhance humoral and cell-mediated immunity and provide protection upon lethal challenge. In this work, a recombinant H5 hemagglutinin trimer (H53 was produced and encapsulated into polyanhydride nanoparticles. The studies performed indicated that the recombinant H53 antigen was a robust immunogen. Immunizing mice with H53 encapsulated into polyanhydride nanoparticles induced high neutralizing antibody titers and enhanced CD4+ T cell recall responses in mice. Finally, the H53-based polyanhydride nanovaccine induced protective immunity against a low-pathogenic H5N1 viral challenge. Informatics analyses indicated that mice receiving the nanovaccine formulations and subsequently challenged with virus were similar to naïve mice that were not challenged. The current studies provide a basis to further exploit the advantages of polyanhydride nanovaccines in pandemic scenarios. Keywords: polymer, nanoparticle, vaccine, subunit

  5. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  6. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    Directory of Open Access Journals (Sweden)

    Berger Marc A

    2007-01-01

    Full Text Available Abstract Previously, we have successfully targeted the mannose receptor (MR expressed on monocyte-derived dendritic cells (DCs using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ. Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C and DC TLR 7/8 with Resiquimod (R-848, respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs.

  7. Novel thermal-sensitive hydrogel enhances both humoral and cell-mediated immune responses by intranasal vaccine delivery.

    Science.gov (United States)

    Wu, Youbin; Wu, Shipo; Hou, Lihua; Wei, Wei; Zhou, Meng; Su, Zhiguo; Wu, Jie; Chen, Wei; Ma, Guanghui

    2012-08-01

    A novel thermal sensitive hydrogel was formulated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) and α, β-glycerophosphate (α, β-GP). A serial of hydrogels containing different amount of GP and HTCC with diverse quarternize degree (QD, 41%, 59%, 79.5%, and 99%) were prepared and characterized by rheological method. The hydrogel was subsequently evaluated for intranasal vaccine delivery with adenovirus based Zaire Ebola virus glycoprotein antigen (Ad-GPZ). Results showed that moderate quarternized HTCC (60% and 79.5%) hydrogel/antigen formulations induced highest IgG, IgG1, and IgG2a antibody titers in serum, as well as mucosal IgA responses in lung wash, which may attributed to the prolonged antigen residence time due to the thermal-sensitivity of this hydrogel. Furthermore, CD8(+) splenocytes for IFN-γ positive cell assay and the release profile of Th1/Th2 type cytokines (IFN-γ, IL-2, IL-10, and IL-4) showed that hydrogel/Ad-GPZ generated an overwhelmingly enhanced Th1 biased cellular immune response. In addition, this hydrogel displayed low toxicity to nasal tissue and epithelial cells even by frequently intranasal dosing of hydrogel. All these results strongly supported this hydrogel as a safe and effective delivery system for nasal immunization. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Tumor Necrosis Factor-α Is Required for Mast Cell-Mediated Host Immunity Against Cutaneous Staphylococcus aureus Infection.

    Science.gov (United States)

    Liu, Chao; Ouyang, Wei; Xia, Jingyan; Sun, Xiaoru; Zhao, Liying; Xu, Feng

    2018-05-08

    Mast cells (MCs) play a key role in immune process response to invading pathogens. This study assessed the involvement of MCs in controlling Staphylococcus aureus infection in a cutaneous infection model of MC-deficient (KitW-sh/W-sh) mice. KitW-sh/W-sh mice developed significantly larger skin lesions after the cutaneous S. aureus challenge, when compared to wild-type (WT) mice, while MC dysfunction reduced the inflammation response to S. aureus. The levels of tumor necrosis factor (TNF)-α in skin tissues were significantly decreased in KitW-sh/W-sh mice upon infection. Moreover, the exogenous administration of MCs or recombinant TNF-α effectively restored the immune response against S. aureus in KitW-sh/W-sh mice via the recruitment of neutrophils to the infected site. These results indicate that the effects of MC deficiency are largely attributed to the decrease in production of TNF-α in cutaneous S. aureus infection. In addition, S. aureus-induced MC activation was dependent on the c-kit receptor-activated phosphoinositide 3-kinase (PI3K)/AKT/P65-nuclear factor (NF-κB) pathway, which was confirmed by treatment with Masitinib (a c-kit receptor inhibitor), Wortmannin (a PI3K inhibitor), and pyrrolidine dithiocarbamate (a NF-κB inhibitor), respectively. The present study identifies the critical role of MCs in the host defense against S. aureus infection.

  9. Fluorescent dye labeled influenza virus mainly infects innate immune cells and activated lymphocytes and can be used in cell-mediated immune response assay

    OpenAIRE

    Xie, Dongxu

    2009-01-01

    Early results have recognized that influenza virus infects the innate and adaptive immune cells. The data presented in this paper demonstrated that influenza virus labeled with fluorescent dye not only retained the ability to infect and replicate in host cells, but also stimulated a similar human immune response as did unlabeled virus. Influenza virus largely infected the innate and activated adaptive immune cells. Influenza B type virus was different from that of A type virus. B type virus w...

  10. A retinoic acid-dependent checkpoint in the development of CD4+ T cell-mediated immunity.

    Science.gov (United States)

    Pino-Lagos, Karina; Guo, Yanxia; Brown, Chrysothemis; Alexander, Matthew P; Elgueta, Raúl; Bennett, Kathryn A; De Vries, Victor; Nowak, Elizabeth; Blomhoff, Rune; Sockanathan, Shanthini; Chandraratna, Roshantha A; Dmitrovsky, Ethan; Noelle, Randolph J

    2011-08-29

    It is known that vitamin A and its metabolite, retinoic acid (RA), are essential for host defense. However, the mechanisms for how RA controls inflammation are incompletely understood. The findings presented in this study show that RA signaling occurs concurrent with the development of inflammation. In models of vaccination and allogeneic graft rejection, whole body imaging reveals that RA signaling is temporally and spatially restricted to the site of inflammation. Conditional ablation of RA signaling in T cells significantly interferes with CD4(+) T cell effector function, migration, and polarity. These findings provide a new perspective of the role of RA as a mediator directly controlling CD4(+) T cell differentiation and immunity. © 2011 Pino-Lagos et al.

  11. Age related changes in T cell mediated immune response and effector memory to Respiratory Syncytial Virus (RSV in healthy subjects

    Directory of Open Access Journals (Sweden)

    Campoccia Giuseppe

    2010-10-01

    Full Text Available Abstract Respiratory syncytial virus (RSV is the major pathogen causing respiratory disease in young infants and it is an important cause of serious illness in the elderly since the infection provides limited immune protection against reinfection. In order to explain this phenomenon, we investigated whether healthy adults of different age (20-40; 41-60 and > 60 years, have differences in central and effector memory, RSV-specific CD8+ T cell memory immune response and regulatory T cell expression status. In the peripheral blood of these donors, we were unable to detect any age related difference in term of central (CD45RA-CCR7+ and effector (CD45RA-CCR7- memory T cell frequency. On the contrary, we found a significant increase in immunosuppressive regulatory (CD4+25+FoxP3+ T cells (Treg in the elderly. An immunocytofluorimetric RSV pentamer analysis performed on these donors' peripheral blood mononuclear cells (PBMCs, in vitro sensitized against RSV antigen, revealed a marked decline in long-lasting RSV specific CD8+ memory T cell precursors expressing interleukin 7 receptor α (IL-7Rα, in the elderly. This effect was paralleled by a progressive switch from a Th1 (IFN-γ and TNF-α to a Th2 (IL-10 functional phenotype. On the contrary, an increase in Treg was observed with aging. The finding of Treg over-expression status, a prominent Th2 response and an inefficient RSV-specific effector memory CD8+ T cell expansion in older donors could explain the poor protection against RSV reinfection and the increased risk to develop an RSV-related severe illness in this population. Our finding also lays the basis for new therapeutic perspectives that could limit or prevent severe RSV infection in elderly.

  12. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  13. Impact of T-cell-mediated immune response on xenogeneic heart valve transplantation: short-term success and mid-term failure.

    Science.gov (United States)

    Biermann, Anna C; Marzi, Julia; Brauchle, Eva; Schneider, Maria; Kornberger, Angela; Abdelaziz, Sherif; Wichmann, Julian L; Arendt, Christophe T; Nagel, Eike; Brockbank, Kelvin G M; Seifert, Martina; Schenke-Layland, Katja; Stock, Ulrich A

    2018-04-01

    Allogeneic frozen cryopreserved heart valves (allografts or homografts) are commonly used in clinical practice. A major obstacle for their application is the limited availability in particular for paediatrics. Allogeneic large animal studies revealed that alternative ice-free cryopreservation (IFC) results in better matrix preservation and reduced immunogenicity. The objective of this study was to evaluate xenogeneic (porcine) compared with allogeneic (ovine) IFC heart valves in a large animal study. IFC xenografts and allografts were transplanted in 12 juvenile merino sheep for 1-12 weeks. Immunohistochemistry, ex vivo computed tomography scans and transforming growth factor-β release profiles were analysed to evaluate postimplantation immunopathology. In addition, near-infrared multiphoton imaging and Raman spectroscopy were employed to evaluate matrix integrity of the leaflets. Acellular leaflets were observed in both groups 1 week after implantation. Allogeneic leaflets remained acellular throughout the entire study. In contrast, xenogeneic valves were infiltrated with abundant T-cells and severely thickened over time. No collagen or elastin changes could be detected in either group using multiphoton imaging. Raman spectroscopy with principal component analysis focusing on matrix-specific peaks confirmed no significant differences for explanted allografts. However, xenografts demonstrated clear matrix changes, enabling detection of distinct inflammatory-driven changes but without variations in the level of transforming growth factor-β. Despite short-term success, mid-term failure of xenogeneic IFC grafts due to a T-cell-mediated extracellular matrix-triggered immune response was shown.

  14. Pathogenesis of herpes simplex virus in B cell-suppressed mice: the relative roles of cell-mediated and humoral immunity.

    Science.gov (United States)

    Kapoor, A K; Nash, A A; Wildy, P

    1982-07-01

    B cell responses of Balb/c mice were suppressed using sheep anti-mouse IgM serum. At 4 weeks, both B cell-suppressed and normal littermates were infected in the ear pinna with herpes simplex virus type 1 (HSV-1). The B cell-suppressed mice failed to produce neutralizing herpes antibodies in their sera but had a normal cell-mediated immunity (CMI) response as measured by a delayed hypersensitivity skin test. Although the infection was eliminated from the ear in both B cell-suppressed and normal mice by day 10 after infection, there was an indication that B cell-suppressed mice had a more florid primary infection of the peripheral and central nervous system and also a higher incidence of a latent infection. These results support the hypothesis that antibody is important in restricting the spread of virus to the central nervous system, whereas CMI is important in clearing the primary infection in the ear pinna.

  15. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes

    International Nuclear Information System (INIS)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Woo, So-Youn

    2017-01-01

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner

  16. Critical roles for LIGHT and its receptors in generating T cell-mediated immunity during Leishmania donovani infection.

    Directory of Open Access Journals (Sweden)

    Amanda C Stanley

    2011-10-01

    Full Text Available LIGHT (TNFSF14 is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM and lymphotoxin-beta receptor (LTβR. We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL caused by infection with the protozoan parasite Leishmania donovani. LIGHT-HVEM signalling is essential for early dendritic cell IL-12/IL-23p40 production, and the generation of IFNγ- and TNF-producing T cells that control hepatic infection. However, we also discovered that LIGHT-LTβR interactions suppress anti-parasitic immunity in the liver in the first 7 days of infection by mechanisms that restrict both CD4(+ T cell function and TNF-dependent microbicidal mechanisms. Thus, we have identified distinct roles for LIGHT in infection, and show that manipulation of interactions between LIGHT and its receptors may be used for therapeutic advantage.

  17. Local IL-23 expression in murine vaginal candidiasis and its relationship with infection and immune status.

    Science.gov (United States)

    Wu, Yan; Tan, Zhijian; Liu, Zhixiang; Xia, Dechao; Li, Jiawen

    2006-01-01

    To investigate the expression of vaginal IL-23 and its role in experimental murine vaginal candidiasis and its relationship with infection and immune status, immuno-competent (group A) and immuno-suppressed (group B) murine models of vaginal candidiasis were established in estrogen-treated mice. Non-estrogen-treated mice were used as controls (group C). The level of IL-23 p19 mRNA in murine vaginal tissue was determined by RT-PCR. Significantly increased levels of IL-23p19mRNA were observed on the 4th, the 7th and 14th day after inoculation in immuno-competent group when compared with that in control group (Pvaginal candidiasis and has a protective function during infection. Low vaginal IL-23 level may correlate with the increased susceptibility to Candida albicans in immuno-suppressed group.

  18. Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx.

    Directory of Open Access Journals (Sweden)

    Michael Eschbaumer

    Full Text Available In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vaccine, 10 non-vaccinated were challenged with FMDV A24 Cruzeiro, and the gene expression profiles of nasopharyngeal tissues collected between 21 and 35 days after challenge were compared between 11 persistently infected carriers and 7 non-carriers. Carriers and non-carriers were further compared to 2 naïve animals that had been neither vaccinated nor challenged. At a controlled false-discovery rate of 10% and a minimum difference in expression of 50%, 648 genes were differentially expressed between FMDV carriers and non-carriers, and most (467 had higher expression in carriers. Among these, genes associated with cellular proliferation and the immune response-such as chemokines, cytokines and genes regulating T and B cells-were significantly overrepresented. Differential gene expression was significantly correlated between non-vaccinated and vaccinated animals (biological correlation +0.97, indicating a similar transcriptome profile across these groups. Genes related to prostaglandin E2 production and the induction of regulatory T cells were overexpressed in carriers. In contrast, tissues from non-carrier animals expressed higher levels of complement regulators and pro-apoptotic genes that could promote virus clearance. Based on these findings, we propose a working hypothesis for FMDV persistence in nasopharyngeal tissues of cattle, in which the virus may be maintained by an impairment of apoptosis and the local suppression of cell-mediated antiviral immunity by inducible regulatory T cells.

  19. 21 Days head-down bed rest induces weakening of cell-mediated immunity - Some spaceflight findings confirmed in a ground-based analog.

    Science.gov (United States)

    Kelsen, Jens; Bartels, Lars Erik; Dige, Anders; Hvas, Christian Lodberg; Frings-Meuthen, Petra; Boehme, Gisela; Thomsen, Marianne Kragh; Fenger-Grøn, Morten; Dahlerup, Jens Frederik

    2012-08-01

    Several studies indicate a weakening of cell-mediated immunity (CMI) and reactivation of latent herpes viruses during spaceflight. We tested the hypothesis that head-down bed rest (HDBR), a ground-based analog of spaceflight, mimics the impact of microgravity on human immunity. Seven healthy young males underwent two periods of 3 weeks HDBR in the test facility of the German Aerospace Center. As a nutritional countermeasure aimed against bone demineralisation, 90 mmol potassium bicarbonate (KHCO(3)) was administered daily in a crossover design. Blood samples were drawn on five occasions. Whole blood was stimulated with antigen i.e. Candida albicans, purified protein derivative (PPD) tuberculin, tetanus toxoid and Cytomegalovirus (CMV) (CMV-QuantiFERON). Flow cytometric analysis included CD4(+)CD25(+)CD127(-)FOXP3(+) regulatory T cells (Tregs), γδ T cells, B cells, NK cells and dendritic cells. In one of the two bed rest periods, we observed a significant decrease in production of interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) following phytohemagglutinin (PHA) stimulation, with a rapid normalization being observed after HDBR. The cytokine levels showed a V-shaped pattern that led to a relativeTh2-shift in cytokine balance. Only three individuals responded to the specific T cell antigens without showing signs of an altered response during HDBR, nor did we observe reactivation of CMV or Epstein-Barr virus (EBV). Of unknown significance, dietary supplementation with KHCO(3) counteracted the decrease in IL-2 levels during HDBR, while there was no impact on other immunological parameters. We conclude that discrete alterations in CMI may be induced by HDBR in selected individuals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. T-Cell-Mediated Immune Responses in Patients with Cutaneous or Mucosal Leishmaniasis: Long-Term Evaluation after Therapy

    Science.gov (United States)

    Da-Cruz, Alda Maria; Bittar, Rita; Mattos, Marise; Oliveira-Neto, Manuel P.; Nogueira, Ricardo; Pinho-Ribeiro, Vanessa; Azeredo-Coutinho, Rilza Beatriz; Coutinho, Sergio G.

    2002-01-01

    T-cell immune responses in patients with cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML) were studied during the active disease, at the end of therapy, and 1 to 17 years posttherapy (long-term follow-up). Lymphocyte proliferative responses, phenotypic characterization of CD4+ and CD8+ Leishmania-reactive T cells, and cytokine production were assayed. Patients with active ML and CL showed higher proportions of CD4+ than CD8+ T cells. In CL, the healing process was associated with a decrease of CD4+ and an increase of CD8+, leading to similar CD4+ and CD8+ proportions. This pattern was only seen in ML after long-term therapy. Long-term follow-up of patients with CL showed a positive CD4+/CD8+ ratio as observed during the active disease, although the percentages of these T cell subsets were significantly lower. Patients with CL did not show significant differences between gamma interferon (IFN-γ) and interleukin-5 (IL-5) production during the period of study. Patients with active ML presented higher IFN-γ and IL-5 levels compared to patients with active CL. IL-4 was only detected during active disease. Patients long term after cure from ML showed increasing production of IFN-γ, significant decrease of IL-5, and no IL-4 production. Two apparently beneficial immunological parameters were detected in tegumentary leishmaniasis: (i) decreasing proportions of CD4+ Leishmania-reactive T cells in the absence of IL-4 production associated with cure of CL and ML and (ii) decreasing levels of IL-5 long after cure, better detected in patients with ML. The observed T-cell responses maintained for a long period in healed patients could be relevant for immunoprotection against reinfection and used as a parameter for determining the prognosis of patients and selecting future vaccine preparations. PMID:11874860

  1. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    Directory of Open Access Journals (Sweden)

    Gomez Bianca P

    2012-10-01

    Full Text Available Abstract Background Merkel cell carcinoma (MCC is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV. The MCPyV-encoded large T (LT antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT, as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the

  2. Effects of fenbendazole on the murine humoral immune system.

    Science.gov (United States)

    Landin, Ana Marie; Frasca, Daniela; Zaias, Julia; Van der Put, Elaine; Riley, Richard L; Altman, Norman H; Blomberg, Bonnie B

    2009-05-01

    Pinworms are highly contagious parasites that have been effectively treated in laboratory rodents with fenbendazole (FBZ). Whether FBZ has any detrimental side effects that may compromise experimental results is unknown. Here we asked whether the immune systems from young and aged mice are altered under FBZ treatment. We compared control and FBZ-treated groups of young (age, 2 to 4 mo) and old (age, 22 to 24 mo) BALB/cN mice. The treated mice received a total of 4 wk (alternating-week treatment regimen) of FBZ-medicated feed. Spleen and bone marrow were collected for immunologic assays, and heart, stomach, intestines, kidneys, and liver were evaluated by histopathology. Our results indicate that FBZ treatment has significant effects on the immune systems of mice; these effects are greater in aged mice. FBZ treatment adversely affected mRNA and protein expression of E2A (a transcription factor crucial for B lymphocytes) in activated precursor B lymphocytes obtained from the bone marrow of young and old mice. These effects were reversed by 6 wk on regular feed after the end of treatment. Activated B lymphocytes from the spleens of young and old mice showed decreased function (cell proliferation, E2A mRNA and protein expression) through the last time point of FBZ treatment but recovered by 2 to 4 wk after treatment. Our findings suggest that FBZ treatment may alter sensitive immune and molecular measures as presented here, and postponing the experimental use of mice until at least 6 wk after treatment should be considered.

  3. Cell-Mediated and Humoral Immune Responses after Immunization of Calves with a Recombinant Multiantigenic Mycobacterium avium subsp. paratuberculosis Subunit Vaccine at Different Ages

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Stockmarr, Anders

    2013-01-01

    and 12 relative to the first vaccination. Vaccine-induced immune responses, the gamma interferon (IFN-γ) cytokine secretion and antibody responses, were followed for 20 weeks. In general, the specific responses were significantly elevated in all three vaccination groups after the first booster...

  4. Activation of cell-mediated immunity in depression: association with inflammation, melancholia, clinical staging and the fatigue and somatic symptom cluster of depression.

    Science.gov (United States)

    Maes, Michael; Mihaylova, Ivana; Kubera, Marta; Ringel, Karl

    2012-01-10

    Depression is characterized by activation of cell-mediated immunity (CMI), including increased neopterin levels, and increased pro-inflammatory cytokines (PICs), such as interleukin-1 (IL-1) and tumor necrosis factor-α (TNFα). These PICs may induce depressive, melancholic and chronic fatigue (CF) symptoms. We examined serum neopterin and plasma PIC levels in depressive subgroups in relation to the depressive subtypes and the melancholic and CF symptoms of depression. Participants were 85 patients with depression and in 26 normal controls. Severity of depression was assessed with the Hamilton Depression Rating Scale (HDRS) and severity of CF with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. Serum neopterin was significantly higher in depressed patients and in particular in those with melancholia. There were positive correlations between serum neopterin, the plasma PICs and the number of previous depressive episodes. Neopterin and TNFα were associated with melancholia, while both PICs were associated with CF. Melancholia-group membership was predicted by the HDRS and neopterin, and CF group membership by age, the FF score and serum TNFα. Depression and melancholia are accompanied by CMI activation, suggesting that neopterin plays a role in their pathophysiology, e.g. through activation of oxidative and nitrosative stress and apoptosis pathways. The intertwined CMI and inflammatory responses are potentially associated with the onset of depression and with the melancholic and CF symptoms of depression. Exposure to previous depressive episodes may magnify the size of CMI and PIC responses, possibly increasing the likelihood of new depressive episodes. CMI activation and inflammation may contribute to the staging or recurrence of depression. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. HBV-specific CD4+ cytotoxic T cells in hepatocellular carcinoma are less cytolytic toward tumor cells and suppress CD8+ T cell-mediated antitumor immunity.

    Science.gov (United States)

    Meng, Fanzhi; Zhen, Shoumei; Song, Bin

    2017-08-01

    In East Asia and sub-Saharan Africa, chronic infection is the main cause of the development of hepatocellular carcinoma, an aggressive cancer with low survival rate. Cytotoxic T cell-based immunotherapy is a promising treatment strategy. Here, we investigated the possibility of using HBV-specific CD4 + cytotoxic T cells to eliminate tumor cells. The naturally occurring HBV-specific cytotoxic CD4 + and CD8 + T cells were identified by HBV peptide pool stimulation. We found that in HBV-induced hepatocellular carcinoma patients, the HBV-specific cytotoxic CD4 + T cells and cytotoxic CD8 + T cells were present at similar numbers. But compared to the CD8 + cytotoxic T cells, the CD4 + cytotoxic T cells secreted less cytolytic factors granzyme A (GzmA) and granzyme B (GzmB), and were less effective at eliminating tumor cells. In addition, despite being able to secrete cytolytic factors, CD4 + T cells suppressed the cytotoxicity mediated by CD8 + T cells, even when CD4 + CD25 + regulator T cells were absent. Interestingly, we found that interleukin 10 (IL-10)-secreting Tr1 cells were enriched in the cytotoxic CD4 + T cells. Neutralization of IL-10 abrogated the suppression of CD8 + T cells by CD4 + CD25 - T cells. Neither the frequency nor the absolute number of HBV-specific CD4 + cytotoxic T cells were correlated with the clinical outcome of advanced stage hepatocellular carcinoma patients. Together, this study demonstrated that in HBV-related hepatocellular carcinoma, CD4 + T cell-mediated cytotoxicity was present naturally in the host and had the potential to exert antitumor immunity, but its capacity was limited and was associated with immunoregulatory properties. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  6. μ-opioid Receptor-Mediated Alterations of Allergen-Induced Immune Responses of Bronchial Lymph Node Cells in a Murine Model of Stress Asthma

    Directory of Open Access Journals (Sweden)

    Kaori Okuyama

    2012-01-01

    Conclusions: Restraint stress aggravated allergic airway inflammation in association with alterations in local immunity characterized by greater Th2-associated cytokine production and a reduced development of regulatory T cells, mediated by MORs.

  7. Short communication: Prevalence of digital dermatitis in Canadian dairy cattle classified as high, average, or low antibody- and cell-mediated immune responders.

    Science.gov (United States)

    Cartwright, S L; Malchiodi, F; Thompson-Crispi, K; Miglior, F; Mallard, B A

    2017-10-01

    Lameness is a major animal welfare issue affecting Canadian dairy producers, and it can lead to production, reproduction, and health problems in dairy cattle herds. Although several different lesions affect dairy cattle hooves, studies show that digital dermatitis is the most common lesion identified in Canadian dairy herds. It has also been shown that dairy cattle classified as having high immune response (IR) have lower incidence of disease compared with those animals with average and low IR; therefore, it has been hypothesized that IR plays a role in preventing infectious hoof lesions. The objective of this study was to compare the prevalence of digital dermatitis in Canadian dairy cattle that were classified for antibody-mediated (AMIR) and cell-mediated (CMIR) immune response. Cattle (n = 329) from 5 commercial dairy farms in Ontario were evaluated for IR using a patented test protocol that captures both AMIR and CMIR. Individuals were classified as high, average, or low responders based on standardized residuals for AMIR and CMIR. Residuals were calculated using a general linear model that included the effects of herd, parity, stage of lactation, and stage of pregnancy. Hoof health data were collected from 2011 to 2013 by the farm's hoof trimmer using Hoof Supervisor software (KS Dairy Consulting Inc., Dresser, WI). All trim events were included for each animal, and lesions were assessed as a binary trait at each trim event. Hoof health data were analyzed using a mixed model that included the effects of herd, stage of lactation (at trim date), parity (at trim date), IR category (high, average, and low), and the random effect of animal. All data were presented as prevalence within IR category. Results showed that cows with high AMIR had significantly lower prevalence of digital dermatitis than cattle with average and low AMIR. No significant difference in prevalence of digital dermatitis was observed between high, average, and low CMIR cows. These results

  8. Genetic control of cell-mediated lympholysis to trinitrophenyl (TNP)-modified murine syngeneic cells. Expression of Ir gene function at the cytotoxic precursor and helper cell

    International Nuclear Information System (INIS)

    Fujiwara, H.; Shearer, G.M.

    1981-01-01

    The present study investigates some of the cellular mechanisms responsible for the defect in cytotoxic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified H-2/sup b/ self components in C57Bl/6(H-2/sup b/) or (C57BL/6 x C3H/He)(H-2/sup b/ x H-2/sup k/)F 1 mice. C3H/He, C57BL/6, and (C57BL/6 x C3H/He)F 1 mice were immunized to TNP-modified self by skin painting with trinitrochlorobenzene, and their spleen cells were used a) for in vitro secondary sensitization to syngeneic spleen cells conjugated with limiting concentrations of trinitrobenzene sulfonate (TNP-self) or b) as a source of radioresistant helper cells for augmenting the TNP-self CTL response generated by spleen cells from unimmunized C3H/He, C57Bl/6, and F 1 mice. The results indicate that strong or weak in vitro secondary CTL responses could be obtained in the H-2/sup k/ or H-2/sup b/ strain, respectively. This strain-dependent genetic difference was also observed in (H-2/sup b/ x H-2/sup k/)F 1 mice. These results permit the detection of the Ir gene defect in the anti-TNP-H-2/sup b/ self CTL response at both the helper and cytotoxic precursor cell levels

  9. 3,3′-Diindolylmethane Stimulates Murine Immune Function In Vitro and In Vivo*

    OpenAIRE

    Xue, Ling; Pestka, James J.; Li, Maoxiang; Firestone, Gary L; Bjeldanes, Leonard F.

    2007-01-01

    3,3′-Diindolylmethane (DIM), a major condensation product of indole-3-carbinol (I3C), exhibits chemopreventive properties in animal models of cancer. Recent studies have shown that DIM stimulates interferon-gamma (IFN-γ) production and potentiates the IFN-γ signaling pathway in human breast cancer cells via a mechanism that includes increased expression of the IFN-γ receptor. The goal of this study was to test the hypothesis that DIM modulates the murine immune function. Specifically, the eff...

  10. Oral administration of kefiran induces changes in the balance of immune cells in a murine model.

    Science.gov (United States)

    Medrano, Micaela; Racedo, Silvia M; Rolny, Ivanna S; Abraham, Analía G; Pérez, Pablo F

    2011-05-25

    The aim of the present study was to evaluate the effect of the oral administration of kefiran on the balance of immune cells in a murine model. Six week old BALB/c mice were treated with kefiran (300 mg/L) for 0, 2 and 7 days. Kefiran treatment increased the number of IgA+ cells in lamina propria after 2 and 7 days. Percentage of B220+/MHCII(high) cells in mesenteric lymph nodes (2 days) and Peyer's patches (7 days) was higher compared to untreated control mice. An increase of macrophages (F4/80+ cells) was observed in lamina propria and peritoneal cavity (2 and 7 days). In contrast, at day 7, macrophage population decreased in Peyer's patches. These results show the ability of kefiran to modify the balance of immune cells in intestinal mucosa. This property could be highly relevant for the comprehension of the probiotic effect attributed to kefir.

  11. CD44 antibodies and immune thrombocytopenia in the amelioration of murine inflammatory arthritis.

    Directory of Open Access Journals (Sweden)

    Patrick J Mott

    Full Text Available Antibodies to CD44 have been used to successfully ameliorate murine models of autoimmune disease. The most often studied disease model has been murine inflammatory arthritis, where a clear mechanism for the efficacy of CD44 antibodies has not been established. We have recently shown in a murine passive-model of the autoimmune disease immune thrombocytopenia (ITP that some CD44 antibodies themselves can induce thrombocytopenia in mice, and the CD44 antibody causing the most severe thrombocytopenia (IM7, also is known to be highly effective in ameliorating murine models of arthritis. Recent work in the K/BxN serum-induced model of arthritis demonstrated that antibody-induced thrombocytopenia reduced arthritis, causing us to question whether CD44 antibodies might primarily ameliorate arthritis through their thrombocytopenic effect. We evaluated IM7, IRAWB14.4, 5035-41.1D, KM201, KM114, and KM81, and found that while all could induce thrombocytopenia, the degree of protection against serum-induced arthritis was not closely related to the length or severity of the thrombocytopenia. CD44 antibody treatment was also able to reverse established inflammation, while thrombocytopenia induced by an anti-platelet antibody targeting the GPIIbIIIa platelet antigen, could not mediate this effect. While CD44 antibody-induced thrombocytopenia may contribute to some of its therapeutic effect against the initiation of arthritis, for established disease there are likely other mechanisms contributing to its efficacy. Humans are not known to express CD44 on platelets, and are therefore unlikely to develop thrombocytopenia after CD44 antibody treatment. An understanding of the relationship between arthritis, thrombocytopenia, and CD44 antibody treatment remains critical for continued development of CD44 antibody therapeutics.

  12. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid.

    Directory of Open Access Journals (Sweden)

    Uday Shankar Allam

    Full Text Available Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.

  13. Intramuscular Immunization of Mice with a Live-Attenuated Triple Mutant of Yersinia pestis CO92 Induces Robust Humoral and Cell-Mediated Immunity To Completely Protect Animals against Pneumonic Plague.

    Science.gov (United States)

    Tiner, Bethany L; Sha, Jian; Ponnusamy, Duraisamy; Baze, Wallace B; Fitts, Eric C; Popov, Vsevolod L; van Lier, Christina J; Erova, Tatiana E; Chopra, Ashok K

    2015-12-01

    Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but

  14. mEBT: multiple-matching Evidence-based Translator of Murine Genomic Responses for Human Immunity Studies.

    Science.gov (United States)

    Tae, Donghyun; Seok, Junhee

    2018-05-29

    In this paper, we introduce multiple-matching Evidence-based Translator (mEBT) to discover genomic responses from murine expression data for human immune studies, which are significant in the given condition of mice and likely have similar responses in the corresponding condition of human. mEBT is evaluated over multiple data sets and shows improved inter-species agreement. mEBT is expected to be useful for research groups who use murine models to study human immunity. http://cdal.korea.ac.kr/mebt/. jseok14@korea.ac.kr. Supplementary data are available at Bioinformatics online.

  15. Gender-specific effects of genetic variants within Th1 and Th17 cell-mediated immune response genes on the risk of developing rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Rafael Cáliz

    Full Text Available The present study was conducted to explore whether single nucleotide polymorphisms (SNPs in Th1 and Th17 cell-mediated immune response genes differentially influence the risk of rheumatoid arthritis (RA in women and men. In phase one, 27 functional/tagging polymorphisms in C-type lectins and MCP-1/CCR2 axis were genotyped in 458 RA patients and 512 controls. Carriers of Dectin-2 rs4264222T allele had an increased risk of RA (OR = 1.47, 95%CI 1.10-1.96 whereas patients harboring the DC-SIGN rs4804803G, MCP-1 rs1024611G, MCP-1 rs13900T and MCP-1 rs4586C alleles had a decreased risk of developing the disease (OR = 0.66, 95%CI 0.49-0.88; OR = 0.66, 95%CI 0.50-0.89; OR = 0.73, 95%CI 0.55-0.97 and OR = 0.68, 95%CI 0.51-0.91. Interestingly, significant gender-specific differences were observed for Dectin-2 rs4264222 and Dectin-2 rs7134303: women carrying the Dectin-2 rs4264222T and Dectin-2 rs7134303G alleles had an increased risk of RA (OR = 1.93, 95%CI 1.34-2.79 and OR = 1.90, 95%CI 1.29-2.80. Also five other SNPs showed significant associations only with one gender: women carrying the MCP-1 rs1024611G, MCP-1 rs13900T and MCP-1 rs4586C alleles had a decreased risk of RA (OR = 0.61, 95%CI 0.43-0.87; OR = 0.67, 95%CI 0.47-0.95 and OR = 0.60, 95%CI 0.42-0.86. In men, carriers of the DC-SIGN rs2287886A allele had an increased risk of RA (OR = 1.70, 95%CI 1.03-2.78, whereas carriers of the DC-SIGN rs4804803G had a decreased risk of developing the disease (OR = 0.53, 95%CI 0.32-0.89. In phase 2, we genotyped these SNPs in 754 RA patients and 519 controls, leading to consistent gender-specific associations for Dectin-2 rs4264222, MCP-1 rs1024611, MCP-1 rs13900 and DC-SIGN rs4804803 polymorphisms in the pooled sample (OR = 1.38, 95%CI 1.08-1.77; OR = 0.74, 95%CI 0.58-0.94; OR = 0.76, 95%CI 0.59-0.97 and OR = 0.56, 95%CI 0.34-0.93. SNP-SNP interaction analysis of significant SNPs also showed a

  16. Analysis of the Murine Immune Response to Pulmonary Delivery of Precisely Fabricated Nano- and Microscale Particles

    Science.gov (United States)

    Roberts, Reid A.; Shen, Tammy; Allen, Irving C.; Hasan, Warefta; DeSimone, Joseph M.; Ting, Jenny P. Y.

    2013-01-01

    Nanomedicine has the potential to transform clinical care in the 21st century. However, a precise understanding of how nanomaterial design parameters such as size, shape and composition affect the mammalian immune system is a prerequisite for the realization of nanomedicine's translational promise. Herein, we make use of the recently developed Particle Replication in Non-wetting Template (PRINT) fabrication process to precisely fabricate particles across and the nano- and micro-scale with defined shapes and compositions to address the role of particle design parameters on the murine innate immune response in both in vitro and in vivo settings. We find that particles composed of either the biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) or the biocompatible polymer polyethylene glycol (PEG) do not cause release of pro-inflammatory cytokines nor inflammasome activation in bone marrow-derived macrophages. When instilled into the lungs of mice, particle composition and size can augment the number and type of innate immune cells recruited to the lungs without triggering inflammatory responses as assayed by cytokine release and histopathology. Smaller particles (80×320 nm) are more readily taken up in vivo by monocytes and macrophages than larger particles (6 µm diameter), yet particles of all tested sizes remained in the lungs for up to 7 days without clearance or triggering of host immunity. These results suggest rational design of nanoparticle physical parameters can be used for sustained and localized delivery of therapeutics to the lungs. PMID:23593509

  17. Contribution of murine innate serum inhibitors toward interference within influenza virus immune assays.

    Science.gov (United States)

    Cwach, Kevin T; Sandbulte, Heather R; Klonoski, Joshua M; Huber, Victor C

    2012-03-01

    Prior to detection of an antibody response toward influenza viruses using the hemagglutination inhibition assay (HAI), sera are routinely treated to inactivate innate inhibitors using both heat inactivation (56°C) and recombinant neuraminidase [receptor-destroying enzyme (RDE)]. We revisited the contributions of innate serum inhibitors toward interference with influenza viruses in immune assays, using murine sera, with emphasis on the interactions with influenza A viruses of the H3N2 subtype. We used individual serum treatments: 56°C alone, RDE alone, or RDE + 56°C, to treat sera prior to evaluation within HAI, microneutralization, and macrophage uptake assays. Our data demonstrate that inhibitors present within untreated murine sera interfere with the HAI assay in a manner that is different from that seen for the microneutralization assay. Specifically, the γ class inhibitor α(2) -Macroglobulin (A2-M) can inhibit H3N2 viruses within the HAI assay, but not in the microneutralization assay. Based on these findings, we used a macrophage uptake assay to demonstrate that these inhibitors can increase uptake by macrophages when the influenza viruses express an HA from a 1968 H3N2 virus isolate, but not a 1997 H3N2 isolate. The practice of treating sera to inactivate innate inhibitors of influenza viruses prior to evaluation within immune assays has allowed us to effectively detect influenza virus-specific antibodies for decades. However, this practice has yielded an under-appreciation for the contribution of innate serum inhibitors toward host immune responses against these viruses, including contributions toward neutralization and macrophage uptake. © 2011 Blackwell Publishing Ltd.

  18. Influence of maternal gestational treatment with mycobacterial antigens on postnatal immunity in an experimental murine model.

    Directory of Open Access Journals (Sweden)

    Muhammad Jubayer Rahman

    Full Text Available BACKGROUND: It has been proposed that the immune system could be primed as early as during the fetal life and this might have an impact on postnatal vaccination. Therefore, we addressed in murine models whether gestational treatment with mycobacterial antigens could induce better immune responses in the postnatal life. METHODS/FINDINGS: BALB/c mice were treated subcutaneously (s.c. at the second week of gestation with antigen (Ag85A or heparin-binding hemagglutinin (HBHA in the absence of adjuvant. Following birth, offspring mice were immunized intranasally (i.n. with the same antigens formulated with the adjuvant cholera toxin (CT at week 1 and week 4. One week after the last immunization, we assessed antigen-specific recall interferon gamma (IFN-gamma responses by in vitro restimulation of lung-derived lymphocytes. Protection against infection was assessed by challenge with high dose Mycobacterium bovis Bacille Calmette-Guérin (BCG given i.n. We found that recall IFN-gamma responses were higher in the offspring born to the treated mother compared to the untreated-mother. More importantly, we observed that the offspring born to the treated mother controlled infection better than the offspring born to the untreated mother. Since the gestational treatment was done in absence of adjuvant, essentially there was no antibody production observed in the pregnant mice and therefore no influence of maternal antibodies was expected. We hypothesized that the effect of maternal treatment with antigen on the offspring occurred due to antigen transportation through placenta. To trace the antigens, we conjugated fluorescent nanocrystals with Ag85A (Qdot-ITK-Ag85A. After inoculation in the pregnant mice, Qdot-ITK-Ag85A conjugates were detected in the liver, spleen of pregnant females and in all the fetuses and placentas examined. CONCLUSION: The fetal immune system could be primed in utero by mycobacterial antigens transported through the placenta.

  19. Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Yi-Fen Lu

    2016-12-01

    Full Text Available Hematopoietic stem cell (HSC transplantation is curative for malignant and genetic blood disorders, but is limited by donor availability and immune-mismatch. Deriving HSCs from patient-matched embryonic/induced-pluripotent stem cells (ESCs/iPSCs could address these limitations. Prior efforts in murine models exploited ectopic HoxB4 expression to drive self-renewal and enable multi-lineage reconstitution, yet fell short in delivering robust lymphoid engraftment. Here, by titrating exposure of HoxB4-ESC-HSC to Notch ligands, we report derivation of engineered HSCs that self-renew, repopulate multi-lineage hematopoiesis in primary and secondary engrafted mice, and endow adaptive immunity in immune-deficient recipients. Single-cell analysis shows that following engraftment in the bone marrow niche, these engineered HSCs further specify to a hybrid cell type, in which distinct gene regulatory networks of hematopoietic stem/progenitors and differentiated hematopoietic lineages are co-expressed. Our work demonstrates engineering of fully functional HSCs via modulation of genetic programs that govern self-renewal and lineage priming.

  20. Acute lethal toxicity following passive immunization for treatment of murine cryptococcosis.

    Science.gov (United States)

    Savoy, A C; Lupan, D M; Manalo, P B; Roberts, J S; Schlageter, A M; Weinhold, L C; Kozel, T R

    1997-01-01

    Passive immunization with monoclonal antibodies (MAbs) specific for the major capsular polysaccharide of Cryptococcus neoformans alters the course of murine cryptococcosis. During studies of passive immunization for treatment of murine cryptococcosis, we noted the occurrence of an acute, lethal toxicity. Toxicity was characterized by scratching, lethargy, respiratory distress, collapse, and death within 20 to 60 min after injection of antibody. The toxic effect was observed only in mice with a cryptococcal infection and was reduced or absent in the early and late stages of disease. The clinical course and histopathology were consistent with those for shock. There was considerable variation between mouse strains in susceptibility to toxicity. Swiss Webster mice from the Charles River colony were most susceptible, followed by C3H/He, BALB/c, and C57BL/6 mice. DBA/2 mice and Swiss Webster mice from the Simonsen colony were resistant. Acute toxicity was mimicked by injection of preformed complexes of MAb and purified polysaccharide. The toxic effect was also produced by injection of MAbs into mice that were preloaded with polysaccharide. The toxic effect was not blocked by treatment of mice with chloropheniramine or anti-tumor necrosis factor alpha antibodies or by depletion of complement components via pretreatment with cobra venom factor. Toxicity was reduced by treatment of mice with high doses of epinephrine, dexamethasone, or chlorpromazine. Finally, the toxic effect was completely blocked by treatment of mice with the platelet-activating factor antagonist WEB 2170 BS or by pretreatment of mice with the liposome-encapsulated drug dichloromethylene diphosphonate, a procedure which depletes macrophages from the spleen and liver. PMID:9125564

  1. Interleukin-4 Receptor Alpha: From Innate to Adaptive Immunity in Murine Models of Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ramona Hurdayal

    2017-11-01

    . major. Finally, we extend these innate responses and mechanisms to control of adaptive immunity and the effect of IL-4Rα-responsiveness on T and B lymphocytes orchestrating the development of CD4+ Th1/Th2 and B effector 1/B effector 2 B cells in response to L. major infection in the murine host.

  2. Immunocyto-adherence test for the detection of cell mediated immune response in lambs vaccinated with irradiated amphistome metacercariae (Cercariae indicae XXVI)

    International Nuclear Information System (INIS)

    Hafeez, Md.; Rao, B.V.; Krishnaswamy, S.

    1985-01-01

    Adherence of lymphocytes and peritoneal macrophages on amphistome metacercariae (Cercaries indicae XXVI) and Paramphistomum epiclitum adult flukes was observed with cells obtained from lambs immunized with either normal or irradiated amphistome metacercariae (Cercariae indicae XXVI). The cell adherence reaction around metacercariae and adult flukes was comparatively more pronounced with cells obtained from lambs immunized with 2.5 or 3 krad irradiated metacercariae in comparison to cells obtained from lambs immunized with normal of 2 krad irradiated metacercariae. Possibly better CMI response was involved in the operation of immunity against the amphistome in the former two groups of lambs. (author)

  3. Innate immunity drives the initiation of a murine model of primary biliary cirrhosis.

    Directory of Open Access Journals (Sweden)

    Chao-Hsuan Chang

    Full Text Available Invariant natural killer T (iNKT cells play complex roles in bridging innate and adaptive immunity by engaging with glycolipid antigens presented by CD1d. Our earlier work suggested that iNKT cells were involved in the initiation of the original loss of tolerance in primary biliary cirrhosis (PBC. To address this issue in more detail and, in particular, to focus on whether iNKT cells activated by a Th2-biasing agonist (2s,3s,4r-1-O-(α-D-galactopyranosyl-N-tetracosanoyl-2-amino-1,3,4-nonanetriol (OCH, can influence the development of PBC in a xenobiotic-induced PBC murine model. Groups of mice were treated with either OCH or, as a control, α-galactosylceramide (α-GalCer and thence serially followed for cytokine production, markers of T cell activation, liver histopathology and anti-mitochondrial antibody responses. Further, additional groups of CD1d deleted mice were similarly studied. Our data indicate that administration of OCH has a dramatic influence with exacerbation of portal inflammation and hepatic fibrosis similar to mice treated with α-GalCer. Further, iNKT cell deficient CD1d knockout mice have decreased inflammatory portal cell infiltrates and reduced anti-mitochondrial antibody responses. We submit that activation of iNKT cells can occur via overlapping and/or promiscuous pathways and highlight the critical role of innate immunity in the natural history of autoimmune cholangitis. These data have implications for humans with PBC and emphasize that therapeutic strategies must focus not only on suppressing adaptive responses, but also innate immunity.

