WorldWideScience

Sample records for murine cardiac function

  1. Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature

    International Nuclear Information System (INIS)

    Seemann, Ingar; Gabriels, Karen; Visser, Nils L.; Hoving, Saske; Poele, Johannes A. te; Pol, Jeffrey F.; Gijbels, Marion J.; Janssen, Ben J.; Leeuwen, Fijs W. van; Daemen, Mat J.; Heeneman, Sylvia; Stewart, Fiona A.

    2012-01-01

    Background: Radiotherapy of thoracic and chest wall tumors increases the long-term risk of cardiotoxicity, but the underlying mechanisms are unclear. Methods: Single doses of 2, 8, or 16 Gy were delivered to the hearts of mice and damage was evaluated at 20, 40, and 60 weeks, relative to age matched controls. Single photon emission computed tomography (SPECT/CT) and ultrasound were used to measure cardiac geometry and function, which was related to histo-morphology and microvascular damage. Results: Gated SPECT/CT and ultrasound demonstrated decreases in end diastolic and systolic volumes, while the ejection fraction was increased at 20 and 40 weeks after 2, 8, and 16 Gy. Cardiac blood volume was decreased at 20 and 60 weeks after irradiation. Histological examination revealed inflammatory changes at 20 and 40 weeks after 8 and 16 Gy. Microvascular density in the left ventricle was decreased at 40 and 60 weeks after 8 and 16 Gy, with functional damage to remaining microvasculature manifest as decreased alkaline phosphatase (2, 8, and 16 Gy), increased von Willebrand Factor and albumin leakage from vessels (8 and 16 Gy), and amyloidosis (16 Gy). 16 Gy lead to sudden death between 30 and 40 weeks in 38% of mice. Conclusions: Irradiation with 2 and 8 Gy induced modest changes in murine cardiac function within 20 weeks but this did not deteriorate further, despite progressive structural and microvascular damage. This indicates that heart function can compensate for significant structural damage, although higher doses, eventually lead to sudden death.

  2. Cardiac ankyrin repeat protein (CARP) expression in human and murine atherosclerotic lesions - Activin induces carp in smooth muscle cells

    NARCIS (Netherlands)

    de Waard, Vivian; van Achterberg, Tanja A. E.; Beauchamp, Nicholas J.; Pannekoek, Hans; de Vries, Carlie J. M.

    2003-01-01

    Objective-Cardiac ankyrin repeat protein (CARP) is a transcription factor-related protein that has been studied most extensively in the heart. In the present study, we investigated the expression and the potential function of CARP in human and murine atherosclerosis. Methods and Results-CARP

  3. Intravital imaging of cardiac function at the single-cell level.

    Science.gov (United States)

    Aguirre, Aaron D; Vinegoni, Claudio; Sebas, Matt; Weissleder, Ralph

    2014-08-05

    Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level.

  4. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    Science.gov (United States)

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  5. Cardiac Imaging Using Clinical 1.5 T MRI Scanners in a Murine Ischemia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Jakob G. J. Voelkl

    2011-01-01

    Full Text Available To perform cardiac imaging in mice without having to invest in expensive dedicated equipment, we adapted a clinical 1.5 Tesla (T magnetic resonance imaging (MRI scanner for use in a murine ischemia/reperfusion model. Phase-sensitive inversion recovery (PSIR sequence facilitated the determination of infarct sizes in vivo by late gadolinium enhancement. Results were compared to histological infarct areas in mice after ischemia/reperfusion procedure with a good correlation (=0.807, <.001. In addition, fractional area change (FAC was assessed with single slice cine MRI and was matched to infarct size (=−0.837 and fractional shortening (FS measured with echocardiography (=0.860; both <.001. Here, we demonstrate the use of clinical 1.5 MRI scanners as a feasible method for basic phenotyping in mice. These widely available scanners are capable of investigating in vivo infarct dimensions as well as assessment of cardiac functional parameters in mice with reasonable throughput.

  6. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development.

    Science.gov (United States)

    Etheridge, S Leah; Ray, Saugata; Li, Shuangding; Hamblet, Natasha S; Lijam, Nardos; Tsang, Michael; Greer, Joy; Kardos, Natalie; Wang, Jianbo; Sussman, Daniel J; Chen, Ping; Wynshaw-Boris, Anthony

    2008-11-01

    Dishevelled (Dvl) proteins are important signaling components of both the canonical beta-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3(-/-) mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3(-/-) and LtapLp/+ mutants, Dvl3(+/-);LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant.

  7. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development.

    Directory of Open Access Journals (Sweden)

    S Leah Etheridge

    2008-11-01

    Full Text Available Dishevelled (Dvl proteins are important signaling components of both the canonical beta-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3(-/- mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+. Although neurulation appeared normal in both Dvl3(-/- and LtapLp/+ mutants, Dvl3(+/-;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant.

  8. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats

    Science.gov (United States)

    Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2013-01-01

    Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656

  9. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Koczor, Christopher A., E-mail: ckoczor@emory.edu; Fields, Earl; Jedrzejczak, Mark J.; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A.; Lewis, William

    2015-11-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein abundance of

  10. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    International Nuclear Information System (INIS)

    Koczor, Christopher A.; Fields, Earl; Jedrzejczak, Mark J.; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A.; Lewis, William

    2015-01-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein abundance of

  11. Cardiac function and cognition in older community-dwelling cardiac patients.

    Science.gov (United States)

    Eggermont, Laura H P; Aly, Mohamed F A; Vuijk, Pieter J; de Boer, Karin; Kamp, Otto; van Rossum, Albert C; Scherder, Erik J A

    2017-11-01

    Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older cardiac patients remains unknown. An older (≥70 years) heterogeneous group of 117 community-dwelling cardiac patients under medical supervision by a cardiologist underwent thorough echocardiographic assessment including left ventricular ejection fraction, cardiac index, left atrial volume index, left ventricular mass index, left ventricular diastolic function, and valvular calcification. During a home visit, a neuropsychological assessment was performed within 7.1 ± 3.8 months after echocardiographic assessment; the neuropsychological assessment included three subtests of a word-learning test (encoding, recall, recognition) to examine one memory function domain and three executive function tests, including digit span backwards, Trail Making Test B minus A, and the Stroop colour-word test. Regression analyses showed no significant linear or quadratic associations between any of the echocardiographic functions and the cognitive function measures. None of the echocardiographic measures as representative of cardiac function was correlated with memory or executive function in this group of community-dwelling older cardiac patients. These findings contrast with those of previous studies. © 2017 Japanese Psychogeriatric Society.

  12. Cardiac function and cognition in older community-dwelling cardiac patients

    NARCIS (Netherlands)

    Eggermont, Laura H.P.; Aly, Mohamed F.A.; Vuijk, Pieter J.; de Boer, Karin; Kamp, Otto; van Rossum, Albert C.; Scherder, Erik J.A.

    2017-01-01

    Background: Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older

  13. Cardiac function in acute hypothyroidism

    International Nuclear Information System (INIS)

    Donaghue, K.; Hales, I.; Allwright, S.; Cooper, R.; Edwards, A.; Grant, S.; Morrow, A.; Wilmshurst, E.; Royal North Shore Hospital, Sydney

    1985-01-01

    It has been established that chronic hypothyroidism may affect cardiac function by several mechanisms. It is not known how long the patient has to be hypothyroid for cardiac involvement to develop. This study was undertaken to assess the effect of a short period of hypothyroidism (10 days) on cardiac function. Nine patients who had had total tyroidectomy, had received ablative radioiodine for thyroid cancer and were euthyroid on replacement therapy were studied while both euthyroid and hypothyroid. Cardiac assessment was performed by X-ray, ECG, echocardiography and gated blood-pool scans. After 10 days of hypothyroidisms, the left-ventricular ejection fraction failed to rise after exercise in 4 of the 9 patients studied, which was significant (P<0.002). No significant changes in cardiac size or function at rest were detected. This functional abnormality in the absence of any demonstrable change in cardiac size and the absence of pericardial effussion with normal basal function suggest that short periods of hypothyroidism may reduce cardiac reserve, mostly because of alterations in metabolic function. (orig.)

  14. Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction.

    Science.gov (United States)

    Sharp, Thomas E; Schena, Giana J; Hobby, Alexander R; Starosta, Timothy; Berretta, Remus M; Wallner, Markus; Borghetti, Giulia; Gross, Polina; Yu, Daohai; Johnson, Jaslyn; Feldsott, Eric; Trappanese, Danielle M; Toib, Amir; Rabinowitz, Joseph E; George, Jon C; Kubo, Hajime; Mohsin, Sadia; Houser, Steven R

    2017-11-10

    Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×10 7 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU + cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve

  15. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice

    Directory of Open Access Journals (Sweden)

    Darin J Falk

    Full Text Available Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA. Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa−/− mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT. Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa−/− animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea. However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease.

  16. Human cardiac-derived adherent proliferating cells reduce murine acute Coxsackievirus B3-induced myocarditis.

    Directory of Open Access Journals (Sweden)

    Kapka Miteva

    Full Text Available BACKGROUND: Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs. They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3-induced myocarditis. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression. CONCLUSIONS: We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis.

  17. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis.

    Science.gov (United States)

    Lin, Xue; Yang, Penghua; Reece, E Albert; Yang, Peixin

    2017-08-01

    Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus

  18. Circulating Histones Are Major Mediators of Cardiac Injury in Patients With Sepsis.

    Science.gov (United States)

    Alhamdi, Yasir; Abrams, Simon T; Cheng, Zhenxing; Jing, Shengjie; Su, Dunhao; Liu, Zhiyong; Lane, Steven; Welters, Ingeborg; Wang, Guozheng; Toh, Cheng-Hock

    2015-10-01

    To investigate the impact of circulating histones on cardiac injury and dysfunction in a murine model and patients with sepsis. Prospective, observational clinical study with in vivo and ex vivo translational laboratory investigations. General ICU and university research laboratory. Sixty-five septic patients and 27 healthy volunteers. Twelve-week-old male C57BL/6N mice. Serial blood samples from 65 patients with sepsis were analyzed, and left ventricular function was assessed by echocardiography. Patients' sera were incubated with cultured cardiomyocytes in the presence or absence of antihistone antibody, and cellular viability was assessed. Murine sepsis was initiated by intraperitoneal Escherichia coli injection (10(8) colony-forming unit/mouse) in 12-week-old male C57BL/6N mice, and the effect of antihistone antibody (10 mg/kg) was studied. Murine blood samples were collected serially, and left ventricular function was assessed by intraventricular catheters and electrocardiography. Circulating histones and cardiac troponins in human and murine plasma were quantified. In 65 patients with sepsis, circulating histones were significantly elevated compared with healthy controls (n = 27) and linearly correlated with cardiac troponin T levels (rs = 0.650; p histone levels were significantly associated with new-onset left ventricular dysfunction (p = 0.001) and arrhythmias (p = 0.01). Left ventricular dysfunction only predicted adverse outcomes when combined with elevated histones or cardiac troponin levels. Furthermore, patients' sera directly induced histone-specific cardiomyocyte death ex vivo, which was abrogated by antihistone antibodies. In vivo studies on septic mice confirmed the cause-effect relationship between circulating histones and the development of cardiac injury, arrhythmias, and left ventricular dysfunction. Circulating histones are novel and important mediators of septic cardiomyopathy, which can potentially be utilized for prognostic and therapeutic

  19. Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Peter Moritz Becher

    2017-01-01

    Full Text Available Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.

  20. Mathematical Models of Cardiac Pacemaking Function

    Science.gov (United States)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  1. Fog1 is required for cardiac looping in zebrafish

    OpenAIRE

    Walton, R. Zaak; Bruce, Ashley E.E.; Olivey, Harold E.; Najib, Khalid; Johnson, Vanitha; Earley, Judy U.; Ho, Robert K.; Svensson, Eric C.

    2006-01-01

    To further our understanding of FOG gene function during cardiac development, we utilized zebrafish to examine FOG’s role in the early steps of heart morphogenesis. We identified fragments of three fog genes in the zebrafish genomic database and isolated full-length coding sequences for each of these genes by using a combination of RT-PCR and 5′-RACE. One gene was similar to murine FOG-1 (fog1), while the remaining two were similar to murine FOG-2 (fog2a and fog2b). All Fog proteins were able...

  2. Mathematical Models of Cardiac Pacemaking Function

    Directory of Open Access Journals (Sweden)

    Pan eLi

    2013-10-01

    Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  3. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  4. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.

    Science.gov (United States)

    Wengrowski, Anastasia M; Wang, Xin; Tapa, Srinivas; Posnack, Nikki Gillum; Mendelowitz, David; Kay, Matthew W

    2015-02-01

    Release of norepinephrine (NE) from sympathetic neurons enhances heart rate (HR) and developed force through activation of β-adrenergic receptors, and this sympathoexcitation is a key risk for the generation of cardiac arrhythmias. Studies of β-adrenergic modulation of cardiac function typically involve the administration of exogenous β-adrenergic receptor agonists to directly elicit global β-adrenergic receptor activation by bypassing the involvement of sympathetic nerve terminals. In this work, we use a novel method to activate sympathetic fibres within the myocardium of Langendorff-perfused hearts while measuring changes in electrical and mechanical function. The light-activated optogenetic protein channelrhodopsin-2 (ChR2) was expressed in murine catecholaminergic sympathetic neurons. Sympathetic fibres were then photoactivated to examine changes in contractile force, HR, and cardiac electrical activity. Incidence of arrhythmia was measured with and without exposure to photoactivation of sympathetic fibres, and hearts were optically mapped to detect changes in action potential durations and conduction velocities. Results demonstrate facilitation of both developed force and HR after photostimulated release of NE, with increases in contractile force and HR of 34.5 ± 5.5 and 25.0 ± 9.3%, respectively. Photostimulation of sympathetic fibres also made hearts more susceptible to arrhythmia, with greater incidence and severity. In addition, optically mapped action potentials displayed a small but significant shortening of the plateau phase (-5.5 ± 1.0 ms) after photostimulation. This study characterizes a powerful and clinically relevant new model for studies of cardiac arrhythmias generated by increasing the activity of sympathetic nerve terminals and the resulting activation of myocyte β-adrenergic receptors. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  5. Functional cardiac imaging: positron emission tomography

    International Nuclear Information System (INIS)

    Mullani, N.A.; Gould, K.L.

    1984-01-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures

  6. Ascorbic Acid-Induced Cardiac Differentiation of Murine Pluripotent Stem Cells: Transcriptional Profiling and Effect of a Small Molecule Synergist of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Dina Ivanyuk

    2015-05-01

    Full Text Available Background: Reproducible and efficient differentiation of pluripotent stem cells (PSCs to cardiomyocytes (CMs is essential for their use in regenerative medicine, drug testing and disease modeling. The aim of this study was to evaluate the effect of some previously reported cardiogenic substances on cardiac differentiation of mouse PSCs. Methods: Differentiation was performed by embryoid body (EB-based method using three different murine PSC lines. The differentiation efficiency was monitored by RT-qPCR, immunocytochemistry and flow cytometry, and the effect mechanistically evaluated by transcriptome analysis of treated EBs. Results: Among the five tested compounds (ascorbic acid, dorsomorphin, cyclic adenosine 3',5'-monophosphate, cardiogenol C, cyclosporin A only ascorbic acid (AA exerted a strong and reproducible cardiogenic effect in CGR8 cells which was less consistent in other two PSC lines. AA induced only minor changes in transcriptome of CGR8 cells after administration during the initial two days of differentiation. Cardiospecific genes and transcripts involved in angiogenesis, erythropoiesis and hematopoiesis were up-regulated on day 5 but not on days 2 or 3 of differentiation. The cardiac differentiation efficiency was improved when QS11, a small-molecule synergist of Wnt/β-catenin signaling pathway, was added to cultures after AA-treatment. Conclusion: This study demonstrates that only minor transcriptional changes are sufficient for enhancement of cardiogenesis of murine PSCs by AA and that AA and QS11 exhibit synergistic effects and enhance the efficiency of CM differentiation of murine PSCs.

  7. Cardiac function studies

    International Nuclear Information System (INIS)

    Horn, H.J.

    1986-01-01

    A total of 27 patients were subjected tointramyocardial sequential scintiscanning (first pass) using 99m-Tc human serum albumin. A refined method is described that is suitable to analyse clinically relevant parameters like blood volume, cardiac output, ejection fraction, stroke volume, enddiastolic and endsystolic volumes as well as pulmonal transition time and uses a complete camaracomputer system adapted to the requirements of a routine procedure. Unless there is special hardware available, the method does not yet appear mature enough to be put into general practice. Its importance recently appeared in a new light due to the advent of particularly shortlived isotopes. For the time being, however, ECG-triggered equilibrium studies are to be preferred for cardiac function tests. (TRV) [de

  8. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Ingrid Kristine Ohm

    Full Text Available Altered cardiac Toll-like receptor 9 (TLR9 signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β. Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088 or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  9. Analysis of cardiomyocyte movement in the developing murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hisayuki [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Yuasa, Shinsuke, E-mail: yuasa@a8.keio.jp [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Tabata, Hidenori [Department of Anatomy, Keio University School of Medicine, Tokyo (Japan); Tohyama, Shugo; Seki, Tomohisa; Egashira, Toru; Hayashiji, Nozomi; Hattori, Fumiyuki; Kusumoto, Dai; Kunitomi, Akira; Takei, Makoto; Kashimura, Shin; Yozu, Gakuto; Shimojima, Masaya; Motoda, Chikaaki; Muraoka, Naoto [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Nakajima, Kazunori [Department of Anatomy, Keio University School of Medicine, Tokyo (Japan); Sakaue-Sawano, Asako; Miyawaki, Atsushi [Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Fukuda, Keiichi [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan)

    2015-09-04

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.

  10. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection

    Science.gov (United States)

    See Hoe, Louise E.; Schilling, Jan M.; Tarbit, Emiri; Kiessling, Can J.; Busija, Anna R.; Niesman, Ingrid R.; Du Toit, Eugene; Ashton, Kevin J.; Roth, David M.; Headrick, John P.; Patel, Hemal H.

    2014-01-01

    Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02–1.0 mM MβCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MβCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10–30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 μM MβCD, whereas SLP was more robust and only inhibited with ≥200 μM MβCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression. PMID:25063791

  11. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure.

    Science.gov (United States)

    Morine, Kevin J; Qiao, Xiaoying; York, Sam; Natov, Peter S; Paruchuri, Vikram; Zhang, Yali; Aronovitz, Mark J; Karas, Richard H; Kapur, Navin K

    2018-02-27

    Background -Heart failure is a growing cause of morbidity and mortality worldwide. Transforming growth factor beta (TGF-β1) promotes cardiac fibrosis, but also activates counter-regulatory pathways that serve to regulate TGF-β1 activity in heart failure. Bone morphogenetic protein 9 (BMP9) is a member of the TGFβ family of cytokines and signals via the downstream effector protein Smad1. Endoglin is a TGFβ co-receptor that promotes TGF-β1 signaling via Smad3 and binds BMP9 with high affinity. We hypothesized that BMP9 limits cardiac fibrosis by activating Smad1 and attenuating Smad3 and further that neutralizing endoglin activity promotes BMP9 activity. Methods -We examined BMP9 expression and signaling in human cardiac fibroblasts and human subjects with heart failure. We utilized the thoracic aortic constriction (TAC) induced model of heart failure to evaluate the functional effect of BMP9 signaling on cardiac remodeling. Results -BMP9 expression is increased in the circulation and left ventricle (LV) of human subjects with heart failure and is expressed by cardiac fibroblasts. Next, we observed that BMP9 attenuates Type I collagen synthesis in human cardiac fibroblasts using recombinant human BMP9 and an siRNA approach. In BMP9 -/- mice subjected to TAC, loss of BMP9 activity promotes cardiac fibrosis, impairs LV function, and increases LV levels of phosphorylated Smad3 (pSmad3), not pSmad1. In contrast, treatment of wild-type mice subjected to TAC with recombinant BMP9 limits progression of cardiac fibrosis, improves LV function, enhances myocardial capillary density, and increases LV levels of pSmad1, not pSmad3 compared to vehicle treated controls. Since endoglin binds BMP9 with high affinity, we explored the effect of reduced endoglin activity on BMP9 activity. Neutralizing endoglin activity in human cardiac fibroblasts or in wild-type mice subjected to TAC induced heart failure limits collagen production, increases BMP9 protein levels, and increases

  12. Rho-associated kinase inhibitors promote the cardiac differentiation of embryonic and induced pluripotent stem cells.

    Science.gov (United States)

    Cheng, Ya-Ting; Yeih, Dong-Feng; Liang, Shu-Man; Chien, Chia-Ying; Yu, Yen-Ling; Ko, Bor-Sheng; Jan, Yee-Jee; Kuo, Cheng-Chin; Sung, Li-Ying; Shyue, Song-Kun; Chen, Ming-Fong; Yet, Shaw-Fang; Wu, Kenneth K; Liou, Jun-Yang

    2015-12-15

    Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and β-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Longstanding Hyperthyroidism Is Associated with Normal or Enhanced Intrinsic Cardiomyocyte Function despite Decline in Global Cardiac Function

    Science.gov (United States)

    Redetzke, Rebecca A.; Gerdes, A. Martin

    2012-01-01

    Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function. PMID:23056390

  14. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  15. Influence of Respiratory Gating, Image Filtering, and Animal Positioning on High-Resolution Electrocardiography-Gated Murine Cardiac Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2015-01-01

    Full Text Available Cardiac parameters obtained from single-photon emission computed tomographic (SPECT images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were injected with 99m technetium (99mTc-tetrofosmin, and each was scanned in supine and prone positions in a U-SPECT-II scanner with respiratory and electrocardiographic (ECG gating. ECG-gated SPECT images were created without applying respiratory motion correction or with two different respiratory motion correction strategies. The images were filtered with a range of three-dimensional gaussian kernels, after which end-diastolic volumes (EDVs, end-systolic volumes (ESVs, and left ventricular ejection fractions were calculated. No significant differences in the measured cardiac parameters were detected when any strategy to reduce or correct for respiratory motion was applied, whereas big differences (> 5% in EDV and ESV were found with regard to different positioning of animals. A linear relationship (p < .001 was found between the EDV or ESV and the kernel size of the gaussian filter. In short, respiratory gating did not significantly affect the cardiac parameters of mice obtained with ultra-high-resolution SPECT, whereas the position of the animals and the image filters should be the same in a comparative study with multiple scans to avoid systematic differences in measured cardiac parameters.

  16. Evaluation of cardiac function in active and hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F

    2003-10-15

    To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.

  17. Delayed contrast enhancement imaging of a murine model for ischemia reperfusion with carbon nanotube micro-CT.

    Directory of Open Access Journals (Sweden)

    Laurel M Burk

    Full Text Available We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8-12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300 mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic

  18. Pravastatin But Not Simvastatin Improves Survival and Neurofunctional Outcome After Cardiac Arrest and Cardiopulmonary Resuscitation

    Directory of Open Access Journals (Sweden)

    Stefan Bergt, MD

    2017-04-01

    Full Text Available Summary: Cardiac arrest (CA followed by cardiopulmonary resuscitation (CPR is associated with high mortality and poor neurological outcome. We compared the effects of pravastatin and simvastatin on survival and neurofunction in a murine model of CA/CPR. Pravastatin, a hydrophilic statin, increased survival and neurofunction during a 28-day follow-up period. This therapy was associated with improved pulmonary function, reduced pulmonary edema, and increased endothelial cell function in vitro. In contrast, lipophilic simvastatin did not modulate survival but increased pulmonary edema and impaired endothelial cell function. Although pravastatin may display a therapeutic option for post-CA syndrome, the application of simvastatin may require re-evaluation. Key Words: cardiac arrest, endothelial cell function, ischemia and reperfusion injury, pravastatin, resuscitation, simvastatin

  19. Myocardin-related transcription factors are required for cardiac development and function

    Science.gov (United States)

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2016-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146

  20. Minocycline attenuates cardiac dysfunction in tumor-burdened mice.

    Science.gov (United States)

    Devine, Raymond D; Eichenseer, Clayton M; Wold, Loren E

    2016-11-01

    Cardiovascular dysfunction as a result of tumor burden is becoming a recognized complication; however, the mechanisms remain unknown. A murine model of cancer cachexia has shown marked increases of matrix metalloproteinases (MMPs), known mediators of cardiac remodeling, in the left ventricle. The extent to which MMPs are involved in remodeling remains obscured. To this end a common antibiotic, minocycline, with MMP inhibitory properties was used to elucidate MMP involvement in tumor induced cardiovascular dysfunction. Tumor-bearing mice showed decreased cardiac function with reduced posterior wall thickness (PWTs) during systole, increased MMP and collagen expression consistent with fibrotic remodeling. Administration of minocycline preserved cardiac function in tumor bearing mice and decreased collagen RNA expression in the left ventricle. MMP protein levels were unaffected by minocycline administration, with the exception of MMP-9, indicating minocycline inhibition mechanisms are directly affecting MMP activity. Cancer induced cardiovascular dysfunction is an increasing concern; novel therapeutics are needed to prevent cardiac complications. Minocycline is a well-known antibiotic and recently has been shown to possess MMP inhibitory properties. Our findings presented here show that minocycline could represent a novel use for a long established drug in the prevention and treatment of cancer induced cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study.

    Science.gov (United States)

    Kamenický, Peter; Redheuil, Alban; Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-11-01

    Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2-12 mo) after the treatment of hypercortisolism. Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism.

  2. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI.

    Science.gov (United States)

    Barton, Gregory P; Vildberg, Lauren; Goss, Kara; Aggarwal, Niti; Eldridge, Marlowe; McMillan, Alan B

    2018-05-01

    Cardiac metabolic changes in heart disease precede overt contractile dysfunction. However, metabolism and function are not typically assessed together in clinical practice. The purpose of this study was to develop a cardiac positron emission tomography/magnetic resonance (PET/MR) stress test to assess the dynamic relationship between contractile function and metabolism in a preclinical model. Following an overnight fast, healthy pigs (45-50 kg) were anesthetized and mechanically ventilated. 18 F-fluorodeoxyglucose ( 18 F-FDG) solution was administered intravenously at a constant rate of 0.01 mL/s for 60 minutes. A cardiac PET/MR stress test was performed using normoxic gas (F I O 2  = .209) and hypoxic gas (F I O 2  = .12). Simultaneous cardiac imaging was performed on an integrated 3T PET/MR scanner. Hypoxic stress induced a significant increase in heart rate, cardiac output, left ventricular (LV) ejection fraction (EF), and peak torsion. There was a significant decline in arterial SpO 2 , LV end-diastolic and end-systolic volumes in hypoxia. Increased LV systolic function was coupled with an increase in myocardial FDG uptake (Ki) during hypoxic stress. PET/MR with continuous FDG infusion captures dynamic changes in both cardiac metabolism and contractile function. This technique warrants evaluation in human cardiac disease for assessment of subtle functional and metabolic abnormalities.

  3. Use of I-123 MIBG cardiac scintigraphy to assess the impact of carvedilol on cardiac adrenergic neuronal function in childhood dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Maunoury, C.; Acar, P.; Sidi, D.

    2006-01-01

    I-123 MIBG cardiac scintigraphy is a useful tool to assess cardiac adrenergic neuronal function, which is impaired in children with dilated cardiomyopathy (DCM). In adults with DCM, long-term treatment with carvedilol improves both cardiac adrenergic neuronal function and left ventricular function. The aim of this prospective study was to evaluate the impact of carvedilol on cardiac adrenergic neuronal function and on left ventricular function in seventeen patients (11 female, 6 male, mean age 39 ± 57 months, range 1 - 168 months) with DCM. All patients underwent I-123 MIBG cardiac scintigraphy and equilibrium radio-nuclide angiography before and after a 6 month period of carvedilol therapy. A static anterior view of the chest was acquired 4 hours after intravenous injection of 20 to 75 MBq of I-123 MIBG. Cardiac neuronal uptake of I-123 MIBG was measured using the heart to mediastinum count ratio (HMR). Radionuclide left ventricular ejection fraction (LVEF) was assessed following a standard protocol. There was no major cardiac events (death or transplantation) during the follow-up period. I-123 MIBG cardiac uptake and left ventricular function respectively increased by 38% and 65% after 6 months of treatment with carvedilol (HMR 223 ± 49% vs 162 ± 26%, p < 0.0001 and LVEF = 43 ± 17% vs 26 ± 11%, p < 0.0001). Carvedilol can improve cardiac adrenergic neuronal function and left ventricular function in children with DCM. Further studies are needed to assess the relationship between improvement in I-123 MIBG cardiac uptake and the beneficial effects of carvedilol on morbidity and mortality. (authors)

  4. Cardiac telomere length in heart development, function, and disease.

    Science.gov (United States)

    Booth, S A; Charchar, F J

    2017-07-01

    Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury. Copyright © 2017 the American Physiological Society.

  5. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, Pedro Gomes; Op 't Veld, Roel C.; de Graaf, Wolter; Strijkers, Gustav J.; Grüll, Holger

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function

  6. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, P.G.; Op ‘t Veld, R.C.; de Graaf, W.; Strijkers, G.J.; Grüll, H.

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a noninvasive technique to image heart function of

  7. Cardiac dimensions and function in female handball players.

    Science.gov (United States)

    Malmgren, A; Dencker, M; Stagmo, M; Gudmundsson, P

    2015-04-01

    Long-term intensive endurance training leads to increased left ventricular mass and increased left ventricular end-diastolic and left atrial end-systolic diameters. Different types of sports tend to give rise to distinct morphological forms of the athlete's heart. However, the sport-specific aspects have not been fully investigated in female athletes. The purpose of the present study was to investigate differences in left and right cardiac dimensions, cardiac volumes, and systolic and diastolic function in elite female handball players compared to sedentary controls. A cross-sectional study of 33 elite female handball players was compared to 33 matched sedentary controls. Mean age was 21.5±2 years. The subjects underwent echocardiography examinations, both 2-dimensional (2DE) and 3-dimensional (3DE). Cardiac dimensions and volumes were quantified using M-mode, 2DE and 3DE. Systolic and diastolic left ventricular functions were also evaluated. All cardiac dimensions and volumes were adjusted for body surface area (BSA). Left atrium and left ventricle volumes were significantly (Phandball players compared with sedentary controls. Even right atrium area as well as right ventricular end-diastolic and end-systolic area were significantly (Phandball players. Significant differences were observed in three out of five systolic parameters. Most diastolic function parameters did not differ between the two groups. The findings from the present study suggest that similar cardiac remodeling takes place in elite female handball players as it does in athletes pursuing endurance or team game sports.

  8. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution

    Science.gov (United States)

    Ding, Yichen; Lee, Juhyun; Ma, Jianguo; Sung, Kevin; Yokota, Tomohiro; Singh, Neha; Dooraghi, Mojdeh; Abiri, Parinaz; Wang, Yibin; Kulkarni, Rajan P.; Nakano, Atsushi; Nguyen, Thao P.; Fei, Peng; Hsiai, Tzung K.

    2017-02-01

    Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the “digital murine heart” to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults.

  9. Toll-Like Receptor 9 Promotes Cardiac Inflammation and Heart Failure during Polymicrobial Sepsis

    Directory of Open Access Journals (Sweden)

    Ralph Lohner

    2013-01-01

    Full Text Available Background. Aim was to elucidate the role of toll-like receptor 9 (TLR9 in cardiac inflammation and septic heart failure in a murine model of polymicrobial sepsis. Methods. Sepsis was induced via colon ascendens stent peritonitis (CASP in C57BL/6 wild-type (WT and TLR9-deficient (TLR9-D mice. Bacterial load in the peritoneal cavity and cardiac expression of inflammatory mediators were determined at 6, 12, 18, 24, and 36 h. Eighteen hours after CASP cardiac function was monitored in vivo. Sarcomere length of isolated cardiomyocytes was measured at 0.5 to 10 Hz after incubation with heat-inactivated bacteria. Results. CASP led to continuous release of bacteria into the peritoneal cavity, an increase of cytokines, and differential regulation of receptors of innate immunity in the heart. Eighteen hours after CASP WT mice developed septic heart failure characterised by reduction of end-systolic pressure, stroke volume, cardiac output, and parameters of contractility. This coincided with reduced cardiomyocyte sarcomere shortening. TLR9 deficiency resulted in significant reduction of cardiac inflammation and a sustained heart function. This was consistent with reduced mortality in TLR9-D compared to WT mice. Conclusions. In polymicrobial sepsis TLR9 signalling is pivotal to cardiac inflammation and septic heart failure.

  10. Adult Murine Skeletal Muscle Contains Cells That Can Differentiate into Beating Cardiomyocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Winitsky Steve O

    2005-01-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  11. Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Steve O Winitsky

    2005-04-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  12. Pim-1 Kinase Phosphorylates Cardiac Troponin I and Regulates Cardiac Myofilament Function

    Directory of Open Access Journals (Sweden)

    Ni Zhu

    2018-03-01

    Full Text Available Background/Aims: Pim-1 is a serine/threonine kinase that is highly expressed in the heart, and exerts potent cardiac protective effects through enhancing survival, proliferation, and regeneration of cardiomyocytes. Its myocardial specific substrates, however, remain unknown. In the present study, we aim to investigate whether Pim-1 modulates myofilament activity through phosphorylation of cardiac troponin I (cTnI, a key component in regulating myofilament function in the heart. Methods: Coimmunoprecipitation and immunofluorescent assays were employed to investigate the interaction of Pim-1 with cTnI in cardiomyocytes. Biochemical, site directed mutagenesis, and mass spectrometric analyses were utilized to identify the phosphorylation sites of Pim1 in cTnI. Myofilament functional assay using skinned cardiac fiber was used to assess the effect of Pim1-mediated phosphorylation on cardiac myofilament activity. Lastly, the functional significance of Pim1-mediated cTnI in heart disease was determined in diabetic mice. Results: We found that Pim-1 specifically interacts with cTnI in cardiomyocytes and this interaction leads to Pim1-mediated cTnI phosphorylation, predominantly at Ser23/24 and Ser150. Furthermore, our functional assay demonstrated that Pim-1 induces a robust phosphorylation of cTnI within the troponin complex, thus leading to a decreased Ca2+ sensitivity. Insulin-like growth factor 1 (IGF-1, a peptide growth factor that has been shown to stimulate myocardial contractility, markedly induces cTnI phosphorylation at Ser23/24 and Ser150 through increasing Pim-1 expression in cardiomyocytes. In a high-fat diabetic mice model, the expression of Pim1 in the heart is significantly decreased, which is accompanied by a decreased phosphorylation of cTnI at Ser23/24 and Ser150, further implicating the pathological significance of the Pim1/cTnI axis in the development of diabetic cardiomyopathy. Conclusion: Our results demonstrate that Pim-1 is a

  13. The effects of malnutrition on cardiac function in African children.

    Science.gov (United States)

    Silverman, Jonathan A; Chimalizeni, Yamikani; Hawes, Stephen E; Wolf, Elizabeth R; Batra, Maneesh; Khofi, Harriet; Molyneux, Elizabeth M

    2016-02-01

    Cardiac dysfunction may contribute to high mortality in severely malnourished children. Our objective was to assess the effect of malnutrition on cardiac function in hospitalised African children. Prospective cross-sectional study. Public referral hospital in Blantyre, Malawi. We enrolled 272 stable, hospitalised children ages 6-59 months, with and without WHO-defined severe acute malnutrition. Cardiac index, heart rate, mean arterial pressure, stroke volume index and systemic vascular resistance index were measured by the ultrasound cardiac output monitor (USCOM, New South Wales, Australia). We used linear regression with generalised estimating equations controlling for age, sex and anaemia. Our primary outcome, cardiac index, was similar between those with and without severe malnutrition: difference=0.22 L/min/m(2) (95% CI -0.08 to 0.51). No difference was found in heart rate or stroke volume index. However, mean arterial pressure and systemic vascular resistance index were lower in children with severe malnutrition: difference=-8.6 mm Hg (95% CI -12.7 to -4.6) and difference=-200 dyne s/cm(5)/m(2) (95% CI -320 to -80), respectively. In this largest study to date, we found no significant difference in cardiac function between hospitalised children with and without severe acute malnutrition. Further study is needed to determine if cardiac function is diminished in unstable malnourished children. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Cardiac Autonomic Function Is Associated With the Coronary Microcirculatory Function in Patients With Type 2 Diabetes

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Hansen, Christian Stevns; Hasbak, Philip

    2016-01-01

    Cardiac autonomic dysfunction and cardiac microvascular dysfunction are diabetic complications associated with increased mortality, but the association between these has been difficult to assess. We applied new and sensitive methods to assess this in patients with type 2 diabetes mellitus (T2DM......). In a cross-sectional design, coronary flow reserve (CFR) assessed by cardiac (82)Rb-positron emission tomography/computed tomography, cardiac autonomic reflex tests, and heart rate variability indices were performed in 55 patients with T2DM, without cardiovascular disease, and in 28 control subjects. Cardiac....... A heart rate variability index, reflecting sympathetic and parasympathetic function (low-frequency power), and the late heart-to-mediastinum ratio, reflecting the function of adrenergic receptors and sympathetic activity, were positively correlated with CFR after adjustment for age and heart rate...

  15. Cardiac-specific activation of Cre expression at late fetal development

    International Nuclear Information System (INIS)

    Opherk, Jan P.; Yampolsky, Peter; Hardt, Stefan E.; Schoels, Wolfgang; Katus, Hugo A.; Koenen, Michael; Zehelein, Joerg

    2007-01-01

    In a first step towards dissecting molecular mechanisms that contribute to the development of cardiac diseases, we have generated transgenic mice that express a Cre-GFP fusion protein under the transcriptional control of a 4.3 kb murine cardiac Troponin I gene (cTnI) promoter. Cre-GFP expression, similar in three transgenic lines, is described in one line. In mouse embryos, transgenic for the Cre-GFP and ROSA lacZ reporter allele, first Cre-mediated recombination appeared at 16.5 dpc selectively at the heart. Like the endogenous cTnI gene, transgenic Cre expression showed a slow rise through fetal development that increased neonatally. Bitransgenic hearts, stained at 30 days of age, showed intense signals in ventricular and atrial myocytes while no recombination occurred in other tissues. The delayed onset of Cre activity in cTnI-Cre mice could provide a useful genetic tool to evaluate the function of loxP targeted cardiac genes without interference of recombination during early heart development

  16. Human Leucocyte Antigen-G (HLA-G and Its Murine Functional Homolog Qa2 in the Trypanosoma cruzi Infection

    Directory of Open Access Journals (Sweden)

    Fabrício C. Dias

    2015-01-01

    Full Text Available Genetic susceptibility factors, parasite strain, and an adequate modulation of the immune system seem to be crucial for disease progression after Trypanosoma cruzi infection. HLA-G and its murine functional homolog Qa2 have well-recognized immunomodulatory properties. We evaluated the HLA-G 3′ untranslated region (3′UTR polymorphic sites (associated with mRNA stability and target for microRNA binding and HLA-G tissue expression (heart, colon, and esophagus in patients presenting Chagas disease, stratified according to the major clinical variants. Further, we investigated the transcriptional levels of Qa2 and other pro- and anti-inflammatory genes in affected mouse tissues during T. cruzi experimental acute and early chronic infection induced by the CL strain. Chagas disease patients exhibited differential HLA-G 3′UTR susceptibility allele/genotype/haplotype patterns, according to the major clinical variant (digestive/cardiac/mixed/indeterminate. HLA-G constitutive expression on cardiac muscle and colonic cells was decreased in Chagasic tissues; however, no difference was observed for Chagasic and non-Chagasic esophagus tissues. The transcriptional levels of Qa2 and other anti and proinflammatory (CTLA-4, PDCD1, IL-10, INF-γ, and NOS-2 genes were induced only during the acute T. cruzi infection in BALB/c and C57BL/6 mice. We present several lines of evidence indicating the role of immunomodulatory genes and molecules in human and experimental T. cruzi infection.

  17. In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis.

    Directory of Open Access Journals (Sweden)

    Xavier Helluy

    Full Text Available Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis.Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast.This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise localization of

  18. Cardiac function of the naked mole-rat: ecophysiological responses to working underground.

    Science.gov (United States)

    Grimes, Kelly M; Voorhees, Andrew; Chiao, Ying Ann; Han, Hai-Chao; Lindsey, Merry L; Buffenstein, Rochelle

    2014-03-01

    The naked mole-rat (NMR) is a strictly subterranean rodent with a low resting metabolic rate. Nevertheless, it can greatly increase its metabolic activity to meet the high energetic demands associated with digging through compacted soils in its xeric natural habitat where food is patchily distributed. We hypothesized that the NMR heart would naturally have low basal function and exhibit a large cardiac reserve, thereby mirroring the species' low basal metabolism and large metabolic scope. Echocardiography showed that young (2-4 yr old) healthy NMRs have low fractional shortening (28 ± 2%), ejection fraction (43 ± 2%), and cardiac output (6.5 ± 0.4 ml/min), indicating low basal cardiac function. Histology revealed large NMR cardiomyocyte cross-sectional area (216 ± 10 μm(2)) and cardiac collagen deposition of 2.2 ± 0.4%. Neither of these histomorphometric traits was considered pathological, since biaxial tensile testing showed no increase in passive ventricular stiffness. NMR cardiomyocyte fibers showed a low degree of rotation, contributing to the observed low NMR cardiac contractility. Interestingly, when the exercise mimetic dobutamine (3 μg/g ip) was administered, NMRs showed pronounced increases in fractional shortening, ejection fraction, cardiac output, and stroke volume, indicating an increased cardiac reserve. The relatively low basal cardiac function and enhanced cardiac reserve of NMRs are likely to be ecophysiological adaptations to life in an energetically taxing environment.

  19. Disruption of canonical TGFβ-signaling in murine coronary progenitor cells by low level arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Patrick; Huang, Tianfang; Broka, Derrick; Parker, Patti [Department of Pharmacology and Toxicology College of Pharmacy, Southwest Environmental Health Sciences Center, Steele Children' s Research Center and Bio5 Institute, University of Arizona, Tucson, AZ 85721 (United States); Barnett, Joey V. [Department of Pharmacology, Vanderbilt Medical University, Nashville, TN (United States); Camenisch, Todd D., E-mail: camenisch@pharmacy.arizona.edu [Department of Pharmacology and Toxicology College of Pharmacy, Southwest Environmental Health Sciences Center, Steele Children' s Research Center and Bio5 Institute, University of Arizona, Tucson, AZ 85721 (United States)

    2013-10-01

    Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors is essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitro study, 18 hour exposure to 1.34 μM arsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μM arsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease in vimentin positive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. - Highlights: • Arsenic blocks TGFβ2 induced expression of EMT genes. • Arsenic blocks TGFβ2 triggered Smad2/3 phosphorylation and nuclear translocation. • Arsenic blocks epicardial cell differentiation into cardiac mesenchyme.

  20. Inspiration from heart development: Biomimetic development of functional human cardiac organoids.

    Science.gov (United States)

    Richards, Dylan J; Coyle, Robert C; Tan, Yu; Jia, Jia; Wong, Kerri; Toomer, Katelynn; Menick, Donald R; Mei, Ying

    2017-10-01

    Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Assessment of Cardiac Function in Fetuses of Gestational Diabetic Mothers During the Second Trimester.

    Science.gov (United States)

    Atiq, Mehnaz; Ikram, Anum; Hussain, Batool M; Saleem, Bakhtawar

    2017-06-01

    Fetuses of diabetic mothers may have structural or functional cardiac abnormalities which increase morbidity and mortality. Isolated functional abnormalities have been identified in the third trimester. The aim of the present study was to assess fetal cardiac function (systolic, diastolic, and global myocardial performance) in the second trimester in mothers with gestational diabetes, and also to relate cardiac function with glycemic control. Mothers with gestational diabetes mellitus referred for fetal cardiac evaluation in the second trimester (between 19 and 24 weeks) from March 2015 to February 2016 were enrolled as case subjects in this study. Non-diabetic mothers who had a fetal echocardiogram done between 19 and 24 weeks for other indications were enrolled as controls. Functional cardiac variables showed a statistically significant difference in isovolumetric relaxation and contraction times and the myocardial performance index and mitral E/A ratios in the gestational diabetic group (p = 0.003). Mitral annular plane systolic excursion was significantly less in the diabetic group (p = 0.01). The only functional cardiac variable found abnormal in mothers with poor glycemic control was the prolonged isovolumetric relaxation time. Functional cardiac abnormalities can be detected in the second trimester in fetuses of gestational diabetic mothers and timely intervention can improve postnatal outcomes.

  2. Evaluation of left ventricular function by cardiac CT

    International Nuclear Information System (INIS)

    Naito, Hiroaki; Kozuka, Takahiro

    1982-01-01

    Left ventricular function was evaluated by CT, which was compared with the data of left ventriculography for various cardiac diseases. The end diastolic volume of the left ventricle can be readily computed from CT, with a satisfactory correlation with that of left ventriculography (r = 0.95). The left ventricular ejection fraction, calculated from the areal ratio of the left ventricular lumen in end-diastolic imaging to that in end-sytolic imaging, also roughly reflects left ventricular contractile function, but shows correlation with left ventriculography by only r = 0.79. Although the cardiac output is not sensitive for functional evaluation, it can be directly calculated by means of dynamic scanning and shows a satisfactory correlation with the ear piece pigment dilution (r = 0.85). Evaluation of left ventricular function by CT shows a high precision in comparison with left ventriculography, but still lacks temporal resolving power. (Chiba, N.)

  3. Dasatinib Attenuates Pressure Overload Induced Cardiac Fibrosis in a Murine Transverse Aortic Constriction Model.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    Full Text Available Reactive cardiac fibrosis resulting from chronic pressure overload (PO compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs play a key role in fibrosis by activating cardiac fibroblasts (CFb, and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC. Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i extracellular accumulation of both collagen and fibronectin, (ii both basal and PDGF-stimulated activation of Pyk2, (iii nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.

  4. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function

    Science.gov (United States)

    Beaumont, Eric; Salavatian, Siamak; Southerland, E Marie; Vinet, Alain; Jacquemet, Vincent; Armour, J Andrew; Ardell, Jeffrey L

    2013-01-01

    The aims of the study were to determine how aggregates of intrinsic cardiac (IC) neurons transduce the cardiovascular milieu versus responding to changes in central neuronal drive and to determine IC network interactions subsequent to induced neural imbalances in the genesis of atrial fibrillation (AF). Activity from multiple IC neurons in the right atrial ganglionated plexus was recorded in eight anaesthetized canines using a 16-channel linear microelectrode array. Induced changes in IC neuronal activity were evaluated in response to: (1) focal cardiac mechanical distortion; (2) electrical activation of cervical vagi or stellate ganglia; (3) occlusion of the inferior vena cava or thoracic aorta; (4) transient ventricular ischaemia, and (5) neurally induced AF. Low level activity (ranging from 0 to 2.7 Hz) generated by 92 neurons was identified in basal states, activities that displayed functional interconnectivity. The majority (56%) of IC neurons so identified received indirect central inputs (vagus alone: 25%; stellate ganglion alone: 27%; both: 48%). Fifty per cent transduced the cardiac milieu responding to multimodal stressors applied to the great vessels or heart. Fifty per cent of IC neurons exhibited cardiac cycle periodicity, with activity occurring primarily in late diastole into isovolumetric contraction. Cardiac-related activity in IC neurons was primarily related to direct cardiac mechano-sensory inputs and indirect autonomic efferent inputs. In response to mediastinal nerve stimulation, most IC neurons became excessively activated; such network behaviour preceded and persisted throughout AF. It was concluded that stochastic interactions occur among IC local circuit neuronal populations in the control of regional cardiac function. Modulation of IC local circuit neuronal recruitment may represent a novel approach for the treatment of cardiac disease, including atrial arrhythmias. PMID:23818689

  5. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.

    Science.gov (United States)

    Pillai, Indulekha C L; Li, Shen; Romay, Milagros; Lam, Larry; Lu, Yan; Huang, Jie; Dillard, Nathaniel; Zemanova, Marketa; Rubbi, Liudmilla; Wang, Yibin; Lee, Jason; Xia, Ming; Liang, Owen; Xie, Ya-Hong; Pellegrini, Matteo; Lusis, Aldons J; Deb, Arjun

    2017-02-02

    Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks. However the cell identity and mechanisms contributing to pathological heart muscle calcification remain unknown. Using lineage tracing, murine models of heart calcification and in vivo transplantation assays, we show that cardiac fibroblasts (CFs) adopt an osteoblast cell-like fate and contribute directly to heart muscle calcification. Small-molecule inhibition of ENPP1, an enzyme that is induced upon injury and regulates bone mineralization, significantly attenuated cardiac calcification. Inhibitors of bone mineralization completely prevented ectopic cardiac calcification and improved post injury heart function. Taken together, these findings highlight the plasticity of fibroblasts in contributing to ectopic calcification and identify pharmacological targets for therapeutic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. PET measures of pre- and post-synaptic cardiac beta adrenergic function

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Stratton, John R.; Levy, Wayne; Poole, Jeanne E.; Shoner, Steven C.; Stuetzle, Werner; Caldwell, James H. E-mail: jcald@u.washington.edu

    2003-11-01

    Positron Emission Tomography was used to measure global and regional cardiac {beta}-adrenergic function in 19 normal subjects and 9 congestive heart failure patients. [{sup 11}C]-meta-hydroxyephedrine was used to image norepinephrine transporter function as an indicator of pre-synaptic function and [{sup 11}C]-CGP12177 was used to measure cell surface {beta}-receptor density as an indicator of post-synaptic function. Pre-synaptic, but not post-synaptic, function was significantly different between normals and CHF patients. Pre-synaptic function was well matched to post-synaptic function in the normal hearts but significantly different and poorly matched in the CHF patients studied. This imaging technique can help us understand regional sympathetic function in cardiac disease.

  7. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    Science.gov (United States)

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF. Copyright © 2016 the American Physiological Society.

  8. Effects of plasma viscosity modulation on cardiac function during moderate hemodilution

    Directory of Open Access Journals (Sweden)

    Chatpun Surapong

    2010-01-01

    Full Text Available Background : Previous studies have found that increasing plasma viscosity as whole blood viscosity decrease has beneficial effects in microvascular hemodynamics. As the heart couples with systemic vascular network, changes in plasma and blood viscosity during hemodilution determine vascular pressure drop and flow rate, which influence cardiac function. This study aimed to investigate how changes in plasma viscosity affect on cardiac function during acute isovolemic hemodilution. Materials and Methods: Plasma viscosity was modulated by hemodilution of 40% of blood volume with three different plasma expanders (PEs. Dextran 2000 kDa (Dx2M, 6.3 cP and dextran 70 kDa (Dx70, 3.0 cP were used as high and moderate viscogenic PEs, respectively. Polyethylene glycol conjugated with human serum albumin (PEG-HSA, 2.2 cP was used as low viscogenic PE. The cardiac function was assessed using a miniaturized pressure-volume conductance catheter. Results: After hemodilution, pressure dropped to 84%, 79%, and 78% of baseline for Dx2M, Dx70 and PEG-HSA, respectively. Cardiac output markedly increased for Dx2M and PEG-HSA. Dx2M significantly produced higher stroke work relative to baseline and compared to Dx70. Conclusion: Acute hemodilution with PEG-HSA without increasing plasma viscosity provided beneficial effects on cardiac function compared to Dx70, and similar to those measured with Dx2M. Potentially negative effects of increasing peripheral vascular resistance due to the increase in plasma viscosity were prevented.

  9. Adaptive servo ventilation improves Cheyne-Stokes respiration, cardiac function, and prognosis in chronic heart failure patients with cardiac resynchronization therapy.

    Science.gov (United States)

    Miyata, Makiko; Yoshihisa, Akiomi; Suzuki, Satoshi; Yamada, Shinya; Kamioka, Masashi; Kamiyama, Yoshiyuki; Yamaki, Takayoshi; Sugimoto, Koichi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika

    2012-09-01

    Cheyne-Stokes respiration (CSR-CSA) is often observed in patients with chronic heart failure (CHF). Although cardiac resynchronization therapy (CRT) is effective for CHF patients with left ventricular dyssynchrony, it is still unclear whether adaptive servo ventilation (ASV) improves cardiac function and prognosis of CHF patients with CSR-CSA after CRT. Twenty two patients with CHF and CSR-CSA after CRT defibrillator (CRTD) implantation were enrolled in the present study and randomly assigned into two groups: 11 patients treated with ASV (ASV group) and 11 patients treated without ASV (non-ASV group). Measurement of plasma B-type natriuretic peptide (BNP) levels (before 3, and 6 months later) and echocardiography (before and 6 months) were performed in each group. Patients were followed up to register cardiac events (cardiac death and re-hospitalization) after discharge. In the ASV group, indices for apnea-hypopnea, central apnea, and oxyhemoglobin saturation were improved on ASV. BNP levels, cardiac systolic and diastolic function were improved with ASV treatment for 6 months. Importantly, the event-free rate was significantly higher in the ASV group than in the non-ASV group. ASV improves CSR-CSA, cardiac function, and prognosis in CHF patients with CRTD. Patients with CSR-CSA and post CRTD implantation would get benefits by treatment with ASV. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  10. Puerarin Facilitates T-Tubule Development of Murine Embryonic Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-07-01

    Full Text Available Aims: The embryonic stem cell-derived cardiomyocytes (ES-CM is one of the promising cell sources for repopulation of damaged myocardium. However, ES-CMs present immature structure, which impairs their integration with host tissue and functional regeneration. This study used murine ES-CMs as an in vitro model of cardiomyogenesis to elucidate the effect of puerarin, the main compound found in the traditional Chinese medicine the herb Radix puerariae, on t-tubule development of murine ES-CMs. Methods: Electron microscope was employed to examine the ultrastructure. The investigation of transverse-tubules (t-tubules was performed by Di-8-ANEPPS staining. Quantitative real-time PCR was utilized to study the transcript level of genes related to t-tubule development. Results: We found that long-term application of puerarin throughout cardiac differentiation improved myofibril array and sarcomeres formation, and significantly facilitated t-tubules development of ES-CMs. The transcript levels of caveolin-3, amphiphysin-2 and junctophinlin-2, which are crucial for the formation and development of t-tubules, were significantly upregulated by puerarin treatment. Furthermore, puerarin repressed the expression of miR-22, which targets to caveolin-3. Conclusion: Our data showed that puerarin facilitates t-tubule development of murine ES-CMs. This might be related to the repression of miR-22 by puerarin and upregulation of Cav3, Bin1 and JP2 transcripts.

  11. ABC of the cardiac magnetic resonance. Part 1: anatomy and function

    International Nuclear Information System (INIS)

    Loureiro, Ricardo; Rached, Heron; Castro, Claudio C.; Cerri, Giovanni G.; Favaro, Daniele; Baptista, Luciana; Andrade, Joalbo; Rochitte, Carlos E.; Parga Filho, Jose; Avila, Luiz F.; Piva, Rosa M.V.

    2003-01-01

    The objective of this work is to demonstrate the fundamental concepts, the basic sequences and the clinical and potential applications of cardiac magnetic resonance as a diagnostic technique in updated radiology and cardiology practices. In this first part, we present the basic planning of the cardiac image acquisition, the nomenclature and standardized myocardial segmentation, image synchronization principles for electrocardiogram and the heart functional and anatomical evaluation by cardiac magnetic resonance. (author)

  12. In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis

    Science.gov (United States)

    Helluy, Xavier; Sauter, Martina; Ye, Yu-Xiang; Lykowsky, Gunthard; Kreutner, Jakob; Yilmaz, Ali; Jahns, Roland; Boivin, Valerie; Kandolf, Reinhard; Jakob, Peter M.; Hiller, Karl-Heinz; Klingel, Karin

    2017-01-01

    Objective Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis. Results Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast. Conclusion This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise

  13. Preserved cardiac function despite marked impairment of cAMP generation.

    Directory of Open Access Journals (Sweden)

    Mei Hua Gao

    Full Text Available So many clinical trials of positive inotropes have failed, that it is now axiomatic that agents that increase cAMP are deleterious to the failing heart. An alternative strategy is to alter myocardial Ca(2+ handling or myofilament response to Ca(2+ using agents that do not affect cAMP. Although left ventricular (LV function is tightly linked to adenylyl cyclase (AC activity, the beneficial effects of AC may be independent of cAMP and instead stem from effects on Ca(2+ handling. Here we ask whether an AC mutant molecule that reduces LV cAMP production would have favorable effects on LV function through its effects on Ca(2+ handling alone.We generated transgenic mice with cardiac-directed expression of an AC6 mutant (AC6mut. Cardiac myocytes showed impaired cAMP production in response to isoproterenol (74% reduction; p<0.001, but LV size and function were normal. Isolated hearts showed preserved LV function in response to isoproterenol stimulation. AC6mut expression was associated with increased sarcoplasmic reticulum Ca(2+ uptake and the EC50 for SERCA2a activation was reduced. Cardiac myocytes isolated from AC6mut mice showed increased amplitude of Ca(2+ transients in response to isoproterenol (p = 0.0001. AC6mut expression also was associated with increased expression of LV S100A1 (p = 0.03 and reduced expression of phospholamban protein (p = 0.01.LV AC mutant expression is associated with normal cardiac function despite impaired cAMP generation. The mechanism appears to be through effects on Ca(2+ handling - effects that occur despite diminished cAMP.

  14. Yogurt Feeding Induced the Prolongation of Fully Major Histocompatibility Complex-Mismatched Murine Cardiac Graft Survival by Induction of CD4+Foxp3+ Cells.

    Science.gov (United States)

    Uchiyama, M; Yin, E; Yanagisawa, T; Jin, X; Hara, M; Matsuyama, S; Imazuru, T; Uchida, K; Kawamura, M; Niimi, M

    Yogurt is a nutrient-rich food and the beneficial effects of yogurt on both health and immunomodulatory effects are well documented. In this pilot study, we investigated the effects of commercially produced yogurt R-1 on alloimmune responses in a murine cardiac transplantation model. The R-1 is produced by Meiji Co., Ltd., and contains live and active lactic acid bacteria (lactobacillus bulgaricus OLL1073R-1) mainly. CBA (H2 k ) mice underwent transplantation of a C57BL/6 (H2 b ; B6) heart and received oral administration of 1 mL, 0.1 mL, and 0.01 mL of R-1 from the day of transplantation until 7 days afterward. Additionally, we prepared one group of CBA recipients given 1 mL of R-1 sterilized by microwave for 7 days. Histological and immunohistochemical studies were performed. Naïve CBA mice rejected B6 cardiac graft acutely (median survival time [MST]: 7 days). CBA recipients given of 1 mL of R-1 had significantly prolonged B6 allograft survival (MST, 27 days). However, other doses of 0.1 mL and 0.01 mL of R-1 did not prolonged allograft survival (MSTs, 9 days and 8.5 days, respectively). Also, CBA recipients administered microwaved R-1 had no prolongation of B6 allograft (MST, 9 days). Histological and immunohistochemical studies showed the cardiac allograft from R-1-exposed CBA recipients had preserved graft and vessel structure and the number of infiltrated CD4 + , CD8 + , and Foxp3 + cells in R-1-exposed CBA recipients increased, respectively. In conclusion, our findings imply that yogurt containing active lactic acid bacteria could change alloimmune responses partially and induce the prolongation of cardiac allograft survival via CD4 + Foxp3 + regulatory cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics.

