WorldWideScience

Sample records for muon-catalyzed fusion latest

  1. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  2. Enhancing the muon-catalyzed fusion yield

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Much has been learned about muon-catalyzed fusion since the last conference on emerging nuclear energy systems. Here the authors consider what they have learned about enhancing the muon-catalyzed fusion energy yield

  3. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  4. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  5. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  6. Cold fusion catalyzed by muons and electrons

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as ''Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed

  7. Muon-catalyzed fusion theory - introduction and review

    International Nuclear Information System (INIS)

    Cohen, J.S.

    1990-01-01

    Muon-catalyzed fusion (μCF) has proved to be a fruitful subject for basic physics research as well as a source of cold nuclear fusion. Experiments have demonstrated that over 100 fusions per muon can be catalyzed by formation of the dtμ molecules in mixtures of deuterium and tritium. After a brief review of the subject's history, the dtμ catalysis cycle and the principle relations used in its analysis are described. Some of the important processes in the μCF cycle are then discussed. Finally, the status of current research is appraised. (author)

  8. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  9. An optimized hydrogen target for muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.i [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2011-04-01

    This paper deals with the optimization of the processes involved in muon catalyzed fusion. Muon catalyzed fusion ({mu}CF) is studied in all layers of the solid hydrogen structure H/0.1%T+D{sub 2}+HD. The layer H/T acts as an emitter source of energetic t{mu} atoms, due to the so-called Ramsauer-Townsend effect. These t{mu} atoms are slowed down in the second layer (degrader) and are forced to take place nuclear fusion in HD. The degrader affects time evolution of t{mu} atomic beam. This effect has not been considered until now in {mu}CF-multilayered targets. Due to muon cycling and this effect, considerable reactions occur in the degrader. In our calculations, it is shown that the fusion yield equals 180{+-}1.5. It is possible to separate events that overlap in time.

  10. Cold, muon-catalyzed fusion - just another swarm experiment?

    International Nuclear Information System (INIS)

    Robson, R.E.

    1992-01-01

    The paper briefly reviewed the muon-catalyzed fusion cycle and indicated how it may be likened to a swarm experiment. In particular, it has been pointed out that an external electric field can influence the properties of a muon swarm (and reactive derivatives), just as it can for ion and electron swarms. Since n 0 is typically around liquid hydrogen densities, very large fields, E≥10 9 V/m, would be required to achieve the desired outcome. This is presently achievable in small regions of intense laser focus, but it remains to be seen whether muon-catalyzed fusion experiments can actually be influenced in this way. 20 refs., 4 figs

  11. Theoretical survey of muon catalyzed fusion

    International Nuclear Information System (INIS)

    Leon, M.

    1988-01-01

    The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H 2 densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec. 1 The muon spends essentially all of its time in either the (dμ) ground state, waiting for transfer to a (tμ) ground state to occur, or in the (tμ) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs

  12. Development of target capsules for muon catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Watts, K.D.; Jones, S.E.; Caffrey, A.J.

    1983-01-01

    A series of Muon Catalyzed Fusion experiments has been conducted at the Los Alamos Meson Physics Facility to determine how many fusion reactions one muon would catalyze under various temperature, pressure, contamination, and tritium concentration conditions. Target capsules to contain deuterium and tritium at elevated temperatures and pressures were engineered for a maximum temperature of 540 K (512 0 F) and a maximum pressure of 103 MPa (15,000 psig). Experimental data collected with these capsules indicated that the number of fusion reactions per muon continued to increase with temperature up to the 540-K design limit. Theory had indicated that the reaction rate should peak at approximately 540 K, but this was not confirmed during the experiments. A second generation of capsules which have a maximum design temperature of 800 K (980 0 F) and a maximum design pressure of 103 MPa (15,000 psig) has now been engineered. These new capsules will be used to further study the muon catalysis rate versus deuterium-tritium mixture temperature

  13. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  14. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1989-01-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D 2 O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed

  15. Sticking in muon catalyzed D-T fusion

    International Nuclear Information System (INIS)

    Petitjean, C.; Sherman, R.H.; Bossy, H.; Daniel, H.; Hartmann, F.J.; Neumann, W.; Schmidt, G.; Egidy, T. von

    1986-10-01

    The issue of μα sticking after muon catalyzed DT fusion is controversial, since a number of theoretical and experimental results came out recently with sticking values ω s varying over a large range. After a review of this situation, our measurements at SIN and methods of sticking analysis from neutron time structures are presented in detail. The important point is the correct understanding of the experimentally observed time distributions. At high density (liquid DT) we find, after correction for other fusion channels, for DT sticking ω s (0.45 +- 0.05)%, not dependent on tritium concentration c t and in accordance with our X-ray observations. At low density (DT gas, φ 3% - 8%) our preliminary result is 0.50 +- 0.10%, giving a ratio 1.1 +- 0.2 in agreement with conventional theories, but strongly disagreeing with the LAMPF experiment of S.E. Jones et al. Our result sets the maximum fusion output per muon to less than 220 +- 20. (author)

  16. Some thoughts on the muon catalyzed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H.

    1986-01-01

    The design of the muon catalyzed fusion reactor is discussed. Some of the engineering challenges and critical research areas such as ..pi../sup -/ meson transport, beam entry single crystal window and coherent x-ray for stripping the muon from ..cap alpha.. particle, are considered. In order to reduce the tritium inventory and neutron wall loading, use of the laser technique for manipulating the d-t mixture is considered. The heterogeneous d-t mixture using the droplet or jet is discussed. 39 refs., 6 figs.

  17. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  18. Measuring sticking and stripping in muon catalyzed dt fusion with multilayer thin films

    International Nuclear Information System (INIS)

    Fujiwara, M.C.; Bailey, J.M.; Beer, G.A.

    1995-12-01

    The authors propose a direct measurement of muon sticking to alpha particles in muon catalyzed dt fusion at a high density. Exploiting the features of a multilayer thin film target developed at TRIUMF, the sticking is determined directly by detection of charged fusion products. Experimental separation of initial ticking and stripping may become possible for the first time. Monte Carlo simulations, as well as preliminary results of test measurements are described

  19. Muon nuclear fusion and low temperature nuclear fusion

    International Nuclear Information System (INIS)

    Nagamine, Kanetada

    1990-01-01

    Low temperature (or normal temperature) nuclear fusion is one of the phenomena causing nuclear fusion without requiring high temperature. In thermal nuclear fusion, the Coulomb barrier is overcome with the help of thermal energy, but in the low temperature nuclear fusion, the Coulomb barrier is neutralized by the introduction of the particles having larger mass than electrons and negative charges, at this time, if two nuclei can approach to the distance of 10 -13 cm in the neutral state, the occurrence of nuclear fusion reaction is expected. As the mass of the particles is heavier, the neutral region is smaller, and nuclear fusion is easy to occur. The particles to meet this purpose are the electrons within substances and muons. The research on muon nuclear fusion became suddenly active in the latter half of 1970s, the cause of which was the discovery of the fact that the formation of muons occurs resonantly rapidly in D-T and D-D systems. Muons are the unstable elementary particles having the life of 2.2 μs, and they can have positive and negative charges. In the muon catalyzed fusion, the muons with negative charge take part. The principle of the muon catalyzed fusion, its present status and future perspective, and the present status of low temperature nuclear fusion are reported. (K.I.)

  20. Method of determination of muon catalyzed fusion parameters in H-T mixture

    CERN Document Server

    Bystritskij, V M

    2002-01-01

    A method for measurement of the muon catalyzed fusion parameters mu CF in the H-T mixture is proposed. The kinetics of the mu-atomic and mu-molecular processes preceding the pt reaction in the pt mu molecule is described. Analytical expressions are obtained for the yields and time distributions of gamma quanta and conversion muons formed in nuclear fusion reactions in pt mu molecules. It is shown that information on the desired parameters can be found from the joint analysis of the time distributions of gamma quanta and conversion muons obtained in experiments with the H-T mixture at three (and more) appreciable different atomic concentrations of tritium. The planned experiments with the H-T mixture at the meson facility PSI (Switzerland) are optimized to gain the precise information about the desired mu CF parameters

  1. Method of determination of muon catalyzed fusion parameters in H-T mixture

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Gerasimov, V.V.

    2002-01-01

    A method for measurement of the muon catalyzed fusion parameters μCF in the H-T mixture is proposed. The kinetics of the mu-atomic and mu-molecular processes preceding the pt reaction in the ptμ molecule is described. Analytical expressions are obtained for the yields and time distributions of γ quanta and conversion muons formed in nuclear fusion reactions in ptμ molecules. It is shown that information on the desired parameters can be found from the joint analysis of the time distributions of γ quanta and conversion muons obtained in experiments with the H-T mixture at three (and more) appreciable different atomic concentrations of tritium. The planned experiments with the H-T mixture at the meson facility PSI (Switzerland) are optimized to gain the precise information about the desired μCF parameters

  2. Some remarks on sticking fraction calculations in muon-catalyzed deuterium-tritium fusion

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Ciftci, A.K.

    1992-01-01

    The sticking coefficient in muon catalyzed dt fusion is an important parameter affecting feasibility for practical applications. This paper discusses a procedure, developed for an accurate calculation of this parameter, and show that a well-defined limit produces precisely the often-criticized heuristic sudden approximation. Why this should be is discussed in some detail from a very different, possibly surprising, point of view

  3. The pion (muon) energy production cost in muon catalyzed fusion

    International Nuclear Information System (INIS)

    Fadeev, N.G.; Solov'ev, M.I.

    1995-01-01

    The article presents the main steps in the history of the study on the muon catalysis of nuclear fusion. The practical application of the muon catalysis phenomenon to obtain the energy gain is briefly discussed. The details of the problem to produce pion (muon) yield with minimal energy expenses have been considered. 31 refs., 4 tabs

  4. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  5. Studies on muon cycling rates in muon catalyzed D-T fusion system with possible four-body muonic molecules formation

    International Nuclear Information System (INIS)

    Eskandri, M.R.; Hosini Motlagh, N.; Hataf, A.

    2000-01-01

    In recent studies, it is shown that the fusion rate for four-body molecules of ppμμ, ddμμ, ptμμ, pdμμ, dtμμ, ttμμ, is considerably larger than that of similar three-body molecules of ppμμ, ddμμ, ptμμ, pdμμ, dtμμ, ttμμ. It is shown that for dtμμ, fusion rate is R f (dt) ≅ 3 * 10 13 - 6 * * 10 13 S -1 which is 40 times higher than fusion rate of dtμμ molecule. In this paper we have looked for the effect of these molecules formation in muon catalyzed D-T fusion. The required data for all possible branches do not exist, so the main dtμμ branch are considered here. By choosing a variable value for dtμμ molecule formation rate and comparing obtained cycling rates with existing experimental values, the order of this parameter is evaluated to be ≅ 10 9 S -1 . Using obtained data in different conditions of D-T muon cycling rate calculations have shown that considering of four-body molecule formations in existing muon injection intensities do not make considerable change in three-body muonic molecule cycling rate

  6. Some thoughts on the production of muons for fusion catalysis

    International Nuclear Information System (INIS)

    Chapline, G.; Moir, R.

    1986-01-01

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe here some schemes for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high-energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of ten, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%

  7. Measurement of the X and gamma radiation after muon-catalyzed pd-, dd-, and dt-fusion

    International Nuclear Information System (INIS)

    Bossy, H.

    1987-01-01

    The muonic X radiation emitted after muon-catalyzed fusion of two hydrogen nuclei has been measured for the fusion reactions of pd, dd, and dt (p=proton, d=deuteron, t=triton). The quantum yields (per fusion) of the μHe(2-1) transition were evaluated to be 3.2(4)% (pd fusion), 1.6(2)% (dd fusion), and 0.21(5)% (dt fusion, preliminary value). The intensity ratios of the transitions μHe(3-1)/μHe(2-1) were found to be 0.052(5) (pd fusion) and 0.13(2) (dd fusion). The investigation of the gamma radiation intensities for pd fusion yielded excitement probabilities of the μHe atom. (orig.) [de

  8. Experimental Investigation of Muon-Catalyzed $dt$ Fusion in Wide Ranges of $D/T$ Mixture Conditions

    CERN Document Server

    Bom, V R; Demin, D L; van Eijk, C W E; Faifman, M P; Filchenkov, V V; Golubkov, A N; Grafov, N N; Grishenchkin, S K; Gritsaj, K I; Klevtsov, V G; Konin, A D; Kuryakin, A V; Medved', S V; Musyaev, R K; Perevozchikov, V V; Rudenko, A I; Sadetsky, S M; Vinogradov, Yu I; Yukhimchuk, A A; Yukhimchuk, S A; Zinov, V G; Zlatoustovskii, S V

    2004-01-01

    A vast program of the experimental investigation of muon-catalyzed $dt$ fusion was performed at the JINR Phasotron. Parameters of the $dt$ cycle were obtained in a wide range of $D/T$ mixture conditions: temperatures of $20\\div 800$ K, densities of $0.2\\div1.2$ LHD and tritium concentrations of $15\\div 86\\%$. The results obtained are summarized.

  9. Accurate alpha sticking fractions from improved calculations relevant for muon catalyzed fusion

    International Nuclear Information System (INIS)

    Szalewicz, K.

    1990-05-01

    Recent experiments have shown that under proper conditions a single muon may catalyze almost two hundred fusions in its lifetime. This process proceeds through formation of muonic molecular ions. Properties of these ions are central to the understanding of the phenomenon. Our work included the most accurate calculations of the energy levels and Coulombic sticking fractions for tdμ and other muonic molecular ions, calculations of Auger transition rates, calculations of corrections to the energy levels due to interactions with the most molecule, and calculation of the reactivation of muons from α particles. The majority of our effort has been devoted to the theory and computation of the influence of the strong nuclear forces on fusion rates and sticking fractions. We have calculated fusion rates for tdμ including the effects of nuclear forces on the molecular wave functions. We have also shown that these results can be reproduced to almost four digit accuracy by using a very simple quasifactorizable expression which does not require modifications of the molecular wave functions. Our sticking fractions are more accurate than any other theoretical values. We have used a more sophisticated theory than any other work and our numerical calculations have converged to at least three significant digits

  10. Muon catalyzed fusion at very low temperature: A new target system

    International Nuclear Information System (INIS)

    Mulhauser, F.; Beveridge, J.L.; Marshall, G.M.

    1994-10-01

    Muon catalyzed fusion (μCF) processes are usually studied in gases or liquids. A new target system allows experiments on muonic hydrogen isotopes in solid hydrogen layers at 3K, where processes of the μCF cycle can be separated and the energy dependence of reactions can be measured. Muonic tritium atomic beams with energy of the order of 1 eV have been produced via transfer and emission from solid hydrogen target containing small tritium concentrations. The μt energy distribution overlaps the predicted muonic molecular (dμt) formation resonances. Preliminary time of flight results are shown. (author). 9 refs., 5 figs

  11. Production of muons for fusion catalysis in a magnetic mirror configuration. Revision 1

    International Nuclear Information System (INIS)

    Moir, R.W.; Chapline, G.F. Jr.

    1986-01-01

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe a scheme for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the π - 's being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m 2 neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-μA, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use

  12. Nonadiabatic calculations for tdμ relevant for muon catalyzed fusion

    International Nuclear Information System (INIS)

    Szalewicz, K.; Jeziorski, B.

    1991-01-01

    Due to the mass effect, muonic molecular ions are about 200 times smaller than their electronic counterparts. The proximity of the nuclei in the tdμ ion results in fusion taking place within a picosecond. The properties of this ion are central to understanding the phenomenon of muon catalysis. The authors developed a computational method of solving the nonadiabatic Schroedinger equation for the bound and resonance states of tdμ and its isotopic analogues. The method takes into account both the Coulomb interactions and the strong nuclear forces responsible for the fusion reaction. The wave functions obtained from this method were used to predict very accurately branching ratios and transition rates relevant for various stages of the muon catalytic cycle. Knowledge of these quantities will guide the experiments and help to answer the question of feasibility of net energy production via muon catalysis

  13. Proceedings of an international symposium on muon catalysed fusion μCF - 89, held at Keble College, Oxford, 11-13 September 1989

    International Nuclear Information System (INIS)

    Davies, J.D.

    1990-05-01

    In this booklet of conference proceedings, there are sections dedicated to experimental and theoretical work on muon catalyzed fusion. The final section deals with cold fusion. The booklet commences with a description of how muon catalyzed fusion came about and the basic theory behind it. (U.K.)

  14. Course/workshop on muon catalyzed fusion and fusion with polarized nuclei

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1987-08-01

    There seems to be some real connection between the spin states of the d-t nuclei in the muon mesomolecule dtμ and the resultant sticking probability. This paper discusses this connection. No new experimental results on spin polarization are reported, but illuminating ideas emerged as to the role spin polarized plasmas could play in inertial confinement fusion and magnetic fusion. In addition, realistic evaluations were made as to the possibility of producing and preserving spin polarized plasmas. 4 refs

  15. Studies on the kinetics of muon catalyzed fusion in the HT mixture with very low tritium concentration

    International Nuclear Information System (INIS)

    Motlagh, S. N. H.

    2007-01-01

    The idea of muon catalyzed fusion (μCF )was first suggested by C.Frank in 1947 ,[1] when he tried to explain tracks from cosmic rays in photoemulusions exposed at high altitudes .Although his explanations was not correct (the tracks were in reality positive muons from pion decays at rest). The experimental discovery of μCF was achieved at the end of 1956 in Berkeley by L.W.Alvarez team looking at bubble chamber pictures[2]. A muon (μ) is a leptonic elementary particle and has a finite lifetime of 2.2 μs .Since the mass of a muon 207 times larger than an electron, the size of an exotic atom/molecule containing the negative muon is much smaller than an electronic atom/molecule .When the negative muon binds to hydrogenic nuclei (poroton,p,deuteron,d,or triton,t) like H 2 + , a nuclear fusion reactions occurs in the muonic molecular ion, for example (dtμ) + → 4 He + n + μ - (1) The muon does not take part in the nuclear reaction directly but only catalyzes the reaction. This process the muon catalyzed fusion. The pt reaction is one pf the least known of all processes of μCF in the mixture of hydrogen isotopes. It is very important to gain information on reaction characteristics of all muonic processes in HT mixture(e.g., the rate of muon transfer from pμ atom to triton ,the rate of transition between hyperfine levels of tμ atoms ,the rate of formation of the ptμ molecule ,and the rate of nuclear synthesis in it) to interpret correctly the results of experiments in the triple mixture of hydrogen isotopes H-D-T and to describe the kinetics of all processes occurring in the mixture. From the theoretical point of view, the experiments investigating μCF processes in hydrogen -tritium mixture will allow one to test an algorithm describing a three-body system of particles interacting according to coulomb rule. It is necessary to emphasize the importance of the μCF study in HT mixture in order to obtain the information about characteristics of pt -reaction at

  16. Muon sticking factor in muon catalyzed fusion and the other aspect of this fusion process

    International Nuclear Information System (INIS)

    Takahashi, H.

    1986-01-01

    The effect of resonance nuclear fusion reaction on the initial muon sticking factor is formulated. The analysis shows that it is very sensitive to the resonance parameter, and the factor calculated, using the molecular wave function obtained by the Diffusion Monte Carlo method, is 0.1 +- 0.01 for the presently evaluated resonance parameter. The analysis of the multistep excitation effect on the reactivation factor shows that the effect is not so large, and the analysis of muonic x-ray spectra of μ 3 He from Pμd and dμd fusions is in good agreement with the values measured by Bossy et al

  17. Accurate alpha sticking fractions from improved three-body calculations relevant for muon catalyzed fusion. Progress report, September 1, 1985-August 31, 1986

    International Nuclear Information System (INIS)

    Szalewicz, K.; Monkhorst, H.J.

    1986-04-01

    A solution of the Coulomb three-body problem is the beginning point for calculations of sticking fractions in muon catalyzed fusion. The basis set is constructed from the following functions xi/sup r/n/sup s/e/sup - αxi - β n/R/sup -3 /2//H/sub eta/(x)exp(-x 2 /2), where xi and eta are elliptic coordinates of muon, R is the internuclear distance, H/sub eta/ is the nth Hermite polynomial, and x = γ (R-R/sub e/). The nonlinear parameters α, β, γ, and R/sub e/ are to be optimized. 21 refs., 1 tab

  18. Effect of anisotropy on the sticking in muon-catalyzed fusion determined by the x-ray method

    International Nuclear Information System (INIS)

    Cohen, J.S.; Padial, N.T.