  4. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses

    NARCIS (Netherlands)

    Dolen, Y.; Kreutz, M.; Gileadi, U.; Tel, J.; Vasaturo, A.; Dinther, E.A.W. van; Hout-Kuijer, M.A. van; Cerundolo, V.; Figdor, C.G.

    2016-01-01

    Antitumor immunity can be enhanced by the coordinated release and delivery of antigens and immune-stimulating agents to antigen-presenting cells via biodegradable vaccine carriers. So far, encapsulation of TLR ligands and tumor-associated antigens augmented cytotoxic T cell (CTLs) responses. Here,

  5. Immune Cell-Mediated Protection against Vaginal Candidiasis: Evidence for a Major Role of Vaginal CD4+ T Cells and Possible Participation of Other Local Lymphocyte Effectors

    Science.gov (United States)

    Santoni, Giorgio; Boccanera, Maria; Adriani, Daniela; Lucciarini, Roberta; Amantini, Consuelo; Morrone, Stefania; Cassone, Antonio; De Bernardis, Flavia

    2002-01-01

    The protective roles of different lymphocyte subsets were investigated in a rat vaginal candidiasis model by adoptive transfer of vaginal lymphocytes (VL) or sorted, purified CD3+ T cells, CD4+ or CD8+ T cells, or CD3− CD5+ B cells from the vaginas of naïve or immune rats following three rounds of Candida albicans infection. The adoptive transfer of total VL from nonimmune animals did not alter the course of vaginal candidiasis of the recipient rats. In contrast, the animals receiving total VL or CD3+ T cells from immune rats showed a highly significant acceleration of fungus clearance compared with animals which received nonimmune VL. The animals with vaginal CD3− CD5+ B cells transferred from immune rats also had fewer Candida CFU than the controls, but fungal clearance was significantly retarded with respect to the animals administered immune T cells. Sorted, purified CD4+ and CD8+ vaginal T cells from immune rats were also adoptively transferred to naïve animals. Although both populations were seen to accelerate the clearance of the fungus from the vagina, CD4+ T cells were much more effective than CD8+ T cells. Overall, there was no difference between the antifungal effects of immune vaginal CD4+ T cells and those achievable with the transfer of whole, immune VL. Histological observations of the vaginal tissues of rats with adoptively transferred immune T cells demonstrated a remarkable accumulation of lymphocytes in the subepithelial lamina propria and also infiltrating the mucosal epithelium. These results strongly suggest that distinct vaginal lymphocyte subsets participate in the adaptive anti-Candida immunity at the vaginal level, with the vaginal CD4+ T cells probably playing a major role. PMID:12183521

  6. Cytokines related to three major types of cell-mediated immunity in short- and long-term exposures to lead compounds.

    Science.gov (United States)

    Dobrakowski, Michał; Boroń, Marta; Czuba, Zenon P; Kasperczyk, Aleksandra; Machoń-Grecka, Anna; Kasperczyk, Sławomir

    2016-11-01

    Many investigators have posited on the significant influence of lead on the immune system function. However, available data on this topic are not conclusive. Therefore, a study was undertaken to examine associations between lead exposure and levels of cytokines related to the T-helper (T H )-1, T H 2, and T H 17 types of immune response in humans. For these analyses, three population groups were examined: the first consisted of male workers exposed to lead for a short period of time (36-44 days); the second included male workers chronically exposed to lead (13 ± 10 years); and a control group that was composed of male administrative workers with blood lead levels (BLL) immune responses, while chronic exposure modifies their levels. Taken together, these modifications do not evidence an ability of lead to promote specifically one type of immune response in an exposed host.

  7. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    Science.gov (United States)

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Immune response to a mammary adenocarcinoma. V. Sera from tumor-bearing rats contain multiple factors blocking cell-mediated cytotoxicity.

    Science.gov (United States)

    Huber, S A; Lucas, Z J

    1978-12-01

    Sera from Fischer rats 3 to 13 days after i.p. injection of syngeneic 13762A mammary adenocarcinoma contain three factors specifically blocking cell-mediated cytotoxicity (CMC). The major blocking factor is a 160,000-dalton IgG that combines specifically to cytolytic lymphocytes but not to tumor cells or tumor antigen, and that is not dissociated after treatment with 8 M urea. The other factors have been putatively identified as tumor antigen (less than 70,000 daltons) and as soluble antigen-antibody complexes (greater than 200,000 daltons). Injecting the tumor antigen into tumor-free rats induced spleen cells specifically cytotoxic to the 13762A tumor and provided partial protection to challenge with live tumor cells. Treating soluble antigen-antibody complexes with 8 M urea decreased the size of the blocking activity from greater than 200,000 to less than 70,000 daltons. Although the IgG fraction dissociated from the complex did not block CMC, it did recombine with the tumor antigen fraction to transfer activity to the greater than 200,000-dalton fraction. In contrast, mixing tumor antigen with the IgG fraction that did block CMC did not alter the size of the blocking activities.

  9. An oral Salmonella-based vaccine inhibits liver metastases by promoting tumor-specific T cell-mediated immunity in celiac & portal lymph nodes. A preclinical study.

    Directory of Open Access Journals (Sweden)

    Alejandrina eVendrell

    2016-03-01

    Full Text Available Primary tumor excision is one of the therapies of cancer most widely used. However, the risk of metastases development still exists following tumor resection. The liver is a common site of metastatic disease for numerous cancers. Breast cancer is one of the most frequent source of metastases to the liver. The aim of this work was to evaluate the efficacy of the orally-administered Salmonella Typhi vaccine strain CVD 915 on the development of liver metastases in a mouse model of breast cancer. To this end, one group of BALB/c mice was immunized with CVD 915 via o.g. while another received PBS as a control. After 24 h, mice were injected with LM3 mammary adenocarcinoma cells into the spleen and subjected to splenectomy. This oral Salmonella-based vaccine produced an antitumor effect, leading to a decrease in the number and volume of liver metastases. Immunization with Salmonella induced an early cellular immune response in mice. This innate stimulation rendered a large production of IFN-γ by intrahepatic immune cells (IHIC detected within 24 h. An antitumor adaptive immunity was found in the liver and celiac & portal lymph nodes (LDLN 21 days after oral bacterial inoculation. The antitumor immune response inside the liver was associated with increased CD4+ and DC cell populations as well as with an inflammatory infiltrate located around liver metastatic nodules. Enlarged levels of inflammatory cytokines (IFN-γ and TNF were also detected in IHIC. Furthermore, a tumor-specific production of IFN-γ and TNF as well as tumor-specific IFN-γ-producing CD8 T cells (CD8+IFN-γ+ were found in the celiac & portal lymph nodes of Salmonella-treated mice. This study provides first evidence for the involvement of LDLN in the development of an efficient cellular immune response against hepatic tumors, which resulted in the elimination of liver metastases after oral Salmonella-based vaccination.

  10. Local expression of vaginal Th1 and Th2 cytokines in murine vaginal candidiasis under different immunity conditions.

    Science.gov (United States)

    Chen, Shanjuan; Li, Shaohua; Wu, Yan; Liu, Zhixiang; Li, Jiawen

    2008-08-01

    To investigate the expression of vaginal Th1 and Th2 cytokines in rats with experimental vaginal candidiasis under different immune conditions, ICR murine vaginal candidiasis model was established and immno-suppressed murine models of vaginal cadidiasis were established in estrogen-treated mice. Non-estrogen-treated mice were used as controls. The mRNA level of Th1 (IL-2)/Th2 (IL-4, IL-10, TGF-beta1) cytokines in murine vaginal tissues was determined by RT-PCR. The cykotine in local tissues was increased to different extent under normal immune condition. IL-2 mRNA was increased during early stage of infection, while IL-10 was increased transiently during late stage of infection. TGF-beta1 production was found to be increased persistently. At same time, the expression of IL-2 mRNA was suppressed in immno-suppressed group, and the level of IL-4, IL-10, and TGF-beta1 were higher than the normal immunity group to different degree during infection. The high level of IL-2 mRNA during early stage of infection was associated with clearance of mucosal Candidia albicans (C. albicans), and its expression suppressed leading to decreased clearance of mucosal C. albican in immuno-suppression. The over-expression of IL-4 and IL-10 could significantly enhance the susceptibility to C. albicans infection in mice.

  11. Protective effect of intranasal immunization with Neospora caninum membrane antigens against murine neosporosis established through the gastrointestinal tract

    Science.gov (United States)

    Ferreirinha, Pedro; Dias, Joana; Correia, Alexandra; Pérez-Cabezas, Begoña; Santos, Carlos; Teixeira, Luzia; Ribeiro, Adília; Rocha, António; Vilanova, Manuel

    2014-01-01

    Neospora caninum is an Apicomplexa parasite that in the last two decades was acknowledged as the main pathogenic agent responsible for economic losses in the cattle industry. In the present study, the effectiveness of intranasal immunization with N. caninum membrane antigens plus CpG adjuvant was assessed in a murine model of intragastrically established neosporosis. Immunized mice presented a lower parasitic burden in the brain on infection with 5 × 107 tachyzoites, showing that significant protection was achieved by this immunization strategy. Intestinal IgA antibodies raised by immunization markedly agglutinated live N. caninum tachyzoites whereas previous opsonization with IgG antibodies purified from immunized mice sera reduced parasite survival within macrophage cells. Although an IgG1 : IgG2a ratio < 1 was detected in the immunized mice before and after infection, indicative of a predominant T helper type 1 immune response, no increased production of interferon-γ was detected in the spleen or mesenteric lymph nodes of the immunized mice. Altogether, these results show that mucosal immunization with N. caninum membrane proteins plus CpG adjuvant protect against intragastrically established neosporosis and indicate that parasite-specific mucosal and circulating antibodies have a protective role against this parasitic infection. PMID:24128071

  12. Synthetic Influenza vaccine (FLU-v) stimulates cell mediated immunity in a double-blind, randomised, placebo-controlled Phase I trial.

    Science.gov (United States)

    Pleguezuelos, Olga; Robinson, Stuart; Stoloff, Gregory A; Caparrós-Wanderley, Wilson

    2012-06-29

    Current Influenza vaccines elicit antibody mediated prophylactic immunity targeted to viral capsid antigens. Despite their global use these vaccines must be administered yearly to the population, cannot be manufactured until the circulating viral strain(s) have been identified and have limited efficacy. A need remains for Influenza vaccines addressing these issues and here we report the results of a Phase Ib trial of a novel synthetic Influenza vaccine (FLU-v) targeting T cell responses to NP, M1 and M2. Forty-eight healthy males aged 18-40 were recruited for this single-centre, randomised, double blind study. Volunteers received one single low (250 μg) or high (500 μg) dose of FLU-v, either alone or adjuvanted. Safety, tolerability and basic immunogenicity (IgG and IFN-γ responses) parameters were assessed pre-vaccination and for 21 days post-vaccination. FLU-v was found to be safe and well tolerated with no vaccine associated severe adverse events. Dose-dependent IFN-γ responses >2-fold the pre-vaccination level were detected in 80% and 100% of volunteers receiving, respectively, the low and high dose adjuvanted FLU-v formulations. No formulation tested induced any significant FLU-v antibody response. FLU-v is safe and induces a vaccine-specific cellular immunity. Cellular immune responses are historically known to control and mitigate infection and illness during natural infection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. HPV-E7 delivered by engineered exosomes elicits a protective CD8⁺ T cell-mediated immune response.

    Science.gov (United States)

    Di Bonito, Paola; Ridolfi, Barbara; Columba-Cabezas, Sandra; Giovannelli, Andrea; Chiozzini, Chiara; Manfredi, Francesco; Anticoli, Simona; Arenaccio, Claudia; Federico, Maurizio

    2015-03-09

    We developed an innovative strategy to induce a cytotoxic T cell (CTL) immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut), which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV)-E7 with that of lentiviral virus-like particles (VLPs) incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity.

  14. Novel engineered HIV-1 East African Clade-A gp160 plasmid construct induces strong humoral and cell-mediated immune responses in vivo

    International Nuclear Information System (INIS)

    Muthumani, Karuppiah; Zhang Donghui; Dayes, Nathanael S.; Hwang, Daniel S.; Calarota, Sandra A.; Choo, Andrew Y.; Boyer, Jean D.; Weiner, David B.

    2003-01-01

    HIV-1 sequences are highly diverse due to the inaccuracy of the viral reverse transcriptase. This diversity has been studied and used to categorize HIV isolates into subtypes or clades, which are geographically distinct. To develop effective vaccines against HIV-1, immunogens representing different subtypes may be important for induction of cross-protective immunity, but little data exist describing and comparing the immunogenicity induced by different subtype-based vaccines. This issue is further complicated by poor expression of HIV structural antigens due to rev dependence. One costly approach is to codon optimize each subtype construct to be examined. Interestingly, cis-acting transcriptional elements (CTE) can also by pass rev restriction by a rev independent export pathway. We reasoned that rev+CTE constructs might have advantages for such expression studies. A subtype A envelope sequence from a viral isolate from east Africa was cloned into a eukaryotic expression vector under the control of the CMV-IE promoter. The utility of inclusion of the Mason-Pfizer monkey virus (MPV)-CTE with/without rev for driving envelope expression and immunogenicity was examined. Expression of envelope (gp120) was confirmed by immunoblot analysis and by pseudotype virus infectivity assays. The presence of rev and the CTE together increased envelope expression and viral infection. Furthermore the CTE+rev construct was significantly more immunogenic then CTE alone vector. Isotype analysis and cytokine profiles showed strong Th1 response in plasmid-immunized mice, which also demonstrated the superior nature of the rev+CTE construct. These responses were of similar or greater magnitude to a codon-optimized construct. The resulting cellular immune responses were highly cross-reactive with a HIV-1 envelope subtype B antigen. This study suggests a simple strategy for improving the expression and immunogenicity of HIV subtype-specific envelope antigens as plasmid or vector

  15. Seasonal changes in cell mediated immune responses to soluble Plasmodium falciparum antigens in children with haemoglobin AA and haemoglobin AS

    DEFF Research Database (Denmark)

    Abu-Zeid, Y A; Abdulhadi, N H; Theander, T G

    1992-01-01

    of tuberculin (PPD). The lymphoproliferative responses to SPAg of the paired PBMC samples showed 2 distinct seasonal changes in relation to the haemoglobin phenotype. In HbAA children, the lymphoproliferative responses to SPAg were suppressed during the malaria season. In contrast, they were enhanced in Hb......AS children during the malaria season. No distinct seasonal change in the response to PPD was found in relation to the haemoglobin phenotype. The study points to the role of the sickle cell trait in modulating the cellular immune responses to falciparum malaria....

  16. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis.

    Science.gov (United States)

    Whibley, Natasha; Tritto, Elaine; Traggiai, Elisabetta; Kolbinger, Frank; Moulin, Pierre; Brees, Dominique; Coleman, Bianca M; Mamo, Anna J; Garg, Abhishek V; Jaycox, Jillian R; Siebenlist, Ulrich; Kammüller, Michael; Gaffen, Sarah L

    2016-06-01

    Antibodies targeting IL-17A or its receptor, IL-17RA, are approved to treat psoriasis and are being evaluated for other autoimmune conditions. Conversely, IL-17 signaling is critical for immunity to opportunistic mucosal infections caused by the commensal fungus Candida albicans, as mice and humans lacking the IL-17R experience chronic mucosal candidiasis. IL-17A, IL-17F, and IL-17AF bind the IL-17RA-IL-17RC heterodimeric complex and deliver qualitatively similar signals through the adaptor Act1. Here, we used a mouse model of acute oropharyngeal candidiasis to assess the impact of blocking IL-17 family cytokines compared with specific IL-17 cytokine gene knockout mice. Anti-IL-17A antibodies, which neutralize IL-17A and IL-17AF, caused elevated oral fungal loads, whereas anti-IL-17AF and anti-IL-17F antibodies did not. Notably, there was a cooperative effect of blocking IL-17A, IL-17AF, and IL-17F together. Termination of anti-IL-17A treatment was associated with rapid C. albicans clearance. IL-17F-deficient mice were fully resistant to oropharyngeal candidiasis, consistent with antibody blockade. However, IL-17A-deficient mice had lower fungal burdens than anti-IL-17A-treated mice. Act1-deficient mice were much more susceptible to oropharyngeal candidiasis than anti-IL-17A antibody-treated mice, yet anti-IL-17A and anti-IL-17RA treatment caused equivalent susceptibilities. Based on microarray analyses of the oral mucosa during infection, only a limited number of genes were associated with oropharyngeal candidiasis susceptibility. In sum, we conclude that IL-17A is the main cytokine mediator of immunity in murine oropharyngeal candidiasis, but a cooperative relationship among IL-17A, IL-17AF, and IL-17F exists in vivo. Susceptibility displays the following hierarchy: IL-17RA- or Act1-deficiency > anti-IL-17A + anti-IL-17F antibodies > anti-IL-17A or anti-IL-17RA antibodies > IL-17A deficiency. © Society for Leukocyte Biology.

  17. Vaccination of pigs with attenuated Lawsonia intracellularis induced acute phase protein responses and primed cell-mediated immunity without reduction in bacterial shedding after challenge

    DEFF Research Database (Denmark)

    Riber, Ulla; Heegaard, Peter M. H.; Hvass, Henriette Cordes

    2015-01-01

    achievedby this vaccine. We therefore undertook a detailed characterization of immune responses to L. intracel-lularis infection in vaccinated pigs (VAC) compared to previously infected pigs (RE) in order to pinpointimmunological determinants of protection.Results: The VAC pigs shed L. intracellularis......nomically important diseases in modern pig production worldwide. The Enterisol®Ileitis vaccine havebeen shown to reduce clinical disease and to increase weight gain, however, while the natural infectionwith L. intracellularis can provide complete protection against re-infection, this has not been...... response was diminished and L. intracellularis specific IgG responseswere delayed and reduced compared to non-vaccinated pigs. On the other hand L. intracellularis specificIFN- responses tended to develop faster in the VAC group compared to controls.Conclusion: Although vaccinated and non-vaccinated pigs...

  18. Multiplex-PCR-Based Screening and Computational Modeling of Virulence Factors and T-Cell Mediated Immunity in Helicobacter pylori Infections for Accurate Clinical Diagnosis.

    Directory of Open Access Journals (Sweden)

    Sinem Oktem-Okullu

    Full Text Available The outcome of H. pylori infection is closely related with bacteria's virulence factors and host immune response. The association between T cells and H. pylori infection has been identified, but the effects of the nine major H. pylori specific virulence factors; cagA, vacA, oipA, babA, hpaA, napA, dupA, ureA, ureB on T cell response in H. pylori infected patients have not been fully elucidated. We developed a multiplex- PCR assay to detect nine H. pylori virulence genes with in a three PCR reactions. Also, the expression levels of Th1, Th17 and Treg cell specific cytokines and transcription factors were detected by using qRT-PCR assays. Furthermore, a novel expert derived model is developed to identify set of factors and rules that can distinguish the ulcer patients from gastritis patients. Within all virulence factors that we tested, we identified a correlation between the presence of napA virulence gene and ulcer disease as a first data. Additionally, a positive correlation between the H. pylori dupA virulence factor and IFN-γ, and H. pylori babA virulence factor and IL-17 was detected in gastritis and ulcer patients respectively. By using computer-based models, clinical outcomes of a patients infected with H. pylori can be predicted by screening the patient's H. pylori vacA m1/m2, ureA and cagA status and IFN-γ (Th1, IL-17 (Th17, and FOXP3 (Treg expression levels. Herein, we report, for the first time, the relationship between H. pylori virulence factors and host immune responses for diagnostic prediction of gastric diseases using computer-based models.

  19. Multiplex-PCR-Based Screening and Computational Modeling of Virulence Factors and T-Cell Mediated Immunity in Helicobacter pylori Infections for Accurate Clinical Diagnosis.

    Science.gov (United States)

    Oktem-Okullu, Sinem; Tiftikci, Arzu; Saruc, Murat; Cicek, Bahattin; Vardareli, Eser; Tozun, Nurdan; Kocagoz, Tanil; Sezerman, Ugur; Yavuz, Ahmet Sinan; Sayi-Yazgan, Ayca

    2015-01-01

    The outcome of H. pylori infection is closely related with bacteria's virulence factors and host immune response. The association between T cells and H. pylori infection has been identified, but the effects of the nine major H. pylori specific virulence factors; cagA, vacA, oipA, babA, hpaA, napA, dupA, ureA, ureB on T cell response in H. pylori infected patients have not been fully elucidated. We developed a multiplex- PCR assay to detect nine H. pylori virulence genes with in a three PCR reactions. Also, the expression levels of Th1, Th17 and Treg cell specific cytokines and transcription factors were detected by using qRT-PCR assays. Furthermore, a novel expert derived model is developed to identify set of factors and rules that can distinguish the ulcer patients from gastritis patients. Within all virulence factors that we tested, we identified a correlation between the presence of napA virulence gene and ulcer disease as a first data. Additionally, a positive correlation between the H. pylori dupA virulence factor and IFN-γ, and H. pylori babA virulence factor and IL-17 was detected in gastritis and ulcer patients respectively. By using computer-based models, clinical outcomes of a patients infected with H. pylori can be predicted by screening the patient's H. pylori vacA m1/m2, ureA and cagA status and IFN-γ (Th1), IL-17 (Th17), and FOXP3 (Treg) expression levels. Herein, we report, for the first time, the relationship between H. pylori virulence factors and host immune responses for diagnostic prediction of gastric diseases using computer-based models.

  20. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Kenichi Kumagai

    2016-01-01

    Full Text Available Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis.

  1. Alleviation of collagen-induced arthritis by the benzoxathiole derivative BOT-4-one in mice: Implication of the Th1- and Th17-cell-mediated immune responses.

    Science.gov (United States)

    Kim, Byung-Hak; Yoon, Bo Ruem; Kim, Eun Kyoung; Noh, Kum Hee; Kwon, Sun-Ho; Yi, Eun Hee; Lee, Hyun Gyu; Choi, Jung Sook; Kang, Seong Wook; Park, In-Chul; Lee, Won-Woo; Ye, Sang-Kyu

    2016-06-15

    Autoimmune rheumatoid arthritis is characterized by chronic inflammation and hyperplasia in the synovial joints. Although the cause of rheumatoid arthritis is largely unknown, substantial evidence has supported the importance of immune cells and inflammatory cytokines in the initiation and progression of this disease. Herein, we demonstrated that the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) alleviated type II collagen-induced arthritis in a mouse model. The levels of pro-inflammatory cytokines are elevated in both human patients with rheumatoid arthritis and mice with collagen-induced arthritis. BOT-4-one treatment reduced the levels of pro-inflammatory cytokines in mice and endotoxin-stimulated macrophages. BOT-4-one treatment suppressed the polarization of Th1- and Th17-cell subsets by inhibiting the expression and production of their lineage-specific master transcription factors and cytokines, as well as activation of signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited mitogen-activated protein kinase and NF-kappaB signaling as well as the transcriptional activities and DNA-binding of transcription factors, including activator protein-1, cAMP response element-binding protein and NF-kappaB. Our results suggest that BOT-4-one may have therapeutic potential for the treatment of chronic inflammation associated with autoimmune rheumatoid arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Effects of Reduced Gluten Barley Diet on Humoral and Cell-Mediated Systemic Immune Responses of Gluten-Sensitive Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Karol Sestak

    2015-03-01

    Full Text Available Celiac disease (CD affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS. The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ, tumor necrosis factor (TNF and interleukin-8 (IL-8 by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading—by co-administration of additional treatments.

  3. The effects of reduced gluten barley diet on humoral and cell-mediated systemic immune responses of gluten-sensitive rhesus macaques.

    Science.gov (United States)

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P; Liu, David X; Moehs, Charles P

    2015-03-06

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading-by co-administration of additional treatments.

  4. Humoral and cell-mediated immunity to pandemic H1N1 influenza in a Canadian cohort one year post-pandemic: implications for vaccination.

    Directory of Open Access Journals (Sweden)

    Lisa E Wagar

    Full Text Available We evaluated a cohort of Canadian donors for T cell and antibody responses against influenza A/California/7/2009 (pH1N1 at 8-10 months after the 2nd pandemic wave by flow cytometry and microneutralization assays. Memory CD8 T cell responses to pH1N1 were detectable in 58% (61/105 of donors. These responses were largely due to cross-reactive CD8 T cell epitopes as, for those donors tested, similar recall responses were obtained to A/California 2009 and A/PR8 1934 H1N1 Hviruses. Longitudinal analysis of a single infected individual showed only a small and transient increase in neutralizing antibody levels, but a robust CD8 T cell response that rose rapidly post symptom onset, peaking at 3 weeks, followed by a gradual decline to the baseline levels seen in a seroprevalence cohort post-pandemic. The magnitude of the influenza-specific CD8 T cell memory response at one year post-pandemic was similar in cases and controls as well as in vaccinated and unvaccinated donors, suggesting that any T cell boosting from infection was transient. Pandemic H1-specific antibodies were only detectable in approximately half of vaccinated donors. However, those who were vaccinated within a few months following infection had the highest persisting antibody titers, suggesting that vaccination shortly after influenza infection can boost or sustain antibody levels. For the most part the circulating influenza-specific T cell and serum antibody levels in the population at one year post-pandemic were not different between cases and controls, suggesting that natural infection does not lead to higher long term T cell and antibody responses in donors with pre-existing immunity to influenza. However, based on the responses of one longitudinal donor, it is possible for a small population of pre-existing cross-reactive memory CD8 T cells to expand rapidly following infection and this response may aid in viral clearance and contribute to a lessening of disease severity.

  5. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A

    Directory of Open Access Journals (Sweden)

    Allison M Lytle

    2016-01-01

    Full Text Available Immune responses to coagulation factors VIII (FVIII and IX (FIX represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV.

  6. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A

    Science.gov (United States)

    Lytle, Allison M; Brown, Harrison C; Paik, Na Yoon; Knight, Kristopher A; Wright, J Fraser; Spencer, H Trent; Doering, Christopher B

    2016-01-01

    Immune responses to coagulation factors VIII (FVIII) and IX (FIX) represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC) retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV)-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV) vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV. PMID:26909355

  7. The use of 125I-labelled protein A for the detection of humoral immunity of gross murine leukaemia virus

    International Nuclear Information System (INIS)

    Holmes, H.C.; Tuffrey, M.; Barnes, R.D.; Steuden, J.; Hilgers, J.

    1980-01-01

    A solid-phase radioimmunoassay utilising binding of 125 I-labelled protein A to antibodies bound to virus adsorbed onto microtitre plates was shown to be suitable for detection of humoral immunity to Gross murine leukaemia virus (MuLV). The specificity of the reaction was shown by the fact that only homologous or closely related viruses effectively inhibited binding of antibodies to adsorbed virus. With this method a low level of spontaneous humoral immunity was demonstrated in sera from AKR/Crc mice, a strain with high concentrations of endogenous virus, whereas little or no anti-viral activity was found in CBA/H-T6Crc, a subline that does not appear to express MuLV. (Auth.)

  8. Interleukin 37 limits monosodium urate crystal-induced innate immune responses in human and murine models of gout.

    Science.gov (United States)

    Liu, Lei; Xue, Yu; Zhu, Yingfeng; Xuan, Dandan; Yang, Xue; Liang, Minrui; Wang, Juan; Zhu, Xiaoxia; Zhang, Jiong; Zou, Hejian

    2016-11-18

    Interleukin (IL)-37 has emerged as a fundamental inhibitor of innate immunity. Acute gout is a self-limiting inflammatory response to monosodium urate (MSU) crystals. In the current study, we assessed the preventive and therapeutic effect of recombinant human IL-37 (rhIL-37) in human and murine gout models. We investigated the expression of IL-37 in patients with active and inactive gouty arthritis and assessed the effect of rhIL-37 in human and murine gout models: a human monocyte cell line (THP-1) and human synovial cells (containing macrophage-like and fibroblast-like synoviocytes) exposed to MSU crystals, a peritoneal murine model of gout and a murine gouty arthritis model. After inhibition of Mer receptor tyrosine kinase (Mertk), levels of IL-1β, IL-8 and chemokine (C-C motif) ligand 2 (CCL-2) were detected by ELISA and expression of mammalian homologs of the drosophila Mad gene 3 (Smad), suppressor of cytokine signaling 3 (SOCS3), NACHT-LRR-PYD-containing protein 3 (NLRP3), and IL-8R of THP-1 were assessed by qPCR and western blot to explore the molecular mechanisms. Our studies strongly indicated that rhIL-37 played a potent immunosuppressive role in the pathogenesis of experimental gout models both in vitro and in vivo, by downregulating proinflammatory cytokines and chemokines, markedly reducing neutrophil and monocyte recruitment, and mitigating pathological joint inflammation. In our studies, rhIL-37 suppressed MSU-induced innate immune responses by enhancing expression of Smad3 and IL-1R8 to trigger multiple intracellular switches to block inflammation, including inhibition of NLRP3 and activation of SOCS3. Mertk signaling participated in rhIL-37 inhibitory pathways in gout models. By inhibition of Mertk, the anti-inflammatory effect of rhIL-37 was partly abrogated, and IL-1R8, Smad3 and S​OCS3 expression were suppressed, whereas NLRP3 expression was reactivated. Our studies reveal that IL-37 limits runaway inflammation initiated by MSU crystal

  9. Possible neuroimmunomodulation therapy in T-cell-mediated oral diseases

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sato

    2015-01-01

    Full Text Available Introduction: Recurrent aphthous stomatitis and oral lichen planus are local chronic inflammatory diseases which are implicated in T cell-mediated immunity. According to the systematic review, there is insufficient evidence to support any specific treatment for T-cell mediated oral diseases. The hypothesis: In this paper, we propose a hypothesis that recurrent aphthous stomatitis and oral lichen planus can be treated with selective α7 subunit of nicotinic acetylcholine receptor (α7 -nAChR agonists. Our hypothesis is supported by the following two facts. First, the pathophysiological conditions, T h 1/T h 17 cell activation and autonomic nervous system dysfunction, are observed in T-cell mediated oral diseases as well as in T-cell mediated systemic diseases such as rheumatoid arthritis. Second, the cholinergic anti-inflammatory pathway is inhibited in systemic T-cell mediated chronic inflammatory diseases. On the other hand, treatment with α7 -nAChR agonists which activate the cholinergic anti-inflammatory pathway suppresses neuroinflammation via inhibition of T h 1/T h 17 responses in animal model of systemic T-cell mediated chronic inflammatory diseases. We thus expect that selective α7 -nAChR agonists will be effective for the treatment of T-cell mediated oral diseases. Evaluation of the hypothesis: To test our hypothesis, we need to develop in vivo mouse model of T-cell mediated oral diseases. To evaluate the therapeutic effect of a selective α7 -nAChR agonist, we choose ABT-107 because of its safety and tolerability. We believe that the selective α7 -nAChR agonist, especially ABT-107, may be a therapeutic drug to treat T-cell mediated oral diseases.

  10. Porcine humoral immune responses to multiple injections of murine monoclonal antibodies

    DEFF Research Database (Denmark)

    Lohse, Louise; Nielsen, Jens; Kamstrup, Søren

    2005-01-01

    In humans and cattle, multiple injections of murine monoclonal antibodies (m-mAbs) induce anti-mouse antibody responses. The objectives of the present. study were to investigate whether a similar response could be seen when pigs were subjected to m-mAb therapy, and to study the kinetics of such a...

  11. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Science.gov (United States)

    Chen, Lili; He, Zhengxiang; Qin, Li; Li, Qinyan; Shi, Xibao; Zhao, Siting; Chen, Ling; Zhong, Nanshan; Chen, Xiaoping

    2011-01-01

    Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+) T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer

  12. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Lili Chen

    Full Text Available BACKGROUND: Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL staining and decreased Ki-67 expression in tumors. Through natural killer (NK cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. CONCLUSIONS/SIGNIFICANCE: Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria

  13. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries.

    Science.gov (United States)

    Goodchild, Sarah A; Dooley, Helen; Schoepp, Randal J; Flajnik, Martin; Lonsdale, Stephen G

    2011-09-01

    Members of the genus Ebolavirus cause fulminating outbreaks of disease in human and non-human primate populations with a mortality rate up to 90%. To facilitate rapid detection of these pathogens in clinical and environmental samples, robust reagents capable of providing sensitive and specific detection are required. In this work recombinant antibody libraries were generated from murine (single chain variable domain fragment; scFv) and nurse shark, Ginglymostoma cirratum (IgNAR V) hosts immunised with Zaire ebolavirus. This provides the first recorded IgNAR V response against a particulate antigen in the nurse shark. Both murine scFv and shark IgNAR V libraries were panned by phage display technology to identify useful antibodies for the generation of immunological detection reagents. Two murine scFv were shown to have specificity to the Zaire ebolavirus viral matrix protein VP40. Two isolated IgNAR V were shown to bind to the viral nucleoprotein (NP) and to capture viable Zaire ebolavirus with a high degree of sensitivity. Assays developed with IgNAR V cross-reacted to Reston ebolavirus, Sudan ebolavirus and Bundibugyo ebolavirus. Despite this broad reactivity, neither of IgNAR V showed reactivity to Côte d'Ivoire ebolavirus. IgNAR V was substantially more resistant to irreversible thermal denaturation than murine scFv and monoclonal IgG in a comparative test. The demonstrable robustness of the IgNAR V domains may offer enhanced utility as immunological detection reagents in fieldable biosensor applications for use in tropical or subtropical countries where outbreaks of Ebolavirus haemorrhagic fever occur. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Innate and adaptive immune response to chronic pulmonary infection of hyphae of Aspergillus fumigatus in a new murine model.

    Science.gov (United States)

    Wang, Fengyuan; Zhang, Caiyun; Jiang, Yuan; Kou, Caixia; Kong, Qingtao; Long, Nanbiao; Lu, Ling; Sang, Hong

    2017-10-01

    The pathogenesis of chronic pulmonary aspergillosis (CPA) has seldom been studied due partly to a lack of animal models. Since hypha is the main morphology colonizing the airway in CPA, it's critical to study the immune reaction to chronic pulmonary infection of hyphae of Aspergillus fumigatus, which also has seldom been studied in vivo before. We established a novel murine model of chronic pulmonary infection of hyphae by challenging immunocompetent mice with tightly-structured hyphae balls intratracheally, and described the ensuing immunoreaction to hyphae and conidia, and the pathogenesis of CPA. Our experiment proved that the hyphae balls could induce a chronic pulmonary infection for 28 days with a considerable recrudescence at day 28 post-infection. Lungs infected with hyphae balls were remarkable for the many neutrophils and macrophages that flooded into airway lumens, with peribronchiolar infiltration of leukocytes. There was a transient increase of Th2 cells and Th17 cells at day 7 post-infection in the lung tissue. In contrast, lungs infected with conidia showed no peribronchiolar infiltration of leukocytes, but an influx of a great number of macrophages, and a much less number of neutrophils in the lumen. Besides, conidia activated the co-response of Th1, Th2 and Th17 cells with an increase of Treg cells in the lung tissue (quite different from most previous studies). We established a new murine model of chronic infection of hyphae to mimic the formation of CPA, and provide a new marker for different immune responses to hyphae and conidia.

  15. Beneficial immune modulatory effects of a specific nutritional combination in a murine model for cancer cachexia

    Science.gov (United States)

    Faber, J; Vos, P; Kegler, D; van Norren, K; Argilés, J M; Laviano, A; Garssen, J; van Helvoort, A

    2008-01-01

    The majority of patients with advanced cancer are recognised by impaired immune competence influenced by several factors, including the type and stage of the tumour and the presence of cachexia. Recently, a specific nutritional combination containing fish oil, specific oligosaccharide mixture, high protein content and leucine has been developed aimed to support the immune system of cancer patients in order to reduce the frequency and severity of (infectious) complications. In a recently modified animal model cachexia is induced by inoculation of C26 tumour cells in mice. In a pre-cachectic state, no effect was observed on contact hypersensitivity, a validated in vivo method to measure Th1-mediated immune function, after adding the individual nutritional ingredients to the diet of tumour-bearing mice. However, the complete mixture resulted in significantly improved Th1 immunity. Moreover, in a cachectic state, the complete mixture reduced plasma levels of pro-inflammatory cytokines and beneficially affected ex vivo immune function. Accordingly, the combination of the nutritional ingredients is required to obtain a synergistic effect, leading to a reduced inflammatory state and improved immune competence. From this, it can be concluded that the specific nutritional combination has potential as immune-supporting nutritional intervention to reduce the risk of (infectious) complications in cancer patients. PMID:19018259

  16. The p36 Isoform of Murine Cytomegalovirus m152 Protein Suffices for Mediating Innate and Adaptive Immune Evasion

    Science.gov (United States)

    Fink, Annette; Renzaho, Angeliqué; Reddehase, Matthias J.; Lemmermann, Niels A. W.

    2013-01-01

    The MHC-class I (MHC-I)-like viral (MHC-Iv) m152 gene product of murine cytomegalovirus (mCMV) was the first immune evasion molecule described for a member of the β-subfamily of herpesviruses as a paradigm for analogous functions of human cytomegalovirus proteins. Notably, by interacting with classical MHC-I molecules and with MHC-I-like RAE1 family ligands of the activatory natural killer (NK) cell receptor NKG2D, it inhibits presentation of antigenic peptides to CD8 T cells and the NKG2D-dependent activation of NK cells, respectively, thus simultaneously interfering with adaptive and innate immune recognition of infected cells. Although the m152 gene product exists in differentially glycosylated isoforms whose individual contributions to immune evasion are unknown, it has entered the scientific literature as m152/gp40, based on the quantitatively most prominent isoform but with no functional justification. By construction of a recombinant mCMV in which all three N-glycosylation sites are mutated (N61Q, N208Q, and N241Q), we show here that N-linked glycosylation is not essential for functional interaction of the m152 immune evasion protein with either MHC-I or RAE1. These data add an important functional detail to recent structural analysis of the m152/RAE1γ complex that has revealed N-glycosylations at positions Asn61 and Asn208 of m152 distant from the m152/RAE1γ interface. PMID:24351798

  17. The p36 Isoform of Murine Cytomegalovirus m152 Protein Suffices for Mediating Innate and Adaptive Immune Evasion

    Directory of Open Access Journals (Sweden)

    Annette Fink

    2013-12-01

    Full Text Available The MHC-class I (MHC-I-like viral (MHC-Iv m152 gene product of murine cytomegalovirus (mCMV was the first immune evasion molecule described for a member of the β-subfamily of herpesviruses as a paradigm for analogous functions of human cytomegalovirus proteins. Notably, by interacting with classical MHC-I molecules and with MHC-I-like RAE1 family ligands of the activatory natural killer (NK cell receptor NKG2D, it inhibits presentation of antigenic peptides to CD8 T cells and the NKG2D-dependent activation of NK cells, respectively, thus simultaneously interfering with adaptive and innate immune recognition of infected cells. Although the m152 gene product exists in differentially glycosylated isoforms whose individual contributions to immune evasion are unknown, it has entered the scientific literature as m152/gp40, based on the quantitatively most prominent isoform but with no functional justification. By construction of a recombinant mCMV in which all three N-glycosylation sites are mutated (N61Q, N208Q, and N241Q, we show here that N-linked glycosylation is not essential for functional interaction of the m152 immune evasion protein with either MHC-I or RAE1. These data add an important functional detail to recent structural analysis of the m152/RAE1g complex that has revealed N-glycosylations at positions Asn61 and Asn208 of m152 distant from the m152/RAE1g interface.

  18. Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression.

    Science.gov (United States)

    Maes, Michael; Ringel, Karl; Kubera, Marta; Berk, Michael; Rybakowski, Janusz

    2012-02-01

    Depression is characterized by inflammation and cell-mediated immune (CMI) activation and autoimmune reactions directed against a multitude of self-epitopes. There is evidence that the inflammatory response in depression causes dysfunctions in the metabolism of 5-HT, e.g. lowering the 5-HT precursor tryptophan, and upregulating 5-HT receptor mRNA. This study has been undertaken to examine autoimmune activity directed against 5-HT in relation to CMI activation and inflammation. 5-HT antibodies were examined in major depressed patients (n=109) versus normal controls (n=35) in relation to serum neopterin and lysozyme, and plasma pro-inflammatory cytokines (PIC), i.e. interleukin-1 (IL-1) and tumor necrosis factor-α (TNFα). Severity of depression was assessed with the Hamilton Depression Rating Scale (HDRS) and severity of fatigue and somatic symptoms with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. The incidence of anti-5-HT antibody activity was significantly higher in depressed patients (54.1%), and in particular in those with melancholia (82.9%), than in controls (5.7%). Patients with positive 5-HT antibodies showed increased serum neopterin and lysozyme, and plasma TNFα and IL-1; higher scores on the HDRS and FF scales, and more somatic symptoms, including malaise and neurocognitive dysfunctions. There was a significant association between autoimmune activity to 5-HT and the number of previous depressive episodes. The autoimmune reactions directed against 5-HT might play a role in the pathophysiology of depression and the onset of severe depression. The strong association between autoimmune activity against 5-HT and inflammation/CMI activation is explained by multiple, reciprocal pathways between these factors. Exposure to previous depressive episodes increases the incidence of autoimmune activity directed against 5-HT, which in turn may increase the likelihood to develop new depressive episodes. These findings suggest that sensitization

  19. Experimental murine fascioliasis derives early immune suppression with increased levels of TGF-β and IL-4.

    Science.gov (United States)

    Chung, Joon-Yong; Bae, Young-An; Yun, Doo-Hee; Yang, Hyun-Jong; Kong, Yoon

    2012-12-01

    In fascioliasis, T-helper 2 (Th2) responses predominate, while little is known regarding early immune phenomenon. We herein analyzed early immunophenotype changes of BALB/c, C57BL/6, and C3H/He mice experimentally infected with 5 Fasciola hepatica metacercariae. A remarkable expansion of CD19(+) B cells was observed as early as week 1 post-infection while CD4(+)/CD8(+) T cells were down-regulated. Accumulation of Mac1(+) cells with time after infection correlated well with splenomegaly of all mice strains tested. The expression of tumor necrosis factor (TNF)-α mRNA in splenocytes significantly decreased while that of IL-4 up-regulated. IL-1β expression was down-modulated in BALB/c and C57BL/6 mice, but not in C3H/He. Serum levels of transforming growth factor (TGF)-β were considerably elevated in all mice during 3 weeks of infection period. These collective results suggest that experimental murine fascioliasis might derive immune suppression with elevated levels of TGF-β and IL-4 during the early stages of infection.

  20. Induction of regulatory T cells by high-dose gp96 suppresses murine liver immune hyperactivation.

    Directory of Open Access Journals (Sweden)

    Xinghui Li

    Full Text Available Immunization with high-dose heat shock protein gp96, an endoplasmic reticulum counterpart of the Hsp90 family, significantly enhances regulatory T cell (Treg frequency and suppressive function. Here, we examined the potential role and mechanism of gp96 in regulating immune-mediated hepatic injury in mice. High-dose gp96 immunization elicited rapid and long-lasting protection of mice against concanavalin A (Con A-and anti-CD137-induced liver injury, as evidenced by decreased alanine aminotransaminase (ALT levels, hepatic necrosis, serum pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6, and number of IFN-γ (+ CD4(+ and IFN-γ (+ CD8(+ T cells in the spleen and liver. In contrast, CD4(+CD25(+Foxp3(+ Treg frequency and suppressive function were both increased, and the protective effect of gp96 could be generated by adoptive transfer of Treg cells from gp96-immunized mice. In vitro co-culture experiments demonstrated that gp96 stimulation enhanced Treg proliferation and suppressive function, and up-regulation of Foxp3, IL-10, and TGF-β1 induced by gp96 was dependent on TLR2- and TLR4-mediated NF-κB activation. Our work shows that activation of Tregs by high-dose gp96 immunization protects against Con A- and anti-CD137-induced T cell-hepatitis and provides therapeutic potential for the development of a gp96-based anti-immune hyperactivation vaccine against immune-mediated liver destruction.