    Science.gov (United States)

    Ding, Yichen; Abiri, Arash; Abiri, Parinaz; Li, Shuoran; Chang, Chih-Chiang; Baek, Kyung In; Hsu, Jeffrey J; Sideris, Elias; Li, Yilei; Lee, Juhyun; Segura, Tatiana; Nguyen, Thao P; Bui, Alexander; Sevag Packard, René R; Fei, Peng; Hsiai, Tzung K

    2017-11-16

    Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.

  16. Relationship between cardiac function and resting cerebral blood flow: MRI measurements in healthy elderly subjects.

    Science.gov (United States)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja; Larsson, Henrik B W; Rostrup, Egill

    2014-11-01

    Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed a gender-related inverse association of increased low-to-high-frequency power ratio with CBF and fractional brain flow. The findings do not support a direct effect of cardiac function on CBF, but demonstrates gender-related differences in cardiac output distribution. We propose fractional brain flow as a novel index that may be a useful marker of adequate brain perfusion in the context of ageing as well as cardiovascular disease. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  17. A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice.

    Science.gov (United States)

    Carbone, Salvatore; Mauro, Adolfo G; Mezzaroma, Eleonora; Kraskauskas, Donatas; Marchetti, Carlo; Buzzetti, Raffaella; Van Tassell, Benjamin W; Abbate, Antonio; Toldo, Stefano

    2015-11-01

    Heart failure (HF) is a clinical syndrome characterized by dyspnea, fatigue, exercise intolerance and cardiac dysfunction. Unhealthy diet has been associated with increased risk of obesity and heart disease, but whether it directly affects cardiac function, and promotes the development and progression of HF is unknown. We fed 8-week old male or female CD-1 mice with a standard diet (SD) or a diet rich in saturated fat and sugar, resembling a "Western" diet (WD). Cardiac systolic and diastolic function was measured at baseline and 4 and 8 weeks by Doppler echocardiography, and left ventricular (LV) end-diastolic pressure (EDP) by cardiac catheterization prior to sacrifice. An additional group of mice received WD for 4 weeks followed by SD (wash-out) for 8 weeks. WD-fed mice experienced a significant decreased in LV ejection fraction (LVEF), reflecting impaired systolic function, and a significant increase in isovolumetric relaxation time (IRT), myocardial performance index (MPI), and LVEDP, showing impaired diastolic function, without any sex-related differences. Switching to a SD after 4 weeks of WD partially reversed the cardiac systolic and diastolic dysfunction. A diet rich in saturated fat and sugars (WD) impairs cardiac systolic and diastolic function in the mouse. Further studies are required to define the mechanism through which diet affects cardiac function, and whether dietary interventions can be used in patients with, or at risk for, HF. Published by Elsevier Ireland Ltd.

  18. Cardiac structure and function predicts functional decline in the oldest old.

    Science.gov (United States)

    Leibowitz, David; Jacobs, Jeremy M; Lande-Stessman, Irit; Gilon, Dan; Stessman, Jochanan

    2018-02-01

    Background This study examined the association between cardiac structure and function and the deterioration in activities of daily living (ADLs) in an age-homogenous, community-dwelling population of patients born in 1920-1921 over a five-year follow-up period. Design Longitudinal cohort study. Methods Patients were recruited from the Jerusalem Longitudinal Cohort Study, which has followed an age-homogenous cohort of Jerusalem residents born in 1920-1921. Patients underwent home echocardiography and were followed up for five years. Dependence was defined as needing assistance with one or more basic ADL. Standard echocardiographic assessment of cardiac structure and function, including systolic and diastolic function, was performed. Reassessment of ADLs was performed at the five-year follow-up. Results A total of 459 patients were included in the study. Of these, 362 (79%) showed a deterioration in at least one ADL at follow-up. Patients with functional deterioration had a significantly higher left ventricular mass index and left atrial volume with a lower ejection fraction. There was no significant difference between the diastolic parameters the groups in examined. When the data were examined categorically, a significantly larger percentage of patients with functional decline had an abnormal left ventricular ejection fraction and left ventricular hypertrophy. The association between left ventricular mass index and functional decline remained significant in all multivariate models. Conclusions In this cohort of the oldest old, an elevated left ventricular mass index, higher left atrial volumes and systolic, but not diastolic dysfunction, were predictive of functional disability.

  19. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  20. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  1. Cardiac Function in 7-8-Year-Old Offspring of Women with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Maarten Rijpert

    2011-01-01

    Full Text Available Offspring of type 1 diabetic mothers (ODMs are at risk of short-term and long-term complications, such as neonatal macrosomia (birth weight >90th percentile, hypertrophic cardiomyopathy, and cardiovascular morbidity in later life. However, no studies have been performed regarding cardiac outcome. In this study, we investigated cardiac dimensions and function in 30 ODMs at 7-8 years of age in relation to neonatal macrosomia and maternal glycemic control during pregnancy and compared these with those in a control group of 30 children of nondiabetic women. We found that cardiac dimensions and systolic and diastolic function parameters in ODMs were comparable with those in controls. Neonatal macrosomia and poorer maternal glycemic control during pregnancy were not related to worse cardiac outcome in ODM. We conclude that cardiac function at 7-8 years of age in offspring of women with type 1 diabetes is reassuring and comparable with that in controls.

  2. Multimodality Cardiac Imaging for the Assessment of Left Atrial Function and the Association With Atrial Arrhythmias

    DEFF Research Database (Denmark)

    Olsen, Flemming Javier; Bertelsen, Litten; de Knegt, Martina Chantal

    2016-01-01

    Several cardiac imaging modalities are able to visualize the left atrium (LA) and, therefore, allow for quantification of both structural and functional properties of this cardiac chamber. In echocardiography, only the maximal LA volume is included in the assessment of diastolic function at the c......Several cardiac imaging modalities are able to visualize the left atrium (LA) and, therefore, allow for quantification of both structural and functional properties of this cardiac chamber. In echocardiography, only the maximal LA volume is included in the assessment of diastolic function...... atrial fibrillation, which will be a point of focus in this review. Pivotal cardiac magnetic resonance imaging studies have revealed high correlation between LA fibrosis and risk of atrial fibrillation recurrence after catheter ablation, and subsequent multimodality imaging studies have uncovered...... an inverse relationship between LA reservoir function and degree of LA fibrosis. This has sparked an increased interest into the application of advanced imaging modalities, including both speckle tracking echocardiography and tissue tracking by cardiac magnetic resonance imaging. Even though increasing...

  3. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes.

    Science.gov (United States)

    Katare, Rajesh; Oikawa, Atsuhiko; Cesselli, Daniela; Beltrami, Antonio P; Avolio, Elisa; Muthukrishnan, Deepti; Munasinghe, Pujika Emani; Angelini, Gianni; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1(pos) CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105(pos) progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity.

  4. Cardiac function associated with home ventilator care in Duchenne muscular dystrophy.

    Science.gov (United States)

    Lee, Sangheun; Lee, Heeyoung; Eun, Lucy Youngmin; Gang, Seung Woong

    2018-02-01

    Cardiomyopathy is becoming the leading cause of death in patients with Duchenne muscular dystrophy because mechanically assisted lung ventilation and assisted coughing have helped resolve respiratory complications. To clarify cardiopulmonary function, we compared cardiac function between the home ventilator-assisted and non-ventilator-assisted groups. We retrospectively reviewed patients with Duchenne muscular dystrophy from January 2010 to March 2016 at Gangnam Severance Hospital. Demographic characteristics, pulmonary function, and echocardiography data were investigated. Fifty-four patients with Duchenne muscular dystrophy were divided into 2 groups: home ventilator-assisted and non-ventilator-assisted. The patients in the home ventilator group were older (16.25±1.85 years) than those in the nonventilator group (14.73±1.36 years) ( P =0.001). Height, weight, and body surface area did not differ significantly between groups. The home ventilator group had a lower seated functional vital capacity (1,038±620.41 mL) than the nonventilator group (1,455±603.12 mL). Mean left ventricular ejection fraction and fractional shortening were greater in the home ventilator group, but the data did not show any statistical difference. The early ventricular filling velocity/late ventricular filling velocity ratio (1.7±0.44) was lower in the home ventilator group than in the nonventilator group (2.02±0.62). The mitral valve annular systolic velocity was higher in the home ventilator group (estimated β, 1.06; standard error, 0.48). Patients with Duchenne muscular dystrophy on a ventilator may have better systolic and diastolic cardiac functions. Noninvasive ventilator assistance can help preserve cardiac function. Therefore, early utilization of noninvasive ventilation or oxygen may positively influence cardiac function in patients with Duchenne muscular dystrophy.

  5. Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice

    Directory of Open Access Journals (Sweden)

    Zuheng Liu

    2017-09-01

    Full Text Available Physical exercise is commonly regarded as protective against cardiovascular disease (CVD. Recent studies have reported that exercise alters the gut microbiota and that modification of the gut microbiota can influence cardiac function. Here, we focused on the relationships among exercise, the gut microbiota and cardiac function after myocardial infarction (MI. Four-week-old C57BL/6J mice were exercised on a treadmill for 4 weeks before undergoing left coronary artery ligation. Cardiac function was assessed using echocardiography. Gut microbiomes were evaluated post-exercise and post-MI using 16S rRNA gene sequencing on an Illumina HiSeq platform. Exercise training inhibited declines in cardiac output and stroke volume in post-MI mice. In addition, physical exercise and MI led to alterations in gut microbial composition. Exercise training increased the relative abundance of Butyricimonas and Akkermansia. Additionally, key operational taxonomic units were identified, including 24 lineages (mainly from Bacteroidetes, Barnesiella, Helicobacter, Parabacteroides, Porphyromonadaceae, Ruminococcaceae, and Ureaplasma that were closely related to exercise and cardiac function. These results suggested that exercise training improved cardiac function to some extent in addition to altering the gut microbiota; therefore, they could provide new insights into the use of exercise training for the treatment of CVD.

  6. Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions.

    Directory of Open Access Journals (Sweden)

    Beate M Herbert

    Full Text Available The individual sensitivity for ones internal bodily signals ("interoceptive awareness" has been shown to be of relevance for a broad range of cognitive and affective functions. Interoceptive awareness has been primarily assessed via measuring the sensitivity for ones cardiac signals ("cardiac awareness" which can be non-invasively measured by heartbeat perception tasks. It is an open question whether cardiac awareness is related to the sensitivity for other bodily, visceral functions. This study investigated the relationship between cardiac awareness and the sensitivity for gastric functions in healthy female persons by using non-invasive methods. Heartbeat perception as a measure for cardiac awareness was assessed by a heartbeat tracking task and gastric sensitivity was assessed by a water load test. Gastric myoelectrical activity was measured by electrogastrography (EGG and subjective feelings of fullness, valence, arousal and nausea were assessed. The results show that cardiac awareness was inversely correlated with ingested water volume and with normogastric activity after water load. However, persons with good and poor cardiac awareness did not differ in their subjective ratings of fullness, nausea and affective feelings after drinking. This suggests that good heartbeat perceivers ingested less water because they subjectively felt more intense signals of fullness during this lower amount of water intake compared to poor heartbeat perceivers who ingested more water until feeling the same signs of fullness. These findings demonstrate that cardiac awareness is related to greater sensitivity for gastric functions, suggesting that there is a general sensitivity for interoceptive processes across the gastric and cardiac modality.

  7. Assessment of cardiac neuronal function with iodine-123 MIBG scintigraphy in children with idiopathic dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Maunoury, Ch.; Sebahoun, St.; Hallaj, I.; Barritault, L.; Acar, Ph.; Sidi, D.; Kachaner, J.; Agostini, D.; Bouvard, G.

    2000-01-01

    The I-123 MIBG cardiac scintigraphy can assess norepinephrine uptake. It has been showed that cardiac adrenergic neuronal function was impaired in adults with dilated cardiomyopathy. The aim of this prospective study was to assess cardiac neuronal function in children with idiopathic dilated cardiomyopathy (DCM) and to compare cardiac uptake of I-123 MIBG with left ventricular ejection fraction (LVEF). We studied 26 consecutive patients with idiopathic DCM, aged 44 ± 50 months, and 12 controls, aged 49 ±65 months. A planar scintigraphy was performed in all children 4 hours after intravenous injection of 20 to 75 MBq of I-123 MIBG. A static anterior view was acquired for 10 minutes. Cardiac uptake of I-123 MIBG was expressed as the heart to mediastinum count ratio (HMR). Equilibrium radionuclide angiography was performed following a standard protocol. Cardiac uptake of I-123 MIBG was significantly decreased in patients with idiopathic DCM when compared with cardiac uptake in controls (172±34% vs 277±14%, P<0.0001. There was a good correlation between RCM and LVEF in patients with idiopathic DCM (y = 2.5 x +113.3, r = 0.80, P < 0.0001). In conclusion, cardiac neuronal function was impaired in children with idiopathic DCM and related to impairment of left ventricular function. (author)

  8. [Structure and functional organization of integrated cardiac intensive care].

    Science.gov (United States)

    Scherillo, Marino; Miceli, Domenico; Tubaro, Marco; Guiducci, Umberto

    2007-05-01

    The early invasive strategy for the treatment of acute coronary syndromes and the increasing number of older and sicker patients requiring prolonged and more complex intensive care have induced many changes in the function of the intensive care units. These changes include the statement that specially trained cardiologists and cardiac nurses who can manage patients with acute cardiac conditions should staff the intensive care units. This document indicates the structure of the units and specific recommendations for the number of beds, monitoring system, respirators, pacemaker/defibrillators and additional equipment.

  9. The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function.

    Science.gov (United States)

    Roe, Nathan D; Handzlik, Michal K; Li, Tao; Tian, Rong

    2018-03-21

    It is increasingly recognized that synthesis and turnover of cardiac triglyceride (TG) play a pivotal role in the regulation of lipid metabolism and function of the heart. The last step in TG synthesis is catalyzed by diacylglycerol:acyltransferase (DGAT) which esterifies the diacylglycerol with a fatty acid. Mammalian heart has two DGAT isoforms, DGAT1 and DGAT2, yet their roles in cardiac metabolism and function remain poorly defined. Here, we show that inactivation of DGAT1 or DGAT2 in adult mouse heart results in a moderate suppression of TG synthesis and turnover. Partial inhibition of DGAT activity increases cardiac fatty acid oxidation without affecting PPARα signaling, myocardial energetics or contractile function. Moreover, coinhibition of DGAT1/2 in the heart abrogates TG turnover and protects the heart against high fat diet-induced lipid accumulation with no adverse effects on basal or dobutamine-stimulated cardiac function. Thus, the two DGAT isoforms in the heart have partially redundant function, and pharmacological inhibition of one DGAT isoform is well tolerated in adult hearts.

  10. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells

    Directory of Open Access Journals (Sweden)

    Uchiyama Masateru

    2012-03-01

    Full Text Available Abstract Background Interactions between the immune response and brain functions such as olfactory, auditory, and visual sensations are likely. This study investigated the effect of sounds on alloimmune responses in a murine model of cardiac allograft transplantation. Methods Naïve CBA mice (H2k underwent transplantation of a C57BL/6 (B6, H2b heart and were exposed to one of three types of music--opera (La Traviata, classical (Mozart, and New Age (Enya--or one of six different single sound frequencies, for 7 days. Additionally, we prepared two groups of CBA recipients with tympanic membrane perforation exposed to opera for 7 days and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment. An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Immunohistochemical, cell-proliferation, cytokine, and flow cytometry assessments were also performed. Results CBA recipients of a B6 cardiac graft that were exposed to opera music and Mozart had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively, whereas those exposed to a single sound frequency (100, 500, 1000, 5000, 10,000, or 20,000 Hz or Enya did not (MSTs, 7.5, 8, 9, 8, 7.5, 8.5 and 11 days, respectively. Untreated, CBA mice with tympanic membrane perforations and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment rejected B6 cardiac grafts acutely (MSTs, 7, 8 and 8 days, respectively. Adoptive transfer of whole splenocytes, CD4+ cells, or CD4+CD25+ cells from opera-exposed primary allograft recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and > 100 days, respectively. Proliferation of splenocytes, interleukin (IL-2 and interferon (IFN-γ production was suppressed in opera-exposed mice, and production of IL-4 and IL-10 from opera-exposed transplant recipients increased

  11. Functional modulation of cardiac form through regionally confined cell shape changes.

    Directory of Open Access Journals (Sweden)

    Heidi J Auman

    2007-03-01

    Full Text Available Developing organs acquire a specific three-dimensional form that ensures their normal function. Cardiac function, for example, depends upon properly shaped chambers that emerge from a primitive heart tube. The cellular mechanisms that control chamber shape are not yet understood. Here, we demonstrate that chamber morphology develops via changes in cell morphology, and we determine key regulatory influences on this process. Focusing on the development of the ventricular chamber in zebrafish, we show that cardiomyocyte cell shape changes underlie the formation of characteristic chamber curvatures. In particular, cardiomyocyte elongation occurs within a confined area that forms the ventricular outer curvature. Because cardiac contractility and blood flow begin before chambers emerge, cardiac function has the potential to influence chamber curvature formation. Employing zebrafish mutants with functional deficiencies, we find that blood flow and contractility independently regulate cell shape changes in the emerging ventricle. Reduction of circulation limits the extent of cardiomyocyte elongation; in contrast, disruption of sarcomere formation releases limitations on cardiomyocyte dimensions. Thus, the acquisition of normal cardiomyocyte morphology requires a balance between extrinsic and intrinsic physical forces. Together, these data establish regionally confined cell shape change as a cellular mechanism for chamber emergence and as a link in the relationship between form and function during organ morphogenesis.

  12. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  13. Endothelial Function as a Possible Significant Determinant of Cardiac Function during Exercise in Patients with Structural Heart Disease

    Directory of Open Access Journals (Sweden)

    Bonpei Takase

    2009-01-01

    Full Text Available This study was investigated the role that endothelial function and systemic vascular resistance (SVR play in determining cardiac function reserve during exercise by a new ambulatory radionuclide monitoring system (VEST in patients with heart disease. The study population consisted of 32 patients. The patients had cardiopulmonary stress testing using the treadmill Ramp protocol and the VEST. The anaerobic threshold (AT was autodetermined using the V-slope method. The SVR was calculated by determining the mean blood pressure/cardiac output. Flow-mediated vasodilation (FMD was measured in the brachial artery to evaluate endotheilial function. FMD and the percent change f'rom rest to AT in SVR correlated with those from rest to AT in ejection fraction and peak ejection ratio by VEST, respectively. Our findings suggest that FMD in the brachial artery and the SVR determined by VEST in patients with heart disease can possibly reflect cardiac function reserve during aerobic exercise.

  14. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  15. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  16. Age-related normal structural and functional ventricular values in cardiac function assessed by magnetic resonance

    International Nuclear Information System (INIS)

    Fiechter, Michael; Gaemperli, Oliver; Kaufmann, Philipp A; Fuchs, Tobias A; Gebhard, Catherine; Stehli, Julia; Klaeser, Bernd; Stähli, Barbara E; Manka, Robert; Manes, Costantina; Tanner, Felix C

    2013-01-01

    The heart is subject to structural and functional changes with advancing age. However, the magnitude of cardiac age-dependent transformation has not been conclusively elucidated. This retrospective cardiac magnetic resonance (CMR) study included 183 subjects with normal structural and functional ventricular values. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were obtained from the left and the right ventricle in breath-hold cine CMR. Patients were classified into four age groups (20–29, 30–49, 50–69, and ≥70 years) and cardiac measurements were compared using Pearson’s rank correlation over the four different groups. With advanced age a slight but significant decrease in ESV (r=−0.41 for both ventricles, P<0.001) and EDV (r=−0.39 for left ventricle, r=−0.35 for right ventricle, P<0.001) were observed associated with a significant increase in left (r=0.28, P<0.001) and right (r=0.27, P<0.01) ventricular EF reaching a maximal increase in EF of +8.4% (P<0.001) for the left and +6.1% (P<0.01) for the right ventricle in the oldest compared to the youngest patient group. Left ventricular myocardial mass significantly decreased over the four different age groups (P<0.05). The aging process is associated with significant changes in left and right ventricular EF, ESV and EDV in subjects with no cardiac functional and structural abnormalities. These findings underline the importance of using age adapted values as standard of reference when evaluating CMR studies

  17. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions

    NARCIS (Netherlands)

    Nagao, Keisuke; Ginhoux, Florent; Leitner, Wolfgang W.; Motegi, Sei-Ichiro; Bennett, Clare L.; Clausen, Björn E.; Merad, Miriam; Udey, Mark C.

    2009-01-01

    A new langerin(+) DC subset has recently been identified in murine dermis (langerin(+) dDC), but the lineage and functional relationships between these cells and langerin(+) epidermal Langerhans cells (LC) are incompletely characterized. Selective expression of the cell adhesion molecule EpCAM by LC

  18. Methyl-CpG binding-protein 2 function in cholinergic neurons mediates cardiac arrhythmogenesis.

    Science.gov (United States)

    Herrera, José A; Ward, Christopher S; Wehrens, Xander H T; Neul, Jeffrey L

    2016-11-15

    Sudden unexpected death occurs in one quarter of deaths in Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). People with RTT show a variety of autonomic nervous system (ANS) abnormalities and mouse models show similar problems including QTc interval prolongation and hypothermia. To explore the role of cardiac problems in sudden death in RTT, we characterized cardiac rhythm in mice lacking Mecp2 function. Male and female mutant mice exhibited spontaneous cardiac rhythm abnormalities including bradycardic events, sinus pauses, atrioventricular block, premature ventricular contractions, non-sustained ventricular arrhythmias, and increased heart rate variability. Death was associated with spontaneous cardiac arrhythmias and complete conduction block. Atropine treatment reduced cardiac arrhythmias in mutant mice, implicating overactive parasympathetic tone. To explore the role of MeCP2 within the parasympathetic neurons, we selectively removed MeCP2 function from cholinergic neurons (MeCP2 ChAT KO), which recapitulated the cardiac rhythm abnormalities, hypothermia, and early death seen in RTT male mice. Conversely, restoring MeCP2 only in cholinergic neurons rescued these phenotypes. Thus, MeCP2 in cholinergic neurons is necessary and sufficient for autonomic cardiac control, thermoregulation, and survival, and targeting the overactive parasympathetic system may be a useful therapeutic strategy to prevent sudden unexpected death in RTT.

  19. Assessment of carbon nanoparticle exposure on murine macrophage function

    Science.gov (United States)

    Suro-Maldonado, Raquel M.

    There is growing concern about the potential cytotoxicity of nanoparticles. Exposure to respirable ultrafine particles (2.5uM) can adversely affect human health and have been implicated with episodes of increased respiratory diseases such as asthma and allergies. Nanoparticles are of particular interest because of their ability to penetrate into the lung and potentially elicit health effects triggering immune responses. Nanoparticles are structures and devises with length scales in the 1 to 100-nanometer range. Black carbon (BC) nanoparticles have been observed to be products of combustion, especially flame combustion and multi-walled carbon nanotubes (MWCNT) have been shown to be found in both indoor and outdoor air. Furthermore, asbestos, which have been known to cause mesothelioma as well as lung cancer, have been shown to be structurally identical to MWCNTs. The aims of these studies were to examine the effects of carbon nanoparticles on murine macrophage function and clearance mechanisms. Macrophages are immune cells that function as the first line of defense against invading pathogens and are likely to be amongst the first cells affected by nanoparticles. Our research focused on two manufactured nanoparticles, MWCNT and BC. The two were tested against murine-derived macrophages in a chronic contact model. We hypothesized that long-term chronic exposure to carbon nanoparticles would decrease macrophages ability to effectively respond to immunological challenge. Production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), cell surface macrophage; activation markers, reactive oxygen species formation (ROS), and antigen processing and presentation were examined in response to lipopolysaccharide (LPS) following a 144hr exposure to the particulates. Data demonstrated an increase in TNF-alpha, and NO production; a decrease in phagocytosis and antigen processing and presentation; and a decrease in the expression levels of cell surface macrophage

  20. Comparative Toxicity of Different Crude Oils on the Cardiac Function of Marine Medaka (Oryzias melastigma Embryo

    Directory of Open Access Journals (Sweden)

    Zhendong Zhang

    2014-12-01

    Full Text Available The acute toxic effect of different crude oils (heavy crude oil and bonny light crude oil on embryos of marine medaka Oryzias melastigma was measured and evaluated by exposure to the water-accommodated fraction (WAF in the present study. The cardiac function of medaka embryos was used as target organ of ecotoxicological effect induced by oil exposure. Results showed that the developing marine medaka heart was a sensitive target organ to crude oil exposure the heavy crude oil WAF was more toxic to cardiac function of medaka embryos than bonny light cured oil one. Cardiac function of medaka embryos was clearly affected by exposure to heavy crude oil WAF after 24 hours exposure and showed a dose-dependent slowing of heart rate. Furthermore, swelled and enlarged heart morphology, lowered blood circulation and accumulation of blood cells around the heart area were found. However, the toxic effect of bonny light crude oil on cardiac function of medaka embryos was comparatively low. Statistical results showed that the cardiac function was only affected by highest bonny light crude oil WAF (9.8 mg/L exposure treatment. These findings indicated that cardiac function of marine medaka embryo was a good toxicity model for oil pollution and could be used to compare and evaluate the toxicity of different crude oils. The heart rate was an appropriate endpoint in the acute toxicity test.

  1. Exercise improves cardiac autonomic function in obesity and diabetes.

    Science.gov (United States)

    Voulgari, Christina; Pagoni, Stamatina; Vinik, Aaron; Poirier, Paul

    2013-05-01

    Physical activity is a key element in the prevention and management of obesity and diabetes. Regular physical activity efficiently supports diet-induced weight loss, improves glycemic control, and can prevent or delay type 2 diabetes diagnosis. Furthermore, physical activity positively affects lipid profile, blood pressure, reduces the rate of cardiovascular events and associated mortality, and restores the quality of life in type 2 diabetes. However, recent studies have documented that a high percentage of the cardiovascular benefits of exercise cannot be attributed solely to enhanced cardiovascular risk factor modulation. Obesity in concert with diabetes is characterized by sympathetic overactivity and the progressive loss of cardiac parasympathetic influx. These are manifested via different pathogenetic mechanisms, including hyperinsulinemia, visceral obesity, subclinical inflammation and increased thrombosis. Cardiac autonomic neuropathy is an underestimated risk factor for the increased cardiovascular morbidity and mortality associated with obesity and diabetes. The same is true for the role of physical exercise in the restoration of the heart cardioprotective autonomic modulation in these individuals. This review addresses the interplay of cardiac autonomic function in obesity and diabetes, and focuses on the importance of exercise in improving cardiac autonomic dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. EANM/ESC guidelines for radionuclide imaging of cardiac function

    DEFF Research Database (Denmark)

    Hesse, B.; Lindhardt, T.B.; Acampa, W.

    2008-01-01

    radionuclide ventriculography, gated myocardial perfusion scintigraphy, gated PET, and studies with non-imaging devices for the evaluation of cardiac function. The items covered are presented in 11 sections: clinical indications, radiopharmaceuticals and dosimetry, study acquisition, RV EF, LV EF, LV volumes...

  3. Novel axolotl cardiac function analysis method using magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Pedro Gomes Sanches

    Full Text Available The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function of axolotls. Three axolotls were imaged with magnetic resonance imaging using a retrospectively gated Fast Low Angle Shot cine sequence. Within one scanning session the axolotl heart was imaged three times in all planes, consecutively. Heart rate, ejection fraction, stroke volume and cardiac output were calculated using three techniques: (1 combined long-axis, (2 short-axis series, and (3 ultrasound (control for heart rate only. All values are presented as mean ± standard deviation. Heart rate (beats per minute among different animals was 32.2±6.0 (long axis, 30.4±5.5 (short axis and 32.7±4.9 (ultrasound and statistically similar regardless of the imaging method (p > 0.05. Ejection fraction (% was 59.6±10.8 (long axis and 48.1±11.3 (short axis and it differed significantly (p = 0.019. Stroke volume (μl/beat was 133.7±33.7 (long axis and 93.2±31.2 (short axis, also differed significantly (p = 0.015. Calculations were consistent among the animals and over three repeated measurements. The heart rate varied depending on depth of anaesthesia. We described a new method for defining and imaging the anatomical planes of the axolotl heart and propose one of our techniques (long axis analysis may prove useful in defining cardiac function in regenerating axolotl hearts.

  4. Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling.

    Science.gov (United States)

    Scharin Täng, M; Redfors, B; Lindbom, M; Svensson, J; Ramunddal, T; Ohlsson, C; Shao, Y; Omerovic, E

    2012-12-01

    IGF-1 plays an important role in cardiovascular homeostasis, and plasma levels of IGF-1 correlate inversely with systolic function in heart failure. It is not known to what extent circulating IGF-1 secreted by the liver and local autocrine/paracrine IGF-1 expressed in the myocardium contribute to these beneficial effects on cardiac function and morphology. In the present study, we used a mouse model of liver-specific inducible deletion of the IGF-1 gene (LI-IGF-1 -/- mouse) in an attempt to evaluate the importance of circulating IGF-I on cardiac morphology and function under normal and pathological conditions, with an emphasis on its regulatory role in myocardial phosphocreatine metabolism. Echocardiography was performed in LI-IGF-1 -/- and control mice at rest and during dobutamine stress, both at baseline and post myocardial infarction (MI). High-energy phosphate metabolites were compared between LI-IGF-1 -/- and control mice at 4 weeks post MI. We found that LI-IGF-1 -/- mice had significantly greater left ventricular dimensions at baseline and showed a greater relative increase in cardiac dimensions, as well as deterioration of cardiac function, post MI. Myocardial creatine content was 17.9% lower in LI-IGF-1 -/- mice, whereas there was no detectable difference in high-energy nucleotides. These findings indicate an important role of circulating IGF-1 in preserving cardiac structure and function both in physiological settings and post MI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy

    Science.gov (United States)

    Rodrigues, Merryl; Echigoya, Yusuke; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models. PMID:27854202

  6. Assessment of cardiac morphology and ventricular function in healthy Chinese individuals using MRI

    International Nuclear Information System (INIS)

    Lu Minjie; Zhao Shihua; Jiang Shiliang

    2011-01-01

    Objective: To investigate reproducibility of cardiac MRI for assessment of cardiac morphology and ventricular function in selected normal Chinese Han population. Methods: Two hundred and sixty-nine normal volunteers underwent cardiac MRI using a 1.5 T MR system. HASTE and steady state free precession imaging were performed with long and short axis images and cine mode through the ventricle with wireless vector cardiac gating. The images were reviewed by two independent observers. The dimensions of cardiac chambers and ventricular function including ejection fraction (EF), end diastolic volume (EDV) , end systolic volume (ESV) and myocardial mass were evaluated. The data between male and female were compared by using two-tailed unpaired t test. Results: Total imaging time was (15±3) min. The anteroposterior diameter of the left atrium was (2.87±0.77) cm, the right atrial diameter perpendicular to the atrial septum was (3.61±0.57) cm, the end diastolic diameter of the left ventricle was (4.97± 0.52) cm, the end diastolic diameter of the right ventricle was (2.65±0.48) cm. On the left ventricle, EF was (60.62±7.08)%, EDV was (115.37±26.71) ml, ESV was (46.02±15.72) ml and LV mass was (82.97±24.03) g. On the right ventricle, EF was (47.73±6.50)%, EDV was (128.27±32.16) ml, ESV was (67.7±21.07) ml and RV mass was (48.24±13.42) g. There were no statistically significant differences in LVESV (P=0.144), LVEDV index (P=0.714), LVESV index (P=0.113), LVCI (P=0.199), RVEF (P=0.296) and RV mass (P=0.093), and statistically significant differences in other cardiac parameters between male and female. Conclusion: Cardiac MRI can provide useful information about cardiac function and morphology with a high level of reproducibility in normal Chinese Han population. (authors)

  7. Evaluating the cardiac function of duchenne muscular dystrophy with Doppler Tei index

    International Nuclear Information System (INIS)

    Yao Fengjuan; Zheng Ju; Lu Kun; Liu Donghong; Wu Miaoling; Lin Hong; Zhang Cheng; Yu Hongkui

    2007-01-01

    Objective: To evaluate the cardiac function of early Duchenne muscular dystrophy (DMD) by left ventricular ejection fraction (LVEF) and pulse Doppler Tei index. Methods: Twenty-eight DMD patients and fifteen normal people were studied. LVEF, E/A and Tei index were measured and calculated by M-mode and Pulse wave Doppler respectively. Results: Compared with control group, Tei index and IRT were significantly high, and there were not significant difference in LVEF(%) and E/A. Conclusion: Tei index was valuable in assessing cardiac function of early DMD. (authors)

  8. [Cardiac Synchronization Function Estimation Based on ASM Level Set Segmentation Method].

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Tang, Liang; He, Ying; Zhang, Huie

    At present, there is no accurate and quantitative methods for the determination of cardiac mechanical synchronism, and quantitative determination of the synchronization function of the four cardiac cavities with medical images has a great clinical value. This paper uses the whole heart ultrasound image sequence, and segments the left & right atriums and left & right ventricles of each frame. After the segmentation, the number of pixels in each cavity and in each frame is recorded, and the areas of the four cavities of the image sequence are therefore obtained. The area change curves of the four cavities are further extracted, and the synchronous information of the four cavities is obtained. Because of the low SNR of Ultrasound images, the boundary lines of cardiac cavities are vague, so the extraction of cardiac contours is still a challenging problem. Therefore, the ASM model information is added to the traditional level set method to force the curve evolution process. According to the experimental results, the improved method improves the accuracy of the segmentation. Furthermore, based on the ventricular segmentation, the right and left ventricular systolic functions are evaluated, mainly according to the area changes. The synchronization of the four cavities of the heart is estimated based on the area changes and the volume changes.

  9. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    Science.gov (United States)

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  10. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Nikole J. Byrne, BSc

    2017-08-01

    Full Text Available This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2 inhibitor empagliflozin improved heart failure (HF outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

  11. The effect of childhood obesity on cardiac functions.

    Science.gov (United States)

    Üner, Abdurrahman; Doğan, Murat; Epcacan, Zerrin; Epçaçan, Serdar

    2014-03-01

    Obesity is a metabolic disorder defined as excessive accumulation of body fat, which is made up of genetic, environmental, and hormonal factors and has various social, psychological, and medical complications. Childhood obesity is a major indicator of adult obesity. The aim of this study is to evaluate the cardiac functions via electrocardiography (ECG), echocardiography (ECHO), and treadmill test in childhood obesity. A patient group consisting of 30 obese children and a control group consisting of 30 non-obese children were included in the study. The age range was between 8 and 17 years. Anthropometric measurements, physical examination, ECG, ECHO, and treadmill test were done in all patients. P-wave dispersion (PD) was found to be statistically significantly high in obese patients. In ECHO analysis, we found that end-diastolic diameter, end-systolic diameter, left ventricle posterior wall thickness, and interventricular septum were significantly greater in obese children. In treadmill test, exercise capacity was found to be significantly lower and the hemodynamic response to exercise was found to be defective in obese children. Various cardiac structural and functional changes occur in childhood obesity and this condition includes important cardiovascular risks. PD, left ventricle end-systolic and end-diastolic diameter, left ventricle posterior wall thickness, interventricular septum thickness, exercise capacity, and hemodynamic and ECG measurements during exercise testing are useful tests to determine cardiac dysfunctions and potential arrhythmias even in early stages of childhood obesity. Early recognition and taking precautions for obesity during childhood is very important to intercept complications that will occur in adulthood.

  12. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    Science.gov (United States)

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  13. Functional Relevance of Coronary Artery Disease by Cardiac Magnetic Resonance and Cardiac Computed Tomography: Myocardial Perfusion and Fractional Flow Reserve

    Directory of Open Access Journals (Sweden)

    Gianluca Pontone

    2015-01-01

    Full Text Available Coronary artery disease (CAD is one of the leading causes of morbidity and mortality and it is responsible for an increasing resource burden. The identification of patients at high risk for adverse events is crucial to select those who will receive the greatest benefit from revascularization. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography, but the diagnostic yield of elective invasive coronary angiography remains unfortunately low. Stress myocardial perfusion imaging by cardiac magnetic resonance (stress-CMR has emerged as an accurate technique for diagnosis and prognostic stratification of the patients with known or suspected CAD thanks to high spatial and temporal resolution, absence of ionizing radiation, and the multiparametric value including the assessment of cardiac anatomy, function, and viability. On the other side, cardiac computed tomography (CCT has emerged as unique technique providing coronary arteries anatomy and more recently, due to the introduction of stress-CCT and noninvasive fractional flow reserve (FFR-CT, functional relevance of CAD in a single shot scan. The current review evaluates the technical aspects and clinical experience of stress-CMR and CCT in the evaluation of functional relevance of CAD discussing the strength and weakness of each approach.

  14. Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Samer eAl-Samir

    2016-05-01

    Full Text Available We have studied cardiac and respiratory functions of aquaporin- 1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals’ hearts were analysed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min-1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: 1 left ventricular wall thickness was reduced by 12%, 2 left ventricular mass, normalized to tibia length, was reduced by 10-20%, 3 cardiac muscle fiber cross sectional area was decreased by 17%, and 4 capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wildtype heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output.

  15. Study on the relationship between plasma BNP levels and left cardiac function in patients with heart failure

    International Nuclear Information System (INIS)

    Yin Xin; Xu Dandan; Wu Chunxu

    2005-01-01

    Objective: To investigate the relationship between plasma brain natriuretic peptide (BNP) levels and cardiac function in patients with heart failure. Methods: Plasma levels of BNP (with IRMA) and left cardiac function parameters (examined with echocardiogram) were obtained in 80 patients with heart failure at admission and repeatedly examined in 43 of them later after 2w treatment a swell as in 30 controls. Results: The plasma BNP levels increased along with the deterioration of cardiac function, with significant differences among the patients with different cardiac function grades (P<0.01). After 2w treatment, the plasma BNP levels were significantly lower than those before (P<0.01). The plasma levels of BNP were negatively correlated with left ventricular ejection fraction (LVEF) and left ventricle fraction shortening, but positively correlated with left ventricular end-systolic diameter (LVSd) and left ventricular end-diastolic diameter (LVDd). Conclusion: Plasma levels of BNP were closely related to the severity of heart failure and could serve as a biochemical marker for assessing the left cardiac function. (authors)

  16. Generation of Murine Cardiac Pacemaker Cell Aggregates Based on ES-Cell-Programming in Combination with Myh6-Promoter-Selection

    Science.gov (United States)

    Rimmbach, Christian; Jung, Julia J.; David, Robert

    2015-01-01

    Treatment of the “sick sinus syndrome” is based on artificial pacemakers. These bear hazards such as battery failure and infections. Moreover, they lack hormone responsiveness and the overall procedure is cost-intensive. “Biological pacemakers” generated from PSCs may become an alternative, yet the typical content of pacemaker cells in Embryoid Bodies (EBs) is extremely low. The described protocol combines “forward programming” of murine PSCs via the sinus node inducer TBX3 with Myh6-promoter based antibiotic selection. This yields cardiomyocyte aggregates consistent of >80% physiologically functional pacemaker cells. These “induced-sinoatrial-bodies” (“iSABs”) are spontaneously contracting at yet unreached frequencies (400-500 bpm) corresponding to nodal cells isolated from mouse hearts and are able to pace murine myocardium ex vivo. Using the described protocol highly pure sinus nodal single cells can be generated which e.g. can be used for in vitro drug testing. Furthermore, the iSABs generated according to this protocol may become a crucial step towards heart tissue engineering. PMID:25742394

  17. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    Directory of Open Access Journals (Sweden)

    A. O. Shevchenko

    2015-01-01

    Full Text Available Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW variables measured with high-resolution Doppler ultrasound as a non-invasive screening tool for allograft rejection in cardiac transplant patients (pts. Methods. One hundred and seventy one pts included 93 cardiac recipients, 30 dilated cardiomyopathy waiting list pts, and 48 stable coronary artery disease (SCAD pts without decompensated heart failure were included. Along with resistive index (Ri, pulsative index (Pi, and CCW intima-media thickness (IMT, CCW rigidity index (iRIG was estimated using empirical equation. Non-invasive evaluation was performed in cardiac transplant recipients prior the endomyo- cardial biopsy. Results. Neither of Ri, Pi, or CCW IMT were different in studied subgroups. iRIG was signifi- cantly lower in SCAD pts when compared to the dilated cardiomyopathy subgroup. The later had similar values with cardiac transplant recipients without rejection. Antibody-mediated and cellular rejection were found in 22 (23.7% and 17 (18.3% cardiac recipients, respectively. Mean iRIG in pts without rejection was significantly lower in comparison to antibody-mediated rejection and cell-mediated (5514.7 ± 2404.0 vs 11856.1 ± 6643.5 and 16071.9 ± 10029.1 cm/sec2, respectively, p = 0.001. Area under ROC for iRIG was 0.90 ± 0.03 units2. Analysis showed that iRIG values above estimated treshold 7172 cm/sec2 suggested relative risk of any type of rejection 17.7 (95%CI = 6.3–49.9 sensitivity 80.5%, specificity – 81.1%, negative predictive value – 84

  18. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    Science.gov (United States)

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  19. Cardiac Bmi1(+) cells contribute to myocardial renewal in the murine adult heart.

    Science.gov (United States)

    Valiente-Alandi, Iñigo; Albo-Castellanos, Carmen; Herrero, Diego; Arza, Elvira; Garcia-Gomez, Maria; Segovia, José C; Capecchi, Mario; Bernad, Antonio

    2015-10-26

    The mammalian adult heart maintains a continuous, low cardiomyocyte turnover rate throughout life. Although many cardiac stem cell populations have been studied, the natural source for homeostatic repair has not yet been defined. The Polycomb protein BMI1 is the most representative marker of mouse adult stem cell systems. We have evaluated the relevance and role of cardiac Bmi1 (+) cells in cardiac physiological homeostasis. Bmi1 (CreER/+);Rosa26 (YFP/+) (Bmi1-YFP) mice were used for lineage tracing strategy. After tamoxifen (TM) induction, yellow fluorescent protein (YFP) is expressed under the control of Rosa26 regulatory sequences in Bmi1 (+) cells. These cells and their progeny were tracked by FACS, immunofluorescence and RT-qPCR techniques from 5 days to 1 year. FACS analysis of non-cardiomyocyte compartment from TM-induced Bmi1-YFP mice showed a Bmi1 (+)-expressing cardiac progenitor cell (Bmi1-CPC: B-CPC) population, SCA-1 antigen-positive (95.9 ± 0.4 %) that expresses some stemness-associated genes. B-CPC were also able to differentiate in vitro to the three main cardiac lineages. Pulse-chase analysis showed that B-CPC remained quite stable for extended periods (up to 1 year), which suggests that this Bmi1 (+) population contains cardiac progenitors with substantial self-maintenance potential. Specific immunostaining of Bmi1-YFP hearts serial sections 5 days post-TM induction indicated broad distribution of B-CPC, which were detected in variably sized clusters, although no YFP(+) cardiomyocytes (CM) were detected at this time. Between 2 to 12 months after TM induction, YFP(+) CM were clearly identified (3 ± 0.6 % to 6.7 ± 1.3 %) by immunohistochemistry of serial sections and by flow cytometry of total freshly isolated CM. B-CPC also contributed to endothelial and smooth muscle (SM) lineages in vivo. High Bmi1 expression identifies a non-cardiomyocyte resident cardiac population (B-CPC) that contributes to the main lineages of the heart in

  20. 3,3′-Diindolylmethane Stimulates Murine Immune Function In Vitro and In Vivo*

    OpenAIRE

    Xue, Ling; Pestka, James J.; Li, Maoxiang; Firestone, Gary L; Bjeldanes, Leonard F.

    2007-01-01

    3,3′-Diindolylmethane (DIM), a major condensation product of indole-3-carbinol (I3C), exhibits chemopreventive properties in animal models of cancer. Recent studies have shown that DIM stimulates interferon-gamma (IFN-γ) production and potentiates the IFN-γ signaling pathway in human breast cancer cells via a mechanism that includes increased expression of the IFN-γ receptor. The goal of this study was to test the hypothesis that DIM modulates the murine immune function. Specifically, the eff...

  1. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    Science.gov (United States)

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  2. Exercise training in Tgαq*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism.

    Science.gov (United States)

    Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta

    2017-08-01

    Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration

  3. Identification and functional characterization of cardiac pacemaker cells in zebrafish.

    Directory of Open Access Journals (Sweden)

    Federico Tessadori

    Full Text Available In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3 and Islet-1 (Isl1. Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.

  4. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function.

    Science.gov (United States)

    Coolen, Bram F; Abdurrachim, Desiree; Motaal, Abdallah G; Nicolay, Klaas; Prompers, Jeanine J; Strijkers, Gustav J

    2013-03-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered at will to increase the frame rate because of gradient hardware, spatial resolution, and signal-to-noise limitations. To overcome these limitations associated with electrocardiography-triggered Cine MRI, in this paper, we introduce a retrospectively triggered Cine MRI protocol capable of producing high-resolution high frame rate Cine MRI of the mouse heart for addressing left ventricular diastolic function. Simulations were performed to investigate the influence of MRI sequence parameters and the k-space filling trajectory in relation to the desired number of frames per cardiac cycle. An optimized protocol was applied in vivo and compared with electrocardiography-triggered Cine for which a high-frame rate could only be achieved by several interleaved acquisitions. Retrospective high frame rate Cine MRI proved superior to the interleaved electrocardiography-triggered protocols. High spatial-resolution Cine movies with frames rates up to 80 frames per cardiac cycle were obtained in 25 min. Analysis of left ventricular filling rate curves allowed accurate determination of early and late filling rates and revealed subtle impairments in left ventricular diastolic function of diabetic mice in comparison with nondiabetic mice. Copyright © 2012 Wiley Periodicals, Inc.

  5. Survivors of cardiac arrest with good neurological outcome show considerable impairments of memory functioning.

    Science.gov (United States)

    Sulzgruber, Patrick; Kliegel, Andreas; Wandaller, Cosima; Uray, Thomas; Losert, Heidrun; Laggner, Anton N; Sterz, Fritz; Kliegel, Matthias

    2015-03-01

    Deficits in cognitive function are a well-known dysfunction in survivors of cardiac arrest. However, data concerning memory function in this neurological vulnerable patient collective remain scarce and inconclusive. Therefore, we aimed to assess multiple aspects of retrospective and prospective memory performance in patients after cardiac arrest. We prospectively enrolled 33 survivors of cardiac arrest, with cerebral performance categories (CPC) 1 and 2 and a control-group (n=33) matched in sex, age and educational-level. To assess retrospective and prospective memory performance we administrated 4 weeks after cardiac arrest the "Rey Adult Learning Test" (RAVLT), the "Digit-Span-Backwards Test", the "Logic-Memory Test" and the "Red-Pencil Test". Results indicate an impairment in immediate and delayed free recall, but not in recognition. However, the overall impairment in immediate recall was qualified by analyzing RAVLT performance, showing that patients were only impaired in trials 4 and 5 of the learning sequence. Moreover, working and prospective memory as well as prose recall were worse in cardiac arrest survivors. Cranial computed tomography was available in 61% of all patients (n=20) but there was no specific neurological damage detectable that could be linked to this cognitive impairment. Episodic long-term memory functioning appears to be particularly impaired after cardiac arrest. In contrast, short-term memory storage, even tested via free-call, seems not to be affected. Based on cranial computed tomography we suggest that global brain ischemia rather than focal brain lesions appear to underlie these effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Detecting early cardiac dysfunction with radionuclide cardiac blood-pool imaging

    International Nuclear Information System (INIS)

    Wu Kegui; Chen Daguang; Lin Haoxue

    1992-01-01

    Cardiac function was measured by radionuclide cardiac blood-pool imaging in 15 normal persons, 19 cases of hypertension, 32 cases of coronary heart disease, 35 cases of coronary heart disease combined with hypertension and 44 cases of myocardial infarction. Significant differences have been found in indices of cardiac function between normal subjects and patients with coronary heart disease and coronary heart disease combined with hypertension, even though the patients were without any clinical sin of cardiac failure. Lowered regional EF and decreased ventricular was motion were found in 38.8% of patients, while 65.7%of patients revealed marked abnormality in MFR. The results indicate that latent cardiac dysfunction is common in patients with coronary heart disease. The earliest change is diastolic function abnormalities

  7. CTGF/CCN2 Postconditioning Increases Tolerance of Murine Hearts towards Ischemia-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Ole Jørgen Kaasbøll

    Full Text Available Previous studies of ischemia-reperfusion injury (IRI in hearts from mice with cardiac-restricted overexpression of CCN2 have shown that CCN2 increases tolerance towards IRI. The objectives of this study were to investigate to what extent post-ischemic administration of recombinant human CCN2 (rhCCN2 would limit infarct size and improve functional recovery and what signaling pathways are involved.Isolated mice hearts were perfused ad modum Langendorff, subjected to no-flow, global ischemia, and subsequently, exposed to mammalian cell derived, full-length (38-40kDa rhCCN2 (250 nM or vehicle during the first 15 min of a 60 min reperfusion period.Post-ischemic administration of rhCCN2 resulted in attenuation of infarct size from 58 ± 4% to 34 ± 2% (p < 0.001 which was abrogated by concomitant administration of the PI3 kinase inhibitor LY294002 (45 ± 3% vs. 50 ± 3%, ns. In congruence with reduction of infarct size rhCCN2 also improved recovery of left ventricular developed pressure (p < 0.05. Western blot analyses of extracts of ex vivo-perfused murine hearts also revealed that rhCCN2 evoked concentration-dependent increase of cardiac phospho-GSK3β (serine-9 contents.We demonstrate that post-ischemic administration of rhCCN2 increases the tolerance of ex vivo-perfused murine hearts to IRI. Mechanistically, this postconditioning effect of rhCCN2 appeared to be mediated by activation of the reperfusion injury salvage kinase pathway as demonstrated by sensitivity to PI3 kinase inhibition and increased CCN2-induced phosphorylation of GSK3β (Ser-9. Thus, the rationale for testing rhCCN2-mediated post-ischemic conditioning of the heart in more complex models is established.

  8. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury.

    Directory of Open Access Journals (Sweden)

    Jianqin Ye

    Full Text Available BACKGROUND: Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI. However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear. METHODOLOGY/PRINCIPAL FINDING: Using "middle aged" mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1(+CD45(- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1 in Sca-1(+CD45(- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1(+CD45(- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts. CONCLUSIONS/SIGNIFICANCE: These studies demonstrate that cloned Sca-1(+CD45(- cells derived from CSs from infarcted "middle aged" hearts are enriched for second heart field (i.e., Isl-1(+ precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.

  9. Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentata polysaccharide (ABP).

    Science.gov (United States)

    Zou, Yaxuan; Meng, Jingjuan; Chen, Wenna; Liu, Jingling; Li, Xuan; Li, Weiwei; Lu, Changlong; Shan, Fengping

    2011-08-01

    There are a large number of interactions at molecular and cellular levels between the plant polysaccharides and immune system. Plant polysaccharides present an interesting effects as immunomodulators, particularly in the induction of the cells both in innate and adaptive immune systems. Activation of DCs could improve antitumoral responses usually diminished in cancer patients, and natural adjuvants provide a possibility of inducing this activation. ABP is a purified polysaccharide isolated from Achyranthes bidentata, a traditional Chinese medicine (TCM). The aim of this study is to investigate modulation of phenotypic and functional maturation of murine DCs by ABP. Both phenotypic and functional activities were assessed with use of conventional scanning electronic microscopy (SEM) for the morphology of the DC, transmitted electron microscopy (TEM) for intracellular lysosomes inside the DC, cellular immunohistochemistry for phagocytosis by the DCs, flow cytometry (FCM) for the changes in key surface molecules, bio-assay for the activity of acidic phosphatases (ACP), and ELISA for the production of pro-inflammatory cytokine IL-12. In fact, we found that purified ABP induced phenotypic maturation revealed by increased expression of CD86, CD40, and MHC II. Functional experiments showed the down-regulation of ACP inside DCs (which occurs when phagocytosis of DCs is decreased, and antigen presentation increased with maturation). Finally, ABP increased the production of IL-12. These data reveal that ABP promotes effective activation of murine DCs. This adjuvant-like activity may have therapeutic applications in clinical settings where immune responses need boosting. It is therefore concluded that ABP can exert positive modulation to murine DCs. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Combining computer modelling and cardiac imaging to understand right ventricular pump function.

    Science.gov (United States)

    Walmsley, John; van Everdingen, Wouter; Cramer, Maarten J; Prinzen, Frits W; Delhaas, Tammo; Lumens, Joost

    2017-10-01

    Right ventricular (RV) dysfunction is a strong predictor of outcome in heart failure and is a key determinant of exercise capacity. Despite these crucial findings, the RV remains understudied in the clinical, experimental, and computer modelling literature. This review outlines how recent advances in using computer modelling and cardiac imaging synergistically help to understand RV function in health and disease. We begin by highlighting the complexity of interactions that make modelling the RV both challenging and necessary, and then summarize the multiscale modelling approaches used to date to simulate RV pump function in the context of these interactions. We go on to demonstrate how these modelling approaches in combination with cardiac imaging have improved understanding of RV pump function in pulmonary arterial hypertension, arrhythmogenic right ventricular cardiomyopathy, dyssynchronous heart failure and cardiac resynchronization therapy, hypoplastic left heart syndrome, and repaired tetralogy of Fallot. We conclude with a perspective on key issues to be addressed by computational models of the RV in the near future. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  11. Integrating 4-d light-sheet imaging with interactive virtual reality to recapitulate developmental cardiac mechanics and physiology

    Science.gov (United States)

    Ding, Yichen; Yu, Jing; Abiri, Arash; Abiri, Parinaz; Lee, Juhyun; Chang, Chih-Chiang; Baek, Kyung In; Sevag Packard, René R.; Hsiai, Tzung K.

    2018-02-01

    There currently is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3- dimensional (3-D) architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3-D and 4-D (3-D spatial + 1-D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods such as routine optical microscopes. We hereby demonstrate multi-scale applicability of VR-LSFM to 1) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, 2) navigate through the endocardial trabecular network during zebrafish development, and 3) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation (BINS) algorithm with deformable image registration (DIR) to interface a VR environment for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.

  12. Effects of a single terlipressin administration on cardiac function and perfusion in cirrhosis

    DEFF Research Database (Denmark)

    Krag, Aleksander; Bendtsen, Flemming; Mortensen, Christian

    2010-01-01

    BACKGROUND: The vasoconstrictor terlipressin is widely used in the treatment of the hepatorenal syndrome and variceal bleeding. However, terlipressin may compromise cardiac function and induce ischemia. AIM: Therefore, we aimed to assess the effects of terlipressin on cardiac function and perfusion...... with nonrefractory ascites, both at baseline and after terlipressin treatment. The decrease in the left ventricular wall thickening and wall motion correlated with the Child--Pugh score, r=-0.59, P=0.005 and r=-0.48, P=0.03. CONCLUSION: In advanced cirrhosis, the increase in afterload and EDV after terlipressin...

  13. Cardiac c-Kit Biology Revealed by Inducible Transgenesis.

    Science.gov (United States)

    Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M; Ilves, Kelli; Nguyen, Kristine P; Payne, Christina R; Sacchi, Veronica; Monsanto, Megan M; Casillas, Alexandria R; Khalafalla, Farid G; Wang, Bingyan J; Ebeid, David E; Alvarez, Roberto; Dembitsky, Walter P; Bailey, Barbara A; van Berlo, Jop; Sussman, Mark A

    2018-06-22

    Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart

  14. Effect of prolonged space flight on cardiac function and dimensions

    Science.gov (United States)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1974-01-01

    Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.

  15. The Impact of a Non-Functional Thyroid Receptor Beta upon Triiodotironine-Induced Cardiac Hypertrophy in Mice

    Directory of Open Access Journals (Sweden)

    Güínever Eustáquio do Império

    2015-08-01

    Full Text Available Background/Aims: Thyroid hormone (TH signalling is critical for heart function. The heart expresses thyroid hormone receptors (THRs; THRα1 and THRβ1. We aimed to investigate the regulation mechanisms of the THRβ isoform, its association with gene expression changes and implications for cardiac function. Methods: The experiments were performed using adult male mice expressing TRβΔ337T, which contains the Δ337T mutation of the human THRB gene and impairs ligand binding. Cardiac function and RNA expression were studied after hypo-or hyperthyroidism inductions. T3-induced cardiac hypertrophy was not observed in TRβΔ337T mice, showing the fundamental role of THRβ in cardiac hypertrophy. Results: We identified a group of independently regulated THRβ genes, which includes Adrb2, Myh7 and Hcn2 that were normally regulated by T3 in the TRβΔ337T group. However, Adrb1, Myh6 and Atp2a2 were regulated via THRβ. The TRβΔ337T mice exhibited a contractile deficit, decreased ejection fraction and stroke volume, as assessed by echocardiography. In our model, miR-208a and miR-199a may contribute to THRβ-mediated cardiac hypertrophy, as indicated by the absence of T3-regulated ventricular expression in TRβΔ337T mice. Conclusion: THRβ has important role in the regulation of specific mRNA and miRNA in T3-induced cardiac hypertrophic growth and in the alteration of heart functions.

  16. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function.

    Science.gov (United States)

    Jonker, Jacqueline T; de Mol, Pieter; de Vries, Suzanna T; Widya, Ralph L; Hammer, Sebastiaan; van Schinkel, Linda D; van der Meer, Rutger W; Gans, Rijk O B; Webb, Andrew G; Kan, Hermien E; de Koning, Eelco J P; Bilo, Henk J G; Lamb, Hildo J

    2013-11-01

    To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics committee. The study followed 12 patients with type 2 diabetes mellitus (seven men; mean age, 46 years ± 2 [standard error]) before and after 6 months of moderate-intensity exercise, followed by a high-altitude trekking expedition with exercise of long duration. Abdominal, epicardial, and paracardial fat volume were measured by using magnetic resonance (MR) imaging. Cardiac function was quantified with cardiac MR, and images were analyzed by a researcher who was supervised by a senior researcher (4 and 21 years of respective experience in cardiac MR). Hepatic, myocardial, and intramyocellular triglyceride (TG) content relative to water were measured with proton MR spectroscopy at 1.5 and 7 T. Two-tailed paired t tests were used for statistical analysis. Exercise reduced visceral abdominal fat volume from 348 mL ± 57 to 219 mL ± 33 (P Exercise decreased hepatic TG content from 6.8% ± 2.3 to 4.6% ± 1.6 (P Exercise did not change epicardial fat volume (P = .9), myocardial TG content (P = .9), intramyocellular lipid content (P = .3), or cardiac function (P = .5). A 6-month exercise intervention in type 2 diabetes mellitus decreased hepatic TG content and visceral abdominal and paracardial fat volume, which are associated with increased cardiovascular risk, but cardiac function was unaffected. Tissue-specific exercise-induced changes in body fat distribution in type 2 diabetes mellitus were demonstrated in this study. RSNA, 2013

  17. Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure

    Science.gov (United States)

    Montgomery, Rusty L.; Hullinger, Thomas G.; Semus, Hillary M.; Dickinson, Brent A.; Seto, Anita G.; Lynch, Joshua M.; Stack, Christianna; Latimer, Paul A.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Background Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. Methods and Results Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. Conclusions These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression. PMID:21900086

  18. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus

    NARCIS (Netherlands)

    van der Meer, Rutger W.; Rijzewijk, Luuk J.; de Jong, Hugo W. A. M.; Lamb, Hildo J.; Lubberink, Mark; Romijn, Johannes A.; Bax, Jeroen J.; de Roos, Albert; Kamp, Otto; Paulus, Walter J.; Heine, Robert J.; Lammertsma, Adriaan A.; Smit, Johannes W. A.; Diamant, Michaela

    2009-01-01

    Cardiac disease is the leading cause of mortality in type 2 diabetes mellitus (T2DM). Pioglitazone has been associated with improved cardiac outcome but also with an elevated risk of heart failure. We determined the effects of pioglitazone on myocardial function in relation to cardiac high-energy

  19. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function

    NARCIS (Netherlands)

    Coolen, Bram F.; Abdurrachim, Desiree; Motaal, Abdallah G.; Nicolay, Klaas; Prompers, Jeanine J.; Strijkers, Gustav J.