    1989-01-01

    The initial sticking in the 2p/sub m/ states of muonic helium in muon-catalyzed fusion (μCF) and the subsequent collisional excitation to these states are shown to have nonstatistical dependences on m that result in spatial anisotropy of the emitted x rays. This anisotropy, I(0 0 )/I(90 0 ), is found to be 0.71 for d-d μCF and 1.12 for d-t μCF in liquid targets, where the angle is between the coincidentally detected x ray and neutron. The effect is predicted to increase the actual Kα x-ray yield and corresponding sticking observed in a recent d-t μCF experiment by 4%. The Doppler broadening of the radiation observed at different angles is also examined

  19. Studies on energy gain of muon catalyzed hybrid D-D Reactor and it comparison to D-T system

    International Nuclear Information System (INIS)

    Eskandari, M.R.; Hoseine-Motlagh, S.N.; Faghihi, F.

    1998-01-01

    Regarding the advantages of hybrid fusion reactors, in most recent studies, the energy gain of muon catalyzed D-T hybrid reactors are studied. Knowing advantages of D-D fuel such as availability, not being radio-active, no tritium inventory requirement and transport problems, the muon catalyzed hybrid D-D reactor (μCHDDR) gain is calculated here for a given net reaction by solving its dynamical equations for various deuterium densities. It is shown theμCHDDR has advantages even for previously suggested similar D-T reactor

  20. Monte Carlo simulation of high-flux 14 MeV neutron source based on muon catalyzed fusion using a high-power 50 MW deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Vecchi, M [ENEA, Bologna (Italy); Karmanov, F I [Inst. of Nuclear Power Engineering, Obninsk (Russian Federation); Latysheva, L N; Pshenichnov, I A [Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research

    1997-12-31

    The results Monte Carlo simulations of an intense neutron source based on muon catalyzed fusion process are presented. A deuteron beam is directed onto a cylindrical carbon target, located in vacuum converter chamber with a strong solenoidal magnetic field. The produced pions and muons which originate from pion decay are guided along magnetic field to a DT-synthesizer. Pion production in the primary target is simulated by means of Intranuclear and Internuclear cascade codes developed in INR, Moscow, while pion and muon transport process is studied by using a Monte Carlo code originated at CERN. The main purpose of the work is to calculate the pion and muon utilization efficiency taking into account the pion absorption in the primary target as well as all other losses of pions and muons in the converter and DT-cell walls. Preliminary estimations demonstrate the possibility to reach the level of 1014 n/s/cm{sup 2} for the neutron flux. (J.U.). 3 tabs., 4 figs., 8 refs.

  1. Can 250+ fusions per muon be achieved?

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Nuclear fusion of hydrogen isotopes can be induced by negative muons (μ) in reactions such as: μ - + d + t → α + n + μ - . This reaction is analagous to the nuclear fusion reaction achieved in stars in which hydrogen isotopes (such as deuterium, d, and tritium, t) at very high temperatures first penetrate the Coulomb repulsive barrier and then fuse together to produce an alpha particle (α) and a neutron (n), releasing energy. The muon in general reappears after inducing fusion so that the reaction can be repeated many (N) times. Thus, the muon may serve as an effective catalyst for nuclear fusion. Muon-catalozed fusion is unique in that it proceeds rapidly in deuterium-tritium mixtures at relatively cold temperatures, e.g., room temperature. The need for plasma temperatures to initiate fusion is overcome by the presence of the muon

  2. Back decay of muonic molecular resonances and the measured value of dμd - formation rate in muon-catalyzed fusion in deuterium

    International Nuclear Information System (INIS)

    Gula, A.; Adamczak, A.; Bubak, M.

    1985-01-01

    It is shown that the experimental values of dμd formation rate, obtained without taking into account the decay of the μ-molecular resonance compound [(dμd) + dee] * back to the formation channel dμ+D 2 , are underestimated.The correction depends on the rate of this resonance back decay and the rates of processes leading to fusion in dμd. For their current estimates the correction significantly exceeds the experimental error of the uncorrected dμd formation rate λ m obs = 2.76 ± 0.08 μs -1 reported recently. It is argued that back decay may lead to variation of λ m obs with target density which may provide useful information on the parameters of muon-catalyzed fusion. 18 refs., 2 figs. (author)

  3. Muon-catalyzed fusion experiments at LAMPF

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Anderson, A.N.; Van Siclen, C.D.W.

    1986-01-01

    Our collaboration has conducted a series of muon-catalysis experiments over broad temperature and density ranges at the LAMPF accelerator in Los Alamos. We have discovered surprising effects on the normalized muon-catalysis cycling rate, λ/sub c/, and the apparent alpha-particle sticking coefficient, ω/sub s/, that depend on the d-t mixture density. This paper reviews our experimental approach, analysis methods, and results for tests with targets varying in density from 0.12 to 1.30, normalized to liquid hydrogen density, and in temperature from 15K to 800K. In particular, results will be presented on the cycling rate, sticking coefficient, and 3 He scavenging rate, as functions of temperature, mixture density, or tritium concentration

  4. Kinetic formulae for muon-catalyzed fusion of hydrogen isotopes and their application to the description of the data for pure deuterium

    International Nuclear Information System (INIS)

    Gula, A.

    1987-01-01

    The data on the time distributions of muon-catalyzed fusion (μCF) events in pure deuterium targets published before 1987 are analysed using the kinetic formalism developed by the author and collaborators in a series of papers. The formalism enables one to describe these time distributions in an arbitrary mixture of hydrogen isotopes with strict inclusion of registration efficiency and dead time. The kinetic formulae for such distributions can be readily obtained using a prescription based on the theory of signal-flow graphs even for very complicated kinetic situations, thus, allowing one to avoid the simplifying assumptions which have been usually made in earlier analyses. Practically all important processes forming the muon-catalysis chain can be strictly taken into account in the approximation of constant transition rates. Consecutive μCF cycles can be described separately, which provides a useful tool in data analysis. The developed formalism is applied to the existing data for pure deuterium. First cycle-by-cycle time distributions reported for room temperature by the Gatchina group are analysed. 93 refs., 14 figs. (author)

  5. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    Energy Technology Data Exchange (ETDEWEB)

    Leon, M. [comp.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  6. Proceedings of the International Workshop on Low Energy Muon Science: LEMS'93

    International Nuclear Information System (INIS)

    Leon, M.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately

  7. Superconducting muon channel at J-PARC

    International Nuclear Information System (INIS)

    Shimomura, K.; Koda, A.; Strasser, P.; Kawamura, N.; Fujimori, H.; Makimura, S.; Higemoto, W.; Nakahara, K.; Ishida, K.; Nishiyama, K.; Nagamine, K.; Miyake, Y.

    2009-01-01

    The Muon Science Laboratory at the Materials and Life Science Facility is now under construction in Japan Proton Accelerator Research Complex (J-PARC), where four types of muon channels are planned to be installed. A conventional superconducting muon channel will be installed at the first stage, which can extract surface (positive) muons and decay positive/negative muons up to 120 MeV/c, and the expected muon yield is a few 10 6 /s at 60 MeV/c (for both positive and negative). This channel will be used for various kinds of experiments like muon catalyzed fusion, μSR and nondestructive elements analysis. The present status of the superconducting muon channel is briefly reported.

  8. Muon, positron and antiproton interactions with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Armour, Edward A G, E-mail: edward.armour@nottingham.ac.u [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2010-04-01

    In this paper, a description is given of some interesting processes involving the interaction of a muon, a positron, or an antiproton with atoms and molecules. The process involving a muon is the resonant formation of the muonic molecular ion, dt{mu}, in the muon catalyzed fusion cycle. In the case of a positron, the process considered is positron annihilation in low-energy positron scattering by the hydrogen molecule. The antiproton is considered as the nucleus of an antihydrogen atom interacting with simple atoms. Attention is given to antiproton annihilation through the strong interaction. An outline is given of proposed tests of fundamental physics to be carried out using antihydrogen.

  9. On evaluation of the nuclear interaction effect on muon sticking in μ-catalyzed dt synthesis

    International Nuclear Information System (INIS)

    Khiger, L.Ya.

    1994-01-01

    The effect of nucler interaction on the muon -alpha-particle sticking coefficient is considered on the basis of the previously developed formalism of description of the deuterium and tritium nuclei muon catalysed fusion. The account of Coulomb interaction between the muon and nuclear subsystem in the intermediate state is shown to change substantially this coefficient. The results of numerical calculations of the sticking coefficient are presented, the value of the coefficient turns out to be 3 - 4% higher than that found in the sudden approximation

  10. Investigations and calculations toward increasing the efficiency of muon catalyzed fusion

    International Nuclear Information System (INIS)

    Monkhorst, H.J.

    1989-11-01

    A brief summary of results during this report period is given. Some of the topics investigated includes: (1) calculations of sticking fractions and d-t fusion from dtμ(JV) states, (2) ddμ sticking fractions, (3) the reactivation coefficient in d-t fusion, (4) fusion rates for all XYμ(JV)(JV=0,1), (5) nuclear effects on energy shifts and fusion rates for (J=O) states of dtμ, (6) and some comments on cold fusion

  11. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  12. Experiments in cold fusion

    International Nuclear Information System (INIS)

    Palmer, E.P.

    1986-01-01

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models

  13. Quasi-isochronous muon collection channels

    Energy Technology Data Exchange (ETDEWEB)

    Ankenbrandt, Charles M. [Muons, Inc., Batavia, IL (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for

  14. Reactivation of αμ in muon-catalyzed fusion under plasma conditions

    International Nuclear Information System (INIS)

    Jandel, M.; Froelich, P.; Larson, G.; Stodden, C.D.

    1989-01-01

    The reactivation efficiency of αμ slowing down in a deuterium-tritium plasma has been calculated for a broad range of plasma conditions. The plasma stopping power has been obtained from the random-phase approximation, which includes both the quantum mechanics of short-range collisions and collective effects due to long-range plasma interactions. It is shown that muon reactivation increases with increasing plasma temperature and density. Near-complete reactivation is, however, reached only at temperatures higher than 1000 eV

  15. Conceptual scheme of a hybrid mesocatalytic fusion reactor

    International Nuclear Information System (INIS)

    Petrov, Yu.V.

    1988-01-01

    To test the practical realization of the mesocatalytic method for energy production a preliminary engineering analysis and calculation of the separate units of the conceptual scheme of the hybrid mesocatalytic reactor was made. The construction and efficiency of the most characteristic separate blocks of the conceptual scheme for muon-catalyzed fusion are examined. The muon catalysis cycle in a dt mixture was assessed. The kinetics and energetics of muon production through a pion-forming target and a converter were evaluated. Concomitant questions, particularly the removal of helium from hydrogen, are discussed. Fusion chamber requirements were calculated and problems of heat removal were assessed. Blanket construction and efficiency were examined. The efficiency of different methods for power generation were comparatively reviewed including hybrid thermonuclear, electronuclear nuclear, and hybrid mesocatalytic methods. Energy balances and economic restrictions were examined

  16. Muon reactivation in muon-catalyzed d-t fusion from accurate p-He+ stripping and excitation cross sections

    International Nuclear Information System (INIS)

    Stodden, C.D.; Monkhorst, H.J.; Szalewicz, K.

    1990-01-01

    Accurate cross sections are obtained for the excitation and stripping of a muon from αμ in collisions with hydrogen atoms. This is done by calculating the excitation, ionization, and charge-transfer cross sections for the p-He + collision and scaling the results. An impact-parameter coupled-state method with a basis set of up to 51 Sturmian wave functions is used to obtain cross sections at center-of-mass energies ranging from 20 to 600 keV. Along with Stark, Auger, radiative, and stopping rates these cross sections are used to calculate the probability of stripping a muon from αμ by numerically solving a set of coupled differential equations that describe the kinetics of αμ as it travels through a mixture of D 2 and T 2 . An effort has been made to minimize the uncertainty in the value of the stripping probability resulting in error bars of 9% and 11% at densities of 1.2 and 0.05 times liquid-hydrogen density, respectively. X-ray yields belonging to K and L series transitions among αμ states have also been computed. The present results are compared with recent theoretical and experimental data

  17. Muon catalyzed fusion

    International Nuclear Information System (INIS)

    Nagamine, K.

    1989-01-01

    The μCF phenomena contains interesting physics and chemistry which will be understood by extending various type of experiments. The final conclusion for the applicability towards economical energy source, we must wait for the complete understanding of these fundamental aspects. At the same time, as it is described in the section IV, the μCF phenomena seems to have unmeasurable potentialities towards applications, most of which have not been revealed at all. Further cherishing of the μCF research towards the application may promote another progress in fundamental understandings. (author)

  18. The scientific status of fusion

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1989-01-01

    The development of fusion energy has been a large-scale scientific undertaking of broad interest. The magnetic plasma containment in tokamaks and the laser-drive ignition of microfusion capsules appear to be scientifically feasible sources of energy. These concepts are bounded by questions of required intensity in magnetid field and plasma currents or in drive energy and, for both concepts, by issues of plasma stability and energy transport. The basic concept and the current scientific issues are described for magnetic fusion and for the interesting, but likely infeasible, muon-catalyzed fusion concept. Inertial fusion is mentioned, qualitatively, to complete the context. For magnetic fusion, the required net energy production within the plasma may be accomplished soon, but the more useful goal of self-sustained plasma ignition requires a new device of somewhat uncertain (factor of 2) cost and size. (orig.)

  19. First trial of the muon acceleration for J-PARC muon g-2/EDM experiment

    Science.gov (United States)

    Kitamura, R.; Otani, M.; Fukao, Y.; Kawamura, N.; Mibe, T.; Miyake, Y.; Shimomura, K.; Kondo, Y.; Hasegawa, K.; Bae, S.; Kim, B.; Razuvaev, G.; Iinuma, H.; Ishida, K.; Saito, N.

    2017-07-01

    Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world’s first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.

  20. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  1. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    Science.gov (United States)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-08-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernel approach allows one to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to be performed in order to obtain a given spatial resolution pattern of the density model to be constructed. The resolving kernels derived in the joined muon-gravimetry case indicate that gravity data are almost useless for constraining the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly, the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for the La Soufrière volcano of Guadeloupe.

  2. Investigation of condensed matter fusion

    International Nuclear Information System (INIS)

    Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

    1990-12-01

    Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  5. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    Directory of Open Access Journals (Sweden)

    Mohammad M. Alsharo’a

    2003-08-01

    Full Text Available We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs factories and compact high-energy lepton colliders. The status and time scale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.

  6. Recent progress in neutrino factory and muon collider research within the muon collaboration

    International Nuclear Information System (INIS)

    Alsharo'a, Mohammad M.; Ankenbrandt, Charles M.; Atac, Muzaffer; Autin, Bruno R.; Balbekov, Valeri I.; Barger, Vernon D.; Benary, Odette; Bennett, J. Roger J.; Berger, Michael S.; Berg, J. Scott; Berz, Martin; Black, Edgar L.; Blondel, Alain; Bogacz, S. Alex; Bonesini, M.; Bracker, Stephen B.; Bross, Alan D.; Bruno, Luca; Buckley-Geer, Elizabeth J.; Caldwell, Allen C.; Companelli, Mario; Cassel, Kevin W.; Catanesi, M. Gabriela; Chattopadhyay, Swapan; Chou, Weiren; Cline, David B.; Coney, Linda R.; Conrad, Janet M.; Corlett, John N.; Cremaldi, Lucien; Cummings, Mary Anne; Darve, Christine; DeJongh, Fritz; Drozhdin, Alexandr; Drumm, Paul; Elvira, V. Daniel; Errede, Deborah; Fabich, Adrian; Fawley, William M.; Fernow, Richard C.; Ferrario, Massimo; Finley, David A.; Fisch, Nathaniel J.; Fukui, Yasuo; Furman, Miguel A.; Gabriel, Tony A.; Galea, Raphael; Gallardo, Juan C.; Garoby, Roland; Garren, Alper A.; Geer, Stephen H.; Gilardoni, Simone; Van Ginneken, Andreas J.; Ginzburg, Ilya F.; Godang, Romulus; Goodman, Maury; Gosz, Michael R.; Green, Michael A.; Gruber, Peter; Gunion, John F.; Gupta, Ramesh; Haines, John R.; Hanke, Klaus; Hanson, Gail G.; Han, Tao; Haney, Michael; Hartill, Don; Hartline, Robert E.; Haseroth, Helmut D.; Hassanein, Ahmed; Hoffman, Kara; Holtkamp, Norbert; Holzer, E. Barbara; Johnson, Colin; Johnson, Rolland P.; Johnstone, Carol; Jungmann, Klaus; Kahn, Stephen A.; Kaplan, Daniel M.; Keil, Eberhard K.; Kim, Eun-San; Kim, Kwang-Je; King, Bruce J.; Kirk, Harold G.; Kuno, Yoshitaka; Ladran, Tony S.; Lau, Wing W.; Learned, John G.; Lebedev, Valeri; Lebrun, Paul; Lee, Kevin; Lettry, Jacques A.; Lavender, Marco; Li, Derun; Lombardi, Alessandra; Lu, Changguo; Makino, Kyoko; Malkin, Vladimir; Marfatia, D.; McDonald, Kirk T.; Mezzetto, Mauro; Miller, John R.; Mills, Frederick E.; Mocioiu, I.; Mokhov, Nikolai V.; Monroe, Jocelyn; Moretti, Aldred; Mori, Yoshiharu; Neuffer, David V.; Ng, King-Yuen; Norem, James H.

    2003-01-01

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons

  7. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  8. Recent LAMPF [Los Alamos Meson Physics Facility] research using muons

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1987-01-01

    In addition to the core programs in nuclear and particle physics, diverse experiments have been carried out that address interdisciplinary and applied topics at the Los Alamos Meson Physics Facility (LAMPF). These include muon-spin-relaxation experiments to study magnetic dynamics in spin glasses and electronic structure in heavy-fermion superconductors; muon channeling experiments to provide information on pion stopping sites in crystals; tomographic density reconstruction studies using proton energy loss; and radiation-effects experiments to explore microstructure evolution and to characterize materials for fusion devices and high-intensity accelerators. Finally, the catalysis of the d-t fusion reaction using negative muons has been extensively investigated with some surprising results including a stronger than linear dependence of the mesomolecular formation rate on target density and the observation of 150 fusions per muon under certain conditions. Recent results in those programs involving pions and muons interacting with matter are discussed

  9. 8th International School of Fusion Reactor Technology "Ettore Majorana"

    CERN Document Server

    Leotta, G G; Muon-catalyzed fusion and fusion with polarized nuclei

    1988-01-01

    The International School of Fusion Reactor Technology started its courses 15 years ago and since then has mantained a biennial pace. Generally, each course has developed the subject which was announced in advance at the closing of the previous course. The subject to which the present proceedings refer was chosen in violation of that rule so as to satisfy the recent and diffuse interest in cold fusion among the main European laboratories involved in controlled thermonuclear research (CTR). In the second half of 1986 we started to prepare a workshop aimed at assessing the state of the art and possibly of the perspectives of muon- catalyzed fusion. Research in this field has recently produced exciting experimental results open to important practical applications. We thought it worthwhile to consider also the beneficial effects and problems of the polarization ofthe nuclei in both cold and thermonuclear fusion. In preparing the 8th Course on Fusion Reactor Technology, it was necessary to abandon the tradi...

  10. Energetics of semi-catalyzed-deuterium, light-water-moderated, fusion-fission toroidal reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Towner, H.H.; Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.

    1978-07-01

    The semi-catalyzed-deuterium Light-Water Hybrid Reactor (LWHR) comprises a lithium-free light-water-moderated blanket with U 3 Si fuel driven by a deuterium-based fusion-neutron source, with complete burn-up of the tritium but almost no burn-up of the helium-3 reaction product. A one-dimensional model for a neutral-beam-driven tokamak plasma is used to determine the operating modes under which the fusion energy multiplication Q/sub p/ can be equal to or greater than 0.5. Thermonuclear, beam-target, and energetic-ion reactions are taken into account. The most feasible operating conditions for Q/sub p/ approximately 0.5 are tau/sub E/ = 2 to 4 x 10 14 cm -3 s, = 10 to 20 keV, and E/sub beam/ = 500 to 1000 keV, with approximately 40% of the fusion energy produced by beam-target reactions. Illustrative parameters of LWHRs are compared with those of an ignited D-T reactor

  11. Catalyzed deuterium-deuterium and deuterium-tritium fusion blankets for high temperature process heat production

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Salimi, B.