  1. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir.

    Science.gov (United States)

    Hensel, Michael T; Marshall, Jason D; Dorwart, Michael R; Heeke, Darren S; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H; Eisenberg, Roselyn J; Sloan, Derek D

    2017-05-01

    of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection. Copyright © 2017 American Society for Microbiology.

  2. Intradermal immunization with inactivated swine influenza virus and adjuvant polydi(sodium carboxylatoethylphenoxy)phosphazene (PCEP) induced humoral and cell-mediated immunity and reduced lung viral titres in pigs.

    Science.gov (United States)

    Magiri, Royford; Lai, Ken; Chaffey, Alyssa; Zhou, Yan; Pyo, Hyun-Mi; Gerdts, Volker; Wilson, Heather L; Mutwiri, George

    2018-03-14

    Swine influenza virus is endemic worldwide and it is responsible for significant economic losses to the swine industry. A vaccine that stimulates a rapid and long-lasting protective immune response to prevent this infection is highly sought. Poly[di(sodium carboxylatoethylphenoxy)-phosphazene (PCEP) has demonstrated adjuvant activity when formulated as part of multiple vaccines in mice and pigs. In this study we examined the magnitude and type of immune response induced in pigs vaccinated via the intramuscular or intradermal routes with inactivated swine influenza virus (SIV) H1N1 vaccine formulated with PCEP. Intradermal administration of PCEP-adjuvanted inactivated SIV vaccine stimulated significant anti-SIV antibody titres, increased neutralizing antibodies, and significantly reduced lung virus load with limited reduction of gross lung lesions after challenge with virulent H1N1 relative to control animals. These results indicate that PCEP may be effective as a vaccine adjuvant against swine influenza viruses in pigs and should be considered a potential candidate adjuvant for future swine intradermal influenza vaccines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Hepatic Mitochondrial Dysfunction and Immune Response in a Murine Model of Peanut Allergy

    Directory of Open Access Journals (Sweden)

    Giovanna Trinchese

    2018-06-01

    Full Text Available Background: Evidence suggests a relevant role for liver and mitochondrial dysfunction in allergic disease. However, the role of hepatic mitochondrial function in food allergy is largely unknown. We aimed to investigate hepatic mitochondrial dysfunction in a murine model of peanut allergy. Methods: Three-week-old C3H/HeOuJ mice were sensitized by the oral route with peanut-extract (PNT. We investigated: 1. the occurrence of effective sensitization to PNT by analysing acute allergic skin response, anaphylactic symptoms score, body temperature, serum mucosal mast cell protease-1 (mMCP-1 and anti-PNT immunoglobulin E (IgE levels; 2. hepatic involvement by analysing interleukin (IL-4, IL-5, IL-13, IL-10 and IFN-γ mRNA expression; 3. hepatic mitochondrial oxidation rates and efficiency by polarography, and hydrogen peroxide (H2O2 yield, aconitase and superoxide dysmutase activities by spectrophotometry. Results: Sensitization to PNT was demonstrated by acute allergic skin response, anaphylactic symptoms score, body temperature decrease, serum mMCP-1 and anti-peanut IgE levels. Liver involvement was demonstrated by a significant increase of hepatic Th2 cytokines (IL-4, IL-5 and IL-13 mRNA expression. Mitochondrial dysfunction was demonstrated by lower state 3 respiration rate in the presence of succinate, decreased fatty acid oxidation in the presence of palmitoyl-carnitine, increased yield of ROS proven by the inactivation of aconitase enzyme and higher H2O2 mitochondrial release. Conclusions: We provide evidence of hepatic mitochondrial dysfunction in a murine model of peanut allergy. These data could open the way to the identification of new mitochondrial targets for innovative preventive and therapeutic strategies against food allergy.

  4. The Probiotic Compound VSL#3 Modulates Mucosal, Peripheral, and Systemic Immunity Following Murine Broad-Spectrum Antibiotic Treatment

    Directory of Open Access Journals (Sweden)

    Ira Ekmekciu

    2017-05-01

    Full Text Available There is compelling evidence linking the commensal intestinal microbiota with host health and, in turn, antibiotic induced perturbations of microbiota composition with distinct pathologies. Despite the attractiveness of probiotic therapy as a tool to beneficially alter the intestinal microbiota, its immunological effects are still incompletely understood. The aim of the present study was to assess the efficacy of the probiotic formulation VSL#3 consisting of eight distinct bacterial species (including Streptococcus thermophilus, Bifidobacterium breve, B. longum, B. infantis, Lactobacillus acidophilus, L. plantarum, L. paracasei, and L. delbrueckii subsp. Bulgaricus in reversing immunological effects of microbiota depletion as compared to reassociation with a complex murine microbiota. To address this, conventional mice were subjected to broad-spectrum antibiotic therapy for 8 weeks and perorally reassociated with either VSL#3 bacteria or a complex murine microbiota. VSL#3 recolonization resulted in restored CD4+ and CD8+ cell numbers in the small and large intestinal lamina propria as well as in B220+ cell numbers in the former, whereas probiotic intervention was not sufficient to reverse the antibiotic induced changes of respective cell populations in the spleen. However, VSL#3 application was as efficient as complex microbiota reassociation to attenuate the frequencies of regulatory T cells, activated dendritic cells and memory/effector T cells in the small intestine, colon, mesenteric lymph nodes, and spleen. Whereas broad-spectrum antibiotic treatment resulted in decreased production of cytokines such as IFN-γ, IL-17, IL-22, and IL-10 by CD4+ cells in respective immunological compartments, VSL#3 recolonization was sufficient to completely recover the expression of the anti-inflammatory cytokine IL-10 without affecting pro-inflammatory mediators. In summary, the probiotic compound VSL#3 has an extensive impact on mucosal, peripheral, and

  5. Human Milk Oligosaccharide 2′-Fucosyllactose Improves Innate and Adaptive Immunity in an Influenza-Specific Murine Vaccination Model

    Directory of Open Access Journals (Sweden)

    Ling Xiao

    2018-03-01

    Full Text Available BackgroundHuman milk is uniquely suited to provide optimal nutrition and immune protection to infants. Human milk oligosaccharides are structural complex and diverse consisting of short chain and long chain oligosaccharides typically present in a 9:1 ratio. 2′-Fucosyllactose (2′FL is one of the most prominent short chain oligosaccharides and is associated with anti-infective capacity of human milk.AimTo determine the effect of 2′FL on vaccination responsiveness (both innate and adaptive in a murine influenza vaccination model and elucidate mechanisms involved.MethodsA dose range of 0.25–5% (w/w dietary 2′FL was provided to 6-week-old female C57Bl/6JOlaHsd mice 2 weeks prior primary and booster vaccination until the end of the experiment. Intradermal (i.d. challenge was performed to measure the vaccine-specific delayed-type hypersensitivity (DTH. Antigen-specific antibody levels in serum as well as immune cell populations within several organs were evaluated using ELISA and flow cytometry, respectively. In an ex vivo restimulation assay, spleen cells were cocultured with influenza-loaded bone marrow-derived dendritic cells (BMDCs to study the effects of 2′FL on vaccine-specific CD4+ and CD8+ T-cell proliferation and cytokine secretions. Furthermore, the direct immune regulatory effects of 2′FL were confirmed using in vitro BMDCs T-cell cocultures.ResultsDietary 2′FL significantly (p < 0.05 enhanced vaccine specific DTH responses accompanied by increased serum levels of vaccine-specific immunoglobulin (Ig G1 and IgG2a in a dose-dependent manner. Consistently, increased activation marker (CD27 expression on splenic B-cells was detected in mice receiving 2′FL as compared to control mice. Moreover, proliferation of vaccine-specific CD4+ and CD8+ T-cells, as well as interferon-γ production after ex vivo restimulation were significantly increased in spleen cells of mice receiving 2′FL as compared to control mice, which were

  6. Effect of tick saliva on immune interactions between Borrelia afzelii and murine dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Slámová, M.; Skallová, A.; Páleníková, J.; Kopecký, Jan

    2011-01-01

    Roč. 33, č. 12 (2011), 654-660 ISSN 0141-9838 R&D Projects: GA AV ČR IAA600960811; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : Borrelia * dendritic cell * immune modulation * Ixodes ricinus Subject RIV: EC - Immunology Impact factor: 2.601, year: 2011

  7. Innate immunity based cancer immunotherapy: B16-F10 murine melanoma model

    Czech Academy of Sciences Publication Activity Database

    Caisová, V.; Vieru, A.; Kumžáková, Z.; Glaserová, S.; Husniková, H.; Vácová, N.; Krejčová, G.; Paďouková, L.; Jochmanová, I.; Wolf, K. I.; Chmelař, J.; Kopecký, Jan; Ženka, J.

    2016-01-01

    Roč. 16, č. 1 (2016), č. článku 940. ISSN 1471-2407 Institutional support: RVO:60077344 Keywords : cancer immunotherapy * innate immunity * melanoma * neutrophils * resiquimod * mannan * phagocytosis Subject RIV: EC - Immunology Impact factor: 3.288, year: 2016

  8. CD8+ T cells provide immune protection against murine disseminated endotheliotropic Orientia tsutsugamushi infection.

    Directory of Open Access Journals (Sweden)

    Guang Xu

    2017-07-01

    Full Text Available Scrub typhus, caused by a Gram-negative obligately intracellular coccobacillus, Orientia tsutsugamushi, is a long neglected but important tropical disease. Orientia tsutsugamushi causes illness in one million people each year, and 1 billion people are at risk. Without appropriate diagnosis and treatment, the disease can cause severe multiorgan failure with a case fatality rate of 7-15%. The current gaps in knowledge of immunity include the unknown mechanisms of host immunity to O. tsutsugamushi. Using an intravenous (i.v. disseminated infection mouse model, we observed that more CD8+ T cells than CD4+ T cells were present in the spleen of infected mice at 12 dpi. We also determined that Treg cells and the proportion of T cells producing IL-10 were significantly increased from 6 dpi, which correlated with the onset of illness, body weight loss, and increased bacterial loads. We further studied CD8-/-, MHC I-/- and wild type control (WT C57BL/6J mice to determine the importance of CD8+ T cells and MHC I molecules. After infection with an ordinarily sub-lethal dose of O. tsutsugamushi, all CD8-/- and MHC I-/- mice were moribund between 12 and 15 dpi, whereas all WT mice survived. Bacterial loads in the lung, kidney, liver and spleen of CD8-/- and MHC I-/- mice were significantly greater than those in WT mice. Interferon-γ (IFN-γ and granzyme B mRNA levels in the liver of CD8-/- and MHC I-/- mice were significantly greater than in WT mice. In addition, more severe histopathologic lesions were observed in CD8-/- mice. Finally, adoptive transfer confirmed a major role of immune CD8+ T cells as well as a less effective contribution by immune CD8 T cell-depleted splenocytes in protection against O. tsutsugamushi infection. These studies demonstrated the critical importance of CD8+ T cells in the host immune response during O. tsutsugamushi infection.

  9. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation.

    Science.gov (United States)

    Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao

    2008-10-01

    The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.

  10. IL-22 and IDO1 Affect Immunity and Tolerance to Murine and Human Vaginal Candidiasis

    Science.gov (United States)

    De Luca, Antonella; Carvalho, Agostinho; Cunha, Cristina; Iannitti, Rossana G.; Pitzurra, Lucia; Giovannini, Gloria; Mencacci, Antonella; Bartolommei, Lorenzo; Moretti, Silvia; Massi-Benedetti, Cristina; Fuchs, Dietmar; De Bernardis, Flavia; Puccetti, Paolo; Romani, Luigina

    2013-01-01

    The ability to tolerate Candida albicans, a human commensal of the gastrointestinal tract and vagina, implicates that host defense mechanisms of resistance and tolerance cooperate to limit fungal burden and inflammation at the different body sites. We evaluated resistance and tolerance to the fungus in experimental and human vulvovaginal candidiasis (VVC) as well as in recurrent VVC (RVVC). Resistance and tolerance mechanisms were both activated in murine VVC, involving IL-22 and IL-10-producing regulatory T cells, respectively, with a major contribution by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 was responsible for the production of tolerogenic kynurenines, such that replacement therapy with kynurenines restored immunoprotection to VVC. In humans, two functional genetic variants in IL22 and IDO1 genes were found to be associated with heightened resistance to RVVC, and they correlated with increased local expression of IL-22, IDO1 and kynurenines. Thus, IL-22 and IDO1 are crucial in balancing resistance with tolerance to Candida, their deficiencies are risk factors for RVVC, and targeting tolerance via therapeutic kynurenines may benefit patients with RVVC. PMID:23853597

  11. DNAs from Brucella strains activate efficiently murine immune system with production of cytokines, reactive oxygen and nitrogen species.

    Science.gov (United States)

    Tavakoli, Zahra; Ardestani, Sussan K; Lashkarbolouki, Taghi; Kariminia, Amina; Zahraei Salehi, Taghi; Tavassoli, Nasser

    2009-09-01

    Brucellosis is an infectious disease with high impact on innate immune responses which is induced partly by its DNA. In the present study the potential differences of wild type and patients isolates versus attenuated vaccine strains in terms of cytokines, ROS and NO induction on murine splenocytes and peritoneal macrophages were investigated. This panel varied in base composition and included DNA from B. abortus, B. melitensis, B.abortus strain S19 and melitensis strain Rev1, as attenuated live vaccine. Also we included Escherichia coli DNA, calf thymus DNA (a mammalian DNA), as controls. These DNA were evaluated for their ability to stimulate IL-12, TNF-alpha, IL-10, IFN-gamma and ROS production from spleenocytes as well as NO production from peritoneal macrophages. Spleen cells were cultured in 24 well at a concentration of 106 cells/ ml with subsequent addition of 10 microg/ml of Brucella or Ecoli DNAs. These cultures were incubated at 37 degrees C with 5% CO2 for 5 days. Supernatants were harvested and cytokines, ROS and NOx were evaluated. It was observed that TNF-alpha was induced in days 1,3,5 by all Brucella strains DNAs and E. coli DNA, IL-10 only was induced in day 1, IFN- gamma was induced only in day 5 and IL-12 not induced. ROS and NOx were produced by all strains; however, we observed higher production of NOx which were stimulated by DNA of B. melitensis.

  12. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model

    Directory of Open Access Journals (Sweden)

    Lyerly H Kim

    2007-07-01

    Full Text Available Abstract Background High intensity focused ultrasound (HIFU is an emerging non-invasive treatment modality for localized treatment of cancers. While current clinical strategies employ HIFU exclusively for thermal ablation of the target sites, biological responses associated with both thermal and mechanical damage from focused ultrasound have not been thoroughly investigated. In particular, endogenous danger signals from HIFU-damaged tumor cells may trigger the activation of dendritic cells. This response may play a critical role in a HIFU-elicited anti-tumor immune response which can be harnessed for more effective treatment. Methods Mice bearing MC-38 colon adenocarcinoma tumors were treated with thermal and mechanical HIFU exposure settings in order to independently observe HIFU-induced effects on the host's immunological response. In vivo dendritic cell activity was assessed along with the host's response to challenge tumor growth. Results Thermal and mechanical HIFU were found to increase CD11c+ cells 3.1-fold and 4-fold, respectively, as compared to 1.5-fold observed for DC injection alone. In addition, thermal and mechanical HIFU increased CFSE+ DC accumulation in draining lymph nodes 5-fold and 10-fold, respectively. Moreover, focused ultrasound treatments not only caused a reduction in the growth of primary tumors, with tumor volume decreasing by 85% for thermal HIFU and 43% for mechanical HIFU, but they also provided protection against subcutaneous tumor re-challenge. Further immunological assays confirmed an enhanced CTL activity and increased tumor-specific IFN-γ-secreting cells in the mice treated by focused ultrasound, with cytotoxicity induced by mechanical HIFU reaching as high as 27% at a 10:1 effector:target ratio. Conclusion These studies present initial encouraging results confirming that focused ultrasound treatment can elicit a systemic anti-tumor immune response, and they suggest that this immunity is closely related to

  13. Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load

    DEFF Research Database (Denmark)

    Hoegh-Petersen, Mette; Thomsen, Allan R; Christensen, Jan P

    2009-01-01

    -68 (MHV-68) is a member of the Gammaherpesvirinae subfamily and represents a useful murine model for this category of infections, in which new vaccination strategies may initially be evaluated. Two attenuated variants of MHV-68 have successfully been used as vaccines, but the oncogenic potential...... of the gammaherpesvirinae speaks against using a similar approach in humans. DNA immunization with plasmids encoding the MHV-68 genes M2 or M3 caused a reduction in either acute or early latent viral load, respectively, but neither immunization had an effect at times later than 14 days post-infection. Adenovirus......-based vaccines are substantially more immunogenic than DNA vaccines and can be applied to induce mucosal immunity. Here we show that a significant reduction of the late viral load in the spleens, at 60 days post-infection, was achieved when immunizing mice both intranasally and subcutaneously with adenoviral...

  14. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma.

    Science.gov (United States)

    Heimberger, Amy B; Archer, Gary E; Crotty, Laura E; McLendon, Roger E; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2002-01-01

    Dendritic cells (DCs) are specialized cells of the immune system that are capable of generating potent immune responses that are active even within the "immunologically privileged" central nervous system. However, immune responses generated by DCs have also been demonstrated to produce clinically significant autoimmunity. Targeting the epidermal growth factor receptor variant III (EGFRvIII), which is a mutation specific to tumor tissue, could eliminate this risk. The purpose of this study was to demonstrate that DC-based immunizations directed solely against this tumor-specific antigen, which is commonly found on tumors that originate within or metastasize to the brain, could be efficacious. C3H mice were vaccinated with DCs mixed with a keyhole limpet hemocyanin conjugate of the tumor-specific peptide, PEP-3, which spans the EGFRvIII mutation, or the random-sequence peptide, PEP-1, and were intracerebrally challenged with a syngeneic melanoma expressing a murine homologue of EGFRvIII. Systemic immunization with DCs mixed with PEP-3-keyhole limpet hemocyanin generated antigen-specific immunity. Among mice challenged with intracerebral tumors, this resulted in an approximately 600% increase in the median survival time (>300 d, P < 0.0016), relative to control values. Sixty-three percent of mice treated with DCs mixed with the tumor-specific peptide survived in the long term and 100% survived rechallenge with tumor, indicating that antitumor immunological memory was also induced. In a murine melanoma model, immunization with DCs mixed with tumor-specific peptide results in an antigen-specific immunological response that recognizes the EGFRvIII mutation, has potent antitumor efficacy against intracerebral tumors that express EGFRvIII, and results in long-lasting antitumor immunity.

  15. Murine and bovine γδ T cells enhance innate immunity against Brucella abortus infections.

    Directory of Open Access Journals (Sweden)

    Jerod A Skyberg

    Full Text Available γδ T cells have been postulated to act as a first line of defense against infectious agents, particularly intracellular pathogens, representing an important link between the innate and adaptive immune responses. Human γδ T cells expand in the blood of brucellosis patients and are active against Brucella in vitro. However, the role of γδ T cells in vivo during experimental brucellosis has not been studied. Here we report TCRδ(-/- mice are more susceptible to B. abortus infection than C57BL/6 mice at one week post-infection as measured by splenic colonization and splenomegaly. An increase in TCRγδ cells was observed in the spleens of B. abortus-infected C57BL/6 mice, which peaked at two weeks post-infection and occurred concomitantly with diminished brucellae. γδ T cells were the major source of IL-17 following infection and also produced IFN-γ. Depletion of γδ T cells from C57BL/6, IL-17Rα(-/-, and GMCSF(-/- mice enhanced susceptibility to B. abortus infection although this susceptibility was unaltered in the mutant mice; however, when γδ T cells were depleted from IFN-γ(-/- mice, enhanced susceptibility was observed. Neutralization of γδ T cells in the absence of TNF-α did not further impair immunity. In the absence of TNF-α or γδ T cells, B. abortus-infected mice showed enhanced IFN-γ, suggesting that they augmented production to compensate for the loss of γδ T cells and/or TNF-α. While the protective role of γδ T cells was TNF-α-dependent, γδ T cells were not the major source of TNF-α and activation of γδ T cells following B. abortus infection was TNF-α-independent. Additionally, bovine TCRγδ cells were found to respond rapidly to B. abortus infection upon co-culture with autologous macrophages and could impair the intramacrophage replication of B. abortus via IFN-γ. Collectively, these results demonstrate γδ T cells are important for early protection to B. abortus infections.

  16. Dynamic changes of the early protein synthesis in murine immune cells after low dose radiation

    International Nuclear Information System (INIS)

    Chen Shali; Liu Shuzheng

    1997-01-01

    It was shown that there was a marked increase in protein synthesis of thymocytes that were metabolically labelled with 3 H-Leu for 4,6,8 and 12 hours in low dose irradiated mice showing 33.26%, 51.48%, 51.54% and 34.98% increase respectively at different time intervals of incubation when the thymic and splenic cells were sampled 4 hours after whole body irradiation (WBI) with 75 mGy X-rays. The results suggest that there is an increase in protein synthesis with its peak at 6∼8 hours after radiation. Changes in protein synthesis of immune cells in mice 4 hours after radiation and incubated for 4∼12 h were observed with SDS-PAGE followed by densitometrical scanning. It is revealed that 28 kD protein synthesis was increased gradually within 12 hours of incubation and 43 kD protein synthesis was increased in the thymocytes rapidly reaching a maximum 2 hours after incubation. It was also exhibited that the synthesis of 43 kD protein and 32 kD protein was increased in the splenocytes 2 hours after incubation. These findings may have implications in the mechanism of immunoenhancement and adaptive response induced by low dose radiation

  17. A Murine Model of Persistent Inflammation, Immune Suppression, and Catabolism Syndrome

    Directory of Open Access Journals (Sweden)

    Amanda M. Pugh

    2017-08-01

    Full Text Available Critically ill patients that survive sepsis can develop a Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS, which often leads to extended recovery periods and multiple complications. Here, we utilized a cecal ligation and puncture (CLP method in mice with the goal of creating a model that concurrently displays all the characteristics of PICS. We observed that, after eight days, mice that survive the CLP develop persistent inflammation with significant myelopoiesis in the bone marrow and spleen. These mice also demonstrate ongoing immune suppression, as evidenced by the decreased total and naïve splenic CD4 and CD8 T cells with a concomitant increase in immature myeloid cells. The mice further display significant weight loss and decreased muscle mass, indicating a state of ongoing catabolism. When PICS mice are challenged with intranasal Pseudomonas aeruginosa, mortality is significantly elevated compared to sham mice. This mortality difference is associated with increased bacterial loads in the lung, as well as impaired neutrophil migration and neutrophil dysfunction in the PICS mice. Altogether, we have created a sepsis model that concurrently exhibits PICS characteristics. We postulate that this will help determine the mechanisms underlying PICS and identify potential therapeutic targets to improve outcomes for this patient population.

  18. Amelioration of murine passive immune thrombocytopenia by IVIg and a therapeutic monoclonal CD44 antibody does not require the Myd88 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Andrew R Crow

    Full Text Available Immune thrombocytopenia (ITP is an autoimmune bleeding disorder characterized by a low platelet count and the production of anti-platelet antibodies. The majority of ITP patients have antibodies to platelet integrin α(IIbβ₃ (GPIIbIIIa which can direct platelet phagocytosis by macrophages. One effective treatment for patients with ITP is intravenous immunoglobulin (IVIg which rapidly reverses thrombocytopenia. The exact mechanism of IVIg action in human patients is unclear, although in mouse models of passive ITP, IVIg can rapidly increase platelet counts in the absence of adaptive immunity. Another antibody therapeutic that can similarly increase platelet counts independent of adaptive immunity are CD44 antibodies. Toll-like receptors (TLRs are pattern recognition receptors which play a central role in helping direct the innate immune system. Dendritic cells, which are notable for their expression of TLRs, have been directly implicated in IVIg function as an initiator cell, while CD44 can associate with TLR2 and TLR4. We therefore questioned whether IVIg, or the therapeutic CD44 antibody KM114, mediate their ameliorative effects in a manner dependent upon normal TLR function. Here, we demonstrate that the TLR4 agonist LPS does not inhibit IVIg or KM114 amelioration of antibody-induced thrombocytopenia, and that these therapeutics do not ameliorate LPS-induced thrombocytopenia. IVIg was able to significantly ameliorate murine ITP in C3H/HeJ mice which have defective TLR4. All known murine TLRs except TLR3 utilize the Myd88 adapter protein to drive TLR signaling. Employing Myd88 deficient mice, we found that both IVIg and KM114 ameliorate murine ITP in Myd88 deficient mice to the same extent as normal mice. Thus both IVIg and anti-CD44 antibody can mediate their ameliorative effects in murine passive ITP independent of the Myd88 signaling pathway. These data help shed light on the mechanism of action of IVIg and KM114 in the amelioration of

  19. Activation of specific cellular immunity toward murine leukemia in mice rejecting syngeneic somatic hybrid cells

    International Nuclear Information System (INIS)

    Liang, W.; Cohen, E.P.

    1977-01-01

    ASL-1 x LM(TK) - somatic hybrid cells form both H-2/sup a/ and H-2/sup k/ antigen complexes. After forming a localized tumor in syngeneic (A/J x C 3 H/HeJ)F 1 mice, they are rejected. Such mice are resistant to otherwise invariably lethal injections of ASL-1 cells, surviving for prolonged and, in some instances, indefinite periods. To examine the basis of immunity, the capacity of spleen cells from mice rejecting hybrid cells to stimulate the release of 51 Cr from labeled ASL-1 cells was investigated. Cells from the spleens of mice rejecting ASL-1 x LM(TK) - cells stimulated the release of 51 Cr from labeled ASL-1 cells, but not from Ehrlich ascites or P815 cells. Cells from mice injected with mitomycin-C-treated ASL-1 cells led to the release of 51 Cr from labeled ASL-1 cells as well, but the extent of 51 Cr release was approximately one-third as occurred in the presence of cells from hybrid cell-injected mice. Cells from noninjected mice or from mice injected with LM(TK) - cells failed to lead to the specific release of 51 Cr from ASL-1 cells. The presence of unlabeled ASL-1 cells, but not Ehrlich ascites cells, competitively inhibited the spleen cell-stimulated release of 51 Cr from labeled ASL-1 cells. Sera from A/J mice injected with mitomycin-C-treated ASL-1 cells contained antibodies specific for the tumor-associated antigen of ASL-1 cells

  20. Murine immune response induced by Leishmania major during the implantation of paraffin tablets.

    Science.gov (United States)

    Reis, Maria Letícia Costa; Ferreira, Vanessa Martins; Zhang, Xia; Gonçalves, Ricardo; Vieira, Leda Quércia; Tafuri, Washington Luiz; Mosser, David M; Tafuri, Wagner Luiz

    2010-11-01

    We carried out a model of chronic inflammation using a subcutaneous paraffin tablet in mice experimentally infected with Leishmania major. It was previously reported that the parasite load following paraffin implantation occurred at a peak of 21 days in both BALB/c and C57BL/6 mice. At the present study, we have investigated what cytokines and chemokines are directly related to the parasite load in C57BL/6 mice. All mice were divided in four groups: mice implanted with paraffin tablets; mice experimentally infected with L. major; mice implanted with paraffin tablets and experimentally infected with L. major; and mice submitted only to the surgery were used for the Real-Time Polymerase Chain Reaction (RT-PCR) controls. Fragments of skin tissue and the tissue surrounding the paraffin tablets (inflammatory capsule) were collected for histopathology and RT-PCR studies. By 21 days, a diffuse chronic inflammatory reaction was mainly observed in the deep dermis where macrophages parasitized with Leishmania amastigotes were also found. RT-PCR analysis has shown that BALB/c mice showed strong IL-4 and IL-10 mRNA expression than controls with very little expression of IFN-γ. In contrast, both IFN-γ and IL-10 mRNA was found in higher levels in C57BL/6 animals. Moreover, in C57BL/6 mice the expression of chemokines mRNA of CCL3/MIP-1α was more highly expressed than CCL2/MCP-1. We conclude that the Th1 immune response C57BL/6 did not change to a Th2 response, even though C57BL/6 animals presented higher parasitism than BALB/c mice 21 days after infection and paraffin implantation.

  1. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    DEFF Research Database (Denmark)

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...... and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response......AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...

  2. Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load.

    Science.gov (United States)

    Hoegh-Petersen, Mette; Thomsen, Allan R; Christensen, Jan P; Holst, Peter J

    2009-11-12

    Gammaherpesviruses establish life-long latent infections in their hosts. If the host becomes immunosuppressed, these viruses may reactivate and cause severe disease, and even in immunocompetent individuals the gammaherpesviruses are presumed to have an oncogenic potential. Murine gammaherpesvirus-68 (MHV-68) is a member of the Gammaherpesvirinae subfamily and represents a useful murine model for this category of infections, in which new vaccination strategies may initially be evaluated. Two attenuated variants of MHV-68 have successfully been used as vaccines, but the oncogenic potential of the gammaherpesvirinae speaks against using a similar approach in humans. DNA immunization with plasmids encoding the MHV-68 genes M2 or M3 caused a reduction in either acute or early latent viral load, respectively, but neither immunization had an effect at times later than 14 days post-infection. Adenovirus-based vaccines are substantially more immunogenic than DNA vaccines and can be applied to induce mucosal immunity. Here we show that a significant reduction of the late viral load in the spleens, at 60 days post-infection, was achieved when immunizing mice both intranasally and subcutaneously with adenoviral vectors encoding both M2 and M3. Additionally we show that M3 immunization prevented the usual development of virus-induced splenomegaly at 2-3 weeks post-infection. This is the first time that immunization with a non-replicating vaccine has lead to a significantly reduced viral load at time points beyond 14 days post-infection, and thus demonstrates that a non-replicating vaccine may successfully be employed to reduce the viral burden during chronic gammaherpesvirus infection.

  3. Immunity's ancient arms

    OpenAIRE

    Litman, Gary W.; Cannon, John P.

    2009-01-01

    Diverse receptors on two types of cell mediate adaptive immunity in jawed vertebrates. In the lamprey, a jawless vertebrate, immunity is likewise compartmentalized but the molecular mechanics are very different.

  4. Blocking Indolamine-2,3-Dioxygenase Rebound Immune Suppression Boosts Antitumor Effects of Radio-Immunotherapy in Murine Models and Spontaneous Canine Malignancies.

    Science.gov (United States)

    Monjazeb, Arta M; Kent, Michael S; Grossenbacher, Steven K; Mall, Christine; Zamora, Anthony E; Mirsoian, Annie; Chen, Mingyi; Kol, Amir; Shiao, Stephen L; Reddy, Abhinav; Perks, Julian R; T N Culp, William; Sparger, Ellen E; Canter, Robert J; Sckisel, Gail D; Murphy, William J

    2016-09-01

    Previous studies demonstrate that intratumoral CpG immunotherapy in combination with radiotherapy acts as an in-situ vaccine inducing antitumor immune responses capable of eradicating systemic disease. Unfortunately, most patients fail to respond. We hypothesized that immunotherapy can paradoxically upregulate immunosuppressive pathways, a phenomenon we term "rebound immune suppression," limiting clinical responses. We further hypothesized that the immunosuppressive enzyme indolamine-2,3-dioxygenase (IDO) is a mechanism of rebound immune suppression and that IDO blockade would improve immunotherapy efficacy. We examined the efficacy and immunologic effects of a novel triple therapy consisting of local radiotherapy, intratumoral CpG, and systemic IDO blockade in murine models and a pilot canine clinical trial. In murine models, we observed marked increase in intratumoral IDO expression after treatment with radiotherapy, CpG, or other immunotherapies. The addition of IDO blockade to radiotherapy + CpG decreased IDO activity, reduced tumor growth, and reduced immunosuppressive factors, such as regulatory T cells in the tumor microenvironment. This triple combination induced systemic antitumor effects, decreasing metastases, and improving survival in a CD8(+) T-cell-dependent manner. We evaluated this novel triple therapy in a canine clinical trial, because spontaneous canine malignancies closely reflect human cancer. Mirroring our mouse studies, the therapy was well tolerated, reduced intratumoral immunosuppression, and induced robust systemic antitumor effects. These results suggest that IDO maintains immune suppression in the tumor after therapy, and IDO blockade promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation. Clin Cancer Res; 22(17); 4328-40. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. CD4+ and CD8+ T cells can act separately in tumour rejection after immunization with murine pneumotropic virus chimeric Her2/neu virus-like particles.

    Directory of Open Access Journals (Sweden)

    Kalle Andreasson

    Full Text Available BACKGROUND: Immunization with murine pneumotropic virus virus-like particles carrying Her2/neu (Her2MPtVLPs prevents tumour outgrowth in mice when given prophylactically, and therapeutically if combined with the adjuvant CpG. We investigated which components of the immune system are involved in tumour rejection, and whether long-term immunological memory can be obtained. METHODOLOGY AND RESULTS: During the effector phase in BALB/c mice, only depletion of CD4+ and CD8+ in combination, with or without NK cells, completely abrogated tumour protection. Depletion of single CD4+, CD8+ or NK cell populations only had minor effects. During the immunization/induction phase, combined depletion of CD4+ and CD8+ cells abolished protection, while depletion of each individual subset had no or negligible effect. When tumour rejection was studied in knock-out mice with a C57Bl/6 background, protection was lost in CD4-/-CD8-/- and CD4-/-, but not in CD8-/- mice. In contrast, when normal C57Bl/6 mice were depleted of different cell types, protection was lost irrespective of whether only CD4+, only CD8+, or CD4+ and CD8+ cells in combination were eradicated. No anti-Her2/neu antibodies were detected but a Her2/neu-specific IFNgamma response was seen. Studies of long-term memory showed that BALB/c mice could be protected against tumour development when immunized together with CpG as long as ten weeks before challenge. CONCLUSION: Her2MPtVLP immunization is efficient in stimulating several compartments of the immune system, and induces an efficient immune response including long-term memory. In addition, when depleting mice of isolated cellular compartments, tumour protection is not as efficiently abolished as when depleting several immune compartments together.

  6. Vaccination with a HSV-2 UL24 mutant induces a protective immune response in murine and guinea pig vaginal infection models.

    Science.gov (United States)

    Visalli, Robert J; Natuk, Robert J; Kowalski, Jacek; Guo, Min; Blakeney, Susan; Gangolli, Seema; Cooper, David

    2014-03-10

    The rational design and development of genetically attenuated HSV-2 mutant viruses represent an attractive approach for developing both prophylactic and therapeutic vaccines for genital herpes. Previously, HSV-2 UL24 was shown to be a virulence determinant in both murine and guinea pig vaginal infection models. An UL24-βgluc insertion mutant produced syncytial plaques and replicated to nearly wild type levels in tissue culture, but induced little or no pathological effects in recipient mice or guinea pigs following vaginal infection. Here we report that immunization of mice or guinea pigs with high or low doses of UL24-βgluc elicited a highly protective immune response. UL24-βgluc immunization via the vaginal or intramuscular routes was demonstrated to protect mice from a lethal vaginal challenge with wild type HSV-2. Moreover, antigen re-stimulated splenic lymphocytes harvested from immunized mice exhibited both HSV-2 specific CTL activity and IFN-γ expression. Humoral anti-HSV-2 responses in serum were Th1-polarized (IgG2a>IgG1) and contained high-titer anti-HSV-2 neutralizing activity. Guinea pigs vaccinated subcutaneously with UL24-βgluc or the more virulent parental strain (186) were challenged with a heterologous HSV-2 strain (MS). Acute disease scores were nearly indistinguishable in guinea pigs immunized with either virus. Recurrent disease scores were reduced in UL24-βgluc immunized animals but not to the same extent as those immunized with strain 186. In addition, challenge virus was not detected in 75% of guinea pigs subcutaneously immunized with UL24-βgluc. In conclusion, disruption of the UL24 gene is a prime target for the development of a genetically attenuated live HSV-2 vaccine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The effect of perioperative analgesic drugs omnopon and dexketoprofen on the functional activity of immune cells in murine model of tumor surgery.

    Science.gov (United States)

    Sydor, R I; Khranovska, N M; Skachkova, O V; Skivka, L M

    2016-01-01

    We aimed to investigate the effect of perioperative analgesia with nonselective cyclooxygenase-2 inhibitor dexketoprofen and opioid drug omnopon on the functional activity of immune cells in tumor excision murine model. Lewis lung carcinoma cells were transplanted into hind paw of C57/black mice. On the 23th day tumor was removed. Analgesic drugs were injected 30 min before and once a day for 3 days after the surgery. Biological material was obtained a day before, 1 day and 3 days after the tumor removal. IFN-γ, IL-4, IL-10 and TGF-β mRNA levels in splenic cells were assessed by quantitative real-time RT-PCR. Cytotoxic activity of splenocytes was estimated by flow cytometry. We found that in splenocytes of mice received opioid analgesia IL-10 mRNA level was increased 2.3 times on day one after the surgery compared to preoperative level (P dexketoprofen group this parameter did not change. IFN-γ gene expression level on day 3 after tumor removal was 40% higher in splenocytes of dexketoprofen treated mice as compared with omnopon treated animals (P dexketoprofen against (50.2 ± 3.3)% in omnopon group. In conclusion, perioperative analgesia with cyclooxygenase inhibitor dexketoprofen in contrast to opioid analgesia with omnopon preserves higher functional activity of murine immune cells in the experimental model of tumor surgery.

  8. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge.

    Directory of Open Access Journals (Sweden)

    Marina De Filette

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime--boost regime with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical. In parallel a heterologous boost with purified recombinant WNV envelope (E protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8(+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection.

  9. FTY720 ameliorates murine sclerodermatous chronic graft-versus-host disease by promoting expansion of splenic regulatory cells and inhibiting immune cell infiltration into skin.

    Science.gov (United States)

    Huu, Doanh Le; Matsushita, Takashi; Jin, Guihua; Hamaguchi, Yasuhito; Hasegawa, Minoru; Takehara, Kazuhiko; Fujimoto, Manabu

    2013-06-01

    Sphingosine 1-phosphate (S1P) exerts a variety of activities in immune, inflammatory, and vascular systems. S1P plays an important role in systemic sclerosis (SSc) pathogenesis. Regulation of S1P in fibrotic diseases as well as in SSc was recently reported. FTY720, an oral S1P receptor modulator, has been shown to be a useful agent for the prevention of transplant rejection and autoimmune diseases. Murine sclerodermatous chronic graft-versus-host disease (GVHD) is a model for human sclerodermatous chronic GVHD and SSc. We undertook this study to investigate the effects of FTY720 in murine sclerodermatous chronic GVHD. FTY720 was orally administered to allogeneic recipient mice from day 0 to day 20 (short-term, early-treatment group), from day 0 to day 42 (full-term, early-treatment group), or from day 22 to day 42 (delayed-treatment group) after bone marrow transplantation. Delayed administration of FTY720 attenuated, and early administration of FTY720 inhibited, the severity and fibrosis in murine sclerodermatous chronic GVHD. With early treatment, FTY720 induced expansion of splenic myeloid-derived suppressor cells, Treg cells, and Breg cells. Vascular damage in chronic GVHD was inhibited by FTY720 through down-regulating serum levels of S1P and soluble E-selectin. FTY720 inhibited infiltration of immune cells into skin. Moreover, FTY720 diminished the expression of messenger RNA for monocyte chemotactic protein 1, macrophage inflammatory protein 1α, RANTES, tumor necrosis factor α, interferon-γ, interleukin-6 (IL-6), IL-10, IL-17A, and transforming growth factor β1 in the skin. FTY720 suppressed the immune response by promoting the expansion of regulatory cells and reducing vascular damage and infiltration of immune cells into the skin. Taken together, these results have important implications for the potential use of FTY720 in the treatment of sclerodermatous chronic GVHD and SSc in humans. Copyright © 2013 by the American College of Rheumatology.

  10. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice

    NARCIS (Netherlands)

    Amorij, J-P.; Saluja, V.; Petersen, A.H.; Hinrichs, W.L.J.; Huckriede, A.; Frijlink, H.W.

    2007-01-01

    In this study pulmonary vaccination with a new influenza subunit vaccine powder was evaluated. Vaccine powder was produced by spray-freeze drying (SFD) using the oligosaccharide inulin as stabilizer. Immune responses after pulmonary vaccination of BALB/c mice with vaccine powder were determined and

  11. Relationships between T-cell-mediated immune response and Pb, Zn, Cu, Cd, and as concentrations in blood of nestling white storks (Ciconia ciconia) and black kites (Milvus migrans) from Doñana (southwestern Spain) after the Aznalcóllar toxic spill.

    Science.gov (United States)

    Baos, Raquel; Jovani, Roger; Forero, Manuela G; Tella, José L; Gómez, Gemma; Jiménez, Begoña; González, María J; Hiraldo, Fernando

    2006-04-01

    In the Aznalcóllar mining accident (April 1998), nearly six million cubic meters of toxic wastes were spilled in the surroundings of the Doñana National Park (southwestern Spain). The present study focused on the likely effects of metal pollution on the immune system of nestling white storks (Ciconia ciconia) and black kites (Milvus migrans) sampled in the nearby area. Using the phytohaemagglutinin skin test, we examined cell-mediated immune response (CMI) in relation to Pb, Zn, Cu, Cd, and As concentrations in blood of 281 nestling white storks and of 89 black kites. The former species was monitored along a four-year period (1999, 2001-2003), while black kites were sampled in 1999. Overall, average levels of heavy metals and As were relatively low when compared to those reported for birds in metal-polluted areas. Copper showed a negative effect on CMI in both species, although the relationship was significant only for white storks in 2002. We found no evidence that environmental exposure to Pb, Zn, As, and Cd had any effect on nestlings' CMI. Interannual consistency is revealed as an important factor, supporting the need of long-term studies when assessing the immunotoxic effects of metal exposure in the wild.

  12. Cell-mediated immune response to syngeneic uv induced tumors. I. The presence of tumor associated macrophages and their possible role in the in vitro generation of cytotoxic lymphocytes

    International Nuclear Information System (INIS)

    Woodward, J.G.; Daynes, R.A.

    1978-01-01

    A primary in vitro sensitization system employing a chromium release assay was utilized to investigate reactivity of murine spleen cells toward syngeneic ultraviolet (uv) light induced fibrosarcomas. These tumors are immunologically rejected in vivo when implanted into normal syngeneic mice but grow progressively when implanted into syngeneic mice that had previously been irradiated with subcarcinogenic levels of uv light. Following appropriate sensitization, spleen cells from both normal and uv irradiated mice are capable of developing cytotoxic lymphocytes in vitro against the uv induced tumors. It was subsequently discovered that in situ uv induced tumors all contained macrophages of host origin that became demonstrable only after enzymatic dissociation of the tumor tissue. These macrophages were immunologically active in vitro as their presence in the stimulator cell population was necessary to achieve an optimum anti-tumor cytotoxic response following in vitro sensitization. Anti-tumor reactivity generated by mixing spleen cells and tumor cells in the absence of tumor derived macrophages could be greatly enhanced by the addition of normal syngeneic peritoneal macrophages. When in vitro anti-tumor reactivity of spleen cells from normal and uv treated mice was compared under these conditions we again found no significant difference in the magnitude of the responses. In addition, the cytotoxic cells generated in response to uv induced tumors appeared to be highly cross reactive with respect to their killing potential

  13. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    2009-11-01

    Full Text Available Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  14. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Science.gov (United States)

    Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A

    2009-11-23

    Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  15. Superior therapeutic efficacy of alphavirus-mediated immunization against human papilloma virus type 16 antigens in a murine tumour model : effects of the route of immunization

    NARCIS (Netherlands)

    Daemen, T; Riezebos-Brilman, A; Regts, J; Dontje, B; van der Zee, A; Wilschut, J

    2004-01-01

    In our efforts to develop a strong, effective immune response against cervical carcinoma and premalignant disease, we study the use of recombinant Semliki Forest virus (SFV) encoding the oncoproteins E6 and E7 from high-risk human papilloma viruses (HPVs). Optimal immunization conditions are

  16. The effect of perioperative analgesic drugs omnopon and dexketoprofen on the functional activity of immune cells in murine model of tumor surgery

    Directory of Open Access Journals (Sweden)

    R. I. Sydor

    2016-08-01

    Full Text Available We aimed to investigate the effect of perioperative analgesia with nonselective cyclooxygenase-2 inhibitor dexketoprofen and opioid drug omnopon on the functional activity of immune cells in tumor excision murine model. Lewis lung carcinoma cells were transplanted into hind paw of C57/black mice. On the 23th day tumor was removed. Analgesic drugs were injected 30 min before and once a day for 3 days after the surgery. Biological material was obtained a day before, 1 day and 3 days after the tumor removal. IFN-γ, IL-4, IL-10 and TGF-β mRNA levels in splenic cells were assessed by quantitative real-time RT-PCR. Cytotoxic activity of splenocytes was estimated by flow cytometry. We found that in splenocytes of mice received opioid analgesia IL-10 mRNA level was increased 2.3 times on day one after the surgery compared to preoperative level (P < 0.05, while in dexketoprofen group this parameter did not change. IFN-γ gene expression level on day 3 after tumor removal was 40% higher in splenocytes of dexketoprofen treated mice as compared with omnopon treated animals (P < 0.05. Cytotoxic activity of splenocytes on day 3 postsurgery was (62.2 ± 2.4% in dexketoprofen against (50.2 ± 3.3% in omnopon group. In conclusion, perioperative analgesia with cyclooxygenase inhibitor dexketoprofen in contrast to opioid analgesia with omnopon preserves higher functional activity of murine immune cells in the experimental model of tumor surgery.