    2013-01-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered

  20. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  1. Genome-wide screens for in vivo Tinman binding sites identify cardiac enhancers with diverse functional architectures.

    Directory of Open Access Journals (Sweden)

    Hong Jin

    Full Text Available The NK homeodomain factor Tinman is a crucial regulator of early mesoderm patterning and, together with the GATA factor Pannier and the Dorsocross T-box factors, serves as one of the key cardiogenic factors during specification and differentiation of heart cells. Although the basic framework of regulatory interactions driving heart development has been worked out, only about a dozen genes involved in heart development have been designated as direct Tinman target genes to date, and detailed information about the functional architectures of their cardiac enhancers is lacking. We have used immunoprecipitation of chromatin (ChIP from embryos at two different stages of early cardiogenesis to obtain a global overview of the sequences bound by Tinman in vivo and their linked genes. Our data from the analysis of ~50 sequences with high Tinman occupancy show that the majority of such sequences act as enhancers in various mesodermal tissues in which Tinman is active. All of the dorsal mesodermal and cardiac enhancers, but not some of the others, require tinman function. The cardiac enhancers feature diverse arrangements of binding motifs for Tinman, Pannier, and Dorsocross. By employing these cardiac and non-cardiac enhancers in machine learning approaches, we identify a novel motif, termed CEE, as a classifier for cardiac enhancers. In vivo assays for the requirement of the binding motifs of Tinman, Pannier, and Dorsocross, as well as the CEE motifs in a set of cardiac enhancers, show that the Tinman sites are essential in all but one of the tested enhancers; although on occasion they can be functionally redundant with Dorsocross sites. The enhancers differ widely with respect to their requirement for Pannier, Dorsocross, and CEE sites, which we ascribe to their different position in the regulatory circuitry, their distinct temporal and spatial activities during cardiogenesis, and functional redundancies among different factor binding sites.

  2. Tei index in determination of fetal cardiac function in pregnant women with gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Guo-Dong Li

    2016-09-01

    Full Text Available Objective: To explore the application value of Tei index in determination of fetal cardiac function in pregnant women with gestational diabetes mellitus (GDM. Methods: A total of 60 gestational diabetes mellitus pregnant women with single birth were included in the study and served as GDM group, while 60 healthy pregnant women with single birth were served as the control group. The fetal echocardiography was performed. The cardiac structure, function, and other related indicators were detected and compared. Results: IVSs, LVWT, RVWT, LVEF, LVFS, and RVFS in GDM group were significantly greater than those in the control group (P<0.05. E/A MV and E/A TV in GDM group were significantly lower than those in the control group (P<0.05. The left and right ventricular Tei index in GDM group was significantly higher than that in the control group (P<0.05. Conclusions: The fetal cardiac structure and function in GDM pregnant women can cause damage to a different degree. Tei index is an important indicator to evaluate the fetal cardiac function in GDM pregnant women, and can be applied in the early diagnosis and treatment; therefore, it deserved to be widely recommended in the clinic.

  3. Left atrial appendages from adult hearts contain a reservoir of diverse cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jussi V Leinonen

    Full Text Available There is strong evidence supporting the claim that endogenous cardiac progenitor cells (CPCs are key players in cardiac regeneration, but the anatomic source and phenotype of the master cardiac progenitors remains uncertain. Our aim was to investigate the different cardiac stem cell populations in the left atrial appendage (LAA and their fates.We investigated the CPC content and profile of adult murine LAAs using immunohistochemistry and flow cytometry. We demonstrate that the LAA contains a large number of CPCs relative to other areas of the heart, representing over 20% of the total cell number. We grew two distinct CPC populations from the LAA by varying the degree of proteolysis. These differed by their histological location, surface marker profiles and growth dynamics. Specifically, CD45(pos cells grew with milder proteolysis, while CD45(neg cells grew mainly with more intense proteolysis. Both cell types could be induced to differentiate into cells with cardiomyocyte markers and organelles, albeit by different protocols. Many CD45(pos cells expressed CD45 initially and rapidly lost its expression while differentiating.Our results demonstrate that the left atrial appendage plays a role as a reservoir of multiple types of progenitor cells in murine adult hearts. Two different types of CPCs were isolated, differing in their epicardial-myocardial localization. Considering studies demonstrating layer-specific origins of different cardiac progenitor cells, our findings may shed light on possible pathways to study and utilize the diversity of endogenous progenitor cells in the adult heart.

  4. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    OpenAIRE

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-s...

  5. Anatomy and Histology of the Human and Murine Prostate.

    Science.gov (United States)

    Ittmann, Michael

    2018-05-01

    The human and murine prostate glands have similar functional roles in the generation of seminal fluid to assist in reproduction. There are significant differences in the anatomy and histology of murine and human prostate and knowledge of the normal anatomy and histology of the murine prostate is essential to interpreting changes in genetically engineered mouse models. In this review, the normal anatomy and histology of both human and mouse prostate will be described. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Evaluation of cardiac morphology and function in mitral stenosis using CT

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Masaki [Chiba Univ. (Japan). School of Medicine

    1992-11-01

    The purpose of this study was to evaluate cardiac morphology and function in patients with mitral stenosis (MS). The subjects consisted of 96 patients (23 males and 73 females) with MS who underwent plain and contrast-enhanced CT. Follow-up examinations were performed at least twice in 42 patients, including 18 who were examined before and after surgery. The volume of each cardiac chamber was calculated by Simpson's rule and was divided by body surface area (BSA). The average left atrial (LA) volume was 171[+-]80 cm[sup 3]/m[sup 2] BSA in the 96 MS patients, and 46[+-]10 cm[sup 3]/m[sup 2] BSA in normal control subjects. Atrial fibrillation (Af) was present in 61 patients (64%), and left atrial thrombi were detected in 15 (25%) of them. LA volume increased by 16% in 24 patients without surgery during a mean follow-up period of 4.1 years. The LA tended to enlarge more in the patients with a smaller mitral valve area, a larger LA volume at the first examination, or Af. In 18 patients, after open surgery or percutaneous transvenous mitral commissurotomy, pulmonary CT values decreased significantly as a result of the improvement of pulmonary congestion. LA and RA volume decreased significantly and LV volume increased after surgery. It was concluded that CT was useful for evaluating cardiac function and morphological changes, not only by detecting mitral valve calcification and LA thrombi but also by measuring cardiac volume and pulmonary CT values. (author).

  7. Use of 123I-MIBG scintigraphy to assess the impact of carvedilol on cardiac adrenergic neuronal function in childhood dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Maunoury, Christophe; Acar, Philippe; Sidi, Daniel

    2003-01-01

    Iodine-123 metaiodobenzylguanidine (MIBG) cardiac scintigraphy is a useful tool for the assessment of cardiac adrenergic neuronal function, which is impaired in children with idiopathic dilated cardiomyopathy (DCM). In adults with DCM, long-term treatment with carvedilol improves both cardiac adrenergic neuronal function and left ventricular function. The aim of this prospective study was to evaluate the impact of carvedilol on cardiac adrenergic neuronal function using 123 I-MIBG scintigraphy and on left ventricular function using equilibrium radionuclide angiography in children with DCM. Seventeen patients (11 female, six male; mean age 39±57 months, range 1-168 months) with DCM and left ventricular dysfunction underwent 123 I-MIBG cardiac scintigraphy and equilibrium radionuclide angiography before and after a 6-month period of carvedilol therapy. A static anterior view of the chest was acquired 4 h after intravenous injection of 20-75 MBq of 123 I-MIBG. Cardiac neuronal uptake of 123 I-MIBG was measured using the heart to mediastinum count ratio (HMR). Radionuclide left ventricular ejection fraction (LVEF) was assessed following a standard protocol. MIBG cardiac uptake and left ventricular function respectively increased by 38% and 65% after 6 months of treatment with carvedilol (HMR=223%±49% vs 162%±26%, P<0.0001, and LVEF=43%±17% vs 26%±11%, P<0.0001). Carvedilol can improve cardiac adrenergic neuronal and left ventricular function in children with dilated cardiomyopathy. Further studies are needed to assess the relationship between improvement in MIBG cardiac uptake and the beneficial effects of carvedilol on morbidity and mortality. (orig.)

  8. Cardiovascular measurement and cardiac function analysis with electron beam computed tomography in health Chinese people (50 cases report)

    International Nuclear Information System (INIS)

    Lu Bin; Dai Ruping; Zhang Shaoxiong; Bai Hua; Jing Baolian; Cao Cheng; He Sha; Ren Li

    1998-01-01

    Purpose: To quantitatively measure cardiovascular diameters and function parameters by using electron beam computed tomography, EBCT. Methods: Men 50 health Chinese people accepted EBCT common transverse and short-axis enhanced movie scan (27 men, 23 women, average age 47.7 years.). The transverse scan was used to measure the diameters of the ascending aorta, descending aorta, pulmonary artery and left atrium. The movie study was used to measure the left ventricular myocardium thickness and analysis global, sectional and segmental function of the right and left ventricles. Results: The cardiovascular diameters and cardiac functional parameters were calculated. The diameters and most functional parameters (end syspoble volume, syspole volume, ejection fraction, cardiac-output, cardiac index) of normal Chinese men were greater than those of women (P>0.05). However, the EDV and MyM(myocardium mass) of both ventricles were significant (p<0.01). Conclusion: EBCT is a minimally invasive method for cardiovascular measurement and cardiac function evaluation

  9. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Lin; Song, Li; Zhang, Yan-Wan; Ye, Jue; Xu, Rui-Xia; Shi, Na; Meng, Xian-Min

    2013-01-01

    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function

  10. The effects of levosimendan in cardiac surgery patients with poor left ventricular function

    NARCIS (Netherlands)

    de Hert, Stefan G.; Lorsomradee, Suraphong; Cromheecke, Stefanie; van der Linden, Philippe J.

    2007-01-01

    BACKGROUND: Patients with poor left ventricular function often require inotropic drug support immediately after cardiopulmonary bypass. Levosimendan improves cardiac function by a novel mechanism of action compared to currently available drugs. We hypothesized that, in patients with severely

  11. Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.

    Science.gov (United States)

    Liu, Zhenzhen; Du, Lupei; Li, Minyong

    2012-01-01

    The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).

  12. Image processing of x-ray left ventricular cineangiocardiograms and displays of cardiac functions

    International Nuclear Information System (INIS)

    Eiho, Shigeru; Yamada, Shigeru; Kuwahara, Michiyoshi

    1980-01-01

    Cineangiocardiography has been often used as one of the highly helpful techniques to examine the cardiac function. This paper deals with the method of tracing automatically the boundaries of the left ventricle on cineangiocardiograms, the method to evaluate and display various cardiac functions, the method to reconstruct the left ventricular cavity from biplane cineangiocardiograms and the method to display a 3-dimensional shape of the left ventricle reconstructed. Our algorithm of boundary tracing is based on a heuristic search for a local maximum of the changing rate in the gray level of cineangiocardiogram. The boundaries of endocardial margins of the left ventricle on 80 to 120 consecutive frames are automatically traced by our method. By using the detected boundaries of the left ventricle, a lot of quantitative information may be established on the cardiac function. The volume change, the wall motions and the %-shortening are displayed graphically. The motion of the boundary of the left ventricle is displayed on a CRT as a moving picture. The left ventricular cavity is reconstructed from the detected boundaries of the left ventricle on biplane cineangiocardiograms. A reconstructed image can be shown as superimposed lines or halftone planes to produce a 3-dimensional perspective. The %-shortening which shows the contractility of the regional myocardium is displayed on a silhouette of the left ventricle. We can easily recognize the abnormal area of contraction and the level and spread of abnormality from this displayed image. With the use of the system described in this paper, we can grasp the movement of the left ventricle exactly and evaluate the cardiac function quantitatively. (author)

  13. Chronic Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy

    Science.gov (United States)

    Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.

    2009-01-01

    Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664

  14. Prediction of cardiac sympathetic nerve activity and cardiac functional outcome after treatment in patients with dilated cardiomyopathy. Examination using dobutamine gated blood pool scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Iwasaki, Tsutomu; Suzuki, Tadashi [Gunma Univ., Maebashi (Japan). School of Medicine; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi; Nagai, Ryozo

    2000-07-01

    This study evaluated whether dobutamine gated blood pool scintigraphy can predict improvement of cardiac sympathetic nerve activity and cardiac function. Sixteen patients (10 men and 6 women, mean age 59{+-}13 years) with dilated cardiomyopathy underwent dobutamine gated blood pool scintigraphy to measure left ventricular ejection fraction (LVEF) using tracer at 0, 5, 10 and 15 {mu}g/kg/min before treatment. Patients were divided into good responders (LVEF increase {>=}15%) 8 patients (GR Group) and poor responders (LVEF increase <15%) 8 patients (PR Group) after treatment with {beta}-blocker or amiodarone with a background treatment of digitalis, diuretics and angiotensin converting enzyme inhibitor. I-123 metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic nerve activity and echocardiography were performed before and at one year after treatment. MIBG imaging was obtained 4 hours after tracer injection, and the heart/mediastinum count ratio (H/M ratio) calculated from the anterior planar image and the total defect score (TDS) from the single photon emission computed tomography image. LVEF and left ventricular endo-diastolic dimension (LVDd) were measured by echocardiography and New York Heart Association (NYHA) functional class was evaluated. The GR Group showed TDS decreased from 28{+-}6 to 17{+-}12 (p<0.05), H/M ratio increased from 1.79{+-}0.26 to 2.07{+-}0.32 (p<0.05), LVEF increased from 29{+-}8% to 48{+-}10% (p<0.01), and LVDd decreased from 65{+-}4 mm to 58{+-}5 mm (p<0.05). In contrast, the PR group showed no significant changes in TDS. H/M ratio, LVEF and LVDd. NYHA functional class improved in both groups. The improvement was better in the GR Group than in the PR group. Dobutamine gated blood pool scintigraphy is useful to predict the improvement of the cardiac sympathetic nerve activity and cardiac function, and symptoms after treatment in patients with dilated cardiomyopathy. (author)

  15. Evaluation of cardiac motion and function by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kondo, Takeshi; Kurokawa, Hiroshi; Anno, Hirofumi

    1992-01-01

    Cardiac cine magnetic resonance imaging (MRI) was studied to evaluate the cardiac motion and function, and a water-stream phantom study was performed to clarify whether it was possible to quantitatively assess the valvular regurgitation flow by the size of the flow void. In normal subjects, the left ventricular (LV) epicardial apex swung up to the base only a few millimeters, and the mitral annulus ring moved about 14 mm as mean value toward the apex during systole. Those motions of mitral annulus ring may contribute to the left atrial filling. The LV longitudinal shortening and torsions were shown by the tagging method. This tagging method was the best method for estimating cardiac motions. Cardiac cine MRI using software including a modified Simpson's method program and a wall motion analysis program was useful for routine LV volumetry and wall motion analysis because it was a simple and reliable method. Our water-stream phantom studies demonstrated that it might be difficult to perform quantitative evaluation of valvular regurgitation flow by using only the size of the flow void without acquiring information relating to the orifice area. (author)

  16. Self-reported physical activity and lung function two months after cardiac surgery--a prospective cohort study.

    Science.gov (United States)

    Jonsson, Marcus; Urell, Charlotte; Emtner, Margareta; Westerdahl, Elisabeth

    2014-03-28

    Physical activity has well-established positive health-related effects. Sedentary behaviour has been associated with postoperative complications and mortality after cardiac surgery. Patients undergoing cardiac surgery often suffer from impaired lung function postoperatively. The association between physical activity and lung function in cardiac surgery patients has not previously been reported. Patients undergoing cardiac surgery were followed up two months postoperatively. Physical activity was assessed on a four-category scale (sedentary, moderate activity, moderate regular exercise, and regular activity and exercise), modified from the Swedish National Institute of Public Health's national survey. Formal lung function testing was performed preoperatively and two months postoperatively. The sample included 283 patients (82% male). Two months after surgery, the level of physical activity had increased (p < 0.001) in the whole sample. Patients who remained active or increased their level of physical activity had significantly better recovery of lung function than patients who remained sedentary or had decreased their level of activity postoperatively in terms of vital capacity (94 ± 11% of preoperative value vs. 91 ± 9%; p = 0.03), inspiratory capacity (94 ± 14% vs. 88 ± 19%; p = 0.008), and total lung capacity (96 ± 11% vs. 90 ± 11%; p = 0.01). An increased level of physical activity, compared to preoperative level, was reported as early as two months after surgery. Our data shows that there could be a significant association between physical activity and recovery of lung function after cardiac surgery. The relationship between objectively measured physical activity and postoperative pulmonary recovery needs to be further examined to verify these results.

  17. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function

    Science.gov (United States)

    Zhou, Jin; Chen, Jun; Sun, Hongyu; Qiu, Xiaozhong; Mou, Yongchao; Liu, Zhiqiang; Zhao, Yuwei; Li, Xia; Han, Yao; Duan, Cuimi; Tang, Rongyu; Wang, Chunlan; Zhong, Wen; Liu, Jie; Luo, Ying; (Mengqiu) Xing, Malcolm; Wang, Changyong

    2014-01-01

    Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction. PMID:24429673

  18. Cardiodynamicsgram: a novel tool for monitoring cardiac function in exercise training.

    Science.gov (United States)

    Wen, Xu; Guo, Bokai; Gong, Yinglan; Xia, Ling; Yu, Jie

    2018-04-27

    This study evaluated the feasibility of cardiodynamicsgram (CDG) for monitoring the cardiac functions of athletes and exercisers. CDG could provide an effective, simple, and economical tool for exercise training. Seventeen middle-distance race athletes aged 14-28 years old were recruited. CDG tests and blood test including creatine kinase (CK), CK-MB isoenzyme, and high-sensitivity troponin I (hsTnI) were performed before a high-intensity prolonged training, as well as 2 and 14 h after training, respectively. The CDG test result was unsatisfactory when the CK test result was used as standard. However, the accuracy of CDG test was about 80% when CK-MB and hsTnI were used as standards. Thus, CDG offers a noninvasive, simple, and economical approach for monitoring the cardiac function of athletes and exercisers during exercise training. Nonetheless, the applicability of CDG needs further investigation.

  19. Reduced Right Ventricular Function Predicts Long-Term Cardiac Re-Hospitalization after Cardiac Surgery.

    Directory of Open Access Journals (Sweden)

    Leela K Lella

    Full Text Available The significance of right ventricular ejection fraction (RVEF, independent of left ventricular ejection fraction (LVEF, following isolated coronary artery bypass grafting (CABG and valve procedures remains unknown. The aim of this study is to examine the significance of abnormal RVEF by cardiac magnetic resonance (CMR, independent of LVEF in predicting outcomes of patients undergoing isolated CABG and valve surgery.From 2007 to 2009, 109 consecutive patients (mean age, 66 years; 38% female were referred for pre-operative CMR. Abnormal RVEF and LVEF were considered 30 days outcomes included, cardiac re-hospitalization, worsening congestive heart failure and mortality. Mean clinical follow up was 14 months.Forty-eight patients had reduced RVEF (mean 25% and 61 patients had normal RVEF (mean 50% (p<0.001. Fifty-four patients had reduced LVEF (mean 30% and 55 patients had normal LVEF (mean 59% (p<0.001. Patients with reduced RVEF had a higher incidence of long-term cardiac re-hospitalization vs. patients with normal RVEF (31% vs.13%, p<0.05. Abnormal RVEF was a predictor for long-term cardiac re-hospitalization (HR 3.01 [CI 1.5-7.9], p<0.03. Reduced LVEF did not influence long-term cardiac re-hospitalization.Abnormal RVEF is a stronger predictor for long-term cardiac re-hospitalization than abnormal LVEF in patients undergoing isolated CABG and valve procedures.

  20. Immune function surveillance: association with rejection, infection and cardiac allograft vasculopathy.

    Science.gov (United States)

    Heikal, N M; Bader, F M; Martins, T B; Pavlov, I Y; Wilson, A R; Barakat, M; Stehlik, J; Kfoury, A G; Gilbert, E M; Delgado, J C; Hill, H R

    2013-01-01

    Rejection, cardiac allograft vasculopathy (CAV), and infection are significant causes of mortality in heart transplantation recipients. Assessing the immune status of a particular patient remains challenging. Although endomyocardial biopsy (EMB) and angiography are effective for the identification of rejection and CAV, respectively, these are expensive, invasive, and may have numerous complications. The aim of this study was to evaluate the immune function and assess its utility in predicting rejection, CAV, and infection in heart transplantation recipients. We prospectively obtained samples at the time of routine EMB and when clinically indicated for measurement of the ImmuKnow assay (IM), 12 cytokines and soluble CD30 (sCD30). EMB specimens were evaluated for acute cellular rejection, and antibody-mediated rejection (AMR). CAV was diagnosed by the development of angiographic coronary artery disease. Infectious episodes occurring during the next 30 days after testing were identified by the presence of positive bacterial or fungal cultures and/or viremia that prompted treatment with antimicrobials. We collected 162 samples from 56 cardiac transplant recipients. There were 31 infection episodes, 7 AMR, and 4 CAV cases. The average IM value was significantly lower during infection, (P = .04). Soluble CD30 concentrations showed significantly positive correlation with infection episodes, (P = .001). Significant positive correlation was observed between interleukin-5(IL-5) and AMR episodes (P = .008). Tumor necrosis factor-α and IL-8 showed significant positive correlation with CAV (P = .001). Immune function monitoring appears promising in predicting rejection, CAV, and infection in cardiac transplantation recipients. This approach may help in more individualized immunosuppression and it may also minimize unnecessary EMBs and cardiac angiographies. Published by Elsevier Inc.

  1. Anti-tachycardia therapy can improve altered cardiac adrenergic function in tachycardia-induced cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ohkusu, Yasuo; Takahashi, Nobukazu; Ishikawa, Toshiyuki [Yokohama City Univ. (Japan). School of Medicine] [and others

    2002-11-01

    We investigated whether anti-tachycardia therapy might improve the altered cardiac adrenergic and systolic function in tachycardia-induced cardiomyopathy (TC) in contrast to dilated cardiomyopathy (DCM). The subjects were 23 patients with heart failure, consisting of 8 patients with TC (43.6{+-}10.0 yrs) and 15 with DCM (45.3{+-}8.2 yrs). TC was determined as impairment of left ventricular function secondary to chronic or very frequent arrhythmia during more than 10% of the day. All patients were receiving anti-tachycardia treatment. Cardiac {sup 123}I-MIBG uptake was assessed as the heart/mediastinum activity ratio (H/M) before and after treatment. Left ventricular ejection fraction (LVEF) was also assessed. In the baseline study, H/M and LVEF showed no difference between TC and DCM (2.21{+-}0.44 vs. 2.10{+-}0.42, 35.3{+-}13.1 vs. 36.0{+-}10.9%, respectively). After treatment, the degree of change in H/M and LVEF differed significantly (0.41{+-}0.34 vs. 0.08{+-}0.20, 20.5{+-}14.4 vs. -2.1{+-}9.6%, p<0.01). In TC, heart failure improved after a shorter duration of treatment (p<0.05). In conclusion, anti-tachycardia therapy can improve altered cardiac adrenergic function and systolic function in patients with TC over a shorter period than in those with DCM. (author)

  2. Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus.

    Science.gov (United States)

    Chorepsima, Stamatina; Eleftheriadou, Ioanna; Tentolouris, Anastasios; Moyssakis, Ioannis; Protogerou, Athanasios; Kokkinos, Alexandros; Sfikakis, Petros P; Tentolouris, Nikolaos

    2017-05-19

    Increased carotid-femoral pulse wave velocity (PWV) has been associated with incident cardiovascular disease, independently of traditional risk factors. Cardiac autonomic dysfunction is a common complication of diabetes and has been associated with reduced aortic distensibility. However, the association of cardiac autonomic dysfunction with PWV is not known. In this study we examined the association between cardiac autonomic function and PWV in subjects with type 2 diabetes mellitus. A total of 290 patients with type 2 diabetes were examined. PWV was measured at the carotid-femoral segment with applanation tonometry. Central mean arterial blood pressure (MBP) was determined by the same apparatus. Participants were classified as having normal (n = 193) or abnormal (n = 97) PWV values using age-corrected values. Cardiac autonomic nervous system activity was determined by measurement of parameters of heart rate variability (HRV). Subjects with abnormal PWV were older, had higher arterial blood pressure and higher heart rate than those with normal PWV. Most of the values of HRV were significantly lower in subjects with abnormal than in those with normal PWV. Multivariate analysis, after controlling for various confounding factors, demonstrated that abnormal PWV was associated independently only with peripheral MBP [odds ratio (OR) 1.049, 95% confidence intervals (CI) 1.015-1.085, P = 0.005], central MBP (OR 1.052, 95% CI 1.016-1.088, P = 0.004), log total power (OR 0.490, 95% CI 0.258-0.932, P = 0.030) and log high frequency power (OR 0.546, 95% CI 0.301-0.991, P = 0.047). In subjects with type 2 diabetes, arterial blood pressure and impaired cardiac autonomic function is associated independently with abnormal PWV.

  3. Use of {sup 123}I-MIBG scintigraphy to assess the impact of carvedilol on cardiac adrenergic neuronal function in childhood dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Maunoury, Christophe [Service de Medecine Nucleaire, Hopital Necker-Enfants Malades, 149 rue de Sevres, 75743, Paris Cedex 15 (France); Acar, Philippe; Sidi, Daniel [Service de Cardiologie Pediatrique, Hopital Necker-Enfants Malades, Paris (France)

    2003-12-01

    Iodine-123 metaiodobenzylguanidine (MIBG) cardiac scintigraphy is a useful tool for the assessment of cardiac adrenergic neuronal function, which is impaired in children with idiopathic dilated cardiomyopathy (DCM). In adults with DCM, long-term treatment with carvedilol improves both cardiac adrenergic neuronal function and left ventricular function. The aim of this prospective study was to evaluate the impact of carvedilol on cardiac adrenergic neuronal function using {sup 123}I-MIBG scintigraphy and on left ventricular function using equilibrium radionuclide angiography in children with DCM. Seventeen patients (11 female, six male; mean age 39{+-}57 months, range 1-168 months) with DCM and left ventricular dysfunction underwent {sup 123}I-MIBG cardiac scintigraphy and equilibrium radionuclide angiography before and after a 6-month period of carvedilol therapy. A static anterior view of the chest was acquired 4 h after intravenous injection of 20-75 MBq of {sup 123}I-MIBG. Cardiac neuronal uptake of {sup 123}I-MIBG was measured using the heart to mediastinum count ratio (HMR). Radionuclide left ventricular ejection fraction (LVEF) was assessed following a standard protocol. MIBG cardiac uptake and left ventricular function respectively increased by 38% and 65% after 6 months of treatment with carvedilol (HMR=223%{+-}49% vs 162%{+-}26%, P<0.0001, and LVEF=43%{+-}17% vs 26%{+-}11%, P<0.0001). Carvedilol can improve cardiac adrenergic neuronal and left ventricular function in children with dilated cardiomyopathy. Further studies are needed to assess the relationship between improvement in MIBG cardiac uptake and the beneficial effects of carvedilol on morbidity and mortality. (orig.)

  4. Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro

    NARCIS (Netherlands)

    Jones, CA; Fernandez, M; Herc, K; Bosnjak, L; Miranda-Saksena, M; Boadle, RA; Cunningham, A

    2003-01-01

    Dendritic cells (DC) are critical for stimulation of naive T cells. Little is known about the effect of herpes simplex virus type 2 (HSV-2) infection on DC structure or function or if the observed effects of HSV-1 on human DC are reproduced in murine DC. Here, we demonstrate that by 12 h

  5. Estradiol improves cardiac and hepatic function after trauma-hemorrhage: role of enhanced heat shock protein expression.

    Science.gov (United States)

    Szalay, László; Shimizu, Tomoharu; Suzuki, Takao; Yu, Huang-Ping; Choudhry, Mashkoor A; Schwacha, Martin G; Rue, Loring W; Bland, Kirby I; Chaudry, Irshad H

    2006-03-01

    Although studies indicate that 17beta-estradiol administration after trauma-hemorrhage (T-H) improves cardiac and hepatic functions, the underlying mechanisms remain unclear. Because the induction of heat shock proteins (HSPs) can protect cardiac and hepatic functions, we hypothesized that these proteins contribute to the salutary effects of estradiol after T-H. To test this hypothesis, male Sprague-Dawley rats ( approximately 300 g) underwent laparotomy and hemorrhagic shock (35-40 mmHg for approximately 90 min) followed by resuscitation with four times the shed blood volume in the form of Ringer lactate. 17beta-estradiol (1 mg/kg body wt) was administered at the end of the resuscitation. Five hours after T-H and resuscitation there was a significant decrease in cardiac output, positive and negative maximal rate of left ventricular pressure. Liver function as determined by bile production and indocyanine green clearance was also compromised after T-H and resuscitation. This was accompanied by an increase in plasma alanine aminotransferase (ALT) levels and liver perfusate lactic dehydrogenase levels. Furthermore, circulating levels of TNF-alpha, IL-6, and IL-10 were also increased. In addition to decreased cardiac and hepatic function, there was an increase in cardiac HSP32 expression and a reduction in HSP60 expression after T-H. In the liver, HSP32 and HSP70 were increased after T-H. There was no change in heart HSP70 and liver HSP60 after T-H and resuscitation. Estradiol administration at the end of T-H and resuscitation increased heart/liver HSPs expression, ameliorated the impairment of heart/liver functions, and significantly prevented the increase in plasma levels of ALT, TNF-alpha, and IL-6. The ability of estradiol to induce HSPs expression in the heart and the liver suggests that HSPs, in part, mediate the salutary effects of 17beta-estradiol on organ functions after T-H.

  6. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    Energy Technology Data Exchange (ETDEWEB)

    Kurhanewicz, Nicole [Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 (United States); McIntosh-Kastrinsky, Rachel [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 (United States); Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Hazari, Mehdi, E-mail: hazari.mehdi@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2017-06-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  7. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    International Nuclear Information System (INIS)

    Kurhanewicz, Nicole; McIntosh-Kastrinsky, Rachel; Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen; Hazari, Mehdi

    2017-01-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  8. Maturation and upregulation of functions of murine dendritic cells (DCs) under the influence of purified aromatic-turmerone (AR).

    Science.gov (United States)

    Yonggang, Tan; Yiming, Meng; Heying, Zhang; Cheng, Sun; Qiushi, Wang; Xianghong, Yang; Wei, Zheng; Huawei, Zhou; Shan, Fengping

    2012-10-01

    The aim of this work is to evaluate the effects of purified aromatic-turmerone (ar-turmerione, AR) on murine dendritic cells (DCs). These impacts of AR on DCs from bone marrow derived DCs(BMDCs) were assessed with use of conventional scanning electron microscopy (SEM), fluorescence activated cell sorting (FACS), transmission electron microscopy (TEM), cytochemistry assay, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We found that AR induced phenotypic maturation as evidenced by increased expression of CD86, CD40, CD83, CD80 and major histocompatibility complex II (MHC II). The functional tests showed the activity of acidic phosphatase (ACP) inside the DCs were downregulated after treatment with AR (which occurs when phagocytosis of DCs were decreased). Finally, we proved that AR increased the production of IL-12 and tumor necrosis factor α (TNF-α). These data suggested that AR could promote phenotypic and functional maturation of DCs and this adjuvant-like activity may have potential therapeutic value. It is therefore concluded that AR could exert positive modulation on murine DCs.

  9. Persistence of normal cardiac function and myocardial perfusion in irradiated long-term survivors of Hodgkin's disease

    International Nuclear Information System (INIS)

    Constine, L.S.; Schwartz, R.G.; Savage, D.E.; King, V.; Muhs, A.; Rubin, P.

    1996-01-01

    Purpose: The risk of myocardial infarction and cardiac dysfunction following mantle irradiation (RT) for Hodgkin's disease is controversial. The relative risk of fatal myocardial infarction is 2.8 in our Hodgkin's patients, similar to other reports. Sensitive evaluations of cardiac function and myocardial perfusion might be expected to reveal pre-clinical abnormalities of potential significance. We hypothesized the presence of pre-clinical cardiac toxicity and progressive deterioration of left ventricular performance and myocardial ischemia over time in long-term survivors of Hodgkin's disease. The data reported herein extend our previous study in patient number (n=50) and follow-up duration (mean 16.5 years). Materials and Methods: Equilibrium radionuclide angiocardiography (ERNA) was used to quantify left ventricular (LV) systolic and diastolic function with LV ejection fraction (LVEF) and peak filling rate (PFR), respectively. Quantitative myocardial perfusion scintigraphy (MPS) and ECG stress testing with exercise or dipyridamole were used to assess myocardial perfusion and electrical function. Patients at least 1.0 year after RT were eligible if ≤ 50 years old at RT and without known Hodgkin's or cardiac disease. Fifty patients, ages 10-46 years (mean 26.0) at RT, were tested 1.1 to 29.1 years (mean 9.1) after RT. Seventeen patients were tested 2 - 3 times separated by 0.5 - 6.5 years (mean 3.3). The mean central cardiac RT dose was 35.1 Gy (range 18.5 - 47.5) in daily 1.5-2.0 Gy fractions. Twelve patients were additionally irradiated to the left ventricle (LVRT), usually through partial transmission left lung shields (range 14.3-21.3 Gy). Results: No patient had symptomatic cardiac disease at the time of evaluation. The mean LVEF (first test, n = 50) was 60 ± 6% (range 42-73%) [normal ≥ 50%], and PFR (first test, n=44) was 3.43 ± 0.83 end diastolic volume per second (range 1.5-5.2 EDV/sec) [normal ≥ 2.54 EDV/sec] with 2 and 7 patients below normal

  10. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pitocco, Francesca, E-mail: f.pitocco@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia, E-mail: i.digiampietro@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Vivo, Aldo Eros de, E-mail: devivoeros@gmail.com [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Cianciulli, Paolo, E-mail: CIANCIULLI.PAOLO@aslrmc.it [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)

    2013-09-15

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients.

  11. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    International Nuclear Information System (INIS)

    Liguori, Carlo; Pitocco, Francesca; Di Giampietro, Ilenia; Vivo, Aldo Eros de; Schena, Emiliano; Cianciulli, Paolo; Zobel, Bruno Beomonte

    2013-01-01

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients

  12. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  13. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion.

    Science.gov (United States)

    Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen; Ananthakrishnan, Radha; Wang, Lingjie; Rosario, Rosa; Zhu, Zhengbin; Deckelbaum, Richard J; Ramasamy, Ravichandran

    2015-01-01

    Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5 g/kg body weight), immediately after ischemia and 1 h later during reperfusion, significantly reduced infarct size and maintained cardiac function (plevels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (plevel and reduced an autophagy marker, Beclin-1 (pGSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.

  14. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  15. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    Science.gov (United States)

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  16. Functional significance of cardiac reinnervation in heart transplant recipients.

    Science.gov (United States)

    Schwaiblmair, M; von Scheidt, W; Uberfuhr, P; Ziegler, S; Schwaiger, M; Reichart, B; Vogelmeier, C

    1999-09-01

    There is accumulating evidence of structural sympathetic reinnervation after human cardiac transplantation. However, the functional significance of reinnervation in terms of exercise capacity has not been established as yet; we therefore investigated the influence of reinnervation on cardiopulmonary exercise testing. After orthotopic heart transplantation 35 patients (mean age, 49.1 +/- 8.4 years) underwent positron emission tomography with scintigraphically measured uptake of C11-hydroxyephedrine (HED), lung function testing, and cardiopulmonary exercise testing. Two groups were defined based on scintigraphic findings, indicating a denervated group (n = 15) with a HED uptake of 5.45%/min and a reinnervated group (n = 20) with a HED uptake of 10.59%/min. The two study groups did not show significant differences with regard to anthropometric data, number of rejection episodes, preoperative hemodynamics, and postoperative lung function data. The reinnervated group had a significant longer time interval from transplantation (1625 +/- 1069 versus 800 +/- 1316 days, p exercise (137 +/- 15 versus 120 +/- 20 beats/min, p = .012), peak oxygen uptake (21.0 +/- 4 versus 16.1 +/- 5 mL/min/kg, p = .006), peak oxygen pulse (12.4 +/- 2.9 versus 10.2 +/- 2.7 mL/min/beat, p = .031), and anaerobic threshold (11.2 +/- 1.8 versus 9.5 +/- 2.1 mL/min, p = .046) were significantly increased in comparison to denervated transplant recipients. Additionally, a decreased functional dead space ventilation (0.24 +/- 0.05 versus 0.30 +/- 0.05, p = .004) was observed in the reinnervated group. Our study results support the hypothesis that partial sympathetic reinnervation after cardiac transplantation is of functional significance. Sympathetic reinnervation enables an increased peak oxygen uptake. This is most probably due to partial restoration of the chronotropic and inotropic competence of the heart as well as an improved oxygen delivery to the exercising muscles and a reduced ventilation

  17. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  18. Impact of thoracic surgery on cardiac morphology and function in small animal models of heart disease: a cardiac MRI study in rats.

    Directory of Open Access Journals (Sweden)

    Peter Nordbeck

    Full Text Available BACKGROUND: Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. METHODS: Female Wistar rats (n = 6 per group were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. RESULTS: Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05 and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05 after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw, such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05, or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05. Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass, but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. CONCLUSION: Cardio-thoracic surgical procedures in experimental myocardial infarction

  19. Use of the cardiopulmonary flow index to evaluate cardiac function in thoroughbred horses

    International Nuclear Information System (INIS)

    Guthrie, A.J.; Killeen, V.M.; Grosskopf, J.F.W.

    1991-01-01

    The ratio of the cardiopulmonary blood volume to stroke volume is called the cardiopulmonary flow index (CPFI). The CPFI can be determined indirectly from the simultaneous recording of a radiocardiogram and an electrocardiogram. The CPFI and cardiac output were measured simultaneously in horses that were diagnosed as having cardiac disease. The results obtained from these subjects were compared with those from control animals and significant differences were found between the mean CPFI of the control horses and those with macroscopically visible myocardial fibrosis on post mortem examination. No significant differences were found between the means of the cardiac output measured in either of the groups of horses. The effect of pharmacological acceleration of the heart rate on the CPFI was also studied. Significant differences were found between the mean CPFI and the slopes of the regression lines of CPFI on heart rate of the control and principal groups of horses. These differences were greatest at heart rates near to the resting heart rates of the individuals. The CPFI was found to be a more sensitive measure of cardiac function than cardiac output, in the horses. 16 refs., 2 figs., 2 tabs

  20. A Novel α-Calcitonin Gene-Related Peptide Analogue Protects Against End-Organ Damage in Experimental Hypertension, Cardiac Hypertrophy and Heart Failure

    DEFF Research Database (Denmark)

    Aubdool, Aisah A; Thakore, Pratish; Argunhan, Fulye

    2017-01-01

    cardiovascular disease in two distinct murine models of hypertension and heart failure in vivoMethods -The ability of the αAnalogue to act selectively via the CGRP pathway was shown in skin using a CGRP receptor antagonist. The effect of the αAnalogue on Angiotensin II (AngII)-induced hypertension......, Western blot and histology. Results -The AngII-induced hypertension was attenuated by co-treatment with the αAnalogue (50nmol/kg/day, s.c., at a dose selected for lack of long term hypotensive effects at baseline). The αAnalogue protected against vascular, renal and cardiac dysfunction, characterised...... failure. It preserved heart function, assessed by echocardiography, whilst protecting against adverse cardiac remodelling and apoptosis. Moreover, treatment with the αAnalogue was well-tolerated with neither signs of desensitisation nor behavioural changes. Conclusions -These findings, in two distinct...

  1. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    Remme, Carol Ann; Bezzina, Connie R.

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation

  2. Investigations of new cardiac functional imaging using Fourier analysis of gated blood-pool study

    International Nuclear Information System (INIS)

    Maeda, H.; Takeda, K.; Nakagawa, T.; Yamaguchi, N.; Taguchi, M.; Konishi, T.; Hamada, M.

    1982-01-01

    A new cardiac functional imaging, using temporal Fourier analysis of 28-frame gated cardiac blood-pool studies, was developed. A time-activity curve of each pixel was approximated by its Fourier series. Approximation by the sum for terms to the 3rd frequency of its Fourier series was considered to be most reasonable because of having the least aberration due to statistical fluctuation and close agreement between the global left ventricular curve and the regional fitted curves in normal subjects. To evaluate the ventricular systolic and diastolic performances, 9 parameters were analyzed from thus fitted curves on a pixel-by-pixel basis and displayed on a colour CRT in 64x64 matrix form. In patients with hypertrophic obstructive cardiomyopathy and other cardiac lesions, detailed information on the regional ventricular systolic and diastolic performances was clearly visualized by this method, which was difficult to obtain from the usual functional images of phase and amplitude at the fundamental frequency alone

  3. Chronic mitral regurgitation detected on cardiac MDCT: differentiation between functional and valvular aetiologies.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    OBJECTIVE: To determine whether cardiac computed tomography (MDCT) can differentiate between functional and valvular aetiologies of chronic mitral regurgitation (MR) compared with echocardiography (TTE). METHODS: Twenty-seven patients with functional or valvular MR diagnosed by TTE and 19 controls prospectively underwent cardiac MDCT. The morphological appearance of the mitral valve (MV) leaflets, MV geometry, MV leaflet angle, left ventricular (LV) sphericity and global\\/regional wall motion were analysed. The coronary arteries were evaluated for obstructive atherosclerosis. RESULTS: All control and MR cases were correctly identified by MDCT. Significant differences were detected between valvular and control groups for anterior leaflet length (30 +\\/- 7 mm vs. 22 +\\/- 4 mm, P < 0.02) and thickness (3.0 +\\/- 1 mm vs. 2.2 +\\/- 1 mm, P < 0.01). High-grade coronary stenosis was detected in all patients with functional MR compared with no controls (P < 0.001). Significant differences in those with\\/without MV prolapse were detected in MV tent area (-1.0 +\\/- 0.6 mm vs. 1.3 +\\/- 0.9 mm, P < 0.0001) and MV tent height (-0.7 +\\/- 0.3 mm vs. 0.8 +\\/- 0.8 mm, P < 0.0001). Posterior leaflet angle was significantly greater for functional MR (37.9 +\\/- 19.1 degrees vs. 22.9 +\\/- 14 degrees , P < 0.018) and less for valvular MR (0.6 +\\/- 35.5 degrees vs. 22.9 +\\/- 14 degrees, P < 0.017). Sensitivity, specificity, and positive and negative predictive values of MDCT were 100%, 95%, 96% and 100%. CONCLUSION: Cardiac MDCT allows the differentiation between functional and valvular causes of MR.

  4. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Directory of Open Access Journals (Sweden)

    Camilla Figueiredo Grans

    2014-07-01

    Full Text Available Background: Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective: To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods: Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week. At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results: The maximum load test increased in groups trained control (+32% and trained infarcted (+46% in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%, myocardial performance index (-39% and systolic blood pressure (+6% improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%, as well as in the low frequency band of systolic blood pressure (-46% in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion: Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  5. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    International Nuclear Information System (INIS)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins; Mostarda, Cristiano; Figueroa, Diego Mendrot; Angelis, Kátia De; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2014-01-01

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats

  6. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Energy Technology Data Exchange (ETDEWEB)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil); Mostarda, Cristiano [Departamento de Educação Física, Universidade Federal do Maranhão (UFMA), São Luís, MA (Brazil); Figueroa, Diego Mendrot [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Angelis, Kátia De [Laboratório de Fisiologia Translacional, Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Irigoyen, Maria Cláudia [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Rodrigues, Bruno, E-mail: bruno.rodrigues@incor.usp.br [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil)

    2014-07-15

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  7. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Science.gov (United States)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins; Mostarda, Cristiano; Figueroa, Diego Mendrot; Angelis, Kátia De; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2014-01-01

    Background Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats. PMID:25014059

  8. Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males.

    Science.gov (United States)

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1997-12-01

    Although studies have shown that testosterone receptor blockade with flutamide after hemorrhage restores the depressed immune function, it remains unknown whether administration of flutamide following trauma and hemorrhage and resuscitation has any salutary effects on the depressed cardiovascular and hepatocellular functions. To study this, male rats underwent a laparotomy (representing trauma) and were then bled and maintained at a mean arterial pressure (MAP) of 40 mmHg until the animals could not maintain this pressure. Ringer lactate was given to maintain a MAP of 40 mmHg until 40% of the maximal shed blood volume was returned in the form of Ringer lactate. The rats were then resuscitated with four times the shed blood volume in the form of Ringer lactate over 60 min. Flutamide (25 mg/kg) or an equal volume of the vehicle propanediol was injected subcutaneously 15 min before the end of resuscitation. Various in vivo heart performance parameters (e.g., maximal rate of the pressure increase or decrease), cardiac output, and hepatocellular function (i.e., the maximum velocity and the overall efficiency of indocyanine green clearance) were determined at 20 h after resuscitation. Additionally, hepatic microvascular blood flow (HMBF) was determined using a laser Doppler flowmeter. The results indicate that left ventricular performance, cardiac output, HMBF, and hepatocellular function decreased significantly at 20 h after the completion of trauma, hemorrhage, and resuscitation. Administration of the testosterone receptor blocker flutamide, however, significantly improved cardiac performance, HMBF, and hepatocellular function. Thus flutamide appears to be a novel and useful adjunct for improving cardiovascular and hepatocellular functions in males following trauma and hemorrhagic shock.

  9. Hypothalamus-pituitary-thyroid axis activity and function of cardiac muscle in energy deficit

    Directory of Open Access Journals (Sweden)

    Katarzyna Lachowicz

    2017-12-01

    Full Text Available Frequently repeated statement that energy restriction is a factor that improves cardiovascular system function seems to be not fully truth. Low energy intake modifies the hypothalamus-pituitary-thyroid axis activity and thyroid hormone peripheral metabolism. Thyroid hormones, as modulators of the expression and activity of many cardiomyocyte proteins, control heart function. Decreased thyroid hormone levels and their disturbanced conversion and action result in alternation of cardiac remodeling, disorder of calcium homeostasis and diminish myocardial contractility. This review provides a summary of the current state of knowledge about the mechanisms of energy restriction effects on thyroidal axis activity, thyroid hormone peripheral metabolism and action in target tissues, especially in cardiac myocytes. We also showed the existence of energy restriction-thyroid-heart pathway.

  10. Effects of protein-calorie restriction on mechanical function of hypertrophied cardiac muscle

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Cicogna

    1999-04-01

    Full Text Available OBJECTIVE: To assess the effect of food restriction (FR on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR. METHODS: Isolated papillary muscle preparations of the left ventricle (LV of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1 reduction in the body weight and LV weight of SHR and WKY rats; 2 increase in the time to peak shortening and the time to peak developed tension (DT in the hypertrophied myocardium of the SHR; 3 diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.

  11. Direct Cardiac Reprogramming: Advances in Cardiac Regeneration

    Directory of Open Access Journals (Sweden)

    Olivia Chen

    2015-01-01

    Full Text Available Heart disease is one of the lead causes of death worldwide. Many forms of heart disease, including myocardial infarction and pressure-loading cardiomyopathies, result in irreversible cardiomyocyte death. Activated fibroblasts respond to cardiac injury by forming scar tissue, but ultimately this response fails to restore cardiac function. Unfortunately, the human heart has little regenerative ability and long-term outcomes following acute coronary events often include chronic and end-stage heart failure. Building upon years of research aimed at restoring functional cardiomyocytes, recent advances have been made in the direct reprogramming of fibroblasts toward a cardiomyocyte cell fate both in vitro and in vivo. Several experiments show functional improvements in mouse models of myocardial infarction following in situ generation of cardiomyocyte-like cells from endogenous fibroblasts. Though many of these studies are in an early stage, this nascent technology holds promise for future applications in regenerative medicine. In this review, we discuss the history, progress, methods, challenges, and future directions of direct cardiac reprogramming.

  12. The Role of Levosimendan in Patients with Decreased Left Ventricular Function Undergoing Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Marija Bozhinovska

    2016-06-01

    Full Text Available The postoperative low cardiac output is one of the most important complications following cardiac surgery and is associated with increased morbidity and mortality. The condition requires inotropic support to achieve adequate hemodynamic status and tissue perfusion. While catecholamines are utilised as a standard therapy in cardiac surgery, their use is limited due to increased oxygen consumption. Levosimendan is calcium sensitising inodilatator expressing positive inotropic effect by binding with cardiac troponin C without increasing oxygen demand. Furthermore, the drug opens potassium ATP (KATP channels in cardiac mitochondria and in the vascular muscle cells, showing cardioprotective and vasodilator properties, respectively. In the past decade, levosimendan demonstrated promising results in treating patients with reduced left ventricular function when administered in peri- or post- operative settings. In addition, pre-operative use of levosimendan in patients with severely reduced left ventricular ejection fraction may reduce the requirements for postoperative inotropic support, mechanical support, duration of intensive care unit stay as well as hospital stay and a decrease in post-operative mortality. However, larger studies are needed to clarify clinical advantages of levosimendan versus conventional inotropes.

  13. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    Science.gov (United States)

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

    2007-05-01

    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function.

  14. Clinical research on correlation between BNP and left cardiac function in patients with heart failure

    International Nuclear Information System (INIS)

    Yin Xin; Xu Dandan; Wu Chunxu

    2005-01-01

    To investigate the correlation between brain natriuretic peptide (BNP) and the cardiac function in patients with heart failure(HF), the plasma level of BNP was determined by IRMA and the left cardiac function parameters were measured on echocardiogram in patients with different grade of HF. The results showed that the plasma level of BNP elevated with the worsening of heart failure (NYHA classification). The plasma levels of BNP were negatively correlated with left ventricular ejection fraction (LVEF) and left ventricular end-diastolic diameter (LVDd). The plasma level of BNP increases significantly along with the severity of HF classified by NYHA, and might be a biochemical parameter for evaluating the left ventricular function. (authors)

  15. Cardiac Ca2+ signalling in zebrafish: Translation of findings to man.

    Science.gov (United States)

    van Opbergen, Chantal J M; van der Voorn, Stephanie M; Vos, Marc A; de Boer, Teun P; van Veen, Toon A B

    2018-05-07

    Sudden cardiac death is a leading cause of death worldwide, mainly caused by highly disturbed electrical activation patterns in the heart. Currently, murine models are the most popular model to study underlying molecular mechanisms of inherited or acquired cardiac electrical abnormalities, although the numerous electrophysiological discrepancies between mouse and human raise the question whether mice are the optimal model to study cardiac rhythm disorders. Recently it has been uncovered that the zebrafish cardiac electrophysiology seems surprisingly similar to the human heart, mainly because the zebrafish AP contains a clear plateau phase and ECG characteristics show alignment with the human ECG. Although, before using zebrafish as a model to study cardiac arrhythmogenesis, however, it is very important to gain a better insight into the electrophysiological characteristics of the zebrafish heart. In this review we outline the electrophysiological machinery of the zebrafish cardiomyocytes, with a special focus on the intracellular Ca 2+ dynamics and excitation-contraction coupling. We debate the potential of zebrafish as a model to study human cardiovascular diseases and postulate steps to employ zebrafish into a more 'humanized' model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Structural and functional cardiac adaptations to 6 months of football training in untrained hypertensive men

    DEFF Research Database (Denmark)

    Andersen, L. J.; Randers, M. B.; Hansen, P. R.

    2014-01-01

    We investigated the effects of 3 and 6 months of regular football training on cardiac structure and function in hypertensive men. Thirty-one untrained males with mild-to-moderate hypertension were randomized 2:1 to a football training group (n = 20) and a control group receiving traditional...... training improves LV diastolic function in untrained men with mild-to-moderate arterial hypertension. Furthermore, it may improve longitudinal systolic function of both ventricles. The results suggest that football training has favorable effects on cardiac function in hypertensive men....... function improved with respect to tricuspid annular plane systolic excursion (21.8 ± 3.2 to 24.5 ± 3.7 mm). Arterial blood pressure decreased in both groups, but significantly more in the football training group. No significant changes were observed in the control group. In conclusion, short-term football...

  17. An Echocardiographic Study of Left Ventricular Size and Cardiac Function in Adolescent Females with Anorexia Nervosa.

    Science.gov (United States)

    Escudero, Carolina A; Potts, James E; Lam, Pei-Yoong; De Souza, Astrid M; Mugford, Gerald J; Sandor, George G S

    2016-01-01

    This retrospective case-control study investigated cardiac dimensions and ventricular function in female adolescents with anorexia nervosa (AN) compared with controls. Echocardiographic measurements of left ventricular (LV) dimensions, LV mass index, left atrial size and cardiac index were made. Detailed measures of systolic and diastolic ventricular function were made including tissue Doppler imaging. Patients were stratified by body mass index ≤10th percentile (AN ≤ 10th) and >10th percentile (AN > 10th). Ninety-five AN patients and 58 controls were included. AN and AN ≤ 10th groups had reduced LV dimensions, LV mass index, left atrial size and cardiac index compared with controls. There were no differences between groups in measures of systolic function. Measures of diastolic tissue Doppler imaging were decreased in AN and AN ≤ 10th. No differences in echocardiographic measurements existed between controls and AN > 10th. Female adolescents with AN have preserved systolic function and abnormalities of diastolic ventricular function. AN ≤ 10th may be a higher risk group. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  18. Myocardin-related transcription factors are required for cardiac development and function

    OpenAIRE

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2015-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the d...

  19. CTGF/CCN2 Postconditioning Increases Tolerance of Murine Hearts towards Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Kaasbøll, Ole Jørgen; Moe, Ingvild Tronstad; Ahmed, Mohammad Shakil; Stang, Espen; Hagelin, Else Marie Valbjørn; Attramadal, Håvard

    2016-01-01

    Previous studies of ischemia-reperfusion injury (IRI) in hearts from mice with cardiac-restricted overexpression of CCN2 have shown that CCN2 increases tolerance towards IRI. The objectives of this study were to investigate to what extent post-ischemic administration of recombinant human CCN2 (rhCCN2) would limit infarct size and improve functional recovery and what signaling pathways are involved. Isolated mice hearts were perfused ad modum Langendorff, subjected to no-flow, global ischemia, and subsequently, exposed to mammalian cell derived, full-length (38-40kDa) rhCCN2 (250 nM) or vehicle during the first 15 min of a 60 min reperfusion period. Post-ischemic administration of rhCCN2 resulted in attenuation of infarct size from 58 ± 4% to 34 ± 2% (p concentration-dependent increase of cardiac phospho-GSK3β (serine-9) contents. We demonstrate that post-ischemic administration of rhCCN2 increases the tolerance of ex vivo-perfused murine hearts to IRI. Mechanistically, this postconditioning effect of rhCCN2 appeared to be mediated by activation of the reperfusion injury salvage kinase pathway as demonstrated by sensitivity to PI3 kinase inhibition and increased CCN2-induced phosphorylation of GSK3β (Ser-9). Thus, the rationale for testing rhCCN2-mediated post-ischemic conditioning of the heart in more complex models is established.

  20. Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    Directory of Open Access Journals (Sweden)

    Lefeng Wang

    2017-01-01

    Full Text Available Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC, leading to barrier dysfunction and acute respiratory distress syndrome (ARDS. Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix] of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.

  1. Natural aminoacyl tRNA synthetase fragment enhances cardiac function after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Margaret E McCormick

    Full Text Available A naturally-occurring fragment of tyrosyl-tRNA synthetase (TyrRS has been shown in higher eukaryotes to 'moonlight' as a pro-angiogenic cytokine in addition to its primary role in protein translation. Pro-angiogenic cytokines have previously been proposed to be promising therapeutic mechanisms for the treatment of myocardial infarction. Here, we show that systemic delivery of the natural fragment of TyRS, mini-TyrRS, improves heart function in mice after myocardial infarction. This improvement is associated with reduced formation of scar tissue, increased angiogenesis of cardiac capillaries, recruitment of c-kitpos cells and proliferation of myocardial fibroblasts. This work demonstrates that mini-TyrRS has beneficial effects on cardiac repair and regeneration and offers support for the notion that elucidation of the ever expanding repertoire of noncanonical functions of aminoacyl tRNA synthetases offers unique opportunities for development of novel therapeutics.

  2. Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery.

    Science.gov (United States)

    Newman, M F; Grocott, H P; Mathew, J P; White, W D; Landolfo, K; Reves, J G; Laskowitz, D T; Mark, D B; Blumenthal, J A

    2001-12-01

    The importance of perioperative cognitive decline has long been debated. We recently demonstrated a significant correlation between perioperative cognitive decline and long-term cognitive dysfunction. Despite this association, some still question the importance of these changes in cognitive function to the quality of life of patients and their families. The purpose of our investigation was to determine the association between cognitive dysfunction and long-term quality of life after cardiac surgery. After institutional review board approval and patient informed consent, 261 patients undergoing cardiac surgery with cardiopulmonary bypass were enrolled and followed for 5 years. Cognitive function was measured with a battery of tests at baseline, discharge, and 6 weeks and 5 years postoperatively. Quality of life was assessed with well-validated, standardized assessments at the 5-year end point. Our results demonstrate significant correlations between cognitive function and quality of life in patients after cardiac surgery. Lower 5-year overall cognitive function scores were associated with lower general health and a less productive working status. Multivariable logistic and linear regression controlling for age, sex, education, and diabetes confirmed this strong association in the majority of areas of quality of life. Five years after cardiac surgery, there is a strong relationship between neurocognitive functioning and quality of life. This has important social and financial implications for preoperative evaluation and postoperative care of patients undergoing cardiac surgery.