    1982-01-01

    Tritiumless blanket designs, associated with a catalyzed deuterium-deuterium (D-D) fusion cycle and using a single high temperature solid pebble or falling bed zone, for process heat production, are proposed. Neutronics and photonics calculations, using the Monte Carlo method, show that an about 90% heat deposition fraction is possible in the high temperature zone, compared to a 30 to 40% fraction if a deuterium-tritium (D-T) fusion cycle is used with separate breeding and heat deposition zones. Such a design is intended primarily for synthetic fuels manufacture through hydrogen production using high temperature water electrolysis. A system analysis involving plant energy balances and accounting for the different fusion energy partitions into neutrons and charged particles showed that plasma amplification factors in the range of 2 are needed. In terms of maximization of process heat and electricity production, and the maximization of the ratio of high temperature process heat to electricity, the catalyzed D-D system outperforms the D-T one by about 20%. The concept is thought competitive to the lithium boiler concept for such applications, with the added potential advantages of lower tritium inventories in the plasma, reduced lithium pumping (in the case of magnetic confinement) and safety problems, less radiation damage at the first wall, and minimized risks of radioactive product contamination by tritium

  12. Controlled thermonuclear fusion and the latest progress on China's HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Li Jiangang; Yang Yu

    2003-01-01

    After 50 years of research on controlled thermonuclear fusion, a new stage will be reached in 2003, when a site for the International Thermonuclear Experimental Reactor project will be chosen to start the construction. Scientists hope that this project could herald a new era in which the energy problem will be solved completely. The great progress made on the HT-7 superconducting tokamak in China has provided positive and powerful support for fusion research. The HT-7 is one of the only two superconducting tokamaks in the world that can carry out minute-scale high temperature plasma research, and has achieved a duration of 63.95s for the hot plasma discharge. This is a major step towards real steady-state operation of the tokamak configuration. We present an overview of the latest progress on the tokamak experiments in the Institute of Plasma Physics, Chinese Academy of Sciences

  13. Current status of cold fusion

    International Nuclear Information System (INIS)

    Tsarev, V.A.

    1992-01-01

    This paper reports that the term cold fusion (CF) was known up to March 1989 as the synonym of muon-catalyzed fusion, suggested by A.D. Sakharov more than 40 years ago. Broad use of this term for the last two years is associated with other kind of phenomena: fusion at ambient room temperature of nuclei of hydrogen isotopes embedded into crystal lattice. Nowadays only few remember the unbelievable resonance in the whole world, caused by the first claims of CF from Utah and associated with hopes of a simple and ecologically safe solution to the energy problems confronting humanity. The range of the interest reflected also the receptivity of our society for scientific ideas and wide development of telecommunication media. Extraordinary simplicity of CF experiments (in sharp contrast with hug complexity and high cost of thermonuclear researches) stimulated fast involvement of a large number of specialists of various profiles. Participation of small groups and even individual enthusiasts disposing of only simplest physical and chemical equipment became possible. Figuratively speaking, everybody with a pair of strong hands and a spade had a chance to find his nugget of gold in this Klondike. As a result: passion, rush and a very nonuniform composition of participants in this race for cold fusion, far from being all property prepared and having sense of responsibility

  14. Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Won [Seoul National University, Seoul (Korea, Republic of)

    2014-09-15

    Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fattyacid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph- thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

  15. Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE

    Science.gov (United States)

    Miyake, Y.; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R.; Torikai, E.; Iwasaki, M.; Wada, S.; Saito, N.; Okamura, K.; Yokoyama, K.; Ito, T.; Higemoto, W.

    2013-04-01

    As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 × 108/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a μ + and an e - ) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.

  16. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  17. Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Y., E-mail: yasuhiro.miyake@kek.jp; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R. [High Energy Accelerator Research Organization (KEK), Muon Science Laboratory (Japan); Torikai, E. [Yamanashi University, Faculty of Engineering (Japan); Iwasaki, M. [RIKEN Nishina Center, Advanced Meson Science Laboratory (Japan); Wada, S.; Saito, N. [RIKEN, Advanced Science Institute (Japan); Okamura, K. [RIKEN-WAKO Incubation Plaza 301, Megaopto Co., Ltd. (Japan); Yokoyama, K. [RIKEN Nishina Center, Advanced Meson Science Laboratory (Japan); Ito, T.; Higemoto, W. [J-PARC Center, Muon Section, Materials and Life Science Division (Japan)

    2013-04-15

    As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 Multiplication-Sign 10{sup 8}/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a {mu}{sup + } and an e{sup - }) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.

  18. Hybrid nuclear reactors and muon catalysis

    International Nuclear Information System (INIS)

    Petrov, Yu.

    1983-01-01

    Three methods are described of the conversion of isotope 238 U to 239 Pu by neutron capture in fast breeder reactors, in the breeding blanket of hybrid thermonuclear reactors using neutrons generated by fusion and electronuclear breeding in which the target is bombarded with 1 GeV protons. Their possible use in power production is discussed. Another prospective energy source is the use of muon catalysis in the fusion of deuterium and tritium nuclei. (J.P.)

  19. Helical muon beam cooling channel engineering design

    International Nuclear Information System (INIS)

    Johnson, Rolland

    2015-01-01

    DOE Technical Topic Manager to develop magnets for the Mu2e experiment that fit well into the Fermilab Technical Division availability. The difference between the MCC helical solenoid and the Mu2e bent solenoid described in Appendix I is that the helical solenoid is made of coils that are in parallel planes with offset centers, while the coils in the bent solenoid follow the central particle trajectory and look much like a @slinky@ toy. The muon-beam cooling-channel technologies developed in this project will enable a muon collider, the next step toward the energy frontier, Higgs/neutrino/Z-factories, and rare muon decay experiments. Commercial uses of the beams made possible by the cooling techniques developed in this project include scanning for nuclear contraband, studies of material properties with spin resonance techniques, and muon-catalyzed fusion.

  20. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    project was approved by the DOE Technical Topic Manager to develop magnets for the Mu2e experiment that fit well into the Fermilab Technical Division availability. The difference between the MCC helical solenoid and the Mu2e bent solenoid described in Appendix I is that the helical solenoid is made of coils that are in parallel planes with offset centers, while the coils in the bent solenoid follow the central particle trajectory and look much like a “slinky” toy. The muon-beam cooling-channel technologies developed in this project will enable a muon collider, the next step toward the energy frontier, Higgs/neutrino/Z-factories, and rare muon decay experiments. Commercial uses of the beams made possible by the cooling techniques developed in this project include scanning for nuclear contraband, studies of material properties with spin resonance techniques, and muon-catalyzed fusion.

  1. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1989-01-01

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the tμ-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X - is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs

  2. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2011-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers. The differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest drift velocity monitoring results are discussed.

  3. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2010-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers because the drift velocity depends on it. Furthermore the differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest pressure monitoring results are discussed.

  4. Polarized muon beams for muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Skrinsky, A.N. [Rossijskaya Akademiya Nauk, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance. (orig.).

  5. Time of flight spectroscopy with muonic hydrogen

    International Nuclear Information System (INIS)

    Marshall, G.M.; Bailey, J.M.; Beer, G.A.

    1993-01-01

    Time of flight techniques coupled with muonic deuterium and tritium atoms in vacuum can be used to measure parameters important in the understanding of muon catalyzed fusion interactions. Muonic deuterium atomic beams with energy of order 1 eV have been produced via transfer and emission from solid hydrogen containing small deuterium concentrations. Measurements of energy loss in pure deuterium are presented which test calculations of σ μd+D . Muonic tritium beams should be produced in a similar way, with an energy distribution which overlaps the predicted muonic molecular (dμt) formation resonances. The existence of resonances is crucial for high cycling rates in muon catalyzed fusion, but direct experimental verification of strengths and energies is not yet possible by other means. Results of simulations demonstrate how the resonance structure might be confirmed

  6. Recent results of μCF experiments at SIN [Swiss Institute For Nuclear Research

    International Nuclear Information System (INIS)

    Breunlich, W.H.; Cargnelli, M.; Bistirlich, J.

    1986-09-01

    Important topics concerning Muon Catalyzed Fusion were investigated in experiments at the Swiss Institute for Nuclear Research (SIN), including transient and steady state rates for the main dμt cycle as well as detailed information about the competing dμd and tμt fusion branches. The basic kinetic parameters were determined and striking features of the resonant dμt formation process were revealed (density effect, epithermal behavior). DT sticking was measured with independent techniques, i.e., detection of fusion neutrons as well as μHe x-rays after fusion. Fusion yields per muon of 113 +- 10 were observed at liquid conditions, yields exceeding 200 are anticipated for optimal conditions from our results. 43 refs., 8 figs., 3 tabs

  7. Fusion blankets for catalyzed D--D and D--He3 reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1977-01-01

    Blanket designs are presented for catalyzed D-D (Cat-D) and D-He 3 fusion reactors. Because of relatively low neutron wall loads and the flexibility due to non-tritium breeding, blankets potentially should operate for reactor life-times of approximately 30 years. Unscheduled replacement of failed blanket modules should be relatively rapid, due to very low residual activity, by operators working either through access ports in the shield (option 1) or directly in the plasma chamber (option 2). Cat-D blanket designs are presented for high (approximately 30%) and low (approximately 12%) β noncircular Tokamak reactors. The blankets are thick graphite screens, operating at high temperature to anneal radiation damage; the deposited neutron and gamma energy is thermally radiated along internal cavities and conducted to a bank of internal SiC coolant tubes (approximately 4 cm. ID) containing high pressure helium. In the D-He 3 Tokamak reactor design, the blanket consists of multiple layers (e.g., three) of thin (approximately 10 cm.) high strength aluminum (e.g., SAP), modular plates, cooled by organic terphynyl coolant

  8. Fusion blankets for catalyzed D--D and D--3He reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1977-01-01

    Blanket designs are presented for catalyzed D-D (Cat-D) and D-He 3 fusion reactors. Because of relatively low neutron wall loads and the flexibility due to non-tritium breeding, blankets potentially should operate for reactor life-times of approximately 30 years. Unscheduled replacement of failed blanket modules should be relatively rapid, due to very low residual activity, by operators working either through access ports in the shield (option 1) or directly in the plasma chamber (option 2). Cat-D blanket designs are presented for high (approximately 30%) and low (approximately 12%) β non-circular Tokamak reactors. The blankets are thick graphite screens, operating at high temperature to anneal radiation damage; the deposited neutron and gamma energy is thermally radiated along internal cavities and conducted to a bank of internal SiC coolant tubes (approximately 4 cm. ID) containing high pressure helium. In the D-He 3 Tokamak reactor design, the blanket consists of multiple layers (e.g., three) of thin (approximately 10 cm.) high strength aluminum (e.g., SAP), modular plates, cooled by organic terphenyl coolant

  9. Latest results from LUNA

    Science.gov (United States)

    Depalo, Rosanna; LUNA Collaboration

    2018-01-01

    A precise knowledge of the cross section of nuclear fusion reactions is a crucial ingredient in understanding stellar evolution and nucleosynthesis. At stellar temperatures, fusion cross sections are extremely small and difficult to measure. Measuring nuclear cross sections at astrophysical energies is a challenge that triggered a huge amount of experimental work. A breakthrough in this direction was the first operation of an underground accelerator at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Gran Sasso, Italy. The 1400 meters of rocks above the laboratory act as a natural shield against cosmic radiation, suppressing the background by orders of magnitude. The latest results achieved at LUNA are discussed, with special emphasis on the 22Ne(p,γ)23Na reaction. Future perspectives of the LUNA experiment are also illustrated.

  10. μ CF Study of D/T and H/D/T Mixtures in Homogeneous and Inhomogeneous Medium, and Comparison of Their Fusion Yields

    Science.gov (United States)

    Eskandari, M. R.; Faghihi, F.; Gheisari, R.

    Muon reactivation coefficient are determined for muonic He (He = 42He = α , He = 23 He = h) for up to six (n = 1, 2, 3, ..., 6) states of formation and at temperature Tp = 100 eV and for various relative ion densities. In the next decade it may be possible to explore new conditions for further energy gain in muon catalyzed fusion system, μ CF, using nonuniform (temperature and density) plasma states. Here, we have considered a model for inhomogeneous μ CF for mixtures of D/T and H/D/T. Using coupled dynamical equations it is shown that the neutrons yield per muon injection, Yn (neutrons/muon), in the dt branch of an inhomogeneous H/D/T mixture is at least 2.24 times higher than similar homogeneous systems and this rate for a D/T mixture is 1.92. Also, we have compared the neutron yield in the dt branch of homogeneous D/T and H/D/T mixtures (temperature range T = 300-800 K, and density φ = 1 LHD). It is shown that Yn(D/T)/Yn(H/D/T) = 1.32, which is in good agreement with recently measured experimental values. In other words our calculations show that the addition of protonium to a D/T mixture leads to a significant decrease in the cycling rate for the physical conditions described herein.

  11. Stat-of-the art of nuclear fusion and its future outlook in

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.; Elnadi, A.M.; Masoud, M.; Elshaer, M.A.; Khalil, S.M.

    1993-01-01

    The study in this project is carried out with the objective of being able to present a clear view for the state-of-the art of nuclear fusion as one of the most promising coming energy source and its future outlook in Egypt. The study introduce a summary of the world energy problem and the advantages of thermonuclear fusion energy compared to other energy sources. A description of the two main techniques of confining plasma in the fusion experiments, namely the magnetic and the inertial confinement. These techniques are discussed and investigated through linear pinches and tokamaks. Tokamaks showed to be a promising machines for achieving the controlled thermonuclear fusion power reactor. Recent development of the research on laser fusion together with fast progress in pellet and laser technology suggest that it may be possible to achieve laser fusion power reactor. The story of the strange phenomena of cold fusion, muon-catalyzed fusion, and cold fusion in condensed matter are also studied and showed to be non promising. The project study in details the future fusion reactor, its nuclear engineering and its safety and environmental aspects. The study is based on the magnetic fusion using the tokamak configuration. The positive safety and environmental aspects of fusion reactors, if exist, is also investigated. Status of plasma physics and nuclear fusion activities and strategies in the developing countries (including egypt and the arab countries) are reviewed, besides, some national programmes are proposed. In addition, the status of international activities in plasma technology and its application are represented. Future outlook for egyptian programmes on different plasma technologies are studied. Finally, conclusions and recommendations are presented which summarized the principle achiements and future research opportunities in nuclear fusion activities. In fact, it must be emphasized that fusion is an exciting and challenging field of research -the most

  12. Estimation of sea level muon energy spectrum at high latitude from the latest primary nucleon spectra near the top of the atmosphere

    CERN Document Server

    Haldar, T K; Bhattacharya, D P; 10.1023/A:1024822518795

    2003-01-01

    Vertical muon energy spectra at sea level have been estimated from a directly measured primary cosmic-ray nucleon spectrum. The hadronic energy moments have been calculated from the CERN LEBC EHS data on the Lorentz invariant cross-section results on pp to pi /sup +or-/X and pp to K/sup +or-/X inclusive reactions and are duly corrected for A-A collisions. Finally, the sea level muon energy spectra have been calculated from the decay of conventional mesons, using standard formulation. The estimated muon spectra are found to be in good agreement with the directly measured muon spectra obtained from different experiments. (32 refs).

  13. 1+1 = 3: a fusion of 2 enzymes in the methionine salvage pathway of Tetrahymena thermophila creates a trifunctional enzyme that catalyzes 3 steps in the pathway.

    Directory of Open Access Journals (Sweden)

    Hannah M W Salim

    2009-10-01

    Full Text Available The methionine salvage pathway is responsible for regenerating methionine from its derivative, methylthioadenosine. The complete set of enzymes of the methionine pathway has been previously described in bacteria. Despite its importance, the pathway has only been fully described in one eukaryotic organism, yeast. Here we use a computational approach to identify the enzymes of the methionine salvage pathway in another eukaryote, Tetrahymena thermophila. In this organism, the pathway has two fused genes, MTNAK and MTNBD. Each of these fusions involves two different genes whose products catalyze two different single steps of the pathway in other organisms. One of the fusion proteins, mtnBD, is formed by enzymes that catalyze non-consecutive steps in the pathway, mtnB and mtnD. Interestingly the gene that codes for the intervening enzyme in the pathway, mtnC, is missing from the genome of Tetrahymena. We used complementation tests in yeast to show that the fusion of mtnB and mtnD from Tetrahymena is able to do in one step what yeast does in three, since it can rescue yeast knockouts of mtnB, mtnC, or mtnD. Fusion genes have proved to be very useful in aiding phylogenetic reconstructions and in the functional characterization of genes. Our results highlight another characteristic of fusion proteins, namely that these proteins can serve as biochemical shortcuts, allowing organisms to completely bypass steps in biochemical pathways.

  14. Muon muon collider: Feasibility study

    International Nuclear Information System (INIS)

    1996-01-01

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10 35 cm -2 s -1 . The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design

  15. Perspective of meson science

    International Nuclear Information System (INIS)

    Yamazaki, T.; Nagamine, K.

    1992-01-01

    Unstable particles such as mesons and muons are now used in various research domains of physics, chemistry, engineering, and life sciences. This book is aimed at summarizing the present exploratory activities and giving future perspectives from a very broad scope. It contains 27 contributions in a wide range of subjects, such as μSR studies of superconductivities, magnetism, muon beam and μSr methodology, theoretical accounts of muon hyperfine interactions, muon catalyzed fusion processes, metastable exotic atoms, medical diagnostics, strangeness nuclear physics, mesons in nuclei, meson-related nuclear reactions and structure, and exotic decays of mesons

  16. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  17. Search for the radiative capture reaction d + d -> sup 4 He + gamma from the dd mu muonic molecule state

    CERN Document Server

    Bogdanova, L N; Eijk, C W E

    2002-01-01

    A search for the muon catalyzed fusion (MCF) reaction d + d -> sup 4 He + gamma in the dd mu muonic molecule was performed using the experimental MCF installation TRITON and NaI(Tl) detectors for gamma quanta. The high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR phasotron to detect gamma quanta with energy 23.8 MeV. The first experimental estimation for the yield of the radiative deuteron capture from the dd mu state J = 1 was obtained at the level eta subgamma <= 2 x 10 sup - sup 5 per one fusion

  18. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  19. Final muon cooling for a muon collider

    Science.gov (United States)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  20. Muon sources

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    A full high energy muon collider may take considerable time to realize. However, intermediate steps in its direction are possible and could help facilitate the process. Employing an intense muon source to carry out forefront low energy research, such as the search for muon-number non-conservation, represents one interesting possibility. For example, the MECO proposal at BNL aims for 2 x 10 -17 sensitivity in their search for coherent muon-electron conversion in the field of a nucleus. To reach that goal requires the production, capture and stopping of muons at an unprecedented 10 11 μ/sec. If successful, such an effort would significantly advance the state of muon technology. More ambitious ideas for utilizing high intensity muon sources are also being explored. Building a muon storage ring for the purpose of providing intense high energy neutrino beams is particularly exciting.We present an overview of muon sources and example of a muon storage ring based Neutrino Factory at BNL with various detector location possibilities

  1. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  2. The MuSun experiment. Muon capture on the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Wauters, Frederik [Johannes Gutenberg University of Mainz, Mainz (Germany); University of Washington, Seattle (United States); Kammel, Peter; Ryan, Rachel; Salvat, Daniel; Muldoon, Ethan; Murray, Michael; Hertzog, David [University of Washington, Seattle (United States); Petitjean, Claude [Paul Scherrer Institute, Villigen (Switzerland); Vasilyev, Alexander [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Carrey, Robert [Boston University, Boston (United States); Gray, Frederick [Regis University, Denver (United States); Gorringe, Tim [University of Kentuky, Lexington (United States)

    2016-07-01

    The MuSun experiment measures the muon capture rate on the deuteron via a precise measurement of the lifetime of negative muons in deuterium, determining unambiguously the low energy constant (LEC) related to the strengths of the axial coupling to the two nucleon-system. LEC's are part of recently developed QCD-based effective field theories, which provide a first-principles description with predictive power for few-body nuclear systems. A quantitative relationship is established between astrophysical processes which cross sections can not be measured in the laboratory, such as the pp fusion in our sun, and muon capture rates. The MuSun experiment finished data taking at the Paul Scherrer Institute (Villigen, CH) in the summer of 2015. In this talk, I present the experimental program of the last 4 years and the progress of the data analysis towards a first physics result. I focus on our active-target time projection chamber, which provides the event selection for the 10 ppm lifetime analysis.

  3. Charm production by muons and its role in scale-noninvariance

    International Nuclear Information System (INIS)

    Gollin, G.D.