  17. Effects of Lactobacillus plantarum Strain OLL2712 Culture Conditions on the Anti-inflammatory Activities for Murine Immune Cells and Obese and Type 2 Diabetic Mice.

    Science.gov (United States)

    Toshimitsu, T; Ozaki, S; Mochizuki, J; Furuichi, K; Asami, Y

    2017-04-01

    Studies on the health-promoting effects of lactic acid bacteria (LAB) are numerous, but few provide examples of the relationship between LAB function and culture conditions. We verified the effect of differences in culture conditions on Lactobacillus plantarum OLL2712 functionality; this strain exhibits anti-inflammatory activity and preventive effects against metabolic disorders. We measured interleukin-10 (IL-10) and IL-12 production in murine immune cells treated with OLL2712 cells prepared under various culture conditions. The results showed that the IL-10-inducing activities of OLL2712 cells on murine immune cells differed dramatically between OLL2712 groups at different culture phases and using different culture medium components, temperatures, and neutralizing pHs. In particular, exponential-phase cells had much more IL-10-inducing activity than stationary-phase cells. We confirmed that the Toll-like receptor 2 (TLR2) stimulation activity of OLL2712 cells depended on culture conditions in conjunction with IL-10-inducing activity. We also demonstrated functional differences by culture phases in vivo ; OLL2712 cells at exponential phase had more anti-inflammatory activity and anti-metabolic-disorder effects on obese and diabetic mice than those by their stationary-phase counterparts. These results suggest that culture conditions affect the functionality of anti-inflammatory LAB. IMPORTANCE While previous studies demonstrated that culture conditions affected the immunomodulatory properties of lactic acid bacteria (LAB), few have comprehensively investigated the relationship between culture conditions and LAB functionality. In this study, we demonstrated several culture conditions of Lactobacillus plantarum OLL2712 for higher anti-inflammatory activity. We also showed that culture conditions concretely influenced the health-promoting functions of OLL2712 in vivo , particularly against metabolic disorders. Further, we characterized a novel mechanism by which

  18. Direct evidence for a chronic CD8+-T-cell-mediated immune reaction to tax within the muscle of a human T-cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis.

    Science.gov (United States)

    Ozden, Simona; Cochet, Madeleine; Mikol, Jacqueline; Teixeira, Antonio; Gessain, Antoine; Pique, Claudine

    2004-10-01

    Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) infection can lead to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), concomitantly with or without other inflammatory disorders such as myositis. These pathologies are considered immune-mediated diseases, and it is assumed that migration within tissues of both HTLV-1-infected CD4(+) T cells and anti-HTLV-1 cytotoxic T cells represents a pivotal event. However, although HTLV-1-infected T cells were found in inflamed lesions, the antigenic specificity of coinfiltrated CD8(+) T cells remains to be determined. In this study, we performed both ex vivo and in situ analyses using muscle biopsies obtained from an HTLV-1-infected patient with HAM/TSP and sporadic inclusion body myositis. We found that both HTLV-1-infected CD4(+) T cells and CD8(+) T cells directed to the dominant Tax antigen can be amplified from muscle cell cultures. Moreover, we were able to detect in two successive muscle biopsies both tax mRNA-positive mononuclear cells and T cells recognized by the Tax11-19/HLA-A*02 tetramer and positive for perforin. These findings provide the first direct demonstration that anti-Tax cytotoxic T cells are chronically recruited within inflamed tissues of an HTLV-1 infected patient, which validates the cytotoxic immune reaction model for the pathogenesis of HTLV-1-associated inflammatory disease.

  19. CD4 T cells mediate both positive and negative regulation of the immune response to HIV infection: complex role of T follicular helper cells and Regulatory T cells in pathogenesis

    Directory of Open Access Journals (Sweden)

    Chansavath ePhetsouphanh

    2015-01-01

    Full Text Available HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B cells and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely regulatory T cells (Tregs and T follicular helper cells (Tfh. These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B cell hyperplasia and increased germinal centre activity. Antiretroviral therapy (ART may reduce the lymphocyte activation, but not completely, and therefore there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B cell or Treg dysfunction.

  20. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism

    DEFF Research Database (Denmark)

    Weiss, Gudrun Margarethe; Rasmussen, Simon; Hjerrild Zeuthen, L.

    2010-01-01

    Lactobacilli are probiotics that, among other health-promoting effects, have been ascribed immunostimulating and virus-preventive properties. Certain Lactobacillus spp. have been shown to possess strong interleukin-12 (IL-12) -inducing properties. As IL-12 production depends on the up......-regulation of type I interferons (IFNs), we hypothesized that the strong IL-12-inducing capacity of Lactobacillus acidophilus NCFM in murine bone-marrow-derived dendritic cells (DCs) is caused by an up-regulation of IFN-beta, which subsequently induces IL-12 and the double-stranded RNA binding Toll-like receptor-3...... detected in another L. acidophilus strain (X37), but was not a property of other probiotic strains tested, i.e. Bifidobacterium bifidum Z9 and Escherichia coli Nissle 1917. The IFN-beta expression was markedly reduced in TLR-2(-/-) DCs, dependent on endocytosis, and the major cause of the induction of Il...

  1. Clinical assay stage I clinical trial with the murine monoclonal antibody IOR-T1: Pharmacokinetic and immune answers

    International Nuclear Information System (INIS)

    Faxas Garcia, Maria E.; Guerra Yi, Marta E.; Alvarez, Alejandro; Calderon, Carlos

    2003-01-01

    As part of the stage I clinical trial with the murine monoclonal antibody IOR-T1 at repeated doses (200-800 mg) in patients carriers of cutaneous T-cell lymphoma, the pharmacokinetics and the response against the mouse protein (HAMA) were studied in the 10 patients under treatment. It was observed a great individual variation in the maximum concentration in serum, which was estimated at 2 hours. The mean life time of the monoclonal antibody was between 13.93 and 19.6 hours. Most of the patients developed antibodies against the monoclonal antibody IOR-T1. The presence of this second antibody did not alter significantly the pharmacokinetics of the administered monoclonal antibody

  2. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease.

    Science.gov (United States)

    Thomas, Karen E; Sapone, Anna; Fasano, Alessio; Vogel, Stefanie N

    2006-02-15

    Recent studies have demonstrated the importance of TLR signaling in intestinal homeostasis. Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. In this study, we sought to test the hypothesis that gliadin initiates this response by stimulating the innate immune response to increase intestinal permeability and by up-regulating macrophage proinflammatory gene expression and cytokine production. To this end, intestinal permeability and the release of zonulin (an endogenous mediator of gut permeability) in vitro, as well as proinflammatory gene expression and cytokine release by primary murine macrophage cultures, were measured. Gliadin and its peptide derivatives, 33-mer and p31-43, were found to be potent inducers of both a zonulin-dependent increase in intestinal permeability and macrophage proinflammatory gene expression and cytokine secretion. Gliadin-induced zonulin release, increased intestinal permeability, and cytokine production were dependent on myeloid differentiation factor 88 (MyD88), a key adapter molecule in the TLR/IL-1R signaling pathways, but were neither TLR2- nor TLR4-dependent. Our data support the following model for the innate immune response to gliadin in the initiation of CD. Gliadin interaction with the intestinal epithelium increases intestinal permeability through the MyD88-dependent release of zonulin that, in turn, enables paracellular translocation of gliadin and its subsequent interaction with macrophages within the intestinal submucosa. There, the interaction of gliadin with macrophages elicits a MyD88-dependent proinflammatory cytokine milieu that facilitates the interaction of T cells with APCs, leading ultimately to the Ag-specific adaptive immune response seen in patients with CD.

  3. Simultaneous administration of vitamin A and DTP vaccine modulates the immune response in a murine cerebral malaria model

    DEFF Research Database (Denmark)

    Hein-Kristensen, L; Jørgensen, M J; Ravn, H

    2010-01-01

    The World Health Organisation recommends vitamin A supplementation (VAS) to children aged 6 months to 5 years in low-income countries, and for logistic reasons, this has been linked to routine childhood immunizations. Observational studies suggest that VAS given with diphtheria-tetanus-pertussis ......The World Health Organisation recommends vitamin A supplementation (VAS) to children aged 6 months to 5 years in low-income countries, and for logistic reasons, this has been linked to routine childhood immunizations. Observational studies suggest that VAS given with diphtheria...

  4. A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues

    Science.gov (United States)

    Yu, Yen-Rei A.; O’Koren, Emily G.; Hotten, Danielle F.; Kan, Matthew J.; Kopin, David; Nelson, Erik R.; Que, Loretta; Gunn, Michael D.

    2016-01-01

    Flow cytometry is used extensively to examine immune cells in non-lymphoid tissues. However, a method of flow cytometric analysis that is both comprehensive and widely applicable has not been described. We developed a protocol for the flow cytometric analysis of non-lymphoid tissues, including methods of tissue preparation, a 10-fluorochrome panel for cell staining, and a standardized gating strategy, that allows the simultaneous identification and quantification of all major immune cell types in a variety of normal and inflamed non-lymphoid tissues. We demonstrate that our basic protocol minimizes cell loss, reliably distinguishes macrophages from dendritic cells (DC), and identifies all major granulocytic and mononuclear phagocytic cell types. This protocol is able to accurately quantify 11 distinct immune cell types, including T cells, B cells, NK cells, neutrophils, eosinophils, inflammatory monocytes, resident monocytes, alveolar macrophages, resident/interstitial macrophages, CD11b- DC, and CD11b+ DC, in normal lung, heart, liver, kidney, intestine, skin, eyes, and mammary gland. We also characterized the expression patterns of several commonly used myeloid and macrophage markers. This basic protocol can be expanded to identify additional cell types such as mast cells, basophils, and plasmacytoid DC, or perform detailed phenotyping of specific cell types. In examining models of primary and metastatic mammary tumors, this protocol allowed the identification of several distinct tumor associated macrophage phenotypes, the appearance of which was highly specific to individual tumor cell lines. This protocol provides a valuable tool to examine immune cell repertoires and follow immune responses in a wide variety of tissues and experimental conditions. PMID:26938654

  5. Manipulations of the immune response in the chicken

    International Nuclear Information System (INIS)

    Bixler, G.S. Jr.

    1978-01-01

    The chicken with its dissociation of immune responses in cell-mediated immunity, dependent on the thymus, and humoral immunity, dependent on the bursa of Fabricius, provides a unique model for studying the two components of the immune system. While there are methods of obtaining selective, profound deficiency of humoral immunity, in this species, methods for obtaining a consistent, profound selective deficiency of cell-mediated immunity have been lacking. Oxisuran, 2[(methylsulfinyl)acetal] pyridine, has been reported to have the unique ability to differentially suppress cell-mediated immunity in several species of mammals without a concomitant reduction in antibody forming capacity. The effect of this compound on two parameters of cell-mediated immune responses in chickens was investigated. In further attempts to create a deficiency of both cell-mediated and humoral immunity, the effects of a combination of cyclophosphamide treatment and x-irradiation early in life on immune responses were studied

  6. Immunization

    Science.gov (United States)

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  7. Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung's Disease.

    Directory of Open Access Journals (Sweden)

    Ankush Gosain

    Full Text Available Hirschsprung's disease (HSCR is characterized by aganglionosis from failure of neural crest cell (NCC migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung's-associated enterocolitis (HAEC, with an incidence that is unchanged from the pre-operative to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hypothesize that gastrointestinal (GI mucosal immune defects occur in HSCR that may contribute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/- resulting in mutants with defective NCC migration, distal colonic aganglionosis and the development of enterocolitis. The mucosal immune apparatus of these mice was interrogated at post-natal day (P 21-24, prior to histological signs of enterocolitis. We found that EdnrBNCC-/- display lymphopenia of their Peyer's Patches, the major inductive site of GI mucosal immunity. EdnrBNCC-/- Peyer's Patches demonstrate decreased B-lymphocytes, specifically IgM+IgDhi (Mature B-lymphocytes, which are normally activated and produce IgA following antigen presentation. EdnrBNCC-/- animals demonstrate decreased small intestinal secretory IgA, but unchanged nasal and bronchial airway secretory IgA, indicating a gut-specific defect in IgA production or secretion. In the spleen, which is the primary source of IgA-producing Mature B-lymphocytes, EdnrBNCC-/- animals display decreased B-lymphocytes, but an increase in Mature B-lymphocytes. EdnrBNCC-/- spleens are also small and show altered architecture, with decreased red pulp and a paucity of B-lymphocytes in the germinal centers and marginal zone. Taken together, these findings suggest impaired GI mucosal immunity in EdnrBNCC-/- animals, with the spleen as a potential site of the defect. These findings build upon the growing body of literature that suggests that intestinal defects in HSCR are not restricted

  8. Genome wide transcriptome profiling of a murine acute melioidosis model reveals new insights into how Burkholderia pseudomallei overcomes host innate immunity

    Directory of Open Access Journals (Sweden)

    Nathan Sheila

    2010-11-01

    Full Text Available Abstract Background At present, very little is known about how Burkholderia pseudomallei (B. pseudomallei interacts with its host to elicit melioidosis symptoms. We established a murine acute-phase melioidosis model and used DNA microarray technology to investigate the global host/pathogen interaction. We compared the transcriptome of infected liver and spleen with uninfected tissues over an infection period of 42 hr to identify genes whose expression is altered in response to an acute infection. Results Viable B. pseudomallei cells were consistently detected in the blood, liver and spleen during the 42 hr course of infection. Microarray analysis of the liver and spleen over this time course demonstrated that genes involved in immune response, stress response, cell cycle regulation, proteasomal degradation, cellular metabolism and signal transduction pathways were differentially regulated. Up regulation of toll-like receptor 2 (TLR2 gene expression suggested that a TLR2-mediated signalling pathway is responsible for recognition and initiation of an inflammatory response to the acute B. pseudomallei infection. Most of the highly elevated inflammatory genes are a cohort of "core host immune response" genes commonly seen in general inflammation infections. Concomitant to this initial inflammatory response, we observed an increase in transcripts associated with cell-death, caspase activation and peptidoglysis that ultimately promote tissue injury in the host. The complement system responsible for restoring host cellular homeostasis and eliminating intracellular bacteria was activated only after 24 hr post-infection. However, at this time point, diverse host nutrient metabolic and cellular pathways including glycolysis, fatty acid metabolism and tricarboxylic acid (TCA cycle were repressed. Conclusions This detailed picture of the host transcriptional response during acute melioidosis highlights a broad range of innate immune mechanisms that are

  9. Ukrain, a plant derived semi-synthetic compound, exerts antitumor effects against murine and human breast cancer and induce protective antitumor immunity in mice.

    Science.gov (United States)

    Bozeman, E N; Srivatsan, S; Mohammadi, H; Daniels, D; Shashidharamurthy, R; Selvaraj, P

    2012-12-01

    Despite the recent advances in anti-cancer therapies, breast cancer accounts for the highest percentage of estimated new cases among female cancer patients. The anti-cancer drug Ukrain, a plant-derived semi-synthetic compound, has been shown to be effective in a variety of tumor models including colon, brain, ovarian, melanoma and lymphoma. However, the direct cytotoxic effects of Ukrain have yet to be investigated in breast cancer models. Herein, we investigated the in vitro and in vivo cytotoxicity of Ukrain using murine (4T07 and TUBO) and human (SKBR-3) breast cancer cell lines. Cells were treated with varying concentrations of Ukrain for up to 72 h and analyzed for viability by trypan blue exclusion, apoptosis by intracellular caspase 3 and Annexin V staining, and proliferative potential by a clonogenic assay. Female BALB/c mice were challenged subcutaneously (s.c.) with 4T07-RG cells and administered 5 mg/kg or 12.5 mg/kg body weight Ukrain intravenously (i.v.) on the same day and 3 days later. Protective immune responses were determined following re-challenge of tumor-free mice 35 days post primary challenge. Ukrain exposure induced apoptosis in a dose and time-dependent manner with 50 µg/mL Ukrain leading to >50% cell death after 48 h exposure for all three breast cancer cell lines. Ukrain administration (12.5 mg/kg) led to significant inhibition of 4T07 tumor growth in vivo and sustained protective anti-tumor immunity following secondary challenge. Our findings demonstrate the in vitro and in vivo cytotoxic effects of Ukrain on breast cancer cells and may provide insight into designing Ukrain-based therapies for breast cancer patients.

  10. Effects of Trauma-Hemorrhage and IL-6 Deficiency on Splenic Immune Function in a Murine Trauma Model

    Directory of Open Access Journals (Sweden)

    P. Mommsen

    2012-01-01

    Full Text Available Splenic immune function is known to be depressed following hemorrhage. The present study investigates the effects of femoral shaft fracture, isolated or in combination with hemorrhage, on early stage cytokine production capacity of splenocytes and observes the role of IL-6 under these conditions. Male IL-6 knockout (IL-6−/− and wild-type mice (WT were randomly divided into three groups: sham (S, isolated femoral fracture (Fx, and femoral fracture + volume controlled hemorrhage (TH-Fx (=6 per group. Animals were sacrificed four hours after induction of hemorrhage and fracture. Cytokine release (TNF-α, IL-6, and IL-10 of isolated and LPS-stimulated splenocytes was determined by cytometric bead array. Femoral fracture with or without hemorrhage caused a suppression of in vitro cytokine production capacity of splenocytes at an early posttraumatic stage in WT and IL-6−/−. In the absence of IL-6, the profile of splenic cytokine secretion is significantly altered, identifying this cytokine as a potential therapeutic target to modulate the posttraumatic immune response.

  11. Abnormalities of thymic stroma may contribute to immune dysregulation in murine models of leaky severe combined immunodeficiency

    Directory of Open Access Journals (Sweden)

    Francesca eRucci

    2011-05-01

    Full Text Available Lymphostromal cross-talk in the thymus is essential to allow generation of a diversified repertoire of T lymphocytes and to prevent autoimmunity by self-reactive T cells. Hypomorphic mutations in genes that control T cell development have been associated with immunodeficiency and immune dysregulation both in humans and in mice. We have studied T cell development and thymic stroma architecture and maturation in two mouse models of leaky SCID, carrying hypomorphic mutations in Rag1 and Lig4 genes. Defective T cell development was associated with abnormalities of thymic architecture that predominantly affect the thymic medulla, with reduction of the pool of mature medullary thymic epithelial cells (mTECs. While the ability of mTECs to express Aire is preserved in mutant mice, the frequency of mature mTECs expressing Aire and tissue-specific antigens (TSAs is severely reduced. Similarly, the ability of CD4+ T cells to differentiate into Foxp3+ natural regulatory T cells is preserved in Rag1 and Lig4 mutant mice, but their number is greatly reduced. These data indicate that hypomorphic defects in T cell development may cause defective lymphostromal cross-talk and impinge on thymic stromal cells maturation, and thus favor immune dysregulation.

  12. Characterization of the local immune response to cyst antigens during the acute and elimination phases of primary murine giardiasis.

    Science.gov (United States)

    Abdul-Wahid, Aws; Faubert, Gaétan

    2008-05-01

    During the course of a giardial infection, the host's immune system is presented with a variety of Giardia antigens as trophozoites differentiate, through encysting cells, to form the infective cysts. Previous studies examining the host's immune response during giardial infections have focused on trophozoite-derived antigens (Ags). In this study, we were interested to determine if the host's immune system reacts to cyst Ags during the acute and elimination phases, when there is cyst shedding. For this purpose, we used antigenic extracts from trophozoites (Troph), encysting cells (ENC), and purified giardial cyst walls (PCW), as well as purified recombinant cyst wall protein 2 (rCWP2). Comparative analysis of the parasite extracts using SDS-PAGE analysis and surface-enhanced laser desorption/ionization time of flight mass spectrometry resulted in the detection of 175 protein entities, of which 26 were Troph-specific proteins, 17 ENC-specific proteins, and 31 were PCW-specific proteins. On the other hand, we detected 34 proteins shared between Troph and ENC, 19 proteins that were shared between ENC and PCW, and 29 proteins that were common to Troph and PCW. Finally, we detected 19 proteins that were shared by all three extract samples. BALB/c mice were infected with 10(5)Giardia muris cysts and sacrificed either at the acute or elimination phases of infection (days 12 and 40, respectively), and lymphocytes were isolated from the Peyer's patches (PP). Using flow cytometry, we detected significant increases in the number of PP-derived CD4(+) and CD19(+), but not CD8(+) lymphocytes. Quantification of the number of mucosal IL-4 and IFN-gamma secreting T-lymphocytes by enzyme-linked immunosorbent spot assay showed that these cells reacted by secreting similar levels of IL-4 and IFN-gamma, regardless of the Ag or the phase of infection. Analysis of intestinal humoral immune responses by ELISA resulted in the detection of Ag-specific IgA and IgG intestinal antibodies

  13. HIV-1 adaptation to NK cell-mediated immune pressure

    DEFF Research Database (Denmark)

    Elemans, Marjet; Boelen, Lies; Rasmussen, Michael

    2017-01-01

    The observation, by Alter et al., of the enrichment of NK cell “escape” variants in individuals carrying certain Killer-cell Immunoglobulin-like Receptor (KIR) genes is compelling evidence that natural killer (NK) cells exert selection pressure on HIV-1. Alter et al hypothesise that variant pepti...

  14. T-cell mediated immunity in Wegener's granulomatosis

    NARCIS (Netherlands)

    Abdulahad, Wayel Habib

    2008-01-01

    Although the pathogenetic mechanisms involved in Wegener’s granulomatosis (WG) are not completely understood, considerable evidence support the concepts that activated T-cells play an important role in disease expression. It is, however, not clear which subsets of T-cells are involved in the

  15. Expression of membrane anchored cytokines and B7-1 alters tumor microenvironment and induces protective antitumor immunity in a murine breast cancer model.

    Science.gov (United States)

    Bozeman, Erica N; Cimino-Mathews, Ashley; Machiah, Deepa K; Patel, Jaina M; Krishnamoorthy, Arun; Tien, Linda; Shashidharamurthy, Rangaiah; Selvaraj, Periasamy

    2013-05-07

    Many studies have shown that the systemic administration of cytokines or vaccination with cytokine-secreting tumors augments an antitumor immune response that can result in eradication of tumors. However, these approaches are hampered by the risk of systemic toxicity induced by soluble cytokines. In this study, we have evaluated the efficacy of 4TO7, a highly tumorigenic murine mammary tumor cell line, expressing glycosyl phosphatidylinositol (GPI)-anchored form of cytokine molecules alone or in combination with the costimulatory molecule B7-1 as a model for potential cell or membrane-based breast cancer vaccines. We observed that the GPI-anchored cytokines expressed on the surface of tumor cells greatly reduced the overall tumorigenicity of the 4TO7 tumor cells following direct live cell challenge as evidenced by transient tumor growth and complete regression within 30 days post challenge. Tumors co-expressing B7-1 and GPI-IL-12 grew the least and for the shortest duration, suggesting that this combination of immunostimulatory molecules is most potent. Protective immune responses were also observed following secondary tumor challenge. Further, the 4TO7-B7-1/GPI-IL-2 and 4TO7-B7-1/GPI-IL-12 transfectants were capable of inducing regression of a wild-type tumor growing at a distant site in a concomitant tumor challenge model, suggesting the tumor immunity elicited by the transfectants can act systemically and inhibit the tumor growth at a distant site. Additionally, when used as irradiated whole cell vaccines, 4TO7-B7-1/GPI-IL-12 led to a significant inhibition in tumor growth of day 7 established tumors. Lastly, we observed a significant decrease in the prevalence of myeloid-derived suppressor cells and regulatory T-cells in the tumor microenvironment on day 7 post challenge with 4TO7-B7-1/GPI-IL-12 cells, which provides mechanistic insight into antitumor efficacy of the tumor-cell membrane expressed IL-12. These studies have implications in designing membrane

  16. Exposure to Silver Nanospheres Leads to Altered Respiratory Mechanics and Delayed Immune Response in an in Vivo Murine Model

    Directory of Open Access Journals (Sweden)

    Danielle Botelho

    2018-03-01

    Full Text Available Here we examine the organ level toxicology of both carbon black (CB and silver nanoparticles (AgNP. We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF. C57Bl6/J male mice were intratracheally instilled with saline (control, low (0.05 μg/g or high (0.5 μg/g doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function.

  17. Comparison of altered expression of histocompatibility antigens with altered immune function in murine spleen cells treated with ultraviolet radiation and/or TPA

    International Nuclear Information System (INIS)

    Pretell, J.O.; Cone, R.E.

    1985-01-01

    Previous studies in our laboratory demonstrated that several treatments that inhibited the ability of cells to stimulate the mixed lymphocyte reaction (MLR) also blocked the shedding of histocompatibility antigens and Ia antigens from murine spleen cells. In the present studies, one of these treatments, ultraviolet radiation (UV), was shown to cause an initial loss in the density of H-2K, IA, and IE antigens prior to the block in shedding observed after culture of these cells. Further analysis revealed that the UV-induced loss of antigens could be prevented by the presence of colchicine during irradiation. Biosynthetic analyses revealed the IA antigen synthesis was also inhibited in the UV-irradiated cells. Examination of the effects of a second agent, 12-0-tetradecanoylphorbol-13-acetate (TPA) on the turnover of histocompatibility antigens revealed that the biosynthesis and shedding of these antigens were accelerated by this agent. However, addition of TPA to UV-irradiated cells did not result in a reversal of the UV-induced block in biosynthesis of IA antigens. Results of immune function assays correlated with the biochemical studies: UV-irradiation inhibited the generation of the MLR, but TPA enhanced this reaction, and addition of TPA to mixed lymphocyte cultures with UV-irradiated stimulators did not reverse the UV-induced inhibition. These results suggest that, although the turnover of histocompatibility antigens may be affected by TPA and UV in an antagonistic fashion, additional factors other than the expression of histocompatibility antigens are operating in the inhibition of stimulation of an MLR by UV radiation or its enhancement by TPA

  18. Decay-accelerating factor 1 deficiency exacerbates Trypanosoma cruzi-induced murine chronic myositis.

    Science.gov (United States)

    Solana, María E; Ferrer, María F; Novoa, María Mercedes; Song, Wen-Chao; Gómez, Ricardo M

    2012-10-01

    Murine infection with Trypanosoma cruzi (Tc) has been used to study the role of T-cells in the pathogenesis of human inflammatory idiopathic myositis. Absence of decay-accelerating factor 1 (Daf1) has been shown to enhance murine T-cell responses and autoimmunity. To determine whether Daf1 deficiency can exacerbate Tc-induced myositis, C57BL/6 DAF(+/+) and DAF(-/-) mice were inoculated with 5 × 10(4) trypomastigotes, and their morbidity, parasitemia, parasite burden, histopathology, and T-cell expansion were studied in the acute and chronic stages. DAF(-/-) mice had lower parasitemia and parasite burden but higher morbidity, muscle histopathology, and increased number of CD44(+) (activated/memory phenotype) splenic CD4(+) and CD8(+) T-cells. An enhanced CD8(+) T-cell immune-specific response may explain the lower parasitemia and parasite burden levels and the increase in histopathological lesions. We propose that Tc-inoculated DAF(-/-) mice are a useful model to study T-cell mediated immunity in skeletal muscle tissues. Copyright © 2012 Wiley Periodicals, Inc.

  19. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    International Nuclear Information System (INIS)

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke; Akaike, Toshihiro; Ito, Yoshihiro; Aida, Yoko

    2011-01-01

    Highlights: ► To develop effective vaccine, we examined the effects of CO 3 Ap as an antigen carrier. ► OVA contained in CO 3 Ap was taken up by BMDCs more effectively than free OVA. ► OVA-immunized splenocytes was activated by OVA contained in CO 3 Ap effectively. ► OVA contained in CO 3 Ap induced strong OVA-specific immune responses to C57BL/6 mice. ► CO 3 Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO 3 Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO 3 Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO 3 Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO 3 Ap induced the proliferation and antigen-specific production of IFN-γ by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO 3 Ap and OVA-containing alumina salt (Alum), suggesting that CO 3 Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO 3 Ap.

  20. Mast cells mediate malignant pleural effusion formation.

    Science.gov (United States)

    Giannou, Anastasios D; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M; Vreka, Malamati; Zazara, Dimitra E; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A; Patmanidi, Alexandra L; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S; Agalioti, Theodora; Stathopoulos, Georgios T

    2015-06-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell-induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable.

  1. CD4+ T cell-mediated rejection of MHC class II-positive tumor cells is dependent on antigen secretion and indirect presentation on host APCs.

    Science.gov (United States)

    Haabeth, Ole Audun Werner; Fauskanger, Marte; Manzke, Melanie; Lundin, Katrin U; Corthay, Alexandre; Bogen, Bjarne; Tveita, Anders Aune

    2018-05-11

    Tumor-specific CD4+ T cells have been shown to mediate efficient anti-tumor immune responses against cancer. Such responses can occur through direct binding to MHC class II (MHC II)-expressing tumor cells or indirectly via activation of professional antigen-presenting cells (APC) that take up and present the tumor antigen. We have previously shown that CD4+ T cells reactive against an epitope within the Ig light chain variable region of a murine B cell lymphoma can reject established tumors. Given the presence of MHC II molecules at the surface of lymphoma cells, we investigated whether MHC II-restricted antigen presentation on tumor cells alone was required for rejection. Variants of the A20 B lymphoma cell line that either secreted or intracellularly retained different versions of the tumor-specific antigen revealed that antigen secretion by the MHC II-expressing tumor cells was essential both for the priming and effector phase of CD4+ T cell-driven anti-tumor immune responses. Consistent with this, genetic ablation of MHC II in tumor cells, both in the case of B lymphoma and B16 melanoma, did not preclude rejection of tumors by tumor antigen-specific CD4+ T cells in vivo. These findings demonstrate that MHC class II expression on tumor cells themselves is not required for CD4+ T cell-mediated rejection, and that indirect display on host APC is sufficient for effective tumor elimination. These results support the importance of tumor-infiltrating APC as mediators of tumor cell killing by CD4+ T cells. Copyright ©2018, American Association for Cancer Research.

  2. Enrichment of sialylated IgG by lectin fractionation does not enhance the efficacy of immunoglobulin G in a murine model of immune thrombocytopenia

    NARCIS (Netherlands)

    Guhr, T.; Bloem, J.; Derksen, N.I.L.; Wuhrer, M.; Koenderman, A.H.L.; Aalberse, R.C.; Rispens, T.

    2011-01-01

    Intravenous immunoglobulin G (IVIg) is widely used against a range of clinical symptoms. For its use in immune modulating therapies such as treatment of immune thrombocytopenic purpura high doses of IVIg are required. It has been suggested that only a fraction of IVIg causes this anti immune

  3. Dendritic cell-mediated T cell polarization

    NARCIS (Netherlands)

    de Jong, Esther C.; Smits, Hermelijn H.; Kapsenberg, Martien L.

    2005-01-01

    Effective defense against diverse types of micro-organisms that invade our body requires specialized classes of antigen-specific immune responses initiated and maintained by distinct subsets of effector CD4(+) T helper (Th) cells. Excessive or detrimental (e.g., autoimmune) responses by effector T

  4. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.; Haenseler, E.; Leist, T.; Cerny, A.; Hengartner, H.; Althage, A.

    1986-01-01

    A model for immunologically T cell-mediated hepatitis was established in mice infected with lymphocytic choriomeningitis virus (LCMV). The severity of hepatitis was monitored histologically and by determination of changes in serum levels of the enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), and alkaline phosphatase (AP). Kinetics of histological disease manifestations, increases of liver enzyme levels in the serum, and cytotoxic T cell activities in livers and spleens all correlated and were dependent upon several parameters: LCMV-isolate; LCMV-WE caused extensive hepatitis, LCMV-Armstrong virtually none. Virus dose. Route of infection; i.v. or i.p. infection caused hepatitis, whereas infection into the footpad did not. The general genetic background of the murine host; of the strains tested, Swiss mice and A-strain mice were more susceptible than C57BL or CBA mice; BALB/c and DBA/2 mice were least susceptible. The degree of immunocompetence of the murine host; T cell deficient nu/nu mice never developed hepatitis, whereas nu/+ or +/+ mice always did. B cell-depleted anti-IgM-treated mice developed immune-mediated hepatitis comparably or even more extensively than control mice. Local cytotoxic T cell activity; mononuclear cells isolated from livers during the period of overt hepatitis were two to five times more active than equal numbers of spleen cells. Adoptive transfer of nylon wool-nonadherent anti-Thy-1.2 and anti-Lyt-2 plus C-sensitive, anti-L3T4 plus C-resistant lymphocytes into irradiated mice preinfected with LCMV-WE caused a rapid time- and dose-dependent linear increase of serum enzyme levels. This increase was caused by adoptive transfer of lymphocytes if immune cell donors and recipient mice shared class I, but not when they shared class II histocompatibility antigens

  5. B-cell-mediated strategies to fight chronic allograft rejection

    Directory of Open Access Journals (Sweden)

    Ali H Dalloul

    2013-12-01

    Full Text Available Solid organs have been transplanted for decades. Since the improvement in graft selection and in medical and surgical procedures, the likelihood of graft function after one year is now close to 90%. Nonetheless even well-matched recipients continue to need medications for the rest of their lives hence adverse side effects and enhanced morbidity. Understanding Immune rejection mechanisms, is of increasing importance since the greater use of living-unrelated donors and genetically unmatched individuals. Chronic rejection is devoted to T-cells, however the role of B-cells in rejection has been appreciated recently by the observation that B-cell depletion improve graft survival. By contrast however, B-cells can be beneficial to the grafted tissue. This protective effect is secondary to either the secretion of protective antibodies or the induction of B-cells that restrain excessive inflammatory responses, chiefly by local provision of IL-10, or inhibit effector T-cells by direct cellular interactions. As a proof of concept B-cell-mediated infectious transplantation tolerance could be achieved in animal models, and evidence emerged that the presence of such B-cells in transplanted patients correlate with a favorable outcome. Among these populations, regulatory B-cells constitute a recently described population. These cells may develop as a feedback mechanism to prevent uncontrolled reactivity to antigens and inflammatory stimuli. The difficult task for the clinician, is to quantify the respective ratios and functions of tolerant vs effector B-cells within a transplanted organ, at a given time point in order to modulate B-cell-directed therapy. Several receptors at the B-cell membrane as well as signaling molecules, can now be targeted for this purpose. Understanding the temporal expansion of regulatory B-cells in grafted patients and the stimuli that activate them will help in the future to implement specific strategies aimed at fighting chronic

  6. Protection from genital herpes disease, seroconversion and latent infection in a non-lethal murine genital infection model by immunization with an HSV-2 replication-defective mutant virus.

    Science.gov (United States)

    Diaz, Fernando M; Knipe, David M

    2016-01-15

    Viral vaccines have traditionally protected against disease, but for viruses that establish latent infection, it is desirable for the vaccine to reduce infection to reduce latent infection and reactivation. While seroconversion has been used in clinical trials of herpes simplex virus (HSV) vaccines to measure protection from infection, this has not been modeled in animal infection systems. To measure the ability of a genital herpes vaccine candidate to protect against various aspects of infection, we established a non-lethal murine model of genital HSV-2 infection, an ELISA assay to measure antibodies specific for infected cell protein 8 (ICP8), and a very sensitive qPCR assay. Using these assays, we observed that immunization with HSV-2 dl5-29 virus reduced disease, viral shedding, seroconversion, and latent infection by the HSV-2 challenge virus. Therefore, it may be feasible to obtain protection against genital disease, seroconversion and latent infection by immunization, even if sterilizing immunity is not achieved. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) herpes simplex virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage colony-stimulating factor, correlates with antigen-specific adaptive immunity.

    Science.gov (United States)

    Ali, Selman A; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Rojas, José M; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2002-04-01

    Direct intratumor injection of a disabled infectious single cycle HSV-2 virus encoding the murine GM-CSF gene (DISC/mGM-CSF) into established murine colon carcinoma CT26 tumors induced a significant delay in tumor growth and complete tumor regression in up to 70% of animals. Pre-existing immunity to HSV did not reduce the therapeutic efficacy of DISC/mGM-CSF, and, when administered in combination with syngeneic dendritic cells, further decreased tumor growth and increased the incidence of complete tumor regression. Direct intratumor injection of DISC/mGM-CSF also inhibited the growth of CT26 tumor cells implanted on the contralateral flank or seeded into the lungs following i.v. injection of tumor cells (experimental lung metastasis). Proliferation of splenocytes in response to Con A was impaired in progressor and tumor-bearer, but not regressor, mice. A potent tumor-specific CTL response was generated from splenocytes of all mice with regressing, but not progressing tumors following in vitro peptide stimulation; this response was specific for the gp70 AH-1 peptide SPSYVYHQF and correlated with IFN-gamma, but not IL-4 cytokine production. Depletion of CD8(+) T cells from regressor splenocytes before in vitro stimulation with the relevant peptide abolished their cytolytic activity, while depletion of CD4(+) T cells only partially inhibited CTL generation. Tumor regression induced by DISC/mGM-CSF virus immunotherapy provides a unique model for evaluating the immune mechanism(s) involved in tumor rejection, upon which tumor immunotherapy regimes may be based.

  8. Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Bhowmick Sudipta

    2010-06-01

    Full Text Available Abstract Background The development of an effective vaccine against visceral leishmaniasis (VL caused by Leishmania donovani is an essential aim for controlling the disease. Use of the right adjuvant is of fundamental importance in vaccine formulations for generation of effective cell-mediated immune response. Earlier we reported the protective efficacy of cationic liposome-associated L. donovani promastigote antigens (LAg against experimental VL. The aim of the present study was to compare the effectiveness of two very promising adjuvants, Bacille Calmette-Guerin (BCG and Monophosphoryl lipid A (MPL plus trehalose dicorynomycolate (TDM with cationic liposomes, in combination with LAg, to confer protection against murine VL. Results All the three formulations afforded significant protection against L. donovani in both the visceral organs, liver and spleen. Although comparable level of protection was observed in BCG+LAg and MPL-TDM+LAg immunized mice, highest level of protection was exhibited by the liposomal LAg immunized group. Significant increase in anti-LAg IgG levels were detected in both MPL-TDM+LAg and liposomal LAg immunized animals with higher levels of IgG2a than IgG1. But BCG+LAg failed to induce any antibody response. As an index of cell-mediated immunity DTH responses were measured and significant response was observed in mice vaccinated with all the three different formulations. However, highest responses were observed with liposomal vaccine immunization. Comparative evaluation of IFN-γ and IL-4 responses in immunized mice revealed that MPL-TDM+LAg group produced the highest level of IFN-γ but lowest IL-4 level, while BCG+LAg demonstrated generation of suboptimum levels of both IFN-γ and IL-4 response. Elicitation of moderate levels of prechallenge IFN-γ along with optimum IL-4 corresponds with successful vaccination with liposomal LAg. Conclusion This comparative study reveals greater effectiveness of the liposomal vaccine for

  9. Adoptively transferred dendritic cells restore primary cell-mediated inflammatory competence to acutely malnourished weanling mice.

    Science.gov (United States)

    Hillyer, Lyn; Whitley, Charlene; Olver, Amy; Webster, Michelle; Steevels, Tessa; Woodward, Bill

    2008-02-01

    Immune depression associated with prepubescent malnutrition underlies a staggering burden of infection-related morbidity. This investigation centered on dendritic cells as potentially decisive in this phenomenon. C57BL/6J mice, initially 19 days old, had free access for 14 days to a complete diet or to a low-protein formulation that induced wasting deficits of protein and energy. Mice were sensitized by i.p. injection of sheep red blood cells on day 9, at which time one-half of the animals in each dietary group received a simultaneous injection of 10(6) syngeneic dendritic cells (JAWS II). All mice were challenged with the immunizing antigen in the right hind footpad on day 13, and the 24-hour delayed hypersensitivity response was assessed as percentage increase in footpad thickness. The low-protein diet reduced the inflammatory immune response, but JAWS cells, which exhibited immature phenotypic and functional characteristics, increased the response of both the malnourished group and the controls. By contrast, i.p. injection of 10(6) syngeneic T cells did not influence the inflammatory immune response of mice subjected to the low-protein protocol. Antigen-presenting cell numbers limited primary inflammatory cell-mediated competence in this model of wasting malnutrition, an outcome that challenges the prevailing multifactorial model of malnutrition-associated immune depression. Thus, a new dendritic cell-centered perspective emerges regarding the cellular mechanism underlying immune depression in acute pediatric protein and energy deficit.

  10. Measuring T cell-mediated cytotoxicity using fluorogenic caspase substrates.

    Science.gov (United States)

    Chahroudi, A; Silvestri, G; Feinberg, M B

    2003-10-01

    Cytotoxic T lymphocytes (CTLs) play a major role in the immune response against viruses and other intracellular pathogens. In addition, CTLs are implicated in the control of tumor cells in certain settings. Accurate measures of CTL function are of critical importance to study the pathogenesis of infectious diseases and to evaluate the efficacy of new vaccines and immunotherapies. To this end, we have recently developed a flow cytometry-based CTL (FCC) assay that measures the CTL-induced caspase activation within target cells using cell permeable fluorogenic caspase substrates. This novel assay reliably detects, by flow cytometry or fluorescence/confocal microscopy, antigen-specific CTLs in a wide variety of human and murine systems, and is safer and more informative than the standard 51Cr-release assay. In addition, the flow cytometric CTL (FCC) assay provides an alternative method that is often more sensitive and physiologically informative when compared to previously described FCC assays, as it measures a biological indicator of apoptosis within the target cell. The FCC assay may thus represent a useful tool to further understand the molecular and cellular mechanisms that underlie CTL-mediated killing during tumorigenesis or following infection with viruses or other intracellular pathogens.

  11. CD4+ type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes

    DEFF Research Database (Denmark)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank

    2012-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic ß cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry ...

  12. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Want MY

    2017-03-01

    percentage inhibition of 82.4%±3.8% in the liver and 77.6%±5.5% in spleen at the highest dose of 20 mg/kg body weight with modulation of cell-mediated immunity towards protective Th1 type. This study is the first report on the use of a liposomal drug delivery system for artemisinin as a promising alternative intervention against VL. Keywords: visceral leishmaniasis, Box–Behnken, nanoliposomes, drug delivery, artemisinin, Leishmania 

  13. Diverse exocytic pathways for mast cell mediators.

    Science.gov (United States)

    Xu, Hao; Bin, Na-Ryum; Sugita, Shuzo

    2018-04-17

    Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    2006-12-01

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  15. Endogenous Tim-1 (Kim-1) promotes T-cell responses and cell-mediated injury in experimental crescentic glomerulonephritis.