  3. Cardiac structure and functions in patients with asymptomatic primary hyperparathyroidism.

    Science.gov (United States)

    Aktas Yılmaz, B; Akyel, A; Kan, E; Ercin, U; Tavil, Y; Bilgihan, A; Cakır, N; Arslan, M; Balos Toruner, F

    2013-11-01

    The data about cardiovascular (CV) changes in patients with asymptomatic primary hyperparathyroidism (PHPT) are scarce. The aim of this study is to compare cardiac structure and functions in patients with asymptomatic PHPT and controls by using tissue Doppler echocardiography. Thirty-eight patients with asymptomatic PHPT and 31 sex- and age-matched controls with similar cardiac risk factors were evaluated. There was no significant difference in ejection fraction (EF) between the patients and the controls [64±5.95 vs 62±3.25% (p=0.094)]. Left ventricular mass index (LVMI) was significantly higher in patients than controls [105.96 (66.45-167.24) vs 93.79 (64.25- 139.25) g/m2, p=0.014]. There was a significant correlation between LVMI and serum calcium (Ca) (r=0.240, p<0.005). Myocardial performance index (MPI) was significantly higher in patients than controls [0.49 (0.35-0.60) vs 0.39 (0.33-0.62), p<0.001]. There was positive correlation between theMPI and serumCa levels (r=0.505, p<0.001), parathyroid hormone (PTH) levels (r=0.464, p<0.001) and LVMI (r=0.270, p<0.005). When the normotensive patients and controls were evaluated, the difference between the groups remained statistically significant considering LVMI and MPI [109 (66.45-167.24) g/m2 vs 94.17 (64.25-75.10) g/m2, p=0.03; and 0.49 (0.35-0.60) vs 0.39 (0.33-0.62), p<0.01, respectively]. There were significant correlations between MPI and Ca (r=0.566, p<0.001), and PTH (r=0.472, p<0.001). Our study results showed that cardiacmorphology and diastolic functions are altered in the patients with asymptomatic PHPT. High serum PTH and Ca levels may have an impact on these CV changes. Whether these subtle CV changes would affect cardiac systolic functions and mortality in patients with asymptomatic PHPT should be investigated in further prospective studies.

  4. Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne muscular dystrophy.

    Science.gov (United States)

    Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W

    2016-04-01

    In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.

  5. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    Science.gov (United States)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  6. Cardiac diastolic function after recovery from pre-eclampsia.

    Science.gov (United States)

    Soma-Pillay, P; Louw, M C; Adeyemo, A O; Makin, J; Pattinson, R C

    Pre-eclampsia is associated with significant changes to the cardiovascular system during pregnancy. Eccentric and concentric remodelling of the left ventricle occurs, resulting in impaired contractility and diastolic dysfunction. It is unclear whether these structural and functional changes resolve completely after delivery. The objective of the study was to determine cardiac diastolic function at delivery and one year post-partum in women with severe pre-eclampsia, and to determine possible future cardiovascular risk. This was a descriptive study performed at Steve Biko Academic Hospital, a tertiary referral hospital in Pretoria, South Africa. Ninety-six women with severe preeclampsia and 45 normotensive women with uncomplicated pregnancies were recruited during the delivery admission. Seventy-four (77.1%) women in the pre-eclamptic group were classified as a maternal near miss. Transthoracic Doppler echocardiography was performed at delivery and one year post-partum. At one year post-partum, women with pre-eclampsia had a higher diastolic blood pressure (p = 0.001) and body mass index (p = 0.02) than women in the normotensive control group. Women with early onset pre-eclampsia requiring delivery prior to 34 weeks' gestation had an increased risk of diastolic dysfunction at one year post-partum (RR 3.41, 95% CI: 1.11-10.5, p = 0.04) and this was irrespective of whether the patient had chronic hypertension or not. Women who develop early-onset pre-eclampsia requiring delivery before 34 weeks are at a significant risk of developing cardiac diastolic dysfunction one year after delivery compared to normotensive women with a history of a low-risk pregnancy.

  7. Gelatin Hydrogel Enhances the Engraftment of Transplanted Cardiomyocytes and Angiogenesis to Ameliorate Cardiac Function after Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Kazuaki Nakajima

    Full Text Available Cell transplantation therapy will mean a breakthrough in resolving the donor shortage in cardiac transplantation. Cardiomyocyte (CM transplantation, however, has been relatively inefficient in restoring cardiac function after myocardial infarction (MI due to low engraftment of transplanted CM. In order to ameliorate engraftment of CM, the novel transplantation strategy must be invented. Gelatin hydrogel (GH is a biodegradable water-soluble polymer gel. Gelatin is made of collagen. Although we observed that collagen strongly induced the aggregation of platelets to potentially cause coronary microembolization, GH did not enhance thrombogenicity. Therefore, GH is a suitable biomaterial in the cell therapy after heart failure. To assess the effect of GH on the improvement of cardiac function, fetal rat CM (5×10(6 or 1x10(6 cells were transplanted with GH (10 mg/ml to infarcted hearts. We compared this group with sham operated rats, CM in phosphate buffered saline (PBS, only PBS, and only GH-transplanted groups. Three weeks after transplantation, cardiac function was evaluated by echocardiography. The echocardiography confirmed that transplantation of 5×10(6 CM with GH significantly improved cardiac systolic function, compared with the CM+PBS group (fractional area change: 75.1±3.4% vs. 60.7±5.9%, p<0.05, only PBS, and only GH groups (60.1±6.5%, 65.0±2.8%, p<0.05. Pathological analyses demonstrated that in the CM+GH group, CM were efficiently engrafted in infarcted myocardium (p<0.01 and angiogenesis was significantly enhanced (p<0.05 in both central and peripheral areas of the scar. Moreover, quantitative RT-PCR revealed that angiogenic cytokines, such as basic fibroblast growth factor, vascular endothelial growth factor, and hepatocyte growth factor, were significantly enriched in the CM+GH group (p<0.05. Here, we report that GH confined the CM effectively in infarcted myocardium after transplantation, and that CM transplanted with GH

  8. Exercise capacity in diabetes mellitus is predicted by activity status and cardiac size rather than cardiac function: a case control study.

    Science.gov (United States)

    Roberts, Timothy J; Burns, Andrew T; MacIsaac, Richard J; MacIsaac, Andrew I; Prior, David L; La Gerche, André

    2018-03-23

    The reasons for reduced exercise capacity in diabetes mellitus (DM) remains incompletely understood, although diastolic dysfunction and diabetic cardiomyopathy are often favored explanations. However, there is a paucity of literature detailing cardiac function and reserve during incremental exercise to evaluate its significance and contribution. We sought to determine associations between comprehensive measures of cardiac function during exercise and maximal oxygen consumption ([Formula: see text]peak), with the hypothesis that the reduction in exercise capacity and cardiac function would be associated with co-morbidities and sedentary behavior rather than diabetes itself. This case-control study involved 60 subjects [20 with type 1 DM (T1DM), 20 T2DM, and 10 healthy controls age/sex-matched to each diabetes subtype] performing cardiopulmonary exercise testing and bicycle ergometer echocardiography studies. Measures of biventricular function were assessed during incremental exercise to maximal intensity. T2DM subjects were middle-aged (52 ± 11 years) with a mean T2DM diagnosis of 12 ± 7 years and modest glycemic control (HbA 1c 57 ± 12 mmol/mol). T1DM participants were younger (35 ± 8 years), with a 19 ± 10 year history of T1DM and suboptimal glycemic control (HbA 1c 65 ± 16 mmol/mol). Participants with T2DM were heavier than their controls (body mass index 29.3 ± 3.4 kg/m 2 vs. 24.7 ± 2.9, P = 0.001), performed less exercise (10 ± 12 vs. 28 ± 30 MET hours/week, P = 0.031) and had lower exercise capacity ([Formula: see text]peak = 26 ± 6 vs. 38 ± 8 ml/min/kg, P accounting for age, sex and body surface area in a multivariate analysis, significant positive predictors of [Formula: see text]peak were cardiac size (LV end-diastolic volume, LVEDV) and estimated MET-hours, while T2DM was a negative predictor. These combined factors accounted for 80% of the variance in [Formula: see text

  9. Enhanced pyruvate dehydrogenase activity improves cardiac outcomes in a murine model of cardiac arrest.

    Directory of Open Access Journals (Sweden)

    Lin Piao

    Full Text Available Post-ischemic changes in cellular metabolism alter myocardial and neurological function. Pyruvate dehydrogenase (PDH, the limiting step in mitochondrial glucose oxidation, is inhibited by increased expression of PDH kinase (PDK during ischemia/reperfusion injury. This results in decreased utilization of glucose to generate cellular ATP. Post-cardiac arrest (CA hypothermia improves outcomes and alters metabolism, but its influence on PDH and PDK activity following CA are unknown. We hypothesized that therapeutic hypothermia (TH following CA is associated with the inhibition of PDK activity and increased PDH activity. We further hypothesized that an inhibitor of PDK activity, dichloroacetate (DCA, would improve PDH activity and post-CA outcomes.Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent a 12-minute KCl-induced CA followed by cardiopulmonary resuscitation. Compared to normothermic (37°C CA controls, administering TH (30°C improved overall survival (72-hour survival rate: 62.5% vs. 28.6%, P<0.001, post-resuscitation myocardial function (ejection fraction: 50.9±3.1% vs. 27.2±2.0%, P<0.001; aorta systolic pressure: 132.7±7.3 vs. 72.3±3.0 mmHg, P<0.001, and neurological scores at 72-hour post CA (9.5±1.3 vs. 5.4±1.3, P<0.05. In both heart and brain, CA increased lactate concentrations (1.9-fold and 3.1-fold increase, respectively, P<0.01, decreased PDH enzyme activity (24% and 50% reduction, respectively, P<0.01, and increased PDK protein expressions (1.2-fold and 1.9-fold, respectively, P<0.01. In contrast, post-CA treatment with TH normalized lactate concentrations (P<0.01 and P<0.05 and PDK expressions (P<0.001 and P<0.05, while increasing PDH activity (P<0.01 and P<0.01 in both the heart and brain. Additionally, treatment with DCA (0.2 mg/g body weight 30 min prior to CA improved both myocardial hemodynamics 2 hours post-CA (aortic systolic pressure: 123±3 vs. 96±4 mmHg, P<0.001 and 72-hour survival rates

  10. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  11. The incidence and functional consequences of RT-associated cardiac perfusion defects

    International Nuclear Information System (INIS)

    Marks, Lawrence B.; Yu Xiaoli; Prosnitz, Robert G.; Zhou Sumin; Hardenbergh, Patricia H.; Blazing, Michael; Hollis, Donna; Lind, Pehr; Tisch, Andrea; Wong, Terence Z.; Borges-Neto, Salvador

    2005-01-01

    Purpose: Radiation therapy (RT) for left-sided breast cancer has been associated with cardiac dysfunction. We herein assess the temporal nature and volume dependence of RT-induced left ventricular perfusion defects and whether these perfusion defects are related to changes in cardiac wall motion or alterations in ejection fraction. Methods: From 1998 to 2001, 114 patients were enrolled onto an IRB-approved prospective clinical study to assess changes in regional and global cardiac function after RT for left-sided breast cancer. Patients were imaged 30 to 60 minutes after injection of technetium 99m sestamibi or tetrofosmin. Post-RT perfusion scans were compared with the pre-RT studies to assess for RT-induced perfusion defects as well as functional changes in wall motion and ejection fraction. Two-tailed Fisher's exact test and the Cochran-Armitage test for linear trends were used for statistical analysis. Results: The incidence of new perfusion defects 6, 12, 18, and 24 months after RT was 27%, 29%, 38%, and 42%, respectively. New defects occurred in approximately 10% to 20% and 50% to 60% of patients with less than 5%, and greater than 5%, of their left ventricle included within the RT fields, respectively (p = 0.33 to 0.00008). The rates of wall motion abnormalities in patients with and without perfusion defects were 12% to 40% versus 0% to 9%, respectively; p values were 0.007 to 0.16, depending on the post-RT interval. Conclusions: Radiation therapy causes volume-dependent perfusion defects in approximately 40% of patients within 2 years of RT. These perfusion defects are associated with corresponding wall-motion abnormalities. Additional study is necessary to better define the long-term functional consequences of RT-induced perfusion defects

  12. Right and left ventricular cardiac function in a developed world population with human immunodeficiency virus studied with radionuclide ventriculography

    DEFF Research Database (Denmark)

    Lebech, Anne-Mette; Gerstoft, Jan; Hesse, Birger

    2004-01-01

    . No correlations were found between reduced cardiac function and levels of the 3 peptides measured. CONCLUSIONS: No major dysfunction of the left ventricle is present in a developed world HIV population. However, a small but significant part of this population has modestly reduced right-sided systolic function.......-associated morbidity and mortality rates. Accordingly, the prevalence of HIV-associated cardiac dysfunction may also have changed. The aim of the study was to establish the prevalence of right- and left-sided cardiac dysfunction in a Danish HIV population, most of whom were undergoing HAART, with radionuclide...... ventricular ejection fraction and 6 (7%) had a reduced right ventricle ejection fraction (0.35-0.42) compared with reference values from the age- and sex-matched reference population. Patients with HIV and reduced cardiac function did not differ in the duration of HIV, CD4 count, CD4 nadir, or HIV RNA load...

  13. Cardiac structure and function and dependency in the oldest old.

    Science.gov (United States)

    Leibowitz, David; Jacobs, Jeremy M; Stessman-Lande, Irit; Cohen, Aharon; Gilon, Dan; Ein-Mor, Eliana; Stessman, Jochanan

    2011-08-01

    To examine the association between cardiac function and activities of daily living (ADLs) in an age-homogenous, community-dwelling population born in 1920 and 1921. Cross-sectional analysis of a prospective cohort study. Community-dwelling elderly population. Participants were recruited from the Jerusalem Longitudinal Cohort Study, which has followed an age-homogenous cohort of Jerusalem residents born in 1920 and 1921. Four hundred eighty-nine of the participants (228 male, 261 female) from the most recent set of data collection in 2005 and 2006 underwent echocardiography at their place of residence in addition to structured interviews and physical examination. A home-based comprehensive assessment was performed to assess health and functional status, including performance of ADLs. Dependence was defined as needing assistance with one or more basic ADLs. Standard echocardiographic assessment of cardiac structure and function, including ejection fraction (EF) and diastolic function as assessed using early diastolic mitral annular tissue velocity measurements obtained using tissue Doppler, was performed. Of the participants with limitation in at least one ADL, significantly more had low EF (dependence in ADL had higher left ventricular mass index (LVMI) (129.3 vs 119.7 g/m²) and left atrial volume index (LAVI) (41.3 vs 36.7 mL/m²). There were no differences between the groups in percentage of participants with impaired diastolic function or average ratio of early diastolic transmitral flow velocity to early diastolic mitral annular tissue velocity (11.5 vs 11.8; P=.64). In this age-homogenous cohort of the oldest old, high LVMI and LAVI and indices of systolic but not diastolic function as assessed according to Doppler were associated with limitations in ADLs. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  14. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    Science.gov (United States)

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac

  15. Nuclear cardiac

    International Nuclear Information System (INIS)

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques

  16. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  17. Evaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics

    International Nuclear Information System (INIS)

    Matsuo, Shinro; Nakajima, Kenichi; Kinuya, Seigo

    2013-01-01

    Mitochondria play an important role in energy production for the cell. The proper function of a myocardial cell largely depends on the functional capacity of the mitochondria. Therefore it is necessary to establish a novel and reliable method for a non-invasive assessment of mitochondrial function and metabolism in humans. Although originally designed for evaluating myocardial perfusion, 99m Tc-MIBI can be also used to evaluate cardiac mitochondrial function. In a clinical study on ischemic heart disease, reverse redistribution of 99m Tc-MIBI was evident after direct percutaneous transluminal coronary angioplasty. The presence of increased washout of 99m Tc-MIBI was associated with the infarct-related artery and preserved left ventricular function. In non-ischemic cardiomyopathy, an increased washout rate of 99m Tc-MIBI, which correlated inversely with left ventricular ejection fraction, was observed in patients with congestive heart failure. Increased 99m Tc-MIBI washout was also observed in mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and in doxorubicin-induced cardiomyopathy. Noninvasive assessment of cardiac mitochondrial function could be greatly beneficial in monitoring possible cardiotoxic drug use and in the evaluation of cardiac damage in clinical medicine

  18. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  19. Association of Weight and Body Composition on Cardiac Structure and Function in the ARIC Study (Atherosclerosis Risk in Communities).

    Science.gov (United States)

    Bello, Natalie A; Cheng, Susan; Claggett, Brian; Shah, Amil M; Ndumele, Chiadi E; Roca, Gabriela Querejeta; Santos, Angela B S; Gupta, Deepak; Vardeny, Orly; Aguilar, David; Folsom, Aaron R; Butler, Kenneth R; Kitzman, Dalane W; Coresh, Josef; Solomon, Scott D

    2016-08-01

    Obesity increases cardiovascular risk. However, the extent to which various measures of body composition are associated with abnormalities in cardiac structure and function, independent of comorbidities commonly affecting obese individuals, is not clear. This study sought to examine the relationship between body mass index, waist circumference, and percent body fat with conventional and advanced measures of cardiac structure and function. We studied 4343 participants of the ARIC study (Atherosclerosis Risk in Communities) who were aged 69 to 82 years, free of coronary heart disease and heart failure, and underwent comprehensive echocardiography. Increasing body mass index, waist circumference, and body fat were associated with greater left ventricular (LV) mass and left atrial volume indexed to height(2.7) in both men and women (Pheart disease or heart failure, obesity was associated with subclinical abnormalities in cardiac structure in both men and women and with adverse LV remodeling and impaired LV systolic function in women. These data highlight the association of obesity and subclinical abnormalities of cardiac structure and function, particularly in women. © 2016 American Heart Association, Inc.

  20. Improvement in cardiac function and free fatty acid metabolism in a case of dilated cardiomyopathy with CD36 deficiency.

    Science.gov (United States)

    Hirooka, K; Yasumura, Y; Ishida, Y; Komamura, K; Hanatani, A; Nakatani, S; Yamagishi, M; Miyatake, K

    2000-09-01

    A 27-year-old man diagnosed as having dilated cardiomyopathy (DCM) without myocardial accumulation of 123I-beta-methyl-iodophenylpentadecanoic acid, and he was found to have type I CD36 deficiency. This abnormality of cardiac free fatty acid metabolism was also confirmed by other methods: 18F-fluoro-2-deoxyglucose positron emission tomography, measurements of myocardial respiratory quotient and cardiac fatty acid uptake. Although the type I CD36 deficiency was reconfirmed after 3 months, the abnormal free fatty acid metabolism improved after carvedilol therapy and was accompanied by improved cardiac function. Apart from a cause-and-effect relationship, carvedilol can improve cardiac function and increase free fatty acid metabolism in patients with both DCM and CD36 deficiency.

  1. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    Science.gov (United States)

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  2. Effect of Roux-en-Y gastric bypass surgery on ventricular function and cardiac risk factors in obese patients: a systematic review

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi Moghaddam

    2016-03-01

    Full Text Available Introduction: Weight gain and obesity are two important public health problems, which are associated with many diseases such as cardiovascular disorders. Various policies such as bariatric surgery have been proposed for the treatment of morbid obesity. Methods: PubMed and Scopus were searched thoroughly with the following search terms (roux-en-y gastric bypass surgery AND (ventricular function, OR cardiac risk factors OR heart AND (BMI OR body mass index to find the articles in which the effect of roux-en-Y gastric bypass (RYGB surgery had been evaluated in severely obese patients.Result: Out of 120 articles which were found in PubMed, and 28 records which were found in Scopus, only 18 articles fully met the inclusion criteria. Out of 2740 participants in the included studied, 1706 were patients with body mass index (BMI over 40 kg/m2 who had undergone RYGB surgery, and 1034 were control participants. Results of the studies showed that RYGB surgery could reduce BMI, and cardiac risk factors, and improve diastolic function, systolic and diastolic blood pressures, and aortic function, postoperatively.Discussion: Obesity is associated with increased risk of cardiovascular diseases, impaired cardiac function, and hypertension. It is shown that RYGB surgery reduces the serum level of biochemical markers of cardiac diseases. Cardiac structure, parasympathetic indices of autonomic function, coronary circulatory function, hypertension, epicardial fat thickness, and ventricular performance improve after bariatric surgery.Conclusions: It is concluded that RYGB surgery is an effective strategy to improve ventricular function and cardiac risk factors in morbid obese patients.

  3. Cardiac function in survivors of childhood acute myeloid leukemia treated with chemotherapy only

    DEFF Research Database (Denmark)

    Jarfelt, Marianne; Andersen, Niels Holmark; Glosli, Heidi

    2015-01-01

    OBJECTIVES: We report cardiac function of patients treated for Childhood acute myeloid leukemia with chemotherapy only according to three consecutive Nordic protocols. METHODS: Ninety-eight of 138 eligible patients accepted examination with standardized echocardiography. Results were compared...

  4. Asymptomatic Changes in Cardiac Function Can Occur in DCIS Patients Following Treatment with HER-2/neu Pulsed Dendritic Cell Vaccines

    Science.gov (United States)

    Bahl, Susan; Roses, Robert; Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Weinstein, Susan; Nisenbaum, Harvey; Fox, Kevin; Pasha, Theresa; Zhang, Paul; Araujo, Louis; Carver, Joseph; Czerniecki, Brian J

    2009-01-01

    Background Targeting HER-2/neu with Trastuzumab has been associated with development of cardiac toxicity. Methods Twenty-seven patients with ductal carcinoma in situ (DCIS) of the breast completed an IRB approved clinical trial of a HER-2/neu targeted dendritic cell based vaccine. Four weekly vaccinations were administered prior to surgical resection. All subjects underwent pre- and post-vaccine cardiac monitoring by MUGA/ECHO scanning allowing for a comparison of cardiac function. Results In 3 of 27 vaccinated patients (11%) transient asymptomatic decrements in ejection fraction of greater than 15% were noted after vaccination. Notably, evidence of circulating anti-HER-2/neu antibody was found prior to vaccination in all three patients, but cardiac toxicity was not noted until induction of cellular mediated immune responses. Conclusions This is the first description of HER-2/neu targeted vaccination associated with an incidence of cardiac changes, and the induction of cellular immune responses combined with antibody may contribute to changes in cardiac function. PMID:19800453

  5. Directed evolution and targeted mutagenesis to murinize Listeria monocytogenes Internalin A for enhanced infectivity in the murine oral infection model

    LENUS (Irish Health Repository)

    Monk, Ian R

    2010-12-13

    Abstract Background Internalin A (InlA) is a critical virulence factor which mediates the initiation of Listeria monocytogenes infection by the oral route in permissive hosts. The interaction of InlA with the host cell ligand E-cadherin efficiently stimulates L. monocytogenes entry into human enterocytes, but has only a limited interaction with murine cells. Results We have created a surface display library of randomly mutated InlA in a non-invasive heterologous host Lactococcus lactis in order to create and screen novel variants of this invasion factor. After sequential passage through a murine cell line (CT-26), multiple clones with enhanced invasion characteristics were identified. Competitive index experiments were conducted in mice using selected mutations introduced into L. monocytogenes EGD-e background. A novel single amino acid change was identified which enhanced virulence by the oral route in the murine model and will form the basis of further engineering approaches. As a control a previously described EGD-InlAm murinized strain was also re-created as part of this study with minor modifications and designated EGD-e InlA m*. The strain was created using a procedure that minimizes the likelihood of secondary mutations and incorporates Listeria-optimized codons encoding the altered amino acids. L. monocytogenes EGD-e InlA m* yielded consistently higher level murine infections by the oral route when compared to EGD-e, but did not display the two-fold increased invasion into a human cell line that was previously described for the EGD-InlAm strain. Conclusions We have used both site-directed mutagenesis and directed evolution to create variants of InlA which may inform future structure-function analyses of this protein. During the course of the study we engineered a murinized strain of L. monocytogenes EGD-e which shows reproducibly higher infectivity in the intragastric murine infection model than the wild type, but does not display enhanced entry into human

  6. Directed evolution and targeted mutagenesis to murinize listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model

    Directory of Open Access Journals (Sweden)

    Hill Colin

    2010-12-01

    Full Text Available Abstract Background Internalin A (InlA is a critical virulence factor which mediates the initiation of Listeria monocytogenes infection by the oral route in permissive hosts. The interaction of InlA with the host cell ligand E-cadherin efficiently stimulates L. monocytogenes entry into human enterocytes, but has only a limited interaction with murine cells. Results We have created a surface display library of randomly mutated InlA in a non-invasive heterologous host Lactococcus lactis in order to create and screen novel variants of this invasion factor. After sequential passage through a murine cell line (CT-26, multiple clones with enhanced invasion characteristics were identified. Competitive index experiments were conducted in mice using selected mutations introduced into L. monocytogenes EGD-e background. A novel single amino acid change was identified which enhanced virulence by the oral route in the murine model and will form the basis of further engineering approaches. As a control a previously described EGD-InlAm murinized strain was also re-created as part of this study with minor modifications and designated EGD-e InlAm*. The strain was created using a procedure that minimizes the likelihood of secondary mutations and incorporates Listeria-optimized codons encoding the altered amino acids. L. monocytogenes EGD-e InlAm* yielded consistently higher level murine infections by the oral route when compared to EGD-e, but did not display the two-fold increased invasion into a human cell line that was previously described for the EGD-InlAm strain. Conclusions We have used both site-directed mutagenesis and directed evolution to create variants of InlA which may inform future structure-function analyses of this protein. During the course of the study we engineered a murinized strain of L. monocytogenes EGD-e which shows reproducibly higher infectivity in the intragastric murine infection model than the wild type, but does not display enhanced

  7. Adaptive responses of cardiac function to fetal postural change as gestational age increases

    Science.gov (United States)

    Kim, Woo Jin; Choi, Hye Jin; Yang, Sun Young; Koo, Boo Hae; Ahn, Ki Hoon; Hong, Soon Cheol; Oh, Min-Jeong; Kim, Hai-Joong

    2016-01-01

    Objective The cardiovascular system maintains homeostasis through a series of adaptive responses to physiological requirements. However, little is known about the adaptation of fetal cardiac function to gravity, according to gestational age. In the present study, we aimed to evaluate the adaptive responses of cardiac function to postural changes, using Tei index measurements. Methods Fetal echocardiography and Doppler examination were performed on 114 women with vertex singleton pregnancies at 19 to 40 weeks' gestation. Participants were placed in an upright seated position, and the Tei index for fetal left ventricular cardiac function was measured. The women were then moved into a supine position and the Tei index was re-measured. Results The mean Tei index when measured in an upright seated position was significantly lower than that measured in a supine positioning for all fetuses (0.528±0.103 vs. 0.555±0.106, P=0.014, respectively). This difference was also noted in fetuses with a gestational age of 28–40 weeks (0.539±0.107 vs. 0.574±0.102, P=0.011, respectively). However, there was no difference in the Tei index between an upright seated and a supine position among fetuses with a gestational age of Postural changes from an upright seated to a supine position result in an increased Tei index after a gestational age of 28 weeks. This appears to reflect maturation in the adaptive responses of the fetal cardiovascular system to postural changes. PMID:27896244

  8. Usefulness of true FISP cine MR imaging in patients with poor cardiac function

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Toshiharu; Yamada, Naoaki; Motooka, Makoto; Enomoto, Naoyuki; Maeshima, Isamu; Matsuda, Kazuhide; Urayama, Shinichi; Ikeo, Miki [National Cardiovascular Center, Suita, Osaka (Japan)

    2002-01-01

    This study was done to assess the value of True FISP cine in patients with poor cardiac function. True FISP cine and FLASH cine imaging were performed on a 1.5 T machine. Both short axis and horizontal long axis imaging sections were used. The imaging sections used a Matrix (120 x 128), FOV (24 x 32 cm), and had a slice thickness of 8 mm. The imaging time for True FISP cine was 8 heart beats and 17 heart beats for FLASH cine. The contrast-to-noise ratio between the blood and myocardium (CNR) was measured at enddiastole and endsystole. The subjects in the study were 10 healty volunteers (average age 26.5{+-}3.2 years) and 12 patients with hypofunction (average age 53.9{+-}13.2 years). In the volunteers, the CNR of the short axis imaging was similar in both True FISP (24.6{+-}3.7) and FLASH (23.4{+-}5.9). In the patients with poor cardiac function however, the CNR of True FISP was larger than FLASH in both the short and long axis. In the short axis (22.7{+-}6.1 vs. 17.9{+-}5.3, P<0.01) and in the long axis (17.4{+-}4.3 vs. 9.3{+-}4.0, P<0.01). We conclude that True FISP cine has a higher contrast in a shorter imaging time than FLASH cine. True FISP cine is especially useful in patients with poor cardiac function. (author)

  9. Effect of milrinone on the cardiac function and N-terminal pro-brain natriuretic peptide levels in patients with senile refractory heart failure

    Directory of Open Access Journals (Sweden)

    Jiao-Na Wei1

    2017-06-01

    Full Text Available Objective: To study the effect of milrinone on the cardiac function and N-terminal probrain natriuretic peptide (NT-proBNP levels in patients with senile refractory heart failure. Methods: 90 patients with senile refractory heart failure who were treated in our hospital between August 2013 and August 2016 were collected and divided into control group (n=45 and observation group (n=45 according to the random number table. The control group received regular clinical treatment, and the observation group received regular + milrinone treatment. The cardiac function and serum NT-proBN contents were compared between two groups of patients before and after treatment. Results: Before treatment, the differences in ultrasound and serum cardiac function indexes and serum NT-proBN levels were not statistically significant between two groups of patients. After treatment, ultrasound serum cardiac function parameter LVEDD level in observation group was lower than that in control group while CI and SV levels were higher than those in control group; serum cardiac function indexes Cys-C, GDF-15, sST2 and H-FABP contents were lower than those in control group; serum NT-proBNP content was lower than that in control group. Conclusion: Milrinone therapy can optimize the cardiac function and reduce the serum NT-proBN levels in patients with senile refractory heart failure.

  10. Hyperpolarized metabolic MR in the study of cardiac function and disease

    DEFF Research Database (Denmark)

    Lauritzen, M. H.; Søgaard, L. V.; Madsen, Pia Lisbeth

    2014-01-01

    Several diseases of the heart have been linked to an insufficient ability to generate enough energy (ATP) to sustain proper heart function. Hyperpolarized magnetic resonance (MR) is a novel technique that can visualize and quantify myocardial energy metabolism. Hyperpolarization enhances the MR...... signal from a biological molecule of interest by more than 10,000 times, making it possible to measure its cellular uptake and conversion in specific enzymatic pathways in real time. We review the role of hyperpolarized MR in identifying changes in cardiac metabolism in vivo, and present the extensive...... literature on hyperpolarized pyruvate that has been used to characterize cardiac disease in various in vivo models, such as myocardial ischemia, hypertension, diabetes, hyperthyroidism and heart failure. The technical aspects of the technique are presented as well as the challenges of translating...

  11. Cognitive function in survivors of out-of-hospital cardiac arrest after target temperature management at 33°C versus 36°C

    DEFF Research Database (Denmark)

    Lilja, Gisela; Nielsen, Niklas; Friberg, Hans

    2015-01-01

    assessed with tests for memory (Rivermead Behavioural Memory Test), executive functions (Frontal Assessment Battery), and attention/mental speed (Symbol Digit Modalities Test). A control group of 119 matched patients hospitalized for acute ST-segment-elevation myocardial infarction without cardiac arrest...... was more affected among cardiac arrest patients, but results for memory and executive functioning were similar. CONCLUSIONS: Cognitive function was comparable in survivors of out-of-hospital cardiac arrest when a temperature of 33°C and 36°C was targeted. Cognitive impairment detected in cardiac arrest...... performed the same assessments. Half of the cardiac arrest survivors had cognitive impairment, which was mostly mild. Cognitive outcome did not differ (P>0.30) between the 2 temperature groups (33°C/36°C). Compared with control subjects with ST-segment-elevation myocardial infarction, attention/mental speed...

  12. Supplementary Administration of Everolimus Reduces Cardiac Systolic Function in Kidney Transplant Recipients.

    Science.gov (United States)

    Tsujimura, Kazuma; Ota, Morihito; Chinen, Kiyoshi; Nagayama, Kiyomitsu; Oroku, Masato; Nishihira, Morikuni; Shiohira, Yoshiki; Abe, Masami; Iseki, Kunitoshi; Ishida, Hideki; Tanabe, Kazunari

    2017-05-26

    BACKGROUND The effect of everolimus, one of the mammalian targets of rapamycin inhibitors, on cardiac function was evaluated in kidney transplant recipients. MATERIAL AND METHODS Seventy-six participants who underwent kidney transplant between March 2009 and May 2016 were retrospectively reviewed. To standardize everolimus administration, the following criteria were used: (1) the recipient did not have a donor-specific antigen before kidney transplantation; (2) the recipient did not have proteinuria and uncontrollable hyperlipidemia after kidney transplantation; and (3) acute rejection was not observed on protocol biopsy 3 months after kidney transplantation. According to these criteria, everolimus administration for maintenance immunosuppression after kidney transplantation was included. Cardiac function was compared between the treatment group (n=30) and non-treatment group (n=46). RESULTS The mean observation periods of the treatment and non-treatment groups were 41.3±12.6 and 43.9±19.8 months, respectively (p=0.573). The mean ejection fraction and fractional shortening of the treatment and non-treatment groups after kidney transplant were 66.5±7.9% vs. 69.6±5.5% (p=0.024) and 37.1±6.2% vs. 39.3±4.7% (p=0.045), respectively. In the treatment group, the mean ejection fraction and fractional shortening before and after kidney transplantation did not differ significantly (p=0.604 and 0.606, respectively). In the non-treatment group, the mean ejection fraction and fractional shortening before and after kidney transplantation differed significantly (p=0.004 and 0.006, respectively). CONCLUSIONS Supplementary administration of everolimus after kidney transplantation can reduce cardiac systolic function.

  13. Relationship between cardiac function and resting cerebral blood flow

    DEFF Research Database (Denmark)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja

    2014-01-01

    ) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P...... = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed...

  14. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    International Nuclear Information System (INIS)

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J.

    1990-01-01

    Sites of uptake, storage, and metabolism of [ 18 F]fluorodopamine and excretion of [ 18 F]fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of [ 18 F]-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of [ 18 F]fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function

  15. Functional capacity and mental state of patients undergoing cardiac surgery

    Directory of Open Access Journals (Sweden)

    Bruna Corrêa

    Full Text Available Abstract Introduction: Cardiovascular diseases are a serious public health problem in Brazil. Myocardial revascularization surgery (MRS as well as cardiac valve replacement and repair are procedures indicated to treat them. Thus, extracorporeal circulation (ECC is still widely used in these surgeries, in which patients with long ECC times may have greater neurological deficits. Neurological damage resulting from MRS can have devastating consequences such as loss of independence and worsening of quality of life. Objective: To assess the effect of cardiac surgery on a patient’s mental state and functional capacity in both the pre- and postoperative periods. Methods: We conducted a cross-sectional study with convenience sampling of subjects undergoing MRS and valve replacement. Participants were administered the Mini-Mental State Exam (MMSE and the Duke Activity Status Index (DASI in the pre- and postoperative periods, as well as before their hospital discharge. Results: This study assessed nine patients (eight males aged 62.4 ± 6.3 years with a BMI of 29.5 ± 2.3 kg/m2. There was a significant decrease in DASI scores and VO2 from preoperative to postoperative status (p = 0.003 and p = 0.003, respectively. Conclusion: This study revealed a loss of cognitive and exercise capacity after cardiac surgery. A larger sample however is needed to consolidate these findings.

  16. Highly-accelerated self-gated free-breathing 3D cardiac cine MRI: validation in assessment of left ventricular function.

    Science.gov (United States)

    Liu, Jing; Feng, Li; Shen, Hsin-Wei; Zhu, Chengcheng; Wang, Yan; Mukai, Kanae; Brooks, Gabriel C; Ordovas, Karen; Saloner, David

    2017-08-01

    This work presents a highly-accelerated, self-gated, free-breathing 3D cardiac cine MRI method for cardiac function assessment. A golden-ratio profile based variable-density, pseudo-random, Cartesian undersampling scheme was implemented for continuous 3D data acquisition. Respiratory self-gating was achieved by deriving motion signal from the acquired MRI data. A multi-coil compressed sensing technique was employed to reconstruct 4D images (3D+time). 3D cardiac cine imaging with self-gating was compared to bellows gating and the clinical standard breath-held 2D cine imaging for evaluation of self-gating accuracy, image quality, and cardiac function in eight volunteers. Reproducibility of 3D imaging was assessed. Self-gated 3D imaging provided an image quality score of 3.4 ± 0.7 vs 4.0 ± 0 with the 2D method (p = 0.06). It determined left ventricular end-systolic volume as 42.4 ± 11.5 mL, end-diastolic volume as 111.1 ± 24.7 mL, and ejection fraction as 62.0 ± 3.1%, which were comparable to the 2D method, with bias ± 1.96 × SD of -0.8 ± 7.5 mL (p = 0.90), 2.6 ± 3.3 mL (p = 0.84) and 1.4 ± 6.4% (p = 0.45), respectively. The proposed 3D cardiac cine imaging method enables reliable respiratory self-gating performance with good reproducibility, and provides comparable image quality and functional measurements to 2D imaging, suggesting that self-gated, free-breathing 3D cardiac cine MRI framework is promising for improved patient comfort and cardiac MRI scan efficiency.

  17. Acute cardiac support with intravenous milrinone promotes recovery from early brain injury in a murine model of severe subarachnoid haemorrhage.

    Science.gov (United States)

    Mutoh, Tomoko; Mutoh, Tatsushi; Nakamura, Kazuhiro; Yamamoto, Yukiko; Tsuru, Yoshiharu; Tsubone, Hirokazu; Ishikawa, Tatsuya; Taki, Yasuyuki

    2017-04-01

    Early brain injury/ischaemia (EBI) is a serious complication early after subarachnoid haemorrhage (SAH) that contributes to development of delayed cerebral ischaemia (DCI). This study aimed to determine the role of inotropic cardiac support using milrinone (MIL) on restoring acute cerebral hypoperfusion attributable to EBI and improving outcomes after experimental SAH. Forty-three male C57BL/6 mice were assigned to either sham surgery (SAH-sham), SAH induced by endovascular perforation plus postconditioning with 2% isoflurane (Control), or SAH plus isoflurane combined with MIL with and without hypoxia-inducible factor inhibitor (HIF-I) pretreatment. Cardiac output (CO) during intravenous MIL infusion (0.25-0.75 μg/kg/min) between 1.5 and 2.5 hours after SAH induction was monitored with Doppler echocardiography. Magnetic resonance imaging (MRI)-continuous arterial spin labelling was used for quantitative cerebral blood flow (CBF) measurements. Neurobehavioral function was assessed daily by neurological score and open field test. DCI was analyzed 3 days later by determining infarction on MRI. Mild reduction of cardiac output (CO) and global cerebral blood flow (CBF) depression were notable early after SAH. MIL increased CO in a dose-dependent manner (P<.001), which was accompanied by improved hypoperfusion, incidence of DCI and functional recovery than Control (P<.05). The neuroprotective effects afforded by MIL or Control were attenuated by hypoxia-inducible factor (HIF) inhibition (P<.05). These results suggest that MIL improves acute hypoperfusion by its inotropic effect, leading to neurobehavioral improvement in mice after severe SAH, in which HIF may be acting as a critical mediator. © 2017 John Wiley & Sons Australia, Ltd.

  18. Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study

    Directory of Open Access Journals (Sweden)

    Hermans Mieke CE

    2012-07-01

    Full Text Available Abstract Background Myotonic dystrophy type 1 (MD1 is a neuromuscular disorder with potential involvement of the heart and increased risk of sudden death. Considering the importance of cardiomyopathy as a predictor of prognosis, we aimed to systematically evaluate and describe structural and functional cardiac alterations in patients with MD1. Methods Eighty MD1 patients underwent physical examination, electrocardiography (ECG, echocardiography and cardiovascular magnetic resonance (CMR. Blood samples were taken for determination of NT-proBNP plasma levels and CTG repeat length. Results Functional and structural abnormalities were detected in 35 patients (44%. Left ventricular systolic dysfunction was found in 20 cases, left ventricular dilatation in 7 patients, and left ventricular hypertrophy in 6 patients. Myocardial fibrosis was seen in 10 patients (12.5%. In general, patients had low left ventricular mass indexes. Right ventricular involvement was uncommon and only seen together with left ventricular abnormalities. Functional or structural cardiac involvement was associated with age (p = 0.04, male gender (p Conclusions CMR can be useful to detect early structural and functional myocardial abnormalities in patients with MD1. Myocardial involvement is strongly associated with conduction abnormalities, but a normal ECG does not exclude myocardial alterations. These findings lend support to the hypothesis that MD1 patients have a complex cardiac phenotype, including both myocardial and conduction system alteration.

  19. Pulmonary function and health-related quality of life 1-year follow up after cardiac surgery.

    Science.gov (United States)

    Westerdahl, Elisabeth; Jonsson, Marcus; Emtner, Margareta

    2016-07-08

    Pulmonary function is severely reduced in the early period after cardiac surgery, and impairments have been described up to 4-6 months after surgery. Evaluation of pulmonary function in a longer perspective is lacking. In this prospective study pulmonary function and health-related quality of life were investigated 1 year after cardiac surgery. Pulmonary function measurements, health-related quality of life (SF-36), dyspnoea, subjective breathing and coughing ability and pain were evaluated before and 1 year after surgery in 150 patients undergoing coronary artery bypass grafting, valve surgery or combined surgery. One year after surgery the forced vital capacity and forced expiratory volume in 1 s were significantly decreased (by 4-5 %) compared to preoperative values (p < 0.05). Saturation of peripheral oxygen was unchanged 1 year postoperatively compared to baseline. A significantly improved health-related quality of life was found 1 year after surgery, with improvements in all eight aspects of SF-36 (p < 0.001). Sternotomy-related pain was low 1 year postoperatively at rest (median 0 [min-max; 0-7]), while taking a deep breath (0 [0-4]) and while coughing (0 [0-8]). A more pronounced decrease in pulmonary function was associated with dyspnoea limitations and impaired subjective breathing and coughing ability. One year after cardiac surgery static and dynamic lung function measurements were slightly decreased, while health-related quality of life was improved in comparison to preoperative values. Measured levels of pain were low and saturation of peripheral oxygen was same as preoperatively.

  20. Changes of cardiac function in hyperthyroidism and hypothyroidism

    International Nuclear Information System (INIS)

    Morishita, Takeshi; Kawamura, Yasuaki; Yamazaki, Junichi; Okuzumi, Ichio; Muto, Toshinori; Wakakura, Manabu; Okamoto, Kiyoshi; Irie, Minoru; Inoue, Kazuko.

    1988-01-01

    Changes of cardiac parameters in patients with 21 hyperthyroidisms and 11 primary hypothyroidisms were studied administered by methimazole or 1-thyroxine using radionuclide method. In hyperthyroidisms, cardiac parameter (CI, EF, PEP/LVET, PEP) normalized 4 - 6 week delayed compared with hormonal level (T 3 , T 4 ) recovery period. On the other hand, in hypothyroidism PEP/LVET delayed about 2 weeks compared with hormonal level, however, other cardiac parameters were maintained within normal level, relatively. Correlation between T 3 and LVET was significant statistically (r = -0.59, p 3 and PEP was significant (r = -0.60, p < 0.01) in hypothyroidisms, respectively. (author)

  1. Single Amino Acid Insertion in Loop 4 Confers Amphotropic Murine Leukemia Virus Receptor Function upon Murine Pit1

    DEFF Research Database (Denmark)

    Lundorf, Mikkel D.; Pedersen, Finn Skou; O'Hara, Bryan

    1998-01-01

    Pit1 is the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related human protein Pit2 is a receptor for amphotropic murine leukemia virus (A-MuLV). The A-MuLV-related isolate 10A1 can utilize both Pit1 and Pit2 as receptors. A stretch...

  2. Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2018-01-01

    Full Text Available How chromatin-remodeling complexes modulate gene networks to control organ-specific properties is not well understood. For example, Baf60c (Smarcd3 encodes a cardiac-enriched subunit of the SWI/SNF-like BAF chromatin complex, but its role in heart development is not fully understood. We found that constitutive loss of Baf60c leads to embryonic cardiac hypoplasia and pronounced cardiac dysfunction. Conditional deletion of Baf60c in cardiomyocytes resulted in postnatal dilated cardiomyopathy with impaired contractile function. Baf60c regulates a gene expression program that includes genes encoding contractile proteins, modulators of sarcomere function, and cardiac metabolic genes. Many of the genes deregulated in Baf60c null embryos are targets of the MEF2/SRF co-factor Myocardin (MYOCD. In a yeast two-hybrid screen, we identified MYOCD as a BAF60c interacting factor; we showed that BAF60c and MYOCD directly and functionally interact. We conclude that Baf60c is essential for coordinating a program of gene expression that regulates the fundamental functional properties of cardiomyocytes.

  3. Effects of a Structured Discharge Planning Program on Perceived Functional Status, Cardiac Self-efficacy, Patient Satisfaction, and Unexpected Hospital Revisits Among Filipino Cardiac Patients: A Randomized Controlled Study.

    Science.gov (United States)

    Cajanding, Ruff Joseph

    Cardiovascular diseases remain the leading cause of morbidity and mortality among Filipinos and are responsible for a very large number of hospital readmissions. Comprehensive discharge planning programs have demonstrated positive benefits among various populations of patients with cardiovascular disease, but the clinical and psychosocial effects of such intervention among Filipino patients with acute myocardial infarction (AMI) have not been studied. In this study we aimed to determine the effectiveness of a nurse-led structured discharge planning program on perceived functional status, cardiac self-efficacy, patient satisfaction, and unexpected hospital revisits among Filipino patients with AMI. A true experimental (randomized control) 2-group design with repeated measures and data collected before and after intervention and at 1-month follow-up was used in this study. Participants were assigned to either the control (n = 68) or the intervention group (n = 75). Intervention participants underwent a 3-day structured discharge planning program implemented by a cardiovascular nurse practitioner, which is comprised of a series of individualized lecture-discussion, provision of feedback, integrative problem solving, goal setting, and action planning. Control participants received standard routine care. Measures of functional status, cardiac self-efficacy, and patient satisfaction were measured at baseline; cardiac self-efficacy and patient satisfaction scores were measured prior to discharge, and perceived functional status and number of revisits were measured 1 month after discharge. Participants in the intervention group had significant improvement in functional status, cardiac self-efficacy, and patient satisfaction scores at baseline and at follow-up compared with the control participants. Furthermore, participants in the intervention group had significantly fewer hospital revisits compared with those who received only standard care. The results demonstrate that a

  4. [Experimental therapy of cardiac remodeling with quercetin-containing drugs].

    Science.gov (United States)

    Kuzmenko, M A; Pavlyuchenko, V B; Tumanovskaya, L V; Dosenko, V E; Moybenko, A A

    2013-01-01

    It was shown that continuous beta-adrenergic hyperstimulation resulted in cardiac function disturbances and fibrosis of cardiac tissue. Treatment with quercetin-containing drugs, particularly, water-soluble corvitin and tableted quertin exerted favourable effect on cardiac hemodynamics, normalized systolic and diastolic function in cardiac remodeling, induced by sustained beta-adrenergic stimulation. It was estimated that conducted experimental therapy limited cardiac fibrosis area almost three-fold, that could be associated with first and foremost improved cardiac distensibility, characteristics of diastolic and also pump function in cardiac remodeling.

  5. LRRC10 is required to maintain cardiac function in response to pressure overload.

    Science.gov (United States)

    Brody, Matthew J; Feng, Li; Grimes, Adrian C; Hacker, Timothy A; Olson, Timothy M; Kamp, Timothy J; Balijepalli, Ravi C; Lee, Youngsook

    2016-01-15

    We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10(-/-)) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10(-/-) mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10(-/-) mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10(-/-) cardiomyocytes also exhibited reduced contractility in response to β-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His(150) of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis. Copyright © 2016 the American Physiological Society.

  6. Usefulness of true FISP cine MR imaging in patients with poor cardiac function

    International Nuclear Information System (INIS)

    Sakuma, Toshiharu; Yamada, Naoaki; Motooka, Makoto; Enomoto, Naoyuki; Maeshima, Isamu; Matsuda, Kazuhide; Urayama, Shinichi; Ikeo, Miki

    2002-01-01

    This study was done to assess the value of True FISP cine in patients with poor cardiac function. True FISP cine and FLASH cine imaging were performed on a 1.5 T machine. Both short axis and horizontal long axis imaging sections were used. The imaging sections used a Matrix (120 x 128), FOV (24 x 32 cm), and had a slice thickness of 8 mm. The imaging time for True FISP cine was 8 heart beats and 17 heart beats for FLASH cine. The contrast-to-noise ratio between the blood and myocardium (CNR) was measured at enddiastole and endsystole. The subjects in the study were 10 healty volunteers (average age 26.5±3.2 years) and 12 patients with hypofunction (average age 53.9±13.2 years). In the volunteers, the CNR of the short axis imaging was similar in both True FISP (24.6±3.7) and FLASH (23.4±5.9). In the patients with poor cardiac function however, the CNR of True FISP was larger than FLASH in both the short and long axis. In the short axis (22.7±6.1 vs. 17.9±5.3, P<0.01) and in the long axis (17.4±4.3 vs. 9.3±4.0, P<0.01). We conclude that True FISP cine has a higher contrast in a shorter imaging time than FLASH cine. True FISP cine is especially useful in patients with poor cardiac function. (author)

  7. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    Science.gov (United States)

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  8. Long-lasting functional disabilities in patients who recover from coma after cardiac operations.

    Science.gov (United States)

    Rodriguez, Rosendo A; Nair, Shona; Bussière, Miguel; Nathan, Howard J

    2013-03-01

    Uncertainty regarding the long-term functional outcome of patients who awaken from coma after cardiac operations is difficult for families and physicians and may delay rehabilitation. We studied the long-term functional status of these patients to determine if duration of coma predicted outcome. We followed 71 patients who underwent cardiac operations; recovered their ability to respond to verbal commands after coma associated with postoperative stroke, encephalopathy, and/or seizures; and were discharged from the hospital. The Glasgow Outcome Scale Extended (GOSE) was used to assess functional disability 2 to 4 years after discharge. Outcomes were classified as favorable (GOSE scores 7 and 8) and unfavorable (GOSE scores 1-6). Of 71 patients identified, 39 were interviewed, 15 died, 1 refused to be interviewed, and 16 were lost to follow-up. Of the 54 patients with completed GOSE evaluations, only 15 (28%) had favorable outcomes. Among patients with unfavorable outcomes, 15 (28%) died, 14 (26%) survived with moderate disabilities, and 10 (18%) had severe disabilities. Factors associated with unfavorable outcomes were increases in duration of coma (p = 0.007), time in intensive care (p = 0.006), length of hospitalization (p = 0.004), and postoperative serum creatine kinase levels (p = 0.006). Only duration of coma was an independent predictor of unfavorable outcome (odds ratio [OR], 1.25; 95% confidence interval [CI], 1.008-1.537; p = 0.042). Patients with durations of coma greater than 4 days were more likely to have unfavorable outcomes (OR, 5.1; 95% CI, 1.3-21.3; p = 0.02). Two thirds of comatose patients who survived to discharge after cardiac operations had unfavorable long-term functional outcomes. A longer duration of unconsciousness is a predictor of unfavorable outcome. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    International Nuclear Information System (INIS)

    Iso, Yoshitaka; Spees, Jeffrey L.; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J.

    2007-01-01

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion

  10. Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma

    International Nuclear Information System (INIS)

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.; Steen, V.D.; Uretsky, B.F.; Owens, G.R.; Rodnan, G.P.

    1984-01-01

    To investigate cardiopulmonary function in progressive systemic sclerosis with diffuse scleroderma, we studied 26 patients with maximal exercise and redistribution thallium scans, rest and exercise radionuclide ventriculography, pulmonary-function testing, and chest roentgenography. Although only 6 patients had clinical evidence of cardiac involvement, 20 had abnormal thallium scans, including 10 with reversible exercise-induced defects and 18 with fixed defects (8 had both). Seven of the 10 patients who had exercise-induced defects and underwent cardiac catheterization had normal coronary angiograms. Mean resting left ventricular ejection fraction and mean resting right ventricular ejection fraction were lower in patients with post-exercise left ventricular thallium defect scores above the median (59 +/- 13 per cent vs. 69 +/- 6 per cent, and 36 +/- 12 per cent vs. 47 +/- 7 per cent, respectively). The authors conclude that in progressive systemic sclerosis with diffuse scleroderma, abnormalities of myocardial perfusion are common and appear to be due to a disturbance of the myocardial microcirculation. Both right and left ventricular dysfunction appear to be related to this circulatory disturbance, suggesting ischemically mediated injury

  11. Evaluation of right cardiac function with sup(81m)Kr

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tsunehiko; Uehara, Toshiisa; Hayashida, Kohei; Kotsuka, Takahiro [National Cardiovascular Center, Suita, Osaka (Japan)

    1982-10-01

    Right cardiac function was evaluated by a first-pass method of repeated rapid injections of sup(81m)Kr, and by a multigated scanning of continuous injections using a scinticamera and a computer system. Right ventricular ejection fraction (RVEF) was rather low in the ascending course of time-activity curve and rather high in the descending course by the use of rapid injection. The RVEF estimated by the rapid injection method was relatively high in ischemic heart disease; but the figure was a little changed in tricuspid insufficiency, especially in the case with high reflux, showing no effect of rapid injection. There was a good correlation between the result of rapid injection and that of the sup(99m)Tc-first-pass method. Clinically, a little increase in RVEF due to exercise was observed in a group of right coronary artery obstruction, and in all the cases of tricuspid insufficiency changes in RVEF due to exercise was in good accordance with the result of classification of severity of the disease. Accuracy in RVEF estimated by the rapid injection method was correlated with that of multi-gated scanning. In continuous observation of right cardiac function by the continuous injection method, decreased RVEF following exercise was noted in cases of inferior wall infarction with atrial fibrillation, compared with the RVEF in cases of anterior wall infarction with normal right coronary arteries.

  12. Stable xenon CT measurement of cerebral blood flow in cardiac transplantation candidates: Correlation with cognitive function

    International Nuclear Information System (INIS)

    Bello, J.A.; Fink, M.E.; Hilal, S.K.; Rose, E.A.; Reemtsma, K.

    1987-01-01

    Thirteen consecutive unselected patients with NYHA class 4 cardiac failure referred for cardiac transplantation underwent neurologic examination and cerebral blood flow measurement (rCBF) using the stable xenon enhanced CT method on a GE9800 system. Eleven men and two women were studied (mean age = 43.8 +- 6.1). On neurological examination, six of the patients demonstrated normal mental function; the remaining seven patients demonstrated memory, language, or learning impairment. There was no difference in mean cardiac output between the groups (4.9 L/min +- 1.68 vs. 4.2L/min +- 1.57). rCBF was significantly reduced in the impaired group. Cognitive impairment in patients with cardiac failure can be correlated with cerebral ischemia. Stable xenon CT measurement of rCBF in transplant candidates may help identify patients requiring more rapid transplantation to prevent permanent cerebral injury

  13. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms.

  14. Chronic resuscitation after trauma-hemorrhage and acute fluid replacement improves hepatocellular function and cardiac output.

    Science.gov (United States)

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1998-01-01

    To determine whether prolonged (chronic) resuscitation has any beneficial effects on cardiac output and hepatocellular function after trauma-hemorrhage and acute fluid replacement. Acute fluid resuscitation after trauma-hemorrhage restores but does not maintain the depressed hepatocellular function and cardiac output. Male Sprague-Dawley rats underwent a 5-cm laparotomy (i.e., trauma was induced) and were bled to and maintained at a mean arterial pressure of 40 mmHg until 40% of maximal bleed-out volume was returned in the form of Ringer's lactate (RL). The animals were acutely resuscitated with RL using 4 times the volume of maximum bleed-out over 60 minutes, followed by chronic resuscitation of 0, 5, or 10 mL/kg/hr RL for 20 hours. Hepatocellular function was determined by an in vivo indocyanine green clearance technique. Hepatic microvascular blood flow was assessed by laser Doppler flowmetry. Plasma levels of interleukin-6 (IL-6) were determined by bioassay. Chronic resuscitation with 5 mL/kg/hr RL, but not with 0 or 10 mL/kg/hr RL, restored cardiac output, hepatocellular function, and hepatic microvascular blood flow at 20 hours after hemorrhage. The regimen above also reduced plasma IL-6 levels. Because chronic resuscitation with 5 mL/kg/hr RL after trauma-hemorrhage and acute fluid replacement restored hepatocellular function and hepatic microvascular blood flow and decreased plasma levels of IL-6, we propose that chronic fluid resuscitation in addition to acute fluid replacement should be routinely used in experimental studies of trauma-hemorrhage.

  15. Heterogeneity of functional properties of Clone 66 murine breast cancer cells expressing various stem cell phenotypes.

    Science.gov (United States)

    Mukhopadhyay, Partha; Farrell, Tracy; Sharma, Gayatri; McGuire, Timothy R; O'Kane, Barbara; Sharp, J Graham

    2013-01-01

    Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous. Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis. The proportion of cells expressing CD44(high)CD24(low/neg), side population (SP) cells, ALDH1(+), CD49f(high), CD133(high), and CD34(high) differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1(+), CD34(low), and CD49f(high) suggested properties of transit amplifying cells. Colony formation was higher from ALDH1(-) and non-SP cells than ALDH1(+) and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than "non-stem" cells. Fewer SP cells were needed to form tumors than ALDH1(+) cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined. These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.

  16. PROPOSED CARDIAC STEM CELLS DERIVED FROM “CARDIOSPHERES” LACK CARDIOMYOGENIC POTENTIAL

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline

       Recent studies have reported that clinical relevant numbers of cardiac stem cells (CSCs) with cardiomyogenic potential can be obtained from small heart tissue biopsies, by an intrinsic ability of CSCs to form beating cardiospheres (CSs) during ex vivo culture. Such data have provided optimism...... that injuried heart tissue may be repaired by stem cell therapy using autologous CS derived cells, and pre-clinical studies have already been described in literature.    Herein, we established CSs from neonatal rats, and by immunofluorescence, qRT-PCR, and microscopic examination we demonstrated...... to form CSs by themselves. Phenotypically, CS cells largely resembled fibroblasts, and they lacked cardiomyogenic as well as endothelial differentiation potential.    Our data imply that at least the murine cardiosphere model seems unsuitable for enrichment of cardiac stem cells with cardiomyogenic...

  17. Effects of milrinone on left ventricular cardiac function during cooling in an intact animal model.

    Science.gov (United States)

    Tveita, Torkjel; Sieck, Gary C

    2012-08-01

    Due to adverse effects of β-receptor agonists reported when applied during hypothermia, left ventricular (LV) cardiac effects of milrinone, a PDE3 inhibitor which mode of action is deprived the sarcolemmal β-receptor-G protein-PKA system, was tested during cooling to 15 °C. Sprague Dawley rats were instrumented to measure left ventricular (LV) pressure-volume changes using a Millar pressure-volume conductance catheter. Core temperature was reduced from 37 to 15 °C (60 min) using internal and external heat exchangers. Milrinone, or saline placebo, was given as continuous i.v. infusions for 30 min at 37 °C and during cooling. In normothermic controls continuous milrinone infusion for 90 min elevated cardiac output (CO) and stroke volume (SV) significantly. Significant differences in cardiac functional variables between the milrinone group and the saline control group during cooling to 15 °C were found: Compared to saline treated animals throughout cooling from 33 to 15 °CSV was significantly elevated in milrinone animals, the index of LV isovolumic relaxation, Tau, was significantly better preserved, and both HR and CO were significantly higher from 33 to 24 °C. Likewise, during cooling between 33 and 28 °C also LVdP/dt(max) was significantly higher in the milrinone group. Milrinone preserved LV systolic and diastolic function at a significantly higher level than in saline controls during cooling to 15 °C. In essential contrast to our previous results when using β-receptor agonists during hypothermia, the present experiment demonstrates the positive inotropic effects of milrinone on LV cardiac function during cooling to 15 °C. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The naked mole-rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent.