    1981-01-01

    Interactions of 209 GeV muons in the Multimuon Spectrometer at Fermilab have yielded more than 8 x 10 4 events with two muons in the final state. After reconstruction and cuts, the data contain 20,072 events with (81 +- 10)% attributed to the diffractive production of charmed states decaying to muons. The cross section for diffractive charm muoproduction is 6.9(+1.9,-1.4) nb where the error includes systematic uncertainties. Extrapolated to Q 2 = 0 with sigma(Q 2 ) = sigma(0)(1 + Q 2 /Λ 2 ) -2 , the effective cross section for 178 (100) GeV photons is 750(+180,-130) (560(+200,-120)) nb and the parameter Λ is 3.3 +- 0.2 (2.9 +- 0.2) GeV/c. The ν dependence of the cross section is similar to that of the photon-gluon-fusion model. A first determination of the structure function for diffractive charm production indicates that charm accounts for approximately 1/3 of the scale-noninvariance observed in inclusive muon-nucleon scattering at low Bjorken x. Okubo-Zweig-Iizuka selection rules and unitarity allow the muon data to set a 90%-confidence lower limit on the psi N total cross section of 0.9 mb

  4. Physics of fusion-fuel cycles

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1981-01-01

    The evaluation of nuclear fusion fuels for a magnetic fusion economy must take into account the various technological impacts of the various fusion fuel cycles as well as the relative reactivity and the required β's and temperatures necessary for economic steady-state burns. This paper will review some of the physics of the various fusion fuel cycles (D-T, catalyzed D-D, D- 3 He, D- 6 Li, and the exotic fuels: 3 He 3 He and the proton-based fuels such as P- 6 Li, P- 9 Be, and P- 11 B) including such items as: (1) tritium inventory, burnup, and recycle, (2) neutrons, (3) condensable fuels and ashes, (4) direct electrical recovery prospects, (5) fissile breeding, etc. The advantages as well as the disadvantages of the different fusion fuel cycles will be discussed. The optimum fuel cycle from an overall standpoint of viability and potential technological considerations appears to be catalyzed D-D, which could also support smaller relatively clean, lean-D, rich- 3 He satellite reactors as well as fission reactors

  5. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1991-01-01

    The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise

  6. PHENIX Muon Arms

    International Nuclear Information System (INIS)

    Akikawa, H.; Al-Jamel, A.; Archuleta, J.B.; Archuleta, J.R.; Armendariz, R.; Armijo, V.; Awes, T.C.; Baldisseri, A.; Barker, A.B.; Barnes, P.D.; Bassalleck, B.; Batsouli, S.; Behrendt, J.; Bellaiche, F.G.; Bland, A.W.; Bobrek, M.; Boissevain, J.G.; Borel, H.; Brooks, M.L.; Brown, A.W.; Brown, D.S.; Bruner, N.; Cafferty, M.M.; Carey, T.A.; Chai, J.-S.; Chavez, L.L.; Chollet, S.; Choudhury, R.K.; Chung, M.S.; Cianciolo, V.; Clark, D.J.; Cobigo, Y.; Dabrowski, C.M.; Debraine, A.; DeMoss, J.; Dinesh, B.V.; Drachenberg, J.L.; Drapier, O.; Echave, M.A.; Efremenko, Y.V.; En'yo, H.; Fields, D.E.; Fleuret, F.; Fried, J.; Fujisawa, E.; Funahashi, H.; Gadrat, S.; Gastaldi, F.; Gee, T.F.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Hance, R.H.; Hart, G.W.; Hayashi, N.; Held, S.; Hicks, J.S.; Hill, J.C.; Hoade, R.; Hong, B.; Hoover, A.; Horaguchi, T.; Hunter, C.T.; Hurst, D.E.; Ichihara, T.; Imai, K.; Isenhower, L.D.L. Davis; Isenhower, L.D.L. Donald; Ishihara, M.; Jang, W.Y.; Johnson, J.; Jouan, D.; Kamihara, N.; Kamyshkov, Y.; Kang, J.H.; Kapoor, S.S.; Kim, D.J.; Kim, D.-W.; Kim, G.-B.; Kinnison, W.W.; Klinksiek, S.; Kluberg, L.; Kobayashi, H.; Koehler, D.; Kotchenda, L.; Kuberg, C.H.; Kurita, K.; Kweon, M.J.; Kwon, Y.; Kyle, G.S.; LaBounty, J.J.; Lajoie, J.G.; Lee, D.M.; Lee, S.; Leitch, M.J.; Li, Z.; Liu, M.X.; Liu, X.; Liu, Y.; Lockner, E.; Lopez, J.D.; Mao, Y.; Martinez, X.B.; McCain, M.C.; McGaughey, P.L.; Mioduszewski, S.; Mischke, R.E.; Mohanty, A.K.; Montoya, B.C.; Moss, J.M.; Murata, J.; Murray, M.M.; Nagle, J.L.; Nakada, Y.; Newby, J.; Obenshain, F.; Palounek, A.P.T.; Papavassiliou, V.; Pate, S.F.; Plasil, F.; Pope, K.; Qualls, J.M.; Rao, G.; Read, K.F.; Robinson, S.H.; Roche, G.; Romana, A.; Rosnet, P.; Roth, R.; Saito, N.; Sakuma, T.; Sandhoff, W.F.; Sanfratello, L.; Sato, H.D.; Savino, R.; Sekimoto, M.; Shaw, M.R.; Shibata, T.-A.; Sim, K.S.; Skank, H.D.; Smith, D.E.; Smith, G.D.; Sondheim, W.E.; Sorensen, S.; Staley, F.; Stankus, P.W.; Steffens, S.; Stein, E.M.; Stepanov, M.; Stokes, W.; Sugioka, M.; Sun, Z.; Taketani, A.; Taniguchi, E.; Tepe, J.D.; Thornton, G.W.; Tian, W.; Tojo, J.; Torii, H.; Towell, R.S.; Tradeski, J.; Vassent, M.; Velissaris, C.; Villatte, L.; Wan, Y.; Watanabe, Y.; Watkins, L.C.; Whitus, B.R.; Williams, C.; Willis, P.S.; Wong-Swanson, B.G.; Yang, Y.; Yoneyama, S.; Young, G.R.; Zhou, S.

    2003-01-01

    The PHENIX Muon Arms detect muons at rapidities of |y|=(1.2-2.4) with full azimuthal acceptance. Each muon arm must track and identify muons and provide good rejection of pions and kaons (∼10 -3 ). In order to accomplish this we employ a radial field magnetic spectrometer with precision tracking (Muon Tracker) followed by a stack of absorber/low resolution tracking layers (Muon Identifier). The design, construction, testing and expected run parameters of both the muon tracker and the muon identifier are described

  7. PHENIX Muon Arms

    Energy Technology Data Exchange (ETDEWEB)

    Akikawa, H.; Al-Jamel, A.; Archuleta, J.B.; Archuleta, J.R.; Armendariz, R.; Armijo, V.; Awes, T.C.; Baldisseri, A.; Barker, A.B.; Barnes, P.D.; Bassalleck, B.; Batsouli, S.; Behrendt, J.; Bellaiche, F.G.; Bland, A.W.; Bobrek, M.; Boissevain, J.G.; Borel, H.; Brooks, M.L.; Brown, A.W.; Brown, D.S.; Bruner, N.; Cafferty, M.M.; Carey, T.A.; Chai, J.-S.; Chavez, L.L.; Chollet, S.; Choudhury, R.K.; Chung, M.S.; Cianciolo, V.; Clark, D.J.; Cobigo, Y.; Dabrowski, C.M.; Debraine, A.; DeMoss, J.; Dinesh, B.V.; Drachenberg, J.L.; Drapier, O.; Echave, M.A.; Efremenko, Y.V.; En' yo, H.; Fields, D.E.; Fleuret, F.; Fried, J.; Fujisawa, E.; Funahashi, H.; Gadrat, S.; Gastaldi, F.; Gee, T.F.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Hance, R.H.; Hart, G.W.; Hayashi, N.; Held, S.; Hicks, J.S.; Hill, J.C.; Hoade, R.; Hong, B.; Hoover, A.; Horaguchi, T.; Hunter, C.T.; Hurst, D.E.; Ichihara, T.; Imai, K.; Isenhower, L.D.L. Davis; Isenhower, L.D.L. Donald; Ishihara, M.; Jang, W.Y.; Johnson, J.; Jouan, D.; Kamihara, N.; Kamyshkov, Y.; Kang, J.H.; Kapoor, S.S.; Kim, D.J.; Kim, D.-W.; Kim, G.-B.; Kinnison, W.W.; Klinksiek, S.; Kluberg, L.; Kobayashi, H.; Koehler, D.; Kotchenda, L.; Kuberg, C.H.; Kurita, K.; Kweon, M.J.; Kwon, Y.; Kyle, G.S.; LaBounty, J.J.; Lajoie, J.G.; Lee, D.M.; Lee, S.; Leitch, M.J.; Li, Z.; Liu, M.X.; Liu, X.; Liu, Y.; Lockner, E.; Lopez, J.D.; Mao, Y.; Martinez, X.B.; McCain, M.C.; McGaughey, P.L.; Mioduszewski, S.; Mischke, R.E.; Mohanty, A.K.; Montoya, B.C.; Moss, J.M.; Murata, J.; Murray, M.M.; Nagle, J.L.; Nakada, Y.; Newby, J.; Obenshain, F.; Palounek, A.P.T.; Papavassiliou, V.; Pate, S.F.; Plasil, F.; Pope, K.; Qualls, J.M.; Rao, G.; Read, K.F. E-mail: readkf@ornl.gov; Robinson, S.H.; Roche, G.; Romana, A.; Rosnet, P.; Roth, R.; Saito, N.; Sakuma, T.; Sandhoff, W.F.; Sanfratello, L.; Sato, H.D.; Savino, R.; Sekimoto, M.; Shaw, M.R.; Shibata, T.-A.; Sim, K.S.; Skank, H.D.; Smith, D.E.; Smith, G.D. [and others

    2003-03-01

    The PHENIX Muon Arms detect muons at rapidities of |y|=(1.2-2.4) with full azimuthal acceptance. Each muon arm must track and identify muons and provide good rejection of pions and kaons ({approx}10{sup -3}). In order to accomplish this we employ a radial field magnetic spectrometer with precision tracking (Muon Tracker) followed by a stack of absorber/low resolution tracking layers (Muon Identifier). The design, construction, testing and expected run parameters of both the muon tracker and the muon identifier are described.

  8. Some introductory notes on the problem of nuclear energy by controlled fusion reactions

    International Nuclear Information System (INIS)

    Pedretti, E.

    1988-01-01

    Written for scientists and technologist interested in, but unfamiliar with nuclear energy by controlled fusion reactions, this ''sui generis'' review paper attempts to provide the reader, as shortly as possible, with a general idea of the main issues at stake in nuclear fusion research. With the purpose of keeping this paper within a reasonable length, the various subjects are only outlined in their essence, basic features, underlying principles, etc., without entering into details, which are left to the quoted literature. Due to the particular readership of this journal, vacuum problems and/or aspects of fusion research anyhow related with vacuum science and technology are evidentiated. After reviewing fusion reactions' cross sections, fusion by accelerators and muon catalyzed fusion are described, followed by mention of Lawson's criteria and of plasma confinement features. Then, inertial confinement fusion is dealt with, also including one example of laser system (Nova), one of accelerator facility (PBFA-II) and some guesses on the classified Centurion-Halite program. Magnetic confinement fusion research is also reviewed, in particulary reporting one example of linear machine (MFTF-B), two examples of toroidal machines other than Tokamak (ATF and Eta-Beta-II) and various examples of Tokamaks, including PBX and PBX-M; TFTR, JET, JT-60, T-15 and Tore-Supra (large machines); Alcator A, FT, Alcator C/MTX, Alcator C-Mod and T-14 (compact high field machines). Tokamaks under design for ignition experiments (Ignitor, CIT, Ignitex and NET) are also illustrated. Thermal conversion of fusion power and direct generation of electricity are mentioned; conceptual design of fusion power plants are considered and illustrated by four examples (STARFIRE, WILDCAT, MARS and CASCADE). The D 3 He fuel cycle is discussed as an alternative more acceptable than Deuterium-Tritium, and thw Candor proposal is reported. After recalling past experience of the fission power development, some

  9. Waste transmutation: perspectives

    International Nuclear Information System (INIS)

    Leray, S.

    1997-01-01

    After the introduction on the source and nature of nuclear waste, this lecture analyzes the different methods proposed to transmute long-lived isotopes into stable or short-lived isotopes. It is shown that direct methods (photonuclear reactions, spallation, muon catalyzed fusion) do not lead to a sufficient transmutation rate within a reasonable cost. Only the use of hybrid systems, fusion-fission or spallation-fission, can be foreseen. (author)

  10. Lost Muon Study for the Muon G-2 Experiment at Fermilab*

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Crnkovic, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morse, W. M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-19

    The Fermilab Muon g-2 Experiment has a goal of measuring the muon anomalous magnetic moment to a precision of 140 ppb - a fourfold improvement over the 540 ppb precision obtained by the BNL Muon g-2 Experiment. Some muons in the storage ring will interact with material and undergo bremsstrahlung, emitting radiation and loosing energy. These so called lost muons will curl in towards the center of the ring and be lost, but some of them will be detected by the calorimeters. A systematic error will arise if the lost muons have a different average spin phase than the stored muons. Algorithms are being developed to estimate the relative number of lost muons, so as to optimize the stored muon beam. This study presents initial testing of algorithms that can be used to estimate the lost muons by using either double or triple detection coincidences in the calorimeters.

  11. Muon physics possibilities at a muon-neutrino factory

    NARCIS (Netherlands)

    Jungmann, KP

    2001-01-01

    New intense proton accelerators with above GeV energies and MW beam power, such as they are discussed in connection with neutrino factories, appear to be excellently suited for feeding bright muon sources for low-energy muon science. Muon rates with several orders of magnitude increased flux

  12. Prospects for alternative Fusion Fuels

    International Nuclear Information System (INIS)

    Glancy, J.

    1986-01-01

    The author has worked on three different magnetic confinement concepts for alternate fusion fueled reactors: tokamaks; tanden mirrors, and reversed field pinches. The focus of this article is on prospects for alternate fusion fuels as the author sees them relative to the other choices: increased numbers of coal plants, fission reactors, renewables, and D-T fusion. Discussion is limited on the consideration of alternate fusion fuels to the catalyzed deuterium-deuterium fuel cycle. Reasons for seeking an alternate energy source are cost, a more secure fuel supply, environmental impact and safety. The technical risks associated with development of fusion are examined briefly

  13. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  14. Application of GAMESS/NEO to quantum calculations of muonic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sheely, Eugene V; Burggraf, Larry W [Air Force Institute of Technology, AFIT/ENP, 2950 Hobson Way, Wright-Patterson Air Force Base, OH 45433 (United States); Adamson, Paul E [High Power Microwave (HPM) Technologies Branch, HPM Division, Directed Energy Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117 (United States); Duan, Xiaofeng F [DoD Supercomputing Resource Center (DSRC), Air Force Research Laboratory, 2435 Fifth Street, Bldg 676, Wright-Patterson Air Force Base, OH 45433 (United States); Schmidt, Mike W, E-mail: Eugene.Sheely@afit.ed [Department of Chemistry, Iowa State University, 201 Spedding Hall, Ames, IA 50011 (United States)

    2010-04-01

    The General Atomic and Molecular Electronic Structure System (GAMESS) has been modified to perform studies involving negative muons. This system, coupled with the Nuclear-Electronic Orbital (NEO) method enables the ab-initio study of muonic atoms where both the negative muon and the positive nuclei are modeled as quantum particles. This is of particular usefulness in the study light nuclei, muonic atoms, such as is encountered in muon-catalyzed fusion. NEO was also modified to allow the inclusion of positive exotic-particles to be studied using open and closed shell Hartree-Fock and Configuration Interaction. Capitalizing on these modified methods, the muon density and vibrational dynamics of some light muonic molecules have been analyzed.

  15. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  16. Antimatter, a new frontier of science

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1988-09-01

    The interest in antimatter arises because antimatter offers such high potential, and it also happens to be the most fascinating of materials. In the discussions that follow, considerations will be made on the potential utilization of antimatter in various applications including: Alternate energy source for rocket propulsion and space missions; Pion-induced fission; Muon-catalyzed cold fusion; and Medicine: in treatment of cancer, and for superior radiographs. Comments also are provided that presently discount antiproton-proton annihilation as a possible source of negative muons in hypothetical hybrid fusion-fission reactors, but this could change in the future. Reasons are given as to why further exploratory work should be undertaken at this time. 42 refs., 7 figs., 3 tabs

  17. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    The main progress of the muon alignment group since March has been in the refinement of both the track-based alignment for the DTs and the hardware-based alignment for the CSCs. For DT track-based alignment, there has been significant improvement in the internal alignment of the superlayers inside the DTs. In particular, the distance between superlayers is now corrected, eliminating the residual dependence on track impact angles, and good agreement is found between survey and track-based corrections. The new internal geometry has been approved to be included in the forthcoming reprocessing of CRAFT samples. The alignment of DTs with respect to the tracker using global tracks has also improved significantly, since the algorithms use the latest B-field mapping, better run selection criteria, optimized momentum cuts, and an alignment is now obtained for all six degrees of freedom (three spatial coordinates and three rotations) of the aligned DTs. This work is ongoing and at a stage where we are trying to unders...

  18. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  19. Electron-muon ranger: performance in the MICE muon beam

    International Nuclear Information System (INIS)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Alekou, A.; Apollonio, M.; Barber, G.; Asfandiyarov, R.; Bene, P.; Blondel, A.; De Bari, A.; Bayes, R.; Bertoni, R.; Bonesini, M.; Blackmore, V.J.; Blot, S.; Bogomilov, M.; Booth, C.N.; Bowring, D.; Boyd, S.

    2015-01-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c

  20. Muon reconstruction and p p → 2μ4j vector boson fusion process at CMS

    International Nuclear Information System (INIS)

    Bellan, R.

    2009-01-01

    The work presented in this paper has been done within the Compact Muon Solenoid (CMS) Collaboration, one of the four experimental communities present at Lhc, and covers the description and the performance studies of the muon reconstruction and simulation algorithms. More specifically, the simulation of the drift tube cell, the muon reconstruction within the Drift Tube chamber, the track reconstruction and muon identification with the whole CMS tracking system, are here discussed. These algorithms have been developed in order to obtain a high resolution on the Z → μ + μ - observables, because the presence of the Z particle in the final state is one of the important signatures of the p p → μ + μ - jjjj vector boson scattering channel. A study of the p p → μ + μ - jjjj process has been performed in order to assess the possibility of probing the symmetry-breaking mechanism through the vector boson scattering using the CMS detector, with no assumption on the mechanism which restores the unitarity. The analysis strategy is shown here. The results in this paper have been extracted from the author's PhD thesis. (See CERN-Thesis-2009-139 and CMS T S 2008/021 (2007).)

  1. Muon Identification performance: hadron mis-Id measurements and RPC Muon selections

    CERN Document Server

    CMS Collaboration

    2014-01-01

    Pion, kaon, proton mis-identification probabilities as muons have been measured for different Muon ID algorithms. Results from two independent analyses are presented. The performance of a new muon ID algorithm based on matching of inner tracks with hits in muon RPC chambers is also presented.

  2. Muon colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity micro + micro - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed

  3. Development of a 3D muon disappearance algorithm for muon scattering tomography

    Science.gov (United States)

    Blackwell, T. B.; Kudryavtsev, V. A.

    2015-05-01

    Upon passing through a material, muons lose energy, scatter off nuclei and atomic electrons, and can stop in the material. Muons will more readily lose energy in higher density materials. Therefore multiple muon disappearances within a localized volume may signal the presence of high-density materials. We have developed a new technique that improves the sensitivity of standard muon scattering tomography. This technique exploits these muon disappearances to perform non-destructive assay of an inspected volume. Muons that disappear have their track evaluated using a 3D line extrapolation algorithm, which is in turn used to construct a 3D tomographic image of the inspected volume. Results of Monte Carlo simulations that measure muon disappearance in different types of target materials are presented. The ability to differentiate between different density materials using the 3D line extrapolation algorithm is established. Finally the capability of this new muon disappearance technique to enhance muon scattering tomography techniques in detecting shielded HEU in cargo containers has been demonstrated.

  4. A comparative study of various advanced fusions

    International Nuclear Information System (INIS)

    Momota, H.; Tomita, Y.; Nomura, Y.

    1983-01-01

    For the purpose of comparing the merits and demerits of various advanced fuel cycles, parametric studies of operation conditions are examined. The effects of nuclear elastic collisions and synchrotron radiation are taken into account. It is found that the high-#betta# Catalyzed DD fuel cycle with the transmutation of fusion-produced tritium into helium-3 is most feasible from the point of view of neutron production and tritium handling. The D-D fuel cycles seem to be less attractive compared to the Catalyzed DD. The p- 11 B and p- 6 Li fusion plasmas hardly attain the plasma Q value relevant to reactors. (author)

  5. Fusion research at Culham site

    International Nuclear Information System (INIS)

    Tolonen, P.; Toppila, T.