    Science.gov (United States)

    Nozaki, Yuji; Nikolic-Paterson, David J; Snelgrove, Sarah L; Akiba, Hisaya; Yagita, Hideo; Holdsworth, Stephen R; Kitching, A Richard

    2012-05-01

    The T-cell immunoglobulin mucin 1 (Tim-1) modulates CD4(+) T-cell responses and is also expressed by damaged proximal tubules in the kidney where it is known as kidney injury molecule-1 (Kim-1). We sought to define the role of endogenous Tim-1 in experimental T-cell-mediated glomerulonephritis induced by sheep anti-mouse glomerular basement membrane globulin acting as a planted foreign antigen. Tim-1 is expressed by infiltrating activated CD4(+) cells in this model, and we studied the effects of an inhibitory anti-Tim-1 antibody (RMT1-10) on immune responses and glomerular disease. Crescentic glomerulonephritis, proliferative injury, and leukocyte accumulation were attenuated following treatment with anti-Tim-1 antibodies, but interstitial foxp3(+) cell accumulation and interleukin-10 mRNA were increased. T-cell proliferation and apoptosis decreased in the immune system along with a selective reduction in Th1 and Th17 cellular responses both in the immune system and within the kidney. The urinary excretion and renal expression of Kim-1 was reduced by anti-Tim-1 antibodies reflecting diminished interstitial injury. The effects of anti-Tim-1 antibodies were not apparent in the early phase of renal injury, when the immune response to sheep globulin was developing. Thus, endogenous Tim-1 promotes Th1 and Th17 nephritogenic immune responses and its neutralization reduces renal injury while limiting inflammation in cell-mediated glomerulonephritis.

  16. Immunization with PIII, a fraction of Schistosoma mansoni soluble adult worm antigenic preparation, affects nitric oxide production by murine spleen cells

    Directory of Open Access Journals (Sweden)

    Diana Magalhães de Oliveira

    1998-01-01

    Full Text Available Nitric oxide (NO is an important effector molecule involved in immune regulation and defense. NO produced by cytokine-activated macrophages was reported to be cytotoxic against the helminth Schistosoma mansoni. Identification and characterization of S. mansoni antigens that can provide protective immunity is crucial for understanding the complex immunoregulatory events that modulate the immune response in schistosomiasis. It is, then, essential to have available defined, purified parasite antigens. Previous work by our laboratory identified a fraction of S. mansoni soluble adult worm antigenic preparation (SWAP, named PIII, able to elicit significant in vitro cell proliferation and at the same time lower in vitro and in vivo granuloma formation when compared either to SEA (soluble egg antigen or to SWAP. In the present work we report the effect of different in vivo trials with mice on their spleen cells ability to produce NO. We demonstrate that PIII-immunization is able to significantly increase NO production by spleen cells after in vitro stimulation with LPS. These data suggest a possible role for NO on the protective immunity induced by PIII.

  17. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    Science.gov (United States)

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  18. CAF01 potentiates immune responses and efficacy of an inactivated influenza vaccine in ferrets

    DEFF Research Database (Denmark)

    Martel, Cyril Jean-Marie; Agger, Else Marie; Poulsen, Julie Juul

    2011-01-01

    response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6'-dibehenate, CAF01) was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different...

  19. A DNA vaccine co-expressing Trichinella spiralis MIF and MCD-1 with murine ubiquitin induces partial protective immunity in mice.

    Science.gov (United States)

    Tang, F; Xu, L; Yan, R; Song, X; Li, X

    2013-03-01

    Co-expression of Trichinella spiralis macrophage migration inhibitory factor (TsMIF) with T. spiralis cystatin-like domain protein (TsMCD-1) in a DNA vaccine induces a Th1 immune response and partial protection against T. spiralis infection. The present study evaluated whether co-expression of mouse ubiquitin (Ub) with TsMIF and TsMCD-1 might improve the immune response against T. spiralis infection. Groups of BALB/c mice were immunized twice at 2-week intervals with 100 μg of plasmid DNA encoding either a TsMIF-TsMCD-1 fusion protein (pVAX1-Tsmif-Tsmcd-1) or an Ub-co-expressing triple fusion protein Ub-TsMIF-TsMCD-1 (pVAX1-Ub-Tsmif-Tsmcd-1). Control animals were immunized with pVAX1-Ub or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17), CD4+/CD8+ T cells and cytotoxic T lymphocyte (CTL) responses were monitored. Challenge infection was performed 2 weeks after the second immunization and worm burden was assayed at 35 days post-challenge. Antibody responses induced by pVAX1-Ub-Tsmif-Tsmcd-1 were significantly lower than for TsMIF-TsMCD-1, but the vaccine induced increased levels of Th1 cytokine (IFN-γ) and increased T-cell cytotoxicity. The reduction of worm burden (37.95%) following immunization with pVAX1-Ub-Tsmif-Tsmcd-1 was significantly greater than that induced by the pVAX1-Tsmif-Tsmcd-1 vaccine (23.17%; P< 0.05).

  20. INDUCTION OF A SECRETORY IGA RESPONSE IN THE MURINE FEMALE UROGENITAL TRACT BY IMMUNIZATION OF THE LUNGS WITH LIPOSOME-SUPPLEMENTED VIRAL SUBUNIT ANTIGEN

    NARCIS (Netherlands)

    DEHAAN, A; RENEGAR, KB; SMALL, PA; WILSCHUT, J

    This study demonstrates that liposomes administered to the lower respiratory tract of mice have the capacity to stimulate secretory IgA (s-IgA) antibody production in the female urogenital system. Total respiratory tract immunization of mice with influenza virus subunit antigen simply mixed with

  1. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  2. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.

    Science.gov (United States)

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-05-01

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Type I NKT-cell-mediated TNF-α is a positive regulator of NLRP3 inflammasome priming.

    Science.gov (United States)

    Chow, Melvyn T; Duret, Helene; Andrews, Daniel M; Faveeuw, Christelle; Möller, Andreas; Smyth, Mark J; Paget, Christophe

    2014-07-01

    The NLRP3 inflammasome plays a crucial role in the innate immune response to pathogens and exogenous or endogenous danger signals. Its activity must be precisely and tightly regulated to generate tailored immune responses. However, the immune cell subsets and cytokines controlling NLRP3 inflammasome activity are still poorly understood. Here, we have shown a link between NKT-cell-mediated TNF-α and NLRP3 inflammasome activity. The NLRP3 inflammasome in APCs was critical to potentiate NKT-cell-mediated immune responses, since C57BL/6 NLRP3 inflammasome-deficient mice exhibited reduced responsiveness to α-galactosylceramide. Importantly, NKT cells were found to act as regulators of NLRP3 inflammasome signaling, as NKT-cell-derived TNF-α was required for optimal IL-1β and IL-18 production by myeloid cells in response to α-galactosylceramide, by acting on the NLRP3 inflammasome priming step. Thus, NKT cells play a role in the positive regulation of NLRP3 inflammasome priming by mediating the production of TNF-α, thus demonstrating another means by which NKT cells control early inflammation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows

    DEFF Research Database (Denmark)

    Duarte, Vinicius da Silva; Dias, Roberto Sousa; Kropinski, Andrew M.

    2018-01-01

    Bovine mastitis remains the main cause of economic losses for dairy farmers. Mammary pathogenic Escherichia coli (MPEC) is related to an acute mastitis and its treatment is still based on the use of antibiotics. In the era of antimicrobial resistance (AMR), bacterial viruses (bacteriophages......, such as IL-6 and TNF-alpha, were observed after viral treatment. This work brings the whole characterization and immune response to vB_EcoM-UFV13, a biocontrol candidate for bovine mastitis.......) present as an efficient treatment or prophylactic option. However, this makes it essential that its genetic structure, stability and interaction with the host immune system be thoroughly characterized. The present study analyzed a novel, broad host-range anti-mastitis agent, the T4virus vB_EcoM-UFV13...

  5. Induction of a specific strong polyantigenic cellular immune response after short-term chemotherapy controls bacillary reactivation in murine and guinea pig experimental models of tuberculosis.

    Science.gov (United States)

    Guirado, Evelyn; Gil, Olga; Cáceres, Neus; Singh, Mahavir; Vilaplana, Cristina; Cardona, Pere-Joan

    2008-08-01

    RUTI is a therapeutic vaccine that is generated from detoxified and liposomed Mycobacterium tuberculosis cell fragments that has demonstrated its efficacy in the control of bacillus reactivation after short-term chemotherapy. The aim of this study was to characterize the cellular immune response generated after the therapeutic administration of RUTI and to corroborate the lack of toxicity of the vaccine. Mouse and guinea pig experimental models were infected with a low-dose M. tuberculosis aerosol. RUTI-treated animals showed the lowest bacillary load in both experimental models. RUTI also decreased the percentage of pulmonary granulomatous infiltration in the mouse and guinea pig models. This was not the case after Mycobacterium bovis BCG treatment. Cellular immunity was studied through the characterization of the intracellular gamma interferon (IFN-gamma)-producing cells after the splenocytes' stimulation with M. tuberculosis-specific structural and growth-related antigens. Our data show that the difference between the therapeutic administration of BCG and RUTI resides mainly in the stronger activation of IFN-gamma(+) CD4(+) cells and CD8(+) cells against tuberculin purified protein derivative, ESAT-6, and Ag85B that RUTI generates. Both vaccines also triggered a specific immune response against the M. tuberculosis structural antigens Ag16kDa and Ag38kDa and a marked mRNA expression of IFN-gamma, tumor necrosis factor, interleukin-12, inducible nitric oxide synthase, and RANTES in the lung. The results show that RUTI's therapeutic effect is linked not only to the induction of a Th1 response but also to the stimulation of a quicker and stronger specific immunity against structural and growth-related antigens that reduces both the bacillary load and the pulmonary pathology.

  6. Mixed Signals: Co-Stimulation in Invariant Natural Killer T Cell-Mediated Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Susannah C. Shissler

    2017-11-01

    Full Text Available Invariant natural killer T (iNKT cells are an integral component of the immune system and play an important role in antitumor immunity. Upon activation, iNKT cells can directly kill malignant cells as well as rapidly produce cytokines that stimulate other immune cells, making them a front line defense against tumorigenesis. Unfortunately, iNKT cell number and activity are reduced in multiple cancer types. This anergy is often associated with upregulation of co-inhibitory markers such as programmed death-1. Similar to conventional T cells, iNKT cells are influenced by the conditions of their activation. Conventional T cells receive signals through the following three types of receptors: (1 T cell receptor (TCR, (2 co-stimulation molecules, and (3 cytokine receptors. Unlike conventional T cells, which recognize peptide antigen presented by MHC class I or II, the TCRs of iNKT cells recognize lipid antigen in the context of the antigen presentation molecule CD1d (Signal 1. Co-stimulatory molecules can positively and negatively influence iNKT cell activation and function and skew the immune response (Signal 2. This study will review the background of iNKT cells and their co-stimulatory requirements for general function and in antitumor immunity. We will explore the impact of monoclonal antibody administration for both blocking inhibitory pathways and engaging stimulatory pathways on iNKT cell-mediated antitumor immunity. This review will highlight the incorporation of co-stimulatory molecules in antitumor dendritic cell vaccine strategies. The use of co-stimulatory intracellular signaling domains in chimeric antigen receptor-iNKT therapy will be assessed. Finally, we will explore the influence of innate-like receptors and modification of immunosuppressive cytokines (Signal 3 on cancer immunotherapy.

  7. Increased Nucleosomes and Neutrophil Activation Link to Disease Progression in Patients with Scrub Typhus but Not Murine Typhus in Laos

    NARCIS (Netherlands)

    Paris, Daniel H.; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N.; Day, Nicholas P. J.; Zeerleder, Sacha

    2015-01-01

    Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil

  8. Beneficial effects of ursodeoxycholic acid via inhibition of airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in murine model of chronic asthma.

    Science.gov (United States)

    Işık, S; Karaman, M; Çilaker Micili, S; Çağlayan-Sözmen, Ş; Bağrıyanık, H Alper; Arıkan-Ayyıldız, Z; Uzuner, N; Karaman, Ö

    In previous studies, anti-inflammatory, anti-apoptotic and immunomodulatory effects of ursodeoxycholic acid (UDCA) on liver diseases have been shown. In this study, we aimed to investigate the effects of UDCA on airway remodelling, epithelial apoptosis, and T Helper (Th)-2 derived cytokine levels in a murine model of chronic asthma. Twenty-seven BALB/c mice were divided into five groups; PBS-Control, OVA-Placebo, OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone. Mice in groups OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone received the UDCA (50mg/kg), UDCA (150mg/kg), and dexamethasone, respectively. Epithelium thickness, sub-epithelial smooth muscle thickness, number of mast and goblet cells of samples isolated from the lung were measured. Immunohistochemical scorings of the lung tissue for matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEG-F), transforming growth factor-beta (TGF-β), terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) and cysteine-dependent aspartate-specific proteases (caspase)-3 were determined. IL-4, IL-5, IL-13, Nitric oxide, ovalbumin-specific immunoglobulin (Ig) E levels were quantified. The dose of 150mg/kg UDCA treatment led to lower epithelial thickness, sub-epithelial smooth muscle thickness, goblet and mast cell numbers compared to placebo. Except for MMP-9 and TUNEL all immunohistochemical scores were similar in both UDCA treated groups and the placebo. All cytokine levels were significantly lower in group IV compared to the placebo. These findings suggested that the dose of 150mg/kg UDCA improved all histopathological changes of airway remodelling and its beneficial effects might be related to modulating Th-2 derived cytokines and the inhibition of apoptosis of airway epithelial cells. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  9. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  10. Effect of Scoparia dulcis on noise stress induced adaptive immunity and cytokine response in immunized Wistar rats

    Directory of Open Access Journals (Sweden)

    Loganathan Sundareswaran

    2017-01-01

    Conclusion: S. dulcis (SD has normalized and prevented the noise induced changes in cell-mediated and humoral immunity and it could be the presence of anti-stressor and immuno stimulant activity of the plant.

  11. E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox

    Directory of Open Access Journals (Sweden)

    Asisa Volz

    2018-01-01

    Full Text Available The highly attenuated Modified Vaccinia virus Ankara (MVA lacks most of the known vaccinia virus (VACV virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L. Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.

  12. A targeted and adjuvanted nanocarrier lowers the effective dose of liposomal amphotericin B and enhances adaptive immunity in murine cutaneous leishmaniasis.

    Science.gov (United States)

    Daftarian, Pirouz M; Stone, Geoffrey W; Kovalski, Leticia; Kumar, Manoj; Vosoughi, Aram; Urbieta, Maitee; Blackwelder, Pat; Dikici, Emre; Serafini, Paolo; Duffort, Stephanie; Boodoo, Richard; Rodríguez-Cortés, Alhelí; Lemmon, Vance; Deo, Sapna; Alberola, Jordi; Perez, Victor L; Daunert, Sylvia; Ager, Arba L

    2013-12-01

    Amphotericin B (AmB), the most effective drug against leishmaniasis, has serious toxicity. As Leishmania species are obligate intracellular parasites of antigen presenting cells (APC), an immunopotentiating APC-specific AmB nanocarrier would be ideally suited to reduce the drug dosage and regimen requirements in leishmaniasis treatment. Here, we report a nanocarrier that results in effective treatment shortening of cutaneous leishmaniasis in a mouse model, while also enhancing L. major specific T-cell immune responses in the infected host. We used a Pan-DR-binding epitope (PADRE)-derivatized-dendrimer (PDD), complexed with liposomal amphotericin B (LAmB) in an L. major mouse model and analyzed the therapeutic efficacy of low-dose PDD/LAmB vs full dose LAmB. PDD was shown to escort LAmB to APCs in vivo, enhanced the drug efficacy by 83% and drug APC targeting by 10-fold and significantly reduced parasite burden and toxicity. Fortuitously, the PDD immunopotentiating effect significantly enhanced parasite-specific T-cell responses in immunocompetent infected mice. PDD reduced the effective dose and toxicity of LAmB and resulted in elicitation of strong parasite specific T-cell responses. A reduced effective therapeutic dose was achieved by selective LAmB delivery to APC, bypassing bystander cells, reducing toxicity and inducing antiparasite immunity.

  13. Apoptosis modulation in the immune system reveals a role of neutrophils in tissue damage in a murine model of chlamydial genital infection.

    Science.gov (United States)

    Zortel, Tom; Schmitt-Graeff, Annette; Kirschnek, Susanne; Häcker, Georg

    2018-03-07

    Chlamydial infection frequently causes damage to the female genital tract. The precise mechanisms of chlamydial clearance and tissue damage are unknown but studies suggest immunopathology with a particular role of neutrophils. The goal of this study was to understand the contribution of the immune system, in particular neutrophils. Using Chlamydia muridarum, we infected mice with a prolonged immune response due to expression of Bcl-2 in haematopoietic cells (Bcl-2-mice), and mice where mature neutrophils are lacking due to the deletion of Mcl-1 in myeloid cells (LysM-cre-mcl-1-flox-mice; Mcl-1-mice). We monitored bacterial clearance, cellular infiltrate and long-term tissue damage. Both mutant strains showed slightly delayed clearance of the acute infection. Bcl-2-mice had a strongly increased inflammatory infiltrate concerning almost all cell lineages. The infection of Bcl-2-mice caused increased tissue damage. The loss of neutrophils in Mcl-1-mice was associated with substantial quantitative and qualitative alterations of the inflammatory infiltrate. Mcl-1-mice had higher chlamydial burden and reduced tissue damage, including lower incidence of hydrosalpinx and less uterine dilation. Inhibition of apoptosis in the haematopoietic system increases inflammation and tissue damage. Neutrophils have broad functions, including a role in chlamydial clearance and in tissue destruction.

  14. Enhancement of anti-murine colon cancer immunity by fusion of a SARS fragment to a low-immunogenic carcinoembryonic antigen

    Directory of Open Access Journals (Sweden)

    Lin Chen-Si

    2012-02-01

    Full Text Available Abstract Background It is widely understood that tumor cells express tumor-associated antigens (TAAs, of which many are usually in low immunogenicity; for example, carcinoembryonic antigen (CEA is specifically expressed on human colon cancer cells and is viewed as a low-immunogenic TAA. How to activate host immunity against specific TAAs and to suppress tumor growth therefore becomes important in cancer therapy development. Results To enhance the immune efficiency of CEA in mice that received, we fused a partial CEA gene with exogenous SARS-CoV fragments. Oral vaccination of an attenuated Salmonella typhimurium strain transformed with plasmids encoding CEA-SARS-CoV fusion gene into BALB/c mice elicited significant increases in TNF-α and IL-10 in the serum. In addition, a smaller tumor volume was observed in CT26/CEA-bearing mice who received CEA-SARS-CoV gene therapy in comparison with those administered CEA alone. Conclusion The administration of fusing CEA-SARS-CoV fragments may provide a promising strategy for strengthening the anti-tumor efficacy against low-immunogenic endogenous tumor antigens.

  15. Cell Type Preference of a Novel Human Derived Cell-Permeable Peptide dNP2 and TAT in Murine Splenic Immune Cells.

    Directory of Open Access Journals (Sweden)

    Sangho Lim

    Full Text Available Cell-permeable peptides (CPPs have been widely studied as an attractive drug delivery system to deliver therapeutic macromolecules such as DNA, RNA, and protein into cells. However, its clinical application is still limited and controversial due to the lack of a complete understanding of delivery efficiency in target cells. Previously we identified and characterized the novel and superior CPP, named dNP2, and here we comparatively analyzed intracellular delivery efficiency of dNP2 and TAT in various immune cells of mouse spleen to demonstrate their cell type preference. dNP2- or TAT-conjugated fluorescent proteins were most efficiently taken up by phagocytic cells such as dendritic cells and macrophages while little protein uptake was seen by lymphocytes including T cells, B cells, and NK cells. Interestingly CD8+ lymphoid dendritic cells and CD62LloCD44hi memory like T cell subsets showed significantly better uptake efficiency in vitro and in vivo relative to other dendritic cells or T cells, respectively. In addition, activated macrophages, T cells, and B cells took up the proteins more efficiently relative to when in the resting state. Importantly, only dNP2, not TAT, shows significant intracellular protein delivery efficiency in vivo. Collectively, this study provides important information regarding heterogeneous intracellular delivery efficiency of CPPs such as dNP2 and TAT with cell type preference in the spleen needed for its application in phagocytic cells or activated immune cells.

  16. Increased Nucleosomes and Neutrophil Activation Link to Disease Progression in Patients with Scrub Typhus but Not Murine Typhus in Laos.

    Science.gov (United States)

    Paris, Daniel H; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N; Day, Nicholas P J; Zeerleder, Sacha

    2015-01-01

    Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and

  17. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity.

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2013-02-15

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies.

  18. Mycobacterium tuberculosis Controls MicroRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity*

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R.; Das, Gobardhan

    2013-01-01

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies. PMID:23233675

  19. Chlamydia trachomatis and chlamydial heat shock protein 60-specific antibody and cell-mediated responses predict tubal factor infertility

    DEFF Research Database (Denmark)

    Tiitinen, A.; Surcel, H.-M.; Halttunen, M.

    2006-01-01

    60)-specific immunoglobulin G (IgG) antibodies were analysed using enzyme-linked immunosorbent assay (ELISA) kits. Proliferative reactivity of peripheral blood mononuclear cells was studied in vitro against Chlamydia elementary body (EB) and recombinant CHSP60 antigens. RESULTS: C. trachomatis......BACKGROUND: To evaluate the role of Chlamydia trachomatis-induced humoral and cell-mediated immune (CMI) responses in predicting tubal factor infertility (TFI). METHODS: Blood samples were taken from 88 women with TFI and 163 control women. C. trachomatis and chlamydial heat shock protein 60 (CHSP...

  20. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline

    2005-01-01

    and therefore protect mice against the otherwise fatal CD8+ T cell-mediated immune attack. Contrary to expectations, the accumulation of mononuclear cells in cerebrospinal fluid was only slightly delayed compared with mice with normal expression of both receptors. Even more surprising, CXCR3/CCR5 double-deficient......T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice...... mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma...

  1. Immune-Mediated Damage Completes the Parabola: Cryptococcus neoformans Pathogenesis Can Reflect the Outcome of a Weak or Strong Immune Response

    Directory of Open Access Journals (Sweden)

    Liise-anne Pirofski

    2017-12-01

    Full Text Available Cryptococcosis occurs most frequently in immunocompromised individuals. This has led to the prevailing view that this disease is the result of weak immune responses that cannot control the fungus. However, increasingly, clinical and experimental studies have revealed that the host immune response can contribute to cryptococcal pathogenesis, including the recent study of L. M. Neal et al. (mBio 8:e01415-17, 2017, https://doi.org/10.1128/mBio.01415-17 that reports that CD4+ T cells mediate tissue damage in experimental murine cryptococcosis. This finding has fundamental implications for our understanding of the pathogenesis of cryptococcal disease; it helps explain why immunotherapy has been largely unsuccessful in treatment and provides insight into the paradoxical observation that HIV-associated cryptococcosis may have a better prognosis than cryptococcosis in those with no known immune impairment. The demonstration that host-mediated damage can drive cryptococcal disease provides proof of concept that the parabola put forth in the damage-response framework has the flexibility to depict complex and changing outcomes of host-microbe interaction.

  2. T Cell-Mediated Modulation of Mast Cell Function: Heterotypic Adhesion-Induced Stimulatory or Inhibitory Effects

    Directory of Open Access Journals (Sweden)

    Yoseph A. Mekori

    2012-01-01

    Full Text Available Close physical proximity between mast cells and T cells has been demonstrated in several T cell mediated inflammatory processes such as rheumatoid arthritis and sarcoidosis. However, the way by which mast cells are activated in these T cell-mediated immune responses has not been fully elucidated. We have identified and characterized a novel mast cell activation pathway initiated by physical contact with activated T cells, and showed that this pathway is associated with degranulation and cytokine release. The signaling events associated with this pathway of mast cell activation have also been elucidated confirming the activation of the Ras MAPK systems. More recently, we hypothesized and demonstrated that mast cells may also be activated by microparticles released from activated T cells that are considered as miniature version of a cell. By extension, microparticles might affect the activity of mast cells, which are usually not in direct contact with T cells at the inflammatory site. Recent works have also focused on the effects of regulatory T cells on mast cells. These reports highlighted the importance of the cytokines IL-2 and IL-9, produced by mast cells and T cells, respectively, in obtaining optimal immune suppression. Finally, physical contact, associated by OX40-OX40L engagement has been found to underlie the down-regulatory effects exerted by regulatory T cells on mast cell function.

  3. A prospective study of the influence of a thalassaemia on morbidity from malaria and immune responses to defined Plasmodium falciparum antigens in Gambian children

    DEFF Research Database (Denmark)

    Allen, S J; Rowe, P; Allsopp, C E

    1993-01-01

    with the sickle cell trait alone. Specific antibody responses and cell-mediated immune responses in vitro to defined Plasmodium falciparum antigens were measured in children participating in the study. In general, there was no evidence of an increased prevalence or intensity of humoral or cell-mediated immune...

  4. Granzyme A Is Required for Regulatory T-Cell Mediated Prevention of Gastrointestinal Graft-versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Sarvari Velaga

    Full Text Available In our previous work we could identify defects in human regulatory T cells (Tregs likely favoring the development of graft-versus-host disease (GvHD following allogeneic stem cell transplantation (SCT. Treg transcriptome analyses comparing GvHD and immune tolerant patients uncovered regulated gene transcripts highly relevant for Treg cell function. Moreover, granzyme A (GZMA also showed a significant lower expression at the protein level in Tregs of GvHD patients. GZMA induces cytolysis in a perforin-dependent, FAS-FASL independent manner and represents a cell-contact dependent mechanism for Tregs to control immune responses. We therefore analyzed the functional role of GZMA in a murine standard model for GvHD. For this purpose, adoptively transferred CD4+CD25+ Tregs from gzmA-/- mice were analyzed in comparison to their wild type counterparts for their capability to prevent murine GvHD. GzmA-/- Tregs home efficiently to secondary lymphoid organs and do not show phenotypic alterations with respect to activation and migration properties to inflammatory sites. Whereas gzmA-/- Tregs are highly suppressive in vitro, Tregs require GZMA to rescue hosts from murine GvHD, especially regarding gastrointestinal target organ damage. We herewith identify GZMA as critical effector molecule of human Treg function for gastrointestinal immune response in an experimental GvHD model.

  5. Functional cell mediated lympholysis I. Description of the assay

    International Nuclear Information System (INIS)

    Goeken, N.E.; Thompson, J.S.

    1981-01-01

    The anamnestic response by human bi-directional (BD) mixed lymphocyte cultures (MLC) to restimulation by cells of the original stimulating type is generally strikingly reduced as compared to that of standard one-way cultures. This difference was shown not to be related to a change in kinetics nor was it due to exhaustion of the media or soluble factors since fresh media did not ameliorate the effect nor were supernatants from BD cultures found to be suppressive. The relative inhibition was also not reversed by removal of the allogeneic cells by phenotype specific antiserum. Cytotoxic tests with donor and responder specific antisera revealed that the cells bearing that phenotype were dramatically reduced in BD as compared to one-way cultures. Thus, the diminished secondary response appears to be due to cytotoxic elimination of the responder cells. This allogeneic cytotoxicity is dependent on non-T, phagocytic, adherent cells. The phenomenon is called Functional Cell Mediated Lympholysis (F-CML). (author)

  6. Allergic Potential and Immunotoxicity Induced by Topical Application of 1-Chloro-4-(Trifluoromethyl)Benzene (PCBTF) in a Murine Model

    Science.gov (United States)

    Franko, Jennifer; Jackson, Laurel G.; Meade, B. Jean; Anderson, Stacey E.

    2011-01-01

    The purpose of the studies in this paper was to evaluate the allergic potential, immunotoxicity, and irritancy of the occupationally relevant chemical, 1-chloro-4-(trifluoromethyl)benzene, also known as parachlorobenzotrifluoride (PCBTF), following dermal exposure in a murine model. Evaluation of the sensitization potential, conducted using the local lymph node assay (LLNA) at concentrations ranging from 50% to 100%, identified a dose-dependent increase in lymphocyte proliferation with a calculated EC3 value of 53.1%. While no elevations in total or specific IgE were observed after exposure to any concentration of the chemical, significant increases in IFN-γ protein production by stimulated draining lymphoid cells were observed, indicating a T-cell-mediated response. Dermal exposure to PCBTF was not found to alter the immune response to a T-cell-dependant antigen. These results demonstrate that PCBTF has the potential to induce allergic sensitization following dermal exposure and based on LLNA results would be classified as a weak sensitizer. PMID:21747864

  7. Clearance of 131I-labeled murine monoclonal antibody from patients' blood by intravenous human anti-murine immunoglobulin antibody

    International Nuclear Information System (INIS)

    Stewart, J.S.; Sivolapenko, G.B.; Hird, V.; Davies, K.A.; Walport, M.; Ritter, M.A.; Epenetos, A.A.

    1990-01-01

    Five patients treated with intraperitoneal 131I-labeled mouse monoclonal antibody for ovarian cancer also received i.v. exogenous polyclonal human anti-murine immunoglobulin antibody. The pharmacokinetics of 131I-labeled monoclonal antibody in these patients were compared with those of 28 other patients receiving i.p.-radiolabeled monoclonal antibody for the first time without exogenous human anti-murine immunoglobulin, and who had no preexisting endogenous human anti-murine immunoglobulin antibody. Patients receiving i.v. human anti-murine immunoglobulin antibody demonstrated a rapid clearance of 131I-labeled monoclonal antibody from their circulation. The (mean) maximum 131I blood content was 11.4% of the injected activity in patients receiving human anti-murine immunoglobulin antibody compared to 23.3% in patients not given human anti-murine immunoglobulin antibody. Intravenous human anti-murine immunoglobulin antibody decreased the radiation dose to bone marrow (from 131I-labeled monoclonal antibody in the vascular compartment) 4-fold. Following the injection of human anti-murine immunoglobulin antibody, 131I-monoclonal/human anti-murine immunoglobulin antibody immune complexes were rapidly transported to the liver. Antibody dehalogenation in the liver was rapid, with 87% of the injected 131I excreted in 5 days. Despite the efficient hepatic uptake of immune complexes, dehalogenation of monoclonal antibody was so rapid that the radiation dose to liver parenchyma from circulating 131I was decreased 4-fold rather than increased. All patients developed endogenous human anti-murine immunoglobulin antibody 2 to 3 weeks after treatment

  8. Interleukin 2 and alpha interferon induced in vitro modulation of spontaneous cell mediated cytotoxicity in patients with cancer of the uterine cervix undergoing radiotherapy

    International Nuclear Information System (INIS)

    Radhakrishna Pillai, M.; Balaram, P.; Padmanabhan, T.K.; Abraham, T.; Nair, M.K.; Regional Cancer Centre, Trivandrum

    1989-01-01

    In vitro modulation of spontaneous cell mediated cytotoxicity by interferon and interleukin 2 was carried out using peripheral blood lymphocytes from patients with cancer of the uterine cervix before and at different intervals after commencement of radiation treatment. A total of 150 patients with various stages of the disease were included and cytotoxicity was measured using the single cell cytotoxic assay. These results indicate a beneficial effect in vitro of interleukin 2 and interferon in augmenting spontaneous cell mediated cytotoxicity, a possibly vital antitumour immune mechanism in patients with relatively early cervix cancer. Natural killer cell, lymphokine activated killer cell and interferon activated killer cell activity was depressed immediately following radiotherapy. The activity of these cell types later on increased above pretreatment levels in patients with stages I, IIA and IIB. A similar rebound above pretreatment levels was not observed in patients with stages III and IV. (orig.)

  9. Mast cell mediator tryptase levels after inhalation or intravenous administration of high doses pharmaceutically prepared heroin

    NARCIS (Netherlands)

    Rook, E. J.; van Zanten, A. P.; van den Brink, W.; van Ree, J. M.; Beijnen, J. H.

    2006-01-01

    BACKGROUND: Opioids like morphine and heroin induce mast cell degranulation in vitro. The release of mast cell mediators like histamine and tryptase may lead to allergic symptoms. In this study it was investigated whether mast cell mediator release also occurs in vivo in addicted patients who

  10. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  11. Elaeocarpusin Inhibits Mast Cell-Mediated Allergic Inflammation

    Directory of Open Access Journals (Sweden)

    Min-Jong Kim

    2018-06-01

    Full Text Available Mast cells are major effector cells for allergic responses that act by releasing inflammatory mediators, such as histamine and pro-inflammatory cytokines. Accordingly, different strategies have been pursued to develop anti-allergic and anti-inflammatory candidates by regulating the function of mast cells. The purpose of this study was to determine the effectiveness of elaeocarpusin (EL on mast cell-mediated allergic inflammation. We isolated EL from Elaeocarpus sylvestris L. (Elaeocarpaceae, which is known to possess anti-inflammatory properties. For this study, various sources of mast cells and mouse anaphylaxis models were used. EL suppressed the induction of markers for mast cell degranulation, such as histamine and β-hexosaminidase, by reducing intracellular calcium levels. Expression of pro-inflammatory cytokines, such as tumor necrosis factor-α and IL-4, was significantly decreased in activated mast cells by EL. This inhibitory effect was related to inhibition of the phosphorylation of Fyn, Lyn, Syk, and Akt, and the nuclear translocation of nuclear factor-κB. To confirm the effect of EL in vivo, immunoglobulin E-mediated passive cutaneous anaphylaxis (PCA and ovalbumin-induced active systemic anaphylaxis (ASA models were induced. EL reduced the PCA reaction in a dose dependent manner. In addition, EL attenuated ASA reactions such as hypothemia, histamine release, and IgE production. Our results suggest that EL is a potential therapeutic candidate for allergic inflammatory diseases that acts via the inhibition of mast cell degranulation and expression of proinflammatory cytokines.

  12. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    Science.gov (United States)

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  13. Cell-mediated immunity and energy production defects in precancerous cervical lesions

    Czech Academy of Sciences Publication Activity Database

    Jandová, Anna; Kobilková, J.; Trojan, S.; Nedbalová, M.; Dohnalová, A.; Beková, A.; Slavík, V.; Janoušek, M.; Strunová, M.; Čoček, A.; Pokorný, Jiří

    2007-01-01

    Roč. 51, No 2 (2007), s. 298-299 ISSN 0001-5547. [International Congress of Cytology /16./. Vancouver, 13.05.2007-17.05.2007] Institutional research plan: CEZ:AV0Z20670512 Keywords : electromagnetic fields * biophysics * cancer Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.697, year: 2007

  14. Cell-mediated immune response to Leishmania chagasi experimental infection of BALB/c immunosuppressed mice

    Directory of Open Access Journals (Sweden)

    JG Machado

    2010-01-01

    Full Text Available Leishmaniasis, a zoonosis of worldwide distribution, presents a significant impact on immunosupressed patients. This study aimed to evaluate Leishmania chagasi infection in BALB/c mice immunosuppressed with dexamethasone. Spleen cells stimulated or not with L. chagasi were cultured for cytokine quantification (IFN-γ, IL-2, IL-4 and IL-10 by sandwich ELISA. Parasite loads in the spleen and liver were determined by means of culture microtitration. Immunosuppressed groups showed statistically lower spleen weight and CD4-cell percentage in blood on the day of infection and produced Th1 and Th2 cytokines on other days of the study. The other infected groups, weather immunosupressed or not, also produced Th1 and Th2 cytokines. Parasite loads in the spleen and liver were not statistically different among the groups. It was concluded that L. chagasi infection was not affected by dexamethasone-induced immunosuppression, probably due the reversible effect of the treatment.

  15. Cell-mediated immunity as an early diagnostic test for osteosarcoma in human radium cases

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Menon, M.; Mitchen, J.L.

    1976-01-01

    Lymphocytes from patients carrying a body burden greater than 0.3 μCi of 226 Ra have been tested for specific cytotoxicity to four different osteosarcoma cell lines as well as to normal human fibroblasts. Cytotoxicity indexes (defined as the ratio of the number of target cells remaining, after treatment with the patients' lymphocytes, relative to the values obtained with normal control subjects) have been calculated. With one exception no cytotoxicity was observed. This is in agreement with the fact that no fresh osteosarcomas were diagnosed. The patient in whom cytotoxicity was found was suffering from an inflammatory lesion involving bone as the result of a foreign-body reaction at the time of the first test. When the test was repeated 10 months later, no cytotoxicity was observed. No significant nonspecific cytotoxicity was observed when lymphocytes from normal control subjects were interacted with any of the target cell lines

  16. CD4+ T cell mediated chronic intestinal disease : immune regulation versus inflammation

    OpenAIRE

    Westendorf, Astrid Maria

    2004-01-01

    Die Ätiologie von chronisch entzündlichen Darmerkrankungen ist weitgehend ungeklärt. Nach derzeitiger Auffassung liegt der Schwerpunkt in der Dysregulation lokaler immunologischer Reaktionen in der Darmmukosa. Zur Untersuchung der chronisch entzündlichen Darmerkrankungen wurde ein CD4+ T Zell basiertes doppelt-transgenes Mausmodell entwickelt. Die gleichzeitige Expression eines Modellantigens in Darmepithelzellen und antigenspezifischen CD4+ T Zellen führten zu einer chronischen Entzündungsre...

  17. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    Science.gov (United States)

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C.A.; Patsopoulos, Nikolaos A.; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E.; Edkins, Sarah; Gray, Emma; Booth, David R.; Potter, Simon C.; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D’alfonso, Sandra; Blackburn, Hannah; Boneschi, Filippo Martinelli; Liddle, Jennifer; Harbo, Hanne F.; Perez, Marc L.; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P.; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T.; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J.; Barcellos, Lisa F.; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E.; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P.; Brassat, David; Broadley, Simon A.; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M.; Cavalla, Paola; Celius, Elisabeth G.; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B.; Cozen, Wendy; Cree, Bruce A.C.; Cross, Anne H.; Cusi, Daniele; Daly, Mark J.; Davis, Emma; de Bakker, Paul I.W.; Debouverie, Marc; D’hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F.A.; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N.; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G.; Kilpatrick, Trevor J.; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S.; Leone, Maurizio A.; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R.; Link, Jenny; Liu, Jianjun; Lorentzen, Åslaug R.; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L.; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L.; Ramsay, Patricia P.; Reunanen, Mauri; Reynolds, Richard; Rioux, John D.; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P.; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A.; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J.; Sellebjerg, Finn; Selmaj, Krzysztof W.; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M.A.; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C.; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M.; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A.; Tronczynska, Ewa; Casas, Juan P.; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S.; Wang, Kai; Mathew, Christopher G.; Wason, James; Palmer, Colin N.A.; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C.; Yaouanq, Jacqueline; Viswanathan, Ananth C.; Zhang, Haitao; Wood, Nicholas W.; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R.; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J.; De Jager, Philip L.; Peltonen, Leena; Stewart, Graeme J.; Hafler, David A.; Hauser, Stephen L.; McVean, Gil; Donnelly, Peter; Compston, Alastair

    2011-01-01

    Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis. PMID:21833088

  18. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    DEFF Research Database (Denmark)

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti

    2011-01-01

    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown...... the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture...... underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working...

  19. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    DEFF Research Database (Denmark)

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti

    2011-01-01

    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that g...

  20. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Abschuetz, Oliver [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Osen, Wolfram [Division of Translational Immunology, German Cancer Center, Heidelberg 69120 (Germany); Frank, Kathrin [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Kato, Masashi [Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501 (Japan); Schadendorf, Dirk [Department of Dermatology, University Hospital Essen, Essen 45122 (Germany); Umansky, Viktor, E-mail: v.umansky@dkfz.de [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany)

    2012-04-26

    Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.

  1. In vitro cell-mediated immunity studies of plutonium-exposed beagle dogs

    International Nuclear Information System (INIS)

    Morris, J.E.; Graham, T.; Park, J.F.

    1980-01-01

    Mitogen-induced activation was measured in spleen and mesenteric lymph node cell preparations from dogs exposed to a single inhalation exposure of plutonium oxide ( 238 Pu or 239 Pu). Reduced stimulation indices of splenic lymphocytes from exposed animals suggest that a reduction in lymphocyte function has occurred in this tissue. No apparent reduction in mitogen stimulation indices was observed in mesenteric lymph node cultures

  2. Humoral and cell-mediated immune response against human retinal antigens in relation to ocular onchocerciasis

    NARCIS (Netherlands)

    van der Lelij, A.; Rothova, A.; Stilma, J. S.; Vetter, J. C.; Hoekzema, R.; Kijlstra, A.

    1990-01-01

    Autoimmune mechanisms are thought to be involved in the pathogenesis of the chorioretinal changes in ocular onchocerciasis. The humoral autoimmune response was determined by measuring serum levels of autoantibodies, directed against human S-antigen and interphotoreceptor retinoid binding protein

  3. Cell-mediated immunity in recent-onset type 1 diabetic children

    African Journals Online (AJOL)

    EL-HAKIM

    diabetes (disease duration <6 months) who were compared to 10 healthy children. ... percentage (p<0.01) and significantly lower CD8+ CD25+ lymphocytes percentage (p<0.05) ..... cells CD8+ CD25+ T-reg cells act by direct cell to cell contact ...

  4. An endogenous immune adjuvant released by necrotic cells for enhancement of DNA vaccine potency.

    Science.gov (United States)

    Dorostkar, Rohollah; Bamdad, Taravat; Parsania, Masoud; Pouriayevali, Hassan

    2012-12-01

    Improving vaccine potency in the induction of a strong cell-mediated cytotoxicity can enhance the efficacy of vaccines. Necrotic cells and the supernatant of necrotic tumor cells are attractive adjuvants, on account of their ability to recruit antigen-presenting cells to the site of antigen synthesis as well as its ability to stimulate the maturation of dendritic cells. To evaluate the utility of supernatant of necrotic tumor cells as a DNA vaccine adjuvant in a murine model. The supernatant of EL4 necrotic cells was co-administered with a DNA vaccine expressing the glycoprotein B of Herpes simplex virus-1 as an antigen model under the control of Cytomegalovirus promoter. C57BL/6 mice were vaccinated three times at two weeks intervals with glycoprotein B DNA vaccine and supernatant of necrotic EL4 cells. Five days after the last immunization, cell cytotoxicity, IFN-γ and IL-4 were evaluated. The obtained data showed that the production of IFN-γ from the splenocytes after antigenic stimulation in the presence of the supernatant of necrotic EL4 cells was significantly higher than the other groups (pEL4 cells in the mice immunized with DNA vaccine and supernatant of necrotic EL4 cells comparing to the other groups (p<0.001). The supernatant of necrotic cells contains adjuvant properties that can be considered as a candidate for tumor vaccination.

  5. Inflammatory impact of IFN-γ in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways

    Science.gov (United States)

    Ramana, Chilakamarti V.; DeBerge, Matthew P.; Kumar, Aseem; Alia, Christopher S.; Durbin, Joan E.

    2015-01-01

    Influenza infection results in considerable pulmonary pathology, a significant component of which is mediated by CD8+ T cell effector functions. To isolate the specific contribution of CD8+ T cells to lung immunopathology, we utilized a nonviral murine model in which alveolar epithelial cells express an influenza antigen and injury is initiated by adoptive transfer of influenza-specific CD8+ T cells. We report that IFN-γ production by adoptively transferred influenza-specific CD8+ T cells is a significant contributor to acute lung injury following influenza antigen recognition, in isolation from its impact on viral clearance. CD8+ T cell production of IFN-γ enhanced lung epithelial cell expression of chemokines and the subsequent recruitment of inflammatory cells into the airways. Surprisingly, Stat1 deficiency in the adoptive-transfer recipients exacerbated the lung injury that was mediated by the transferred influenza-specific CD8+ T cells but was still dependent on IFN-γ production by these cells. Loss of Stat1 resulted in sustained activation of Stat3 signaling, dysregulated chemokine expression, and increased infiltration of the airways by inflammatory cells. Taken together, these data identify important roles for IFN-γ signaling and Stat1-independent IFN-γ signaling in regulating CD8+ T cell-mediated acute lung injury. This is the first study to demonstrate an anti-inflammatory effect of Stat1 on CD8+ T cell-mediated lung immunopathology without the complication of differences in viral load. PMID:25617378

  6. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  7. CD4+ T Cells Mediate Aspergillosis Vaccine Protection.