    Science.gov (United States)

    Grimes, Kelly M; Barefield, David Y; Kumar, Mohit; McNamara, James W; Weintraub, Susan T; de Tombe, Pieter P; Sadayappan, Sakthivel; Buffenstein, Rochelle

    2017-12-01

    The long-lived, hypoxic-tolerant naked mole-rat well-maintains cardiac function over its three-decade-long lifespan and exhibits many cardiac features atypical of similar-sized laboratory rodents. For example, they exhibit low heart rates and resting cardiac contractility, yet have a large cardiac reserve. These traits are considered ecophysiological adaptations to their dank subterranean atmosphere of low oxygen and high carbon dioxide levels and may also contribute to negligible declines in cardiac function during aging. We asked if naked mole-rats had a different myofilament protein signature to that of similar-sized mice that commonly show both high heart rates and high basal cardiac contractility. Adult mouse ventricles predominantly expressed α-myosin heavy chain (97.9 ± 0.4%). In contrast, and more in keeping with humans, β myosin heavy chain was the dominant isoform (79.0 ± 2.0%) in naked mole-rat ventricles. Naked mole-rat ventricles diverged from those of both humans and mice, as they expressed both cardiac and slow skeletal isoforms of troponin I. This myofilament protein profile is more commonly observed in mice in utero and during cardiomyopathies. There were no species differences in phosphorylation of cardiac myosin binding protein-C or troponin I. Phosphorylation of both ventricular myosin light chain 2 and cardiac troponin T in naked mole-rats was approximately half that observed in mice. Myofilament function was also compared between the two species using permeabilized cardiomyocytes. Together, these data suggest a cardiac myofilament protein signature that may contribute to the naked mole-rat's suite of adaptations to its natural subterranean habitat.

  19. The effects of pleural fluid drainage on respiratory function in mechanically ventilated patients after cardiac surgery.

    Science.gov (United States)

    Brims, Fraser J H; Davies, Michael G; Elia, Andy; Griffiths, Mark J D

    2015-01-01

    Pleural effusions occur commonly after cardiac surgery and the effects of drainage on gas exchange in this population are not well established. We examined pulmonary function indices following drainage of pleural effusions in cardiac surgery patients. We performed a retrospective study examining the effects of pleural fluid drainage on the lung function indices of patients recovering from cardiac surgery requiring mechanical ventilation for more than 7 days. We specifically analysed patients who had pleural fluid removed via an intercostal tube (ICT: drain group) compared with those of a control group (no effusion, no ICT). In the drain group, 52 ICTs were sited in 45 patients. The mean (SD) volume of fluid drained was 1180 (634) mL. Indices of oxygenation were significantly worse in the drain group compared with controls prior to drainage. The arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) (P/F) ratio improved on day 1 after ICT placement (mean (SD), day 0: 31.01 (8.92) vs 37.18 (10.7); pdrain group patients were more likely to have an improved mode of ventilation on day 1 compared with controls (p=0.028). Pleural effusion after cardiac surgery may impair oxygenation. Drainage of pleural fluid is associated with a rapid and sustained improvement in oxygenation.

  20. Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.

    Science.gov (United States)

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2011-06-01

    The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P exercise after smoking (P smoking, both at rest and during exercise (P smoking (P smoking, but only at rest (P smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.

  1. Renal and cardiac function during alpha1-beta-blockade in congestive heart failure

    DEFF Research Database (Denmark)

    Heitmann, M; Davidsen, U; Stokholm, K H

    2002-01-01

    The kidney and the neurohormonal systems are essential in the pathogenesis of congestive heart failure (CHF) and the physiologic response. Routine treatment of moderate to severe CHF consists of diuretics, angiotensin-converting enzyme (ACE) inhibition and beta-blockade. The need for control...... of renal function during initiation of ACE-inhibition in patients with CHF is well known. The aim of this study was to investigate whether supplementation by a combined alpha1-beta-blockade to diuretics and ACE-inhibition might improve cardiac function without reducing renal function....

  2. Autonomic cardiac innervation

    Science.gov (United States)

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  3. Ultrasonographic assessment of maternal cardiac function and peripheral circulation during normal gestation in dogs.

    Science.gov (United States)

    Blanco, Paula G; Tórtora, Mariana; Rodríguez, Raúl; Arias, Daniel O; Gobello, Cristina

    2011-10-01

    The aim of this study was to describe changes in cardiac morphology, systolic function and some peripheral hemodynamic parameters during normal pregnancy in dogs. Twenty healthy bitches, 10 pregnant (PG) and 10 non-pregnant controls (CG), were evaluated every 10 days using echocardiography from day 0 of the estrus cycle to parturition or to day 65 for the PG and CG groups, respectively. Systolic blood pressure (SBP) and uterine artery resistance index (RI) were also assessed. Throughout the study, the shortening fraction and cardiac output increased up to 30% vs. 5% (Pdogs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Renal denervation improves cardiac function in rats with chronic heart failure: Effects on expression of β-adrenoceptors

    Science.gov (United States)

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.

    2016-01-01

    Chronic activation of the sympathetic drive contributes to cardiac remodeling and dysfunction during chronic heart failure (HF). The present study was undertaken to assess whether renal denervation (RDN) would abrogate the sympathoexcitation in HF and ameliorate the adrenergic dysfunction and cardiac damage. Ligation of the left coronary artery was used to induce HF in Sprague-Dawley rats. Four weeks after surgery, RDN was performed, 1 wk before the final measurements. At the end of the protocol, cardiac function was assessed by measuring ventricular hemodynamics. Rats with HF had an average infarct area >30% of the left ventricle and left ventricular end-diastolic pressure (LVEDP) >20 mmHg. β1- and β2-adrenoceptor proteins in the left ventricle were reduced by 37 and 49%, respectively, in the rats with HF. RDN lowered elevated levels of urinary excretion of norepinephrine and brain natriuretic peptide levels in the hearts of rats with HF. RDN also decreased LVEDP to 10 mmHg and improved basal dP/dt to within the normal range in rats with HF. RDN blunted loss of β1-adrenoceptor (by 47%) and β2-adrenoceptor (by 100%) protein expression and improved isoproterenol (0.5 μg/kg)-induced increase in +dP/dt (by 71%) and −dP/dt (by 62%) in rats with HF. RDN also attenuated the increase in collagen 1 expression in the left ventricles of rats with HF. These findings demonstrate that RDN initiated in chronic HF condition improves cardiac function mediated by adrenergic agonist and blunts β-adrenoceptor expression loss, providing mechanistic insights for RDN-induced improvements in cardiac function in the HF condition. PMID:27288440

  5. Impact of exercise rehabilitation on cardiac neuronal function in heart failure. An iodine-123 metaiodobenzylguanidine scintigraphy study

    International Nuclear Information System (INIS)

    Agostini, D.; Bouvard, G.; Lecluse, E.; Grollier, G.; Potier, J.C.; Belin, A.; Babatasi, G.; Amar, M.H.

    1998-01-01

    Exercise training can induce important haemodynamic and metabolic adaptations in patients with chronic heart failure due to severe left ventricular dysfunction. This study examined the impact of exercise rehabilitation on cardiac neuronal function using iodine-123 metaiobodenzylguanidine (MIBG) scintigraphy. Fourteen patients (11 men, 3 women; mean age 48 years; range: 36-66 years) with stable chronic heart failure of NYHA class II-III and an initial resting radionuclide left ventricular ejection fraction (LVEF) 123 I-MIBG scintigraphy provided measurements of cardiac neuronal uptake (heart-mediastinum ratio activity, 4 h after intravenous injection of 185 MBq of MIBG). Radionuclide LVEF was also assessed at the outset and after 6 months of exercise training. Workload (801±428 vs 1229±245 kpm.min -1 , P=0.001), exercise duration (504±190 vs 649±125 s, P=0.02), and myocardial MIBG uptake (135%±19% vs 156%±25%, P=0.02) increased significantly after rehabilitation. However, LVEF did not change significantly (23%±9% vs 21%±10%, p=NS). It is concluded that exercise rehabilitation induces improvement of cardiac neuronal function without having negative effects on cardiac contractility in patients with stable chronic heart failure. (orig.)

  6. Model-based imaging of cardiac electrical function in human atria

    Science.gov (United States)

    Modre, Robert; Tilg, Bernhard; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Hintringer, Florian; Roithinger, Franz

    2003-05-01

    Noninvasive imaging of electrical function in the human atria is attained by the combination of data from electrocardiographic (ECG) mapping and magnetic resonance imaging (MRI). An anatomical computer model of the individual patient is the basis for our computer-aided diagnosis of cardiac arrhythmias. Three patients suffering from Wolff-Parkinson-White syndrome, from paroxymal atrial fibrillation, and from atrial flutter underwent an electrophysiological study. After successful treatment of the cardiac arrhythmia with invasive catheter technique, pacing protocols with stimuli at several anatomical sites (coronary sinus, left and right pulmonary vein, posterior site of the right atrium, right atrial appendage) were performed. Reconstructed activation time (AT) maps were validated with catheter-based electroanatomical data, with invasively determined pacing sites, and with pacing at anatomical markers. The individual complex anatomical model of the atria of each patient in combination with a high-quality mesh optimization enables accurate AT imaging, resulting in a localization error for the estimated pacing sites within 1 cm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias.

  7. Evaluation of the diagnostic accuracy of ultra-miniaturized pocket ultrasound device on cardiac function in critically ill patients

    Directory of Open Access Journals (Sweden)

    Li WANG

    2016-09-01

    Full Text Available Objective  To compare the diagnostic accuracy of a new ultra-miniaturized pocket ultrasound device (PUD (VscanTM, GE Healthcare, Wauwatosa, WI and conventional high-quality echocardiography system (Vivid qTM, GE Healthcare for a cardiac focused ultrasonography in critical patients. Methods  The patients admitted to our hospital and receiving transthoracic echocardiography (TTE using a PUD and a conventional echocardiography system were included in this study during the 10 months from December 2013 to October 2014. Each examination was performed independently by an intensive care unit (ICU physician and an experienced ultrasound doctor, unaware of the results found by the alternative device. The following parameters were assessed: global cardiac systolic function, identification of ventricular size, whether or not accompanying enlargement or hypertrophy, assessment for the morphology of cardiac valves and its function, pericardial effusion and estimation of the inferior vena cava (IVC diameter. The time-consuming of each device were recorded. Results  One hundred and twenty-eight patients were included in the study. Their left ventricular wall motion abnormalities, global left ventricular systolic dysfunction, pericardial effusion, IVC dilation were assessed by PUD and the assessment results were highly consistent with those by Vivid q (κ>0.84. The consistency was slightly lower in evaluating the left and right ventricular size. For evaluating the cardiac valves function, the agreement of two devices were relatively low (κ=0.69-0.84. Compared with Vivid q, PUD took less time (4.7±1.4min vs 6.3±2.6min; P<0.05. Conclusion  PUD can provide fast, reliable cardiac examination, thus being an effective method for ICU physicians to assess the cardiac f unction in critical patients. DOI: 10.11855/j.issn.0577-7402.2016.08.10

  8. The Murine Factor H-Related Protein FHR-B Promotes Complement Activation

    Directory of Open Access Journals (Sweden)

    Marcell Cserhalmi

    2017-09-01

    Full Text Available Factor H-related (FHR proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH. While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3, and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.

  9. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    Science.gov (United States)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  10. The diagnostic and therapeutic aspects of loss-of-function cardiac sodium channelopathies in children

    NARCIS (Netherlands)

    Chockalingam, Priya; Clur, Sally-Ann B.; Breur, Johannes M. P. J.; Kriebel, Thomas; Paul, Thomas; Rammeloo, Lukas A.; Wilde, Arthur A. M.; Blom, Nico A.

    2012-01-01

    BACKGROUND Loss-of-function sodium channelopathies manifest as a spectrum of diseases including Brugada syndrome (BrS) and cardiac conduction disease. OBJECTIVE To analyze the diagnostic and therapeutic aspects of these disorders in children. METHODS Patients aged <= 16 years with genetically

  11. Early sepsis does not stimulate reactive oxygen species production and does not reduce cardiac function despite an increased inflammation status.

    Science.gov (United States)

    Léger, Thibault; Charrier, Alice; Moreau, Clarisse; Hininger-Favier, Isabelle; Mourmoura, Evangelia; Rigaudière, Jean-Paul; Pitois, Elodie; Bouvier, Damien; Sapin, Vincent; Pereira, Bruno; Azarnoush, Kasra; Demaison, Luc

    2017-07-01

    If it is sustained for several days, sepsis can trigger severe abnormalities of cardiac function which leads to death in 50% of cases. This probably occurs through activation of toll-like receptor-9 by bacterial lipopolysaccharides and overproduction of proinflammatory cytokines such as TNF- α and IL-1 β In contrast, early sepsis is characterized by the development of tachycardia. This study aimed at determining the early changes in the cardiac function during sepsis and at finding the mechanism responsible for the observed changes. Sixty male Wistar rats were randomly assigned to two groups, the first one being made septic by cecal ligation and puncture (sepsis group) and the second one being subjected to the same surgery without cecal ligation and puncture (sham-operated group). The cardiac function was assessed in vivo and ex vivo in standard conditions. Several parameters involved in the oxidative stress and inflammation were determined in the plasma and heart. As evidenced by the plasma level of TNF- α and gene expression of IL-1 β and TNF- α in the heart, inflammation was developed in the sepsis group. The cardiac function was also slightly stimulated by sepsis in the in vivo and ex vivo situations. This was associated with unchanged levels of oxidative stress, but several parameters indicated a lower cardiac production of reactive oxygen species in the septic group. In conclusion, despite the development of inflammation, early sepsis did not increase reactive oxygen species production and did not reduce myocardial function. The depressant effect of TNF- α and IL-1 β on the cardiac function is known to occur at very high concentrations. The influence of low- to moderate-grade inflammation on the myocardial mechanical behavior must thus be revisited. © 2017 French National Institute of Agronomical Research (INRA). Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Emil D Bartels

    Full Text Available Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP; the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease.

  13. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    Science.gov (United States)

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  14. Cardiac function and tadalafil used for treating fetal growth restriction in pregnant women without cardiovascular disease.

    Science.gov (United States)

    Tanaka, Kayo; Tanaka, Hiroaki; Maki, Shintaro; Kubo, Michiko; Nii, Masafumi; Magawa, Shoichi; Hatano, Fumi; Tsuji, Makoto; Osato, Kazuhiro; Kamimoto, Yuki; Umekawa, Takashi; Ikeda, Tomoaki

    2018-02-20

    The aim of the present study was to evaluate tadalafil for the treatment of fetal growth restriction (FGR) and the cardiac function in pregnant women without cardiovascular disease who used tadalafil for this reason. We examined nine pregnant women without cardiovascular disease who were using tadalafil to treat FGR. Maternal heart rate, systolic blood pressure (BP), and echocardiographic findings were assessed before and after tadalafil use. Diastolic BP was lower after compared to that before using tadalafil, but the difference was not significant. Echocardiographic findings were not significantly different before and after tadalafil use. Tadalafil did not adversely affect pregnant women without cardiovascular disease and was considered acceptable for use since it did not affect the mother's cardiac function.

  15. Topical Apigenin Alleviates Cutaneous Inflammation in Murine Models

    Directory of Open Access Journals (Sweden)

    Mao-Qiang Man

    2012-01-01

    Full Text Available Herbal medicines have been used in preventing and treating skin disorders for centuries. It has been demonstrated that systemic administration of chrysanthemum extract exhibits anti-inflammatory properties. However, whether topical applications of apigenin, a constituent of chrysanthemum extract, influence cutaneous inflammation is still unclear. In the present study, we first tested whether topical applications of apigenin alleviate cutaneous inflammation in murine models of acute dermatitis. The murine models of acute allergic contact dermatitis and acute irritant contact dermatitis were established by topical application of oxazolone and phorbol 12-myristate 13-acetate (TPA, respectively. Inflammation was assessed in both dermatitis models by measuring ear thickness. Additionally, the effect of apigenin on stratum corneum function in a murine subacute allergic contact dermatitis model was assessed with an MPA5 physiology monitor. Our results demonstrate that topical applications of apigenin exhibit therapeutic effects in both acute irritant contact dermatitis and allergic contact dermatitis models. Moreover, in comparison with the vehicle treatment, topical apigenin treatment significantly reduced transepidermal water loss, lowered skin surface pH, and increased stratum corneum hydration in a subacute murine allergic contact dermatitis model. Together, these results suggest that topical application of apigenin could provide an alternative regimen for the treatment of dermatitis.

  16. Right-sided cardiac function in healthy volunteers measured by first-pass radionuclide ventriculography and gated blood-pool SPECT: comparison with cine MRI

    DEFF Research Database (Denmark)

    Kjaer, Andreas; Lebech, Anne-Mette; Hesse, Birger

    2005-01-01

    for evaluation of right-sided cardiac function. The aim of our study was to compare the agreement between these methods when measuring right-sided cardiac function. METHODS: Twenty-four healthy volunteers were included. Mean age was 44 years (range: 25-60) and 29% were females. All participants had FP, GBPS...

  17. Cardiac fluid dynamics meets deformation imaging.

    Science.gov (United States)

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  18. Ecotropic murine leukemia virus-induced fusion of murine cells

    International Nuclear Information System (INIS)

    Pinter, A.; Chen, T.; Lowy, A.; Cortez, N.G.; Silagi, S.

    1986-01-01

    Extensive fusion occurs upon cocultivation of murine fibroblasts producing ecotropic murine leukemia viruses (MuLVs) with a large variety of murine cell lines in the presence of the polyene antibiotic amphotericin B, the active component of the antifungal agent Fungizone. The resulting polykaryocytes contain nuclei from both infected and uninfected cells, as evidenced by autoradiographic labeling experiments in which one or the other parent cell type was separately labeled with [ 3 H]thymidine and fused with an unlabeled parent. This cell fusion specifically requires the presence of an ecotropic MuLV-producing parent and is not observed for cells producing xenotropic, amphotropic, or dualtropic viruses. Mouse cells infected with nonecotropic viruses retain their sensitivity toward fusion, whereas infection with ecotropic viruses abrogates the fusion of these cells upon cocultivation with other ecotropic MuLV-producing cells. Nonmurine cells lacking the ecotropic gp70 receptor are not fused under similar conditions. Fusion is effectively inhibited by monospecific antisera to gp70, but not by antisera to p15(E), and studies with monoclonal antibodies identify distinct amino- and carboxy-terminal gp70 regions which play a role in the fusion reaction. The enhanced fusion which occurs in the presence of amphotericin B provides a rapid and sensitive assay for the expression of ecotropic MuLVs and should facilitate further mechanistic studies of MuLV-induced fusion of murine cells

  19. Impact of exercise rehabilitation on cardiac neuronal function in heart failure. An iodine-123 metaiodobenzylguanidine scintigraphy study

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, D.; Bouvard, G. [Service de Medecine Nucleaire, CHU Cote de Nacre, Caen (France); Lecluse, E.; Grollier, G.; Potier, J.C. [Service de Cardiologie, CHU Cote de Nacre, Caen (France); Belin, A. [Service de Readaptation Cardiaque, CHU Cote de Nacre, Caen (France); Babatasi, G. [Service de Chirurgie Cardio-Thoracique, CHU Cote de Nacre, Caen (France); Amar, M.H. [Centre Francois Baclesse, Caen (France). Service de Recherche Clinique

    1998-03-01

    Exercise training can induce important haemodynamic and metabolic adaptations in patients with chronic heart failure due to severe left ventricular dysfunction. This study examined the impact of exercise rehabilitation on cardiac neuronal function using iodine-123 metaiobodenzylguanidine (MIBG) scintigraphy. Fourteen patients (11 men, 3 women; mean age 48 years; range: 36-66 years) with stable chronic heart failure of NYHA class II-III and an initial resting radionuclide left ventricular ejection fraction (LVEF) <50% were enrolled in the study. Patients underwent progressive, supervised endurance training (treadmill test, Bruce protocol) during a 6-month period (60 sessions, 3 sessions per week) at a cardiac rehabilitation referral centre in order to measure exercise parameters. Planar {sup 123}I-MIBG scintigraphy provided measurements of cardiac neuronal uptake (heart-mediastinum ratio activity, 4 h after intravenous injection of 185 MBq of MIBG). Radionuclide LVEF was also assessed at the outset and after 6 months of exercise training. Workload (801{+-}428 vs 1229{+-}245 kpm.min{sup -1}, P=0.001), exercise duration (504{+-}190 vs 649{+-}125 s, P=0.02), and myocardial MIBG uptake (135%{+-}19% vs 156%{+-}25%, P=0.02) increased significantly after rehabilitation. However, LVEF did not change significantly (23%{+-}9% vs 21%{+-}10%, p=NS). It is concluded that exercise rehabilitation induces improvement of cardiac neuronal function without having negative effects on cardiac contractility in patients with stable chronic heart failure. (orig.)

  20. The effects of pleural fluid drainage on respiratory function in mechanically ventilated patients after cardiac surgery

    Science.gov (United States)

    Brims, Fraser J H; Davies, Michael G; Elia, Andy; Griffiths, Mark J D

    2015-01-01

    Background Pleural effusions occur commonly after cardiac surgery and the effects of drainage on gas exchange in this population are not well established. We examined pulmonary function indices following drainage of pleural effusions in cardiac surgery patients. Methods We performed a retrospective study examining the effects of pleural fluid drainage on the lung function indices of patients recovering from cardiac surgery requiring mechanical ventilation for more than 7 days. We specifically analysed patients who had pleural fluid removed via an intercostal tube (ICT: drain group) compared with those of a control group (no effusion, no ICT). Results In the drain group, 52 ICTs were sited in 45 patients. The mean (SD) volume of fluid drained was 1180 (634) mL. Indices of oxygenation were significantly worse in the drain group compared with controls prior to drainage. The arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) (P/F) ratio improved on day 1 after ICT placement (mean (SD), day 0: 31.01 (8.92) vs 37.18 (10.7); pdrain group patients were more likely to have an improved mode of ventilation on day 1 compared with controls (p=0.028). Conclusions Pleural effusion after cardiac surgery may impair oxygenation. Drainage of pleural fluid is associated with a rapid and sustained improvement in oxygenation. PMID:26339492

  1. Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices (Postprint)

    Science.gov (United States)

    2015-11-10

    Albumin to saturate the non-specific binding sites on the paper substrate prior to troponin exposure. For testing the biosensor, troponin of various...AFRL-RX-WP-JA-2016-0191 PEPTIDE FUNCTIONALIZED GOLD NANORODS FOR THE SENSITIVE DETECTION OF A CARDIAC BIOMARKER USING PLASMONIC PAPER ...SENSITIVE DETECTION OF A CARDIAC BIOMARKER USING PLASMONIC PAPER DEVICES (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5405-0001 5b. GRANT NUMBER 5c

  2. Traditional Chinese Medicine Tongxinluo Improves Cardiac Function of Rats with Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Fang-Fang Shen

    2014-01-01

    Full Text Available The study aimed at testing the hypothesis that tongxinluo capsule might exert its cardioprotective effect by preventing ventricular remodeling and improving coronary microvascular function in a rat model of doxorubicin-induced dilated cardiomyopathy (DCM. Rats that survived DCM induction were randomly divided into three groups to be given 1.5 g·kg−1·day−1 (TXL-H, n=9 or 0.15 g·kg−1·day−1 (TXL-L, n=10 of tongxinluo, or normal saline at the same volume (DCM-C, n=10 intragastrically. Age matched normal rats treated with normal saline were used as normal controls (NOR-C, n=9. After four weeks of treatment, the DCM-C, TXL-H, and TXL-L groups exhibited significant cardiac dysfunction, left ventricular remodeling, and coronary microvascular dysfunction, compared with the NOR-C rats. However, myocardial functional parameters were significantly improved and microvascular density (MVD increased in the TXL-H group compared with the DCM-C group (all P<0.01. Left ventricular remodeling was prevented. There were close linear relationships between CVF and LVEF (r=-0.683, P<0.05, MVD and LVEF (r=0.895, P<0.05, and MVD and CVF (r=-0.798, P<0.05. It was indicated that high-dose tongxinluo effectively improved cardiac function in rat model of DCM.

  3. Dynamic Support Culture of Murine Skeletal Muscle-Derived Stem Cells Improves Their Cardiogenic Potential In Vitro

    Directory of Open Access Journals (Sweden)

    Klaus Neef

    2015-01-01

    Full Text Available Ischemic heart disease is the main cause of death in western countries and its burden is increasing worldwide. It typically involves irreversible degeneration and loss of myocardial tissue leading to poor prognosis and fatal outcome. Autologous cells with the potential to regenerate damaged heart tissue would be an ideal source for cell therapeutic approaches. Here, we compared different methods of conditional culture for increasing the yield and cardiogenic potential of murine skeletal muscle-derived stem cells. A subpopulation of nonadherent cells was isolated from skeletal muscle by preplating and applying cell culture conditions differing in support of cluster formation. In contrast to static culture conditions, dynamic culture with or without previous hanging drop preculture led to significantly increased cluster diameters and the expression of cardiac specific markers on the protein and mRNA level. Whole-cell patch-clamp studies revealed similarities to pacemaker action potentials and responsiveness to cardiac specific pharmacological stimuli. This data indicates that skeletal muscle-derived stem cells are capable of adopting enhanced cardiac muscle cell-like properties by applying specific culture conditions. Choosing this route for the establishment of a sustainable, autologous source of cells for cardiac therapies holds the potential of being clinically more acceptable than transgenic manipulation of cells.

  4. Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats.

    Science.gov (United States)

    Mao, Chenggang; Hou, Xu; Wang, Benzhen; Chi, Jingwei; Jiang, Yanjie; Zhang, Caining; Li, Zipu

    2017-01-28

    Stem cells provide a promising candidate for the treatment of the fatal pediatric dilated cardiomyopathy (DCM). This study aimed to investigate the effects of intramuscular injection of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on the cardiac function of a DCM rat model. A DCM model was established by intraperitoneal injections of doxorubicin in Sprague-Dawley rats. hUCMSCs at different concentrations or cultured medium were injected via limb skeletal muscles, with blank medium injected as the control. The rats were monitored for 4 weeks, meanwhile BNP, cTNI, VEGF, HGF, GM-CSF, and LIF in the peripheral blood were examined by ELISA, and cardiac function was monitored by echocardiography (Echo-CG). Finally, the expression of IGF-1, HGF, and VEGF in the myocardium was examined by histoimmunochemistry and real-time PCR, and the ultrastructure of the myocardium was examined by electron microscopy. Injection of hUCMSCs markedly improved cardiac function in the DCM rats by significantly elevating left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS). The BNP and cTNI levels in the peripheral blood were reduced by hUCMSCs, while HGF, LIF, GM-CSF, and VEGF were increased by hUCMSCs. Expression of IGF-1, HGF, and VEGF in the myocardium from the DCM rats was significantly increased by hUCMSC injection. Furthermore, hUCMSCs protected the ultrastructure of cardiomyocytes by attenuating mitochondrial swelling and maintaining sarcolemma integrity. Intramuscular injection of UCMSCs can improve DCM-induced cardiac function impairment and protect the myocardium. These effects may be mediated by regulation of relevant cytokines in serum and the myocardium.

  5. Effects of local cardiac denervation on cardiac innervation and ventricular arrhythmia after chronic myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    Full Text Available Modulation of the autonomic nervous system (ANS has already been demonstrated to display antiarrhythmic effects in patients and animals with MI. In this study, we investigated whether local cardiac denervation has any beneficial effects on ventricular electrical stability and cardiac function in the chronic phase of MI.Twenty-one anesthetized dogs were randomly assigned into the sham-operated, MI and MI-ablation groups, respectively. Four weeks after local cardiac denervation, LSG stimulation was used to induce VPCs and VAs. The ventricular fibrillation threshold (VFT and the incidence of inducible VPCs were measured with electrophysiological protocol. Cardiac innervation was determined with immunohistochemical staining of growth associated protein-43 (GAP43 and tyrosine hydroxylase (TH. The global cardiac and regional ventricular function was evaluated with doppler echocardiography in this study.Four weeks after operation, the incidence of inducible VPC and VF in MI-ablation group were significantly reduced compared to the MI dogs (p<0.05. Moreover, local cardiac denervation significantly improved VFT in the infarcted border zone (p<0.05. The densities of GAP43 and TH-positive nerve fibers in the infarcted border zone in the MI-ablation group were lower than those in the MI group (p<0.05. However, the local cardiac denervation did not significantly improve cardiac function in the chronic phase of MI, determined by the left ventricle diameter (LV, left atrial diameter (LA, ejection fraction (EF.Summarily, in the chronic phase of MI, local cardiac denervation reduces the ventricular electrical instability, and attenuates spatial heterogeneity of sympathetic nerve reconstruction. Our study suggests that this methodology might decrease malignant ventricular arrhythmia in chronic MI, and has a great potential for clinical application.

  6. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Noorman, Nils; de Graaf, Wolter L.; Hoerr, Verena; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously

  7. Vascular calcification and cardiac function according to residual renal function in patients on hemodialysis with urination.

    Directory of Open Access Journals (Sweden)

    Dong Ho Shin

    Full Text Available Vascular calcification is common and may affect cardiac function in patients with end-stage renal disease (ESRD. However, little is known about the effect of residual renal function on vascular calcification and cardiac function in patients on hemodialysis.This study was conducted between January 2014 and January 2017. One hundred six patients with residual renal function on maintenance hemodialysis for 3 months were recruited. We used residual renal urea clearance (KRU to measure residual renal function. First, abdominal aortic calcification score (AACS and brachial-ankle pulse wave velocity (baPWV were measured in patients on hemodialysis. Second, we performed echocardiography and investigated new cardiovascular events after study enrollment.The median KRU was 0.9 (0.3-2.5 mL/min/1.73m2. AACS (4.0 [1.0-10.0] vs. 3.0 [0.0-8.0], p = 0.05 and baPWV (1836.1 ± 250.4 vs. 1676.8 ± 311.0 cm/s, p = 0.01 were significantly higher in patients with a KRU < 0.9 mL/min/1.73m2 than a KRU ≥ 0.9 mL/min/1.73m2. Log-KRU significantly negatively correlated with log-AACS (ß = -0.29, p = 0.002 and baPWV (ß = -0.19, P = 0.05 after factor adjustment. The proportion of left ventricular diastolic dysfunction was significantly higher in patients with a KRU < 0.9 mL/min/1.73m2 than with a KRU ≥ 0.9 mL/min/1.73m2 (67.9% vs. 49.1%, p = 0.05. Patients with a KRU < 0.9 mL/min/1.73m2 showed a higher tendency of cumulative cardiovascular events compared to those with a KRU ≥ 0.9 ml/min/1.73m2 (P = 0.08.Residual renal function was significantly associated with vascular calcification and left ventricular diastolic dysfunction in patients on hemodialysis.

  8. USPIO-enhanced 3D-cine self-gated cardiac MRI based on a stack-of-stars golden angle short echo time sequence: Application on mice with acute myocardial infarction.

    Science.gov (United States)

    Trotier, Aurélien J; Castets, Charles R; Lefrançois, William; Ribot, Emeline J; Franconi, Jean-Michel; Thiaudière, Eric; Miraux, Sylvain

    2016-08-01

    To develop and assess a 3D-cine self-gated method for cardiac imaging of murine models. A 3D stack-of-stars (SOS) short echo time (STE) sequence with a navigator echo was performed at 7T on healthy mice (n = 4) and mice with acute myocardial infarction (MI) (n = 4) injected with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. In all, 402 spokes were acquired per stack with the incremental or the golden angle method using an angle increment of (360/402)° or 222.48°, respectively. A cylindrical k-space was filled and repeated with a maximum number of repetitions (NR) of 10. 3D cine cardiac images at 156 μm resolution were reconstructed retrospectively and compared for the two methods in terms of contrast-to-noise ratio (CNR). The golden angle images were also reconstructed with NR = 10, 6, and 3, to assess cardiac functional parameters (ejection fraction, EF) on both animal models. The combination of 3D SOS-STE and USPIO injection allowed us to optimize the identification of cardiac peaks on navigator signal and generate high CNR between blood and myocardium (15.3 ± 1.0). The golden angle method resulted in a more homogeneous distribution of the spokes inside a stack (P cine images could be obtained without electrocardiogram or respiratory gating in mice. It allows precise measurement of cardiac functional parameters even on MI mice. J. Magn. Reson. Imaging 2016;44:355-365. © 2016 Wiley Periodicals, Inc.

  9. Effect of Cardiac Rehabilitation on Heart Rate and Functional Capacity in Patients After Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Mandana Parvand

    2016-09-01

    Discussion: Cardiac rehabilitation can increase the performance of blood circulation and uptake of oxygen in body. Due to these changes, there was a significant increase in the functional capacity and an insignificant reduction in the heart rate.

  10. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease

    Directory of Open Access Journals (Sweden)

    W. H. Davin Townley-Tilson

    2015-01-01

    Full Text Available Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  11. Comparing the effects of a cardiac rehabilitation program on functional capacity of obese and non-obese women with coronary artery disease

    Directory of Open Access Journals (Sweden)

    Masoumeh Sadeghi

    2012-06-01

    Full Text Available    BACKGROUND: Obesity and sedentary lifestyle are known as important risk factors of coronary artery disease. The prevalence of obesity has increased among both men and women in the world. Therefore, the present study tried to evaluate the effectiveness of a cardiac rehabilitation program on functional capacity and body mass index (BMI in obese and non-obese women with coronary artery disease.    METHODS: In an observational study during 2000-11, we evaluated a total of 205 women with coronary artery disease who referred to the cardiac rehabilitation unit of Isfahan Cardiovascular Research Institute, Isfahan, Iran. BMI and functional capacity of each patient were assessed before and after the program. The patients were categorized as obese or non-obese based on their BMI. All participants completed the full course of the program. Data was analyzed by independent t-test and paired t-test in SPSS15.    RESULTS: Our finding showed that an 8-week cardiac rehabilitation program had significant effects on functional capacity in obese and non-obese female patients (P < 0.01 for both. The program also resulted in BMI improvements in both groups (P < 0.01 for both. Comparing the changes in the two groups did not reveal any significant differences in functional capacity. However, the two groups were significantly different in terms of BMI changes.    CONCLUSION: Cardiac rehabilitation programs are a major step in restoration of functional capacity and improvement of BMI in obese and non-obese women with coronary artery disease.         Keywords: Cardiac Rehabilitation Program, Coronary Artery Disease, Obesity, Functional Capacity, Body Mass Index.

  12. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion.

    Directory of Open Access Journals (Sweden)

    Hylde Zirpoli

    Full Text Available Dietary n-3 fatty acids (FAs may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD, and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT. In the LAD model, mice treated with n-3 TG emulsion (1.5 g/kg body weight, immediately after ischemia and 1 h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05. In the LT model, administration of n-3 TG emulsion (300 mg TG/100 ml during reperfusion significantly improved functional recovery (p<0.05. In both models, lactate dehydrogenase (LDH levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05. Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05. Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05. Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.

  13. Clearance of 131I-labeled murine monoclonal antibody from patients' blood by intravenous human anti-murine immunoglobulin antibody

    International Nuclear Information System (INIS)

    Stewart, J.S.; Sivolapenko, G.B.; Hird, V.; Davies, K.A.; Walport, M.; Ritter, M.A.; Epenetos, A.A.

    1990-01-01

    Five patients treated with intraperitoneal 131I-labeled mouse monoclonal antibody for ovarian cancer also received i.v. exogenous polyclonal human anti-murine immunoglobulin antibody. The pharmacokinetics of 131I-labeled monoclonal antibody in these patients were compared with those of 28 other patients receiving i.p.-radiolabeled monoclonal antibody for the first time without exogenous human anti-murine immunoglobulin, and who had no preexisting endogenous human anti-murine immunoglobulin antibody. Patients receiving i.v. human anti-murine immunoglobulin antibody demonstrated a rapid clearance of 131I-labeled monoclonal antibody from their circulation. The (mean) maximum 131I blood content was 11.4% of the injected activity in patients receiving human anti-murine immunoglobulin antibody compared to 23.3% in patients not given human anti-murine immunoglobulin antibody. Intravenous human anti-murine immunoglobulin antibody decreased the radiation dose to bone marrow (from 131I-labeled monoclonal antibody in the vascular compartment) 4-fold. Following the injection of human anti-murine immunoglobulin antibody, 131I-monoclonal/human anti-murine immunoglobulin antibody immune complexes were rapidly transported to the liver. Antibody dehalogenation in the liver was rapid, with 87% of the injected 131I excreted in 5 days. Despite the efficient hepatic uptake of immune complexes, dehalogenation of monoclonal antibody was so rapid that the radiation dose to liver parenchyma from circulating 131I was decreased 4-fold rather than increased. All patients developed endogenous human anti-murine immunoglobulin antibody 2 to 3 weeks after treatment

  14. Treatment with Fenofibrate plus a low dose of Benznidazole attenuates cardiac dysfunction in experimental Chagas disease

    Directory of Open Access Journals (Sweden)

    Ágata C. Cevey

    2017-12-01

    Full Text Available Trypanosoma cruzi induces serious cardiac alterations during the chronic infection. Intense inflammatory response observed from the beginning of infection, is critical for the control of parasite proliferation and evolution of Chagas disease. Peroxisome proliferator-activated receptors (PPAR-α, are known to modulate inflammation.In this study we investigated whether a PPAR-α agonist, Fenofibrate, improves cardiac function and inflammatory parameters in a murine model of T. cruzi infection. BALB/c mice were sequentially infected with two T. cruzi strains of different genetic background. Benznidazole, commonly used as trypanocidal drug, cleared parasites but did not preclude cardiac pathology, resembling what is found in human chronic chagasic cardiomyopathy. Fenofibrate treatment restored to normal values the ejection and shortening fractions, left ventricular end-diastolic, left ventricular end-systolic diameter, and isovolumic relaxation time. Moreover, it reduced cardiac inflammation and fibrosis, decreased the expression of pro-inflammatory (IL-6, TNF-α and NOS2 and heart remodeling mediators (MMP-9 and CTGF, and reduced serum creatine kinase activity. The fact that Fenofibrate partially inhibited NOS2 expression and NO release in the presence of a PPAR-α non-competitive inhibitor, suggested it also acted through PPAR-α-independent pathways. Since IκBα cytosolic degradation was inhibited by Fenofibrate, it can be concluded that the NFκB pathway has a role in its effects. Thus, we demonstrate that Fenofibrate acts through PPAR-α-dependent and -independent pathways.Our study shows that combined treatment with Fenofibrate plus Benznidazole is able both to reverse the cardiac dysfunction associated with the ongoing inflammatory response and fibrosis and to attain parasite clearance in an experimental model of Chagas disease. Keywords: Trypanosoma cruzi, Heart dysfunction, PPAR-α, Fenofibrate treatment, Inflammatory mediators

  15. Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

    Science.gov (United States)

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-01-01

    Background Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy. Methods and Results At 2 weeks after transverse aortic constriction, Tlr2−/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2−/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Conclusions Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic

  16. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.

    Science.gov (United States)

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew

    2015-11-15

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.

  17. A potent complement factor C3 specific nanobody inhibiting multiple functions in the alternative pathway of human and murine complement.

    Science.gov (United States)

    Jensen, Rasmus K; Pihl, Rasmus; Gadeberg, Trine A F; Jensen, Jan K; Andersen, Kasper R; Thiel, Steffen; Laursen, Nick S; Andersen, Gregers Rom

    2018-03-01

    The complement system is a complex, carefully regulated proteolytic cascade for which suppression of aberrant activation is of increasing clinical relevance and inhibition of the complement alternative pathway is a subject of intense research. Here, we describe the nanobody hC3Nb1 that binds to multiple functional states of C3 with sub-nanomolar affinity. The nanobody causes a complete shutdown of alternative pathway activity in human and murine serum when present in concentrations comparable to C3, and hC3Nb1 is shown to prevent both proconvertase assembly as well as binding of the C3 substrate to C3 convertases. Our crystal structure of the C3b-hC3Nb1 complex and functional experiments demonstrate that proconvertase formation is blocked by steric hindrance between the nanobody and an Asn-linked glycan on complement factor B. In addition, hC3Nb1 is shown to prevent factor H binding to C3b rationalizing its inhibition of factor I activity. Our results identify hC3Nb1 as a versatile, inexpensive, and powerful inhibitor of the alternative pathway in both human and murine in vitro model systems of complement activation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Estrogen Therapy, Independent of Timing, Improves Cardiac Structure and Function in Oophorectomized mRen2.Lewis Rats

    Science.gov (United States)

    Jessup, Jewell A.; Wang, Hao; MacNamara, Lindsay M.; Presley, Tennille D.; Kim-Shapiro, Daniel B.; Zhang, Lili; Chen, Alex F.; Groban, Leanne

    2013-01-01

    Objective mRen2.Lewis Rats exhibit exacerbated increases in blood pressure, left ventricular (LV) remodeling, and diastolic impairment following the loss of estrogens. In this same model, depletion of estrogens has marked effects on the cardiac biopterin profile concomitant with suppressed nitric oxide (NO) release. With respect to the establishment of overt systolic hypertension after oophorectomy (OVX), we assessed the effects of timing chronic 17 β-estradiol (E2) therapy on myocardial function, structure, and the cardiac NO system. Methods Oophrectomy (OVX; n=24) or sham-operation (Sham; n=13) was performed in 4-week-old, female mRen2.Lewis rats. Following randomization, OVX rats received E2 immediately (OVX + early E2; n=7), E2 at 11 weeks of age (OVX + late E2 N=8), or no E2 at all (OVX N=9). Results Early E2 was associated with lower body weight, less hypertension-related cardiac remodeling, and decreased LV filling pressure compared to OVX rats without E2 supplementation. Late E2 similarly attenuated the adverse effects of ovarian hormone loss on tissue-Doppler derived LV filling pressures and perivascular fibrosis, and significantly improved myocardial relaxation, or mitral annular velocity (e′). Early and late exposure to E2 decreased dihydrobiopterin, but only late E2 yielded significant increases in cardiac nitrite concentrations. Conclusions Although there were some similarities between early and late E2 treatment on preservation of diastolic function and cardiac structure after OVX, the lusitropic potential of E2 was most consistent with late supplementation. The cardioprotective effects of late E2 were independent of blood pressure and may have occurred through regulation of cardiac biopterins and NO production. PMID:23481117

  19. ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells.

    Science.gov (United States)

    Garrison, Brian S; Rybak, Adrian P; Beerman, Isabel; Heesters, Balthasar; Mercier, Francois E; Scadden, David T; Bryder, David; Baron, Roland; Rossi, Derrick J

    2017-08-03

    The concept that tumor-initiating cells can co-opt the self-renewal program of endogenous stem cells as a means of enforcing their unlimited proliferative potential is widely accepted, yet identification of specific factors that regulate self-renewal of normal and cancer stem cells remains limited. Using a comparative transcriptomic approach, we identify ZNF521 / Zfp521 as a conserved hematopoietic stem cell (HSC)-enriched transcription factor in human and murine hematopoiesis whose function in HSC biology remains elusive. Competitive serial transplantation assays using Zfp521 -deficient mice revealed that ZFP521 regulates HSC self-renewal and differentiation. In contrast, ectopic expression of ZFP521 in HSCs led to a robust maintenance of progenitor activity in vitro. Transcriptional analysis of human acute myeloid leukemia (AML) patient samples revealed that ZNF521 is highly and specifically upregulated in AMLs with MLL translocations. Using an MLL-AF9 murine leukemia model and serial transplantation studies, we show that ZFP521 is not required for leukemogenesis, although its absence leads to a significant delay in leukemia onset. Furthermore, knockdown of ZNF521 reduced proliferation in human leukemia cell lines possessing MLL-AF9 translocations. Taken together, these results identify ZNF521/ZFP521 as a critical regulator of HSC function, which facilitates MLL-AF9-mediated leukemic disease in mice.

  20. Genetic deletion of the bacterial sensor NOD2 improves murine Crohn’s disease-like ileitis independent of functional dysbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Corridoni, D.; Rodriguez-Palacios, A.; Di Stefano, G.; Di Martino, L.; Antonopoulos, D. A.; Chang, E. B.; Arseneau, K. O.; Pizarro, T. T.; Cominelli, F.

    2016-11-16

    Although genetic polymorphisms in NOD2 (nucleotide-binding oligomerization domain-containing 2) have been associated with the pathogenesis of Crohn’s disease (CD), little is known regarding the role of wild-type (WT) NOD2 in the gut. To date, most murine studies addressing the role of WT Nod2 have been conducted using healthy (ileitis/colitis-free) mouse strains. Here, we evaluated the effects of Nod2 deletion in a murine model of spontaneous ileitis, i.e., the SAMP1Yit/Fc (SAMP) strain, which closely resembles CD. Remarkably, Nod2 deletion improved both chronic cobblestone ileitis (by 50% assessed, as the % of abnormal mucosa at 24 wks of age), as well as acute dextran sodium sulfate (DSS) colitis. Mechanistically, Th2 cytokine production and Th2-transcription factor activation (i.e., STAT6 phosphorylation) were reduced. Microbiologically, the effects of Nod2 deletion appeared independent of fecal microbiota composition and function, assessed by 16S rRNA and metatranscriptomics. Our findings indicate that pharmacological blockade of NOD2 signaling in humans could improve health in Th2-driven chronic intestinal inflammation.

  1. Fermitins, the orthologs of mammalian Kindlins, regulate the development of a functional cardiac syncytium in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    James H Catterson

    Full Text Available The vertebrate Kindlins are an evolutionarily conserved family of proteins critical for integrin signalling and cell adhesion. Kindlin-2 (KIND2 is associated with intercalated discs in mice, suggesting a role in cardiac syncytium development; however, deficiency of Kind2 leads to embryonic lethality. Morpholino knock-down of Kind2 in zebrafish has a pleiotropic effect on development that includes the heart. It therefore remains unclear whether cardiomyocyte Kind2 expression is required for cardiomyocyte junction formation and the development of normal cardiac function. To address this question, the expression of Fermitin 1 and Fermitin 2 (Fit1, Fit2, the two Drosophila orthologs of Kind2, was silenced in Drosophila cardiomyocytes. Heart development was assessed in adult flies by immunological methods and videomicroscopy. Silencing both Fit1 and Fit2 led to a severe cardiomyopathy characterised by the failure of cardiomyocytes to develop as a functional syncytium and loss of synchrony between cardiomyocytes. A null allele of Fit1 was generated but this had no impact on the heart. Similarly, the silencing of Fit2 failed to affect heart function. In contrast, the silencing of Fit2 in the cardiomyocytes of Fit1 null flies disrupted syncytium development, leading to severe cardiomyopathy. The data definitively demonstrate a role for Fermitins in the development of a functional cardiac syncytium in Drosophila. The findings also show that the Fermitins can functionally compensate for each other in order to control syncytium development. These findings support the concept that abnormalities in cardiomyocyte KIND2 expression or function may contribute to cardiomyopathies in humans.

  2. Characterization, expression and complex formation of the murine Fanconi anaemia gene product Fancg.

    Science.gov (United States)

    van de Vrugt, Henri J; Koomen, Mireille; Berns, Mariska A D; de Vries, Yne; Rooimans, Martin A; van der Weel, Laura; Blom, Eric; de Groot, Jan; Schepers, Rik J; Stone, Stacie; Hoatlin, Maureen E; Cheng, Ngan Ching; Joenje, Hans; Arwert, Fré

    2002-03-01

    Fanconi anaemia (FA) is an autosomal recessive chromosomal instability disorder. Six distinct FA disease genes have been identified, the products of which function in an integrated pathway that is thought to support a nuclear caretaker function. Comparison of FA gene characteristics in different species may help to unravel the molecular function of the FA pathway. We have cloned the murine homologue of the Fanconi anaemia complementation group G gene, FANCG/XRCC9. The murine Fancg protein shows an 83% similarity to the human protein sequence, and has a predicted molecular weight of 68.5 kDa. Expression of mouse Fancg in human FA-G lymphoblasts fully corrects their cross-linker hypersensitivity. At mRNA and protein levels we detected the co-expression of Fancg and Fanca in murine tissues. In addition, mouse Fancg and Fanca proteins co-purify by immunoprecipitation. Upon transfection into Fanca-deficient mouse embryonic fibroblasts EGFP-Fancg chimeric protein was detectable in the nucleus. We identified a murine cDNA, Fancg, which cross-complements the cellular defect of human FA-G cells and thus represents a true homologue of human FANCG. Spleen, thymus and testis showed the highest Fancg expression levels. Although Fancg and Fanca are able to form a complex, this interaction is not required for Fancg to accumulate in the nuclear compartment.

  3. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction

    Directory of Open Access Journals (Sweden)

    Hongmei Lang

    2018-04-01

    Full Text Available Background/Aims: Excessive salt intake and left ventricular hypertrophy (LVH are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3 plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. Methods: UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5% or a high-salt (HS, 8% diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Results: Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. Conclusion: UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction.

  4. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  5. Cardiac-specific overexpression of insulin-like growth factor I (IGF-1) rescues lipopolysaccharide-induced cardiac dysfunction and activation of stress signaling in murine cardiomyocytes.

    Science.gov (United States)

    Zhao, Peng; Turdi, Subat; Dong, Feng; Xiao, Xiaoyan; Su, Guohai; Zhu, Xinglei; Scott, Glenda I; Ren, Jun

    2009-07-01

    Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, plays a key role in cardiac dysfunction in sepsis. Low circulating levels of insulin-like growth factor 1 (IGF-1) are found in sepsis, although the influence of IGF-1 on septic cardiac defect is unknown. This study was designed to examine the impact of IGF-1 on LPS-induced cardiac contractile and intracellular Ca2+ dysfunction, activation of stress signal and endoplasmic reticulum (ER) stress. Mechanical and intracellular Ca2+ properties were examined in cardiomyocytes from Fast Violet B and cardiac-specific IGF-1 overexpression mice treated with or without LPS (4 mg kg(-1), 6 h). Reactive oxygen species (ROS), protein carbonyl formation and apoptosis were measured. Activation of mitogen-activated protein kinase pathways (p38, c-jun N-terminal kinase [JNK] and extracellular signal-related kinase [ERK]), ER stress and apoptotic markers were evaluated using Western blot analysis. Our results revealed decreased peak shortening and maximal velocity of shortening/relengthening and prolonged duration of relengthening in LPS-treated Fast Violet B cardiomyocytes associated with reduced intracellular Ca2+ decay. Accumulation of ROS protein carbonyl and apoptosis were elevated after LPS treatment. Western blot analysis revealed activated p38 and JNK, up-regulated Bax, and the ER stress markers GRP78 and Gadd153 in LPS-treated mouse hearts without any change in ERK and Bcl-2. Total protein expression of p38, JNK, and ERK was unaffected by either LPS or IGF-1. Interestingly, these LPS-induced changes in mechanical and intracellular Ca2+ properties, ROS, protein carbonyl, apoptosis, stress signal activation, and ER stress markers were effectively ablated by IGF-1. In vitro LPS exposure (1 microg mL(-1)) produced cardiomyocyte mechanical dysfunction reminiscent of the in vivo setting, which was alleviated by exogenous IGF-1 (50 nM). These data collectively suggested a beneficial of IGF-1 in

  6. Ribonucleases 6 and 7 have antimicrobial function in the human and murine urinary tract

    Science.gov (United States)

    Becknell, Brian; Eichler, Tad; Beceiro, Susana; Li, Birong; Easterling, Robert; Carpenter, Ashley R.; James, Cindy; McHugh, Kirk M.; Hains, David S.; Partida-Sanchez, Santiago; Spencer, John David

    2014-01-01

    Recent evidence suggests antimicrobial peptides protect the urinary tract from infection. Ribonuclease 7 (RNase 7), a member of the RNase A superfamily, is a potent epithelial-derived protein that maintains human urinary tract sterility. RNase 7 expression is restricted to primates, limiting evaluation of its antimicrobial activity in vivo. Here we identified Ribonuclease 6 (RNase 6) as the RNase A Superfamily member present in humans and mice that is most conserved at the amino acid level relative to RNase 7. Like RNase 7, recombinant human and murine RNase 6 has potent antimicrobial activity against uropathogens. Quantitative real-time PCR and immunoblot analysis indicate that RNase 6 mRNA and protein are up-regulated in the human and murine urinary tract during infection. Immunostaining located RNase 6 to resident and infiltrating monocytes, macrophages, and neutrophils. Uropathogenic E. coli induces RNase 6 peptide expression in human CD14+ monocytes and murine bone marrow derived macrophages. Thus, RNase 6 is an inducible, myeloid-derived protein with markedly different expression from the epithelial-derived RNase 7 but with equally potent antimicrobial activity. Our studies suggest RNase 6 serves as an evolutionarily conserved antimicrobial peptide that participates in the maintenance of urinary tract sterility. PMID:25075772

  7. New aspects of HERG K⁺ channel function depending upon cardiac spatial heterogeneity.

    Directory of Open Access Journals (Sweden)

    Pen Zhang

    Full Text Available HERG K(+ channel, the genetic counterpart of rapid delayed rectifier K(+ current in cardiac cells, is responsible for many cases of inherited and drug-induced long QT syndromes. HERG has unusual biophysical properties distinct from those of other K(+ channels. While the conventional pulse protocols in patch-clamp studies have helped us elucidate these properties, their limitations in assessing HERG function have also been progressively noticed. We employed AP-clamp techniques using physiological action potential waveforms recorded from various regions of canine heart to study HERG function in HEK293 cells and identified several novel aspects of HERG function. We showed that under AP-clamp IHERG increased gradually with membrane repolarization, peaked at potentials around 20-30 mV more negative than revealed by pulse protocols and at action potential duration (APD to 60%-70% full repolarization, and fell rapidly at the terminal phase of repolarization. We found that the rising phase of IHERG was conferred by removal of inactivation and the decaying phase resulted from a fall in driving force, which were all determined by the rate of membrane repolarization. We identified regional heterogeneity and transmural gradient of IHERG when quantified with the area covered by IHERG trace. In addition, we observed regional and transmural differences of IHERG in response to dofetilide blockade. Finally, we characterized the influence of HERG function by selective inhibition of other ion currents. Based on our results, we conclude that the distinct biophysical properties of HERG reported by AP-clamp confer its unique function in cardiac repolarization thereby in antiarrhythmia and arrhythmogenesis.

  8. RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts.

    Science.gov (United States)

    Leuner, Beatrice; Ruhs, Stefanie; Brömme, Hans-Jürgen; Bierhaus, Angelika; Sel, Saadettin; Silber, Rolf-Edgar; Somoza, Veronika; Simm, Andreas; Nass, Norbert

    2012-10-01

    Advanced glycation end products (AGEs) are stable compounds formed from initial Maillard reaction products. They are considered as markers for ageing and often associated with age-related, degenerative diseases. Bread crust represents an established model for nutritional compounds rich in AGEs and is able to induce antioxidative defense genes such as superoxide dismutases and vanins in cardiac cells. The aim of this study was to investigate to what extend the receptor for AGEs (RAGE) contributes to this response. Signal transduction in response to bread crust extract was analysed in cardiac fibroblasts derived from C57/B6-NCrl (RAGE +/+) and the corresponding RAGE-knock out C57/B6-NCrl mouse strain (RAGE -/-). Activation of superoxide dismutases in animals was then analysed upon bread crust feeding in these two mice strains. Cardiac fibroblasts from RAGE -/- mice did not express RAGE, but the expression of AGER-1 and AGER-3 was up-regulated, whereas the expression of SR-B1 was down-regulated. RAGE -/- cells were less sensitive to BCE in terms of MAP-kinase phosphorylation and NF-κB reporter gene activation. Bread crust extract induced mRNA levels of MnSOD and Vnn-1 were also reduced in RAGE -/- cells, whereas Vnn-3 mRNA accumulation seemed to be RAGE receptor independent. In bread crust feeding experiments, RAGE -/- mice did not exhibit an activation of MnSOD-mRNA and -protein accumulation as observed for the RAGE +/+ animals. In conclusion, RAGE was clearly a major factor for the induction of antioxidant defense signals derived from bread crust in cardiac fibroblast and mice. Nevertheless higher doses of bread crust extract could overcome the RAGE dependency in cell cultures, indicating that additional mechanisms are involved in BCE-mediated activation of SOD and vanin expression.

  9. Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sandstede, J.; Lipke, C.; Beer, M.; Hofmann, S.; Pabst, T.; Kenn, W.; Hahn, D.; Neubauer, S.

    2000-01-01

    We examined possible age- and gender-specific differences in the function and mass of left (LV) and right (RV) ventricles in 36 healthy volunteers using cine gradient-recalled echo magnetic resonance imaging. Subjects were divided into four groups (nine men and nine women in each): men aged under 45 years (32 ± 7), women aged under 45 (27 ± 6), men aged over 45 (59 ± 8), and women aged over 45 (57 ± 9). Functional analysis of cardiac volume and mass and of LV wall motion was performed by manual segmentation of the endocardial and epicardial borders of the end-diastolic and end-systolic frame; both absolute and normalized (per square meter body surface area) values were evaluated. With age there was a significant decrease in both absolute and normalized LV and RV chamber volumes (EDV, ESV), while LV and RV masses remained unchanged. Gender-specific differences were found in cardiac mass and volume (for men and women, respectively: LV mass, 155 ± 18 and 110 ± 16 g; LV EDV, 118 ± 27 and 96 ± 21 ml; LV ESV, 40 ± 13 and 29 ± 9 ml; RV mass, 52 ± 10 and 39 ± 5 g; RV EDV, 131 ± 28 and 100 ± 23 ml; RV ESV, 53 ± 17 and 33 ± 15 ml). Normalization to body surface area eliminated differences in LV volumes but not those in LV mass, RV mass, or RV function. Functional parameters such as cardiac output and LV ejection fraction showed nonsignificant or only slight differences and were thus largely independent of age and gender. Intra- and interobserver variability ranged between 1.4 % and 5.9 % for all parameters. Cine magnetic resonance imaging thus shows age- and gender-specific differences in cardiac function, and therefore the evaluation of cardiac function in patients should consider age- and gender-matched normative values. (orig.)

  10. Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume.

    Science.gov (United States)

    Grassini, Daniela R; Lagendijk, Anne K; De Angelis, Jessica E; Da Silva, Jason; Jeanes, Angela; Zettler, Nicole; Bower, Neil I; Hogan, Benjamin M; Smith, Kelly A

    2018-05-11

    Atrial natriuretic peptide ( nppa/anf ) and brain natriuretic peptide ( nppb/bnp ) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy however their genomic location in cis has impeded formal analysis. Using genome-editing, we generated mutants for nppa and nppb and found single mutants indistinguishable from wildtype whereas nppa / nppb double mutants display heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4 , tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for Hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirm cardiac jelly expansion in nppa / nppb double mutants. Finally, bmp4 knockdown rescues the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber. © 2018. Published by The Company of Biologists Ltd.