    1998-01-01

    One of the many targets on the Finnish Nuclear Society (ATS) excursion to England was the Culham fusion research site. The site has divided into two parts. One of them is UKAEA Fusion with small scale fusion reactors and 200 employees. UKAEA has 3 fusion reactors at Culham site. One of is the START (Small Tight Aspect Ratio Tokamak) which was operational since 1991 but is today already out of operation. UKAEA has been operating a JET-like tokamak fusion reactor COMPASS-D since 1989. The latest of three reactors is MAST (Mega Amp Spherical Tokamak), which is still under construction. The first plasma will take place in the end of 1998. Another part of Culham site is JET (Joint European Torus), an all-European fusion undertaking with 350 employees. 150 of them are from various European countries and the rest 200 are employed by UKAEA. JET is the biggest fusion reactor ever and it represents the latest step in world wide fusion programme. In October 1997 JET achieved a world record in fusion power and energy. JET produced 16,1 MW power for 1 s and totally 21,7 MJ energy. This is the closest attempt to achieve break-even conditions. The next step in world wide fusion programme will be international ITER-reactor. This undertaking has some financial problems, since United States has taken distance to magnetic fusion research and moved closer to inertial fusion with funding of US Department of Defence. The planned reactor, however, is physically twice as big as JET. The step after this phase will be DEMO, which is purposed to produce fusion energy. According to our hosts in Culham this phase is 40 years ahead. (author)

  6. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES

    International Nuclear Information System (INIS)

    PARSA, Z.

    2001-01-01

    Intense muon sources for the purpose of providing intense high energy neutrino beams (ν factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both ± μ. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider

  7. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.

    Energy Technology Data Exchange (ETDEWEB)

    PARSA,Z.

    2001-06-18

    Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

  8. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  9. CNGS Muon Monitors

    CERN Document Server

    Marsili, A; Ferioli, G; Gschwendtner, E; Holzer, E B; Kramer, Daniel; CERN. Geneva. AB Department

    2008-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) beam facility uses two muon detector stations as on-line feed back for the quality control of the neutrino beam. The muon detector stations are assembled in a cross-shaped array to provide the muon intensity and the vertical and horizontal muon profiles. Each station is equipped with 42 ionisation chambers, which are originally designed as Beam Loss Monitors (BLMs) for the Large Hadron Collider(LHC). The response of the muon detectors during the CNGS run 2007 and possible reasons for a non-linear behaviour with respect to the beam intensity are discussed. Results of the CNGS run 2008 are shown: The modifications done during the shutdown 2007/08 were successful and resulted in the expected linear behaviour of the muon detector response.

  10. A Highly intense DC muon source, MuSIC and muon CLFV search

    International Nuclear Information System (INIS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N.H.; Hashim, I.H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-01-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10 8 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion

  11. Algorithm for evaluation of parameters of ionization chamber signals from the flash-ADC date

    International Nuclear Information System (INIS)

    Baturin, V.N.; Balin, D.V.; Maev, E.M.; Petrov, G.E.; Semenchuk, G.G.

    1991-01-01

    An algorithm for evaluation of parameters of pulses obtained from the ionization chamber (IC) and digitized by Flash-ADC is described. It was designed for determination of the energies and times of arrival of charged particles in DTμ catalyzed fusion that occurs in the IC sensitive volume, in order to measure directly the probability of muon sticking. The algorithm provides the extraction of weak pulses of sloped muon with 50% efficiency, the measurement of fusion energy, especially for long and low amplitude pulses, the recognition of pulse pileups, using special shape analysis procedure. The algorithm was tuned with a special electronic hardware that supplied sequences of pulses with specified amplitudes, durations and shapes and simulation of simulated tritium-noise background. 6 refs.; 7 figs.; 1 tab

  12. Exclusive photon-photon production of muon pairs in proton-proton collisions at sqrt(s) = 7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.

    2011-11-01

    A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at {radical}s = 7 TeV, pp {yields} p{mu}{sup +}{mu}{sup -}p, is reported using data corresponding to an integrated luminosity of 40 pb{sup -1}. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum p{sub T}({mu}) > 4 GeV and pseudorapidity |{eta}({mu})| < 2.1, a fit to the dimuon p{sub T}({mu}{sup +}{mu}{sup -}) distribution results in a measured cross section of {sigma}(p {yields} p{mu}{sup +}{mu}{sup -}) = 3.38{sub -0.55}{sup +0.58}(stat.) {+-} 0.16(syst.) {+-} 0.14(lumi.) pb, consistent with the theoretical prediction evaluated with the event generator LPAIR. The ratio to the predicted cross section is 0.83{sub -0.13}{sup +0.14}(stat.) {+-} 0.04(syst.) {+-} 0.03(lumi.). The characteristic distributions of the muon pairs produced via {gamma}{gamma} fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.

  13. A Highly intense DC muon source, MuSIC and muon CLFV search

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Y.; Kuno, Y.; Sato, A. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Sakamoto, H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Y.; Tran, N.H.; Hashim, I.H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M.; Hayashida, Y. [Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ogitsu, T.; Yamamoto, A.; Yoshida, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-15

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10{sup 8} muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  14. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  15. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  16. Recent Result from E821 Experiment on Muon g-2 and Unconstrained Minimal Supersymemtric Standard Model

    CERN Document Server

    Komine, S; Yamaguchi, M; Komine, Shinji; Moroi, Takeo; Yamaguchi, Masahiro

    2001-01-01

    Recently, the E821 experiment at the Brookhaven National Laboratory announced their latest result of their muon g-2 measurement which is about 2.6-\\sigma away from the standard model prediction. Taking this result seriously, we examine the possibility to explain this discrepancy by the supersymmetric contribution. Our analysis is performed in the framework of the unconstrained supersymmetric standard model which has free seven parameters relevant to muon g-2. We found that, in the case of large \\tan\\beta, sparticle masses are allowed to be large in the region where the SUSY contribution to the muon g-2 is large enough, and hence the conventional SUSY search may fail even at the LHC. On the contrary, to explain the discrepancy in the case of small \\tan\\beta, we found that (i) sleptons and SU(2)_L gauginos should be light, and (ii) negative search for the Higgs boson severely constrains the model in the framework of the mSUGRA and gauge-mediated model.

  17. Muon Intensity Increase by Wedge Absorbers for Low-E Muon Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. V. [Fermilab; Stratakis, D. [Fermilab; Bradley, J. [Fermilab

    2017-09-01

    Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the matched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.

  18. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  19. The latest development of EAST neutral beam injector

    International Nuclear Information System (INIS)

    Hu Chundong; Xu Yongjian

    2014-01-01

    As the first full superconducting non-circular cross section Tokomak in the world, EAST is used to explore the forefront physics and engineering issues on the construction of Tokomak fusion reactor. Neutral beam injection has been recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, a set of neutral beam injector (4∼8 MW, 10∼100 s)will be built and operational in 2014. The paper presents the latest development of EAST neutral beam injector and the latest experiment results of long pulse beam extraction and high power beam extraction are reported, those results show that all targets reach or almost reach the design targets. All these will lay a solid foundation for the achievement of plasma heating and current drive for EAST in 2014. (authors)

  20. Study by polarized muon

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu

    1977-01-01

    Experiments by using polarized muon beam are reported. The experiments were performed at Berkeley, U.S.A., and at Vancouver, Canada. The muon spin rotation is a useful method for the study of the spin polarization of conductive electrons in paramagnetic Pd metal. The muon Larmor frequency and the relaxation time can be obtained by measuring the time distribution of decay electrons of muon-electron process. The anomalous depolarization of negative muon spin rotation in the transitional metal was seen. The circular polarization of the negative muon X-ray was measured to make clear this phenomena. The experimental results show that the anomalous depolarization is caused at the 1-S-1/2 state. For the purpose to obtain the strong polarization of negative muon, a method of artificial polarization is proposed, and the test experiments are in progress. The study of the hyperfine structure of mu-mesic atoms is proposed. The muon capture rate was studied systematically. (Kato, T.)

  1. Simulation of Underground Muon Flux with Application to Muon Tomography

    Science.gov (United States)

    Yamaoka, J. A. K.; Bonneville, A.; Flygare, J.; Lintereur, A.; Kouzes, R.

    2015-12-01

    Muon tomography uses highly energetic muons, produced by cosmic rays interacting within the upper atmosphere, to image dense materials. Like x-rays, an image can be constructed from the negative of the absorbed (or scattered) muons. Unlike x-rays, these muons can penetrate thousands of meters of earth. Muon tomography has been shown to be useful across a wide range of applications (such as imaging of the interior of volcanoes and cargo containers). This work estimates the sensitivity of muon tomography for various underground applications. We use simulations to estimate the change in flux as well as the spatial resolution when imaging static objects, such as mine shafts, and dynamic objects, such as a CO2 reservoir filling over time. We present a framework where we import ground density data from other sources, such as wells, gravity and seismic data, to generate an expected muon flux distribution at specified underground locations. This information can further be fed into a detector simulation to estimate a final experimental sensitivity. There are many applications of this method. We explore its use to image underground nuclear test sites, both the deformation from the explosion as well as the supporting infrastructure (access tunnels and shafts). We also made estimates for imaging a CO2 sequestration site similar to Futuregen 2.0 in Illinois and for imaging magma chambers beneath the Cascade Range volcanoes. This work may also be useful to basic science, such as underground dark matter experiments, where increasing experimental sensitivity requires, amongst other factors, a precise knowledge of the muon background.

  2. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography

    Science.gov (United States)

    Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.; Scaglione, John M.

    2018-03-01

    This work presents a generalized muon trajectory estimation algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguard verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstruction algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS is explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm's precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm root mean square (RMS) for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. The effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.

  3. SSC muon detector group report

    International Nuclear Information System (INIS)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4π detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC

  4. SSC muon detector group report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4..pi.. detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC.

  5. Fusion channel of pd charge - symmetric ion including photons

    International Nuclear Information System (INIS)

    Gheisari, R.

    2007-01-01

    The charge- symmetric pseudo nucleus pd is formed in the cascade processes in the muon catalyzed fusion. The nuclear fusion in pdμ ion can be considered in the photon field. For the spin states of pd (L=0) system, employing a new space wave function of three-body, the matrix element M1 proportional to S s∼ (πα 2 m p dω 3 )/[3(2S p d+1)m p 2 ]I 3 HeIM1Ipd ; 0 , S ∼ >I 2 (1) and the fusion rate λ Sp d γ =(S sp d/παm p d) ρ p dμ , ρ p dμ ∫I Ψ p dμ(R → = 0 , r → ) I 2 dr→ (2) for its ground state are calculated. The used wave function is introduced in the form of Ψ p dμ(r → , R → ) = Ρ (R){ξ dγ τ - 1/2 (γ , γ ' )xexp(-I γr → +γ ' R → I )+ξ dβ η - 1/2(β , β ' )xexp(-Iβr → + β ' R → I )}χ 0 ,0(R)Y 0 ,0. (3) The nuclear wave function χ 0 ,0(R)Y 0 ,0 is numerically calculated considering Wood-Saxon potential in the total Hamiltonian of the mentioned system. The good behavior of Ρ(R) is caused that our works are easily done in a short computation time. This function is linear from R =0 to 2.2x10 - 10 cm and then, is limited to 0.7068. The constant parameters of nuclear potential are obtained as well as those of the introduced wave function, when the boundary conditions are satisfied in our calculations. Notice that the notations (R → , r → ) are Jacobean coordinates. The radiative pd fusion rates for the two spin states in the pdμ mesic molecule are found to be λ 1 /2 γ 0.42μs - 1 and λ 3 / 2 γ = 0.13μs - 1, close to experimental data

  6. Muon transfer rates in collisions of hydrogen isotope mesic atoms on 'bare' nuclei. Multichannel adiabatic approach

    International Nuclear Information System (INIS)

    Korobov, V.I.; Melezhik, V.S.; Ponomarev, L.I.

    1992-01-01

    A numerical scheme for solving the problem of slow collisions in the three-body adiabatic approach is applied for calculation of muon transfer rates in collisions of hydrogen isotope atoms on bare nuclei. It is demonstrated that the multichannel adiabatic approach allows one to reach high accuracy results (∼3%) estimating the cross sections of charge transfer processes which are the best ones up to date. The method is appliable in a wide range of energies (0.001-50 eV) which is of interest for analysis of muon catalysed fusion experiments. 20 refs.; 3 figs.; 5 tabs

  7. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  8. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    International Nuclear Information System (INIS)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V.V.; Howard, C.; Hydomako, R.

    2015-01-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography

  9. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Armitage, J. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Baig, F.; Boniface, K. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Boudjemline, K. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Bueno, J. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Charles, E. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Drouin, P-L. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Erlandson, A., E-mail: Andrew.Erlandson@cnl.ca [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Gallant, G. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Gazit, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Godin, D.; Golovko, V.V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Howard, C. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Hydomako, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); and others

    2015-10-21

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  10. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Science.gov (United States)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V. V.; Howard, C.; Hydomako, R.; Jewett, C.; Jonkmans, G.; Liu, Z.; Robichaud, A.; Stocki, T. J.; Thompson, M.; Waller, D.

    2015-10-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  11. Nuclear muon capture

    CERN Document Server

    Mukhopadhyay, N C

    1977-01-01

    Our present knowledge of the nuclear muon capture reactions is surveyed. Starting from the formation of the muonic atom, various phenomena, having a bearing on the nuclear capture, are reviewed. The nuclear reactions are then studied from two angles-to learn about the basic muon+nucleon weak interaction process, and to obtain new insights on the nuclear dynamics. Future experimental prospects with the newer generation muon 'factories' are critically examined. Possible modification of the muon+nucleon weak interaction in complex nuclei remains the most important open problem in this field. (380 refs).

  12. Muon identification with Muon Telescope Detector at the STAR experiment

    Science.gov (United States)

    Huang, T. C.; Ma, R.; Huang, B.; Huang, X.; Ruan, L.; Todoroki, T.; Xu, Z.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Zha, W.

    2016-10-01

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions at √{ s }=500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ∼90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J / ψ signal is improved by a factor of 2 compared to using the basic selection.

  13. Muon cycling rate in D/T mixture including doubly muonic molecule formation

    Directory of Open Access Journals (Sweden)

    M. R. Eskandari

    2002-06-01

    Full Text Available   In the present work, the fundamental behavior of four body molecule formations of pt μμ , pd μμ , dt μμ , tt μμ , and pp μμ in a D/T fusion are considered. Their higher fusion rate, specially the available data for dt μμ , encouraged us to study the muon cycling rate in D/T fusion in the temperature range of (100-1400 K, density and deuterium-tritium concentration ratio. For this purpose, various values for the doubly muonic molecule formation are chosen and with the comparison to the experimental results, the doubly muonic formation rate of 109 s-1 is predicted theoretically. Our calculated cycling rate has shown that having not considered the doubly muonic formation in previous calculations had made no serious changes in the previously calculated values.

  14. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    International Nuclear Information System (INIS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L.H.

    2015-01-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The “muon generator” produces muons with zenith angles in the range 0–90° and energies in the range 1–100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance–Rejection and Metropolis–Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1–60 GeV and zenith angles 0–90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic–polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed “muon generator” is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  15. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    Science.gov (United States)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  16. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidakis, S., E-mail: schatzid@purdue.edu; Chrysikopoulou, S.; Tsoukalas, L.H.

    2015-12-21

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The “muon generator” produces muons with zenith angles in the range 0–90° and energies in the range 1–100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance–Rejection and Metropolis–Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1–60 GeV and zenith angles 0–90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic–polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed “muon generator” is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  17. Review of muon tomography

    International Nuclear Information System (INIS)

    Feng Hanliang; Jiao Xiaojing

    2010-01-01

    As a new detection technology, Muon tomography has some potential benefits, such as being able to form a three- dimensional image, without radiation, low cost, fast detecting etc. Especially, muon tomography will play an important role in detecting nuclear materials. It introduces the theory of Muon tomography, its advantages and the Muon tomography system developed by decision sciences corporation and Los Alamos national laboratory. (authors)

  18. Study of muon-induced neutron production using accelerator muon beam at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Draeger, E.; White, C. G. [Illinois Institute of Technology, Chicago, Illinois (United States); Luk, K. B.; Steiner, H. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Department of Physics, University of California, Berkeley, California (United States)

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  19. Rare decays of the Higgs boson with the CMS detector

    OpenAIRE

    Marini, Andrea Carlo

    2018-01-01

    The CMS collaboration reports the latest update on the searches of invisible and rare decays of the Higgs boson. The searches for the standard model Higgs boson decaying into two muons, for the standard model Higgs boson decaying into $\\ell\\ell\\gamma$, and for invisible decay of the Higgs boson in the vector boson fusion production channel are presented.

  20. Muon-muon and other high energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The first section looks at the high energy physics advantages, disadvantages and luminosity requirements of hadron, of lepton and photon-photon colliders for comparison. The second section discusses the physics considerations for the muon collider. The third section covers muon collider components. The fourth section is about the intersection region and detectors. In the fifth section, the authors discuss modifications to enhance the muon polarization's operating parameters with very small momentum spreads, operations at energies other than the maximum for which the machine is designed, and designs of machines for different maximum energies. The final section discusses a Research and Development plan aimed at the operation of a 0.5 TeV demonstration machine by the year 2010, and of the 4 TeV machine by the year 2020

  1. Fusion the energy of the universe

    CERN Document Server

    McCracken, Garry

    2012-01-01

    Fusion: The Energy of the Universe, 2e is an essential reference providing basic principles of fusion energy from its history to the issues and realities progressing from the present day energy crisis. The book provides detailed developments and applications for researchers entering the field of fusion energy research. This second edition includes the latest results from the National Ignition Facility at the Lawrence Radiation Laboratory at Livermore, CA, and the progress on the International Thermonuclear Experimental Reactor (ITER) tokamak programme at Caderache, France.

  2. Reconstruction of missing transverse energy and prospect of searching for Higgs boson produced via vector boson fusion in Compact Muon Solenoid experiment

    CERN Document Server

    Pi, Haifeng

    2005-01-01

    We performed full detector simulation studies of missing transverse energy (Emiss T ) reconstruction and correction, and the prospects for searching for a low mass Higgs Boson (120 < mH < 250 GeV/c 2 ) produced via the vector boson fusion (VBF) process through the decay of H → W+W− → `νjj at Compact Muon Solenoid (CMS) experiment in Large Hadron Collider (LHC). We developed a new jet energy correction algorithm by parameterizing the jet energy distribution around the jet axis. The jet energy resolution is improved by calibrating the jet energy scale and by reducing the variance of the measurement error. Correction functions showed good performance in restoring the jet transverse momentum (pT) spectrum. The methods provide a good framework to study jet quantities and optimize jet reconstruction and correction techniques. We evaluated the performance of the CMS detector for measuring the Emiss T using QCD events. We also studied the contributions from detector resolution, minimum bias pileup, event...

  3. Muon scattering into 1 to 5 muon final states

    International Nuclear Information System (INIS)

    Clark, A.R.; Johnson, K.J.; Kerth, L.T.

    1979-09-01

    Interactions of 209- and 90-GeV muons within a magnetized-steel calorimeter have produced final states containing one, two, three, four, and five muons. Redundant systems of proportional and drift chambers, fully sensitive in the forward direction, maintained 9% dimuon-mass resolution and high acceptance for multimuon final states. The first data are presented on F 2 (x, Q 2 ) from charged lepton-nucleon scattering spanning a range in ln (ln, Q 2 ) comparable to that measured in high energy neutrino scattering. The muon data confirm the decrease of F 2 with rising Q 2 in the region 0.2 80% of the world sample of fully-reconstructed 3μ final states containing the J/psi(3100), the first determination of the psi polarization yields sigma/sub L//sigma/sub T/ = xi 2 Q 2 /m/sub psi/ 2 with xi 2 = 4.0/sub -2.1/ +5 4 , 2.6 standard deviations above the vector-dominance expectation. A sample of 35539 two-muon final states contains a small excess of high p/sub perpendicular to/ high-Q 2 same-sign pairs and sets limits on neutral heavy lepton production by right-handed currents. Two five-muon final states are observed, of which only one is the likely result of a pure QED process. A single event with four muons in the final state is interpreted as diffractive b anti b production with anti b → psiX → μ + μ - X and b → μ - anti ν/sub μ/X. 42 references

  4. Catalyzed deuterium fueled reversed-field pinch reactor assessment

    International Nuclear Information System (INIS)

    Dobrott, D.