    Science.gov (United States)

    Diaz-Arevalo, Diana; Kalkum, Markus

    2017-01-01

    Adaptive effector CD4 + T cells play essential roles in the defense against fungal infections, especially against invasive aspergillosis (IA). Such protective CD4 + T cells can be generated through immunization with specialized antifungal vaccines, as has been demonstrated for pulmonary Aspergillus fumigatus infections in mouse experiments. Adaptive transfer of fungal antigen-specific CD4 + T cells conferred protection onto non-immunized naive mice, an experimental approach that could potentially become a future treatment option for immunosuppressed IA patients, focusing on the ultimate goal to improve their otherwise dim chances for survival. Here, we describe the different techniques to analyze CD4 + T cell immune responses after immunization with a recombinant fungal protein. We present three major methods that are used to analyze the role of CD4 + T cells in protection against A. fumigatus challenge. They include (1) transplantation of CD4 + T cells from vaccinated mice into immunosuppressed naive mice, observing increasing protection of the cell recipients, (2) depletion of CD4 + T cells from vaccinated mice, which abolishes vaccine protection, and (3) T cell proliferation studies following stimulation with overlapping synthetic peptides or an intact protein vaccine. The latter can be used to validate immunization status and to identify protective T cell epitopes in vaccine antigens. In the methods detailed here, we used versions of the well-studied Asp f3 protein expressed in a bacterial host, either as the intact full length protein or its N-terminally truncated version, comprised of residues 15-168. However, these methods are generally applicable and can well be adapted to study other protein-based subunit vaccines.

  8. Functional Heterogeneity in the CD4+ T Cell Response to Murine γ-Herpesvirus 68

    Science.gov (United States)

    Hu, Zhuting; Blackman, Marcia A.; Kaye, Kenneth M.; Usherwood, Edward J.

    2015-01-01

    CD4+ T cells are critical for the control of virus infections, T cell memory and immune surveillance. Here we studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4+ T cells using gp150-specific TCR transgenic mice. This allowed a more detailed study of the characteristics of the CD4+ T cell response than previously available approaches for this virus. Most gp150-specific CD4+ T cells expressed T-bet and produced IFN-γ, indicating MHV-68 infection triggered differentiation of CD4+ T cells largely into the Th1 subset, whereas some became TFH and Foxp3+ regulatory T cells. These CD4+ T cells were protective against MHV-68 infection, in the absence of CD8+ T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4+ T cells, based on Ly6C expression. Ly6C expression positively correlated with IFN-γ, TNF-α and granzyme B production, T-bet and KLRG1 expression, proliferation and CD4+ T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression and secondary expansion potential. Ly6C+ and Ly6C− gp150-specific CD4+ T cells were able to interconvert in a bidirectional manner upon secondary antigen exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4+ T cells, but inversely correlated with memory potential. Interconversion between Ly6C+ and Ly6C− cells may maintain a balance between the two antigen-specific CD4+ T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4+ T cells during persistent virus infection. PMID:25662997

  9. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab

    OpenAIRE

    Fujii, Rika; Friedman, Eitan R.; Richards, Jacob; Tsang, Kwong Y.; Heery, Christopher R.; Schlom, Jeffrey; Hodge, James W.

    2016-01-01

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 ch...

  10. Enhancing Natural Killer Cell Mediated Targeting and Responses to Myeloid Leukemias

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0380 TITLE: Enhancing Natural Killer Cell Mediated Targeting and Responses to Myeloid Leukemias PRINCIPAL...2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Enhancing Natural Killer Cell Mediated Targeting and Responses to Myeloid Leukemias 5b. GRANT NUMBER...leukemias still have poor prognosis, particularly in the elderly, and require hematopoietic cell transplants to fully kill the tumor, which is both

  11. Protective antitumor activity induced by a fusion vaccine with murine ...

    African Journals Online (AJOL)

    Targeting angiogenesis is an effective strategy for anticancer therapy. The vascular endothelialcadherin (VE-cad) regulated angiogenesis is a potential target for anti-angiogenesis. Here, we develop a fusion vaccine plasmid DNA pSec-MBD2-VE-cad from VE-cad and murine beta defensin2 (MBD2) to induce immunity for ...

  12. Systemic BCG immunization induces persistent lung mucosal multifunctional CD4 T(EM cells which expand following virulent mycobacterial challenge.

    Directory of Open Access Journals (Sweden)

    Daryan A Kaveh

    Full Text Available To more closely understand the mechanisms of how BCG vaccination confers immunity would help to rationally design improved tuberculosis vaccines that are urgently required. Given the established central role of CD4 T cells in BCG induced immunity, we sought to characterise the generation of memory CD4 T cell responses to BCG vaccination and M. bovis infection in a murine challenge model. We demonstrate that a single systemic BCG vaccination induces distinct systemic and mucosal populations of T effector memory (T(EM cells in vaccinated mice. These CD4+CD44(hiCD62L(loCD27⁻ T cells concomitantly produce IFN-γ and TNF-α, or IFN-γ, IL-2 and TNF-α and have a higher cytokine median fluorescence intensity MFI or 'quality of response' than single cytokine producing cells. These cells are maintained for long periods (>16 months in BCG protected mice, maintaining a vaccine-specific functionality. Following virulent mycobacterial challenge, these cells underwent significant expansion in the lungs and are, therefore, strongly associated with protection against M. bovis challenge. Our data demonstrate that a persistent mucosal population of T(EM cells can be induced by parenteral immunization, a feature only previously associated with mucosal immunization routes; and that these multifunctional T(EM cells are strongly associated with protection. We propose that these cells mediate protective immunity, and that vaccines designed to increase the number of relevant antigen-specific T(EM in the lung may represent a new generation of TB vaccines.

  13. Immune cell-derived c3 is required for autoimmune diabetes induced by multiple low doses of streptozotocin.

    Science.gov (United States)

    Lin, Marvin; Yin, Na; Murphy, Barbara; Medof, M Edward; Segerer, Stephan; Heeger, Peter S; Schröppel, Bernd

    2010-09-01

    The complement system contributes to autoimmune injury, but its involvement in promoting the development of autoimmune diabetes is unknown. In this study, our goal was to ascertain the role of complement C3 in autoimmune diabetes. Susceptibility to diabetes development after multiple low-dose streptozotocin treatment in wild-type (WT) and C3-deficient mice was analyzed. Bone marrow chimeras, luminex, and quantitative reverse transcription PCR assays were performed to evaluate the phenotypic and immunologic impact of C3 in the development of this diabetes model. Coincident with the induced elevations in blood glucose levels, we documented alternative pathway complement component gene expression within the islets of the diabetic WT mice. When we repeated the experiments with C3-deficient mice, we observed complete resistance to disease, as assessed by the absence of histologic insulitis and the absence of T-cell reactivity to islet antigens. Studies of WT chimeras bearing C3-deficient bone marrow cells showed that bone marrow cell-derived C3, and not serum C3, is involved in the induction of diabetes in this model. The data reveal a key role for immune cell-derived C3 in the pathogenesis of murine multiple low-dose streptozotocin-induced diabetes and support the concept that immune cell mediated diabetes is in part complement-dependent.

  14. Innate immunity in vertebrates: an overview.

    Science.gov (United States)

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  15. Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy

    Science.gov (United States)

    Roit, Fabio Da; Engelberts, Patrick J.; Taylor, Ronald P.; Breij, Esther C.W.; Gritti, Giuseppe; Rambaldi, Alessandro; Introna, Martino; Parren, Paul W.H.I.; Beurskens, Frank J.; Golay, Josée

    2015-01-01

    The novel Bruton tyrosine kinase inhibitor ibrutinib and phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib are promising drugs for the treatment of chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma, either alone or in combination with anti-CD20 antibodies. We investigated the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct cell death of cell lines or chronic lymphocytic leukemia samples mediated by anti-CD20 antibodies. Pre-treatment with ibrutinib did not inhibit complement activation or complement-mediated lysis. In contrast, ibrutinib strongly inhibited all cell-mediated mechanisms induced by anti-CD20 antibodies rituximab, ofatumumab or obinutuzumab, either in purified systems or whole blood assays. Activation of natural killer cells, and antibody-dependent cellular cytotoxicity by these cells, as well as phagocytosis by macrophages or neutrophils were inhibited by ibrutinib with a half maximal effective concentration of 0.3–3 μM. Analysis of anti-CD20 mediated activation of natural killer cells isolated from patients on continued oral ibrutinib treatment suggested that repeated drug dosing inhibits these cells in vivo. Finally we show that the phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib similarly inhibited the immune cell-mediated mechanisms induced by anti-CD20 antibodies, although the effects of this drug at 10 μM were weaker than those observed with ibrutinib at the same concentration. We conclude that the design of combined treatment schedules of anti-CD20 antibodies with these kinase inhibitors should consider the multiple negative interactions between these two classes of drugs. PMID:25344523

  16. Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells

    Science.gov (United States)

    Van Audenaerde, Jonas R.M.; De Waele, Jorrit; Marcq, Elly; Van Loenhout, Jinthe; Lion, Eva; Van den Bergh, Johan M.J.; Jesenofsky, Ralf; Masamune, Atsushi; Roeyen, Geert; Pauwels, Patrick; Lardon, Filip; Peeters, Marc; Smits, Evelien L.J.

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related death in Western countries with a 5-year survival rate below 5%. One of the hallmarks of this cancer is the strong desmoplastic reaction within the tumor microenvironment (TME), orchestrated by activated pancreatic stellate cells (PSC). This results in a functional and mechanical shield which causes resistance to conventional therapies. Aiming to overcome this resistance by tackling the stromal shield, we assessed for the first time the capacity of IL-15 stimulated natural killer (NK) cells to kill PSC and pancreatic cancer cells (PCC). The potency of IL-15 to promote NK cell-mediated killing was evaluated phenotypically and functionally. In addition, NK cell and immune checkpoint ligands on PSC were charted. We demonstrate that IL-15 activated NK cells kill both PCC and PSC lines (range 9-35% and 20-50%, respectively) in a contact-dependent manner and significantly higher as compared to resting NK cells. Improved killing of these pancreatic cell lines is, at least partly, dependent on IL-15 induced upregulation of TIM-3 and NKG2D. Furthermore, we confirm significant killing of primary PSC by IL-15 activated NK cells in an ex vivo autologous system. Screening for potential targets for immunotherapeutic strategies, we demonstrate surface expression of both inhibitory (PD-L1, PD-L2) and activating (MICA/B, ULBPs and Galectin-9) ligands on primary PSC. These data underscore the therapeutic potential of IL-15 to promote NK cell-mediated cytotoxicity as a treatment of pancreatic cancer and provide promising future targets to tackle remaining PSC. PMID:28915646

  17. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    Science.gov (United States)

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Immunity to fish rhabdoviruses

    Science.gov (United States)

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  19. Immunity to fish rhabdoviruses.

    Science.gov (United States)

    Purcell, Maureen K; Laing, Kerry J; Winton, James R

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  20. Immunity to Fish Rhabdoviruses

    Directory of Open Access Journals (Sweden)

    Maureen K. Purcell

    2012-01-01

    Full Text Available Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M protein to mediate host-cell shutoff and the non‑virion (NV protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  1. Towards Future T Cell-Mediated Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Thi H. O. Nguyen

    2016-04-01

    Full Text Available Influenza A virus (IAVs infections impact significantly on global health, being particularly problematic in children, the elderly, pregnant women, indigenous populations and people with co-morbidities. Antibody-based vaccines require annual administration to combat rapidly acquired mutations modifying the surface haemagglutinin (HA and neuraminidase (NA glycoproteins. Conversely, influenza-specific CD8+ T cell responses directed at peptides derived from the more conserved internal virus proteins are known to be protective, suggesting that T cell-based vaccines may provide long-lasting cross-protection. This review outlines the importance of CD8+ T cell immunity to seasonal influenza and pandemic IAVs and summarises current vaccination strategies for inducing durable CD8+ T cell memory. Aspects of future IAV vaccine design and the use of live virus challenge in humans to establish proof of principle are also discussed.

  2. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  3. Combination approaches with immune checkpoint blockade in cancer therapy

    Directory of Open Access Journals (Sweden)

    Maarten Swart

    2016-11-01

    Full Text Available In healthy individuals, immune checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune checkpoint blockade of cytotoxic T lymphocyte antigen-4 (CTLA-4 and programmed death-1 (PD-1 emerged as promising strategies to activate anti-tumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune checkpoint blockade, aimed at increasing response-rates to the single treatments.

  4. Cells of the J774 macrophage cell line are primed for antibody-dependent cell-mediated cytotoxicity following exposure to γ-irradiation

    International Nuclear Information System (INIS)

    Duerst, R.; Werberig, K.

    1991-01-01

    Activation of macrophages (M phi) for host defense against tumor cells follows a sequence of priming events followed by an initiating stimulus that results in production and release of cytotoxic molecules that mediate target cell killing. The authors have developed a model to study specific macrophage cytotoxicity in vitro utilizing a cultured murine M phi cell line, J774. Specific cytotoxicity of cultured human gastrointestinal tumor cells is achieved in the presence of murine IgG2a monoclonal antibody (mAb) 17-1-A. The ability of these cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) is greatly enhanced following gamma-irradiation. ADCC can be demonstrated at mAb 17-1-A concentrations greater than or equal to 1 microgram/ml and effector/target cell ratios greater than or equal to 2. Exposure to doses greater than or equal to 10 Gy of gamma-irradiation increases ADCC threefold. Varying the duration from J774 M phi exposure to γ-irradiation until addition of antibody-coated target cells showed that the primed state for ADCC is stable for at least 8 days but approximately 24 hr is required for complete development of the primed state. mAb-dependent target cell death begins 8 hr after addition of mAb and labeled target cells to primed effector cells and is complete by 24 hr. Incubation of unirradiated J774 M phi effector cells with recombinant murine interferon-γ (rmIFN-γ) also results in enhanced ADCC, but the extent of target cell killing achieved is less than that following priming by γ-irradiation. Concomitant priming of γ-irradiated J774 M phi with rmIFN-γ increases the extent of ADCC. Further study of irradiated J774 cells may elucidate the molecular pathways utilized by M phi for achieving and maintaining the primed state for ADCC

  5. Huperzine A ameliorates experimental autoimmune encephalomyelitis via the suppression of T cell-mediated neuronal inflammation in mice.

    Science.gov (United States)

    Wang, Jun; Chen, Fu; Zheng, Peng; Deng, Weijuan; Yuan, Jia; Peng, Bo; Wang, Ruochen; Liu, Wenjun; Zhao, Hui; Wang, Yanqing; Wu, Gencheng

    2012-07-01

    Huperzine A (HupA), a sesquiterpene alkaloid and a potent and reversible inhibitor of acetylcholinesterase, possesses potential anti-inflammatory properties and is used for the treatment of certain neurodegenerative diseases such as Alzheimer's disease. However, it is still unknown whether this chemical is beneficial in the treatment of multiple sclerosis, a progressive inflammatory disease of the central nervous system. In this study, we examined the immunomodulatory properties of HupA in experimental autoimmune encephalomyelitis (EAE), a T-cell mediated murine model of multiple sclerosis. The following results were obtained: (1) intraperitoneal injections of HupA significantly attenuate the neurological severity of EAE in mice. (2) HupA decreases the accumulation of inflammatory cells, autoimmune-related demyelination and axonal injury in the spinal cords of EAE mice. (3) HupA down-regulates mRNA levels of the pro-inflammatory cytokines (IFN-γ and IL-17) and chemokines (MCP-1, RANTES, and TWEAK) while enhancing levels of anti-inflammatory cytokines (IL-4 and IL-10) in the spinal cords of EAE mice. (4) HupA inhibits MOG(35-55) stimulation-induced T-cell proliferation and IFN-γ and IL-17 secretion in cultured splenocytes. (5) HupA inhibition of T-cell proliferation is reversed by the nicotinic acetylcholinergic receptor antagonist mecamylamine. We conclude that HupA can ameliorate EAE by suppressing autoimmune responses, inflammatory reactions, subsequent demyelination and axonal injury in the spinal cord. Therefore, HupA may have a potential therapeutic value for the treatment of multiple sclerosis and as a neuroimmunomodulatory drug to control human CNS pathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression

    International Nuclear Information System (INIS)

    Meissonnier, Guylaine M.; Pinton, Philippe; Laffitte, Joelle; Cossalter, Anne-Marie; Gong, Yun Yun; Wild, Christopher P.; Bertin, Gerard; Galtier, Pierre; Oswald, Isabelle P.

    2008-01-01

    Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 μg pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-α, IL-1β, IL-6, IFN-γ) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-γ and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1

  7. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    Science.gov (United States)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  8. CD95-CD95L: can the brain learn from the immune system?

    DEFF Research Database (Denmark)

    Becher, B; Barker, P A; Owens, T

    1998-01-01

    being recognized that CD95 signaling by immune cells mediates effects other than apoptosis, such as cell survival and under inflammatory conditions expression of this protein promotes neural-immune interactions. Both neuroscientists and immunologists can contribute to defining the mechanisms underlying...

  9. Effects of alcohol consumption on the allergen-specific immune response in mice

    DEFF Research Database (Denmark)

    Linneberg, Allan; Roursgaard, Martin; Hersoug, Lars-Georg

    2008-01-01

    There is evidence that chronic alcohol consumption impairs the T-helper 1 (Th1) lymphocyte-regulated cell-mediated immune response possibly favoring a Th2 deviation of the immune response. Moreover, a few epidemiological studies have linked alcohol consumption to allergen-specific IgE sensitization....

  10. Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent

    Directory of Open Access Journals (Sweden)

    Heinzen Robert A

    2009-05-01

    Full Text Available Abstract Background The obligate intracellular bacterial pathogen Coxiella burnetii causes the zoonosis Q fever. The intracellular niche of C. burnetii has led to the assumption that cell-mediated immunity is the most important immune component for protection against this pathogen. However, passive immunization with immune serum can protect naïve animals from challenge with virulent C. burnetii, indicating a role for antibody (Ab in protection. The mechanism of this Ab-mediated protection is unknown. Therefore, we conducted a study to determine whether Fc receptors (FcR or complement contribute to Ab-mediated immunity (AMI to C. burnetii. Results Virulent C. burnetii infects and replicates within human dendritic cells (DC without inducing their maturation or activation. We investigated the effects of Ab opsonized C. burnetii on human monocyte-derived and murine bone marrow-derived DC. Infection of DC with Ab-opsonized C. burnetii resulted in increased expression of maturation markers and inflammatory cytokine production. Bacteria that had been incubated with naïve serum had minimal effect on DC, similar to virulent C. burnetii alone. The effect of Ab opsonized C. burnetii on DC was FcR dependent as evidenced by a reduced response of DC from FcR knockout (FcR k/o compared to C57Bl/6 (B6 mice. To address the potential role of FcR in Ab-mediated protection in vivo, we compared the response of passively immunized FcR k/o mice to the B6 controls. Interestingly, we found that FcR are not essential for AMI to C. burnetii in vivo. We subsequently examined the role of complement in AMI by passively immunizing and challenging several different strains of complement-deficient mice and found that AMI to C. burnetii is also complement-independent. Conclusion Despite our data showing FcR-dependent stimulation of DC in vitro, Ab-mediated immunity to C. burnetii in vivo is FcR-independent. We also found that passive immunity to this pathogen is independent of

  11. Strong and multi-antigen specific immunity by hepatitis B core antigen (HBcAg)-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus.

    Science.gov (United States)

    Akbar, Sheikh Mohammad Fazle; Chen, Shiyi; Al-Mahtab, Mamun; Abe, Masanori; Hiasa, Yoichi; Onji, Morikazu

    2012-10-01

    Experimental evidence suggests that hepatitis B core antigen (HBcAg)-specific cytotoxic T lymphocytes (CTL) are essential for the control of hepatitis B virus (HBV) replication and prevention of liver damage in patients with chronic hepatitis B (CHB). However, most immune therapeutic approaches in CHB patients have been accomplished with hepatitis B surface antigen (HBsAg)-based prophylactic vaccines with unsatisfactory clinical outcomes. In this study, we prepared HBsAg-pulsed dendritic cells (DC) and HBcAg-pulsed DC by culturing spleen DC from HBV transgenic mice (HBV TM) and evaluated the immunomodulatory capabilities of these antigens, which may serve as a better therapy for CHB. The kinetics of HBsAg, antibody levels against HBsAg (anti-HBs), proliferation of HBsAg- and HBcAg-specific lymphocytes, production of antigen-specific CTL, and activation of endogenous DC were compared between HBV TM vaccinated with either HBsAg- or HBcAg-pulsed DC. Vaccination with HBsAg-pulsed DC induced HBsAg-specific immunity, but failed to induce HBcAg-specific immunity in HBV TM. However, immunization of HBV TM with HBcAg-pulsed DC resulted in: (1) HBsAg negativity, (2) production of anti-HBs, and (3) development of HBsAg- and HBcAg-specific T cells and CTL in the spleen and the liver. Additionally, significantly higher levels of activated endogenous DC were detected in HBV TM immunized with HBcAg-pulsed DC compared to HBsAg-pulsed DC (pdamage suggests that HBcAg should be an integral component of the therapeutic vaccine against CHB. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Signaling factors in stem cell-mediated repair of infarcted myocardium

    NARCIS (Netherlands)

    Vandervelde, S; van Luyn, MJA; Tio, RA; Harmsen, MC

    Myocardial infarction leads to scar formation and subsequent reduced cardiac performance. The ultimate therapy after myocardial infarction would pursue stem cell-based regeneration. The aim of stem cell-mediated cardiac repair embodies restoration of cardiac function by regeneration of healthy

  13. CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes.

    Science.gov (United States)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank; Briet, Claire; Löfbom, Linda; Yagita, Hideo; Lehuen, Agnes; Boitard, Christian; Holmberg, Dan; Sorokin, Lydia; Cardell, Susanna L

    2012-04-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.

  14. Fowlpox virus recombinants expressing HPV-16 E6 and E7 oncogenes for the therapy of cervical carcinoma elicit humoral and cell-mediated responses in rabbits.

    Science.gov (United States)

    Radaelli, Antonia; Pozzi, Eleana; Pacchioni, Sole; Zanotto, Carlo; Morghen, Carlo De Giuli

    2010-04-21

    Around half million new cases of cervical cancer arise each year, making the development of an effective therapeutic vaccine against HPV a high priority. As the E6 and E7 oncoproteins are expressed in all HPV-16 tumour cells, vaccines expressing these proteins might clear an already established tumour and support the treatment of HPV-related precancerous lesions. Three different immunisation regimens were tested in a pre-clinical trial in rabbits to evaluate the humoral and cell-mediated responses of a putative HPV-16 vaccine. Fowlpoxvirus (FP) recombinants separately expressing the HPV-16 E6 (FPE6) and E7 (FPE7) transgenes were used for priming, followed by E7 protein boosting. All of the protocols were effective in eliciting a high antibody response. This was also confirmed by interleukin-4 production, which increased after simultaneous priming with both FPE6 and FPE7 and after E7 protein boost. A cell-mediated immune response was also detected in most of the animals. These results establish a preliminary profile for the therapy with the combined use of avipox recombinants, which may represent safer immunogens than vaccinia-based vectors in immuno-compromised individuals, as they express the transgenes in most mammalian cells in the absence of a productive replication.

  15. Fowlpox virus recombinants expressing HPV-16 E6 and E7 oncogenes for the therapy of cervical carcinoma elicit humoral and cell-mediated responses in rabbits

    Directory of Open Access Journals (Sweden)

    Pacchioni Sole

    2010-04-01

    Full Text Available Abstract Background Around half million new cases of cervical cancer arise each year, making the development of an effective therapeutic vaccine against HPV a high priority. As the E6 and E7 oncoproteins are expressed in all HPV-16 tumour cells, vaccines expressing these proteins might clear an already established tumour and support the treatment of HPV-related precancerous lesions. Methods Three different immunisation regimens were tested in a pre-clinical trial in rabbits to evaluate the humoral and cell-mediated responses of a putative HPV-16 vaccine. Fowlpoxvirus (FP recombinants separately expressing the HPV-16 E6 (FPE6 and E7 (FPE7 transgenes were used for priming, followed by E7 protein boosting. Results All of the protocols were effective in eliciting a high antibody response. This was also confirmed by interleukin-4 production, which increased after simultaneous priming with both FPE6 and FPE7 and after E7 protein boost. A cell-mediated immune response was also detected in most of the animals. Conclusion These results establish a preliminary profile for the therapy with the combined use of avipox recombinants, which may represent safer immunogens than vaccinia-based vectors in immuno-compromised individuals, as they express the transgenes in most mammalian cells in the absence of a productive replication.

  16. Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity.

    Science.gov (United States)

    Siew, Yin-Yin; Neo, Soek-Ying; Yew, Hui-Chuing; Lim, Shun-Wei; Ng, Yi-Cheng; Lew, Si-Min; Seetoh, Wei-Guang; Seow, See-Voon; Koh, Hwee-Ling

    2015-12-01

    Selected cytotoxic chemicals can provoke the immune system to recognize and destroy malignant tumors. Most of the studies on immunogenic cell death are focused on the signals that operate on a series of receptors expressed by dendritic cells to induce tumor antigen-specific T-cell responses. Here, we explored the effects of oxaliplatin, an immunogenic cell death inducer, on the induction of stress ligands and promotion of natural killer (NK) cell-mediated cytotoxicity in human ovarian cancer cells. The results indicated that treatment of tumor cells with oxaliplatin induced the production of type I interferons and chemokines and enhanced the expression of major histocompatibility complex class I-related chains (MIC) A/B, UL16-binding protein (ULBP)-3, CD155 and TNF-related apoptosis-inducing ligand (TRAIL)-R1/R2. Furthermore, oxaliplatin but not cisplatin treatment enhanced susceptibility of ovarian cancer cells to NK cell-mediated cytolysis. In addition, activated NK cells completely abrogated the growth of cancer cells that were pretreated with oxaliplatin. However, cancer cells pretreated with the same concentration of oxaliplatin alone were capable of potentiating regrowth over a period of time. These results suggest an advantage in combining oxaliplatin and NK cell-based therapy in the treatment of ovarian cancer. Further investigation on such potential combination therapy is warranted. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Immune mechanisms in Babesia-infected animals

    International Nuclear Information System (INIS)

    Phillips, R.S.

    1980-01-01

    The course of a Babesia infection depends on the species of host and parasite involved. Animals infected with virulent babesias may need chemotherapy before acquired immunity develops. Maintenance of immunity is not dependent on the presence of the parasite. Babesia infections are characteristically of long duration. The immune response to babesias includes both humoral and cellular components. Antibody levels detected in serodiagnostic tests do not relate to levels of resistance to the parasite. Some antibodies, however, appear to be protective. Antiparasitic antibodies may damage parasites in or outside the red cell and act as opsonins. T-cell-deficient and anti-lymphocyte-serum-treated rodents are more susceptible to rodent piroplasms indicating a role for T-cells as either helper cells and/or as mediators of cell-mediated immunity (CMI). There is indirect evidence of CMI, but the cell-mediated mechanisms involved in parasite killing are not known. In domestic animals immunity is largely species- and strain-specific. Antigenic variation by babesias occurs. In rodents, however, there is cross-immunity between different species of rodent piroplasms and between rodent piroplasms and some malaria parasites. Prior infection with agents such as BCG, and Corynebacterium parvum, gives mice non-specific resistance to rodent piroplasms possibly mediated through a soluble non-antibody factor. This factor may also be liberated during piroplasm infections and by being toxic to malaria parasites account for heterologous immunity. Active immunization against babesias has been achieved with avirulent strains, irradiated parasites and dead parasites in adjuvant. During Babesia infections the primary and, to a lesser degree, the secondary immune response to heterologous antigens can be depressed. Maximum depression coincides with peak parasitaemia when antigen priming may be abolished completely. Immunosuppression during Babesia infections can prolong or exacerbate concurrent

  18. Dendritic cell mediated delivery of plasmid DNA encoding LAMP/HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gregory G Simon

    2010-01-01

    Full Text Available This report describes the identification and bioinformatics analysis of HLA-DR4-restricted HIV-1 Gag epitope peptides, and the application of dendritic cell mediated immunization of DNA plasmid constructs. BALB/c (H-2d and HLA-DR4 (DRA1*0101, DRB1*0401 transgenic mice were immunized with immature dendritic cells transfected by a recombinant DNA plasmid encoding the lysosome-associated membrane protein-1/HIV-1 Gag (pLAMP/gag chimera antigen. Three immunization protocols were compared: 1 primary subcutaneous immunization with 1x10(5 immature dendritic cells transfected by electroporation with the pLAMP/gag DNA plasmid, and a second subcutaneous immunization with the naked pLAMP/gag DNA plasmid; 2 primary immunization as above, and a second subcutaneous immunization with a pool of overlapping peptides spanning the HIV-1 Gag sequence; and 3 immunization twice by subcutaneous injection of the pLAMP/gag DNA plasmid. Primary immunization with pLAMP/gag-transfected dendritic cells elicited the greatest number of peptide specific T-cell responses, as measured by ex vivo IFN-gamma ELISpot assay, both in BALB/c and HLA-DR4 transgenic mice. The pLAMP/gag-transfected dendritic cells prime and naked DNA boost immunization protocol also resulted in an increased apparent avidity of peptide in the ELISpot assay. Strikingly, 20 of 25 peptide-specific T-cell responses in the HLA-DR4 transgenic mice contained sequences that corresponded, entirely or partially to 18 of the 19 human HLA-DR4 epitopes listed in the HIV molecular immunology database. Selection of the most conserved epitope peptides as vaccine targets was facilitated by analysis of their representation and variability in all reported sequences. These data provide a model system that demonstrates a the superiority of immunization with dendritic cells transfected with LAMP/gag plasmid DNA, as compared to naked DNA, b the value of HLA transgenic mice as a model system for the identification and evaluation

  19. The interleukin-15 system suppresses T cell-mediated autoimmunity by regulating negative selection and nT(H)17 cell homeostasis in the thymus.

    Science.gov (United States)

    Hou, Mau-Sheng; Huang, Shih-Ting; Tsai, Ming-Han; Yen, Ching-Cheng; Lai, Yein-Gei; Liou, Yae-Huei; Lin, Chih-Kung; Liao, Nan-Shih

    2015-01-01

    The interleukin-15 (IL-15) system is important for regulating both innate and adaptive immune responses, however, its role in autoimmune disease remained unclear. Here we found that Il15(-/-) and Il15ra(-/-) mice spontaneously developed late-onset autoimmune phenotypes. CD4(+) T cells of the knockout mice showed elevated autoreactivity as demonstrated by the induction of lymphocyte infiltration in the lacrimal and salivary glands when transferred into nude mice. The antigen-presenting cells in the thymic medullary regions expressed IL-15 and IL-15Rα, whose deficiency resulted in insufficient negative selection and elevated number of natural IL-17A-producing CD4(+) thymocytes. These findings reveal previously unknown functions of the IL-15 system in thymocyte development, and thus a new layer of regulation in T cell-mediated autoimmunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Production of antibodies which recognize opiate receptors on murine leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.J.J.; Bost, K.L.; Blalock, J.E.

    1988-01-01

    An antibody has been developed which recognizes opiate receptors on cells of the immune system. This antibody blocks specific binding of the radiolabeled opiate receptor ligand, /sup 3/H-dihydromorphine, to receptors on murine splenocytes. Additionally, the anti-receptor antibody competes with ..beta..-endorphin, meta-enkephalin, and naloxone for the same binding site on the leukocytes. Moreover, the anti-receptor antibody possesses agonist activity similar to ..beta..-endorphin in suppressing cAMP production by lymphocytes. These results suggest the development of an antibody which recognizes classical opiate receptors on cells of the immune system.

  1. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    OpenAIRE

    Ciss?, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to eit...

  2. Challenges and opportunities for T cell-mediated strategies to eliminate HIV reservoirs

    Directory of Open Access Journals (Sweden)

    Mark Alan Brockman

    2015-10-01

    Full Text Available HIV’s ability to establish latent reservoirs of reactivation-competent virus is the major barrier to cure. Shock and kill methods consisting of latency reversing agents (LRAs followed by elimination of reactivating cells through cytopathic effects are under active development. However, the clinical efficacy of LRAs remains to be established. Moreover, recent studies indicate that reservoirs may not be reduced efficiently by either viral cytopathic or CD8+ T-cell-mediated mechanisms. In this perspective, we highlight challenges to T-cell-mediated elimination of HIV reservoirs, including characteristics of responding T-cells, aspects of the cellular reservoirs and properties of the latent virus itself. We also discuss potential strategies to overcome these challenges by targeting the antiviral activity of T-cells towards appropriate viral antigens following latency.

  3. Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV receptor-binding domain as an antigen.

    Directory of Open Access Journals (Sweden)

    Jiaming Lan

    Full Text Available The development of an effective vaccine is critical for prevention of a Middle East respiratory syndrome coronavirus (MERS-CoV pandemic. Some studies have indicated the receptor-binding domain (RBD protein of MERS-CoV spike (S is a good candidate antigen for a MERS-CoV subunit vaccine. However, highly purified proteins are typically not inherently immunogenic. We hypothesised that humoral and cell-mediated immunity would be improved with a modification of the vaccination regimen. Therefore, the immunogenicity of a novel MERS-CoV RBD-based subunit vaccine was tested in mice using different adjuvant formulations and delivery routes. Different vaccination regimens were compared in BALB/c mice immunized 3 times intramuscularly (i.m. with a vaccine containing 10 µg of recombinant MERS-CoV RBD in combination with either aluminium hydroxide (alum alone, alum and polyriboinosinic acid (poly I:C or alum and cysteine-phosphate-guanine (CpG oligodeoxynucleotides (ODN. The immune responses of mice vaccinated with RBD, incomplete Freund's adjuvant (IFA and CpG ODN by a subcutaneous (s.c. route were also investigated. We evaluated the induction of RBD-specific humoral immunity (total IgG and neutralizing antibodies and cellular immunity (ELISpot assay for IFN-γ spot-forming cells and splenocyte cytokine production. Our findings indicated that the combination of alum and CpG ODN optimized the development of RBD-specific humoral and cellular immunity following subunit vaccination. Interestingly, robust RBD-specific antibody and T-cell responses were induced in mice immunized with the rRBD protein in combination with IFA and CpG ODN, but low level of neutralizing antibodies were elicited. Our data suggest that murine immunity following subunit vaccination can be tailored using adjuvant combinations and delivery routes. The vaccination regimen used in this study is promising and could improve the protection offered by the MERS-CoV subunit vaccine by eliciting

  4. Peripherally Generated Foxp3+ Regulatory T Cells Mediate the Immunomodulatory Effects of IVIg in Allergic Airways Disease.

    Science.gov (United States)

    Massoud, Amir H; Kaufman, Gabriel N; Xue, Di; Béland, Marianne; Dembele, Marieme; Piccirillo, Ciriaco A; Mourad, Walid; Mazer, Bruce D

    2017-04-01

    IVIg is widely used as an immunomodulatory therapy. We have recently demonstrated that IVIg protects against airway hyperresponsiveness (AHR) and inflammation in mouse models of allergic airways disease (AAD), associated with induction of Foxp3 + regulatory T cells (Treg). Using mice carrying a DTR/EGFP transgene under the control of the Foxp3 promoter (DEREG mice), we demonstrate in this study that IVIg generates a de novo population of peripheral Treg (pTreg) in the absence of endogenous Treg. IVIg-generated pTreg were sufficient for inhibition of OVA-induced AHR in an Ag-driven murine model of AAD. In the absence of endogenous Treg, IVIg failed to confer protection against AHR and airway inflammation. Adoptive transfer of purified IVIg-generated pTreg prior to Ag challenge effectively prevented airway inflammation and AHR in an Ag-specific manner. Microarray gene expression profiling of IVIg-generated pTreg revealed upregulation of genes associated with cell cycle, chromatin, cytoskeleton/motility, immunity, and apoptosis. These data demonstrate the importance of Treg in regulating AAD and show that IVIg-generated pTreg are necessary and sufficient for inhibition of allergen-induced AAD. The ability of IVIg to generate pure populations of highly Ag-specific pTreg represents a new avenue to study pTreg, the cross-talk between humoral and cellular immunity, and regulation of the inflammatory response to Ags. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Isotope-based immunological techniques. Their use in assessment of immune competence and the study of immune responses to pathogens

    International Nuclear Information System (INIS)

    Duffus, W.P.H.

    1984-01-01

    The influence of isotope-based techniques on both assessment of immune competence and immune response to pathogens is discussed. Immunodeficiencies acquired as a result of factors like malnutrition and concomitant disease can severely affect not only attempts to intensify and improve production but also successful immune response against important vaccines such as rinderpest and foot-and-mouth disease. Isotope-based techniques, with their accuracy, speed and small sample volume, are ideally suited for assessing immunocompetence. One of the main drawbacks remains antigen purity, an area where research should now be concentrated. Lymphocyte transformation is widely used to assess cell-mediated immuno-competence but techniques to assess biological functions such as phagocytosis and cell-mediated cytotoxicity could more usefully reflect immune status. These latter techniques utilize isotopes such as 3 H, 14 C, 32 P and 125 I. Investigation of specific cell-mediated immune response often requires a labelled target. Suitable isotopes such as 51 Cr, 99 Tcsup(m), 75 Se and 3 H are compared for their capacity to label both mammalian and parasite targets. Suggestions are made on a number of areas of research that might usefully be encouraged and supported in order to improve applied veterinary immunology in tropical countries. (author)

  6. Inhibition of clone formation as an assay for T cell-mediated cytotoxicity: short-term kinetics and comparison with 51Cr release

    International Nuclear Information System (INIS)

    Lees, R.K.; MacDonald, H.R.; Sinclair, N.R.; University of Western Ontario London

    1977-01-01

    The short-term kinetics of T cell-mediated cytotoxicity was investigated using a cloning inhibition assay. Murine cytotoxic thymus-derived lymphocytes generated in vitro in mixed leukocyte cultures were incubated for various periods of time at 37degC with allogeneic mastocytoma target cells. The mixtures were then plated in soft agar, and mastocytoma clone formation was assessed after 5-7 days incubation. Using this technique, it was demonstrated that events leading to the loss of cloning ability could be detected after 1-3 min incubation at 37degC, and after 20-30 min, 95% of the clone forming cells had been inactivated. When these results were compared directly with those obtained using the conventional 51 Cr-release assay, it was found that the events leading to loss of cloning ability occurred more rapidly than indicated by the isotope assay. However, a modification of the 51 Cr-release assay involving EDTA addition gave comparable result to the cloning inhibition assay. These results raise the possibility that the events leading to 51 Cr-release of tumor target cells may be related in time to those leading to the loss of cloning ability

  7. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  8. Brucella abortusΔcydCΔcydD and ΔcydCΔpurD double-mutants are highly attenuated and confer long-term protective immunity against virulent Brucella abortus.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Kim, Kiju; Hahn, Tae-Wook

    2016-01-04

    We constructed double deletion (ΔcydCΔcydD and ΔcydCΔpurD) mutants from virulent Brucella abortus biovar 1 field isolate (BA15) by deleting the genes encoding an ATP-binding cassette-type transporter (cydC and cydD genes) and a phosphoribosylamine-glycine ligase (purD). Both BA15ΔcydCΔcydD and BA15ΔcydCΔpurD double-mutants exhibited significant attenuation of virulence when assayed in murine macrophages or in BALB/c mice. Both double-mutants were readily cleared from spleens by 4 weeks post-inoculation even when inoculated at the dose of 10(8) CFU per mouse. Moreover, the inoculated mice showed no splenomegaly, which indicates that the mutants are highly attenuated. Importantly, the attenuation of in vitro and in vivo growth did not impair the ability of these mutants to confer long-term protective immunity in mice against challenge with B. abortus strain 2308. Vaccination of mice with either mutant induced humoral and cell-mediated immune responses, and provided significantly better protection than commercial B. abortus strain RB51 vaccine. These results suggest that highly attenuated BA15ΔcydCΔcydD and BA15ΔcydCΔpurD mutants can be used effectively as potential live vaccine candidates against bovine brucellosis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation.

    Directory of Open Access Journals (Sweden)

    Caitlin O'Mahony

    Full Text Available Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-kappaB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-kappaB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-kappaB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis-fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-kappaB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-kappaB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS.

  10. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    Science.gov (United States)

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Cytotoxic effector functions of T cells are not required for protective immunity against fatal Rickettsia typhi infection in a murine model of infection: Role of TH1 and TH17 cytokines in protection and pathology.

    Directory of Open Access Journals (Sweden)

    Kristin Moderzynski

    2017-02-01

    Full Text Available Endemic typhus caused by Rickettsia (R. typhi is an emerging febrile disease that can be fatal due to multiple organ pathology. Here we analyzed the requirements for protection against R. typhi by T cells in the CB17 SCID model of infection. BALB/c wild-type mice generate CD4+ TH1 and cytotoxic CD8+ T cells both of which are sporadically reactivated in persistent infection. Either adoptively transferred CD8+ or CD4+ T cells protected R. typhi-infected CB17 SCID mice from death and provided long-term control. CD8+ T cells lacking either IFNγ or Perforin were still protective, demonstrating that the cytotoxic function of CD8+ T cells is not essential for protection. Immune wild-type CD4+ T cells produced high amounts of IFNγ, induced the release of nitric oxide in R. typhi-infected macrophages and inhibited bacterial growth in vitro via IFNγ and TNFα. However, adoptive transfer of CD4+IFNγ-/- T cells still protected 30-90% of R. typhi-infected CB17 SCID mice. These cells acquired a TH17 phenotype, producing high amounts of IL-17A and IL-22 in addition to TNFα, and inhibited bacterial growth in vitro. Surprisingly, the neutralization of either TNFα or IL-17A in CD4+IFNγ-/- T cell recipient mice did not alter bacterial elimination by these cells in vivo, led to faster recovery and enhanced survival compared to isotype-treated animals. Thus, collectively these data show that although CD4+ TH1 cells are clearly efficient in protection against R. typhi, CD4+ TH17 cells are similarly protective if the harmful effects of combined production of TNFα and IL-17A can be inhibited.

  12. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy.

    Science.gov (United States)

    Duncan, Brynn B; Highfill, Steven L; Qin, Haiying; Bouchkouj, Najat; Larabee, Shannon; Zhao, Peng; Woznica, Iwona; Liu, Yuxin; Li, Youhua; Wu, Wengen; Lai, Jack H; Jones, Barry; Mackall, Crystal L; Bachovchin, William W; Fry, Terry J

    2013-10-01

    Multimodality therapy consisting of surgery, chemotherapy, and radiation will fail in approximately 40% of patients with pediatric sarcomas and result in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (dipeptidyl peptidase IV activity and/or structural homologs) enzymes can mediate tumor regression by immune-mediated mechanisms. Herein, we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b) cells, particularly myeloid DCs, to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11bLy6-CLy6-G) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared with either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies, particularly as an adjuvant to tumor vaccines and ACT.

  13. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    Science.gov (United States)

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL -1 and 0.6-0.7 ng mL -1 , respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The Impact of Ultraviolet Radiation on Immune Responses (invited paper)

    International Nuclear Information System (INIS)

    Norval, M.