  11. Cardiac phenotyping in ex vivo murine embryos using microMRI.

    Science.gov (United States)

    Cleary, Jon O; Price, Anthony N; Thomas, David L; Scambler, Peter J; Kyriakopoulou, Vanessa; McCue, Karen; Schneider, Jürgen E; Ordidge, Roger J; Lythgoe, Mark F

    2009-10-01

    Microscopic MRI (microMRI) is an emerging technique for high-throughput phenotyping of transgenic mouse embryos, and is capable of visualising abnormalities in cardiac development. To identify cardiac defects in embryos, we have optimised embryo preparation and MR acquisition parameters to maximise image quality and assess the phenotypic changes in chromodomain helicase DNA-binding protein 7 (Chd7) transgenic mice. microMRI methods rely on tissue penetration with a gadolinium chelate contrast agent to reduce tissue T(1), thus improving signal-to-noise ratio (SNR) in rapid gradient echo sequences. We investigated 15.5 days post coitum (dpc) wild-type CD-1 embryos fixed in gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) solutions for either 3 days (2 and 4 mM) or 2 weeks (2, 4, 8 and 16 mM). To assess penetration of the contrast agent into heart tissue and enable image contrast simulations, T(1) and T(*) (2) were measured in heart and background agarose. Compared to 3-day, 2-week fixation showed reduced mean T(1) in the heart at both 2 and 4 mM concentrations (p < 0.0001), resulting in calculated signal gains of 23% (2 mM) and 29% (4 mM). Using T(1) and T(*) (2) values from 2-week concentrations, computer simulation of heart and background signal, and ex vivo 3D gradient echo imaging, we demonstrated that 2-week fixed embryos in 8 mM Gd-DTPA in combination with optimised parameters (TE/TR/alpha/number of averages: 9 ms/20 ms/60 degrees /7) produced the largest SNR in the heart (23.2 +/- 1.0) and heart chamber contrast-to-noise ratio (CNR) (27.1 +/- 1.6). These optimised parameters were then applied to an MRI screen of embryos heterozygous for the gene Chd7, implicated in coloboma of the eye, heart defects, atresia of the choanae, retardation of growth, genital/urinary abnormalities, ear abnormalities and deafness (CHARGE) syndrome (a condition partly characterised by cardiovascular birth defects in humans). A ventricular septal defect was readily identified

  12. Multimodal Imaging for In Vivo Evaluation of Induced Pluripotent Stem Cells in a Murine Model of Heart Failure.

    Science.gov (United States)

    Rojas, Sebastian V; Meier, Martin; Zweigerdt, Robert; Eckardt, Dominik; Rathert, Christian; Schecker, Natalie; Schmitto, Jan D; Rojas-Hernandez, Sara; Martin, Ulrich; Kutschka, Ingo; Haverich, Axel; Martens, Andreas

    2017-02-01

    Myocardial stem cell therapy in heart failure is strongly dependent on successful cellular transfer, engraftment, and survival. Moreover, massive cell loss directly after intramyocardial injection is commonly observed, generating the need for efficient longitudinal monitoring of transplanted cells in order to develop more efficient transplantation techniques. Therefore, the aim of the present study was to assess viability and cardiac retention of induced pluripotent stem cells after intramyocardial delivery using in vivo bioluminescence analysis (BLI) and magnetic resonance imaging (MRI). Murine induced pluripotent stem cells (iPSCs) were transfected for luciferase reporter gene expression and labeled intracellularly with supraparamagnetic iron oxide particles. Consequently, 5 × 10 5 cells were transplanted intramyocardially following left anterior descending coronary artery ligation in mice. Cardiac iPSCs were detected using BLI and serial T2* sequences by MRI in a 14-day follow-up. Additionally, infarct extension and left ventricular (LV) function were assessed by MRI. Controls received the same surgical procedure without cell injection. MRI sequences showed a strong MRI signal of labeled iPSCs correlating with myocardial late enhancement, demonstrating engraftment in the infarcted area. Mean iPSC volumes were 4.2 ± 0.4 mm 3 at Day 0; 3.1 ± 0.4 mm 3 at Day 7; and 5.1 ± 0.8 mm 3 after 2 weeks. Thoracic BLI radiance decreased directly after injection from 1.0 × 10 6  ± 4.2 × 10 4 (p/s/cm 2 /sr) to 1.0 × 10 5  ± 4.9 × 10 3 (p/s/cm 2 /sr) on Day 1. Afterward, BLI radiance increased to 1.1 × 10 6  ± 4.2 × 10 4 (p/s/cm 2 /sr) 2 weeks after injection. Cardiac graft localization was confirmed by ex vivo BLI analysis and histology. Left ventricular ejection fraction was higher in the iPSC group (30.9 ± 0.9%) compared to infarct controls (24.0 ± 2.1%; P stem cell fate in vivo, enabling cardiac graft localization with

  13. Simvastatin Treatment Improves Survival in a Murine Model of Burn Sepsis

    Science.gov (United States)

    Beffa, David C; Fischman, Alan J.; Fagan, Shawn P.; Hamrahi, Victoria F.; Kaneki, Masao; Yu, Yong-Ming; Tompkins, Ronald G.; Carter, Edward A.

    2014-01-01

    Infection is the most common and most serious complication of a major burn injury related to burn size. Despite improvements in antimicrobial therapies sepsis still accounts for 50–60% of deaths in burn patients. Given the acute onset and unpredictable nature of sepsis, primary prevention was rarely attempted in its management. However, recent studies have demonstrated that statin treatment can decrease mortality is a murine model of sepsis by preservation of cardiac function and reversal of inflammatory alterations. In addition, it has been shown that treatment with statins is associated with reduced incidence of sepsis in human patients. In the current study groups of CD1 male mice (n=12) were anesthetized and subjected to a dorsal 30% TBSA scald burn injury. Starting 2 hours post burn, the animals were divided into a treatment group receiving 0.2 µ/g simvastatin or a sham group receiving placebo. Simvastatin and placebo were administered by intraperitoneal injection with two dosing regimens; once daily and every 12 hours. On Post burn day 7 cecal ligation and puncture with a 21-gauge needle was performed under ketamine/xylazine anesthesia and the two different dosing schedules were continued. A simvastatin dose dependant improvement in survival was observed in the burn sepsis model. PMID:21145172

  14. Functional Near-Infrared Fluorescence Imaging for Cardiac Surgery and Targeted Gene Therapy

    Directory of Open Access Journals (Sweden)

    Akira Nakayama

    2002-10-01

    Full Text Available Cardiac revascularization is presently performed without realtime visual assessment of myocardial blood flow or perfusion. Moreover, gene therapy of the heart cannot, at present, be directed to specific territories at risk for myocardial infarction. We have developed a surgical imaging system that exploits the low autofluorescence, deep tissue penetration, low tissue scatter, and invisibility of near-infrared (NIR fluorescent light. By completely isolating visible and NIR light paths, one is able to visualize, simultaneously, the anatomy and/or function of the heart, or any desired tissue. In rat model systems, we demonstrate that the heptamethine indocyanine-type NIR fluorophores IR-786 and the carboxylic acid form of IRDye78 can be injected intravenously in the living animal to provide real-time visual assessment of myocardial blood flow or perfusion intraoperatively. This imaging system may prove useful for the refinement of revascularization techniques, and for the administration of cardiac gene therapy.

  15. Cardiac retransplantation is an efficacious therapy for primary cardiac allograft failure

    Directory of Open Access Journals (Sweden)

    Acker Michael A

    2008-05-01

    Full Text Available Abstract Background Although orthotopic heart transplantation has been an effective treatment for end-stage heart failure, the incidence of allograft failure has increased, necessitating treatment options. Cardiac retransplantation remains the only viable long-term solution for end-stage cardiac allograft failure. Given the limited number of available donor hearts, the long term results of this treatment option need to be evaluated. Methods 709 heart transplants were performed over a 20 year period at our institution. Repeat cardiac transplantation was performed in 15 patients (2.1%. A retrospective analysis was performed to determine the efficacy of cardiac retransplantation. Variables investigated included: 1 yr and 5 yr survival, length of hospitalization, post-operative complications, allograft failure, recipient and donor demographics, renal function, allograft ischemic time, UNOS listing status, blood group, allograft rejection, and hemodynamic function. Results Etiology of primary graft failure included transplant arteriopathy (n = 10, acute rejection (n = 3, hyperacute rejection (n = 1, and a post-transplant diagnosis of metastatic melanoma in the donor (n = 1. Mean age at retransplantation was 45.5 ± 9.7 years. 1 and 5 year survival for retransplantation were 86.6% and 71.4% respectively, as compared to 90.9% and 79.1% for primary transplantation. Mean ejection fraction was 67.3 ± 12.2% at a mean follow-up of 32.6 ± 18.5 mos post-retransplant; follow-up biopsy demonstrated either ISHLT grade 1A or 0 rejection (77.5 ± 95.7 mos post-transplant. Conclusion Cardiac retransplantation is an efficacious treatment strategy for cardiac allograft failure.

  16. Exercise and Type 2 Diabetes Mellitus : Changes in Tissue-specific Fat Distribution and Cardiac Function

    NARCIS (Netherlands)

    Jonker, Jacqueline T.; de Mol, Pieter; de Vries, Suzanna T.; Widya, Ralph L.; Hammer, Sebastiaan; van Schinkel, Linda D.; van der Meer, Rutger W.; Gans, Rijk O. B.; Webb, Andrew G.; Kan, Hermien E.; de Koning, Eelco J. P.; Bilo, Henk J. G.; Lamb, Hildo J.

    2013-01-01

    Purpose: To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Materials and Methods: Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics

  17. Cardiac-specific expression of the tetracycline transactivator confers increased heart function and survival following ischemia reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Laila Elsherif

    Full Text Available Mice expressing the tetracycline transactivator (tTA transcription factor driven by the rat α-myosin heavy chain promoter (α-MHC-tTA are widely used to dissect the molecular mechanisms involved in cardiac development and disease. However, these α-MHC-tTA mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury in both in vitro and in vivo models in the absence of associated cardiac hypertrophy or remodeling. Cardiac function, as assessed by echocardiography, did not differ between α-MHC-tTA and control animals, and there were no noticeable differences observed between the two groups in HW/TL ratio or LV end-diastolic and end-systolic dimensions. Protection against ischemia/reperfusion injury was assessed using isolated perfused hearts where α-MHC-tTA mice had robust protection against ischemia/reperfusion injury which was not blocked by pharmacological inhibition of PI3Ks with LY294002. Furthermore, α-MHC-tTA mice subjected to coronary artery ligation exhibited significantly reduced infarct size compared to control animals. Our findings reveal that α-MHC-tTA transgenic mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury similar to cardiac pre- and post-conditioning effects. However, in contrast to classical pre- and post-conditioning, the α-MHC-tTA phenotype is not inhibited by the classic preconditioning inhibitor LY294002 suggesting involvement of a non-PI3K-AKT signaling pathway in this phenotype. Thus, further study of the α-MHC-tTA model may reveal novel molecular targets for therapeutic intervention during ischemic injury.

  18. Reduced capacity of cardiac efferent sympathetic neurons to release noradrenaline and modify cardiac function in tachycardia-induced canine heart failure.

    Science.gov (United States)

    Cardinal, R; Nadeau, R; Laurent, C; Boudreau, G; Armour, J A

    1996-09-01

    To investigate the capacity of efferent sympathetic neurons to modulate the failing heart, stellate ganglion stimulation was performed in dogs with biventricular heart failure induced by rapid ventricular pacing (240 beats/min) for 4-6 weeks. Less noradrenaline was released from cardiac myoneural junctions into coronary sinus blood in response to left stellate ganglion stimulation in anesthetized failing heart preparations (582 pg/mL, lower and upper 95% confidence intervals of 288 and 1174 pg/mL, n = 19) compared with healthy heart preparations (6391 pg/mL, 95% confidence intervals of 4180 and 9770 pg/mL, n = 14; p < 0.001). There was substantial adrenaline extraction by failing hearts (49 +/- 6%), although it was slightly lower than in healthy heart preparations (65 +/- 9%, p = 0.055). In contrast with healthy heart preparations, no net release of adrenaline occurred during stellate ganglion stimulation in any of the failing heart preparations, and ventricular tissue levels of adrenaline fell below the sensitivity limit of the HPLC technique. In failing heart preparations, maximal electrical stimulation of right or left stellate ganglia resulted in minimal augmentation of left ventricular intramyocardial (17%) and chamber (12%) systolic pressures. These indices were augmented by 145 and 97%, respectively, following exogenous noradrenaline administration. Thus, the cardiac efferent sympathetic neurons' reduced capacity to release noradrenaline and modify cardiac function can contribute to reduction of sympathetic support to the failing heart.

  19. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  20. Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation.

    Directory of Open Access Journals (Sweden)

    Esra Cagavi

    Full Text Available As heart failure due to myocardial infarction remains a leading cause of morbidity worldwide, cell-based cardiac regenerative therapy using cardiac progenitor cells (CPCs could provide a potential treatment for the repair of injured myocardium. As adult CPCs may have limitations regarding tissue accessibility and proliferative ability, CPCs derived from embryonic stem cells (ESCs could serve as an unlimited source of cells with high proliferative ability. As one of the CPCs that can be derived from embryonic stem cells, Isl1 expressing cardiac progenitor cells (Isl1-CPCs may serve as a valuable source of cells for cardiac repair due to their high cardiac differentiation potential and authentic cardiac origin. In order to generate an unlimited number of Isl1-CPCs, we used a previously established an ESC line that allows for isolation of Isl1-CPCs by green fluorescent protein (GFP expression that is directed by the mef2c gene, specifically expressed in the Isl1 domain of the anterior heart field. To improve the efficiency of cardiac differentiation of Isl1-CPCs, we studied the role of Bmp4 in cardiogenesis of Isl1-CPCs. We show an inductive role of Bmp directly on cardiac progenitors and its enhancement on early cardiac differentiation of CPCs. Upon induction of Bmp4 to Isl1-CPCs during differentiation, the cTnT+ cardiomyocyte population was enhanced 2.8±0.4 fold for Bmp4 treated CPC cultures compared to that detected for vehicle treated cultures. Both Bmp4 treated and untreated cardiomyocytes exhibit proper electrophysiological and calcium signaling properties. In addition, we observed a significant increase in Tbx5 and Tbx20 expression in differentiation cultures treated with Bmp4 compared to the untreated control, suggesting a link between Bmp4 and Tbx genes which may contribute to the enhanced cardiac differentiation in Bmp4 treated cultures. Collectively these findings suggest a cardiomyogenic role for Bmp4 directly on a pure population of

  1. β-adrenergic receptor-dependent alterations in murine cardiac transcript expression are differentially regulated by gefitinib in vivo.

    Directory of Open Access Journals (Sweden)

    Jennifer A Talarico

    Full Text Available β-adrenergic receptor (βAR-mediated transactivation of epidermal growth factor receptor (EGFR has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute βAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the βAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib, including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, βAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib.

  2. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.

    Science.gov (United States)

    Liu, Xifu; Gu, Xinhua; Li, Zhaoming; Li, Xinyan; Li, Hui; Chang, Jianjie; Chen, Ping; Jin, Jing; Xi, Bing; Chen, Denghong; Lai, Donna; Graham, Robert M; Zhou, Mingdong

    2006-10-03

    We evaluated the therapeutic potential of a recombinant 61-residue neuregulin-1 (beta2a isoform) receptor-active peptide (rhNRG-1) in multiple animal models of heart disease. Activation of the erbB family of receptor tyrosine kinases by rhNRG-1 could provide a treatment option for heart failure, because neuregulin-stimulated erbB2/erbB4 heterodimerization is not only critical for myocardium formation in early heart development but prevents severe dysfunction of the adult heart and premature death. Disabled erbB-signaling is also implicated in the transition from compensatory hypertrophy to failure, whereas erbB receptor-activation promotes myocardial cell growth and survival and protects against anthracycline-induced cardiomyopathy. rhNRG-1 was administered IV to animal models of ischemic, dilated, and viral cardiomyopathy, and cardiac function and survival were evaluated. Short-term intravenous administration of rhNRG-1 to normal dogs and rats did not alter hemodynamics or cardiac contractility. In contrast, rhNRG-1 improved cardiac performance, attenuated pathological changes, and prolonged survival in rodent models of ischemic, dilated, and viral cardiomyopathy, with the survival benefits in the ischemic model being additive to those of angiotensin-converting enzyme inhibitor therapy. In addition, despite continued pacing, rhNRG-1 produced global improvements in cardiac function in a canine model of pacing-induced heart failure. These beneficial effects make rhNRG-1 promising as a broad-spectrum therapeutic for the treatment of heart failure due to a variety of common cardiac diseases.

  3. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6.

    Science.gov (United States)

    Sirish, Padmini; Ledford, Hannah A; Timofeyev, Valeriy; Thai, Phung N; Ren, Lu; Kim, Hyo Jeong; Park, Seojin; Lee, Jeong Han; Dai, Gu; Moshref, Maryam; Sihn, Choong-Ryoul; Chen, Wei Chun; Timofeyeva, Maria Valeryevna; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T; Chiamvimonvat, Nipavan; Chen-Izu, Ye; Yamoah, Ebenezer N; Zhang, Xiao-Dong

    2017-10-01

    Intracellular pH (pH i ) is critical to cardiac excitation and contraction; uncompensated changes in pH i impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pH i regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl - /HCO 3 - exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pH i , but also cardiac excitability. To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout ( Slc26a6 -/ - ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca 2+ transient and sarcoplasmic reticulum Ca 2+ load, together with decreased sarcomere shortening in Slc26a6 -/ - cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pH i is elevated in Slc26a6 -/ - cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl - /HCO 3 - exchange activities of Slc26a6. Moreover, Slc26a6 -/ - mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl - /HCO 3 - transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pH i , excitability, and contractility. pH i is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6 -/ - mice. © 2017 American Heart Association, Inc.

  4. Natriuretic peptides in developing medaka embryos: implications in cardiac development by loss-of-function studies.

    Science.gov (United States)

    Miyanishi, Hiroshi; Okubo, Kataaki; Nobata, Shigenori; Takei, Yoshio

    2013-01-01

    Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP), and their receptor, guanylyl cyclase (GC)-A have attracted attention of many basic and clinical researchers because of their potent renal and cardiovascular actions. In this study, we used medaka, Oryzias latipes, as a model species to pursue the physiological functions of NPs because it is a suitable model for developmental analyses. Medaka has two ligands, BNP and C-type NP3 (CNP3) (but not ANP), that have greater affinity for the two O. latipes GC-A receptors (OLGC), OLGC7 and OLGC2, respectively. CNP3 is the ancestral molecule of cardiac NPs. Initially, we examined developmental expression of cardiac NP/receptor combinations, BNP/OLGC7 and CNP3/OLGC2, using quantitative real-time PCR and in situ hybridization. BNP and CNP3 mRNA increased at stages 25 (onset of ventricular formation) and 22 (appearance of heart anlage), respectively, whereas both receptor mRNAs increased at as early as stage 12. BNP/OLGC7 transcripts were found in arterial/ventricular tissues and CNP3/OLGC2 transcripts in venous/atrial tissues by in situ hybridization. Thus, BNP and CNP3 can act locally on cardiac myocytes in a paracrine/autocrine fashion. Double knockdown of BNP/OLGC7 genes impaired ventricular development by causing hypoplasia of ventricular myocytes as evidenced by reduced bromodeoxyuridine incorporation. CNP3 knockdown induced hypertrophy of atria and activated the renin-angiotensin system. Collectively, it appears that BNP is important for normal ventricular, whereas CNP3 is important for normal atrial development and performance, a role usually taken by ANP in other vertebrates. The current study provides new insights into the role of cardiac NPs in cardiac development in vertebrates.

  5. Physiologic stress interventions in cardiac imaging

    International Nuclear Information System (INIS)

    Buda, A.J.

    1985-01-01

    Physiologic stress interventions are designed to assess the reserve capability of coronary flow and myocardial function. In the normal individual, a sufficiently intense physiologic stress may increase coronary flow and cardiac output by 500% to 600%. However, in patients with cardiac disease, these reserve responses may be absent, or considerably blunted. Thus, physiologic stress testing has proved extremely helpful in detecting cardiac abnormalities when resting cardiac function appears normal. Although dynamic exercise remains the standard approach to physiologic stress testing, a number of other interventions have been used, including: (1) isometric exercise, (2) atrial pacing, (3) cold pressor testing, (4) postextrasystolic potentiation, (5) volume loading, and (6) negative intrathoracic pressure. Each of these may be considered an alternative physiologic intervention whenever dynamic exercise is not feasible. These alternative approaches are important since, in our experience, 20% to 30% of subjects are unable to perform dynamic exercise, or exercise inadequately to produce a sufficiently intense cardiac stress. This chapter reviews physiologic considerations, indications, contraindications, protocols, and results of these physiologic stress interventions when used in combination with cardiac radionuclide procedures

  6. Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11[C]-hydroxy-ephedrine and PET/CT

    International Nuclear Information System (INIS)

    Capitanio, Selene; Nanni, Cristina; Marini, Cecilia; Bonfiglioli, Rachele; Martignani, Cristian; Dib, Bassam; Fuccio, Chiara; Boriani, Giuseppe; Picori, Lorena; Boschi, Stefano; Morbelli, Silvia

    2015-01-01

    Introduction: Cardiac resynchronization therapy (CRT) is an accepted treatment in patients with end-stage heart failure. PET permits the absolute quantification of global and regional homogeneity in cardiac sympathetic innervation. We evaluated the variation of cardiac adrenergic activity in patients with idiopathic heart failure (IHF) disease (NYHA III–IV) after CRT using 11 C-hydroxyephedrine (HED) PET/CT. Methods: Ten IHF patients (mean age = 68; range = 55–81; average left ventricular ejection fraction 26 ± 4%) implanted with a resynchronization device underwent three HED PET/CT studies: PET 1 one week after inactive device implantation; PET 2, one week after PET 1 under stimulated rhythm; PET 3, at 3 months under active CRT. A dedicated software (PMOD 3.4 version) was used to estimate global and regional cardiac uptake of HED through 17 segment polar maps. Results: At baseline, HED uptake was heterogeneously distributed throughout the left ventricle with a variation coefficient of 18 ± 5%. This variable markedly decreased after three months CRT (12 ± 5%, p < 0.01). Interestingly, subdividing the 170 myocardial segments (17 segments of each patient multiplied by the number of patients) into two groups, according to the median value of tracer uptake expressed as % of maximal myocardial uptake (76%), we observed a different behaviour depending on baseline innervation: HED uptake significantly increased only in segments with “impaired innervation” (SUV 2.61 ± 0.92 at PET1 and 3.05 ± 1.67 at three months, p < 0.01). Conclusion: As shown by HED PET/CT uptake and distribution, improvement in homogeneity of myocardial neuronal function reflected a selective improvement of tracer uptake in regions with more severe neuronal damage. Advances in Knowledge: These finding supported the presence of a myocardial regional variability in response of cardiac sympathetic system to CRT and a systemic response involving remote tissues with rich adrenergic innervation

  7. Functions of PDE3 Isoforms in Cardiac Muscle

    Science.gov (United States)

    Movsesian, Matthew; Ahmad, Faiyaz

    2018-01-01

    Isoforms in the PDE3 family of cyclic nucleotide phosphodiesterases have important roles in cyclic nucleotide-mediated signalling in cardiac myocytes. These enzymes are targeted by inhibitors used to increase contractility in patients with heart failure, with a combination of beneficial and adverse effects on clinical outcomes. This review covers relevant aspects of the molecular biology of the isoforms that have been identified in cardiac myocytes; the roles of these enzymes in modulating cAMP-mediated signalling and the processes mediated thereby; and the potential for targeting these enzymes to improve the profile of clinical responses. PMID:29415428

  8. Echocardiographic Evaluation of Pulmonary Pressures and Right Ventricular Function after Pediatric Cardiac Surgery: A Simple Approach for the Intensivist

    Directory of Open Access Journals (Sweden)

    Maurice Beghetti

    2017-08-01

    Full Text Available Pulmonary hypertension (PH is diagnosed using cardiac catheterization and is defined as an elevation of mean pulmonary artery pressure (PAP greater than 25 mmHg. Although invasive hemodynamics remains the gold standard and is mandatory for disease confirmation, transthoracic echocardiography (TTE is an extremely useful non-invasive and widely available tool that allows for screening and follow-up, in particular, in the acute setting. TTE may be a valuable alternative, allowing for direct measurement and/or indirect assessment of PAP. Because of the complex geometric shape and pattern of contraction of the right ventricle (RV, as well as the inherent complexity of cardiac repair, no single view or measurement can provide definite information on RV function and PAP and/or pulmonary vascular resistance. In addition, specific training and expertise may be necessary to obtain the views and measurements required. Some simple measurements may be of help when rapid evaluation is mandatory and potentially life saving: the assessment of tricuspid and/or pulmonary valve regurgitant jet and the use of the Bernoulli equation allow for measurement of PAP. Measurements such as the analysis of the pulmonary Doppler wave flow, the septal curvature, or the eccentricity index, assessing ventricular interdependence, are useful for indirect assessment. A four-chamber view of the RV gives information on its size, hypertrophy, function (fractional area change, and tricuspid annular plane systolic excursion as an evaluation of the longitudinal function. Based on these simple measurements, TTE can provide detection of PH, measurement or estimation of PAP, and assessment of cardiac function. TTE is also of importance in follow up of PH as well as providing an assessment of therapeutic strategies in the postoperative setting of cardiac surgery. However, PAP may be misleading as it is dependent on cardiac output and requires accurate measurements. In the presence of

  9. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    Science.gov (United States)

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541

  10. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Fangyun Tian

    2018-02-01

    Full Text Available Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG and electroencephalogram (EEG signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.

  11. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    Science.gov (United States)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  12. [Sodium hydrosulfide improves cardiac functions and structures in rats with chronic heart failure].

    Science.gov (United States)

    Li, Xiao-hui; Zhang, Chao-ying; Zhang, Ting

    2011-11-22

    To explore the effects of sodium hydrosulfide (NaHS), a hydrogen sulphide (H(2)S) donor, on cardiac functions and structures in rats with chronic heart failure induced by volume overload and examine its influence on cardiac remodelling. A total of 47 SD rats (120 - 140 g) were randomly divided into 5 groups:shunt group (n = 11), sham group (n = 8), shunt + NaHS group (n = 10), sham + NaHS group (n = 8) and shunt + phentolamine group (n = 10). The rat model of chronic heart failure was induced by abdominal aorta-inferior vena cava puncture. At Week 8 post-operation, hemodynamic parameters, microstructures and ultrastructures of myocardial tissues were analyzed. Extracellular collagen content in myocardial tissues was analyzed after Sirius red staining. Right ventricular hydroxyproline concentration was determined and compared. At Week 8 post-operation, compared with the sham operation and shunt + NaHS groups, the shunt group showed significantly increased right ventricular systolic pressure (RVSP) and right ventricular end diastolic pressure (RVEDP) (mm Hg: 35.2 ± 3.9 vs 21.4 ± 3.7 and 28.1 ± 2.7, 32 ± 5 vs 21 ± 4 and 26 ± 4, all P vs 2336 ± 185 and 1835 ± 132, 1331 ± 107 vs 2213 ± 212 and 1768 ± 116, all P non-uniformly in the shunt group, some fiber mitochondria were highly swollen and contained vacuoles. And sarcoplasmic reticulum appeared slightly dilated. Polarized microscopy indicated that, collagen content (particularly type-I collagen) increased in the shunt group compared with the sham operation group. Additionally, compared with the shunt group, the shunt and NaHS treatment groups showed an amelioration of myocardial damage, an alleviation of myocardial fiber changes and a decrease in myocardial collagen content (particularly type-I collagen). Compared with the sham operation and shunt + NaHS groups, the shunt group displayed increased right ventricular hydroxyproline (mg×g(-1)·pro: 1.32 ± 0.25 vs 0.89 ± 0.18 and 0.83 ± 0.19, all P < 0

  13. Cardiac CT

    International Nuclear Information System (INIS)

    Dewey, Marc

    2011-01-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  14. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  15. Different concentrations of kaempferol distinctly modulate murine embryonic stem cell function.

    Science.gov (United States)

    Correia, Marcelo; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Sousa, Maria I; Ramalho-Santos, João

    2016-01-01

    Kaempferol (3,4',5,7-tetrahydroxyflavone) is a natural flavonoid with several beneficial and protective effects. It has been demonstrated that kaempferol has anticancer properties, particularly due to its effects on proliferation, apoptosis and the cell cycle. However, possible effects on pluripotent embryonic stem cell function have not yet been addressed. Embryonic stem cells have the ability to self-renew and to differentiate into all three germ layers with potential applications in regenerative medicine and in vitro toxicology. We show that exposure of murine embryonic stem cells (mESC) to high concentrations of kaempferol (200 μM) leads to decreased cell numbers, although the resulting smaller cell colonies remain pluripotent. However, lower concentrations of this compound (20 μM) increase the expression of pluripotency markers in mESCs. Mitochondrial membrane potential and mitochondrial mass are not affected, but a dose-dependent increase in apoptosis takes place. Moreover, mESC differentiation is impaired by kaempferol, which was not related to apoptosis induction. Our results show that low concentrations of kaempferol can be beneficial for pluripotency, but inhibit proper differentiation of mESCs. Additionally, high concentrations induce apoptosis and increase mitochondrial reactive oxygen species (ROS). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis

    NARCIS (Netherlands)

    Frank, Deborah U.; Carter, Kandis L.; Thomas, Kirk R.; Burr, R. Michael; Bakker, Martijn L.; Coetzee, William A.; Tristani-Firouzi, Martin; Bamshad, Michael J.; Christoffels, Vincent M.; Moon, Anne M.

    2012-01-01

    TBX3 is critical for human development: mutations in TBX3 cause congenital anomalies in patients with ulnar-mammary syndrome. Data from mice and humans suggest multiple roles for Tbx3 in development and function of the cardiac conduction system. The mechanisms underlying the functional development,

  17. Cardiac magnetic resonance imaging in evaluation of anatomical structure and function of the ventricles

    International Nuclear Information System (INIS)

    Suzuki, Jun-ichi; Usui, Masahiro; Takenaka, Katsu

    1990-01-01

    Cardiac magnetic resonance imaging (MRI) is being widely employed for evaluation of cardiovascular anatomies and functions. However, the indications for cardiac MRI to obtain information which cannot be obtained using other conventional methods have not yet been determined. To demonstrate the usefulness of MRI in delineating the apex of the left ventricle and free wall of the right ventricle, end-diastolic short axis MRI images were obtained in 20 patients with apical hypertrophy and in 9 normal volunteers. To compare the accuracy of estimations of left ventricular volumes obtained using the modified Simpson's method of MRI with that using the MRI area length method, 19 patients, in whom left ventriculography had been performed, were studied. The apex of the left ventricle was evaluated circumferentially and distribution of hypertrophied muscles was defined. Sixty-five percent of the length of the right ventricular free wall was clearly delineated. Correlation coefficients of the ejection fraction between MRI and angiography were 0.85 with the modified Simpson's method of MRI, and 0.62 with the area length method of MRI. Three themes were chosen to demonstrate good clinical indications for cardiac MRI. (author)

  18. [Cardiac cachexia].

    Science.gov (United States)

    Miján, Alberto; Martín, Elvira; de Mateo, Beatriz

    2006-05-01

    Chronic heart failure (CHF), especially affecting the right heart, frequently leads to malnutrition. If the latter is severe and is combined to other factors, it may lead to cardiac cachexia. This one is associated to increased mortality and lower survival of patients suffering from it. The causes of cardiac cachexia are diverse, generally associated to maintenance of a negative energy balance, with increasing evidence of its multifactorial origin. Neurohumoral, inflammatory, immunological, and metabolic factors, among others, are superimposed in the patient with CHF, leading to involvement and deterioration of several organs and systems, since this condition affects both lean (or active cellular) mass and adipose and bone tissue osteoporosis. Among all, the most pronounced deterioration may be seen at skeletal muscle tissue, at both structural and functional levels, the heart not being spared. As for treatment, it should be based on available scientific evidence. Assessment of nutritional status of any patient with CHF is a must, with the requirement of nutritional intervention in case of malnutrition. In this situation, especially if accompanied by cardiac cachexia, it is required to modify energy intake and oral diet quality, and to consider the indication of specific complementary or alternative artificial nutrition. Besides, the causal relationship of the beneficial role of moderate physical exertion is increasing, as well as modulation of metabolic and inflammatory impairments observed in cardiac cachexia with several drugs, leading to a favorable functional and structural response in CHF patients.

  19. Automated Segmentation of Cardiac Magnetic Resonance Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...

  20. Use of I-123 MIBG cardiac scintigraphy to assess the impact of carvedilol on cardiac adrenergic neuronal function in childhood dilated cardiomyopathy; Interet de la scintigraphie cardiaque a l'I-123 MIBG pour evaluer l'impact du carvedilol sur la fonction neuronale adrenergique cardiaque dans les myocardiopathies dilatees de l'enfant

    Energy Technology Data Exchange (ETDEWEB)

    Maunoury, C. [Hopital Europeen Georges Pompidou (HEGP), Dept. de Physiologie et Radio-Isotopes, 75 - Paris (France); Acar, P. [Centre Hospitalier Universitaire, Service de Cardiologie Pediatrique, Hopital des Enfants, 31 - Toulouse (France); Sidi, D. [Centre Hospitalier Universitaire Necker-Enfants-Malades, 75 - Paris (France)

    2006-04-15

    I-123 MIBG cardiac scintigraphy is a useful tool to assess cardiac adrenergic neuronal function, which is impaired in children with dilated cardiomyopathy (DCM). In adults with DCM, long-term treatment with carvedilol improves both cardiac adrenergic neuronal function and left ventricular function. The aim of this prospective study was to evaluate the impact of carvedilol on cardiac adrenergic neuronal function and on left ventricular function in seventeen patients (11 female, 6 male, mean age 39 {+-} 57 months, range 1 - 168 months) with DCM. All patients underwent I-123 MIBG cardiac scintigraphy and equilibrium radio-nuclide angiography before and after a 6 month period of carvedilol therapy. A static anterior view of the chest was acquired 4 hours after intravenous injection of 20 to 75 MBq of I-123 MIBG. Cardiac neuronal uptake of I-123 MIBG was measured using the heart to mediastinum count ratio (HMR). Radionuclide left ventricular ejection fraction (LVEF) was assessed following a standard protocol. There was no major cardiac events (death or transplantation) during the follow-up period. I-123 MIBG cardiac uptake and left ventricular function respectively increased by 38% and 65% after 6 months of treatment with carvedilol (HMR 223 {+-} 49% vs 162 {+-} 26%, p < 0.0001 and LVEF = 43 {+-} 17% vs 26 {+-} 11%, p < 0.0001). Carvedilol can improve cardiac adrenergic neuronal function and left ventricular function in children with DCM. Further studies are needed to assess the relationship between improvement in I-123 MIBG cardiac uptake and the beneficial effects of carvedilol on morbidity and mortality. (authors)

  1. The specific case: cardiac amyloidosis as differential diagnosis in case of restricted cardiac pump function; Der besondere Fall. Amyloidose des Herzens als Differenzialdiagnose bei eingeschraenkter kardialer Pumpfunktion

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, L. [Universitaetsspital Basel (Switzerland). Klinik fuer Radiologie und Nuklearmedizin; Zellweger, M.; Niemann, T.

    2014-03-15

    The NMR imaging data in combination with clinical characterization and echocardiography are consistent with the diagnosis of a cardiac amyloidosis. The article describes disease pattern and diagnosis based on contrast agent accumulation and diastolic functional disturbances. CT was performed to exclude pulmonary embolism.

  2. Exposure to occupational air pollution and cardiac function in workers of the Esfahan Steel Industry, Iran.

    Science.gov (United States)

    Golshahi, Jafar; Sadeghi, Masoumeh; Saqira, Mohammad; Zavar, Reihaneh; Sadeghifar, Mostafa; Roohafza, Hamidreza

    2016-06-01

    Air pollution is recognized as an important risk factor for cardiovascular disease. We investigated association of exposure to occupational air pollution and cardiac function in the workers of the steel industry. Fifty male workers of the agglomeration and coke-making parts of the Esfahan Steel Company were randomly selected (n = 50). Workers in the administrative parts were studied as controls (n = 50). Those with known history of hypertension, dyslipidemia, or diabetes, and active smokers were not included. Data of age, body mass index, employment duration, blood pressure, fasting blood sugar, and lipid profile were gathered. Echocardiography was performed to evaluate cardiac function. Left ventricular ejection fraction was lower in workers of the agglomeration/coke-making parts than in controls (mean difference = 5 to 5.5 %, P steel industry is associated with left heart systolic dysfunction. Possible right heart insults due to air pollution exposure warrant further investigations.

  3. Cardiac MRI in pulmonary artery hypertension: correlations between morphological and functional parameters and invasive measurements

    Energy Technology Data Exchange (ETDEWEB)

    Alunni, Jean-Philippe; Otal, Philippe; Rousseau, Herve; Chabbert, Valerie [CHU Rangueil, Department of Radiology, Toulouse (France); Degano, Bruno; Tetu, Laurent; Didier, Alain [CHU Larrey, Department of Pneumology, Toulouse (France); Arnaud, Catherine [CHU Rangueil, Department of Methods in Clinical Research, Toulouse (France); Blot-Souletie, Nathalie [CHU Rangueil, Department of Cardiology, Toulouse (France)

    2010-05-15

    To compare cardiac MRI with right heart catheterisation in patients with pulmonary hypertension (PH) and to evaluate its ability to assess PH severity. Forty patients were included. MRI included cine and phase-contrast sequences, study of ventricular function, cardiac cavity areas and ratios, position of the interventricular septum (IVS) in systole and diastole, and flow measurements. We defined four groups according to the severity of PH and three groups according to IVS position: A, normal position; B, abnormal in diastole; C, abnormal in diastole and systole. IVS position was correlated with pulmonary artery pressures and PVR (pulmonary vascular resistance). Median pulmonary artery pressures and resistance were significantly higher in patients with an abnormal septal position compared with those with a normal position. Correlations were good between the right ventricular ejection fraction and PVR, right ventricular end-systolic volume and PAP, percentage of right ventricular area change and PVR, and diastolic and systolic ventricular area ratio and PVR. These parameters were significantly associated with PH severity. Cardiac MRI can help to assess the severity of PH. (orig.)

  4. Cardiac nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gerson, M.C.

    1987-01-01

    The book begins with a review of the radionuclide methods available for evaluating cardiac perfusion and function. The authors discuss planar and tomographic thallium myocardial imaging, first-pass and equilibrium radionuclide angiography, and imaging with infarct-avid tracers. Several common but more specialized procedures are then reviewed: nonogemetric measurement of left ventricular volume, phase (Fourier) analysis, stroke volume ratio, right ventricular function, and diastolic function. A separate chapter is devoted to drug interventions and in particular the use of radionuclide ventriculography to monitor doxorubicin toxicity and therapy of congestive heart failure. The subsequent chapters provide a comprehensive guide to test selection, accuracy, and results in acute myocardial infarction, in postmyocardial infarction, in chronic coronary artery disease, before and after medical or surgical revascularization, in valvular heart disease, in cardiomyopathies, and in cardiac trauma.

  5. Cardiac nuclear medicine

    International Nuclear Information System (INIS)

    Gerson, M.C.

    1987-01-01

    The book begins with a review of the radionuclide methods available for evaluating cardiac perfusion and function. The authors discuss planar and tomographic thallium myocardial imaging, first-pass and equilibrium radionuclide angiography, and imaging with infarct-avid tracers. Several common but more specialized procedures are then reviewed: nonogemetric measurement of left ventricular volume, phase (Fourier) analysis, stroke volume ratio, right ventricular function, and diastolic function. A separate chapter is devoted to drug interventions and in particular the use of radionuclide ventriculography to monitor doxorubicin toxicity and therapy of congestive heart failure. The subsequent chapters provide a comprehensive guide to test selection, accuracy, and results in acute myocardial infarction, in postmyocardial infarction, in chronic coronary artery disease, before and after medical or surgical revascularization, in valvular heart disease, in cardiomyopathies, and in cardiac trauma

  6. Measurement of functional capacity requirements of police officers to aid in development of an occupation-specific cardiac rehabilitation training program.

    Science.gov (United States)

    Adams, Jenny; Schneider, Jonna; Hubbard, Matthew; McCullough-Shock, Tiffany; Cheng, Dunlei; Simms, Kay; Hartman, Julie; Hinton, Paul; Strauss, Danielle

    2010-01-01

    This study was designed to measure the functional capacity of healthy subjects during strenuous simulated police tasks, with the goal of developing occupation-specific training for cardiac rehabilitation of police officers. A calibrated metabolic instrument and an oxygen consumption data collection mask were used to measure the oxygen consumption and heart rates of 30 Dallas Police Academy officers and cadets as they completed an 8-event obstacle course that simulated chasing, subduing, and handcuffing a suspect. Standard target heart rates (85% of age-predicted maximum heart rate, or 0.85 x [220 - age]) and metabolic equivalents (METs) were calculated; a matched-sample t test based on differences between target and achieved heart rate and MET level was used for statistical analysis. Peak heart rates during the obstacle course simulation were significantly higher than the standard target heart rates (those at which treadmill stress tests in physicians' offices are typically stopped) (t(29) = 12.81, P requires a functional capacity greater than that typically attained in traditional cardiac rehabilitation programs. Rehabilitation professionals should consider performing maximal stress tests and increasing the intensity of cardiac rehabilitation workouts to effectively train police officers who have had a cardiac event.

  7. Improved Imaging in Cardiac Patients: echocardiography and CT-coronary angiography

    NARCIS (Netherlands)

    T.W. Galema (Tjebbe)

    2010-01-01

    textabstractDiff erent non-invasive imaging modalities are used for to assess cardiac anatomy and function. Echocardiography and MRI allow assessment of cardiac structures and function of the cardiac chambers and valves as well as perfusion of the left ventricular wall while CT-angiography in

  8. Effect of urokinase thrombolysis on the cardiac function, coagulation, and fibrinolytic system in patients with AMI

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Kuang

    2017-06-01

    Full Text Available Objective: To observe the effect of urokinase thrombolysis on the cardiac function, coagulation, and fibrinolytic system in patients with acute myocardial infarction (AMI. Methods: A total of 39 patients with AMI who were admitted in our hospital from March, 2016 to November, 2016 were included in the study and served as the observation group. The peripheral venous blood before and after thrombolysis was collected. The plasma NTproBNP level, related coagulation factors, and fibrinolysis indicators were detected. The cardiac function before treatment was evaluated. A total of 30 healthy individuals who came for physical examinations were served as the control group for contrastive analysis. Results: The plasma NT-proBNP, Fg, and D-D levels before thrombolysis in the observation group were significantly higher than those in the control group, while PT, APTT, and TT in the observation group were significantly shortened. The plasma NT-proBNP and D-D levels 2-48 h after thrombolysis in the observation group were significantly elevated first and reduced later and reached the peak 4 h after treatment, while PT, APTT, and TT were significantly extended first and shortened later. The plasma Fg level was significantly reduced first and elevated later and reached the minimum 4 h after treatment. During the treatment process, in the observation group, 2 had mucocutaneous hemorrhage, 3 had nasal hemorrhage, and 1 had gingival bleeding, but no gastrointestinal bleeding or cerebral hemorrhage occurred. Conclusions: The thrombolytic therapy can effectively reduce the coagulation activity in patients with AMI, strengthen the fibrinolysis activity, and improve the cardiac function.

  9. Isolated Non-Compaction of the Left Ventricle in a Patient with New-Onset Heart Failure: Morphologic and Functional Evaluation with Cardiac Multidetector Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon [Soonchuhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Kim, Seok Yeon [Seoul Medical Center, Seoul (Korea, Republic of); Schoepf, U. Joseph [Medical University of South Carolina, SC (United States)

    2012-03-15

    We describe a case of new-onset heart failure in a patient in whom cardiac CT enabled the non-invasive diagnosis of isolated non-compaction and associated functional abnormalities of the left ventricle with the concomitant evaluation of coronary arteries. This case highlights the utility of cardiac CT for the morphological and functional evaluation of the heart as a single imaging modality.

  10. Evaluation of the cardiac efficiency by means of functional radiocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, J; Stoll, W [Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Bereich Medizin

    1982-01-01

    A new method of evaluating the cardiac efficiency by means of radiocardiography performed on exertion with /sup 113m/InCl is reported. Analysis of stroke volume, end diastolic volume and of the quotient of cardiac output to end diastolic volume on exertion enables an adequate evaluation of the actual myocardial efficiency.

  11. Health Instruction Packages: Cardiac Anatomy.

    Science.gov (United States)

    Phillips, Gwen; And Others

    Text, illustrations, and exercises are utilized in these five learning modules to instruct nurses, students, and other health care professionals in cardiac anatomy and functions and in fundamental electrocardiographic techniques. The first module, "Cardiac Anatomy and Physiology: A Review" by Gwen Phillips, teaches the learner to draw…

  12. Assessment of left ventricular function by thallium-201 quantitative gated cardiac SPECT

    International Nuclear Information System (INIS)

    Baba, Akira; Hano, Takuzo; Ohmori, Hisashi; Ibata, Masayo; Kawabe, Tetsuya; Kubo, Takashi; Kimura, Keizo; Nishio, Ichiro

    2002-01-01

    Present study was designed to evaluate the accuracy of the measurement of left ventricular volume by quantitative gated SPECT (QGS) software using 201 Tl and the effect of cutoff frequency of Butterworth prereconstruction filter on the calculation of volume. The RH-2 type cardiac phantom and 20 patients with ischemic heart disease were studied. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated by the QGS software using the various frequency of Butterworth filter. These parameters were evaluated by Simpson's method using left ventriculography (LVG). The volume of the phantom calculated by QGS was under-estimated by 14%. In the clinical study, EDV and ESV measured by QGS were smaller than those obtained from LVG by 10%. When the cutoff frequency of Butterworth filter was 0.43 cycles/cm, the values measured by QGS were best correlated with those by LVG (EDV: r=0.80, p 201 Tl quantitative gated cardiac SPECT can estimate myocardial ischemia and left ventricular function simultaneously. (author)

  13. Soccer training improves cardiac function in men with type 2 diabetes

    DEFF Research Database (Denmark)

    Schmidt, Jakob Friis; Rostgaard Andersen, Thomas; Horton, Joshua

    2013-01-01

    training can counteract the early signs of diabetic heart disease. PURPOSE: To evaluate the effects of soccer training on cardiac function, exercise capacity and blood pressure in middle-aged men with T2DM. METHODS: Twenty-one men aged 49.8±1.7 yrs with T2DM and no history of cardiovascular disease......INTRODUCTION: Patients with type 2 diabetes (T2DM) have an increased risk of cardiovascular disease which is worsened by physical inactivity. Subclinical myocardial dysfunction is associated with increased risk of heart failure and impaired prognosis in T2DM; however, it is not clear if exercise...

  14. Evolution from increased cardiac mechanical function towards cardiomyopathy in the obese rat due to unbalanced high fat and abundant equilibrated diets

    Directory of Open Access Journals (Sweden)

    Mourmoura Evangelia

    2015-07-01

    Full Text Available The aim of our study was to know whether high dietary energy intake (HDEI with equilibrated and unbalanced diets in term of lipid composition modify the fatty acid profile of cardiac phospholipids and function of various cardiac cells and to know if the changes in membrane lipid composition can explain the modifications of cellular activity. Wistar rats were fed either a control or high-fat (HF diet for 12 weeks and Zucker diabetic fatty (ZDF rats as well as their lean littermate (ZL a control diet between week 7 to 11 of their life. Energy intake and abdominal obesity was increased in HF-fed and ZDF rats. Circulating lipids were also augmented in both strains although hyperglycemia was noticed only in ZDF rats. HDEI induced a decrease in linoleate and increase in arachidonate in membrane phospholipids which was more pronounced in the ZDF rats compared to the HF-fed rats. In vivo cardiac function (CF was improved in HF-fed rats whereas ex vivo cardiac function was unchanged, suggesting that environmental factors such as catecholamines stimulated the in vivo CF. The unchanged ex vivo CF was associated with an increased cardiac mass which indicated development of fibrosis and/or hypertrophy. The increased in vivo CF was sustained by an augmented coronary reserve which was related to the cyclooxygenase pathway and accumulation of arachidonate in membrane phospholipids. In conclusion, before triggering a diabetic cardiomyopathy, HDEI stimulated the CF. The development of cardiomyopathy seems to result from fibrosis and/or hypertrophy which augments myocardial stiffness and decreases contractility.

  15. Evaluation of Right Ventricular Function with Radionuclide Cardiac Angiography - Right Ventricular Ejection Fraction in Chronic Obstructive Lung Disease

    International Nuclear Information System (INIS)

    Sohn, In; Shin, Sung Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Lee, Young Woo; Han, Yong Cheol; Koh, Chang Soon

    1982-01-01

    To evaluate the usefulness of radionuclide cardiac angiography in the assessment of the right ventricular function, we measured right ventricular ejection fraction (RVEF) using single pass method. In 12 normal persons, RVEF averaged 52.7±5.9% (mean±S.D.). In 25 patients with chronic obstructive lung disease, RVEF was 37.2±10.6% and significantly lower than that of normal person (p<0.01). All 10 patients with right ventricular failure had abnormal RVEF, which was significantly lower than that of 14 persons without right ventricular failure (27.6±5.7%, 43.9±8.5%, respectively, p<0.01). It concluded that RVEF measured by single pass radionuclide cardiac angiography was a useful, noninvasive method to assess right ventricular function.

  16. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  17. Comparison of yoga and walking-exercise on cardiac time intervals as a measure of cardiac function in elderly with increased pulse pressure.

    Science.gov (United States)

    Patil, Satish Gurunathrao; Patil, Shankargouda S; Aithala, Manjunatha R; Das, Kusal Kanti

    Arterial aging along with increased blood pressure(BP) has become the major cardiovascular(CV) risk in elderly. The aim of the study was to compare the effects of yoga program and walking-exercise on cardiac function in elderly with increased pulse pressure (PP). An open label, parallel-group randomized controlled study design was adopted. Elderly individuals aged ≥60 years with PP≥60mmHg were recruited for the study. Yoga (study) group (n=30) was assigned for yoga training and walking (exercise) group (n=30) for walking with loosening practices for one hour in the morning for 6days in a week for 3 months. The outcome measures were cardiac time intervals derived from pulse wave analysis and ECG: resting heart rate (RHR), diastolic time(DT), ventricular ejection time(LVET), upstroke time(UT), ejection duration index (ED%), pre-ejection period (PEP), rate pressure product (RPP) and percentage of mean arterial pressure (%MAP). The mean within-yoga group change in RHR(bpm) was 4.41 (p=0.031), PD(ms): -50.29 (p=0.042), DT(ms): -49.04 (p=0.017), ED%: 2.107 (p=0.001), ES(mmHg/ms): 14.62 (p=0.118), ET(ms): -0.66 (p=0.903), UT(ms): -2.54 (p=0.676), PEP(ms): -1.25 (p=0.11) and %MAP: 2.08 (p=0.04). The mean within-control group change in HR (bpm) was 0.35 (p=0.887), PD (ms): 11.15(p=0.717), DT (ms): 11.3 (p=0.706), ED%: -0.101 (p=0.936), ES (mmHg/ms): 0.75 (p=0.926), ET(ms): 2.2 (p=0.721), UT(ms):4.7(p=455), PEP (ms): 2.1(p=0.11), %MAP: 0.65 (p=0.451). A significant difference between-group was found in RHR (p=0.036), PD (p=0.02), ED% (p=0.049), LVET (p=0.048), DT (p=0.02) and RPP (p=0.001). Yoga practice for 3 months showed a significant improvement in diastolic function with a minimal change in systolic function. Yoga is more effective than walking in improving cardiac function in elderly with high PP. Copyright © 2017 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  18. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  19. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure.

    Science.gov (United States)

    Caraher, Erin J; Kwon, Sophia; Haider, Syed H; Crowley, George; Lee, Audrey; Ebrahim, Minah; Zhang, Liqun; Chen, Lung-Chi; Gordon, Terry; Liu, Mengling; Prezant, David J; Schmidt, Ann Marie; Nolan, Anna

    2017-01-01

    World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72). Wild type(WT) and RAGE-deficient(Ager-/-) mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased sRAGE is

  20. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure.

    Directory of Open Access Journals (Sweden)

    Erin J Caraher

    Full Text Available World Trade Center-particulate matter(WTC-PM exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI. The receptor for advanced glycation end-products (RAGE is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV. Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72. Wild type(WT and RAGE-deficient(Ager-/- mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased s

  1. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  2. Pregnancy as a cardiac stress model

    Science.gov (United States)

    Chung, Eunhee; Leinwand, Leslie A.

    2014-01-01

    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women without any known cardiovascular disease. Peripartum cardiomyopathy is the leading cause of non-obstetric mortality during pregnancy. To understand how pregnancy can cause heart disease, it is first important to understand cardiac adaptation during normal pregnancy. This review provides an overview of the cardiac consequences of pregnancy, including haemodynamic, functional, structural, and morphological adaptations, as well as molecular phenotypes. In addition, this review describes the signalling pathways responsible for pregnancy-induced cardiac hypertrophy and angiogenesis. We also compare and contrast cardiac adaptation in response to disease, exercise, and pregnancy. The comparisons of these settings of cardiac hypertrophy provide insight into pregnancy-associated cardiac adaptation. PMID:24448313

  3. Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room

    Directory of Open Access Journals (Sweden)

    Ballinger Michelle R

    2008-01-01

    Full Text Available Abstract Treadmill exercise stress testing is an essential tool in the prevention, detection, and treatment of a broad spectrum of cardiovascular disease. After maximal exercise, cardiac images at peak stress are typically acquired using nuclear scintigraphy or echocardiography, both of which have inherent limitations. Although CMR offers superior image quality, the lack of MRI-compatible exercise and monitoring equipment has prevented the realization of treadmill exercise CMR. It is critical to commence imaging as quickly as possible after exercise to capture exercise-induced cardiac wall motion abnormalities. We modified a commercial treadmill such that it could be safely positioned inside the MRI room to minimize the distance between the treadmill and the scan table. We optimized the treadmill exercise CMR protocol in 20 healthy volunteers and successfully imaged cardiac function and myocardial perfusion at peak stress, followed by viability imaging at rest. Imaging commenced an average of 30 seconds after maximal exercise. Real-time cine of seven slices with no breath-hold and no ECG-gating was completed within 45 seconds of exercise, immediately followed by stress perfusion imaging of three short-axis slices which showed an average time to peak enhancement within 57 seconds of exercise. We observed a 3.1-fold increase in cardiac output and a myocardial perfusion reserve index of 1.9, which agree with reported values for healthy subjects at peak stress. This study successfully demonstrates in-room treadmill exercise CMR in healthy volunteers, but confirmation of feasibility in patients with heart disease is still needed.

  4. Restricted N-terminal truncation of cardiac troponin T: a novel mechanism for functional adaptation to energetic crisis.

    Science.gov (United States)

    Feng, Han-Zhong; Biesiadecki, Brandon J; Yu, Zhi-Bin; Hossain, M Moazzem; Jin, J-P

    2008-07-15

    The N-terminal variable region of cardiac troponin T (TnT) is a regulatory structure that can be selectively removed during myocardial ischaemia reperfusion by mu-calpain proteolysis. Here we investigated the pathophysiological significance of this post-translational modification that removes amino acids 1-71 of cardiac TnT. Working heart preparations were employed to study rat acute myocardial infarction and transgenic mouse hearts over-expressing the N-terminal truncated cardiac TnT (cTnT-ND). Ex vivo myocardial infarction by ligation of the left anterior descending coronary artery induced heart failure and produced cTnT-ND not only in the infarct but also in remote zones, including the right ventricular free wall, indicating a whole organ response in the absence of systemic neurohumoral mechanisms. Left ventricular pressure overload in mouse working hearts produced increased cTnT-ND in both ventricles, suggesting a role of haemodynamic stress in triggering an acute whole organ proteolytic regulation. Transgenic mouse hearts in which the endogenous intact cardiac TnT was partially replaced by cTnT-ND showed lowered contractile velocity. When afterload increased from 55 mmHg to 90 mmHg, stroke volume decreased in the wild type but not in the transgenic mouse hearts. Correspondingly, the left ventricular rapid-ejection time of the transgenic mouse hearts was significantly longer than that of wild type hearts, especially at high afterload. The restricted deletion of the N-terminal variable region of cardiac troponin T demonstrates a novel mechanism by which the thin filament regulation adapts to sustain cardiac function under stress conditions.

  5. Morphological and Functional Evaluation of Quadricuspid Aortic Valves Using Cardiac Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Song, Inyoung; Park, Jung Ah; Choi, Bo Hwa; Ko, Sung Min [Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030 (Korea, Republic of); Shin, Je Kyoun; Chee, Hyun Keun; Kim, Jun Seok [Department of Thoracic Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030 (Korea, Republic of)

    2016-11-01

    The aim of this study was to identify the morphological and functional characteristics of quadricuspid aortic valves (QAV) on cardiac computed tomography (CCT). We retrospectively enrolled 11 patients with QAV. All patients underwent CCT and transthoracic echocardiography (TTE), and 7 patients underwent cardiovascular magnetic resonance (CMR). The presence and classification of QAV assessed by CCT was compared with that of TTE and intraoperative findings. The regurgitant orifice area (ROA) measured by CCT was compared with severity of aortic regurgitation (AR) by TTE and the regurgitant fraction (RF) by CMR. All of the patients had AR; 9 had pure AR, 1 had combined aortic stenosis and regurgitation, and 1 had combined subaortic stenosis and regurgitation. Two patients had a subaortic fibrotic membrane and 1 of them showed a subaortic stenosis. One QAV was misdiagnosed as tricuspid aortic valve on TTE. In accordance with the Hurwitz and Robert's classification, consensus was reached on the QAV classification between the CCT and TTE findings in 7 of 10 patients. The patients were classified as type A (n = 1), type B (n = 3), type C (n = 1), type D (n = 4), and type F (n = 2) on CCT. A very high correlation existed between ROA by CCT and RF by CMR (r = 0.99) but a good correlation existed between ROA by CCT and regurgitant severity by TTE (r = 0.62). Cardiac computed tomography provides comprehensive anatomical and functional information about the QAV.

  6. Morphological and functional evaluation of quadricuspid aortic valves using cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Young; Park, Jung Ah; Choi, Bo Hwa; Ko, Sung Min; Shin, Je Kyoun; Chee, Hyun Keun; KIm, Jun Seok [Konkuk University Medical Center, Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    The aim of this study was to identify the morphological and functional characteristics of quadricuspid aortic valves (QAV) on cardiac computed tomography (CCT). We retrospectively enrolled 11 patients with QAV. All patients underwent CCT and transthoracic echocardiography (TTE), and 7 patients underwent cardiovascular magnetic resonance (CMR). The presence and classification of QAV assessed by CCT was compared with that of TTE and intraoperative findings. The regurgitant orifice area (ROA) measured by CCT was compared with severity of aortic regurgitation (AR) by TTE and the regurgitant fraction (RF) by CMR. All of the patients had AR; 9 had pure AR, 1 had combined aortic stenosis and regurgitation, and 1 had combined subaortic stenosis and regurgitation. Two patients had a subaortic fibrotic membrane and 1 of them showed a subaortic stenosis. One QAV was misdiagnosed as tricuspid aortic valve on TTE. In accordance with the Hurwitz and Robert's classification, consensus was reached on the QAV classification between the CCT and TTE findings in 7 of 10 patients. The patients were classified as type A (n = 1), type B (n = 3), type C (n = 1), type D (n = 4), and type F (n = 2) on CCT. A very high correlation existed between ROA by CCT and RF by CMR (r = 0.99) but a good correlation existed between ROA by CCT and regurgitant severity by TTE (r = 0.62). Cardiac computed tomography provides comprehensive anatomical and functional information about the QAV.