    1985-01-01

    This study is part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corporation. The purpose of this portion of the study is to perform an assessment of a conceptual compact reversed-field pinch reactor (CRFPR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to physics, technology, safety, and cost. The Cat-d CRFPR is compared to a d-t fueled fusion reactor with respect to several issues in this study. The comparison includes cost, reactor performance, and technology requirements for a Cat-d fueled CRFPR and a comparable cost-optimized d-t fueled conceptual design developed by LANL

  5. Production of selected cosmogenic radionuclides by muons; 1, Fast muons

    CERN Document Server

    Heisinger, B; Jull, A J T; Kubik, P W; Ivy-Ochs, S; Neumaier, S; Knie, K; Lazarev, V A; Nolte, E

    2002-01-01

    To investigate muon-induced nuclear reactions leading to the production of radionuclides, targets made of C/sub 9/H/sub 12/, SiO /sub 2/, Al/sub 2/O/sub 3/, Al, S, CaCO/sub 3/, Fe, Ni, Cu, Gd, Yb and Tl were irradiated with 100 and 190 GeV muons in the NA54 experimental setup at CERN. The radionuclide concentrations were measured with accelerator mass spectrometry and gamma -spectroscopy. Results are presented for the corresponding partial formation cross- sections. Several of the long-lived and short-lived radionuclides studied are also produced by fast cosmic ray muons in the atmosphere and at depths underground. Because of their importance to Earth sciences investigations, calculations of the depth dependence of production rates by fast cosmic ray muons have been made. (48 refs).

  6. Muon Collider Progress: Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  7. γ ray astronomy with muons

    International Nuclear Information System (INIS)

    Halzen, F.; Stanev, T.; Yodh, G.B.

    1997-01-01

    Although γ ray showers are muon poor, they still produce a number of muons sufficient to make the sources observed by GeV and TeV telescopes observable also in muons. For sources with hard γ ray spectra there is a relative open-quotes enhancementclose quotes of muons from γ ray primaries as compared to that from nucleon primaries. All shower γ rays above the photoproduction threshold contribute to the number of muons N μ , which is thus proportional to the primary γ ray energy. With γ ray energy 50 times higher than the muon energy and a probability of muon production by the γ close-quote s of about 1%, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by 10 4 . The muons must have enough energy for sufficiently accurate reconstruction of their direction for doing astronomy. These conditions are satisfied by relatively shallow neutrino detectors such as AMANDA and Lake Baikal, and by γ ray detectors such as MILAGRO. TeV muons from γ ray primaries, on the other hand, are rare because they are only produced by higher energy γ rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy with the AMANDA, Lake Baikal, and MILAGRO detectors. copyright 1997 The American Physical Society

  8. Using Muons to Image the Subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, Nedra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cashion, Avery Ted [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cieslewski, Grzegorz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dorsey, Daniel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dreesen, Wendi [NSTec, Livermore, CA (United States); Green, J. Andrew [NSTec, Livermore, CA (United States); Schwellenbach, David [NSTec, Livermore, CA (United States)

    2016-11-01

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consists of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .

  9. Exotic atoms. Technical progress report

    International Nuclear Information System (INIS)

    Kunselman, R.

    1994-01-01

    The experiments use a variety of hydrogen isotopic mixtures to form solid targets for muons to produce muonic hydrogen isotope atoms that escape into vacuum. The method relies on transfer of the muon from a proton to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections (RT effect), and are emitted from the surface of the layer. A second solid hydrogen isotopic target is produced downstream on which the muonic hydrogen atom can react. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes of energy dependence of transfer, production rates, and muon molecular formation. The processes include muon catalyzed fusion of muonic tritium with deuterium which is the most possible candidate for energy production fusion. Our interest is the nuclear physics reaction rates and to use the muonic hydrogen isotopes in vacuum for energy level measurements. The method uses time of flight and is reminiscent of double scattering experiments. Two other experiments are in the development stages. First to measure the energy dependence of the Ramsauer-Townsend cross section in tritium where it has not been measured. The measurements would be compared to deuterium and calculations. Second, kaonic atoms, hypernuclei, and kaon-nucleon scattering at DAPHNE

  10. First measurements of dtμ-cycle characteristics in liquid H/D/T mixture

    International Nuclear Information System (INIS)

    Averin, Yu.P.; Balin, D.V.; Bom, V.R.

    1998-01-01

    The muon catalyzed fusion in dense triple mixture of hydrogen isotopes has been investigated for the first time. The experimental method is based on the registration of neutrons from dtμ fusions by a full absorption detectors in 4π geometry. The measurements have been performed in H/D/T mixture at T = 22 K and φ ≅ 1.1 LHD at four sets of isotope concentrations. The basic parameters of dtμ cycle (neutron yield, cycling rate and total sticking) in H/D/T mixtures are presented and discussed

  11. Muon Reconstruction and Physics Commissioning of the CMS Experiment with Cosmic Muons

    CERN Document Server

    Liu, Chang

    In this thesis, the first physics measurements using the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) are presented. These physics measurements were performed using cosmic ray muons traversing the CMS detector. The CMS detector is optimized for the detection of muons and the results presented here also have a purpose of helping in the commissioning of the detector for the LHC collisions. Two analyses were conducted; the first is a measurement of the charge ratio of positive to negative muons, and the second is a measurement of the differential and absolute flux of incident cosmic rays. The charge ratio measurement was made using both the muon and tracking detectors and is highlighted by its data-driven method. The charge ratio over the momentum range starting from 10 GeV were measured at the detector center and then transferred to the earth's surface. The flux measurement was performed using the muon system only. The flux was measured over the momentum range from 15 GeV to over 1 TeV at the...

  12. Nuclear Fusion with Polarized Nucleons & PolFusion

    CERN Document Server

    Engels, Ralf; Büscher, Markus; Vasilyev, Alexander

    2016-01-01

    This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetin...

  13. Towards a Muon Collider

    International Nuclear Information System (INIS)

    Eichten, E.

    2011-01-01

    A multi TeV Muon Collider is required for the full coverage of Terascale physics. The physics potential for a Muon Collider at ∼3 TeV and integrated luminosity of 1 ab -1 is outstanding. Particularly strong cases can be made if the new physics is SUSY or new strong dynamics. Furthermore, a staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics. If a narrow s-channel resonance state exists in the multi-TeV region, the physics program at a Muon Collider could begin with less than 10 31 cm -2 s -1 luminosity. Detailed studies of the physics case for a 1.5-4 TeV Muon Collider are just beginning. The goals of such studies are to: (1) identify benchmark physics processes; (2) study the physics dependence on beam parameters; (3) estimate detector backgrounds; and (4) compare the physics potential of a Muon Collider with those of the ILC, CLIC and upgrades to the LHC.

  14. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  15. Nuclear excitations and reaction mechanisms: Progress report

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1988-01-01

    This report describes activities of the Nuclear Theory Group at Brown University during the period 1 August 1987-31 July 1988, under Grant FG02-87ER40334. Completed and on-going research includes various theoretical and numerical studies on: parity non-conserving interactions in a relativistic system, processes involving virtual photons and real photons, deuteron-nucleus and neutron-deuteron collisions systems, and muon-catalyzed fusion

  16. SUPERCONDUCTING SOLENOIDS FOR THE MUON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,M.A.; EYSSA,Y.; KENNY,S.; MILLER,J.R.; PRESTEMON,S.; WEGGEL,R.J.

    2000-06-12

    The muon collider is a new idea for lepton colliders. The ultimate energy of an electron ring is limited by synchrotron radiation. Muons, which have a rest mass that is 200 times that of an electron can be stored at much higher energies before synchrotron radiation limits ring performance. The problem with muons is their short life time (2.1 {micro}s at rest). In order to operate a muon storage ring large numbers of muon must be collected, cooled and accelerated before they decay to an electron and two neutrinos. As the authors see it now, high field superconducting solenoids are an integral part of a muon collider muon production and cooling systems. This report describes the design parameters for superconducting and hybrid solenoids that are used for pion production and collection, RF phase rotations of the pions as they decay into muons and the muon cooling (reduction of the muon emittance) before acceleration.

  17. Atmospheric Muon Lifetime, Standard Model of Particles and the Lead Stopping Power for Muons

    Science.gov (United States)

    Gutarra-Leon, Angel; Barazandeh, Cioli; Majewski, Walerian

    2017-01-01

    The muon is a fundamental particles of matter. It decays into three other leptons through an exchange of the weak vector bosons W +/W-. Muons are present in the atmosphere from cosmic ray showers. By detecting the time delay between arrival of the muon and an appearance of the decay electron in our detector, we'll measure muon's lifetime at rest. From the lifetime we should be able to find the ratio gw /MW of the weak coupling constant gw (a weak analog of the electric charge) to the mass of the W-boson MW. Vacuum expectation value v of the Higg's field, which determines the masses of all particles of the Standard Model (SM), could be then calculated from our muon experiment as v =2MWc2/gw =(τ m μc2/6 π3ĥ)1/4m μc2 in terms of muon mass mµand muon lifetime τ only. Using known experimental value for MWc2 = 80.4 GeV we'll find the weak coupling constant gw. Using the SM relation e =gwsin θ√ hc ɛ0 with the experimental value of the Z0-photon weak mixing angle θ = 29o we could find from our muon lifetime the value of the elementary electric charge e. We'll determine the sea-level fluxes of low-energy and high-energy cosmic muons, then we'll shield the detector with varying thicknesses of lead plates and find the energy-dependent muon stopping power in lead.

  18. Precision muon physics

    Science.gov (United States)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  19. Performance of the ATLAS Muon Spectrometer and of Muon Identification at the LHC

    CERN Document Server

    Woudstra, MJ; The ATLAS collaboration

    2010-01-01

    The large cosmic data samples collected in fall 2009 by the ATLAS experiment have been used to study the performance of the Muon Spectrometer. Detailed studies of the basic Muon spectrometer performance in terms of sagitta resolution, tracking efficiency and momentum resolution are presented and provide an update with respect to the results recently published. The results are also compared with a cosmic data simulation recently improved with a more realistic drift chamber response. The recent collision data collected at a CM of 7 TeV have also been analyzed to determine basic Muon Spectrometer performance. The performance of the ATLAS muon identification was studied with 1 inverse nanobarn of LHC proton-proton collision data at a centre of mass energy of 7 TeV. Measured detector efficiencies, hit multiplicities, and residual distributions of reconstructed muon tracks are well reproduced by the Monte Carlo simulation. Exploiting the redundancy in the muon identification at detector and reconstruction level the...

  20. Electromagnetic Interactions of Muons

    CERN Multimedia

    2002-01-01

    This experiment was the first in a programme of physics experiments with high-energy muons using a large spectrometer facility. The aim of this experiment is to study the inelastic scattering of muons with various targets to try to understand better the physics of virtual photon interactions over a wide range of four-momentum transfer (q$^{2}$).\\\\ \\\\ The spectrometer includes a large aperture dipole magnet (2m x 1m) of bending power $\\simeq$5 T.m and a magnetized iron filter to distinguish the scattered muons from hadrons. Drift chambers and MWPC are used before and after the magnet to detect charged products of the interaction and to allow a momentum determination of the scattered muon to an accuracy of $\\simeq$at 100 GeV/c, and an angular definition of $\\pm$ 0.1 mrad. The triggering on scattered muons relies on three planes of scintillation counter hodoscopes before and after the magnetized iron, whose magnetic field serves to eliminate triggers from low momentum muons which are produced copiously by pion d...

  1. Muon colliders

    International Nuclear Information System (INIS)

    Cline, David

    1995-01-01

    The increasing interest in the possibility of positive-negative muon colliders was reflected in the second workshop on the Physics Potential and Development of Muon Colliders, held in Sausalito, California, from 16-19 November, with some 60 attendees. It began with an overview of the particle physics goals, detector constraints, the muon collider and mu cooling, and source issues. The major issue confronting muon development is the possible luminosity achievable. Two collider energies were considered: 200 + 200 GeV and 2 + 2 TeV. The major particle physics goals are the detection of the higgs boson(s) for the lower energy collider, together with WW scattering and supersymmetric particle discovery. At the first such workshop, held in Napa, California, in 1992, it was estimated that a luminosity of some 10 30 and 3 x 10 32 cm -2 s -1 for the low and high energy collider might be achieved (papers from this meeting were published in the October issue of NIM). This was considered a somewhat conservative estimate at the time. At the Sausalito workshop the goal was to see if a luminosity of 10 32 to 10 34 for the two colliders might be achievable and usable by a detector. There were five working groups - physics, 200 + 200 GeV collider, 2 + 2 TeV collider, detector design and backgrounds, and muon cooling and production methods. Considerable progress was made in all these areas at the workshop.

  2. Rare muon processes: Experiment

    International Nuclear Information System (INIS)

    Walter, H.K.

    1998-01-01

    The decay properties of muons, especially their rare decays, can be used to study very accurately deviations from the Standard Model. Muons with extremely low energies and good spatial definition are preferred for the majority of such studies. With the upgrade of the 590-MeV ring accelerator, PSI possesses the most powerful cyclotron in the world. This makes it possible to operate high-intensity beams of secondary pions and muons. A short review on rare muon processes is presented, concerning μ-e conversion and muonium-antimuonium oscillations. A possible new search for μ→eγ is also mentioned

  3. Muon Simulation at the Daya Bay SIte

    International Nuclear Information System (INIS)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-01-01

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  4. Online Learning for Muon Science

    Science.gov (United States)

    Baker, Peter J.; Loe, Tom; Telling, Mark; Cottrell, Stephen P.; Hillier, Adrian D.

    As part of the EU-funded project SINE2020 we are developing an online learning environment to introduce people to muon spectroscopy and how it can be applied in a variety of science areas. Currently there are short interactive courses using cosmic ray muons to teach what muons are and how their decays are measured and a guide to analyzing muon data using the Mantid software package, as well as videos from the lectures at the ISIS Muon Spectroscopy Training School 2016. Here we describe the courses that have been developed and how they have already been used.

  5. Latest status of manufacturing activity of ITER divertor and engineering issues on tungsten divertor

    International Nuclear Information System (INIS)

    Suzuki, Satoshi

    2011-01-01

    Divertors for ITER are now in construction. In the present chapter, the specification and the latest status of manufacturing of ITER divertors are presented. In addition, issues in the development of divertors for the fusion demo reactor are given on the basis of experiences on the ITER divertor development. (J.P.N.)

  6. THE LATEST ADVANCEMENTS IN THE ACYLATION REACTIONS VIA CROSS-DEHYDROGENATIVE COUPLING AND/OR METAL CATALYSTS

    Directory of Open Access Journals (Sweden)

    Soykan Ağar

    2017-12-01

    Full Text Available There are quite many examples in the scientific literature regarding the acylation reactions, especially the metal-catalyzed acylation reactions, metal-free acylation reactions, metal-catalyzed acylation via cross-dehydrogenative coupling (CDC reactions and metal-free acylation via cross-dehydrogenative coupling (CDC reactions. In this review paper, the most important examples of these domains were brought together and their mechanisms were exhibited in a clear, chronological format. Following these, the best example study towards green chemistry with a metal-free and high-yielding route was mentioned and discussed to demonstrate what has achieved in this field regarding the new acylation reaction mechanisms using the advantages of cross-dehydrogenative coupling (CDC reactions. The most prominent studies regarding these domains have been examined thoroughly and the latest progress in this field was explained in detail.

  7. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  8. PANDA Muon System Prototype

    Science.gov (United States)

    Abazov, Victor; Alexeev, Gennady; Alexeev, Maxim; Frolov, Vladimir; Golovanov, Georgy; Kutuzov, Sergey; Piskun, Alexei; Samartsev, Alexander; Tokmenin, Valeri; Verkheev, Alexander; Vertogradov, Leonid; Zhuravlev, Nikolai

    2018-04-01

    The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR) which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS) at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  9. CONFERENCE: Muon spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik

    1986-11-15

    An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.

  10. PANDA Muon System Prototype

    Directory of Open Access Journals (Sweden)

    Abazov Victor

    2018-01-01

    Full Text Available The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  11. Triggering and measuring bent cosmic muon tracks with the Muon Spectrometer barrel for the first time

    CERN Multimedia

    Fabio Cerutti

    During the ATLAS barrel toroid stability test, bent cosmic muon tracks were seen for the first time in the ATLAS cavern by means of the ATLAS muon spectrometer. The barrel toroid has been powered at its nominal current (20.5 thousand Amperes) and kept in steady state for more than one day during the weekend of 18-19 November (see a report on this test in the Magnet section). During this test one large sector and part of a small sector of the barrel muon spectrometer were readout and used to detect the cosmic muons tracks bent by the toroidal magnetic field. Thirteen muon stations in the feet sectors (sectors 13 and 14) have been used in this test. The muon stations are formed of Resistive Plate Chambers (RPC) that were providing the muon trigger, and Monitored Drift Tubes that were used to measure with high accuracy the muon curvature hence their momentum. The Level-1 Barrel trigger chain was based on the Barrel Middle Large chambers equipped with final production modules on both the on-detector and the o...

  12. Alignment of the CMS Muon System with Cosmic-Ray and Beam-Halo Muons

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions ofendcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.

  13. Review for 'Nattoh' model and experimental findings during cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki

    1993-01-01

    A review is described for the Nattoh model that provides the framework of the mechanisms of cold fusion. The model classifies the reactions into two categories: fundamental and associated reactions. The former involves the new 'hydrogen-catalyzed' fusion reaction and the chain-reactions of hydrogens. And extremely exciting physics are involved in the latter. Furthermore experimental findings are described. (author)

  14. The low energy muon beam profile monitor for the muon g-2/EDM experiment at J-PARC

    Science.gov (United States)

    Razuvaev, G. P.; Bae, S.; Choi, H.; Choi, S.; Ko, H. S.; Kim, B.; Kitamura, R.; Mibe, T.; Otani, M.

    2017-09-01

    The muon g-2/EDM experiment at J-PARC aims to measure the muon anomalous magnetic moment and electric dipole moment with high precision by utilising an ultracold muon beam. The current muon g-2 discrepancy between the Standard Model prediction and the experimental value is about 3.5 standard deviations. This experiment requires a development of the muon LINAC to accelerate thermal muons to the 300 MeV/c momentum. Detectors for beam diagnostics play a key role in such an experiment. The beam profile monitoring system has been designed to measure the profile of the low energy muon beam. It was tested during two beam tests in 2016 at the MLF D2 line at J-PARC. The detector was used with positive muons, Mu-(μ+ e- e-), p and H-, e- and UV light. The system overview and preliminary results are given. Special attention is paid to the spatial resolution of the beam profile monitor and online monitor software used during data taking.

  15. OPAL Muon Chamber

    CERN Multimedia

    OPAL was one of the 4 experiments installed at the LEP particle accelerator from 1989 to 2000. This is a slice of the outermost layer of OPAL : the muon chambers. This outside layer detects particles which are not stopped by the previous layers. These are mostly muons.

  16. Metal Catalyzed Fusion: Nuclear Active Environment vs. Process

    Science.gov (United States)

    Chubb, Talbot

    2009-03-01

    To achieve radiationless dd fusion and/or other LENR reactions via chemistry: some focus on environment of interior or altered near-surface volume of bulk metal; some on environment inside metal nanocrystals or on their surface; some on the interface between nanometal crystals and ionic crystals; some on a momentum shock-stimulation reaction process. Experiment says there is also a spontaneous reaction process.

  17. Characterisation of the Muon Beams for the Muon Ionisation Cooling Experiment

    CERN Document Server

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Back, J.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V.J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C.N.; Bowring, D.; Boyd, S.; Bradshaw, T.W.; Bravar, U.; Bross, A.D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, G.; Cobb, J.H.; Colling, D.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L.M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Fayer, S.; Filthaut, F.; Fish, A.; Fitzpatrick, T.; Fletcher, R.; Forrest, D.; Francis, V.; Freemire, B.; Fry, L.; Gallagher, A.; Gamet, R.; Gourlay, S.; Grant, A.; Graulich, J.S.; Griffiths, S.; Hanlet, P.; Hansen, O.M.; Hanson, G.G.; Harrison, P.; Hart, T.L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D.M.; Karadzhov, Y.; Kim, Y.K.; Kolev, D.; Kuno, Y.; Kyberd, P.; Lau, W.; Leaver, J.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Lucchini, G.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J.J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J.C.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Palmer, R.B.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M.A.; Ricciardi, S.; Richards, A.; Roberts, T.J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, R.; Rusinov, I.; Sakamoto, H.; Sanders, D.A.; Santos, E.; Savidge, T.; Smith, P.J.; Snopok, P.; Soler, F.J.P.; Stanley, T.; Summers, D.J.; Takahashi, M.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C.D.; Vankova, G.; Verguilov, V.; Virostek, S.; Vretenar, M.; Walaron, K.; Watson, S.; White, C.; Whyte, C.G.; Wilson, A.; Wisting, H.; Zisman, M.

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  18. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  19. Physics with a millimole of muons

    International Nuclear Information System (INIS)

    Quigg, C.