    2000-01-01

    In addition to its genotoxic and mutagenic effects, UV has the capacity to suppress immune responses. The mechanism involved is complex, beginning with chromophores located in the skin which absorb UV, this leading in turn to changes in the production of a range of immune mediators locally and systemically which then induce phenotypic and functional alterations in antigen presentation. The cascade ends with the promotion of a subset of T-cells downregulating cell-mediated immunity. The possible consequences of this immunomodulation for the control of tumours and infectious diseases require careful evaluation from laboratory and human studies. (author)

  15. Definitive Management of Oligometastatic Melanoma in a Murine Model Using Combined Ablative Radiation Therapy and Viral Immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Miran [Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota (United States); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Shim, Kevin G. [Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota (United States); Department of Immunology, Mayo Clinic, Rochester, Minnesota (United States); Grams, Michael P. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Rajani, Karishma; Diaz, Rosa M. [Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota (United States); Furutani, Keith M. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Thompson, Jill [Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota (United States); Olivier, Kenneth R.; Park, Sean S. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Markovic, Svetomir N. [Department of Immunology, Mayo Clinic, Rochester, Minnesota (United States); Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota (United States); Pandha, Hardev [The Postgraduate Medical School, University of Surrey, Guildford (United Kingdom); Melcher, Alan [Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds (United Kingdom); Harrington, Kevin [Targeted Therapy Laboratory, The Institute of Cancer Research, London (United Kingdom); Zaidi, Shane [Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota (United States); Targeted Therapy Laboratory, The Institute of Cancer Research, London (United Kingdom); Vile, Richard, E-mail: vile.richard@mayo.edu [Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota (United States); Department of Immunology, Mayo Clinic, Rochester, Minnesota (United States); Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds (United Kingdom)

    2015-11-01

    Purpose: The oligometastatic state is an intermediate state between a malignancy that can be completely eradicated with conventional modalities and one in which a palliative approach is undertaken. Clinically, high rates of local tumor control are possible with stereotactic ablative radiation therapy (SABR), using precisely targeted, high-dose, low-fraction radiation therapy. However, in oligometastatic melanoma, virtually all patients develop progression systemically at sites not initially treated with ablative radiation therapy that cannot be managed with conventional chemotherapy and immunotherapy. We have demonstrated in mice that intravenous administration of vesicular stomatitis virus (VSV) expressing defined tumor-associated antigens (TAAs) generates systemic immune responses capable of clearing established tumors. Therefore, in the present preclinical study, we tested whether the combination of systemic VSV-mediated antigen delivery and SABR would be effective against oligometastatic disease. Methods and Materials: We generated a model of oligometastatic melanoma in C57BL/6 immunocompetent mice and then used a combination of SABR and systemically administered VSV-TAA viral immunotherapy to treat both local and systemic disease. Results: Our data showed that SABR generates excellent control or cure of local, clinically detectable, and accessible tumor through direct cell ablation. Also, the immunotherapeutic activity of systemically administered VSV-TAA generated T-cell responses that cleared subclinical metastatic tumors. We also showed that SABR induced weak T-cell-mediated tumor responses, which, particularly if boosted by VSV-TAA, might contribute to control of local and systemic disease. In addition, VSV-TAA therapy alone had significant effects on control of both local and metastatic tumors. Conclusions: We have shown in the present preliminary murine study using a single tumor model that this approach represents an effective, complementary

  16. Definitive Management of Oligometastatic Melanoma in a Murine Model Using Combined Ablative Radiation Therapy and Viral Immunotherapy

    International Nuclear Information System (INIS)

    Blanchard, Miran; Shim, Kevin G.; Grams, Michael P.; Rajani, Karishma; Diaz, Rosa M.; Furutani, Keith M.; Thompson, Jill; Olivier, Kenneth R.; Park, Sean S.; Markovic, Svetomir N.; Pandha, Hardev; Melcher, Alan; Harrington, Kevin; Zaidi, Shane; Vile, Richard

    2015-01-01

    Purpose: The oligometastatic state is an intermediate state between a malignancy that can be completely eradicated with conventional modalities and one in which a palliative approach is undertaken. Clinically, high rates of local tumor control are possible with stereotactic ablative radiation therapy (SABR), using precisely targeted, high-dose, low-fraction radiation therapy. However, in oligometastatic melanoma, virtually all patients develop progression systemically at sites not initially treated with ablative radiation therapy that cannot be managed with conventional chemotherapy and immunotherapy. We have demonstrated in mice that intravenous administration of vesicular stomatitis virus (VSV) expressing defined tumor-associated antigens (TAAs) generates systemic immune responses capable of clearing established tumors. Therefore, in the present preclinical study, we tested whether the combination of systemic VSV-mediated antigen delivery and SABR would be effective against oligometastatic disease. Methods and Materials: We generated a model of oligometastatic melanoma in C57BL/6 immunocompetent mice and then used a combination of SABR and systemically administered VSV-TAA viral immunotherapy to treat both local and systemic disease. Results: Our data showed that SABR generates excellent control or cure of local, clinically detectable, and accessible tumor through direct cell ablation. Also, the immunotherapeutic activity of systemically administered VSV-TAA generated T-cell responses that cleared subclinical metastatic tumors. We also showed that SABR induced weak T-cell-mediated tumor responses, which, particularly if boosted by VSV-TAA, might contribute to control of local and systemic disease. In addition, VSV-TAA therapy alone had significant effects on control of both local and metastatic tumors. Conclusions: We have shown in the present preliminary murine study using a single tumor model that this approach represents an effective, complementary

  17. Immune responses in cattle vaccinated with gamma-irradiated Anaplasma marginale

    International Nuclear Information System (INIS)

    Sharma, S.P.; Bansal, G.C.

    1986-01-01

    The infectivity and immunogenecity of gamma-irradiated Anaplasma marginale organisms were studied in bovine calves. The severity of Anaplasma infection based on per cent infected red blood cells, haematological values and mortality was more in animals immunized with blood exposed to 60 kR in comparison to those inoculated with blood irradiated at 70, 80 and 90 kR. The immunizing controls demonstrated a significantly high parasitaemia, marked anaemia and more deaths. Marked and prolonged cell-mediated and humoral immune responses detectable in the first 3 weeks of post-immunization may be responsible for conferring of protective immunity. (author)

  18. Stem cell mediation of functional recovery after stroke in the rat.

    Directory of Open Access Journals (Sweden)

    Pedro Ramos-Cabrer

    Full Text Available BACKGROUND: Regenerative strategies of stem cell grafting have been demonstrated to be effective in animal models of stroke. In those studies, the effectiveness of stem cells promoting functional recovery was assessed by behavioral testing. These behavioral studies do, however, not provide access to the understanding of the mechanisms underlying the observed functional outcome improvement. METHODOLOGY/PRINCIPAL FINDINGS: In order to address the underlying mechanisms of stem cell mediated functional improvement, this functional improvement after stroke in the rat was investigated for six months after stroke by use of fMRI, somatosensory evoked potentials by electrophysiology, and sensorimotor behavior testing. Stem cells were grafted ipsilateral to the ischemic lesion. Rigorous exclusion of spontaneous recovery as confounding factor permitted to observe graft-related functional improvement beginning after 7 weeks and continuously increasing during the 6-month observation period. The major findings were i functional improvement causally related to the stem cells grafting; ii tissue replacement can be excluded as dominant factor for stem cell mediated functional improvement; iii functional improvement occurs by exclusive restitution of the function in the original representation field, without clear contributions from reorganization processes, and iv stem cells were not detectable any longer after six months. CONCLUSIONS/SIGNIFICANCE: A delayed functional improvement due to stem cell implantation has been documented by electrophysiology, fMRI and behavioral testing. This functional improvement occurred without cells acting as a tissue replacement for the necrotic tissue after the ischemic event. Combination of disappearance of grafted cells after six months on histological sections with persistent functional recovery was interpreted as paracrine effects by the grafted stem cells being the dominant mechanism of cell activity underlying the observed

  19. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng, E-mail: quanshengzhou@yahoo.com; Cao, Zhifei, E-mail: hunancao@163.com

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.

  20. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity.

    Directory of Open Access Journals (Sweden)

    Shi Qun Zhang

    2016-05-01

    Full Text Available The cell wall is a dynamic structure that is important for the pathogenicity of Candida albicans. Mannan, which is located in the outermost layer of the cell wall, has been shown to contribute to the pathogenesis of C. albicans, however, the molecular mechanism by which this occurs remains unclear. Here we identified a novel α-1,6-mannosyltransferase encoded by MNN10 in C. albicans. We found that Mnn10 is required for cell wall α-1,6-mannose backbone biosynthesis and polysaccharides organization. Deletion of MNN10 resulted in significant attenuation of the pathogenesis of C. albicans in a murine systemic candidiasis model. Inhibition of α-1,6-mannose backbone extension did not, however, impact the invasive ability of C. albicans in vitro. Notably, mnn10 mutant restored the invasive capacity in athymic nude mice, which further supports the notion of an enhanced host antifungal defense related to this backbone change. Mnn10 mutant induced enhanced Th1 and Th17 cell mediated antifungal immunity, and resulted in enhanced recruitment of neutrophils and monocytes for pathogen clearance in vivo. We also demonstrated that MNN10 could unmask the surface β-(1,3-glucan, a crucial pathogen-associated molecular pattern (PAMP of C. albicans recognized by host Dectin-1. Our results demonstrate that mnn10 mutant could stimulate an enhanced Dectin-1 dependent immune response of macrophages in vitro, including the activation of nuclear factor-κB, mitogen-activated protein kinase pathways, and secretion of specific cytokines such as TNF-α, IL-6, IL-1β and IL-12p40. In summary, our study indicated that α-1,6-mannose backbone is critical for the pathogenesis of C. albicans via shielding β-glucan from recognition by host Dectin-1 mediated immune recognition. Moreover, our work suggests that inhibition of α-1,6-mannose extension by Mnn10 may represent a novel modality to reduce the pathogenicity of C. albicans.

  1. Interleukin-2 treatment potentiates induction of oral tolerance in a murine model of autoimmunity.

    OpenAIRE

    Rizzo, L V; Miller-Rivero, N E; Chan, C C; Wiggert, B; Nussenblatt, R B; Caspi, R R

    1994-01-01

    The present study addresses the feasibility of potentiating oral tolerance by immunomanipulation, using the murine model of experimental autoimmune uveoretinitis (EAU) induced by immunization with the retinal antigen interphotoreceptor retinoid binding protein (IRBP). Three feedings of 0.2 mg IRBP every other day before immunization did not protect against EAU, whereas a similar regimen of five doses was protective. However, supplementing the nonprotective 3x regimen with as little as one inj...

  2. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence.

    Directory of Open Access Journals (Sweden)

    Abhirami A Ananth

    Full Text Available Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA-dopachrome tautomerase (AdDCT and resection resulting in major surgical stress (abdominal nephrectomy, we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients.

  3. Immunohistochemical detection and correlation between MHC antigen and cell-mediated immune system in recurrent glioma by APAAP method.

    Science.gov (United States)

    Miyagi, K; Ingram, M; Techy, G B; Jacques, D B; Freshwater, D B; Sheldon, H

    1990-09-01

    As part of an on-going clinical trial of immunotherapy for recurrent malignant gliomas, using alkaline phosphatase-anti-alkaline phosphatase method with monoclonal antibodies, we investigated the correlation between expression of the major histocompatibility complex (MHC) and the subpopulation of tumor-infiltrating lymphocytes (TILs) in 38 glioma specimens (20 grade IV, 11 grade III, and 7 grade II) from 33 patients. Thirty specimens (78.9%) were positive to class I MHC antigen and 20 (52.6%) were positive to class II MHC antigen. The correlations between class I MHC antigen expression and the number of infiltrating T8 (p less than 0.01), and also between class II MHC antigen expression and the number of infiltrating T4 (p less than 0.05) were significant. We conclude that TILs are the result of immunoreaction (host-defense mechanism). 31.6% of specimens had perivascular infiltration of T cells. The main infiltrating lymphocyte subset in moderate to marked perivascular cuffing was T4. Our results may indicate that lack of MHC antigen on the glioma cell surface has a share in the poor immunogenicity in glioma-bearing patients. In addition, considering the effector/target ratio, the number of infiltrating lymphocytes against glioma cells was too small, so the immunological intervention seems to be essential in glioma therapy. Previous radiation therapy and chemotherapy, including steroid therapy, did not influence lymphocyte and macrophage infiltration.

  4. Flow cytometric assessment of chicken T cell-mediated immune responses after Newcastle disease virus vaccination and challenge

    DEFF Research Database (Denmark)

    Dalgaard, T. S.; Norup, L. R.; Pedersen, A.R.

    2010-01-01

    . Despite a delayed NDV-specific antibody response to vaccination, L133 appeared to be better protected than L130 in the subsequent infection challenge as determined by the presence of viral genomes. Peripheral blood was analyzed by flow cytometry and responses in vaccinated/challenged birds were studied...... by 5-color immunophenotyping as well as by measuring the proliferative capacity of NDV-specific T cells after recall stimulation. Immunophenotyping identified L133 as having a significantly lower CD4/CD8 ratio and a lower frequency of γδ T cells than L130 in the peripheral T cell compartment...

  5. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity.

    Science.gov (United States)

    Schmidt, Stanislaw; Tramsen, Lars; Perkhofer, Susanne; Lass-Flörl, Cornelia; Hanisch, Mitra; Röger, Frauke; Klingebiel, Thomas; Koehl, Ulrike; Lehrnbecher, Thomas

    2013-07-01

    Mucormycosis has a high mortality and is increasingly diagnosed in hematopoietic stem cell transplant (HSCT) recipients. In this setting, there is a growing interest to restore host defense to combat infections by adoptively transferring donor-derived immunocompetent cells. Natural killer (NK) cells exhibit antitumor and antiinfective activity, but the interaction with Mucormycetes is unknown. Our data demonstrate that both unstimulated and IL-2 prestimulated human NK cells damage Rhizopus oryzae hyphae, but do not affect resting conidia. The damage of the fungus is mediated, at least in part, by perforin. R. oryzae hyphae decrease the secretion of immunoregulatory molecules by NK cells, such as IFN-γ and RANTES, indicating an immunosuppressive effect of the fungus. Our data indicate that NK cells exhibit activity against Mucormycetes and future research should evaluate NK cells as a potential tool for adoptive immunotherapy in HSCT. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Novel antigens used to detect cell-mediated immune responses over time in Mycobacterium avium subsp. paratuberculosis infected cattle

    DEFF Research Database (Denmark)

    Mikkelsen, Heidi; Aagaard, Claus; Nielsen, Søren Saxmose

    consisting of undefined antigens with possible cross reactions toward other environmental bacteria. The objective of the study was to optimize the IFN-γ test using different types of novel antigens for stimulation. Fourteen novel antigen candidates were selected for testing, including 4 peptides of the ESAT...

  7. Trace elements and cell-mediated immunity in gestational and pre-gestational diabetes mellitus at third trimester of pregnancy

    Directory of Open Access Journals (Sweden)

    Fadia Mahmoud

    2012-11-01

    Full Text Available Objective. The aim of the study: To evaluate the correlations betweenZn2+, Cu2+, Mg2+, Se2+ and Cr3+ and alteration in T cell subsetsduring diabetic and normal pregnancy. Methods. The study involved63 women with gestational diabetes mellitus (GD and 16 pregnantwomen with Type 2 diabetes and 48 healthy, non-pregnant womenwere included as controls. Ten ml of whole venous blood from eachparticipant was analyzed for electrolytes by atomic absorption; totalantioxidant activity, individual enzymatic antioxidants by spectrophotometry; and lymphocyte sub-populations by flow cytometry. Results. There were significant changes in lymphocyte sub-populations: Naïve T cells were decreased and memory T-cells and activated T cells(CD4+HLA-DR+, CD4+CD29+ were increased in diabetes in pregnancy.Zn2+ and Cr3+ deficiency were observed in Type 2 diabetics with an increase in Cu2+ in all pregnant cohorts. In healthy pregnantsubjects, CD4+-HLA-DR+ was increased in direct proportion to serumMg2+ (p<0.05 and Se2+ (p<0.01. In insulin-treated GD patients,CD4+CD29+ cells were increased proportionally to serum Zn2+(p<0.05 while in diet controlled GD cohort CD45RO+/ CD45RA+ Tcells correlated directly with serum Mg (p<0.05 and Zn2+ (p<0.01while it correlated inversely with serum Cu2+ (p<0.01. Conclusions.The results of the present study show a correlation between trace element deficiency and increased lipid peroxidation in diabetes in pregnancy and lymphocyte activation. Dietary manipulation may, therefore, point to improvement in existing approaches to management of diabetes mellitus in pregnancy.

  8. TNFα and IFNγ but not perforin are critical for CD8 T cell-mediated protection against pulmonary Yersinia pestis infection.

    Science.gov (United States)

    Szaba, Frank M; Kummer, Lawrence W; Duso, Debra K; Koroleva, Ekaterina P; Tumanov, Alexei V; Cooper, Andrea M; Bliska, James B; Smiley, Stephen T; Lin, Jr-Shiuan

    2014-05-01

    Septic pneumonias resulting from bacterial infections of the lung are a leading cause of human death worldwide. Little is known about the capacity of CD8 T cell-mediated immunity to combat these infections and the types of effector functions that may be most effective. Pneumonic plague is an acutely lethal septic pneumonia caused by the Gram-negative bacterium Yersinia pestis. We recently identified a dominant and protective Y. pestis antigen, YopE69-77, recognized by CD8 T cells in C57BL/6 mice. Here, we use gene-deficient mice, Ab-mediated depletion, cell transfers, and bone marrow chimeric mice to investigate the effector functions of YopE69-77-specific CD8 T cells and their relative contributions during pulmonary Y. pestis infection. We demonstrate that YopE69-77-specific CD8 T cells exhibit perforin-dependent cytotoxicity in vivo; however, perforin is dispensable for YopE69-77-mediated protection. In contrast, YopE69-77-mediated protection is severely impaired when production of TNFα and IFNγ by CD8 T cells is simultaneously ablated. Interestingly, TNFα is absolutely required at the time of challenge infection and can be provided by either T cells or non-T cells, whereas IFNγ provided by T cells prior to challenge appears to facilitate the differentiation of optimally protective CD8 T cells. We conclude that cytokine production, not cytotoxicity, is essential for CD8 T cell-mediated control of pulmonary Y. pestis infection and we suggest that assays detecting Ag-specific TNFα production in addition to antibody titers may be useful correlates of vaccine efficacy against plague and other acutely lethal septic bacterial pneumonias.

  9. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab.

    Science.gov (United States)

    Fujii, Rika; Friedman, Eitan R; Richards, Jacob; Tsang, Kwong Y; Heery, Christopher R; Schlom, Jeffrey; Hodge, James W

    2016-06-07

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.

  10. CD83 Antibody Inhibits Human B Cell Responses to Antigen as well as Dendritic Cell-Mediated CD4 T Cell Responses.

    Science.gov (United States)

    Wong, Kuan Y; Baron, Rebecca; Seldon, Therese A; Jones, Martina L; Rice, Alison M; Munster, David J

    2018-05-15

    Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83 + human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83 + B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83 - ) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  11. Electroporation driven delivery of both an IL-12 expressing plasmid and cisplatin synergizes to inhibit B16 melanoma tumor growth through an NK cell mediated tumor killing mechanism.

    Science.gov (United States)

    Kim, Ha; Sin, Jeong-Im

    2012-11-01

    Combined therapy using chemotherapeutic drugs and immunotherapeutics offers some promise for treating patients with cancer. In this study, we evaluated whether cisplatin delivered by intratumoral (IT)-electroporation (EP) might enhance antitumor activity against established B16 melanoma and whether further addition of intramuscular (IM)-EP of IL-12 cDNA to IT-EP of cisplatin might augment antitumor therapeutic activity, with a focus on the underlining antitumor mechanism(s). When tumor (7 mm)-bearing animals were treated locally with cisplatin by IT-EP, they showed tumor growth inhibition significantly more than those without IT-EP. Moreover, IL-12 cDNA delivered by IM-EP was also able to inhibit tumor growth significantly more than control vector delivery. This tumor growth inhibition was mediated by NK cells, but not CD4+ T or CD8+ T cells, as determined by immune cell subset depletion and IFN-γ induction. Moreover, concurrent therapy using IT-EP of cisplatin plus IM-EP of IL-12 cDNA displayed antitumor therapeutic synergy. This therapeutic synergy appeared to be mediated by increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. Taken together, these data support that cisplatin delivery by IT-EP plus IL-12 gene delivery by IM-EP are more effective at inducing antitumor therapeutic responses through increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. This combined approach might have some implication for treating melanoma in patients.

  12. Effects of ionizing radiation on the immune system

    International Nuclear Information System (INIS)

    Dubois, J.B.

    1986-01-01

    After reviewing the different lymphoid organs and the essential phases of the immune response, we studied the morphological and functional effects of ionizing radiation on the immunological system. Histologic changes in the lymph nodes, spleen, thymus, and different lymphocyte subpopulations were studied in relation with the radiation dose and irradiated volume (whole body irradiation, localized irradiation). Functional changes in the immune system induced by ionizing radiation were also investigated by a study of humoral-mediated immunity (antibody formation) and cell-mediated immunity (behavior of macrophages, B-cells, T suppressor cells, T helper cells, T effector cells, and natural killer cells). A study into the mechanisms of action of ionizing radiation and the immune processes it interferes with suggests several likely hypotheses (direct action on the immune cells, on their precursors, on seric mediators or on cell mediators). The effects on cancer patients' immune reactions of low radiation doses delivered to the various lymphoid organs are discussed, as well as the relationships between the host and the evolution of the tumor [fr

  13. Immune cells in term and preterm labor

    Science.gov (United States)

    Gomez-Lopez, Nardhy; StLouis, Derek; Lehr, Marcus A; Sanchez-Rodriguez, Elly N; Arenas-Hernandez, Marcia

    2014-01-01

    Labor resembles an inflammatory response that includes secretion of cytokines/chemokines by resident and infiltrating immune cells into reproductive tissues and the maternal/fetal interface. Untimely activation of these inflammatory pathways leads to preterm labor, which can result in preterm birth. Preterm birth is a major determinant of neonatal mortality and morbidity; therefore, the elucidation of the process of labor at a cellular and molecular level is essential for understanding the pathophysiology of preterm labor. Here, we summarize the role of innate and adaptive immune cells in the physiological or pathological activation of labor. We review published literature regarding the role of innate and adaptive immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in late pregnancy and labor at term and preterm. Accumulating evidence suggests that innate immune cells (neutrophils, macrophages and mast cells) mediate the process of labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in the maintenance of fetomaternal tolerance during pregnancy, and an alteration in their function or abundance may lead to labor at term or preterm. Also, immune cells that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor. In conclusion, a balance between innate and adaptive immune cells is required in order to sustain pregnancy; an alteration of this balance will lead to labor at term or preterm. PMID:24954221

  14. Comparison of immune responses after intra-typic heterologous and homologous vaccination against foot-and-mouth disease virus infection in pigs

    NARCIS (Netherlands)

    Eble, P.L.; Bruin, de M.G.M.; Bouma, A.; Hemert-Kluitenberg, van F.; Dekker, A.

    2006-01-01

    This study compares the immune responses and protection induced by intra-typic heterologous vaccination with that induced by homologous vaccination against challenge with foot-and-mouth disease virus (FMDV). Humoral and cell-mediated immune responses and protection against challenge with FMDV O

  15. The new numerology of immunity mediated by virus-specific CD8(+) T cells.

    Science.gov (United States)

    Doherty, P C

    1998-08-01

    Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.

  16. Inflammation, immunity, and vaccines for Helicobacter

    DEFF Research Database (Denmark)

    Aebischer, Toni; Meyer, Thomas F; Andersen, Leif P

    2010-01-01

    Helicobacter pylori represents the major etiologic agent of gastritis, gastric, and duodenal ulcer disease and can cause gastric cancer and mucosa-associated lymphoid tissue B-cell lymphoma. It is clear that the consequences of infection reflect diverse outcomes of the interaction of bacteria......, a novel class of immune response regulators. Furthermore, we learned new details on how infection is detected by innate pattern recognition receptors. Induction of effective cell-mediated immunity will be key for the development of a vaccine, and new work published analyzed the relevance and contribution...... of CD4 T helper cell subsets to the immune reaction. Th17 cells, which are also induced during natural infection, were shown to be particularly important for vaccination. Cost-efficiency of vaccination was re-assessed and confirmed. Thus, induction and shaping of the effector roles of such protective Th...

  17. Further characterization of a highly attenuated Yersinia pestis CO92 mutant deleted for the genes encoding Braun lipoprotein and plasminogen activator protease in murine alveolar and primary human macrophages.

    Science.gov (United States)

    van Lier, Christina J; Tiner, Bethany L; Chauhan, Sadhana; Motin, Vladimir L; Fitts, Eric C; Huante, Matthew B; Endsley, Janice J; Ponnusamy, Duraisamy; Sha, Jian; Chopra, Ashok K

    2015-03-01

    We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune

  18. Ecotropic murine leukemia virus-induced fusion of murine cells

    International Nuclear Information System (INIS)

    Pinter, A.; Chen, T.; Lowy, A.; Cortez, N.G.; Silagi, S.

    1986-01-01

    Extensive fusion occurs upon cocultivation of murine fibroblasts producing ecotropic murine leukemia viruses (MuLVs) with a large variety of murine cell lines in the presence of the polyene antibiotic amphotericin B, the active component of the antifungal agent Fungizone. The resulting polykaryocytes contain nuclei from both infected and uninfected cells, as evidenced by autoradiographic labeling experiments in which one or the other parent cell type was separately labeled with [ 3 H]thymidine and fused with an unlabeled parent. This cell fusion specifically requires the presence of an ecotropic MuLV-producing parent and is not observed for cells producing xenotropic, amphotropic, or dualtropic viruses. Mouse cells infected with nonecotropic viruses retain their sensitivity toward fusion, whereas infection with ecotropic viruses abrogates the fusion of these cells upon cocultivation with other ecotropic MuLV-producing cells. Nonmurine cells lacking the ecotropic gp70 receptor are not fused under similar conditions. Fusion is effectively inhibited by monospecific antisera to gp70, but not by antisera to p15(E), and studies with monoclonal antibodies identify distinct amino- and carboxy-terminal gp70 regions which play a role in the fusion reaction. The enhanced fusion which occurs in the presence of amphotericin B provides a rapid and sensitive assay for the expression of ecotropic MuLVs and should facilitate further mechanistic studies of MuLV-induced fusion of murine cells

  19. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration

    DEFF Research Database (Denmark)

    Jelnes, Peter; Santoni-Rugiu, Eric; Rasmussen, Morten

    2007-01-01

    The experimental protocols used in the investigation of stem cell-mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic...... the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell-mediated liver regeneration-namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1,4-dihydro...... remarkable phenotypic discrepancies exhibited by oval cells in stem cell-mediated liver regeneration between rats and mice and underline the importance of careful extrapolation between individual species....

  20. Collagen-Induced Arthritis: A model for Murine Autoimmune Arthritis

    OpenAIRE

    Pietrosimone, K. M.; Jin, M.; Poston, B.; Liu, P.

    2015-01-01

    Collagen-induced arthritis (CIA) is a common autoimmune animal model used to study rheumatoid arthritis (RA). The development of CIA involves infiltration of macrophages and neutrophils into the joint, as well as T and B cell responses to type II collagen. In murine CIA, genetically susceptible mice (DBA/1J) are immunized with a type II bovine collagen emulsion in complete Freund’s adjuvant (CFA), and receive a boost of type II bovine collagen in incomplete Freund’s adjuvant (IFA) 21 days aft...

  1. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    Science.gov (United States)

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  2. The impact of HLA class I-specific killer cell immunoglobulin-like receptors on antibody-dependent natural killer cell-mediated cytotoxicity and organ allograft rejection

    Directory of Open Access Journals (Sweden)

    Raja Rajalingam

    2016-12-01

    Full Text Available Natural killer (NK cells of the innate immune system are cytotoxic lymphocytes that play important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self HLA class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIR is involved in the calibration of NK cell effector capacities during a developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self HLA class I (due to virus infection or tumor transformation or HLA class I disparities (in the setting of allogeneic transplantation. NK cells expressing an inhibitory KIR binding self HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC, triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  3. Childhood Immunization

    Science.gov (United States)

    ... lowest levels in history, thanks to years of immunization. Children must get at least some vaccines before ... child provide protection for many years, adults need immunizations too. Centers for Disease Control and Prevention

  4. Immunizations - diabetes

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000331.htm Immunizations - diabetes To use the sharing features on this page, please enable JavaScript. Immunizations (vaccines or vaccinations) help protect you from some ...

  5. Effect of Schizonepeta tenuifolia extract on mast cell-mediated immediate-type hypersensitivity in rats.

    Science.gov (United States)

    Shin, T Y; Jeong, H J; Jun, S M; Chae, H J; Kim, H R; Baek, S H; Kim, H M

    1999-11-01

    We investigated the effect of an aqueous extract of Schizonepeta tenuifolia (STAE) on mast cell-mediated immediate-type hypersensitivity. STAE inhibited systemic allergic reaction induced by compound 48/80 in rats dose-dependently. STAE also inhibited plasma histamine levels induced by compound 48/80. STAE inhibited local allergic reaction activated by anti-dinitrophenyl (DNP) IgE. In addition, STAE does-dependently inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. However, STAE had a significant enhancing effect on anti-DNP IgE-induced tumor necrosis factor-alpha (TNF-alpha) production from RPMC. These results indicate that STAE inhibits immediate-type hypersensitivity and suggest that STAE can selectively activate the TNF-alpha production from RPMC.

  6. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens

    International Nuclear Information System (INIS)

    Huberman, E.; Langenbach, R.

    1977-01-01

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro

  7. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

    Science.gov (United States)

    Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.

    2015-12-01

    To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.

  8. Effect of radiation on cell-mediated cytotoxicity and lymphocyte subpopulations in patients with ovarian carcinoma

    International Nuclear Information System (INIS)

    Kohorn, E.I.; Mitchell, M.S.; Dwyer, J.M.; Knowlton, A.H.; Klein-Angerer, S.

    1978-01-01

    Lymphocyte subpopulations and cell-mediated cytotoxicity (CMI) were studied during radiation therapy in 16 patients with ovarian carcinoma. The total lymphocyte count became depressed in all patients. The depression was more marked among T cells, while the proportion of B cells remained unaffected. In patients with Stage I and II ovarian cancer, CMI was depressed significantly by radiotherapy after 7 days of treatment, remained low at 14 days but recovered despite continuation of radiation. This depression of CMI occurred at a delivered dose of 1,000 rads with subsequent recovery. Patients with Stage III ovarian cancer given pelvic and abdominal radiation were found to have no consistent depression of CMI, a finding similar to that in Stage III ovarian carcinoma patients given chemotherapy

  9. Immune algorithm based active PID control for structure systems

    International Nuclear Information System (INIS)

    Lee, Young Jin; Cho, Hyun Cheol; Lee, Kwon Soon

    2006-01-01

    An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I P ID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect

  10. A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes.

    Science.gov (United States)

    Lacoste, Alix M B; Schoppik, David; Robson, Drew N; Haesemeyer, Martin; Portugues, Ruben; Li, Jennifer M; Randlett, Owen; Wee, Caroline L; Engert, Florian; Schier, Alexander F

    2015-06-01

    The Mauthner cell (M-cell) is a command-like neuron in teleost fish whose firing in response to aversive stimuli is correlated with short-latency escapes [1-3]. M-cells have been proposed as evolutionary ancestors of startle response neurons of the mammalian reticular formation [4], and studies of this circuit have uncovered important principles in neurobiology that generalize to more complex vertebrate models [3]. The main excitatory input was thought to originate from multisensory afferents synapsing directly onto the M-cell dendrites [3]. Here, we describe an additional, convergent pathway that is essential for the M-cell-mediated startle behavior in larval zebrafish. It is composed of excitatory interneurons called spiral fiber neurons, which project to the M-cell axon hillock. By in vivo calcium imaging, we found that spiral fiber neurons are active in response to aversive stimuli capable of eliciting escapes. Like M-cell ablations, bilateral ablations of spiral fiber neurons largely eliminate short-latency escapes. Unilateral spiral fiber neuron ablations shift the directionality of escapes and indicate that spiral fiber neurons excite the M-cell in a lateralized manner. Their optogenetic activation increases the probability of short-latency escapes, supporting the notion that spiral fiber neurons help activate M-cell-mediated startle behavior. These results reveal that spiral fiber neurons are essential for the function of the M-cell in response to sensory cues and suggest that convergent excitatory inputs that differ in their input location and timing ensure reliable activation of the M-cell, a feedforward excitatory motif that may extend to other neural circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Contemplating the murine test tube: lessons from natural killer cells and Cryptococcus neoformans.

    Science.gov (United States)

    Marr, Kaleb J; Jones, Gareth J; Mody, Christopher H

    2006-06-01

    Murine experimentation has provided many useful tools, including the ability to knockout or over-express genes and to perform experiments that are limited by ethical considerations. Over the past century, mice have imparted valuable insights into the biology of many systems, including human immunity. However, although there are many similarities between the immune response of humans and mice, there are also many differences; none is more prominent than when examining natural killer cell biology. These differences include tissue distribution, effector molecules, receptor repertoire, and cytokine responses, all of which have important implications when extrapolating the studies to the human immune responses to Cryptococcus neoformans.

  12. Immunization Coverage

    Science.gov (United States)

    ... room/fact-sheets/detail/immunization-coverage","@context":"http://schema.org","@type":"Article"}; العربية 中文 français русский español ... Plan Global Health Observatory (GHO) data - Immunization More information on vaccines and immunization News 1 in 10 ...

  13. Cellular and humoral immunity after vaccination or natural mumps infection.

    Science.gov (United States)

    Terada, Kihei; Hagihara, Kimiko; Oishi, Tomohiro; Miyata, Ippei; Akaike, Hiroto; Ogita, Satoko; Ohno, Naoki; Ouchi, Kazunobu

    2017-08-01

    This study measured cell-mediated immunity (CMI) and serum antibody to clarify the basis of breakthrough after vaccination and reinfection after mumps. From a pool of 54 college students, 17 seronegative subjects and 14 subjects with intermediate level of antibodies against mumps were vaccinated with a monovalent mumps vaccine, and CMI was assessed using interferon-γ release assay. CMI positivity according to pre-existing antibody level, defined as titer  0.05), respectively. Vaccination or even natural mumps infection did not always induce both cellular and humoral immunity. © 2017 Japan Pediatric Society.

  14. Study of the immune response by antibodies against the Bothrops asper venom for the elaboration of a antiophidic vaccine for bovines

    International Nuclear Information System (INIS)

    Gonzalez Rojas, Katherine

    2014-01-01

    Active immunization has determined against Bothrops asper snake venom (tested in murine and bovine models) a induced response by antibody able to prevent in immunized animals. A coagulopathy or death is developed after of be administered with adequate doses of poison. The amount of B. asper venom has defined the poisoning induced in bovine and murine models. The plasmatic concentration of equine antibodies against B. asper venom is specified to prevent coagulopathy and lethality induced by this venom in murine and bovine models. Murine and bovine models have verified the active immunization reached in a concentration of antibodies against B. asper venom equal or greater to the maximum concentration achieved by intravenous administration of antivenoms from equine origin. The concentration of antibodies induced by the active immunization is evaluated against B. asper venom to prevent the development of coagulopathy and lethality induced by the venom in murine and bovine models [es

  15. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma.

    Science.gov (United States)

    Schadendorf, Dirk; Nghiem, Paul; Bhatia, Shailender; Hauschild, Axel; Saiag, Philippe; Mahnke, Lisa; Hariharan, Subramanian; Kaufman, Howard L

    2017-01-01

    Merkel cell carcinoma (MCC) is a rare skin cancer caused by Merkel cell polyomavirus (MCPyV) infection and/or ultraviolet radiation-induced somatic mutations. The presence of tumor-infiltrating lymphocytes is evidence that an active immune response to MCPyV and tumor-associated neoantigens occurs in some patients. However, inhibitory immune molecules, including programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1), within the MCC tumor microenvironment aid in tumor evasion of T-cell-mediated clearance. Unlike chemotherapy, treatment with anti-PD-L1 (avelumab) or anti-PD-1 (pembrolizumab) antibodies leads to durable responses in MCC, in both virus-positive and virus-negative tumors. As many tumors are established through the evasion of infiltrating immune-cell clearance, the lessons learned in MCC may be broadly relevant to many cancers.

  16. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis

    Science.gov (United States)

    Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigal...

  17. Immunizing Children

    Directory of Open Access Journals (Sweden)

    Geraldine Jody Macdonald

    2014-11-01

    Full Text Available This article addresses the complex contexts within which Canadian health professionals engage in immunizing children and focuses on the Canadian practice guidelines and current scientific evidence that direct Canadian health professional competencies. The article begins by presenting two current global vaccine initiatives and links these to immunization in Canada. A selected literature review identifies current best immunization practices. With the purpose of promoting quality improvement, three key Canadian immunization competencies for health professional are highlighted: communication with parents, including those who are experiencing vaccine hesitancy; administration of immunizing agents; and documentation of immunizations. Health professionals are encouraged to reflect on immunization competencies and ensure evidence-based practices underpin vaccine delivery in their primary care settings.

  18. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    Science.gov (United States)

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  19. Herbal preparation (HemoHIM) enhanced functional maturation of bone marrow-derived dendritic cells mediated toll-like receptor 4.

    Science.gov (United States)

    Lee, Sung-Ju; Kim, Jong-Jin; Kang, Kyung-Yun; Hwang, Yun-Ho; Jeong, Gil-Yeon; Jo, Sung-kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2016-02-19

    HemoHIM, which is an herbal preparation of three edible herbs (Angelicam gigas Nakai, Cnidium offinale Makino, and Peaonia japonica Miyabe), is known to have various biological and immunological activities, but the modulatory effects of this preparation on dendritic cells (DCs)-mediated immune responses have not been examined previously. DCs are a unique group of white blood cells that initiate primary immune responses by capturing, processing, and presenting antigens to T cells. In the present study, we investigated the effect of HemoHIM on the functional and phenotypic maturation of murine bone marrow-derived dendritic cells (BMDCs) both in vitro and in vivo. The expression of co-stimulatory molecules (CD40, CD80, CD86, MHC I, and MHC II) and the production of cytokines (IL-1β, IL-6, IL-12p70, and TNF-α) were increased by HemoHIM in BMDCs. Furthermore, the antigen-uptake ability of BMDCs was decreased by HemoHIM, and the antigen-presenting ability of HemoHIM-treated mature BMDCs increased TLR4-dependent CD4(+) and CD8(+) T cell responses. Our findings demonstrated that HemoHIM induces TLR4-mediated BMDCs functional and phenotypic maturation through in vivo and in vitro. And our study showed the antigen-presenting ability that HemoHIM-treated mature BMDCs increase CD4(+) and CD8(+) T cell responses by in vitro. These results suggest that HemoHIM has the potential to mediate DC immune responses.

  20. Immune Response to Dengue and Zika.

    Science.gov (United States)

    Ngono, Annie Elong; Shresta, Sujan

    2018-04-26

    Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.

  1. Methodological approaches to diagnosis of immunity state in the persons who took part in elimination of the accident aftereffects at Chernobyl Atomic Power Station

    International Nuclear Information System (INIS)

    Popovs'ka, T.M.; Nikiforova, N.A.; Gubs'kij, V.Yi.; Kalmikova, Yi.Ya.; Sorochan, P.P.; Moskalenko, Yi.P.

    1994-01-01

    Distribution of the types of immune reactions in the patients with cardiovascular diseases and in the healthy persons was shown to be practically identical. Reactions of immune complexes prevailed in the both groups. In obstructive bronchitis the incidence of immune complexes reactions, T-cell mediated and reagan reactions are similar to those in the persons who did not take part in elimination of the accident aftereffects. In contrast tj the other examined patients, reagan and cytotoxic types were not revealed

  2. Iron, folacin, vitamin B12 and zinc status and immune response in the elderly

    International Nuclear Information System (INIS)

    Henry-Christian, J.R.; Johnson, A.A.; Walters, C.S.; Greene, E.J.; Lindsey, A.A.

    1986-01-01

    The relationships of iron, folacin, vitamin B 12 and zinc status to cell-mediated immune response were investigated among 125 healthy, elderly persons (60-87 years of age). Plasma ferritin, plasma and red cell folate, and plasma vitamin B 12 levels were assayed immuno-radiometrically. Plasma and hair zinc levels were determined by atomic absorption spectroscopy. Immune response was determined by transformation of peripheral blood lymphocytes after stimulation with phytohemagglutinin (PHA) and concanavalin A (con A), and in mixed lymphocyte reaction. Deficiencies of iron, folacin vitamin B 12 and zinc were each associated (independently) with significantly lower lymphocyte responses to PHA and con A, and mixed lymphocyte reaction (P 12 or zinc. Further, they suggest that deficiencies of these nutrients may play a role in the depression of cell-mediated immunity with age, which in turn may lead to increased susceptibility to infectious diseases and cancer in the elderly

  3. Application of murine monoclonal antibodies to the serodiagnosis of tuberculosis

    International Nuclear Information System (INIS)

    Ivanyl, J.; Coates, A.R.M.; Krambovitis, E.

    1982-01-01

    The immune response during infectious diseases leads to a rise in antibody titre to the various different antigenic determinants of the causative organism. The response is further complicated by the fact that it is relatively unusual for one individual to respond to all antigenic components of an organism. Demonstration of the specific immune response of an infected host by serological tests is often hampered by the broad cross-reactivity between several bacterial antigens. The authors report on a serodiagnostic application of murine monoclonal antibodies (MAB), specific for a human pathogen, M. tuberculosis by a technique which is applicable in principle to the serodiagnosis of many other infectious diseases. The serum diagnostic test is based on the competitive inhibition by human sera of the binding of 125 I-labelled murine monoclonal antibodies to M. tuberculosis-coated polyvinyl plates. Five monoclonal antibodies binding to distinct antigenic determinants of the organism were used as structural probes which conferred their stringent combining site specificities to the polyclonal mixture of antibodies from patients' sera. When compared with healthy controls, increased titres of inhibitory antibodies were found in about 70% of patients with active tuberculosis. The diagnostic value of the individual monoclonal antibodies as well as the benefit from the use of multiple specificity probes has been qualified

  4. FINE SPECIFICITY OF CELLULAR IMMUNE-RESPONSES IN HUMANS TO HUMAN CYTOMEGALOVIRUS IMMEDIATE-EARLY 1-PROTEIN

    NARCIS (Netherlands)

    ALP, NJ; ALLPORT, TD; VANZANTEN, J; RODGERS, B; SISSONS, JGP; BORYSIEWICZ, LK

    Cell-mediated immunity is important in maintaining the virus-host equilibrium in persistent human cytomegalovirus (HCMV) infection. The HCMV 72-kDa major immediate early 1 protein (IE1) is a target for CD8+ cytotoxic T cells in humans, as is the equivalent 89-kDa protein in mouse. Less is known

  5. Anterior Chamber-Associated Immune Deviation (ACAID: An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage?

    Directory of Open Access Journals (Sweden)

    Robert E. Cone

    2009-01-01

    Full Text Available The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80 + monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.

  6. T Lymphocyte Immunity in Host Defence against Chlamydia trachomatis and Its Implication for Vaccine Development

    Directory of Open Access Journals (Sweden)

    X Yang

    1998-01-01

    Full Text Available Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes several significant human infectious diseases, including trachoma, urethritis, cervicitis and salpingitis, and is an important cofactor for transmission of human immunodeficiency virus. Until very recently, over three decades of research effort aimed at developing a C trachomatis vaccine had failed, due mainly to the lack of a precise understanding of the mechanisms for protective immunity. Although most studies concerning protective immunity to C trachomatis have focused on humoral immune responses, recent studies have clearly shown that T helper-1 (Th1-like CD4 T cell-mediated immune responses play the dominant role in protective immunity. These studies suggest a paradigm for chlamydial immunity and pathology based on the concept of heterogeneity (Th1/Th2 in CD4 T cell immune responses. This concept for chlamydial immunity offers a rational template on which to base renewed efforts for development of a chlamydial vaccine that targets the induction of cell-mediated Th1 immune responses.

  7. Antigen-Specificity of T Cell Infiltrates in Biopsies With T Cell-Mediated Rejection and BK Polyomavirus Viremia: Analysis by Next Generation Sequencing.

    Science.gov (United States)

    Zeng, G; Huang, Y; Huang, Y; Lyu, Z; Lesniak, D; Randhawa, P

    2016-11-01

    This study interrogates the antigen-specificity of inflammatory infiltrates in renal biopsies with BK polyomavirus (BKPyV) viremia (BKPyVM) with or without allograft nephropathy (BKPyVN). Peripheral blood mononuclear cells (PBMC) from five healthy HLA-A0101 subjects were stimulated by peptides derived from the BKPYV proteome or polymorphic regions of HLA. Next generation sequencing of the T cell-receptor complementary DNA was performed on peptide-stimulated PBMC and 23 biopsies with T cell-mediated rejection (TCMR) or BKPyVN. Biopsies from patients with BKPyVM or BKVPyVN contained 7.7732 times more alloreactive than virus-reactive clones. Biopsies with TCMR also contained BKPyV-specific clones, presumably a manifestation of heterologous immunity. The mean cumulative T cell clonal frequency was 0.1378 for alloreactive clones and 0.0375 for BKPyV-reactive clones. Samples with BKPyVN and TCMR clustered separately in dendrograms of V-family and J-gene utilization patterns. Dendrograms also revealed that V-gene, J-gene, and D-gene usage patterns were a function of HLA type. In conclusion, biopsies with BKPyVN contain abundant allospecific clones that exceed the number of virus-reactive clones. The T cell component of tissue injury in viral nephropathy appears to be mediated primarily by an "innocent bystander" mechanism in which the principal element is secondary T cell influx triggered by both antiviral and anti-HLA immunity. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  8. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity.