  7. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  8. Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway.

    Science.gov (United States)

    Liu, Zhong-wei; Wang, Jun-kui; Qiu, Chuan; Guan, Gong-chang; Liu, Xin-hong; Li, Shang-jian; Deng, Zheng-rong

    2015-03-01

    Matrine is an alkaloid from Sophora alopecuroides L, which has shown a variety of pharmacological activities and potential therapeutic value in cardiovascular diseases. In this study we examined the protective effects of matrine against diabetic cardiomyopathy (DCM) in rats. Male SD rats were injected with streptozotocin (STZ) to induce DCM. One group of DCM rats was pretreated with matrine (200 mg·kg(-1)·d(-1), po) for 10 consecutive days before STZ injection. Left ventricular function was evaluated using invasive hemodynamic examination, and myocardiac apoptosis was assessed. Primary rat myocytes were used for in vitro experiments. Intracellular ROS generation, MDA content and GPx activity were determined. Real-time PCR and Western blotting were performed to detect the expression of relevant mRNAs and proteins. DCM rats exhibited abnormally elevated non-fasting blood glucose levels at 4 weeks after STZ injection, and LV function impairment at 16 weeks. The cardiac tissues of DCM rats showed markedly increased apoptosis, excessive ROS production, and activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling. Pretreatment with matrine significantly decreased non-fasting blood glucose levels and improved LV function in DCM rats, which were associated with reducing apoptosis and ROS production, and suppressing TLR-4/MyD-88/caspase-8/caspase-3 signaling in cardiac tissues. Incubation in a high-glucose medium induced oxidative stress and activation of TLR-4/MyD-88 signaling in cultured myocytes in vitro, which were significantly attenuated by pretreatment with N-acetylcysteine. Excessive ROS production in DCM activates the TLR-4/MyD-88 signaling, resulting in cardiomyocyte apoptosis, whereas pretreatment with matrine improves cardiac function via suppressing ROS/TLR-4 signaling pathway.

  9. Role of alpha- and beta-adrenergic receptors in cardiomyocyte differentiation from murine-induced pluripotent stem cells.

    Science.gov (United States)

    Li, Xiao-Li; Zeng, Di; Chen, Yan; Ding, Lu; Li, Wen-Ju; Wei, Ting; Ou, Dong-Bo; Yan, Song; Wang, Bin; Zheng, Qiang-Sun

    2017-02-01

    Induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a promising source of cells for regenerative heart disease therapies, but progress towards their use has been limited by their low differentiation efficiency and high cellular heterogeneity. Previous studies have demonstrated expression of adrenergic receptors (ARs) in stem cells after differentiation; however, roles of ARs in fate specification of stem cells, particularly in cardiomyocyte differentiation and development, have not been characterized. Murine-induced pluripotent stem cells (miPSCs) were cultured in hanging drops to form embryoid bodies, cells of which were then differentiated into cardiomyocytes. To determine whether ARs regulated miPSC differentiation into cardiac lineages, effects of the AR agonist, epinephrine (EPI), on miPSC differentiation and underlying signalling mechanisms, were evaluated. Treatment with EPI, robustly enhanced miPSC cardiac differentiation, as indicated by increased expression levels of cardiac-specific markers, GATA4, Nkx2.5 and Tnnt2. Although β-AR signalling is the foremost signalling pathway in cardiomyocytes, EPI-enhanced cardiac differentiation depended more on α-AR signalling than β-AR signalling. In addition, selective activation of α 1 -AR signalling with specific agonists induced vigorous cardiomyocyte differentiation, whereas selective activation of α 2 - or β-AR signalling induced no or less differentiation, respectively. EPI- and α 1 -AR-dependent cardiomyocyte differentiation from miPSCs occurred through specific promotion of CPC proliferation via the MEK-ERK1/2 pathway and regulation of miPS cell-cycle progression. These results demonstrate that activation of ARs, particularly of α 1 -ARs, promoted miPSC differentiation into cardiac lineages via MEK-ERK1/2 signalling. © 2016 John Wiley & Sons Ltd.

  10. Characterization of Glutamatergic Neurons in the Rat Atrial Intrinsic Cardiac Ganglia that Project to the Cardiac Ventricular Wall

    Science.gov (United States)

    Wang, Ting; Miller, Kenneth E.

    2016-01-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside intrinsic cardiac ganglia. In the present study, rat intrinsic cardiac ganglia neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) intrinsic cardiac ganglia contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial intrinsic cardiac ganglia contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT. (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG

  11. The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction.

    Science.gov (United States)

    Mavrommatis, Evangelos; Shioura, Krystyna M; Los, Tamara; Goldspink, Paul H

    2013-09-01

    Insulin-like growth factor-1 (IGF-1) isoforms are expressed via alternative splicing. Expression of the minor isoform IGF-1Eb [also known as mechano-growth factor (MGF)] is responsive to cell stress. Since IGF-1 isoforms differ in their E-domain regions, we are interested in determining the biological function of the MGF E-domain. To do so, a synthetic peptide analog was used to gain mechanistic insight into the actions of the E-domain. Treatment of H9c2 cells indicated a rapid cellular uptake mechanism that did not involve IGF-1 receptor activation but resulted in a nuclear localization. Peptide treatment inhibited the intrinsic apoptotic pathway in H9c2 cells subjected to cell stress with sorbitol by preventing the collapse of the mitochondrial membrane potential and inhibition of caspase-3 activation. Therefore, we administered the peptide at the time of myocardial infarction (MI) in mice. At 2 weeks post-MI cardiac function, gene expression and cell death were assayed. A significant decline in both systolic and diastolic function was evident in untreated mice based on PV loop analysis. Delivery of the E-peptide ameliorated the decline in function and resulted in significant preservation of cardiac contractility. Associated with these changes were an inhibition of pathologic hypertrophy and significantly fewer apoptotic nuclei in the viable myocardium of E-peptide-treated mice post-MI. We conclude that administration of the MGF E-domain peptide may provide a means of modulating local tissue IGF-1 autocrine/paracrine actions to preserve cardiac function, prevent cell death, and pathologic remodeling in the heart.

  12. Sex differences in cardiac function after prolonged strenuous exercise.

    Science.gov (United States)

    Cote, Anita T; Phillips, Aaron A; Foulds, Heather J; Charlesworth, Sarah A; Bredin, Shannon S D; Burr, Jamie F; Koehle, Michael S; Warburton, Darren E R

    2015-05-01

    To evaluate sex differences in left ventricular (LV) function after an ultramarathon, and the association of vascular and training indices with the magnitude of exercise-induced cardiac fatigue. Descriptive field study. Fat Dog 100 Ultramarathon Trail Race, Canada. Thirty-four (13 women) recreational runners (aged 28-56 years). A 100-km or 160-km mountain marathon. Baseline baroreceptor sensitivity, heart rate variability, and arterial compliance; Pre-exercise and postexercise echocardiographic evaluations of LV dimensions, volumes, Doppler flow velocities, tissue velocities, strain, and strain rate. Finishers represented 17 men (44.8 ± 6.6 years) and 8 women (45.9 ± 10.2 years; P = 0.758). After ultraendurance exercise, significant reductions (P training status/experience. These findings suggest that vascular health is an important contributor to the degree of cardiovascular strain incurred as the result of an acute bout of prolonged strenuous exercise.

  13. Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins.

    Directory of Open Access Journals (Sweden)

    Eric K Johnson

    Full Text Available Mutations affecting the expression of dystrophin result in progressive loss of skeletal muscle function and cardiomyopathy leading to early mortality. Interestingly, clinical studies revealed no correlation in disease severity or age of onset between cardiac and skeletal muscles, suggesting that dystrophin may play overlapping yet different roles in these two striated muscles. Since dystrophin serves as a structural and signaling scaffold, functional differences likely arise from tissue-specific protein interactions. To test this, we optimized a proteomics-based approach to purify, identify and compare the interactome of dystrophin between cardiac and skeletal muscles from as little as 50 mg of starting material. We found selective tissue-specific differences in the protein associations of cardiac and skeletal muscle full length dystrophin to syntrophins and dystrobrevins that couple dystrophin to signaling pathways. Importantly, we identified novel cardiac-specific interactions of dystrophin with proteins known to regulate cardiac contraction and to be involved in cardiac disease. Our approach overcomes a major challenge in the muscular dystrophy field of rapidly and consistently identifying bona fide dystrophin-interacting proteins in tissues. In addition, our findings support the existence of cardiac-specific functions of dystrophin and may guide studies into early triggers of cardiac disease in Duchenne and Becker muscular dystrophies.

  14. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.

    Science.gov (United States)

    Perlini, Stefano; Salinaro, Francesco; Musca, Francesco; Mussinelli, Roberta; Boldrini, Michele; Raimondi, Ambra; Milani, Paolo; Foli, Andrea; Cappelli, Francesco; Perfetto, Federico; Palladini, Giovanni; Rapezzi, Claudio; Merlini, Giampaolo

    2014-05-01

    Cardiac amyloidosis represents an archetypal form of restrictive heart disease, characterized by profound diastolic dysfunction. As ejection fraction is preserved until the late stage of the disease, the majority of patients do fulfill the definition of diastolic heart failure, that is, heart failure with preserved ejection fraction (HFpEF). In another clinical model of HFpEF, that is, pressure-overload hypertrophy, depressed midwall fractional shortening (mFS) has been shown to be a powerful prognostic factor. To assess the potential prognostic role of mFS in cardiac light-chain amyloidosis with preserved ejection fraction, we enrolled 221 consecutive untreated patients, in whom a first diagnosis of cardiac light-chain amyloidosis was concluded between 2008 and 2010. HFpEF was present in 181 patients. Patients in whom cardiac involvement was excluded served as controls (n = 121). Prognosis was assessed after a median follow-up of 561 days. When compared with light-chain amyloidosis patients without myocardial involvement, cardiac light-chain amyloidosis was characterized by increased wall thickness (P model. In cardiac light-chain amyloidosis with normal ejection fraction, depressed circumferential mFS, a marker of myocardial contractile dysfunction, is a powerful predictor of survival.

  15. Effect of the adjuvant milrinone therapy on cardiac function, myocardial remodeling and RAAS system activity in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2017-09-01

    Full Text Available Objective: To explore the effect of the adjuvant milrinone therapy on cardiac function, myocardial remodeling and RAAS system activity in patients with chronic heart failure. Methods: A total of 110 patients with chronic heart failure who were treated in the hospital between January 2015 and January 2017 were divided into control group (n=55 and observation group (n=55 by random number table method. Control group received conventional therapy for chronic heart failure, and the observation group received milrinone on the basis of conventional therapy. The differences in ultrasound cardiac function and myocardial remodeling index levels as well as serum RAAS index contents were compared between the two groups before and after treatment. Results: Before treatment, the differences in ultrasound cardiac function and myocardial remodeling index levels as well as serum RAAS index contents were not statistically significant between the two groups. After treatment, CO and SV levels of both groups of patients were significantly higher than those before treatment while LADd, LVEDd, LVPWT, IVST and LVMI levels as well as serum PRA, AngⅡ and ALD contents were significantly lower than those before treatment, and CO and SV levels of observation group were significantly higher than those of control group while LADd, LVEDd, LVPWT, IVST and LVMI levels as well as serum PRA, AngⅡ and ALD contents were significantly lower than those of control group. Conclusion: Adjuvant milrinone therapy can effectively enhance the cardiac function, inhibit the myocardial remodeling and decrease the RAAS system activity in patients with chronic heart failure.

  16. Heme oxygenase-1 induction improves cardiac function following myocardial ischemia by reducing oxidative stress.

    Directory of Open Access Journals (Sweden)

    Yossi Issan

    Full Text Available Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1, a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation.In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP and tin protoporphyrin (SnPP prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured.HO-1 induction lowered release of lactate dehydrogenase (LDH and creatine phospho kinase (CK, decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05. CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01, reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively. CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05. The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05. CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05 in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects.HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by the increased levels of pAKT with

  17. Cardiac Myosin Binding Protein-C Autoantibodies are Potential Early Indicators of Cardiac Dysfunction and Patient Outcome in Acute Coronary Syndrome.

    Science.gov (United States)

    Lynch, Thomas L; Kuster, Diederik W D; Gonzalez, Beverly; Balasubramanian, Neelam; Nair, Nandini; Day, Sharlene; Calvino, Jenna E; Tan, Yanli; Liebetrau, Christoph; Troidl, Christian; Hamm, Christian W; Güçlü, Ahmet; McDonough, Barbara; Marian, Ali J; van der Velden, Jolanda; Seidman, Christine E; Huggins, Gordon S; Sadayappan, Sakthivel

    2017-04-01

    The degradation and release of cardiac myosin binding protein-C (cMyBP-C) upon cardiac damage may stimulate an inflammatory response and autoantibody (AAb) production. We determined whether the presence of cMyBP-C-AAbs associated with adverse cardiac function in CVD patients. Importantly, cMyBP-C-AAbs were significantly detected in ACS patient sera upon arrival to the emergency department, particularly in STEMI patients. Patients positive for cMyBP-C-AAbs had a reduced LVEF and elevated levels of clinical biomarkers of MI. We conclude that cMyBP-C-AAbs may serve as early predictive indicators of deteriorating cardiac function and patient outcome in ACS patients prior to the infarction.

  18. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  19. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations.

    Science.gov (United States)

    Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J

    2017-08-01

    Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions

  20. Cardiac CT and cardiac MRI - competitive or complementary for nuclear cardiology

    International Nuclear Information System (INIS)

    Moshage, W.

    2004-01-01

    In summary, cardiac computed tomography (CT) and cardiac magnetic resonance (MR) are two different technologies with distinct imaging properties that gain increasing importance in clinical cardiology. Even though images may look similar, the areas of application of CT and MR are quite different. Clinical applications of cardiac CT focus on on-invasive imaging of the coronary arteries. In this respect, the higher spatial resolution of cardiac CT constitutes a significant advantage as compared to MR and clinical results are superior. Clinical applications of cardiac MR, next to morphologic imaging of the heart, are most frequently found in the context of intra-and pericardial masses, complex congenital anomalies, and the assessment of left ventricular function (dobutamine) and perfusion (adenosine) under stress. The evaluation of the size and localization of myocardial necrosis, scars, and fibrosis gains increasing importance, for example in the workup of myocardial infarction, but also myocarditis and cardiomyopathies. In this respect, magnetic resonance imaging partly constitutes an alternative to nuclear medicine methods. Due to the lack of ionizing radiation and a relatively high spatial resolution, an increase of MR diagnostic procedures at the expense of nuclear medicine can be expected. (orig.)

  1. Hibiscus sabdariffa (Roselle) Polyphenol-rich Extract Averts Cardiac Functional and Structural Abnormalities in Type 1 Diabetic Rats.

    Science.gov (United States)

    Mohammed Yusof, Nur Liyana; Zainalabidin, Satirah; Mohd Fauzi, Norsyahida; Budin, Siti Balkis

    2018-05-04

    Diabetes mellitus is often associated with cardiac functional and structural alteration, an initial event leading to cardiovascular complications. Hibiscus sabdariffa or roselle has been widely proven as an antioxidant and recently has incited research interest for its potential in treating cardiovascular disease. Therefore, this study aimed to determine the cardioprotective effects of H. sabdariffa (roselle) polyphenol-rich extract (HPE) in type-1 induced diabetic rats. Twenty-four male Sprague-Dawley rats were randomized into four groups (n=6/group): non-diabetic (NDM), diabetic alone (DM), diabetic supplemented with HPE (DM+HPE) and metformin (DM+MET). Type-1 diabetes was induced with streptozotocin (55 mg/kg/i.p). Rats were forced-fed HPE (100 mg/kg) and metformin (150 mg/kg) daily for eight weeks. Results showed that HPE supplementation improved hyperglycemia and dyslipidemia significantly (p<0.05) in DM+HPE compared to DM group. HPE supplementation attenuated cardiac oxidative damage in DM group, indicated by low malondialdehyde and advanced oxidation protein product. As for the antioxidant status, HPE significantly (p<0.05) increased glutathione level, as well as catalase and superoxide dismutase 1 and 2 activities. These findings correlate with cardiac function, whereby HPE supplementation improved left ventricle developed pressure, coronary flow, cardiac contractility and relaxation rate significantly (p<0.05). Histological analysis showed a marked decrease in cardiomyocyte hypertrophy and fibrosis in DM+HPE compared to DM group. Ultrastructural changes and impairment of mitochondria induced by diabetes were minimized by HPE supplementation. Collectively, these findings suggest that HPE is a potential cardioprotective agent in a diabetic setting through its hypoglycemic, anti-hyperlipidemia and antioxidant properties.

  2. Administration of granulocyte-colony stimulating factor accompanied with a balanced diet improves cardiac function alterations induced by high fat diet in mice.

    Science.gov (United States)

    Daltro, Pâmela Santana; Alves, Paula Santana; Castro, Murilo Fagundes; Azevedo, Carine M; Vasconcelos, Juliana Fraga; Allahdadi, Kyan James; de Freitas, Luiz Antônio Rodrigues; de Freitas Souza, Bruno Solano; Dos Santos, Ricardo Ribeiro; Soares, Milena Botelho Pereira; Macambira, Simone Garcia

    2015-12-03

    High fat diet (HFD) is a major contributor to the development of obesity and cardiovascular diseases due to the induction of cardiac structural and hemodynamic abnormalities. We used a model of diabetic cardiomyopathy in C57Bl/6 mice fed with a HFD to investigate the effects of granulocyte-colony stimulating factor (G-CSF), a cytokine known for its beneficial effects in the heart, on cardiac anatomical and functional abnormalities associated with obesity and type 2 diabetes. Groups of C57Bl/6 mice were fed with standard diet (n = 8) or HFD (n = 16). After 36 weeks, HFD animals were divided into a group treated with G-CSF + standard diet (n = 8) and a vehicle control group + standard diet (n = 8). Cardiac structure and function were assessed by electrocardiography, echocardiography and treadmill tests, in addition to the evaluation of body weight, fasting glicemia, insulin and glucose tolerance at different time points. Histological analyses were performed in the heart tissue. HFD consumption induced metabolic alterations characteristic of type 2 diabetes and obesity, as well as cardiac fibrosis and reduced exercise capacity. Upon returning to a standard diet, obese mice body weight returned to non-obese levels. G-CSF administration accelerated the reduction in of body weight in obese mice. Additionally, G-CSF treatment reduced insulin levels, diminished heart fibrosis, increased exercise capacity and reversed cardiac alterations, including bradycardia, elevated QRS amplitude, augmented P amplitude, increased septal wall thickness, left ventricular posterior thickening and cardiac output reduction. Our results indicate that G-CSF administration caused beneficial effects on obesity-associated cardiac impairment.

  3. Cardiac biomarkers in Neonatology

    OpenAIRE

    Vijlbrief, D.C.

    2015-01-01

    In this thesis, the role for cardiac biomarkers in neonatology was investigated. Several clinically relevant results were reported. In term and preterm infants, hypoxia and subsequent adaptation play an important role in cardiac biomarker elevation. The elevated natriuretic peptides are indicative of abnormal function; elevated troponins are suggestive for cardiomyocyte damage. This methodology makes these biomarkers of additional value in the treatment of newborn infants, separate or as a co...

  4. The effect of perioperative analgesic drugs omnopon and dexketoprofen on the functional activity of immune cells in murine model of tumor surgery.

    Science.gov (United States)

    Sydor, R I; Khranovska, N M; Skachkova, O V; Skivka, L M

    2016-01-01

    We aimed to investigate the effect of perioperative analgesia with nonselective cyclooxygenase-2 inhibitor dexketoprofen and opioid drug omnopon on the functional activity of immune cells in tumor excision murine model. Lewis lung carcinoma cells were transplanted into hind paw of C57/black mice. On the 23th day tumor was removed. Analgesic drugs were injected 30 min before and once a day for 3 days after the surgery. Biological material was obtained a day before, 1 day and 3 days after the tumor removal. IFN-γ, IL-4, IL-10 and TGF-β mRNA levels in splenic cells were assessed by quantitative real-time RT-PCR. Cytotoxic activity of splenocytes was estimated by flow cytometry. We found that in splenocytes of mice received opioid analgesia IL-10 mRNA level was increased 2.3 times on day one after the surgery compared to preoperative level (P dexketoprofen group this parameter did not change. IFN-γ gene expression level on day 3 after tumor removal was 40% higher in splenocytes of dexketoprofen treated mice as compared with omnopon treated animals (P dexketoprofen against (50.2 ± 3.3)% in omnopon group. In conclusion, perioperative analgesia with cyclooxygenase inhibitor dexketoprofen in contrast to opioid analgesia with omnopon preserves higher functional activity of murine immune cells in the experimental model of tumor surgery.

  5. 123I-MIBG imaging detects cardiac involvement and predicts cardiac events in Churg-Strauss syndrome

    International Nuclear Information System (INIS)

    Horiguchi, Yoriko; Morita, Yukiko; Tsurikisawa, Naomi; Akiyama, Kazuo

    2011-01-01

    In Churg-Strauss syndrome (CSS) it is important to detect cardiac involvement, which predicts poor prognosis. This study evaluated whether 123 I-metaiodobenzylguanidine (MIBG) scintigraphy could detect cardiac damage and predict cardiac events in CSS. 123 I-MIBG scintigraphy was performed in 28 patients with CSS, 12 of whom had cardiac involvement. The early and delayed heart to mediastinum ratio (early H/M and delayed H/M) and washout rate were calculated by using 123 I-MIBG scintigraphy and compared with those in control subjects. Early H/M and delayed H/M were significantly lower and the washout rate was significantly higher in patients with cardiac involvement than in those without and in controls (early H/M, p = 0.0024, p = 0.0001; delayed H/M, p = 0.0002, p = 0.0001; washout rate, p = 0.0012, p = 0.0052 vs those without and vs controls, respectively). Accuracy for detecting cardiac involvement was 86% for delayed H/M and washout rate and 79% for early H/M and B-type natriuretic peptide (BNP). Kaplan-Meier analysis showed significantly lower cardiac event-free rates in patients with early H/M ≤ 2.18 and BNP > 21.8 pg/ml than those with early H/M > 2.18 and BNP ≤ 21.8 pg/ml (log-rank test p = 0.006). Cardiac sympathetic nerve function was damaged in CSS patients with cardiac involvement. 123 I-MIBG scintigraphy was useful in detecting cardiac involvement and in predicting cardiac events. (orig.)

  6. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P.; Venugopal, J.; Kai, Dan; Ramakrishna, Seeram

    2011-01-01

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  7. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  8. Assessment of left ventricular function by thallium-201 quantitative gated cardiac SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Akira; Hano, Takuzo; Ohmori, Hisashi; Ibata, Masayo; Kawabe, Tetsuya; Kubo, Takashi; Kimura, Keizo; Nishio, Ichiro [Wakayama Medical Coll. (Japan)

    2002-02-01

    Present study was designed to evaluate the accuracy of the measurement of left ventricular volume by quantitative gated SPECT (QGS) software using {sup 201}Tl and the effect of cutoff frequency of Butterworth prereconstruction filter on the calculation of volume. The RH-2 type cardiac phantom and 20 patients with ischemic heart disease were studied. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated by the QGS software using the various frequency of Butterworth filter. These parameters were evaluated by Simpson's method using left ventriculography (LVG). The volume of the phantom calculated by QGS was under-estimated by 14%. In the clinical study, EDV and ESV measured by QGS were smaller than those obtained from LVG by 10%. When the cutoff frequency of Butterworth filter was 0.43 cycles/cm, the values measured by QGS were best correlated with those by LVG (EDV: r=0.80, p<0.001; ESV: r=0.86, p<0.001; EF: r=0.80, p<0.001). These data suggest that {sup 201}Tl quantitative gated cardiac SPECT can estimate myocardial ischemia and left ventricular function simultaneously. (author)

  9. Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation.

    Science.gov (United States)

    Musolino, Vincenzo; Palus, Sandra; Tschirner, Anika; Drescher, Cathleen; Gliozzi, Micaela; Carresi, Cristina; Vitale, Cristiana; Muscoli, Carolina; Doehner, Wolfram; von Haehling, Stephan; Anker, Stefan D; Mollace, Vincenzo; Springer, Jochen

    2016-12-01

    Cachexia is a complex metabolic syndrome associated with cancer. One of the features of cachexia is the loss of muscle mass, characterized by an imbalance between protein synthesis and protein degradation. Muscle atrophy is caused by the hyperactivation of some of the main cellular catabolic pathways, including autophagy. Cachexia also affects the cardiac muscle. As a consequence of the atrophy of the heart, cardiac function is impaired and mortality is increased. Anti-cachectic therapy in patients with cancer cachexia is so far limited to nutritional support and anabolic steroids. The use of the appetite stimulant megestrol acetate (MA) has been discussed as a treatment for cachexia. In this study the effects of MA were tested in cachectic tumour-bearing rats (Yoshida AH-130 ascites hepatoma). Rats were treated daily with 100 mg/kg of MA or placebo starting one day after tumour inoculation, and for a period of 16 days. Body weight and body composition were assessed at baseline and at the end of the study. Cardiac function was analysed by echocardiography at baseline and at day 11. Locomotor activity and food intake were assessed before tumour inoculation and at day 11. Autophagic markers were assessed in gastrocnemius muscle and heart by western blot analysis. Treatment with 100 mg/kg/day MA significantly attenuated the loss of body weight (-9 ± 12%, P  cachexia-induced cardiomyopathy.

  10. Residential Proximity to Major Roadways Is Not Associated with Cardiac Function in African Americans: Results from the Jackson Heart Study

    Directory of Open Access Journals (Sweden)

    Anne M. Weaver

    2016-06-01

    Full Text Available Cardiovascular disease (CVD, including heart failure, is a major cause of morbidity and mortality, particularly among African Americans. Exposure to ambient air pollution, such as that produced by vehicular traffic, is believed to be associated with heart failure, possibly by impairing cardiac function. We evaluated the cross-sectional association between residential proximity to major roads, a marker of long-term exposure to traffic-related pollution, and echocardiographic indicators of left and pulmonary vascular function in African Americans enrolled in the Jackson Heart Study (JHS: left ventricular ejection fraction, E-wave velocity, isovolumic relaxation time, left atrial diameter index, and pulmonary artery systolic pressure. We examined these associations using multivariable linear or logistic regression, adjusting for potential confounders. Of 4866 participants at study enrollment, 106 lived <150 m, 159 lived 150–299 m, 1161 lived 300–999 m, and 3440 lived ≥1000 m from a major roadway. We did not observe any associations between residential distance to major roads and these markers of cardiac function. Results were similar with additional adjustment for diabetes and hypertension, when considering varying definitions of major roadways, or when limiting analyses to those free from cardiovascular disease at baseline. Overall, we observed little evidence that residential proximity to major roads was associated with cardiac function among African Americans.

  11. Pathophysiological mechanisms of sino-atrial dysfunction and ventricular conduction disease associated with SCN5A deficiency: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Christopher L-H Huang

    2012-07-01

    Full Text Available Genetically modified mice provide a number of models for studying cardiac channelopathies related to cardiac Na+ channel (SCN5A abnormalities. We review key pathophysiological features in these murine models that may underlie clinical features observed in sinus node dysfunction and progressive cardiac conduction disease, thereby providing insights into their pathophysiological mechanisms. We describe loss of Na+ channel function and fibrotic changes associated with both loss and gain-of-function Na+ channel mutations. Recent reports further relate the progressive fibrotic changes to upregulation of TGF-β1 production and the transcription factors, Atf3, a stress-inducible gene, and Egr1, to the presence of heterozygous Scn5a inactivation. Both changes are thus directly implicated in the clinically observed disruptions in sino-atrial node pacemaker function, and sino-atrial and ventricular conduction, and their progression with age. Murine systems with genetic modifications in Scn5a thus prove a useful tool to address questions concerning roles of genetic and environmental modifiers on human SCN5A disease phenotypes.

  12. AKAP-scaffolding proteins and regulation of cardiac physiology

    Science.gov (United States)

    Mauban, JRH; O'Donnell, M; Warrier, S; Manni, S; Bond, M

    2009-01-01

    A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release, re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular system, but in other organ systems as well. PMID:19364910

  13. Insulin-Like Growth Factor I (IGF-1) Deficiency Ameliorates Sex Difference in Cardiac Contractile Function and Intracellular Ca2+ Homeostasis

    Science.gov (United States)

    Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun

    2011-01-01

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763

  14. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis.

    Science.gov (United States)

    Ceylan-Isik, Asli F; Li, Qun; Ren, Jun

    2011-10-10

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland

  15. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice.

    Science.gov (United States)

    Hong, Fashui; Wu, Nan; Zhao, Xiangyu; Tian, Yusheng; Zhou, Yingjun; Chen, Ting; Zhai, Yanyu; Ji, Li

    2016-12-01

    In the past two decades, titanium dioxide nanoparticles (TiO 2 NPs) have been extensively used in medicine, food industry and other daily life, while their possible interactions with the their influence and human body on human health remain not well understood. Thus, the study was designed to examine whether long-term exposure to TiO 2 NPs cause myocardial dysfunction which is involved in cardiac lesions and alter expression of genes and proteins involving inflammatory response in the mouse heart. The findings showed that intragastric feeding for nine consecutive months with TiO 2 NPs resulted in titanium accumulation, infiltration of inflammatory cells and apoptosis of heart, reductions in net increases of body weight, cardiac indices of function (LV systolic pressure, maximal rate of pressure increase over time, maximal rate of pressure decrease over time and coronary flow), and increases in heart indices, cardiac indices of function (LV end-diastolic pressure and heart rate) in mice. TiO 2 NPs also decreased ATP production in the hearts. Furthermore, TiO 2 NPs increased expression of nuclear factor-κB, interleukin-lβ and tumour necrosis factor-α, and reduced expression of anti-inflammatory cytokines including suppressor of cytokine signaling (SOCS) 1 and SOCS3 in the cardiac tissue. These results suggest that TiO 2 NPs may modulate the cardiac function and expression of inflammatory cytokines. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2917-2927, 2016. © 2016 Wiley Periodicals, Inc.

  16. Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in mdx mice of both genders.

    Science.gov (United States)

    Ferry, Arnaud; Benchaouir, Rachid; Joanne, Pierre; Peat, Rachel A; Mougenot, Nathalie; Agbulut, Onnik; Butler-Browne, Gillian

    2015-11-01

    The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender. © 2015 Wiley Periodicals, Inc.

  17. Dystrophin is required for the normal function of the cardio-protective K(ATP channel in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laura Graciotti

    Full Text Available Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx, which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC. In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (K(ATP complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including K(ATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of K(ATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the K(ATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective K(ATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients.

  18. Cardiac MRI in restrictive cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Singh Gulati, G., E-mail: gulatigurpreet@rediffmail.com [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Seth, S. [Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Sharma, S. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India)

    2012-02-15

    Restrictive cardiomyopathy (RCM) is a specific group of heart muscle disorders characterized by inadequate ventricular relaxation during diastole. This leads to diastolic dysfunction with relative preservation of systolic function. Although short axis systolic function is usually preserved in RCM, the long axis systolic function may be severely impaired. Confirmation of diagnosis and information regarding aetiology, extent of myocardial damage, and response to treatment requires imaging. Importantly, differentiation from constrictive pericarditis (CCP) is needed, as only the latter is managed surgically. Echocardiography is the initial cardiac imaging technique but cannot reliably suggest a tissue diagnosis; although recent advances, especially tissue Doppler imaging and spectral tracking, have improved its ability to differentiate RCM from CCP. Cardiac catheterization is the reference standard, but is invasive, two-dimensional, and does not aid myocardial characterization. Cardiac magnetic resonance (CMR) is a versatile technique providing anatomical, morphological and functional information. In recent years, it has been shown to provide important information regarding disease mechanisms, and also been found useful to guide treatment, assess its outcome and predict patient prognosis. This review describes the CMR features of RCM, appearances in various diseases, its overall role in patient management, and how it compares with other imaging techniques.

  19. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  20. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    Science.gov (United States)

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

  1. Manual hyperinflation partly prevents reductions of functional residual capacity in cardiac surgical patients--a randomized controlled trial

    NARCIS (Netherlands)

    Paulus, Frederique; Veelo, Denise P.; de Nijs, Selma B.; Beenen, Ludo F. M.; Bresser, Paul; de Mol, Bas A. J. M.; Binnekade, Jan M.; Schultz, Marcus J.

    2011-01-01

    Cardiac surgery is associated with post-operative reductions of functional residual capacity (FRC). Manual hyperinflation (MH) aims to prevent airway plugging, and as such could prevent the reduction of FRC after surgery. The main purpose of this study was to determine the effect of MH on

  2. Atorvastatin improves cardiac function and remodeling in chronic non-ischemic heart failure: A clinical and pre-clinical study

    Directory of Open Access Journals (Sweden)

    Ibrahim Elmadbouh

    2015-12-01

    Conclusions: Atorvastatin with standard CHF therapy improved cardiac function and remodeling. Cardio-protective “pleiotropic” actions of atorvastatin are anti-inflammatory, anti-fibrotic and anti-oxidative. Thus, atorvastatin has a potential therapeutic value in the management of CHF patients.

  3. Cardiac changes in anorexia nervosa.

    Science.gov (United States)

    Spaulding-Barclay, Michael A; Stern, Jessica; Mehler, Philip S

    2016-04-01

    Introduction Anorexia nervosa is an eating disorder, which is associated with many different medical complications as a result of the weight loss and malnutrition that characterise this illness. It has the highest mortality rate of any psychiatric disorder. A large portion of deaths are attributable to the cardiac abnormalities that ensue as a result of the malnutrition associated with anorexia nervosa. In this review, the cardiac complications of anorexia nervosa will be discussed. A comprehensive literature review on cardiac changes in anorexia nervosa was carried out. There are structural, functional, and rhythm-type changes that occur in patients with anorexia nervosa. These become progressively significant as ongoing weight loss occurs. Cardiac changes are inherent to anorexia nervosa and they become more life-threatening and serious as the anorexia nervosa becomes increasingly severe. Weight restoration and attention to these cardiac changes are crucial for a successful treatment outcome.

  4. Effects of valsartan combined with atorvastatin on cardiac function, myocardial enzymes and thyroxine levels in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Xiao-Gang Wang1

    2017-04-01

    Full Text Available Objective: To observe the effects of valsartan combined with atorvastatin on cardiac function, myocardial enzymes and thyroxine levels in patients with chronic heart failure (CHF. Methods: 90 cases of CHF cases were divided into observation group and control group according to the order of single and double number, 45 cases each. In the control group, atorvastatin was given on the basis of conventional therapy, and the observation group was given valsartan on the basis of the control group. After 6 months, the differences of cardiac function indexes (LVEF, LVEDD, LVESD, E/A, myocardial enzymes (LDH, AST, CK, CKMB and thyroxine (TT3, TT4, FT3, FT4, TSH in the two groups were observed. Results: After treatment, LVEF and E/A in both groups increased significantly (P0.05, the observation group TT3 and FT3 were respectively (1.37±0.33 mol/L and (2.61±0.69 pmol/L , higher than the control group, the difference was statistically significant (P<0.05. Conclusion: valsartan combined with atorvastatin in the treatment of CHF, can improve cardiac function and myocardial protection effect, and can effectively promote the recovery of thyroid hormone levels, better than the single use of atorvastatin.

  5. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lifeng [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Zhou, Yong [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Yu, Shanhe [Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025 (China); Ji, Guixiang [Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing 210042 (China); Wang, Lei [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Liu, Wei [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Gu, Aihua, E-mail: aihuagu@njmu.edu.cn [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China)

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  6. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    Science.gov (United States)

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  7. Imported rickettsioses : think of murine typhus

    NARCIS (Netherlands)

    van der Kleij, FGH; Gansevoort, RT; Kreeftenberg, HG

    Murine typhus is a disease still prevalent in many parts of the world. Because the incidence in the US and Europe has declined rapidly, physicians in these continents have become unfamiliar with the clinical picture. Murine typhus is associated with significant morbidity and fatalities do occur,

  8. New developments in paediatric cardiac functional ultrasound imaging.

    Science.gov (United States)

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed.

  9. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    Science.gov (United States)

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  10. Large-Animal Biventricular Working Heart Perfusion System with Low Priming Volume-Comparison between in vivo and ex vivo Cardiac Function.

    Science.gov (United States)

    Abicht, Jan-Michael; Mayr, Tanja Axinja Jelena; Jauch, Judith; Guethoff, Sonja; Buchholz, Stefan; Reichart, Bruno; Bauer, Andreas

    2018-01-01

    Existing large-animal, ex vivo, cardiac perfusion models are restricted in their ability to establish an ischemia/reperfusion condition as seen in cardiac surgery or transplantation. Other working heart systems only challenge one ventricle or require a substantially larger priming volume. We describe a novel biventricular cardiac perfusion system with reduced priming volume. Juvenile pig hearts were cardiopleged, explanted, and reperfused ex vivo after 150 minutes of cold ischemia. Autologous whole blood was used as perfusate (minimal priming volume 350 mL). After 15 minutes of Langendorff perfusion (LM), the system was switched into a biventricular working mode (WM) and studied for 3 hours. During reperfusion, complete unloading of both ventricles and constant-pressure coronary perfusion was achieved. During working mode perfusion, the preload and afterload pressure of both ventricles was controlled within the targeted physiologic range. Functional parameters such as left ventricular work index were reduced in ex vivo working mode (in vivo: 787 ± 186 vs. 1 h WM 498 ± 66 mm Hg·mL/g·min; p  hours while functional and blood parameters are easily accessible. Moreover, because of the minimal priming volume, the novel ex vivo cardiac perfusion circuit allows for autologous perfusion, using the limited amount of blood available from the organ donating animal. Georg Thieme Verlag KG Stuttgart · New York.

  11. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload

    Directory of Open Access Journals (Sweden)

    Sujith Dassanayaka

    2018-07-01

    Full Text Available Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2. An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Keywords: Heart failure, Hypertrophy, Oxidative stress, Aldehydes, Cardiac remodeling, Hormesis

  12. Comparison of Usefulness of N-Terminal Pro-Brain Natriuretic Peptide as an Independent Predictor of Cardiac Function Among Admission Cardiac Serum Biomarkers in Patients With Anterior Wall Versus Nonanterior Wall ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention

    NARCIS (Netherlands)

    Haeck, Joost D. E.; Verouden, Niels J. W.; Kuijt, Wichert J.; Koch, Karel T.; van Straalen, Jan P.; Fischer, Johan; Groenink, Maarten; Bilodeau, Luc; Tijssen, Jan G. P.; Krucoff, Mitchell W.; de Winter, Robbert J.

    2010-01-01

    The purpose of the present study was to determine the prognostic value of N-terminal pro-brain natriuretic peptide (NT-pro-BNP), among other serum biomarkers, on cardiac magnetic resonance (CMR) imaging parameters of cardiac function and infarct size in patients with ST-segment elevation myocardial

  13. No evidence for cardiac dysfunction in Kif6 mutant mice.

    Directory of Open Access Journals (Sweden)

    Abdul Hameed

    Full Text Available A KIF6 variant in man has been reported to be associated with adverse cardiovascular outcomes after myocardial infarction. No clear biological or physiological data exist for Kif6. We sought to investigate the impact of a deleterious KIF6 mutation on cardiac function in mice. Kif6 mutant mice were generated and verified. Cardiac function was assessed by serial echocardiography at baseline, after ageing and after exercise. Lipid levels were also measured. No discernable adverse lipid or cardiac phenotype was detected in Kif6 mutant mice. These data suggest that dysfunction of Kif6 is linked to other more complex biological/biochemical parameters or is unlikely to be of material consequence in cardiac function.

  14. Improved cardiac function and exercise capacity following correction of pectus excavatum: a review of current literature.

    Science.gov (United States)

    Maagaard, Marie; Heiberg, Johan

    2016-09-01

    Patients with pectus excavatum (PE) often describe improvements in exercise stamina following corrective surgery. Studies have investigated the surgical effect on physiological parameters; still, no consensus has yet been reached. Therefore, the aim of this literature review was to describe the cardiac outcome after surgical correction, both at rest and during exercise. In February 2016, a detailed search of the databases PubMed, Medline, and EMBASE was performed. We assessed clinical studies that described cardiac outcomes both before and after surgical correction of PE. We only included studies reporting either pre-defined echocardiographic or exercise test parameters. No exclusion criteria or statistical analyses were applied. Twenty-one full-text articles, published between 1972 and 2016, were selected, with cohort-ranges of 3-168 patients, mean age-ranges of 5-33 years, and mean follow-up-ranges from immediately to 4 years after surgery. Twelve studies described resting cardiac parameters. Four studies measured cardiac output, where one described 36% immediate increase after surgery, one reported 15% increase after Nuss-bar removal and two found no difference. Three studies demonstrated improvement in mean stroke volume ranges of 22-34% and two studies found no difference. Fifteen studies investigated exercise capacity, with 11 considering peak O 2 pr. kg, where five studies demonstrated improvements with the mean ranging from 8% to 15% after surgery, five studies demonstrated no difference, and one saw a decrease of 19% 3 months after Nuss-bar implantation. A measurable increase in exercise capacity exists following surgery, which may be caused by multiple factors. This may be owed to the relief of compressed cardiac chambers with the increased anterior-posterior thoracic dimensions, which could facilitate an improved filling of the heart. With these results, the positive physiological impact of the surgery is emphasized and the potential gain in cardiac

  15. Assessment of DNA synthesis in Islet-1+ cells in the adult murine heart

    International Nuclear Information System (INIS)

    Weinberger, Florian; Mehrkens, Dennis; Starbatty, Jutta; Nicol, Philipp; Eschenhagen, Thomas

    2015-01-01

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1 + ) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1 + cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ( 3 H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of 3 H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1 + cells. Whereas Islet − non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1 + cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes

  16. Vitamin D deficiency and its relationship with cardiac iron and function in patients with transfusion-dependent thalassemia at Chiang Mai University Hospital.

    Science.gov (United States)

    Dejkhamron, Prapai; Wejaphikul, Karn; Mahatumarat, Tuanjit; Silvilairat, Suchaya; Charoenkwan, Pimlak; Saekho, Suwit; Unachak, Kevalee

    2018-02-01

    Vitamin D deficiency is common in patients with thalassemia. Vitamin D deficiency could be related to cardiac dysfunction. Increased parathyroid hormone (PTH) is also known to be associated with heart failure. To determine the prevalence of Vitamin D deficiency and to explore the impact of Vitamin D deficiency on cardiac iron and function in patients with transfusion-dependent thalassemia. A cross-sectional study in patients with Transfusion-dependent thalassemia was conducted. Patients with liver disease, renal disease, type 1 diabetes, malabsorption, hypercortisolism, malignancy, and contraindication for MRI were excluded. Calcium, phosphate, PTH, vitamin D-25OH were measured. CardiacT2 * and liver iron concentration (LIC) and left ventricular ejection fraction (LVEF) were determined. Results Sixty-one (33M/28F) patients with Transfusion-dependent thalassemia were enrolled. The prevalence of Vitamin D deficiency was 50.8%. Patients with cardiac siderosis had tendency for lower D-25OH than those without siderosis (15.9 (11.7-20.0) vs. 20.2 (15.85-22.3) ng/mL); p = 0.06). Serum calcium, phosphate, PTH, LIC, cardiac T2 * , and LVEF were not different between the groups with or without Vitamin D deficiency. Patients with Vitamin D deficiency had significantly lower hemoglobin levels compared to those without Vitamin D deficiency (7.5 (6.93-8.33) vs. 8.1 (7.30-8.50) g/dL; p = 0.04). The median hemoglobin in the last 12 months was significantly correlated with D-25OH. Cardiac T2 * had significant correlation with PTH. Vitamin D deficiency is prevalent in patients with Transfusion-dependent thalassemia. Vitamin D level is correlated with hemoglobin level. Vitamin D status should be routinely assessed in these patients. Low PTH is correlated with increased cardiac iron. This study did not demonstrate an association between Vitamin D deficiency and cardiac iron or function in patients with Transfusion-dependent thalassemia.

  17. Cardiac remodeling after myocardial infarction is impaired in IGF-1 deficient mice

    NARCIS (Netherlands)

    Palmen, M.; Daemen, M. J.; Bronsaer, R.; Dassen, W. R.; Zandbergen, H. R.; Kockx, M.; Smits, J. F.; van der Zee, R.; Doevendans, P. A.

    2001-01-01

    To obtain more insight in the role of IGF-1 in cardiac remodeling and function after experimental myocardial infarction. We hypothesized that cardiac remodeling is altered in IGF-1 deficient mice, which may affect cardiac function. A myocardial infarction was induced by surgical coronary artery

  18. A portable cadmium telluride multidetector probe for cardiac function monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B. E-mail: eclan@alsace.u-strasbg.fr; Prat, V

    1999-06-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients.

  19. A portable cadmium telluride multidetector probe for cardiac function monitoring

    International Nuclear Information System (INIS)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B.; Prat, V.

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients

  20. Scintigraphic assessment of heterotopic cardiac transplants

    International Nuclear Information System (INIS)

    Wilson, M.A.; Kahn, D.R.

    1981-01-01

    Patients receiving heterotopic (''piggyback'') cardiac transplants, when the patient's own and transplanted donor hearts are connected in parallel, present special problems in determining their relative contributions to total cardiac function. Three patients who had transplants because of intractable heart failure were studied using first pass and gated equilibrium technetium-99m-labeled blood pool scintigraphy. In one patient, thallium-201 myocardial perfusion scans were obtained. These nuclear cardiology techniques provided anatomic and functional information noninvasively that proved helpful in patient management

  1. Clinical evaluation of 64-slice CT assessment of global left ventricular function using automated cardiac phase selection

    International Nuclear Information System (INIS)

    Joemai, Raoul M.S.; Geleijns, Joemai; Veldkamp, Wouter J.H.; Kroft, Lucia J.M.

    2008-01-01

    Left ventricular (LV) function provides prognostic information regarding the morbidity and mortality of patients. An automated cardiac phase selection algorithm has the potential to support the assessment of LV function with computed tomography (CT). This algorithm is clinically evaluated for 64-slice cardiac CT. Examinations of twenty consecutive patients were selected. Electrocardiogram gated contrast-enhanced CT was performed. Reconstructions were performed using an automated and a manual method, followed by the determination of the global LV function. Significances were tested using 2-sided Student's t-tests. Reduction in post processing time and storage capacity were estimated. A slightly smaller mean end-systolic volume was found with the automated method (52±18 ml vs 54±17 ml, p=0.02, r=0.99). The mean LV ejection fraction was slightly larger with the automated method (65±8% vs 64±8%, p=0.004, r=0.99). The estimated reduction in post processing time was maximal 5 min per patient with a potential 80% data storage reduction. Results of the automated phase selection algorithm are similar to the manual method. The automated tool reduces post processing time, reconstruction time and transfer time. (author)

  2. Impact of physiological variables and genetic background on myocardial frequency-resistivity relations in the intact beating murine heart.

    Science.gov (United States)

    Reyes, Maricela; Steinhelper, Mark E; Alvarez, Jorge A; Escobedo, Daniel; Pearce, John; Valvano, Jonathan W; Pollock, Brad H; Wei, Chia-Ling; Kottam, Anil; Altman, David; Bailey, Steven; Thomsen, Sharon; Lee, Shuko; Colston, James T; Oh, Jung Hwan; Freeman, Gregory L; Feldman, Marc D

    2006-10-01

    Conductance measurements for generation of an instantaneous left ventricular (LV) volume signal in the mouse are limited, because the volume signal is a combination of blood and LV muscle, and only the blood signal is desired. We have developed a conductance system that operates at two simultaneous frequencies to identify and remove the myocardial contribution to the instantaneous volume signal. This system is based on the observation that myocardial resistivity varies with frequency, whereas blood resistivity does not. For calculation of LV blood volume with the dual-frequency conductance system in mice, in vivo murine myocardial resistivity was measured and combined with an analytic approach. The goals of the present study were to identify and minimize the sources of error in the measurement of myocardial resistivity to enhance the accuracy of the dual-frequency conductance system. We extended these findings to a gene-altered mouse model to determine the impact of measured myocardial resistivity on the calculation of LV pressure-volume relations. We examined the impact of temperature, timing of the measurement during the cardiac cycle, breeding strain, anisotropy, and intrameasurement and interanimal variability on the measurement of intact murine myocardial resistivity. Applying this knowledge to diabetic and nondiabetic 11- and 20- to 24-wk-old mice, we demonstrated differences in myocardial resistivity at low frequencies, enhancement of LV systolic function at 11 wk and LV dilation at 20-24 wk, and histological and electron-microscopic studies demonstrating greater glycogen deposition in the diabetic mice. This study demonstrated the accurate technique of measuring myocardial resistivity and its impact on the determination of LV pressure-volume relations in gene-altered mice.

  3. Kruppel-like factor 15 is required for the cardiac adaptive response to fasting.

    Science.gov (United States)

    Sugi, Keiki; Hsieh, Paishiun N; Ilkayeva, Olga; Shelkay, Shamanthika; Moroney, Bridget; Baadh, Palvir; Haynes, Browning; Pophal, Megan; Fan, Liyan; Newgard, Christopher B; Prosdocimo, Domenick A; Jain, Mukesh K

    2018-01-01

    Cardiac metabolism is highly adaptive in response to changes in substrate availability, as occur during fasting. This metabolic flexibility is essential to the maintenance of contractile function and is under the control of a group of select transcriptional regulators, notably the nuclear receptor family of factors member PPARα. However, the diversity of physiologic and pathologic states through which the heart must sustain function suggests the possible existence of additional transcriptional regulators that play a role in matching cardiac metabolism to energetic demand. Here we show that cardiac KLF15 is required for the normal cardiac response to fasting. Specifically, we find that cardiac function is impaired upon fasting in systemic and cardiac specific Klf15-null mice. Further, cardiac specific Klf15-null mice display a fasting-dependent accumulation of long chain acylcarnitine species along with a decrease in expression of the carnitine translocase Slc25a20. Treatment with a diet high in short chain fatty acids relieves the KLF15-dependent long chain acylcarnitine accumulation and impaired cardiac function in response to fasting. Our observations establish KLF15 as a critical mediator of the cardiac adaptive response to fasting through its regulation of myocardial lipid utilization.

  4. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  5. Spironolactone in chronic hemodialysis patients improves cardiac function

    International Nuclear Information System (INIS)

    Taheri, Shahram; Mortazavi, Mojhgan; Shahidi Shahrzad; Seirafian, Shiva; Pourmoghadas, Ali; Garakyaraghi, Mohammad; Eshaghian, Afrooz; Ghassami, Maryam

    2009-01-01

    We performed this study to assess whether low dose spironolactone could be administered in hemodialysis (HD) patients with moderate to severe heart failure to improve cardiovascular function and reduce hospitalization without inducing hyperkalemia. We enrolled 16 chronic HD patients with moderate to severe heart failure and left ventricle ejection fraction :5 45%. In a double blinded randomized placebo controlled study, one group of 8 patients received 25 mg of spironolactone after each dialysis session within six months, and the rest received a placebo. Echocardiography was performed on all the patients to assess ejection fraction and left ventricular mass during 12 hours after completion of hemodialysis at the beginning and the end of study. Serum potassium was measured predialysis every 4 weeks. The mean ejection fraction increased significantly more in spironolactone group during the study period than in the placebo group (6.2 + - 1.64 vs. 0.83 + - 4.9, P0.046). The mean left ventricular mass decreased in the spironolactone group, but increased significantly in the placebo group during the period (-8.4 + - 4.72 vs. 3 + -7.97. 95%, P= 0.021). The incidence of hyperkalemia was not significantly increased in the study or controlled groups. In conclusion, we found in this study that administration of spironolactone in chronic HD patients with moderate to severe heart failure substantially improved their cardiac function and decreases left ventricular mass without development of significant hyperkalemia. (author)

  6. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function.

    Science.gov (United States)

    Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José

    2016-04-01

    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.

  7. Myocardial ischaemia and the cardiac nervous system.

    Science.gov (United States)

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some

  8. The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W

    2016-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.

  9. Analysis of left ventricular function of the mouse heart during experimentally induced hyperthyroidism and recovery.

    Science.gov (United States)

    Hübner, Neele Saskia; Merkle, Annette; Jung, Bernd; von Elverfeldt, Dominik; Harsan, Laura-Adela

    2015-01-01

    Many of the clinical manifestations of hyperthyroidism are due to the ability of thyroid hormones to alter myocardial contractility and cardiovascular hemodynamics, leading to cardiovascular impairment. In contrast, recent studies highlight also the potential beneficial effects of thyroid hormone administration for clinical or preclinical treatment of different diseases such as atherosclerosis, obesity and diabetes or as a new therapeutic approach in demyelinating disorders. In these contexts and in the view of developing thyroid hormone-based therapeutic strategies, it is, however, important to analyze undesirable secondary effects on the heart. Animal models of experimentally induced hyperthyroidism therefore represent important tools for investigating and monitoring changes of cardiac function. In our present study we use high-field cardiac MRI to monitor and follow-up longitudinally the effects of prolonged thyroid hormone (triiodothyronine) administration focusing on murine left ventricular function. Using a 9.4 T small horizontal bore animal scanner, cinematographic MRI was used to analyze changes in ejection fraction, wall thickening, systolic index and fractional shortening. Cardiac MRI investigations were performed after sustained cycles of triiodothyronine administration and treatment arrest in adolescent (8 week old) and adult (24 week old) female C57Bl/6 N mice. Triiodothyronine supplementation of 3 weeks led to an impairment of cardiac performance with a decline in ejection fraction, wall thickening, systolic index and fractional shortening in both age groups but with a higher extent in the group of adolescent mice. However, after a hormonal treatment cessation of 3 weeks, only young mice are able to partly restore cardiac performance in contrast to adult mice lacking this recovery potential and therefore indicating a presence of chronically developed heart pathology. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Greenwood, Iain A; Moffatt, James D

    2009-01-01

    that K(v)7.x especially K(v)7.4 and K(v)7.5 are expressed in different regions of the murine gastrointestinal tract and blockers of K(v)7 channels augment inherent contractile activity. Drugs that selectively block K(v)7.4/7.5 might be promising therapeutics for the treatment of motility disorders...

  11. Right ventricular function assessed by 2D strain analysis predicts ventricular arrhythmias and sudden cardiac death in patients after acute myocardial infarction

    DEFF Research Database (Denmark)

    Risum, Niels; Valeur, Nana; Søgaard, Peter

    2017-01-01

    Aims: Left ventricular function is a well-established predictor of malignant ventricular arrhythmias, but little is known about the importance of right ventricular (RV) function. The aim of this study was to investigate the importance of RV function for prediction of sudden cardiac death (SCD) or...

  12. Effect of in vivo heart irradiation on the development of antioxidant defenses and cardiac functions in the rat

    International Nuclear Information System (INIS)

    Benderitter, M.; Assem, M.; Maupoil, V.

    1995-01-01

    During radiotherapy of thoracic tumors, the heart is often included in the primary treatment volume, and chronic impairment of myocardial function occurs. The cellular biomolecules are altered directly by radiation or damaged indirectly by free radical production. The purpose of this investigation was to evaluate the biochemical and functional response of the rat heart to a single high dose of radiation. The effect of 20 Gy local X irradiation was determined in the heart of Wistar rats under general anesthesia. Mechanical performances were measured in vitro using an isolated perfused working heart model, and cardiac antioxidant defenses were also evaluated. Hearts were studied at 1 and 4 months after irradiation. This single dose of radiation induced a marked drop in the mechanical activity of the rat heart: aortic output was significantly reduced (18% less than control values) at 1 month postirradiation and remained depressed for the rest of the experimental period (21% less than control 4 months after treatment). This suggests the development of myocardial failure after irradiation. The decline of functional parameters was associated with changes in antioxidant defenses. The decrease in cardiac levels of vitamin E (-30%) was associated with an increase in the levels of Mn-SOD and glustathione peroxidase (+45.5% and +32%, respectively, at 4 months postirradiation). However, cardiac vitamin C and catalase levels remained constant. Since these antioxidant defenses were activated relatively long after irradiation, it is suggested that this was probable due to the production of free radical species associated with the development of inflammation. 49 refs., 8 figs., 1 tab

  13. [Influence of detomidine on echocardiographic function parameters and cardiac hemodynamics in horses with and without heart murmur].

    Science.gov (United States)

    Gehlen, H; Kroker, K; Deegen, E; Stadler, P

    2004-03-01

    30 warmblood horses were examined before and after sedation with 20 micrograms/kg BW detomidine, to determine changes of cardiac function parameters, using B-mode, M-mode and Doppler echocardiography. 15 horses showed a heart murmur, but no clinical signs of cardiac heart failure, 15 horses had neither a heart murmur nor other signs of cardiac disease. After sedation with detomidine we could recognise a significant increase of end-diastolic left atrium diameter, an increase of end-systolic left ventricular diameter and aortic root diameter. The end-systolic thickness of papillary muscle and interventricular septum showed a decrease. Fractional shortening and amplitude of left ventricular wall motion was decreased after sedation. The mitral valve echogram revealed a presystolic valve closure and an inflection in the Ac slope (B-notch) in xy horses before sedation. Both increased after sedation with detomidine. Doppler echocardiography showed a decrease of blood flow velocity and velocity time integral (VTI) in the left and right ventricular outflow tract after sedation. Regurgitant flow signals were intensified following sedation in xy horses, especially at the mitral valve.

  14. Serial changes in anatomy and ventricular function on dual-source cardiac computed tomography after the Norwood procedure for hypoplastic left heart syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of)

    2017-12-15

    Accurate evaluation of anatomy and ventricular function after the Norwood procedure in hypoplastic left heart syndrome is important for treatment planning and prognostication, but echocardiography and cardiac MRI have limitations. To assess serial changes in anatomy and ventricular function on dual-source cardiac CT after the Norwood procedure for hypoplastic left heart syndrome. In 14 consecutive patients with hypoplastic left heart syndrome, end-systolic and end-diastolic phase cardiac dual-source CT was performed before and early (average: 1 month) after the Norwood procedure, and repeated late (median: 4.5 months) after the Norwood procedure in six patients. Ventricular functional parameters and indexed morphological measurements including pulmonary artery size, right ventricular free wall thickness, and ascending aorta size on cardiac CT were compared between different time points. Moreover, morphological features including ventricular septal defect, endocardial fibroelastosis and coronary ventricular communication were evaluated on cardiac CT. Right ventricular function and volumes remained unchanged (indexed end-systolic and end-diastolic volumes: 38.9±14.0 vs. 41.1±21.5 ml/m{sup 2}, P=0.7 and 99.5±30.5 vs. 105.1±33.0 ml/m{sup 2}, P=0.6; ejection fraction: 60.1±7.3 vs. 63.8±7.0%, P=0.1, and indexed stroke volume: 60.7±18.0 vs. 64.0±15.6 ml/m{sup 2}, P=0.5) early after the Norwood procedure, but function was decreased (ejection fraction: 64.2±2.6 vs. 58.1±7.1%, P=0.01) and volume was increased (indexed end-systolic and end-diastolic volumes: 39.2±14.9 vs. 68.9±20.6 ml/m{sup 2}, P<0.003 and 107.8±36.5 vs. 162.9±36.2 ml/m{sup 2}, P<0.006, and indexed stroke volume: 68.6±21.7 vs. 94.0±21.3 ml/m{sup 2}, P=0.02) later. Branch pulmonary artery size showed a gradual decrease without asymmetry after the Norwood procedure. Right and left pulmonary artery stenoses were identified in 21.4% (3/14) of the patients. Indexed right ventricular free wall

  15. Cardiac Function in Patients with Early Cirrhosis during Maximal Beta-Adrenergic Drive

    DEFF Research Database (Denmark)

    Krag, Aleksander; Bendtsen, Flemming; Dahl, Emilie Kristine

    2014-01-01

    BACKGROUND AND AIM: Cardiac dysfunction in patients with early cirrhosis is debated. We investigated potential cardiac dysfunction by assessing left ventricular systolic performance during a dobutamine stress test in patients with early cirrhosis. PATIENTS AND METHODS: Nineteen patients with Chil...