    1998-03-01

    The eventual prospect of muon colliders reaching several TeV encourages us to consider the experimental opportunities presented by very copious stores of muons, approaching 10 21 per year. I summarize and comment upon some highlights of the Fermilab Workshop on Physics at the First Muon Collider and at the Front End of a Muon Collider. Topics include various varieties of μμ colliders, μp colliders, and applications of the intense neutrino beams that can be generated in muon storage rings

  20. The ATLAS Muon and Tau Trigger

    CERN Document Server

    Dell'Asta, L; The ATLAS collaboration

    2013-01-01

    [Muon] The ATLAS experiment at CERN's Large Hadron Collider (LHC) deploys a three-levels processing scheme for the trigger system. The level-1 muon trigger system gets its input from fast muon trigger detectors. Fast sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The muon HLT is purely software based and encompasses a level-2 (L2) trigger followed by an event filter (EF) for a staged trigger approach. It has access to the data of the precision muon detectors and other detector elements to refine the muon hypothesis. Trigger-specific algorithms were developed and are used for the L2 to increase processing speed for instance by making use of look-up tables and simpler algorithms, while the EF muon triggers mostly benefit from offline reconstruction software to obtain most precise determination of the track parameters. There are two algorithms with different approaches, namely inside-out and outside-in...

  1. Neutrino physics at a muon collider

    International Nuclear Information System (INIS)

    King, B.J.

    1998-02-01

    This paper gives an overview of the neutrino physics possibilities at a future muon storage ring, which can be either a muon collider ring or a ring dedicated to neutrino physics that uses muon collider technology to store large muon currents. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring. The paper is organized as follows. The next section describes neutrino production from a muon storage rings and gives expressions for event rates in general purpose and long baseline detectors. This is followed by a section outlining a serious design constraint for muon storage rings: the need to limit the radiation levels produced by the neutrino beam. The following two sections describe a general purpose detector and the experimental reconstruction of interactions in the neutrino target then, finally, the physics capabilities of a MURINE are surveyed

  2. Colliding muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Is a muon-muon collider really practical? That is the question being asked by Bob Palmer. Well known in particle physics, Palmer, with Nick Samios and Ralph Shutt, recently won the American Physical Society's Panofsky Prize for their 1964 discovery of the omega minus. As well as contributing to other major experiments, both at CERN and in the US, he has contributed ideas to stochastic cooling and novel acceleration schemes

  3. A Level-2 trigger algorithm for the identification of muons in the ATLAS Muon Spectrometer

    CERN Document Server

    Di Mattia, A; Dos Anjos, A; Baines, J T M; Bee, C P; Biglietti, M; Bogaerts, J A C; Boisvert, V; Bosman, M; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Conde-Muíño, P; De Santo, A; Díaz-Gómez, M; Dosil, M; Ellis, Nick; Emeliyanov, D; Epp, B; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kabana, S; Khomich, A; Kilvington, G; Konstantinidis, N P; Kootz, A; Lowe, A; Luminari, L; Maeno, T; Masik, J; Meessen, C; Mello, A G; Merino, G; Moore, R; Morettini, P; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Panikashvili, N; Parodi, F; Pasqualucci, E; Pérez-Réale, V; Pinfold, J L; Pinto, P; Qian, Z; Resconi, S; Rosati, S; Sánchez, C; Santamarina-Rios, C; Scannicchio, D A; Schiavi, C; Segura, E; De Seixas, J M; Sivoklokov, S Yu; Soluk, R A; Stefanidis, E; Sushkov, S S; Sutton, M; Tapprogge, Stefan; Thomas, E; Touchard, F; Venda-Pinto, B; Vercesi, V; Werner, P; Wheeler, S; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, G; Computing In High Energy Physics

    2005-01-01

    The ATLAS Level-2 trigger provides a software-based event selection after the initial Level-1 hardware trigger. For the muon events, the selection is decomposed in a number of broad steps: first, the Muon Spectrometer data are processed to give physics quantities associated to the muon track (standalone feature extraction) then, other detector data are used to refine the extracted features. The “µFast” algorithm performs the standalone feature extraction, providing a first reduction of the muon event rate from Level-1. It confirms muon track candidates with a precise measurement of the muon momentum. The algorithm is designed to be both conceptually simple and fast so as to be readily implemented in the demanding online environment in which the Level-2 selection code will run. Never-the-less its physics performance approaches, in some cases, that of the offline reconstruction algorithms. This paper describes the implemented algorithm together with the software techniques employed to increase its timing p...

  4. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    International Nuclear Information System (INIS)

    BIGI, I.; BOLTON, T.; FORMAGGIO, J.; HARRIS, D.; MORFIN, J.; SPENTZOURIS, P.; YU, J.; KAYSER, B.; KING, B.J.; MCFARLAND, K.; PETROV, A.; SCHELLMAN, H.; VELASCO, M.; SHROCK, R.

    2000-01-01

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters

  5. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  6. Multi-sensor image fusion and its applications

    CERN Document Server

    Blum, Rick S

    2005-01-01

    Taking another lesson from nature, the latest advances in image processing technology seek to combine image data from several diverse types of sensors in order to obtain a more accurate view of the scene: very much the same as we rely on our five senses. Multi-Sensor Image Fusion and Its Applications is the first text dedicated to the theory and practice of the registration and fusion of image data, covering such approaches as statistical methods, color-related techniques, model-based methods, and visual information display strategies.After a review of state-of-the-art image fusion techniques,

  7. Directional muon jet chamber for a muon collider (Groovy Chamber)

    International Nuclear Information System (INIS)

    Atac, M.

    1996-10-01

    A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-ψ coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas

  8. Analysis of the synaptotagmin family during reconstituted membrane fusion. Uncovering a class of inhibitory isoforms.

    Science.gov (United States)

    Bhalla, Akhil; Chicka, Michael C; Chapman, Edwin R

    2008-08-01

    Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells is regulated by the Ca(2+)-binding protein synaptotagmin (syt) I. Sixteen additional isoforms of syt have been identified, but little is known concerning their biochemical or functional properties. Here, we assessed the abilities of fourteen syt isoforms to directly regulate SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor)-catalyzed membrane fusion. One group of isoforms stimulated neuronal SNARE-mediated fusion in response to Ca(2+), while another set inhibited SNARE catalyzed fusion in both the absence and presence of Ca(2+). Biochemical analysis revealed a strong correlation between the ability of syt isoforms to bind 1,2-dioleoyl phosphatidylserine (PS) and t-SNAREs in a Ca(2+)-promoted manner with their abilities to enhance fusion, further establishing PS and SNAREs as critical effectors for syt action. The ability of syt I to efficiently stimulate fusion was specific for certain SNARE pairs, suggesting that syts might contribute to the specificity of intracellular membrane fusion reactions. Finally, a subset of inhibitory syts down-regulated the ability of syt I to activate fusion, demonstrating that syt isoforms can modulate the function of each other.

  9. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A. [Harwell Oxford, STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I. [University of Warwick, Department of Physics, Coventry (United Kingdom); Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M. [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Asfandiyarov, R.; Blondel, A.; Graulich, J.S.; Karadzhov, Y.; Verguilov, V.; Wisting, H. [Universite de Geneve, DPNC, Section de Physique, Geneva (Switzerland); De Bari, A.; Cecchet, G. [Sezione INFN Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Bayes, R.; Forrest, D.; Nugent, J.C.; Soler, F.J.P.; Walaron, K. [The University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Bertoni, R.; Bonesini, M.; Lucchini, G. [Sezione INFN Milano Bicocca (Italy); Dipartimento di Fisica G. Occhialini, Milano (Italy); Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D. [University of Oxford, Department of Physics, Oxford (United Kingdom); Blot, S.; Kim, Y.K. [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G. [St. Kliment Ohridski University of Sofia, Department of Atomic Physics, Sofia (Bulgaria); Booth, C.N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.P.; Zisman, M.S. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bravar, U. [University of New Hampshire, Durham, NH (United States); Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R. [Fermilab, Batavia, IL (United States); Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L. [Sezione INFN Roma Tre e Dipartimento di Fisica, Roma (Italy); Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C. [STFC Daresbury Laboratory, Cheshire (United Kingdom); Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C. [University of California, Riverside, CA (United States); Cooke, P.; Gamet, R. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J. [University of Mississippi, Oxford, MS (United States); Dick, A.J.; Ronald, K.; Whyte, C.G. [University of Strathclyde, Department of Physics, Glasgow (United Kingdom); Filthaut, F. [NIKHEF, Amsterdam (Netherlands); Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y. [Illinois Institute of Technology, Chicago, IL (United States); Hansen, O.M.; Ramberger, S.; Vretenar, M. [CERN, Geneva (Switzerland); Ishimoto, S. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Kuno, Y.; Sakamoto, H. [Osaka University, Graduate School of Science, Department of Physics, Toyonaka, Osaka (Japan); Kyberd, P.; Littlefield, M.; Nebrensky, J.J. [Brunel University, Uxbridge (United Kingdom); Onel, Y. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA (United States); Palladino, V. [Universita Federico II, Sezione INFN Napoli (Italy); Dipartimento di Fisica, Napoli (Italy); Palmer, R.B. [Brookhaven National Laboratory, Upton, NY (US); Roberts, T.J. [Muons, Inc., Batavia, IL (US); Collaboration: The MICE Collaboration

    2013-10-15

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 {pi} mm-rad horizontally and 0.6-1.0 {pi} mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. (orig.)

  10. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    International Nuclear Information System (INIS)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M.; Asfandiyarov, R.; Blondel, A.; Graulich, J.S.; Karadzhov, Y.; Verguilov, V.; Wisting, H.; De Bari, A.; Cecchet, G.; Bayes, R.; Forrest, D.; Nugent, J.C.; Soler, F.J.P.; Walaron, K.; Bertoni, R.; Bonesini, M.; Lucchini, G.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Blot, S.; Kim, Y.K.; Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G.; Booth, C.N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.P.; Zisman, M.S.; Bravar, U.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C.; Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C.; Cooke, P.; Gamet, R.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Dick, A.J.; Ronald, K.; Whyte, C.G.; Filthaut, F.; Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Ishimoto, S.; Kuno, Y.; Sakamoto, H.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Onel, Y.; Palladino, V.; Palmer, R.B.; Roberts, T.J.

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 π mm-rad horizontally and 0.6-1.0 π mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. (orig.)

  11. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  12. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  13. Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment

    International Nuclear Information System (INIS)

    Ryan, R A; Wauters, F; Kammel, P; Peterson, D; Wechel, T van; Osofsky, R; Murray, M H; Gray, F E; Gross, E; Gubanich, M; Orozco, D; Stroud, J; Nadtochy, A; Kochenda, L; Kravtsov, P; Petrov, G E; Trofimov, V; Vasilyev, A; Vznuzdaev, M; Phillips, J D

    2014-01-01

    The central detector in the MuSun experiment is a pad-plane time projection ionization chamber that operates without gas amplification in deuterium at 31 K; it is used to measure the rate of the muon capture process μ − +d→n+n+ν μ . A new charge-sensitive preamplifier, operated at 140 K, has been developed for this detector. It achieved a resolution of 4.5 keV(D 2 ) or 120 e − RMS with zero detector capacitance at 1.1 μ s integration time in laboratory tests. In the experimental environment, the electronic resolution is 10 keV(D 2 ) or 250 e − RMS at a 0.5 μ s integration time. The excellent energy resolution of this amplifier has enabled discrimination between signals from muon-catalyzed fusion and muon capture on chemical impurities, which will precisely determine systematic corrections due to these processes. It is also expected to improve the muon tracking and determination of the stopping location

  14. Study of the muon production from open heavy flavours predicted by the Color Glass Condensate model in proton-proton and proton-lead collision with the Alice muon spectrometer at LHC

    International Nuclear Information System (INIS)

    Charpy, A.

    2007-10-01

    It will be possible to test the latest developments of the Quantum Chromodynamics (QCD) in the new LHC (large hadron collider) machine. One of these, the Colour Glass Condensate (CGC), describes the parton distributions of the nucleus in the saturation region, i.e. at small x. This theoretical description of the initial conditions of the heavy ion collisions is necessary to predict the heavy quark cross section production which evolves in a possible deconfined matter: the Quark-Gluon Plasma (PQG). Alice is the LHC experiment mainly dedicated to the study of the PQG produced in ultra-relativistic heavy ion collisions. The measurement of J/Psi and Upsilon resonance suppression is a signature of this deconfined medium which is studied with the Alice muon spectrometer. Its acceptance at large rapidity is well adapted for studying the prediction of CGC at small-x. The first part of this report presents the results of beam test experiment at CERN. It was the first time that the muon spectrometer tracking chambers were tested equipped with the final version of the front end electronics and the data acquisition system Crocus. The relevant calibration parameters of the front end electronics were introduced in the analysis in order to improve the quality of the track reconstruction. In the second part, these parameters were used in the simulations. The last part proposes a study of the CGC with the Alice muon spectrometer, involving the measurements of open charm and open beauty. (author)

  15. Imaging the Subsurface with Upgoing Muons

    Science.gov (United States)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  17. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    CERN Document Server

    Bogomilov, M.; Kolev, D.; Russinov, I.; Tsenov, R.; Vankova-Kirilova, G.; Wang, L.; Xu, F.Y.; Zheng, S.X.; Bertoni, R.; Bonesini, M.; Ferri, F.; Lucchini, G.; Mazza, R.; Paleari, F.; Strati, F.; Palladino, V.; Cecchet, G.; de Bari, A.; Capponi, M.; Cirillo, A.; Iaciofano, A.; Manfredini, A.; Parisi, M.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Mori, Y.; Kuno, Y.; Sakamoto, H.; Sato, A.; Yano, T.; Yoshida, M.; Ishimoto, S.; Suzuki, S.; Yoshimura, K.; Filthaut, F.; Garoby, R.; Gilardoni, S.; Gruber, P.; Hanke, K.; Haseroth, H.; Janot, P.; Lombardi, A.; Ramberger, S.; Vretenar, M.; Bene, P.; Blondel, A.; Cadoux, F.; Graulich, J.S.; Grichine, V.; Gschwendtner, E.; Masciocchi, F.; Sandstrom, R.; Verguilov, V.; Wisting, H.; Petitjean, C.; Seviour, R.; Alexander, J.; Charnley, G.; Collomb, N.; Griffiths, S.; Martlew, B.; Moss, A.; Mullacrane, I.; Oates, A.; Owens, P.; White, C.; York, S.; Adams, D.; Apsimon, R.; Barclay, P.; Baynham, D.E.; Bradshaw, T.W.; Courthold, M.; Drumm, P.; Edgecock, R.; Hayler, T.; Hills, M.; Ivaniouchenkov, Y.; Jones, A.; Lintern, A.; MacWaters, C.; Nelson, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rochford, J.H.; Rogers, C.; Spensley, W.; Tarrant, J.; Tilley, K.; Watson, S.; Wilson, A.; Forrest, D.; Soler, F.J.P.; Walaron, K.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Clark, D.; Clark, I.; Dobbs, A.; Dornan, P.; Fish, A.; Hare, R.; Greenwood, S.; Jamdagni, A.; Kasey, V.; Khaleeq, M.; Leaver, J.; Long, K.; McKigney, E.; Matsushita, T.; Pasternak, J.; Sashalmi, T.; Savidge, T.; Takahashi, M.; Blackmore, V.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.; Tunnell, C.D.; Witte, H.; Yang, S.; Booth, C.N.; Hodgson, P.; Howlett, L.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.; Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Ellis, M.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Geer, S.; Neuffer, D.; Moretti, A.; Popovic, M.; Cummings, M.A.C.; Roberts, T.J.; DeMello, A.; Green, M.A.; Li, D.; Virostek, S.; Zisman, M.S.; Freemire, B.; Hanlet, P.; Huang, D.; Kafka, G.; Kaplan, D.M.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cline, D.; Fukui, Y.; Lee, K.; Yang, X.; Rimmer, R.A.; Cremaldi, L.M.; Gregoire, G.; Hart, T.L.; Sanders, D.A.; Summers, D.J.; Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C.; Gallardo, J.; Kahn, S.; Kirk, H.; Palmer, R.B.

    2012-01-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz muon rate, with a neglible pion contamination in the beam.

  18. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bogomilov, M. [University of Sofia (Bulgaria); et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  19. A muon storage ring for neutrino beams

    International Nuclear Information System (INIS)

    Lee, W.; Neuffer, D.

    1988-01-01

    A muon storage ring can provide electron and muon neutrino beams of precisely knowable flux. Constraints on muon collection and storage-ring design are discussed. Sample muon storage rings are presented and muon and neutrino intensities are estimated. Experimental use of the ν-beams, detector properties, and possible variations are described. Future directions for conceptual designs are outlined. 11 refs., 4 figs., 3 tabs

  20. Delivering the world’s most intense muon beam

    Directory of Open Access Journals (Sweden)

    S. Cook

    2017-03-01

    Full Text Available A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4±2.7×10^{5}  muons per watt of proton beam power (μ^{+} and μ^{-}, far in excess of other facilities. At full beam power (400 W, this implies a rate of muons of (4.2±1.1×10^{8}  muons s^{−1}, among the highest in the world. The number of μ^{-} measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  1. Alignment of the ATLAS central muon spectrometer

    CERN Document Server

    Chevallier, F

    2008-01-01

    The muon spectrometer of the ATLAS experiment is one of the largest detectors ever built. At the LHC, new physics signs could appear through high momenta muons (1 TeV). Identification and precise momentum measurement of such muons are two of the main challenges of the ATLAS muon spectrometer. In order to get a good resolution for high energy muons (i.e. 10% at 1 TeV), the accuracy on the alignment of precision chambers must be of the order of 50 microns. Several procedures have been developed to reach such a precision. This document describes complementary techniques used to align the muon sub-detectors, and their results : the optical system, the muon cosmic rays and the straight tracks coming from collisions.

  2. Multi-TeV muon colliders

    International Nuclear Information System (INIS)

    Neuffer, D.

    1986-01-01

    The possibility that muons may be used in a future generation of high-energy high-luminosity μ + μ - and μ - p colliders is presented. The problem of collecting and cooling high-intensity muon bunches is discussed and ionization cooling is described. High-energy collider scenarios are outlined; muon colliders may become superior to electron colliders in the multi-TeV energy range

  3. Transition processes in the novel method of the muon catalysis investigation

    International Nuclear Information System (INIS)

    Filchenkov, V.V.

    1997-01-01

    The problem of modifying the interpretation of the results to be obtained with the novel method of muon catalysis investigation to take the fast transition processes into account is first considered. The results of exploring the process kinetics are compared with the ones found from the analysis of the appropriate Monte Carlo distributions. The calculation programs simulate both the kinetics and the registration system of the experiment which is now performed in the frame of the large international project TRITON. The main conclusion is that the multiplicity distribution of the fusion neutrons is 'invariant' under any assumptions of the fast transition stage

  4. Study of Muon Triggers and Momentum Reconstruction in a Strong Magnetic Field for a Muon Detector at LHC

    CERN Multimedia

    2002-01-01

    % RD-5 \\\\ \\\\ A small fraction of a muon detector for possible use in an LHC experiment is installed in the SPS H2 beam. It consists of a 3T superconducting solenoid enclosing a 10$\\lambda$ deep calorimeter made of stainless steel plates interleaved with Honeycomb strip chambers. Behind this magnet are located 3 muon stations for triggering and momentum measurement. These stations, consisting of UA1 muon chambers backed up with Resistive Plate Chambers (RPC), are inserted in a 1.5~T absorber magnet of 20$\\lambda$ total thickness, station 2 being located after 10$\\lambda$. \\\\ \\\\During the data taking period (1991-1994) 10$^{7}$ muon and hadron events were recorded. Beams of negative muons and pions and of positive muons and hadrons $ (\\pi^+, K ^+ $ and protons) were used with a momentum ranging from 10~to~300~GeV/c. \\\\ \\\\The RD-5 program has covered several topics related to muon detection at LHC: \\\\ \\\\\\begin{description} \\item[(i)]~~study of the behaviour of muons from hadron punchthrough and decays, and also ...

  5. Search for scalar muons

    International Nuclear Information System (INIS)

    Bartel, W.; Becker, L.; Bowdery, C.; Cords, D.; Felst, R.; Haidt, D.; Knies, G.; Krehbiel, H.; Meinke, R.; Naroska, B.; Olsson, J.; Steffen, P.; Junge, H.; Schmidt, D.; Laurikainen, P.; Dietrich, G.; Hagemann, J.; Heinzelmann, G.; Kado, H.; Kleinwort, C.; Kuhlen, M.; Meier, K.; Petersen, A.; Ramcke, R.; Schneekloth, U.; Weber, G.; Allison, J.; Baines, J.; Ball, A.H.; Barlow, R.J.; Chrin, J.; Duerdoth, I.P.; Greenshaw, T.; Hill, P.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mills, H.E.; Murphy, P.G.; Stephens, K.; Warming, P.; Glasser, R.G.; Sechi-Zorn, B.; Skard, J.A.J.; Wagner, S.R.; Zorn, G.T.; Cartwright, S.L.; Clarke, D.; Marshall, R.; Middleton, R.P.; Whittaker, J.B.; Kawamoto, T.; Kobayashi, T.; Mashimo, T.; Minowa, M.; Takeda, H.; Takeshita, T.; Yamada, S.