    Science.gov (United States)

    Contreras, Francisco; Prado, Carolina; González, Hugo; Franz, Dafne; Osorio-Barrios, Francisco; Osorio, Fabiola; Ugalde, Valentina; Lopez, Ernesto; Elgueta, Daniela; Figueroa, Alicia; Lladser, Alvaro; Pacheco, Rodrigo

    2016-05-15

    Dopamine receptor D3 (DRD3) expressed on CD4(+) T cells is required to promote neuroinflammation in a murine model of Parkinson's disease. However, how DRD3 signaling affects T cell-mediated immunity remains unknown. In this study, we report that TCR stimulation on mouse CD4(+) T cells induces DRD3 expression, regardless of the lineage specification. Importantly, functional analyses performed in vivo using adoptive transfer of OVA-specific OT-II cells into wild-type recipients show that DRD3 deficiency in CD4(+) T cells results in attenuated differentiation of naive CD4(+) T cells toward the Th1 phenotype, exacerbated generation of Th2 cells, and unaltered Th17 differentiation. The reciprocal regulatory effect of DRD3 signaling in CD4(+) T cells favoring Th1 generation and impairing the acquisition of Th2 phenotype was also reproduced using in vitro approaches. Mechanistic analysis indicates that DRD3 signaling evokes suppressor of cytokine signaling 5 expression, a negative regulator of Th2 development, which indirectly favors acquisition of Th1 phenotype. Accordingly, DRD3 deficiency results in exacerbated eosinophil infiltration into the airways of mice undergoing house dust mite-induced allergic response. Interestingly, our results show that, upon chronic inflammatory colitis induced by transfer of naive CD4(+) T cells into lymphopenic recipients, DRD3 deficiency not only affects Th1 response, but also the frequency of Th17 cells, suggesting that DRD3 signaling also contributes to Th17 expansion under chronic inflammatory conditions. In conclusion, our findings indicate that DRD3-mediated signaling in CD4(+) T cells plays a crucial role in the balance of effector lineages, favoring the inflammatory potential of CD4(+) T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Antibody responses against xenotropic murine leukemia virus-related virus envelope in a murine model.

    Directory of Open Access Journals (Sweden)

    Natalia Makarova

    2011-04-01

    Full Text Available Xenotropic murine leukemia virus-related virus (XMRV was recently discovered to be the first human gammaretrovirus that is associated with chronic fatigue syndrome and prostate cancer (PC. Although a mechanism for XMRV carcinogenesis is yet to be established, this virus belongs to the family of gammaretroviruses well known for their ability to induce cancer in the infected hosts. Since its original identification XMRV has been detected in several independent investigations; however, at this time significant controversy remains regarding reports of XMRV detection/prevalence in other cohorts and cell type/tissue distribution. The potential risk of human infection, coupled with the lack of knowledge about the basic biology of XMRV, warrants further research, including investigation of adaptive immune responses. To study immunogenicity in vivo, we vaccinated mice with a combination of recombinant vectors expressing codon-optimized sequences of XMRV gag and env genes and virus-like particles (VLP that had the size and morphology of live infectious XMRV.Immunization elicited Env-specific binding and neutralizing antibodies (NAb against XMRV in mice. The peak titers for ELISA-binding antibodies and NAb were 1:1024 and 1:464, respectively; however, high ELISA-binding and NAb titers were not sustained and persisted for less than three weeks after immunizations.Vaccine-induced XMRV Env antibody titers were transiently high, but their duration was short. The relatively rapid diminution in antibody levels may in part explain the differing prevalences reported for XMRV in various prostate cancer and chronic fatigue syndrome cohorts. The low level of immunogenicity observed in the present study may be characteristic of a natural XMRV infection in humans.

  10. Immunomodulatory effects of dietary non-digestible oligosaccharides in T cell-mediated autoimmune arthritis

    NARCIS (Netherlands)

    Rogier, R.; Ederveen, T.; Hartog, A.; Walgreen, B.; Van Den Bersselaar, L.; Helsen, M.; Vos, P.; Garssen, J.; Willemsen, L.; Van Den Berg, W.; Koenders, M.; Abdollahi-Roodsaz, S.

    2015-01-01

    Background: Accumulating evidence indicates the relevance of intestinal microbiota in shaping the immune response and supports its contribution to the development of autoimmune diseases. Prebiotic non-digestible oligosaccharides are known to selectively support growth of commensal Bifidobacteria and

  11. Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

    Science.gov (United States)

    Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.

    2008-01-01

    The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410

  12. Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients.

    Science.gov (United States)

    Petricevic, Branka; Laengle, Johannes; Singer, Josef; Sachet, Monika; Fazekas, Judit; Steger, Guenther; Bartsch, Rupert; Jensen-Jarolim, Erika; Bergmann, Michael

    2013-12-12

    Monoclonal antibodies (mAb), such as trastuzumab are a valuable addition to breast cancer therapy. Data obtained from neoadjuvant settings revealed that antibody-dependent cell-mediated cytotoxicity (ADCC) is a major mechanism of action for the mAb trastuzumab. Conflicting results still call into question whether disease progression, prolonged treatment or concomitant chemotherapy influences ADCC and related immunological phenomena. We analyzed the activity of ADCC and antibody-dependent cell-mediated phagocytosis (ADCP) of peripheral blood mononuclear cells (PBMCs) from human epidermal growth factor receptor 2 (HER2/neu) positive breast cancer patients receiving trastuzumab therapy either in an adjuvant (n = 13) or metastatic (n = 15) setting as well as from trastuzumab treatment-naive (t-naive) HER2/neu negative patients (n = 15). PBMCs from healthy volunteers (n = 24) were used as controls. ADCC and ADCP activity was correlated with the expression of antibody binding Fc-gamma receptor (FcγR)I (CD64), FcγRII (CD32) and FcγRIII (CD16) on CD14+ (monocytes) and CD56+ (NK) cells, as well as the expression of CD107a+ (LAMP-1) on CD56+ cells and the total amount of CD4+CD25+FOXP3+ (Treg) cells. In metastatic patients, markers were correlated with progression-free survival (PFS). ADCC activity was significantly down regulated in metastatic, adjuvant and t-naive patient cohorts as compared to healthy controls. Reduced ADCC activity was inversely correlated with the expression of CD107a on CD56+ cells in adjuvant patients. ADCC and ADCP activity of the patient cohorts were similar, regardless of treatment duration or additional chemotherapy. PFS in metastatic patients inversely correlated with the number of peripheral Treg cells. The reduction of ADCC in patients as compared to healthy controls calls for adjuvant strategies, such as immune-enhancing agents, to improve the activity of trastuzumab. However, efficacy of trastuzumab-specific ADCC and ADCP appears not to

  13. Dasatinib-Induced T-Cell-Mediated Colitis: A Case Report and Review of the Literature.

    Science.gov (United States)

    Shanshal, Mohamed; Shakespeare, Andrew; Thirumala, Seshadri; Fenton, Boyd; Quick, Donald P

    2016-01-01

    Dasatinib is a potent inhibitor of the altered tyrosine kinase activity in disease states associated with BCR/ABL1. This agent has been shown to exhibit broad off-target kinase inhibition and immunomodulating properties. These effects may be responsible for dasatinib's unique side effects including a distinctive form of hemorrhagic colitis. We report a case of hemorrhagic colitis associated with dasatinib use in a patient with chronic myelogenous leukemia. Colon biopsies at the time of symptomatic colitis confirmed CD3+CD8+ T cell infiltration. The process rapidly resolved following drug discontinuation, but relapsed when rechallenged with a reduced dose of dasatinib. Colitis did not recur when the patient was treated with an alternative agent. A literature review of prior cases involving dasatinib-induced T-cell mediated colitis provides insight into commonalities that may facilitate the recognition and management of this entity. Most incidences occurred after a 3-month drug exposure and may be accompanied by large granular lymphocytes. The process uniformly resolves within a few days following drug discontinuation and will generally recur in a shorter period of time if the drug is reintroduced. Most patients will require an alternative agent, although select patients could be continued on dasatinib if other options are limited. © 2016 S. Karger AG, Basel.

  14. Comparison of Th17 cells mediated immunological response among asthmatic children with or without allergic rhinitis.

    Science.gov (United States)

    Qing, Miao; Yongge, Liu; Wei, Xu; Yan, Wang; Zhen, Li; Yixin, Ren; Hui, Guan; Li, Xiang

    2018-03-31

    To investigate whether there were differences in Th17 cells mediated immunological responses among asthmatics with or without allergic rhinitis. A case-control comparison was conducted in a cohort of 67 children with asthma (AS), 50 children with allergic rhinitis (AR), 52 children with both AS and AR (ASR), 25 infectious rhinitis (IR), and 55 healthy controls (HC). The percentages of circulating Th17 cells were determined by flow cytometry. The Th2- and Th17-related cytokines in plasma and culture supernatants were measured by enzyme-linked immunosorbent assay. The effect of proinflammation cytokine IL-17E on Th2 cytokines production from human T helper (Th) lymphocytes was analyzed. (1) A inter-group comparison revealed that Th17 cells levels were highest in ASR group [(0.89% ± 0.27) %], following by AS group [(0.82 ± 0.29) %] and AR group[(0.78 ± 0.17) %] (Pimmunological characteristics among asthmatic children with or without allergic rhinitis.

  15. Bowman Capsulitis Predicts Poor Kidney Allograft Outcome in T Cell-Mediated Rejection.

    Science.gov (United States)

    Gallan, Alexander J; Chon, W James; Josephson, Michelle A; Cunningham, Patrick N; Henriksen, Kammi J; Chang, Anthony

    2018-02-28

    Acute T cell-mediated rejection (TCMR) is an important cause of renal allograft loss. The Banff classification for tubulointerstitial (type I) rejection is based on the extent of both interstitial inflammation and tubulitis. Lymphocytes may also be present between parietal epithelial cells and Bowman capsules in this setting, which we have termed "capsulitis." We conducted this study to determine the clinical significance of capsulitis. We identified 42 patients from the pathology archives at the University of Chicago with isolated Banff type I TCMR from 2010-2015. Patient demographic data, Banff classification, and graft outcome measurements were compared between capsulitis and non-capsulitis groups using Mann-Whitney U test. Capsulitis was present in 26 (62%), and was more frequently seen in Banff IB than IA TCMR (88% vs 44%, P=.01). Patients with capsulitis had a higher serum creatinine at biopsy (4.6 vs 2.9mg/dL, P=.04) and were more likely to progress to dialysis (42% vs 13%, P=.06) with fewer recovering their baseline serum creatinine (12% vs 38%, P=.08). Patients with both Banff IA TCMR and capsulitis have clinical outcomes similar or possibly worse than Banff IB TCMR compared to those with Banff IA and an absence of capsulitis. Capsulitis is an important pathologic parameter in the evaluation of kidney transplant biopsies with potential diagnostic, prognostic, and therapeutic implications in the setting of TCMR. Copyright © 2018. Published by Elsevier Inc.

  16. Proanthocyanidin-rich Pinus radiata bark extract inhibits mast cell-mediated anaphylaxis-like reactions.

    Science.gov (United States)

    Choi, Yun Ho; Song, Chang Ho; Mun, Sung Phil

    2018-02-01

    Mast cells play a critical role in the effector phase of immediate hypersensitivity and allergic reactions. Pinus radiata bark extract exerts multiple biological effects and exhibits immunomodulatory and antioxidant properties. However, its role in mast cell-mediated anaphylactic reactions has not been thoroughly investigated. In this study, we examined the effects of proanthocyanidin-rich water extract (PAWE) isolated from P. radiata bark on compound 48/80-induced or antidinitrophenyl (DNP) immunoglobulin E (IgE)-mediated anaphylaxis-like reactions in vivo. In addition, we evaluated the mechanism underlying the inhibitory effect of PAWE on mast cell activation, with a specific focus on histamine release, using rat peritoneal mast cells. PAWE attenuated compound 48/80-induced or anti-DNP IgE-mediated passive cutaneous anaphylaxis-like reactions in mice, and it inhibited histamine release triggered by compound 48/80, ionophore A23187, or anti-DNP IgE in rat peritoneal mast cells in vitro. Moreover, PAWE suppressed compound 48/80-elicited calcium uptake in a concentration-dependent manner and promoted a transient increase in intracellular cyclic adenosine-3',5'-monophosphate levels. Together, these results suggest that proanthocyanidin-rich P. radiata bark extract effectively inhibits anaphylaxis-like reactions. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Correlates of immune protection: Standardized and automated assays to interrogate correlates of immunity--Phacilitate Vaccine Forum Washington 2011. The Grand Hyatt, Washington, DC January 24–26, 2011.

    Science.gov (United States)

    Bolton, Wade

    2011-06-01

    The utility of functional cell mediated immune assays in the assessment of immune response or immunogenicity is increasing significantly as we search for surrogates to determine vaccine efficacy or therapeutic response. No definitive reports to date have demonstrated that CMI assays in human clinical trials correlate with clinical outcome, although animal and non human primate studies have reported surrogacy in varying degrees. This report discusses the approaches identified, their advantages and disadvantages, and their justification for inclusion in the clinical trial setting.

  18. Collagen-Induced Arthritis: A model for Murine Autoimmune Arthritis.

    Science.gov (United States)

    Pietrosimone, K M; Jin, M; Poston, B; Liu, P

    2015-10-20

    Collagen-induced arthritis (CIA) is a common autoimmune animal model used to study rheumatoid arthritis (RA). The development of CIA involves infiltration of macrophages and neutrophils into the joint, as well as T and B cell responses to type II collagen. In murine CIA, genetically susceptible mice (DBA/1J) are immunized with a type II bovine collagen emulsion in complete Freund's adjuvant (CFA), and receive a boost of type II bovine collagen in incomplete Freund's adjuvant (IFA) 21 days after the first injection. These mice typically develop disease 26 to 35 days after the initial injection. C57BL/6J mice are resistant to arthritis induced by type II bovine collagen, but can develop arthritis when immunized with type II chicken collagen in CFA, and receive a boost of type II chicken collagen in IFA 21 days after the first injection. The concentration of heat-killed Mycobacterium tuberculosis H37RA (MT) in CFA also differs for each strain. DBA/1J mice develop arthritis with 1 mg/ml MT, while C57BL/6J mice require and 3-4 mg/ml MT in order to develop arthritis. CIA develops slowly in C57BL/6J mice and cases of arthritis are mild when compared to DBA/1J mice. This protocol describes immunization of DBA/1J mice with type II bovine collagen and the immunization of C57BL/6J mice with type II chicken collagen.

  19. Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors

    Directory of Open Access Journals (Sweden)

    Mayumi Oakland

    2013-01-01

    Full Text Available Persistent viral vector-mediated transgene expression in the airways requires delivery to cells with progenitor capacity and avoidance of immune responses. Previously, we observed that GP64-pseudotyped feline immunodeficiency virus (FIV-mediated gene transfer was more efficient in the nasal airways than the large airways of the murine lung. We hypothesized that in vivo gene transfer was limited by immunological and physiological barriers in the murine intrapulmonary airways. Here, we systematically investigate multiple potential barriers to lentiviral gene transfer in the airways of mice. We show that GP64-FIV vector transduced primary cultures of well-differentiated murine nasal epithelia with greater efficiency than primary cultures of murine tracheal epithelia. We further demonstrate that neutrophils, type I interferon (IFN responses, as well as T and B lymphocytes are not the major factors limiting the transduction of murine conducting airways. In addition, we observed better transduction of GP64-pseudotyped vesicular stomatitis virus (VSV in the nasal epithelia compared with the intrapulmonary airways in mice. VSVG glycoprotein pseudotyped VSV transduced intrapulmonary epithelia with similar efficiency as nasal epithelia. Our results suggest that the differential transduction efficiency of nasal versus intrapulmonary airways by FIV vector is not a result of immunological barriers or surface area, but rather differential expression of cellular factors specific for FIV vector transduction.

  20. The influence of pregnancy on systemic immunity.

    Science.gov (United States)

    Pazos, Michael; Sperling, Rhoda S; Moran, Thomas M; Kraus, Thomas A

    2012-12-01

    Adaptations in maternal systemic immunity are presumed to be responsible for observed alterations in disease susceptibility and severity as pregnancy progresses. Epidemiological evidence as well as animal studies have shown that influenza infections are more severe during the second and third trimesters of pregnancy, resulting in greater morbidity and mortality, although the reason for this is still unclear. Our laboratory has taken advantage of 20 years of experience studying the murine immune response to respiratory viruses to address questions of altered immunity during pregnancy. With clinical studies and unique animal model systems, we are working to define the mechanisms responsible for altered immune responses to influenza infection during pregnancy and what roles hormones such as estrogen or progesterone play in these alterations.

  1. Distinct effects on diversifying selection by two mechanisms of immunity against Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Yuan Li

    Full Text Available Antigenic variation to evade host immunity has long been assumed to be a driving force of diversifying selection in pathogens. Colonization by Streptococcus pneumoniae, which is central to the organism's transmission and therefore evolution, is limited by two arms of the immune system: antibody- and T cell- mediated immunity. In particular, the effector activity of CD4(+ T(H17 cell mediated immunity has been shown to act in trans, clearing co-colonizing pneumococci that do not bear the relevant antigen. It is thus unclear whether T(H17 cell immunity allows benefit of antigenic variation and contributes to diversifying selection. Here we show that antigen-specific CD4(+ T(H17 cell immunity almost equally reduces colonization by both an antigen-positive strain and a co-colonized, antigen-negative strain in a mouse model of pneumococcal carriage, thus potentially minimizing the advantage of escape from this type of immunity. Using a proteomic screening approach, we identified a list of candidate human CD4(+ T(H17 cell antigens. Using this list and a previously published list of pneumococcal Antibody antigens, we bioinformatically assessed the signals of diversifying selection among the identified antigens compared to non-antigens. We found that Antibody antigen genes were significantly more likely to be under diversifying selection than the T(H17 cell antigen genes, which were indistinguishable from non-antigens. Within the Antibody antigens, epitopes recognized by human antibodies showed stronger evidence of diversifying selection. Taken together, the data suggest that T(H17 cell-mediated immunity, one form of T cell immunity that is important to limit carriage of antigen-positive pneumococcus, favors little diversifying selection in the targeted antigen. The results could provide new insight into pneumococcal vaccine design.

  2. Impact on allergic immune response after treatment with vitamin A

    DEFF Research Database (Denmark)

    Matheu, Victor; Berggård, Karin; Barrios, Yvelise

    2009-01-01

    ABSTRACT: BACKGROUND: Vitamin A may have some influence on the immune system, but the role in allergy modulation is still unclear. OBJECTIVE: To clarify whether high levels of retinoic acid (RA) affects allergic response in vivo, we used a murine experimental model of airway allergic disease...

  3. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  4. Immune System

    Science.gov (United States)

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  5. CD4(+) T cell-mediated protection against a lethal outcome of systemic infection with vesicular stomatitis virus requires CD40 ligand expression, but not IFN-gamma or IL-4

    DEFF Research Database (Denmark)

    Andersen, C; Jensen, T; Nansen, A

    1999-01-01

    experiments using B cell- and T cell-deficient recipients revealed that no protection could be obtained in the absence of B cells, whereas treatment with virus-specific immune (IgG) serum controlled viral spreading to the central nervous system (CNS), but did not necessarily accomplish virus elimination......To investigate the mechanism(s) whereby T cells protect against a lethal outcome of systemic infection with vesicular stomatitis virus, mice with targeted defects in genes central to T cell function were tested for resistance to i.v. infection with this virus. Our results show that mice lacking...... the capacity to secrete both IFN-gamma and perforin completely resisted disease. Similar results were obtained using IL-4 knockout mice, indicating that neither cell-mediated nor T(h)2-dependent effector systems were required. In contrast, mice deficient in expression of CD40 ligand were more susceptible than...

  6. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    Science.gov (United States)

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  7. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses

    International Nuclear Information System (INIS)

    Gao Donghong; Mondal, Tapan K.; Lawrence, David A.

    2007-01-01

    Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) ± PbCl 2 . At day 10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day 10 non-adherent BM-DCs were harvested and recultured with mGM-CSF + LPS ± Pb for 2 days. The day 10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up-regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-α levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell-mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway

  8. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure

    Directory of Open Access Journals (Sweden)

    Honglei eWeng

    2015-06-01

    Full Text Available Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called second pathway of liver regeneration. The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  9. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure.

    Science.gov (United States)

    Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling

    2015-01-01

    Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called "second pathway of liver regeneration." The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  10. Effects of kefir fractions on innate immunity.

    Science.gov (United States)

    Vinderola, Gabriel; Perdigon, Gabriela; Duarte, Jairo; Thangavel, Deepa; Farnworth, Edward; Matar, Chantal

    2006-01-01

    Innate immunity that protects against pathogens in the tissues and circulation is the first line of defense in the immune reaction, where macrophages have a critical role in directing the fate of the infection. We recently demonstrated that kefir modulates the immune response in mice, increasing the number of IgA+ cells in the intestinal and bronchial mucosa and the phagocytic activity of peritoneal and pulmonary macrophages. The aim of this study was to further characterize the immunomodulating capacity of the two fractions of kefir (F1: solids including bacteria and F2: liquid supernatant), by studying the cytokines produced by cells from the innate immune system: peritoneal macrophages and the adherent cells from Peyer's patches. BALB/c mice were fed either kefir solid fraction (F1) or kefir supernatant (F2) for 2, 5 or 7 consecutive days. The number of cytokine (IL-1alpha, IFNgamma, TNFalpha, IL-6 and IL-10) producing cells was determined on peritoneal macrophages and adherent cells from Peyer's patches. Both kefir fractions (F1 and F2) induced similar cytokine profiles on peritoneal macrophages (only TNFalpha and IL-6 were up-regulated). All cytokines studied on adherent cells from Peyer's patches were enhanced after F1 and F2 feeding, except for IFNgamma after F2 administration. Moreover, the percentage of IL-10+cells induced by fraction F2 on adherent cells from Peyer's patches was significantly higher than the one induced by fraction F1. Different components of kefir have an in vivo role as oral biotherapeutic substances capable of stimulating immune cells of the innate immune system, to down-regulate the Th2 immune phenotype or to promote cell-mediated immune responses against tumours and also against intracellular pathogenic infections.

  11. Negative regulation of retrovirus expression in embryonal carcinoma cells mediated by an intragenic domain.

    Science.gov (United States)

    Loh, T P; Sievert, L L; Scott, R W

    1988-11-01

    An intragenic region spanning the tRNA primer binding site of a Moloney murine leukemia virus recombinant retrovirus was found to restrict expression specifically in embryonal carcinoma (EC) cells. When the inhibitory domain was present, the levels of steady-state RNA synthesized from integrated recombinant templates in stable cotransformation assays were reduced 20-fold in EC cells but not in C2 myoblast cells. Transient-cotransfection assays showed that repression of a template containing the EC-specific inhibitory component was relieved by an excess of specific competitor DNA. In addition, repression mediated by the inhibitory component was orientation independent. This evidence demonstrates the presence of a saturable, trans-acting negative regulatory factor(s) in EC cells and suggests that the interaction of the factor(s) with the intragenic inhibitory component occurs at the DNA level.

  12. Genome-wide Gene Expression Profiling of SCID Mice with T-cell-mediated Colitis

    DEFF Research Database (Denmark)

    Brudzewsky, D.; Pedersen, A. E.; Claesson, M. H.

    2009-01-01

    Inflammatory bowel disease (IBD) is a multifactorial disorder with an unknown aetiology. The aim of this study is to employ a murine model of IBD to identify pathways and genes, which may play a key role in the pathogenesis of IBD and could be important for discovery of new disease markers in human...... and colitis mice, and among these genes there is an overrepresentation of genes involved in inflammatory processes. Some of the most significant genes showing higher expression encode S100A proteins and chemokines involved in trafficking of leucocytes in inflammatory areas. Classification by gene clustering...... based on the genes with the significantly altered gene expression corresponds to two different levels of inflammation as established by the histological scoring of the inflamed rectum. These data demonstrate that this SCID T-cell transfer model is a useful animal model for human IBD and can be used...

  13. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    OpenAIRE

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a mi...

  14. Imported rickettsioses : think of murine typhus

    NARCIS (Netherlands)

    van der Kleij, FGH; Gansevoort, RT; Kreeftenberg, HG

    Murine typhus is a disease still prevalent in many parts of the world. Because the incidence in the US and Europe has declined rapidly, physicians in these continents have become unfamiliar with the clinical picture. Murine typhus is associated with significant morbidity and fatalities do occur,

  15. Immunity booster

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    The immunity booster is, according to its patent description, microbiologically pure water with an D/(D+H) isotopic concentration of 100 ppm, with physical-chemical characteristics similar to those of distilled water. It is obtained by sterilization of a mixture of deuterium depleted water, with a 25 ppm isotopic concentration, with distilled water in a volume ratio of 4:6. Unlike natural immunity boosters (bacterial agents as Bacillus Chalmette-Guerin, Corynebacterium parvum; lipopolysaccharides; human immunoglobulin) or synthetical products (levamysol; isoprinosyne with immunostimulating action), which cause hypersensitivity and shocks, thrill, fever, sickness and the immunity complex disease, the water of 100 ppm D/(D + H) isotopic concentration is a toxicity free product. The testing for immune reaction of the immunity booster led to the following results: - an increase of cell action capacity in the first immunity shielding stage (macrophages), as evidenced by stimulation of a number of essential characterizing parameters, as well as of the phagocytosis capacity, bactericide capacity, and opsonic capacity of serum; - an increase of the number of leucocyte particularly of the granulocyte in peripheral blood, produced especially when medullar toxic agents like caryolysine are used; - it hinders the effect of lowering the number of erythrocytes in peripheral blood produced by experimentally induced chronic inflammation; - an increase of nonspecific immunity defence capacity against specific bacterial aggression of both Gram-positive bacteria (Streptococcus pneumoniae 558 ) and of the Gram-negative ones (Klebsiella pneumoniae 507 ); - an increase of immunity - stimulating activity (proinflamatory), like that of levamisole as evidenced by the test of stimulation of experimentally induced inflammation by means of carrageenan. The following advantages of the immunity booster are stressed: - it is toxicity free and side effect free; - can be orally administrated as

  16. Rapid kinetics of lysis in human natural cell-mediated cytotoxicity: some implications

    International Nuclear Information System (INIS)

    Bloom, E.T.; Babbitt, J.T.

    1983-01-01

    The entire lytic process of natural cell-mediated cytotoxicity against sensitive target cells can occur rapidly, within minutes. This was demonstrated by 51 chromium release and in single-cell assays. At the cellular level, most of the target cell lysis occurred within 15-30 min after binding to effector cells. The enriched natural killer cell subpopulation of lymphocytes obtained by Percoll density gradient centrifugation (containing greater than 70% large granular lymphocytes (LGL)) was the most rapidly lytic population by 51 chromium release. However, in the single-cell assay, the rate of lysis of bound target cells was quite similar for the LGL-enriched effector subpopulation and the higher density subpopulation of effector cells recognized previously. Both the light and dense effector cells contained similar numbers of target binding cells. Therefore, that the light subpopulation effected lysis more rapidly and to a greater extent than the dense subpopulation suggested that the low-density effector cells probably recycled more rapidly than those of higher density. This was corroborated by the finding that when conjugates were formed at 29 degrees C for the single-cell assay, a significant number of dead unconjugated targets could be observed only on the slides made with the LGL-enriched effector cells but not on those made with dense effector cell. Lysis continued to increase in the chromium-release assay probably because of recycling, recruitment, and/or heterogeneity of the effector cells, and/or because of heterogeneity or delayed death of the target cells

  17. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    Science.gov (United States)

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation [Thr428Ile] in the SH2 domain of Slp-76—a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele—while no major defects were observed in conventional T cell development/function, a marked defect in NK cell-mediated elimination of β2-Microglobulin (β2M)-deficient target cells was observed. Further studies revealed Slp-76 to control NK cell receptor expression and maturation, however, activation of Slp-76ace/ace NK cells through ITAM-containing NK cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M−/− target cell synapse, revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76ace/ace NK cells. Overall these studies establish Slp-76 as a critical determinant of NK cell development and NK cell-mediated elimination of missing-self target cells. PMID:25929249

  18. Innate immunity

    African Journals Online (AJOL)

    Ronnie Anderson is Director of the Medical Research Council Unit for Inflammation and Immunity. ... field have included macrophage, T cell, cytokine and cytokine activated killer cell interactions .... monocytes, mast cells, lymphocytes, eccrine.

  19. The role of acquired immunity and periodontal disease progression.

    Science.gov (United States)

    Teng, Yen-Tung A

    2003-01-01

    Our understanding of the pathogenesis in human periodontal diseases is limited by the lack of specific and sensitive tools or models to study the complex microbial challenges and their interactions with the host's immune system. Recent advances in cellular and molecular biology research have demonstrated the importance of the acquired immune system not only in fighting the virulent periodontal pathogens but also in protecting the host from developing further devastating conditions in periodontal infections. The use of genetic knockout and immunodeficient mouse strains has shown that the acquired immune response-in particular, CD4+ T-cells-plays a pivotal role in controlling the ongoing infection, the immune/inflammatory responses, and the subsequent host's tissue destruction. In particular, studies of the pathogen-specific CD4+ T-cell-mediated immunity have clarified the roles of: (i) the relative diverse immune repertoire involved in periodontal pathogenesis, (ii) the contribution of pathogen-associated Th1-Th2 cytokine expressions in periodontal disease progression, and (iii) micro-organism-triggered periodontal CD4+ T-cell-mediated osteoclastogenic factor, 'RANK-L', which is linked to the induction of alveolar bone destruction in situ. The present review will focus on some recent advances in the acquired immune responses involving B-cells, CD8+ T-cells, and CD4+ T-cells in the context of periodontal disease progression. New approaches will further facilitate our understanding of their underlying molecular mechanisms that may lead to the development of new treatment modalities for periodontal diseases and their associated complications.

  20. Childhood immunization

    Science.gov (United States)

    Romain, Sandra; Schillaci, Michael A.

    2009-01-01

    ABSTRACT OBJECTIVE To examine childhood immunization levels relative to the number of family physicians, pediatricians, and public health nurses in Ontario. DESIGN Retrospective comparative analysis of publicly available data on immunization coverage levels and the relative number of family physicians, pediatricians, and public health nurses. SETTING Ontario. PARTICIPANTS Seven-year-old children, family physicians, pediatricians, and public health nurses in Ontario. MAIN OUTCOME MEASURES The association between immunization coverage levels and the relative number of family physicians, pediatricians, and public health nurses. RESULTS We found correlations between immunization coverage levels and the relative number (ie, per 1000 Ontario residents) of family physicians (ρ = 0.60) and pediatricians (ρ = 0.70) and a lower correlation with the relative number of public health nurses (ρ = 0.40), although none of these correlations was significant. A comparison of temporal trends illustrated that variation in the relative number of family physicians and pediatricians in Ontario was associated with similar variation in immunization coverage levels. CONCLUSION Increasing the number of family physicians and pediatricians might help to boost access to immunizations and perhaps other components of cost-saving childhood preventive care. PMID:19910599

  1. [Evaluation of Fusarium spp. pathogenicity in plant and murine models].

    Science.gov (United States)

    Forero-Reyes, Consuelo M; Alvarado-Fernández, Angela M; Ceballos-Rojas, Ana M; González-Carmona, Lady C; Linares-Linares, Melva Y; Castañeda-Salazar, Rubiela; Pulido-Villamarín, Adriana; Góngora-Medina, Manuel E; Cortés-Vecino, Jesús A; Rodríguez-Bocanegra, María X

    The genus Fusarium is widely recognized for its phytopathogenic capacity. However, it has been reported as an opportunistic pathogen in immunocompetent and immunocompromised patients. Thus, it can be considered a microorganism of interest in pathogenicity studies on different hosts. Therefore, this work evaluated the pathogenicity of Fusarium spp. isolates from different origins in plants and animals (murine hosts). Twelve isolates of Fusarium spp. from plants, animal superficial mycoses, and human superficial and systemic mycoses were inoculated in tomato, passion fruit and carnation plants, and in immunocompetent and immunosuppressed BALB/c mice. Pathogenicity tests in plants did not show all the symptoms associated with vascular wilt in the three plant models; however, colonization and necrosis of the vascular bundles, regardless of the species and origin of the isolates, showed the infective potential of Fusarium spp. in different plant species. Moreover, the pathogenicity tests in the murine model revealed behavioral changes. It was noteworthy that only five isolates (different origin and species) caused mortality. Additionally, it was observed that all isolates infected and colonized different organs, regardless of the species and origin of the isolates or host immune status. In contrast, the superficial inoculation test showed no evidence of epidermal injury or colonization. The observed results in plant and murine models suggest the pathogenic potential of Fusarium spp. isolates in different types of hosts. However, further studies on pathogenicity are needed to confirm the multihost capacity of this genus. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Experimental parameters differentially affect the humoral response of the cholera-toxin-based murine model of food allergy

    DEFF Research Database (Denmark)

    Kroghsbo, S.; Christensen, Hanne Risager; Frøkiær, Hanne

    2003-01-01

    Background: Recent studies have developed a murine model of IgE-mediated food allergy based on oral coadministration of antigen and cholera toxin (CT) to establish a maximal response for studying immunopathogenic mechanisms and immunotherapeutic strategies. However, for studying subtle...... interested in characterizing the individual effects of the parameters in the CT-based model: CT dose, antigen type and dose, and number of immunizations. Methods: BALB/c mice were orally sensitized weekly for 3 or 7 weeks with graded doses of CT and various food antigens (soy-trypsin inhibitor, ovalbumin...... of the antibody response depended on the type of antigen and number of immunizations. Conclusions: The critical parameters of the CT-based murine allergy model differentially control the intensity and kinetics of the developing immune response. Adjustment of these parameters could be a key tool for tailoring...

  3. Salk's HIV immunogen: an immune-based therapy in human trials since 1988.

    Science.gov (United States)

    Jonas Salk, the developer of the first polio vaccine, has created a therapeutic vaccine for HIV which helps the immune system fight disease progression. Salk uses inactivated HIV-1 virus combined with Incomplete Freund's Adjuvant (IFA) in the vaccine preparation. The resulting HIV-1 immunogen was first studied in 1987, and since then, 235 seropositive individuals have received inoculations without serious adverse effects. Data from the first 25 subjects indicate that immunization with the HIV-1 immunogen results in improvement of cell-mediated response against the virus, a slower increase in the amount of virus present, and a reduced rate of clinical progression. Subsequent studies also show that higher doses of immunogen may produce stronger cell-mediated responses and high HIV-DTH (delayed-type hypersensitivity responsiveness immunogen) is associated with better outcome. Additional trials of HIV-1 immunogen are awaiting Food and Drug Administration approval.

  4. Dose-effect relationship of apoptosis induced by fission-neutron in murine thymocytes

    International Nuclear Information System (INIS)

    Yuan Bin; Li Liang; Xue Wencheng; Sun Jianmin; Wang Baoqin

    2000-01-01

    Objective: To investigate the effectiveness of high LET fission-neutron to induce apoptosis in murine thymocytes and to compare it with that of low LET 60 Co γ-ray. Methods: Apoptosis induction was studied qualitatively by light and transmission electron microscopy and DNA gel electrophoresis,also quantitatively by flow cytometry(FCM) and diphenylamine (DPA)methods. Results: DNA ladders of murine thymocytes were detectable, the typical apoptosis of thymocytes could be observed morphologically by means of light and electron microscopy at 6 h after fission-neutron irradiation with doses ranging from 0.5 to 5.0 Gy, meanwhile the percentages of apoptosis increased with increasing doses. After exposure to γ-rays with doses ranging from 1.0 to 30 Gy, the experimental results were similar to those from neutron radiation. The incidence of apoptosis peaked at about 20 Gy, the percentages did not increase further when doses increased. Conclusion: Apoptosis of murine thymocytes can be induced when mice are exposed to either fission-neutron (0.5-5.0 Gy) or to γ-ray (1-30 Gy). Although the relationship between apoptosis and radiation doses is similar, the percentage of apoptosis induced by neutron irradiation is higher than that induced by γ-irradiation. The RBE values of fission-neutron for inducing apoptosis murine thymocytes are 2.09 (by FCM method) and 2.37 (by DPA method), respectively. These results also suggest that fission-neutron-induced murine immune tissue is more severe than that induced by γ-rays at several hours post-irradiation and this might be the basis for heavy damage to immune tissues induced by fission-neutron-irradiation in later period

  5. Effect of SPG (Sonifilan) immunotherapy and PDT on murine tumor

    International Nuclear Information System (INIS)

    Korbelik, M.; Krosl, G.; Dougherty, G.J.; Chaplin, D.J.

    1992-01-01

    PhotoDynamic Therapy of solid tumors is unique in eliciting a strong host immune response unparalleled in other cancer therapies. This immune response is manifested as an acute inflammatory reaction, and can be readily seen as redness and edema around the treated area. Destruction of typical solid tumor cannot be accomplished solely by direct phototoxic action. This was shown to be the case even with drugs more potent in this direct killing effect than Photofrin, the photosensitizer presently used in clinical PDT. Limiting factors seem to be regional insufficiencies in supply of molecular oxygen, needed for generation of phototoxic species. They can be ascribed to the existence of chronically and acute hypoxic tumor regions, oxygen consumption by the photodynamic process, and vascular shutdown induced during PDT. The remaining tumor mass is eradicated by an indirect effect, necrosis induced by destruction of tumor vasculature. Since most events in PDT treated tumor that lead to vascular collapse are, in fact, typical inflammatory manifestations, it was suggested that PDT-induced acute inflammatory reaction actually leads to vascular damage. In a related report characteristics are shown of cellular inflammatory infiltrate in PDT-treated murine tumor. This work examines the effect of combining PDT with immunotherapy, in an attempt to investigate a possibility of amplification of immune reaction to PDT and its direction towards more pervasive destruction of treated tumors. (authors). 6 refs

  6. Effects of Fog Oil Smoke on Immune Responses in the House Sparrow (Passer domesticus) and Red-winged Blackbird (Agelaius phoeniceus)

    National Research Council Canada - National Science Library

    Driver, Crystal; Jarrell, Anne; Ollero, Jennifer; Tiller, Brett; Fulton, Robert

    2004-01-01

    In response to questions about the effects of military use of fog oil (FO) obscurant smoke, the sensitivity of cell-mediated constituents of the immune system to FO smoke was tested using an avianpox challenge in red-winged blackbirds...

  7. Scanning electron microscopy of the neuropathology of murine cerebral malaria

    Directory of Open Access Journals (Sweden)

    Brenneis Christian

    2006-11-01

    Full Text Available Abstract Background The mechanisms leading to death and functional impairments due to cerebral malaria (CM are yet not fully understood. Most of the knowledge about the pathomechanisms of CM originates from studies in animal models. Though extensive histopathological studies of the murine brain during CM are existing, alterations have not been visualized by scanning electron microscopy (SEM so far. The present study investigates the neuropathological features of murine CM by applying SEM. Methods C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. When typical symptoms of CM developed perfused brains were processed for SEM or light microscopy, respectively. Results Ultrastructural hallmarks were disruption of vessel walls, parenchymal haemorrhage, leukocyte sequestration to the endothelium, and diapedesis of macrophages and lymphocytes into the Virchow-Robin space. Villous appearance of observed lymphocytes were indicative of activated state. Cerebral oedema was evidenced by enlargement of perivascular spaces. Conclusion The results of the present study corroborate the current understanding of CM pathophysiology, further support the prominent role of the local immune system in the neuropathology of CM and might expose new perspectives for further interventional studies.

  8. Anandamide attenuates Th-17 cell-mediated delayed-type hypersensitivity response by triggering IL-10 production and consequent microRNA induction.

    Directory of Open Access Journals (Sweden)

    Austin R Jackson

    Full Text Available Endogenous cannabinoids [endocannabinoids] are lipid signaling molecules that have been shown to modulate immune functions. However, their role in the regulation of Th17 cells has not been studied previously. In the current study, we used methylated Bovine Serum Albumin [mBSA]-induced delayed type hypersensitivity [DTH] response in C57BL/6 mice, mediated by Th17 cells, as a model to test the anti-inflammatory effects of endocannabinoids. Administration of anandamide [AEA], a member of the endocannabinoid family, into mice resulted in significant mitigation of mBSA-induced inflammation, including foot pad swelling, cell infiltration, and cell proliferation in the draining lymph nodes [LN]. AEA treatment significantly reduced IL-17 and IFN-γ production, as well as decreased RORγt expression while causing significant induction of IL-10 in the draining LNs. IL-10 was critical for the AEA-induced mitigation of DTH response inasmuch as neutralization of IL-10 reversed the effects of AEA. We next analyzed miRNA from the LN cells and found that 100 out of 609 miRNA species were differentially regulated in AEA-treated mice when compared to controls. Several of these miRNAs targeted proinflammatory mediators. Interestingly, many of these miRNA were also upregulated upon in vitro treatment of LN cells with IL-10. Together, the current study demonstrates that AEA may suppress Th-17 cell-mediated DTH response by inducing IL-10 which in turn triggers miRNA that target proinflammatory pathways.

  9. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    Directory of Open Access Journals (Sweden)

    Barbara Lukasch

    2017-08-01

    Full Text Available Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  10. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    Science.gov (United States)

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  11. Mechanisms of Invariant Natural Killer T Cell-Mediated Immunoregulation in Cancer

    Science.gov (United States)

    2012-05-01

    reviewed in (Adams, 2009)). In the 1990’s, MPL was included as a component of DETOX adjuvant in tumor vaccines for skin, lung and breast malignancies...immunotherapy with ultraviolet B-irradiated autologous whole melanoma cells plus DETOX in patients with metastatic melanoma. Clinical Cancer Research. Vol. 4...Longenecker, B.M.(1993) Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant. Cancer Immunol Immunother

  12. To B or not to B cells-mediate a healthy start to life.

    Science.gov (United States)

    Nguyen, T G; Ward, C M; Morris, J M

    2013-02-01

    Maternal immune responses during pregnancy are critical in programming the future health of a newborn. The maternal immune system is required to accommodate fetal immune tolerance as well as to provide a protective defence against infections for the immunocompromised mother and her baby during gestation and lactation. Natural immunity and antibody production by maternal B cells play a significant role in providing such immunoprotection. However, aberrations in the B cell compartment as a consequence of maternal autoimmunity can pose serious risks to both the mother and her baby. Despite their potential implication in shaping pregnancy outcomes, the role of B cells in human pregnancy has been poorly studied. This review focuses on the role of B cells and the implications of B cell depletion therapy in pregnancy. It highlights the evidence of an association between aberrant B cell compartment and obstetric conditions. It also alludes to the potential mechanisms that amplify these B cell aberrances and thereby contribute to exacerbation of some maternal autoimmune conditions and poor neonatal outcomes. Clinical and experimental evidence suggests strongly that maternal autoantibodies contribute directly to the pathologies of obstetric and neonatal conditions that have significant implications for the lifelong health of a newborn. The evidence for clinical benefit and safety of B cell depletion therapies in pregnancy is reviewed, and an argument is mounted for further clinical evaluation of B cell-targeted therapies in high-risk pregnancy, with an emphasis on improving neonatal outcomes and prevention of neonatal conditions such as congenital heart block and fetal/neonatal alloimmune thrombocytopenia. © 2012 British Society for Immunology.

  13. Gene expression in IFN-g-activated murine macrophages

    Directory of Open Access Journals (Sweden)

    Pereira C.A.

    2004-01-01

    Full Text Available Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-gamma activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-gamma in A/J (267 and 266 genes, respectively, up- and down-regulated or BALB/c (297 and 58 genes, respectively, up- and down-regulated mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-gamma-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-gamma-activated macrophages of resistant mice.

  14. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion

    International Nuclear Information System (INIS)

    Nishikado, Hideto; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Ogawa, Hideoki; Okumura, Ko; Takai, Toshiro

    2015-01-01

    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity

  15. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion

    Energy Technology Data Exchange (ETDEWEB)

    Nishikado, Hideto [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko [Laboratory of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Ogawa, Hideoki; Okumura, Ko [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Takai, Toshiro, E-mail: t-takai@juntendo.ac.jp [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan)

    2015-05-01

    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity.

  16. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  17. Slp-76 is a critical determinant of NK-cell mediated recognition of missing-self targets.

    Science.gov (United States)

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-07-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying "missing-self" recognition, including the involvement of activating receptors, remain poorly understood. Using ethyl-N-nitrosourea mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell mediated recognition and elimination of "missing-self" targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation (Thr428Ile) in the SH2 domain of Slp-76-a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele-while no major defects were observed in conventional T-cell development/function, a marked defect in NK cell mediated elimination of β2-microglobulin (β2M) deficient target cells was observed. Further studies revealed Slp-76 to control NK-cell receptor expression and maturation; however, activation of Slp-76(ace/ace) NK cells through ITAM-containing NK-cell receptors or allogeneic/tumor ta