  16. On the Evolution of the Cardiac Pacemaker

    Directory of Open Access Journals (Sweden)

    Silja Burkhard

    2017-04-01

    Full Text Available The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx, and bone morphogenic protein (Bmp families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function.

  17. On the Evolution of the Cardiac Pacemaker

    Science.gov (United States)

    Burkhard, Silja; van Eif, Vincent; Garric, Laurence; Christoffels, Vincent M.; Bakkers, Jeroen

    2017-01-01

    The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function. PMID:29367536

  18. The effect of perioperative analgesic drugs omnopon and dexketoprofen on the functional activity of immune cells in murine model of tumor surgery

    Directory of Open Access Journals (Sweden)

    R. I. Sydor

    2016-08-01

    Full Text Available We aimed to investigate the effect of perioperative analgesia with nonselective cyclooxygenase-2 inhibitor dexketoprofen and opioid drug omnopon on the functional activity of immune cells in tumor excision murine model. Lewis lung carcinoma cells were transplanted into hind paw of C57/black mice. On the 23th day tumor was removed. Analgesic drugs were injected 30 min before and once a day for 3 days after the surgery. Biological material was obtained a day before, 1 day and 3 days after the tumor removal. IFN-γ, IL-4, IL-10 and TGF-β mRNA levels in splenic cells were assessed by quantitative real-time RT-PCR. Cytotoxic activity of splenocytes was estimated by flow cytometry. We found that in splenocytes of mice received opioid analgesia IL-10 mRNA level was increased 2.3 times on day one after the surgery compared to preoperative level (P < 0.05, while in dexketoprofen group this parameter did not change. IFN-γ gene expression level on day 3 after tumor removal was 40% higher in splenocytes of dexketoprofen treated mice as compared with omnopon treated animals (P < 0.05. Cytotoxic activity of splenocytes on day 3 postsurgery was (62.2 ± 2.4% in dexketoprofen against (50.2 ± 3.3% in omnopon group. In conclusion, perioperative analgesia with cyclooxygenase inhibitor dexketoprofen in contrast to opioid analgesia with omnopon preserves higher functional activity of murine immune cells in the experimental model of tumor surgery.

  19. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  20. Production and Functional Characterization of Murine Osteoclasts Differentiated from ER-Hoxb8-Immortalized Myeloid Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Frank Zach

    Full Text Available In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from

  1. Integration of concepts: cardiac extracellular matrix remodeling after myocardial infarction

    NARCIS (Netherlands)

    Cleutjens, Jack P. M.; Creemers, Esther E. J. M.

    2002-01-01

    The cardiac extracellular matrix consists of a three-dimensional structural network of interstitial collagens to which other matrix components are attached. The main physiological functions of this network are to retain tissue integrity and cardiac pump function. Collagen deposition is controlled

  2. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    International Nuclear Information System (INIS)

    Raffel, David M.; Wieland, Donald M.

    2001-01-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation

  3. [The cardioprotective action of the anticonvulsant preparation sodium valproate in disorders of cardiac contractile function caused by acute myocardial infarct in rats].

    Science.gov (United States)

    Belkina, L M; Korchazhkina, N B; Kamskova, Iu G; Fomin, N A

    1997-01-01

    The preventive and therapeutical effects of sodium valproate (SV), 200 mg/kg, on cardiac contractile disorders (developed pressure, rate-pressure products, dp/dt) were studied in rats having 2-day myocardial infarction (MI). The postinfarction rather than preinfarction use of SV substantially restricted the depressed resting left ventricular function. Given by two regimens, SV increased cardiac resistance to the maximum isometric load induced by 60-sec ligation of the ascending aorta. The cardioprotective effect of the drug was shown due to its positive chronotropic action rather than its inotropic one. Thus, SV may be used as an effective drug for the prevention and treatment of postinfarct cardiac dysfunctions.

  4. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    NARCIS (Netherlands)

    Homburger, J.R. (Julian R.); Green, E.M. (Eric M.); Caleshu, C. (Colleen); Sunitha, M.S. (Margaret S.); Taylor, R.E. (Rebecca E.); Ruppel, K.M. (Kathleen M.); Metpally, R.P.R. (Raghu Prasad Rao); S.D. Colan (Steven); M. Michels (Michelle); Day, S.M. (Sharlene M.); I. Olivotto (Iacopo); Bustamante, C.D. (Carlos D.); Dewey, F.E. (Frederick E.); Ho, C.Y. (Carolyn Y.); Spudich, J.A. (James A.); Ashley, E.A. (Euan A.)

    2016-01-01

    textabstractMyosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac

  5. {sup 123}I-MIBG imaging detects cardiac involvement and predicts cardiac events in Churg-Strauss syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Yoriko; Morita, Yukiko [National Hospital Organization Sagamihara National Hospital, Department of Cardiology, Sagamihara City, Kanagawa (Japan); Tsurikisawa, Naomi; Akiyama, Kazuo [National Hospital Organization Sagamihara National Hospital, Clinical Research Centre for Allergy and Rheumatology, Sagamihara City, Kanagawa (Japan)

    2011-02-15

    In Churg-Strauss syndrome (CSS) it is important to detect cardiac involvement, which predicts poor prognosis. This study evaluated whether {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy could detect cardiac damage and predict cardiac events in CSS. {sup 123}I-MIBG scintigraphy was performed in 28 patients with CSS, 12 of whom had cardiac involvement. The early and delayed heart to mediastinum ratio (early H/M and delayed H/M) and washout rate were calculated by using {sup 123}I-MIBG scintigraphy and compared with those in control subjects. Early H/M and delayed H/M were significantly lower and the washout rate was significantly higher in patients with cardiac involvement than in those without and in controls (early H/M, p = 0.0024, p = 0.0001; delayed H/M, p = 0.0002, p = 0.0001; washout rate, p = 0.0012, p = 0.0052 vs those without and vs controls, respectively). Accuracy for detecting cardiac involvement was 86% for delayed H/M and washout rate and 79% for early H/M and B-type natriuretic peptide (BNP). Kaplan-Meier analysis showed significantly lower cardiac event-free rates in patients with early H/M {<=} 2.18 and BNP > 21.8 pg/ml than those with early H/M > 2.18 and BNP {<=} 21.8 pg/ml (log-rank test p = 0.006). Cardiac sympathetic nerve function was damaged in CSS patients with cardiac involvement. {sup 123}I-MIBG scintigraphy was useful in detecting cardiac involvement and in predicting cardiac events. (orig.)

  6. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    Science.gov (United States)

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  7. Effects of ioxaglic acid on cardiac functions during coronary arteriography in canines

    Energy Technology Data Exchange (ETDEWEB)

    Traegaardh, B. (Malmoe Allmaenna Sjukhus, Malmoe, Sweden); Lynch, P.R. (Temple Univ., Philadelphia, PA (USA). School of Medicine)

    1983-01-01

    The new monoacid dimer ioxaglic acid (P286), the non-ionic metrizamide (Amipaque) and diatrizoate (Renografin 76) were compared regarding their effects on left ventricular pressure, the first derivative of left ventricular pressure, aortic pressures and on ECG changes during left and right coronary angiography in dogs. Ioxaglate was found to affect most of these parameters less than diatrizoate probably due to its lower osmolality. Ioxaglate should be regarded suitable for coronary angiography. However, ioxaglate was found to have greater effects on the cardiac function than the equiosmolar metrizamide. This is probably due to the chemotoxicity of the anion or possibly to the sodium content of the ioxaglic acid solution.

  8. Cardiac Myosin Binding Protein-C Autoantibodies Are Potential Early Indicators of Cardiac Dysfunction and Patient Outcome in Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch, IVPhD

    2017-04-01

    Full Text Available Summary: The degradation and release of cardiac myosin binding protein-C (cMyBP-C upon cardiac damage may stimulate an inflammatory response and autoantibody (AAb production. We determined whether the presence of cMyBP-C-AAbs associated with adverse cardiac function in cardiovascular disease patients. Importantly, cMyBP-C-AAbs were significantly detected in acute coronary syndrome patient sera upon arrival to the emergency department, particularly in ST-segment elevation myocardial infarction patients. Patients positive for cMyBP-C-AAbs had reduced left ventricular ejection fraction and elevated levels of clinical biomarkers of myocardial infarction. We conclude that cMyBP-C-AAbs may serve as early predictive indicators of deteriorating cardiac function and patient outcome in acute coronary syndrome patients prior to the infarction. Key Words: acute myocardial infarction, autoantibodies, cardiac myosin binding protein-c, cardiomyopathy

  9. Obesity-associated cardiac pathogenesis in broiler breeder hens: Pathological adaption of cardiac hypertrophy.

    Science.gov (United States)

    Chen, C Y; Lin, H Y; Chen, Y W; Ko, Y J; Liu, Y J; Chen, Y H; Walzem, R L; Chen, S E

    2017-07-01

    Broiler hens consuming feed to appetite (ad libitum; AL) show increased mortality. Feed restriction (R) typically improves reproductive performance and livability of hens. Rapidly growing broilers can exhibit increased mortality due to cardiac insufficiency but it is unknown whether the increased mortality of non-R broiler hens is also due to cardiac compromise. To assess cardiac growth and physiology in fully mature birds, 45-week-old hens were either continued on R rations or assigned to AL feeding for 7 or 21 days. AL hens exhibited increased bodyweight, adiposity, absolute and relative heart weight, ventricular hypertrophy, and cardiac protein/DNA ratio by d 21 (P hens (P Hens allowed AL feeding for 70 d exhibited a higher incidence of mortality (40% vs. 10%) in association with ascites, pericardial effusion, and ventricle dilation. A higher incidence of irregular ECG patterns and rhythmicity consistent with persistently elevated systolic blood pressure and ventricle fibrosis were observed in AL hens (P feeding in broiler hens results in maladaptive cardiac hypertrophy that progresses to overt pathogenesis in contractility and thereby increases mortality. Feed restriction provides clear physiological benefit to heart function of adult broiler hens. © 2017 Poultry Science Association Inc.

  10. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    Directory of Open Access Journals (Sweden)

    Davy PMC

    2015-10-01

    Full Text Available Philip MC Davy,1 Kevin D Lye,2,3 Juanita Mathews,1 Jesse B Owens,1 Alice Y Chow,1 Livingston Wong,2 Stefan Moisyadi,1 Richard C Allsopp1 1Institute for Biogenesis Research, 2John A. Burns School of Medicine, University of Hawaii at Mānoa, 3Tissue Genesis, Inc., Honolulu, HI, USA Background: Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs as well as induced cardiac-like progenitors (iCPs derived from ASCs for the treatment of myocardial infarction. Methods and results: Human bone marrow (BM-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion: Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. Keywords: adipose stem cells, myocardial infarction, cellular reprogramming, cellular therapy, piggyBac, induced cardiac-like progenitors

  11. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats.

    Science.gov (United States)

    Vieira, Fabricio Furtado; Olivoto, Robson Ruiz; Silva, Priscyla Oliveira da; Francisco, Julio Cesar; Fogaça, Rosalvo Tadeu Hochmuller

    2016-12-01

    Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  12. Necessity of angiotensin-converting enzyme-related gene for cardiac functions and longevity of Drosophila melanogaster assessed by optical coherence tomography

    Science.gov (United States)

    Liao, Fang-Tsu; Chang, Cheng-Yi; Su, Ming-Tsan; Kuo, Wen-Chuan

    2014-01-01

    Prior studies have established the necessity of an angiotensin-converting enzyme-related (ACER) gene for heart morphogenesis of Drosophila. Nevertheless, the physiology of ACER has yet to be comprehensively understood. Herein, we employed RNA interference to down-regulate the expression of ACER in Drosophila's heart and swept source optical coherence tomography to assess whether ACER is required for cardiac functions in living adult flies. Several contractile parameters of Drosophila heart, including the heart rate (HR), end-diastolic diameter (EDD), end-systolic diameter (ESD), percent fractional shortening (%FS), and stress-induced cardiac performance, are shown, which are age dependent. These age-dependent cardiac functions declined significantly when ACER was down-regulated. Moreover, the lifespans of ACER knock-down flies were significantly shorter than those of wild-type control flies. Thus, we posit that ACER, the Drosophila ortholog of mammalian angiotensin-converting enzyme 2 (ACE2), is essential for both heart physiology and longevity of animals. Since mammalian ACE2 controls many cardiovascular physiological features and is implicated in cardiomyopathies, our findings that ACER plays conserved roles in genetically tractable animals will pave the way for uncovering the genetic pathway that controls the renin-angiotensin system.

  13. The natural history of cardiac and pulmonary function decline in patients with duchenne muscular dystrophy.

    Science.gov (United States)

    Roberto, Rolando; Fritz, Anto; Hagar, Yolanda; Boice, Braden; Skalsky, Andrew; Hwang, Hosun; Beckett, Laurel; McDonald, Craig; Gupta, Munish

    2011-07-01

    Retrospective review of scoliosis progression, pulmonary and cardiac function in a series of patients with Duchenne Muscular Dystrophy (DMD). To determine whether operative treatment of scoliosis decreases the rate of pulmonary function loss in patients with DMD. It is generally accepted that surgical intervention should be undertaken in DMD scoliosis once curve sizes reach 35° to allow intervention before critical respiratory decline has occurred. There are conflicting reports, however, regarding the effect of scoliosis stabilization on the rate of pulmonary function decline when compared to nonoperative cohorts. We reviewed spinal radiographs, echocardiograms, and spirometry, hospital, and operative records of all patients seen at our tertiary referral center from July 1, 1992 to June 1, 2007. Data were recorded to Microsoft Excel (Microsoft, Redmond, WA) and analyzed with SAS (SAS Institute, Cary, NC) and R statistical processing software (www.r-project.org). The percent predicted forced vital capacity (PPFVC) decreased 5% per year before operation. The mean PPFVC was 54% (SD = 21%) before operation with a mean postoperative PPFVC of 43% (SD = 14%). Surgical treatment was associated with a 12% decline in PPFVC independent of other treatment variables. PPFVC after operation declined at a rate of 1% per year and while this rate was lower, it was not significantly different than the rate of decline present before operation (P = 0.18). Cardiac function as measured by left ventricular fractional shortening declined at a rate of 1% per year with most individuals exhibiting a left ventricular fractional shortening rate of more than 30 before operation. Operative treatment of scoliosis in DMD using the Luque Galveston method was associated with a reduction of forced vital capacity related to operation. The rate of pulmonary function decline after operation was not significantly reduced when compared with the rate of preoperative forced vital capacity decline.

  14. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriëtte; van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous

  15. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriette; Van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Objective Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac

  16. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de; Nicol, Philipp, E-mail: Philipp.Nicol@gmx.de; Eschenhagen, Thomas, E-mail: t.eschenhagen@uke.de

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  17. Assessment of normal left atrial appendage anatomy and function over gender and ages by dynamic cardiac CT

    International Nuclear Information System (INIS)

    Boucebci, Samy; Velasco, Stephane; Duboe, Pier-Olivier; Tasu, Jean-Pierre; Pambrun, Thomas; Ingrand, Pierre

    2016-01-01

    The aim of this study was to evaluate variations in anatomy and function according to age and gender using cardiac computed tomography (CT) in a large prospective cohort of healthy patients. The left atrial appendage (LAA) is considered the most frequent site of intracardiac thrombus formation. However, variations in normal in vivo anatomy and function according to age and gender remain largely unknown. Three-dimensional (3D) cardiac reconstructions of the LAA were performed from CT scans of 193 consecutive patients. Parameters measured included LAA number of lobes, anatomical position of the LAA tip, angulation measured between the proximal and distal portions, minimum (iVol min ) and maximum (iVol max ) volumes indexed to body surface area (BSA), and ejection fraction (LAAEF). Relationship with age was assessed for each parameter. We found that men had longer and wider LAAs. The iVol min and iVol max increased by 0.23 and 0.19 ml per decade, respectively, while LAAEF decreased by 2 % per decade in both sexes. Although LAA volumes increase, LAAEF decreases with age in both sexes. (orig.)

  18. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Nielsen, Jan M; Hellgren, Lars I

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via...... secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism...... remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression...

  19. Vidarabine, an Anti-Herpes Virus Agent, Protects Against the Development of Heart Failure With Relatively Mild Side-Effects on Cardiac Function in a Canine Model of Pacing-Induced Dilated Cardiomyopathy.

    Science.gov (United States)

    Nakamura, Takashi; Fujita, Takayuki; Kishimura, Megumi; Suita, Kenji; Hidaka, Yuko; Cai, Wenqian; Umemura, Masanari; Yokoyama, Utako; Uechi, Masami; Ishikawa, Yoshihiro

    2016-11-25

    In heart failure patients, chronic hyperactivation of sympathetic signaling is known to exacerbate cardiac dysfunction. In this study, the cardioprotective effect of vidarabine, an anti-herpes virus agent, which we identified as a cardiac adenylyl cyclase inhibitor, in dogs with pacing-induced dilated cardiomyopathy (DCM) was evaluated. In addition, the adverse effects of vidarabine on basal cardiac function was compared to those of the β-blocker, carvedilol.Methods and Results:Vidarabine and carvedilol attenuated the development of pacing-induced systolic dysfunction significantly and with equal effectiveness. Both agents also inhibited the development of cardiac apoptosis and fibrosis and reduced the Na + -Ca 2+ exchanger-1 protein level in the heart. Importantly, carvedilol significantly enlarged the left ventricle and atrium; vidarabine, in contrast, did not. Vidarabine-treated dogs maintained cardiac response to β-AR stimulation better than carvedilol-treated dogs did. Vidarabine may protect against pacing-induced DCM with less suppression of basal cardiac function than carvedilol in a dog model. (Circ J 2016; 80: 2496-2505).

  20. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  1. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  2. Role of cardiac biomarkers (troponin I and CK-MB as predictors of quality of life and long-term outcome after cardiac surgery

    Directory of Open Access Journals (Sweden)

    Bignami Elena

    2009-01-01

    Full Text Available Perioperative and postoperative morbidity and mortality associated with cardiac surgery affect both the outcome and quality of life. Markers such as troponin effectively predict short-term outcome. In a prospective cohort study in a University Hospital we assessed the role of cardiac biomarkers, also as predictors of long-term outcome and life quality after cardiac surgery with a three-year follow-up after conventional heart surgery. Patients were interviewed via phone calls with a structured questionnaire examining general health, functional status, activities of daily living, perception of life quality and need for hospital readmission. Descriptive statistics and multivariate analysis were performed. Out of 252 consecutive patients, 8 (3.2% died at the three years follow up: 7 for cardiac complications and 1 for cancer. Thirty-six patients (13.5% had hospital readmission for cardiac causes (mostly for atrial fibrillation or other arrhythmias (9.3%, but none needed cardiac surgical reintervention; 21 patients (7.9% were hospitalised for non-cardiac causes. No limitation in function activities of daily living was reported by most patients (94%, 92% perceived their general health as excellent, very good or good and none considered it insufficient; 80% were NYHA I, 17% NYHA II, 3% NYHA III and none NYHA IV. Multivariate analysis indicated preoperative treatment with digitalis or nitrates, and postoperative cardiac biomarkers release was independently associated to death. Elevated cardiac biomarker release and length of hospital stay were the only postoperative independent predictors of death in this study.

  3. Feasibility of free-breathing, GRAPPA-based, real-time cardiac cine assessment of left-ventricular function in cardiovascular patients at 3 T

    International Nuclear Information System (INIS)

    Zhu, Xiaomei; Schwab, Felix; Marcus, Roy; Hetterich, Holger; Theisen, Daniel; Kramer, Harald; Notohamiprodjo, Mike; Schlett, Christopher L.; Nikolaou, Konstantin; Reiser, Maximilian F.

    2015-01-01

    Highlights: • Grappa-based real time cine cardiac MRI is feasible for assessment of left ventricular function. • Significant underestimation of systolic function, peak ejection and filling rates needs to be considered. • Heart rate is the only positive predictor of the deviation of obtained parameters. - Abstract: Objectives: To determine the feasibility of free-breathing, GRAPPA-based, real-time (RT) cine 3 T cardiac magnetic resonance imaging (MRI) with high acceleration factors for the assessment of left-ventricular function in a cohort of patients as compared to conventional segmented cine imaging. Materials and methods: In this prospective cohort study, subjects with various cardiac conditions underwent MRI involving two RT cine sequences (high resolution and low resolution) and standard segmented cine imaging. Standard qualitative and quantitative parameters of left-ventricular function were quantified. Results: Among 25 subjects, 24 were included in the analysis (mean age: 50.5 ± 21 years, 67% male, 25% with cardiomyopathy). RT cine derived quantitative parameters of volumes and left ventricular mass were strongly correlated with segmented cine imaging (intraclass correlation coefficient [ICC]: >0.72 for both RT cines) but correlation for peak ejection and filling rates were moderate to poor for both RT cines (ICC < 0.40). Similarly, RT cines significantly underestimated peak ejection and filling rates (>103.2 ± 178 ml/s). Among patient-related factors, heart rate was strongly predictive for deviation of measurements (p < 0.05). Conclusions: RT cine MRI at 3 T is feasible for qualitative and quantitative assessment of left ventricular function for low and high-resolution sequences but results in significant underestimation of systolic function, peak ejection and filling rates

  4. Automatic segmentation and disease classification using cardiac cine MR images

    NARCIS (Netherlands)

    Wolterink, Jelmer M.; Leiner, Tim; Viergever, Max A.; Išgum, Ivana

    2018-01-01

    Segmentation of the heart in cardiac cine MR is clinically used to quantify cardiac function. We propose a fully automatic method for segmentation and disease classification using cardiac cine MR images. A convolutional neural network (CNN) was designed to simultaneously segment the left ventricle

  5. Neurologic Function and Health-Related Quality of Life in Patients Following Targeted Temperature Management at 33°C vs 36°C After Out-of-Hospital Cardiac Arrest

    DEFF Research Database (Denmark)

    Cronberg, Tobias; Lilja, Gisela; Horn, Janneke

    2015-01-01

    from analysis for a total sample size of 939. INTERVENTIONS: Targeted temperature management at 33°C vs 36°C. MAIN OUTCOMES AND MEASURES: Cognitive function was measured by the Mini-Mental State Examination (MMSE) and assessed by observers through the Informant Questionnaire on Cognitive Decline...... summary score was 46.8 (13.8) and 47.5 (13.8) (P = .45), comparable to the population norm. CONCLUSIONS AND RELEVANCE: Quality of life was good and similar in patients with cardiac arrest receiving targeted temperature management at 33°C or 36°C. Cognitive function was similar in both intervention groups......IMPORTANCE: Brain injury affects neurologic function and quality of life in survivors after cardiac arrest. OBJECTIVE: To compare the effects of 2 target temperature regimens on long-term cognitive function and quality of life after cardiac arrest. DESIGN, SETTING, AND PARTICIPANTS...

  6. Mitochondrial oxidative stress and cardiac ageing.

    Science.gov (United States)

    Martín-Fernández, Beatriz; Gredilla, Ricardo

    According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Trends in Cardiac Pacemaker Batteries

    Directory of Open Access Journals (Sweden)

    Venkateswara Sarma Mallela

    2004-10-01

    Full Text Available Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future.

  8. Real-Time Three-Dimensional Echocardiography: Characterization of Cardiac Anatomy and Function-Current Clinical Applications and Literature Review Update.

    Science.gov (United States)

    Velasco, Omar; Beckett, Morgan Q; James, Aaron W; Loehr, Megan N; Lewis, Taylor G; Hassan, Tahmin; Janardhanan, Rajesh

    2017-01-01

    Our review of real-time three-dimensional echocardiography (RT3DE) discusses the diagnostic utility of RT3DE and provides a comparison with two-dimensional echocardiography (2DE) in clinical cardiology. A Pubmed literature search on RT3DE was performed using the following key words: transthoracic, two-dimensional, three-dimensional, real-time, and left ventricular (LV) function. Articles included perspective clinical studies and meta-analyses in the English language, and focused on the role of RT3DE in human subjects. Application of RT3DE includes analysis of the pericardium, right ventricular (RV) and LV cavities, wall motion, valvular disease, great vessels, congenital anomalies, and traumatic injury, such as myocardial contusion. RT3DE, through a transthoracic echocardiography (TTE), allows for increasingly accurate volume and valve motion assessment, estimated LV ejection fraction, and volume measurements. Chamber motion and LV mass approximation have been more accurately evaluated by RT3DE by improved inclusion of the third dimension and quantification of volumetric movement. Moreover, RT3DE was shown to have no statistical significance when comparing the ejection fractions of RT3DE to cardiac magnetic resonance (CMR). Analysis of RT3DE data sets of the LV endocardial exterior allows for the volume to be directly quantified for specific phases of the cardiac cycle, ranging from end systole to end diastole, eliminating error from wall motion abnormalities and asymmetrical left ventricles. RT3DE through TTE measures cardiac function with superior diagnostic accuracy in predicting LV mass, systolic function, along with LV and RV volume when compared with 2DE with comparable results to CMR.

  9. Return to Work in Out-of-Hospital Cardiac Arrest Survivors

    DEFF Research Database (Denmark)

    Kragholm, Kristian; Wissenberg, Mads; Mortensen, Rikke Normark

    2015-01-01

    BACKGROUND: Data on long-term function of out-of-hospital cardiac arrest survivors are sparse. We examined return to work as a proxy of preserved function without major neurologic deficits in survivors. METHODS AND RESULTS: In Denmark, out-of-hospital cardiac arrests have been systematically repo...

  10. Prognostic value of left atrial function in systemic light-chain amyloidosis: a cardiac magnetic resonance study.

    Science.gov (United States)

    Mohty, Dania; Boulogne, Cyrille; Magne, Julien; Varroud-Vial, Nicolas; Martin, Sylvain; Ettaif, Hind; Fadel, Bahaa M; Bridoux, Frank; Aboyans, Victor; Damy, Thibaud; Jaccard, Arnaud

    2016-09-01

    Cardiac involvement in systemic light-chain amyloidosis (AL) imparts an adverse impact on outcome. The left atrium (LA), by virtue of its anatomical location and muscular wall, is commonly affected by the amyloid process. Although LA infiltration by amyloid fibrils leads to a reduction in its pump function, the infiltration of the left ventricular (LV) myocardium results in diastolic dysfunction with subsequent increase in filling pressures and LA enlargement. Even though left atrial volume (LAV) is an independent prognostic marker in many cardiomyopathies, its value in amyloid heart disease remains to be determined. In addition, few data are available as to the prognostic value of LA function in systemic AL. Using cardiac magnetic resonance (CMR), the current study aims to assess the prognostic significance of the maximal LAV and total LA emptying fraction (LAEF) in patients with AL. Fifty-four consecutive patients (age 66 ± 10 years, 59% males) with confirmed systemic AL and mean LV ejection fraction of 60 ± 12% underwent CMR. As compared with patients with no or minimal cardiac involvement (Mayo Clinic [MC] stage I), those at moderate and high risk (MC stages II and III) had significantly larger indexed maximal LAV (36 ± 15 vs. 46 ± 13 vs. 52 ± 19 mL/m(2), P = 0.03) and indexed minimal LAV (20 ± 6 vs. 34 ± 11 vs. 44 ± 17 mL/m(2), P 16% (37 ± 11 vs. 94 ± 4%, P = 0.001). In multivariate analysis, lower LAEF remained independently associated with a higher risk of 2-year mortality (HR = 1.08 per 1% decrease, 95% CI: 1.02-1.15, P = 0.003). In patients with systemic AL, LAEF as assessed by CMR is associated with NYHA functional class, MC stage, myocardial LGE and 2-year mortality. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  11. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    International Nuclear Information System (INIS)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu

    2001-01-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52±15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m 2 or higher were assigned to the high dose group and those given doses under 300 mg/m 2 to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3±218.2 mg/m 2 . In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m 2 appeared to be the borderline dose beyond which there were

  12. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    2001-05-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52{+-}15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m{sup 2} or higher were assigned to the high dose group and those given doses under 300 mg/m{sup 2} to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3{+-}218.2 mg/m{sup 2}. In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m{sup 2} appeared to be the borderline dose beyond

  13. Chamber-dependent circadian expression of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Georg, Birgitte; Jørgensen, Henrik L

    2010-01-01

    Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) have important local functions within the myocardium, where they protect against accelerated fibrosis. As circadian expression of cardiac natriuretic peptides could be of importance in local cardiac protection against disease, we...

  14. CARDIAC FUNCTION AND IRON CHELATION IN THALASSEMIA MAJOR AND INTERMEDIA: A REVIEW OF THE UNDERLYING PATHOPHYSIOLOGY AND APPROACH TO CHELATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Athanasios Aessopos

    2009-07-01

    Full Text Available Heart disease is the leading cause of mortality and one of the main causes of morbidity in beta-thalassemia. Patients with homozygous thalassemia may have either a severe phenotype which is usually transfusion dependent or a milder form that is thalassemia intermedia.  The two main factors that determine cardiac disease in homozygous β thalassemia are the high output state that results from chronic tissue hypoxia, hypoxia-induced compensatory reactions and iron overload.  The high output state playing a major role in thalassaemia intermedia and the iron load being more significant in the major form. Arrhythmias, vascular involvement that leads to an increased pulmonary vascular resistance and an increased systemic vascular stiffness and valvular abnormalities also contribute to the cardiac dysfunction in varying degrees according to the severity of the phenotype.  Endocrine abnormalities, infections, renal function and medications can also play a role in the overall cardiac function.  For thalassaemia major, regular and adequate blood transfusions and iron chelation therapy are the mainstays of management. The approach to thalassaemia intermedia, today, is aimed at monitoring for complications and initiating, timely, regular transfusions and/or iron chelation therapy.  Once the patients are on transfusions, then they should be managed in the same way as the thalassaemia major patients.  If cardiac manifestations of dysfunction are present in either form of thalassaemia, high pre transfusion Hb levels need to be maintained in order to reduce cardiac output and appropriate intensive chelation therapy needs to be instituted.  In general recommendations on chelation, today, are usually made according to the Cardiac Magnetic Resonance findings, if available.  With the advances in the latter technology and the ability to tailor chelation therapy according to the MRI findings as well as the availability of three iron chelators, together with

  15. Effect of emergency PCI combined with rh-BNP therapy on neuroendocrine indicators and cardiac function in patients with acute anterior myocardial infarction

    Directory of Open Access Journals (Sweden)

    Yang Ji

    2016-06-01

    Full Text Available Objective: To analyze the effect of emergency PCI combined with rh-BNP therapy on neuroendocrine indicators and cardiac function in patients with acute anterior myocardial infarction. Methods: A total of 70 cases with acute anterior myocardial infarction who received emergency rescue in our hospital from February 2012 to September 2014 were included for study, and all included patients were divided into control group 38 cases who received emergency PCI treatment alone and observation group 32 cases who received emergency PCI combined with rh-BNP therapy. Differences in the values of neuroendocrine indicators, ventricular collagen remodeling-related indicators, cardiac function indicators, myocardial injury-related indicators and so on were compared between two groups after treatment. Results: Serum ET, PRA, ALD, AngII, NE and E values of observation group after treatment were significantly lower than those of control group (P<0.05; serum PⅠCP and PCⅢ values of observation group after treatment were lower than those of control group, and PⅠCP/ PCⅢ and TIMP-1 values were significantly higher than those of control group (P<0.05; examination of cardiac function by color Doppler ultrasound showed that LAD, LVEDD, LVESD, LVESV and LVEDV values of observation group were lower than those of control group, and LVEF and LVFS values were significantly higher than those of control group (P<0.05; serum CD14++CD2L+, hs-cTnT, HBDH and H-FABP values of observation group after treatment were significantly lower than those of control group, and CD14+CD2L- value was significantly higher than that of control group (P<0.05. Conclusions: Emergency PCI combined with rh-BNP therapy for patients with acute anterior myocardial infarction can significantly improve cardiac function and inhibit ventricular remodeling, and it has positive clinical significance.

  16. Fabrication and characterization of bio-engineered cardiac pseudo tissues

    Energy Technology Data Exchange (ETDEWEB)

    Xu Tao; Boland, Thomas [Department of Bioengineering, 420 Rhodes Hall, Clemson University, Clemson, SC 29634 (United States); Baicu, Catalin; Aho, Michael; Zile, Michael, E-mail: tboland@clemson.ed [Department of Medicine, Medical University of South Carolina, Charleston, SC 29425 (United States)

    2009-09-15

    We report on fabricating functional three-dimensional (3D) tissue constructs using an inkjet based bio-prototyping method. With the use of modified inkjet printers, contractile cardiac hybrids that exhibit the forms of the 3D rectangular sheet and even the 'half heart' (with two connected ventricles) have been fabricated by arranging alternate layers of biocompatible alginate hydrogels and mammalian cardiac cells according to pre-designed 3D patterns. In this study, primary feline adult and H1 cardiomyocytes were used as model cardiac cells. Alginate hydrogels with controlled micro-shell structures were built by spraying cross-linkers in micro-drops onto un-gelled alginic acid. The cells remained viable in constructs as thick as 1 cm due to the programmed porosity. Microscopic and macroscopic contractile functions of these cardiomyocyte constructs were observed in vitro. These results suggest that the inkjet bio-prototyping method could be used for hierarchical design of functional cardiac pseudo tissues, balanced with porosity for mass transport and structural support.

  17. Fabrication and characterization of bio-engineered cardiac pseudo tissues

    International Nuclear Information System (INIS)

    Xu Tao; Boland, Thomas; Baicu, Catalin; Aho, Michael; Zile, Michael

    2009-01-01

    We report on fabricating functional three-dimensional (3D) tissue constructs using an inkjet based bio-prototyping method. With the use of modified inkjet printers, contractile cardiac hybrids that exhibit the forms of the 3D rectangular sheet and even the 'half heart' (with two connected ventricles) have been fabricated by arranging alternate layers of biocompatible alginate hydrogels and mammalian cardiac cells according to pre-designed 3D patterns. In this study, primary feline adult and H1 cardiomyocytes were used as model cardiac cells. Alginate hydrogels with controlled micro-shell structures were built by spraying cross-linkers in micro-drops onto un-gelled alginic acid. The cells remained viable in constructs as thick as 1 cm due to the programmed porosity. Microscopic and macroscopic contractile functions of these cardiomyocyte constructs were observed in vitro. These results suggest that the inkjet bio-prototyping method could be used for hierarchical design of functional cardiac pseudo tissues, balanced with porosity for mass transport and structural support.

  18. Cardiac damage in athlete's heart: When the "supernormal" heart fails!

    Science.gov (United States)

    Carbone, Andreina; D'Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele

    2017-06-26

    Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete's blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete's heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded.

  19. In vivo cardiac role of migfilin during experimental pressure overload.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Moik, Daniel; Schuetz, Thomas; Reiner, Martin F; Voelkl, Jakob G; Streil, Katrin; Bader, Kerstin; Zhao, Lei; Scheu, Claudia; Mair, Johannes; Pachinger, Otmar; Metzler, Bernhard

    2015-06-01

    Increased myocardial wall strain triggers the cardiac hypertrophic response by increasing cardiomyocyte size, reprogramming gene expression, and enhancing contractile protein synthesis. The LIM protein, migfilin, is a cytoskeleton-associated protein that was found to translocate in vitro into the nucleus in a Ca(2+)-dependent manner, where it co-activates the pivotal cardiac transcription factor Csx/Nkx2.5. However, the in vivo role of migfilin in cardiac function and stress response is unclear. To define the role of migfilin in cardiac hypertrophy, we induced hypertension by transverse aortic constriction (TAC) and compared cardiac morphology and function of migfilin knockout (KO) with wild-type (WT) hearts. Heart size and myocardial contractility were comparable in untreated migfilin KO and WT hearts, but migfilin-null hearts presented a reduced extent of hypertrophic remodelling in response to chronic hypertensile stress. Migfilin KO mice maintained their cardiac function for a longer time period compared with WT mice, which presented extensive fibrosis and death due to heart failure. Migfilin translocated into the nucleus of TAC-treated cardiomyocytes, and migfilin KO hearts showed reduced Akt activation during the early response to pressure overload. Our findings indicate an important role of migfilin in the regulation of cardiac hypertrophy upon experimental TAC. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  20. 1.8 Å structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells

    International Nuclear Information System (INIS)

    Chattopadhyay, Kausik; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.

    2009-01-01

    1.8 Å X-ray crystal structure of mouse GITRL expressed in D. melanogaster S2 cells shows an identical ‘strand-exchanged’ dimeric assembly similar to that observed previously for the E. coli-expressed protein. Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique ‘strand-exchanged’ dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 Å resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical ‘strand-exchanged’ dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL

  1. 1.8 Å structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Kausik [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Ramagopal, Udupi A. [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Nathenson, Stanley G., E-mail: nathenso@aecom.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Almo, Steven C., E-mail: nathenso@aecom.yu.edu [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2009-05-01

    1.8 Å X-ray crystal structure of mouse GITRL expressed in D. melanogaster S2 cells shows an identical ‘strand-exchanged’ dimeric assembly similar to that observed previously for the E. coli-expressed protein. Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique ‘strand-exchanged’ dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 Å resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical ‘strand-exchanged’ dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.

  2. Chronic Endurance Exercise Impairs Cardiac Structure and Function in Middle-Aged Mice with Impaired Nrf2 Signaling

    Directory of Open Access Journals (Sweden)

    Gobinath Shanmugam

    2017-05-01

    Full Text Available Nuclear factor erythroid 2 related factor 2 (Nrf2 signaling maintains the redox homeostasis and its activation is shown to suppress cardiac maladaptation. Earlier we reported that acute endurance exercise (2 days evoked antioxidant cytoprotection in young WT animals but not in aged WT animals. However, the effect of repeated endurance exercise during biologic aging (WT characterized by an inherent deterioration in Nrf2 signaling and pathological aging (pronounced oxidative susceptibility—Nrf2 absence in the myocardium remains elusive. Thus, the purpose of our study was to determine the effect of chronic endurance exercise-induced cardiac adaptation in aged mice with and without Nrf2. Age-matched WT and Nrf2-null mice (Nrf2−/− (>22 months were subjected to 6 weeks chronic endurance exercise (25 meter/min, 12% grade. The myocardial redox status was assessed by expression of antioxidant defense genes and proteins along with immunochemical detection of DMPO-radical adduct, GSH-NEM, and total ubiquitination. Cardiac functions were assessed by echocardiography and electrocardiogram. At sedentary state, loss of Nrf2 resulted in significant downregulation of antioxidant gene expression (Nqo1, Ho1, Gclm, Cat, and Gst-α with decreased GSH-NEM immuno-fluorescence signals. While Nrf2−/− mice subjected to CEE showed an either similar or more pronounced reduction in the transcript levels of Gclc, Nqo1, Gsr, and Gst-α in relation to WT littermates. In addition, the hearts of Nrf2−/− on CEE showed a substantial reduction in specific antioxidant proteins, G6PD and CAT along with decreased GSH, a pronounced increase in DMPO-adduct and the total ubiquitination levels. Further, CEE resulted in a significant upregulation of hypertrophy genes (Anf, Bnf, and β-Mhc (p < 0.05 in the Nrf2−/− hearts in relation to WT mice. Moreover, the aged Nrf2−/− mice exhibited a higher degree of cardiac remodeling in association with a significant decrease in

  3. Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, Erica; Seitun, Sara [Giovanni XXIII Hospital, Cardiovascular Radiology Unit, Monastier di Treviso (Italy); Messalli, Giancarlo; Catalano, Onofrio [SDN Foundation - IRCCS, Naples (Italy); Martini, Chiara; Cademartiri, Filippo [Giovanni XXIII Hospital, Cardiovascular Radiology Unit, Monastier di Treviso (Italy); Erasmus Medical Center, Department of Radiology and Cardiology, Rotterdam (Netherlands); Nieman, Koen; Rossi, Alexia; Mollet, Nico R. [Erasmus Medical Center, Department of Radiology and Cardiology, Rotterdam (Netherlands); Guaricci, Andrea I. [Azienda Ospedaliero-Universitaria di Foggia, Department of Cardiology, Foggia (Italy); Tedeschi, Carlo [Ospedale San Gennaro, Department of Cardiology, Naples (Italy)

    2012-05-15

    To compare Magnetic Resonance (MR) and Computed Tomography (CT) for the assessment of left (LV) and right (RV) ventricular functional parameters. Seventy nine patients underwent both Cardiac CT and Cardiac MR. Images were acquired using short axis (SAX) reconstructions for CT and 2D cine b-SSFP (balanced-steady state free precession) SAX sequence for MR, and evaluated using dedicated software. CT and MR images showed good agreement: LV EF (Ejection Fraction) (52 {+-} 14% for CT vs. 52 {+-} 14% for MR; r = 0.73; p > 0.05); RV EF (47 {+-} 12% for CT vs. 47 {+-} 12% for MR; r = 0.74; p > 0.05); LV EDV (End Diastolic Volume) (74 {+-} 21 ml/m{sup 2} for CT vs. 76 {+-} 25 ml/m{sup 2} for MR; r = 0.59; p > 0.05); RV EDV (84 {+-} 25 ml/m{sup 2} for CT vs. 80 {+-} 23 ml/m{sup 2} for MR; r = 0.58; p > 0.05); LV ESV (End Systolic Volume)(37 {+-} 19 ml/m{sup 2} for CT vs. 38 {+-} 23 ml/m{sup 2} for MR; r = 0.76; p > 0.05); RV ESV (46 {+-} 21 ml/m{sup 2} for CT vs. 43 {+-} 18 ml/m{sup 2} for MR; r = 0.70; p > 0.05). Intra- and inter-observer variability were good, and the performance of CT was maintained for different EF subgroups. Cardiac CT provides accurate and reproducible LV and RV volume parameters compared with MR, and can be considered as a reliable alternative for patients who are not suitable to undergo MR. circle Cardiac-CT is able to provide Left and Right Ventricular function. circle Cardiac-CT is accurate as MR for LV and RV volume assessment. (orig.)

  4. Neurologic Function and Health-Related Quality of Life in Patients Following Targeted Temperature Management at 33°C vs 36°C After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial

    NARCIS (Netherlands)

    Cronberg, Tobias; Lilja, Gisela; Horn, Janneke; Kjaergaard, Jesper; Wise, Matt P.; Pellis, Tommaso; Hovdenes, Jan; Gasche, Yvan; Åneman, Anders; Stammet, Pascal; Erlinge, David; Friberg, Hans; Hassager, Christian; Kuiper, Michael; Wanscher, Michael; Bosch, Frank; Cranshaw, Julius; Kleger, Gian-Reto; Persson, Stefan; Undén, Johan; Walden, Andrew; Winkel, Per; Wetterslev, Jørn; Nielsen, Niklas

    2015-01-01

    Brain injury affects neurologic function and quality of life in survivors after cardiac arrest. To compare the effects of 2 target temperature regimens on long-term cognitive function and quality of life after cardiac arrest. In this multicenter, international, parallel group, assessor-masked

  5. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    International Nuclear Information System (INIS)

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug.

  6. FET-biosensor for cardiac troponin biomarker

    Directory of Open Access Journals (Sweden)

    Md Arshad Mohd Khairuddin

    2017-01-01

    Full Text Available Acute myocardial infarction or myocardial infarction (MI is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. The most specific markers for cardiac injury are cardiac troponin I (cTnI and cardiac troponin T (cTnT which have been considered as ‘gold standard’. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Currently, field-effect transistor (FET-based biosensors have been main interest to be implemented in portable sensors with the ultimate application in point-of-care testing (POCT. In this paper, we review on the FET-based biosensor based on its principle of operation, integration with nanomaterial, surface functionalization as well as immobilization, and the introduction of additional gate (for ambipolar conduction on the device architecture for the detection of cardiac troponin I (cTnI biomarker.

  7. Clinical advantages of three dimensional cine cardiac images

    International Nuclear Information System (INIS)

    Kinosada, Yasutomi; Okuda, Yasuyuki; Nakagawa, Tsuyoshi; Itou, Takafumi; Hattori, Takao.

    1996-01-01

    We evaluated clinical advantages and the quantitativeness of computerized three-dimensional (3D) cinematic images of a human heart, which were produced with a set of magnetic resonance (MR) images by using the computer graphic technique. Many contiguous, multi-location and multi-phase short axis images were obtained with the ECG gated conventional and fast cardiac imaging sequences in normal volunteers and selected patients with myocardial infarction, hypertrophic cardiomyopathy, dilated cardiomyopathy and left ventricular dysfunction. Judging by visual impressions of the computerized 3D cinematic cardiac images, we could easily understand and evaluate the myocardial motions or the anatomic and volumetric changes of a heart according to the cardiac phases. These images were especially useful to compare the wall motion, the left ventricular ejection-fraction (LVEF), or other cardiac functions and conditions between before and after therapeutic procedures such as percutaneous transluminal coronary angioplasty for patients with myocardial infarction. A good correlation between the LVEF calculated from a set of computerized 3D cinematic images and the ultra sound examinations were found. The results of our study showed that computerized 3D cinematic cardiac images were clinically useful to understand the myocardial motions qualitatively and to evaluate cardiac functions such as the LVEF quantitatively. (author)

  8. Local IL-23 expression in murine vaginal candidiasis and its relationship with infection and immune status.

    Science.gov (United States)

    Wu, Yan; Tan, Zhijian; Liu, Zhixiang; Xia, Dechao; Li, Jiawen

    2006-01-01

    To investigate the expression of vaginal IL-23 and its role in experimental murine vaginal candidiasis and its relationship with infection and immune status, immuno-competent (group A) and immuno-suppressed (group B) murine models of vaginal candidiasis were established in estrogen-treated mice. Non-estrogen-treated mice were used as controls (group C). The level of IL-23 p19 mRNA in murine vaginal tissue was determined by RT-PCR. Significantly increased levels of IL-23p19mRNA were observed on the 4th, the 7th and 14th day after inoculation in immuno-competent group when compared with that in control group (Pvaginal candidiasis and has a protective function during infection. Low vaginal IL-23 level may correlate with the increased susceptibility to Candida albicans in immuno-suppressed group.

  9. Contributions of pulmonary hypertension to HIV-related cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Godsent C. Isiguzo

    2013-09-01

    Conclusion: Immune-suppression affects the cardiac function adversely and coexisting pulmonary hypertension contributes to poor systolic and diastolic function in affected patients. The subtle nature of presentation of pulmonary hypertension and other cardiac dysfunctions in HIV/AIDS patients demand a high-index of suspicion and early intervention if detected, to ensure better care for these emerging threats to our patients.

  10. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes.

    Science.gov (United States)

    Lu, Fang-Min; Deisl, Christine; Hilgemann, Donald W

    2016-09-14

    Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes.

  11. Boosters and barriers for direct cardiac reprogramming.

    Science.gov (United States)

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats

    Directory of Open Access Journals (Sweden)

    Fabricio Furtado Vieira

    Full Text Available Abstract Background: Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX in the cardiac muscle. Objectives: To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. Methods: We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt and relaxation (-df/dt, contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP, and contraction force induced by caffeine. Results: In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05, increased +df/dt and -df/dt (p < 0.001, low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001, reduction of the maximum force in caffeine-induced contraction (p < 0.003, and decreased total contraction time (p < 0.001. The maximal contraction force did not differ significantly between groups (p = 0.973. Conclusion: We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  13. Chronic fatigue syndrome: illness severity, sedentary lifestyle, blood volume and evidence of diminished cardiac function.

    Science.gov (United States)

    Hurwitz, Barry E; Coryell, Virginia T; Parker, Meela; Martin, Pedro; Laperriere, Arthur; Klimas, Nancy G; Sfakianakis, George N; Bilsker, Martin S

    2009-10-19

    The study examined whether deficits in cardiac output and blood volume in a CFS (chronic fatigue syndrome) cohort were present and linked to illness severity and sedentary lifestyle. Follow-up analyses assessed whether differences in cardiac output levels between CFS and control groups were corrected by controlling for cardiac contractility and TBV (total blood volume). The 146 participants were subdivided into two CFS groups based on symptom severity data, severe (n=30) and non-severe (n=26), and two healthy non-CFS control groups based on physical activity, sedentary (n=58) and non-sedentary (n=32). Controls were matched to CFS participants using age, gender, ethnicity and body mass. Echocardiographic measures indicated that the severe CFS participants had 10.2% lower cardiac volume (i.e. stroke index and end-diastolic volume) and 25.1% lower contractility (velocity of circumferential shortening corrected by heart rate) than the control groups. Dual tag blood volume assessments indicated that the CFS groups had lower TBV, PV (plasma volume) and RBCV (red blood cell volume) than control groups. Of the CFS subjects with a TBV deficit (i.e. > or = 8% below ideal levels), the mean+/-S.D. percentage deficit in TBV, PV and RBCV were -15.4+/-4.0, -13.2+/-5.0 and -19.1+/-6.3% respectively. Lower cardiac volume levels in CFS were substantially corrected by controlling for prevailing TBV deficits, but were not affected by controlling for cardiac contractility levels. Analyses indicated that the TBV deficit explained 91-94% of the group differences in cardiac volume indices. Group differences in cardiac structure were offsetting and, hence, no differences emerged for left ventricular mass index. Therefore the findings indicate that lower cardiac volume levels, displayed primarily by subjects with severe CFS, were not linked to diminished cardiac contractility levels, but were probably a consequence of a co-morbid hypovolaemic condition. Further study is needed to address

  14. Minimally invasive cardiac surgery and transesophageal echocardiography

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Jha

    2014-01-01

    Full Text Available Improved cosmetic appearance, reduced pain and duration of post-operative stay have intensified the popularity of minimally invasive cardiac surgery (MICS; however, the increased risk of stroke remains a concern. In conventional cardiac surgery, surgeons can visualize and feel the cardiac structures directly, which is not possible with MICS. Transesophageal echocardiography (TEE is essential during MICS in detecting problems that require immediate correction. Comprehensive evaluation of the cardiac structures and function helps in the confirmation of not only the definitive diagnosis, but also the success of surgical treatment. Venous and aortic cannulations are not under the direct vision of the surgeon and appropriate positioning of the cannulae is not possible during MICS without the aid of TEE. Intra-operative TEE helps in the navigation of the guide wire and correct placement of the cannulae and allows real-time assessment of valvular pathologies, ventricular filling, ventricular function, intracardiac air, weaning from cardiopulmonary bypass and adequacy of the surgical procedure. Early detection of perioperative complications by TEE potentially enhances the post-operative outcome of patients managed with MICS.

  15. Functional property of the cardiac valve prosthesis evaluated in vivo by cine-radiography

    International Nuclear Information System (INIS)

    Murakoshi, Sadaaki

    1986-01-01

    Functional property of the convexo-concave Bjoerk-Shiley cardiac valve prosthesis implanted in the mitral position of 21 patients was investigated by integrated cine-radiography repeated for a long term after operation. The maximum opening angle of the tilting disc was 58 ± 2 deg, and was not affected by atrial fibrillation nor by tachycardia up to 160 bpm. There was no change in the maximum opening angle of the disc observed during follow-up period. Good correlation between shortning of the disc opening time and increase in pulse rate suggests excellent adaptation of this prosthesis for tachycardia induced by exercise or electric pacing. However, atrial fibrillation causes time delay in disc closure immediately after prolonged R-R interval. Disc rotation alleviating disc wear was observed in all the patients whether it moves slow or quick. Dysfunction of the disc opening can be readily determined not only by measuring the maximum disc opening angle, but also by observing the characteristic movement indicated in this study. It is concluded from these results that clinical apprication for the convexo-concave Bjoerk-Shiley valve prosthesis is appropriate and cine-radiography is an useful non-invasive examination of cardiac valve prosthesis for long follow-up period. (author)

  16. Functional property of the cardiac valve prosthesis evaluated in vivo by cine-radiography

    Energy Technology Data Exchange (ETDEWEB)

    Murakoshi, Sadaaki

    1986-07-01

    Functional property of the convexo-concave Bjoerk-Shiley cardiac valve prosthesis implanted in the mitral position of 21 patients was investigated by integrated cine-radiography repeated for a long term after operation. The maximum opening angle of the tilting disc was 58 +- 2 deg, and was not affected by atrial fibrillation nor by tachycardia up to 160 bpm. There was no change in the maximum opening angle of the disc observed during follow-up period. Good correlation between shortning of the disc opening time and increase in pulse rate suggests excellent adaptation of this prosthesis for tachycardia induced by exercise or electric pacing. However, atrial fibrillation causes time delay in disc closure immediately after prolonged R-R interval. Disc rotation alleviating disc wear was observed in all the patients whether it moves slow or quick. Dysfunction of the disc opening can be readily determined not only by measuring the maximum disc opening angle, but also by observing the characteristic movement indicated in this study. It is concluded from these results that clinical apprication for the convexo-concave Bjoerk-Shiley valve prosthesis is appropriate and cine-radiography is an useful non-invasive examination of cardiac valve prosthesis for long follow-up period.

  17. Deletion of Pr130 Interrupts Cardiac Development in Zebrafish

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-11-01

    Full Text Available Protein phosphatase 2 regulatory subunit B, alpha (PPP2R3A, a regulatory subunit of protein phosphatase 2A (PP2A, is a major serine/threonine phosphatase that regulates crucial function in development and growth. Previous research has implied that PPP2R3A was involved in heart failure, and PR130, the largest transcription of PPP2R3A, functioning in the calcium release of sarcoplasmic reticulum (SR, plays an important role in the excitation-contraction (EC coupling. To obtain a better understanding of PR130 functions in myocardium and cardiac development, two pr130-deletion zebrafish lines were generated using clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated proteins (Cas system. Pr130-knockout zebrafish exhibited cardiac looping defects and decreased cardiac function (decreased fractional area and fractional shortening. Hematoxylin and eosin (H&E staining demonstrated reduced cardiomyocytes. Subsequent transmission electron microscopy revealed that the bright and dark bands were narrowed and blurred, the Z- and M-lines were fogged, and the gaps between longitudinal myocardial fibers were increased. Additionally, increased apoptosis was observed in cardiomyocyte in pr130-knockout zebrafish compared to wild-type (WT. Taken together, our results suggest that pr130 is required for normal myocardium formation and efficient cardiac contractile function.

  18. Noncanonical microRNAs and endogenous siRNAs in lytic infection of murine gammaherpesvirus.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available MicroRNA (miRNA and endogenous small interfering RNA (endo-siRNA are two essential classes of small noncoding RNAs (sncRNAs in eukaryotes. The class of miRNA is diverse and there exist noncanonical miRNAs that bypass the canonical miRNA biogenesis pathway. In order to identify noncanonical miRNAs and endo-siRNAs responding to virus infection and study their potential function, we sequenced small-RNA species from cells lytically infected with murine gammaherpesvirus 68 (MHV68. In addition to three novel canonical miRNAs in mouse, two antisense miRNAs in virus and 25 novel noncanonical miRNAs, including miRNAs derived from transfer RNAs, small nucleolar RNAs and introns, in the host were identified. These noncanonical miRNAs exhibited features distinct from that of canonical miRNAs in lengths of hairpins, base pairings and first nucleotide preference. Many of the novel miRNAs are conserved in mammals. Besides several known murine endo-siRNAs detected by the sequencing profiling, a novel locus in the mouse genome was identified to produce endo-siRNAs. This novel endo-siRNA locus is comprised of two tandem inverted B4 short interspersed nuclear elements (SINEs. Unexpectedly, the SINE-derived endo-siRNAs were found in a variety of sequencing data and virus-infected cells. Moreover, a murine miRNA was up-regulated more than 35 fold in infected than in mock-treated cells. The putative targets of the viral and the up-regulated murine miRNAs were potentially involved in processes of gene transcription and protein phosphorylation, and localized to membranes, suggesting their potential role in manipulating the host basal immune system during lytic infection. Our results extended the number of noncanonical miRNAs in mammals and shed new light on their potential functions of lytic infection of MHV68.

  19. 2-Deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy.

    Science.gov (United States)

    Cheng, Yuanhua; Hogarth, Kaley A; O'Sullivan, M Lynne; Regnier, Michael; Pyle, W Glen

    2016-01-01

    Dilated cardiomyopathy (DCM) is a major type of heart failure resulting from loss of systolic function. Naturally occurring canine DCM is a widely accepted experimental paradigm for studying human DCM. 2-Deoxyadenosine triphosphate (dATP) can be used by myosin and is a superior energy substrate over ATP for cross-bridge formation and increased systolic function. The objective of this study was to evaluate the beneficial effect of dATP on contractile function of cardiac myofibrils from dogs with naturally occurring DCM. We measured actomyosin NTPase activity and contraction/relaxation properties of isolated myofibrils from nonfailing (NF) and DCM canine hearts. NTPase assays indicated replacement of ATP with dATP significantly increased myofilament activity in both NF and DCM samples. dATP significantly improved maximal tension of DCM myofibrils to the NF sample level. dATP also restored Ca(2+) sensitivity of tension that was reduced in DCM samples. Similarly, dATP increased the kinetics of contractile activation (kACT), with no impact on the rate of cross-bridge tension redevelopment (kTR). Thus, the activation kinetics (kACT/kTR) that were reduced in DCM samples were restored for dATP to NF sample levels. dATP had little effect on relaxation. The rate of early slow-phase relaxation was slightly reduced with dATP, but its duration was not, nor was the fast-phase relaxation or times to 50 and 90% relaxation. Our findings suggest that myosin utilization of dATP improves cardiac myofibril contractile properties of naturally occurring DCM canine samples, restoring them to NF levels, without compromising relaxation. This suggests elevation of cardiac dATP is a promising approach for the treatment of DCM. Copyright © 2016 the American Physiological Society.

  20. Interaction between cardiac myosin-binding protein C and formin Fhod3.

    Science.gov (United States)

    Matsuyama, Sho; Kage, Yohko; Fujimoto, Noriko; Ushijima, Tomoki; Tsuruda, Toshihiro; Kitamura, Kazuo; Shiose, Akira; Asada, Yujiro; Sumimoto, Hideki; Takeya, Ryu

    2018-05-08

    Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C-binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C-binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C-null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C-null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C-null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C-related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C-mediated regulation of cardiac function via direct interaction.