    1984-12-01

    The supersymmetric partner of the muon was searched for in a systematic way. No candidate was found and 95% CL limits on its mass were given for different cases. If it is stable, the limit is 20.9 GeV/c 2 . If it decays into a muon and an invisible low mass particle, the limit is 20.3 GeV/c 2 . If it decays into a muon and an unstable neutral particle which decays further into a photon and an invisible massless particles, the limit is 19.2 GeV/c 2 . (orig.)

  6. Muon front end for the neutrino factory

    CERN Document Server

    Rogers, C T; Prior, G; Gilardoni, S; Neuffer, D; Snopok, P; Alekou, A; Pasternak, J

    2013-01-01

    In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  7. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: ALICE Collaboration

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density ρ{sub μ} > 5.9 m{sup −2}. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10{sup 16} eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.

  8. The Gran Sasso muon puzzle

    CERN Document Server

    Fernandez-Martinez, Enrique

    2012-01-01

    We carry out a time-series analysis of the combined data from three experiments measuring the cosmic muon flux at the Gran Sasso laboratory, at a depth of 3800 m.w.e. These data, taken by the MACRO, LVD and Borexino experiments, span a period of over 20 years, and correspond to muons with a threshold energy, at sea level, of around 1.3 TeV. We compare the best-fit period and phase of the full muon data set with the combined DAMA/NaI and DAMA/LIBRA data, which spans the same time period, as a test of the hypothesis that the cosmic ray muon flux is responsible for the annual modulation detected by DAMA. We find in the muon data a large-amplitude fluctuation with a period of around one year, and a phase that is incompatible with that of the DAMA modulation at 5.2 sigmas. Aside from this annual variation, the muon data also contains a further significant modulation with a period between 10 and 11 years and a power well above the 99.9% C.L threshold for noise, whose phase corresponds well with the solar cycle: a s...

  9. PSI: Very slow polarized muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    At the 'pion factory' of the Swiss Paul Scherrer Institute, a collaboration of PSI, Heidelberg and Zurich (ETH) has recently produced intense beams of positive muons which have kinetic energies as low as 10 eV and with complete polarization (spin orientation). The new results were achieved at a surface muon channel, transporting positive muons from the decay of positive pions stopped at the surface of a pion production target. Surface muons with 4 MeV kinetic energy were transported by a conventional secondary beam channel and partially stopped in a moderator consisting of a layer of solidified noble gas deposited on a cold metallic substrate

  10. Telecommunication using muon beams

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location

  11. Muon front end for the neutrino factory

    Directory of Open Access Journals (Sweden)

    C. T. Rogers

    2013-04-01

    Full Text Available In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  12. Latest LHCb measurements of Electroweak Boson Production in Run-1

    CERN Document Server

    CERN. Geneva

    2015-01-01

    We present the latest LHCb measurements of forward Electroweak Boson Production using proton-proton collisions recorded in LHC Run-1. The seminar shall discuss measurements of the 8 TeV W & Z boson production cross-sections. These results make use of LHCb's excellent integrated luminosity determination to provide constraints on the parton distribution functions which describe the inner structure of the proton. These LHCb measurements probe a region of phase space at low Bjorken-x where the other LHC experiments have limited sensitivity. We also present measurements of cross-section ratios, and ratios of results in 7 TeV and 8 TeV proton-proton collisions. These results provide precision tests of the Standard Model. The seminar shall also present a measurement of the forward-backward asymmetry (A_FB) in Z boson decays to two muons. This result allows for precision tests of the coupling of the Z boson to left and right handed particles, providing sensitivity to the effective weak mixing angle (...

  13. Information extraction from muon radiography data

    International Nuclear Information System (INIS)

    Borozdin, K.N.; Asaki, T.J.; Chartrand, R.; Hengartner, N.W.; Hogan, G.E.; Morris, C.L.; Priedhorsky, W.C.; Schirato, R.C.; Schultz, L.J.; Sottile, M.J.; Vixie, K.R.; Wohlberg, B.E.; Blanpied, G.

    2004-01-01

    Scattering muon radiography was proposed recently as a technique of detection and 3-d imaging for dense high-Z objects. High-energy cosmic ray muons are deflected in matter in the process of multiple Coulomb scattering. By measuring the deflection angles we are able to reconstruct the configuration of high-Z material in the object. We discuss the methods for information extraction from muon radiography data. Tomographic methods widely used in medical images have been applied to a specific muon radiography information source. Alternative simple technique based on the counting of high-scattered muons in the voxels seems to be efficient in many simulated scenes. SVM-based classifiers and clustering algorithms may allow detection of compact high-Z object without full image reconstruction. The efficiency of muon radiography can be increased using additional informational sources, such as momentum estimation, stopping power measurement, and detection of muonic atom emission.

  14. Implanted muon studies in condensed matter science

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1986-12-01

    The paper reviews the broad range of applications of implanted muons in condensed matter. Muon spin rotation is discussed, along with the studies in magnetism, muonion, metals and organic radicals. A description of muon spin relaxation is also given, as well as techniques and applications appropriate to pulsed muon sources. (UK)

  15. Weak interactions: muon decay

    International Nuclear Information System (INIS)

    Sachs, A.M.; Sirlin, A.

    1975-01-01

    The traditional theory of the dominant mode of muon decay is presented, a survey of the experiments which have measured the observable features of the decay is given, and those things which can be learned about the parameters and nature of the theory from the experimental results are indicated. The following aspects of the theory of muon decay are presented first: general four-fermion theory, two-component theory of the neutrino, V--A theory, two-component and V--A theories vs general four-fermion theory, intermediate-boson hypothesis, radiative corrections, radiative corrections in the intermediate-boson theory, and endpoint singularities and corrections of order α 2 . Experiments on muon lifetime, isotropic electron spectrum, total asymmetry and energy dependence of asymmetry of electrons from polarized muons, and electron polarization are described, and a summary of experimental results is given. 7 figures, 2 tables, 109 references

  16. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  17. The CDF muon system

    International Nuclear Information System (INIS)

    LeCompte, T.J.; Papadimitriou, V.

    1993-01-01

    The authors describe the characteristics of the CDF muon system and their experience with it. They explain how the trigger works and how they identify muons offline. They also describe the future upgrades of the system and their trigger plans for Run IB and beyond

  18. Muon and cosmogenic neutron detection in Borexino

    International Nuclear Information System (INIS)

    Bellini, G; Bonetti, S; Avanzini, M Buizza; Caccianiga, B; D'Angelo, D; Benziger, J; Bick, D; Cadonati, L; Calaprice, F; Chavarria, A; Galbiati, C; Carraro, C; Davini, S; Chepurnov, A; Derbin, A; Etenko, A; Feilitzsch, F von; Fomenko, K; Franco, D; Gazzana, S

    2011-01-01

    Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992 % or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is ∼ 3 0 -5 0 and the lateral resolution is ∼ 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.

  19. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  20. Additive versus multiplicative muon conservation

    International Nuclear Information System (INIS)

    Nemethy, P.

    1981-01-01

    Experimental elucidation of the question of muon conservation is reviewed. It is shown that neutral-current experiments have not yet yielded information about muonium-antimuonium conversion at the weak-interaction level and that all the charged-current experiments agree that there is no evidence for a multiplicative law. The best limits, from the muon-decay neutrino experiment at LAMPF and from the inverse muon-decay experiment in the CERN neutrino beam, definitely exclude multiplicative law schemes with a branching ratio R approximately 1/2. It is concluded that unless the dynamics conspire to make a multiplicative law with very small R it would appear that muon conservation obeys conserved additive lepton flavor law. (U.K.)

  1. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, Thiago; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner, P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The TileCal hadronic calorimeter provides a muon signal which can be used to assist in muon tagging at the ATLAS level-one trigger. Originally, the muon signal was conceived to be combined with the RPC trigger in order to reduce unforeseen high trigger rates due to cavern background. Nevertheless, the combined trigger cannot significantly deteriorate the muon detection performance at the barrel region. This paper presents preliminary studies concerning the impact in muon identification at the ATLAS level-one trigger, through the use of Monte Carlo simulations with single muons with 40 GeV/c momentum. Further, different trigger scenarios were proposed, together with an approach for matching both TileCal and RPC geometries.

  2. Particle production and survival in muon acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Noble, R.J.

    1992-06-01

    Because of the relative immunity of muons to synchrotron radiation, the idea of using them instead of electrons as probes in high-energy physics experiments has existed for some time, but applications were limited by the short muon lifetime. The production and survival of an adequate supply of low-emittance muons will determine the available luminosity in a high-energy physics collider. In this paper the production of pions by protons, their decay to muons and the survival of muons during acceleration are studied. Based on a combination of the various efficiencies, the number of protons needed at the pion source for every muon required in the final high-energy collider is estimated.

  3. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  4. Muons in UA1

    International Nuclear Information System (INIS)

    Dijk, A.L. van.

    1991-01-01

    In the years 1987-1989 the experiment ('UA1'), which is described in this thesis, has focused on measurements with muons. These particles can be considered as a part of the 'fingerprint' of interesting reactions. In the practice of 'UA1', recognizing this 'fingerprint' represents a puzzle because many (often more than hundred particles are produced in a collision between a proton and an anti-proton. In the experiment the properties (charge, energy, direction) of these particles are measured and subsequently the events are reconstructed. This results in several event samples corresponding to specific production mechanisms. The first part (ch. 1-5) of this thesis deals with the muon trigger of the UA1 experiment. This is a computer system that, directly after a measurement, reconstructs an event and checks for the presence of muons. If no muon is found the event is not considered anymore. In the other cases, the event is kept and written to magnetic tape. These tapes are for further analysis. The necessity of a trigger follows from the fact that per second more than 250.000 interactions occur and only about 10 can be saved on tape. For this reason a trigger system is of critical importance: all events not written to tape are lost. In ch. 2 the experiment and in ch. 4 the ideas and constraints of the trigger are explained. Ch. 4 discusses the construction and functioning of the muon trigger and ch. 5 presents the performance. The second part of this thesis (ch.'s 6 and 7) contain the physics analysis results from data collected with muon trigger. These results are explicitly obtained from events containing two muons. The theory is briefly reviewed and a discussion is given of the data and the way the selections are done. Finally the J/Ψ and Γ samples and the cross sections of b-quark production are given. (author). 57 refs.; 60 figs.; 8 tabs

  5. Pion contamination in the MICE muon beam

    International Nuclear Information System (INIS)

    Adams, D.; Barclay, P.; Bayliss, V.; Brashaw, T.W.; Alekou, A.; Apollonio, M.; Barber, G.; Asfandiyarov, R.; Blondel, A.; De Bari, A.; Bayes, R.; Bertoni, R.; Bonesini, M.; Blackmore, V.J.; Blot, S.; Bogomilov, M.; Booth, C.N.; Bowring, D.; Boyd, S.; Bravar, U.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ∼1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is f π  < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling

  6. Pion contamination in the MICE muon beam

    CERN Document Server

    Bogomilov, M.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Japan, Ibaraki; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.R.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Drews, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Winter, M.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90\\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  7. Nuclear fusion. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning research, development, and assessment of nuclear fusion for applications in reactor engineering and technology. Citations discuss various engineering problems associated with reactor design, magnetic systems, nuclear materials, plasma generation and control, blankets, environments, economics, and safety. Also discussed are tokamak devices, stellarators, inertial confinement, reflectometry, and magnetohydrodynamics. Studies sponsored by the Department of Energy are not included. (Contains a minimum of 249 citations and includes a subject term index and title list.)

  8. Muon substituted free radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Gygax, F.N.; Brinkman, G.A.; Louwrier, P.W.F.; McKenna, D.; Ramos, M.; Webster, B.C.

    1984-01-01

    Spin polarized energetic positive muons are injected as magnetic probes into unsaturated organic liquids. They are implemented via fast chemical processes ( -10 s) in various molecules. Of particular interest among these are muonium substituted free radicals. The technique allows determination of accurate rate coefficients for fast chemical reactions of radicals. Furthermore, radiochemical processes occuring in picoseconds after injection of the muon are studied. Of fundamental interest are also the structural and dynamical implications of substituting a proton by a muon, or in other terms, a hydrogen atom by a muonium atom. Selected examples for each of these three types of experiments are given. (Auth.)

  9. Inclusive deep-inelastic muon scattering

    CERN Multimedia

    This experiment aims at measuring deep-inelastic inclusive muon scattering to the highest energy and Q$^{2}$ made available by the high intensity muon beam M$^{2}$ and at investigating events in which several muons are simultaneously produced. The momentum of the incident beam is measured with momentum hodoscopes, its time and space coordinates at several positions along the target with additional hodoscopes. The beam halo is detected by an array of anticounters. The target has a length of 40 m of either graphite or liquid hydrogen or liquid deuterium and is surrounded by a magnetized torus which acts as a spectrometer for scattered muons. \\\\ \\\\This magnet has a diameter of 2.75 m and is divided into 10 separate supermodules, 8 of which are presently in use. Each supermodule consists of 8 modules (each module contains 0.44 m of steel), 8 planes of (3m x 3m) MWPC, and 2 planes of circular trigger counters subdivided in rings. The first 6 supermodules are equipped each with a 5 m long target. Muons scattered i...

  10. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    International Nuclear Information System (INIS)

    Bick, Daniel

    2011-04-01

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced 11 C background. Finally, first results are presented. (orig.)

  11. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    International Nuclear Information System (INIS)

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-01-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10 –9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×10 13 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al

  12. Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stratakis, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Delahaye, J.-P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Ryne, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cummings, M. A. [Muons, Inc., Batavia, IL(United States)

    2017-05-01

    The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν$\\bar{e}$) and ν$\\bar{μ}$) (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent

  13. The latest results on top quark pair cross-section measurement at the LHC-ATLAS experiment

    CERN Document Server

    Yamauchi, Katsuya; The ATLAS collaboration

    2015-01-01

    The latest results on top quark pair production cross-section measurement in proton-proton collisions at $\\sqrt{s}$ = 7\\,TeV and $\\sqrt{s}$ = 8\\,TeV with the ATLAS detector are reported. The inclusive cross-section was measured with relative uncertainty of 4\\% using the final state of the top quark pair including an electron and a muon. The measurement of the differential cross-section as functions of various observables such as the transverse momentum and the rapidity of the top quark and the invariant mass of the top quark pair system are also reported. These results are compared with various generators such as {\\sc Powheg}, {\\sc Alpgen} and {\\sc MC@NLO} and various sets of parton distribution functions.

  14. ITER session at the IAEA fusion energy conference

    International Nuclear Information System (INIS)

    Stewart, M.J.

    2003-01-01

    A highlight of this year's Fusion Energy Conference, held in Lyon, France, on 14-19 October, was the participation by the ITER Parties in both a Special ITER Informal Session and in the Fusion Institute Exhibition at the Paella's des Congres de Lyon. These gave conference participants an opportunity to hear the latest on this collaborative international fusion energy research and development project, and to speak with the experts from each of the four sites being offered for the construction of ITER. The Special ITER Informal Session was held on the evening of 16 October and it was very well attended, with approximately 350 conference participants attending

  15. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  16. FFAGS for muon acceleration

    International Nuclear Information System (INIS)

    Berg, J. Scott; Kahn, Stephen; Palmer, Robert; Trbojevic, Dejan; Johnstone, Carol; Keil, Eberhard; Aiba, Masamitsu; Machida, Shinji; Mori, Yoshiharu; Ogitsu, Toru; Ohmori, Chihiro; Sessler, Andrew; Koscielniak, Shane

    2003-01-01

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed

  17. Bridging nations through muons

    CERN Multimedia

    2006-01-01

    From America to Israel and Japan, a team of international technicians and scientists are working together to build the ATLAS endcap muon chambers. The Israeli and Pakistani teams stand in front of part of the ATLAS endcap muon spectrometer. They are working on the project along with...... a team from American universities and research institutions. It's a small world; at least you might think so after a visit to Building 180. Inside, about 30 engineers and physicists weld, measure and hammer away, many of whom are miles from their homes and families. They hail from Pakistan, Israel, Japan, China, Russia and the United States. Coordinated by a group of CERN engineers, the team represents an international collaboration in every sense. Whether they've been here for years or months, CERN is their temporary home as they work toward one common goal: the completion of the ATLAS muon chamber endcaps. When finished, the ATLAS muon spectrometer will include four moving 'big wheel'structures on each end of the detecto...

  18. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Bick, Daniel

    2011-04-15

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced {sup 11}C background. Finally, first results are presented. (orig.)

  19. Radiative muon capture and renormalization of the induced pseudoscalar coupling constant in nuclei

    International Nuclear Information System (INIS)

    Hasinoff, M.D.; Armstrong, D.S.; Azuelos, G.

    1992-08-01

    Radiative Muon Capture (RMC), μ - Z → ν μ (Z - 1)γ, is a weak semi-leptonic process which is particularly sensitive to the induced pseudoscalar coupling constant, g p , of the weak hadronic current. After a brief introduction and review of the general theoretical background relevant to RMC, the most recent data from TRIUMF and PSI are presented and compared to the latest theoretical calculations. The extracted g p values are compared to the PCAC prediction for RMC on a free proton to determine whether or not there is any significant renormalization of g p inside the nuclear medium. A progress report on the TRIUMF RMC experiment on hydrogen is also presented. refs., 12 figs., 3 tabs

  20. The new Global Muon Trigger of the CMS experiment

    CERN Document Server

    Fulcher, Jonathan Richard; Rabady, Dinyar Sebastian; Reis, Thomas; Sakulin, Hannes

    2016-01-01

    For the 2016 physics data runs the L1 trigger system of the Compact Muon Solenoid (CMS) experiment underwent a major upgrade to cope with the increasing instantaneous luminosity of the CERN LHC whilst maintaining a high event selection efficiency for the CMS physics program. Most subsystem specific trigger processor boards were replaced with powerful general purpose processor boards, conforming to the MicroTCA standard, whose tasks are performed by firmware on an FPGA of the Xilinx Virtex 7 family. Furthermore, the muon trigger system moved from a subsystem centered approach, where each of the three muon detector systems provides muon candidates to the Global Muon Trigger (GMT), to a region based system, where muon track finders (TFs) combine information from the subsystems to generate muon candidates in three detector regions, that are then sent to the upgraded GMT. The upgraded GMT receives up to 108 muons from the processors of the muon TFs in the barrel, overlap, and endcap detector regions. The muons are...

  1. Muons as hyperfine interaction probes in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, Khashayar, E-mail: kghandi@triumf.ca; MacLean, Amy [Mount Allison University, Department of Chemistry & Biochemistry (Canada)

    2015-04-15

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described.

  2. Muons as hyperfine interaction probes in chemistry

    International Nuclear Information System (INIS)

    Ghandi, Khashayar; MacLean, Amy

    2015-01-01

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described

  3. Bringing functions together with fusion enzymes--from nature's inventions to biotechnological applications.

    Science.gov (United States)

    Elleuche, Skander

    2015-02-01

    It is a mammoth task to develop a modular protein toolbox enabling the production of posttranslational organized multifunctional enzymes that catalyze reactions in complex pathways. However, nature has always guided scientists to mimic evolutionary inventions in the laboratory and, nowadays, versatile methods have been established to experimentally connect enzymatic activities with multiple advantages. Among the oldest known natural examples is the linkage of two or more juxtaposed proteins catalyzing consecutive, non-consecutive, or opposing reactions by a native peptide bond. There are multiple reasons for the artificial construction of such fusion enzymes including improved catalytic activities, enabled substrate channelling by proximity of biocatalysts, higher stabilities, and cheaper production processes. To produce fused proteins, it is either possible to genetically fuse coding open reading frames or to connect proteins in a posttranslational process. Molecular biology techniques that have been established for the production of end-to-end or insertional fusions include overlap extension polymerase chain reaction, cloning, and recombination approaches. Depending on their flexibility and applicability, these methods offer various advantages to produce fusion genes in high throughput, different orientations, and including linker sequences to maximize the flexibility and performance of fusion partners. In this review, practical techniques to fuse genes are highlighted, enzymatic parameters to choose adequate enzymes for fusion approaches are summarized, and examples with biotechnological relevance are presented including a focus on plant biomass-degrading glycosyl hydrolases.

  4. Muon colliders, frictional cooling and universal extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Daniel E.

    2011-07-20

    A muon collider combines the advantages of proton-proton and electron-positron colliders, sidestepping many of their disadvantages, and has the potential to make discoveries and precision measurements at high energies. However, muons bring their own technical challenges, largely relating to their instability. We present a summary of the motivations and R and D efforts for a muon collider. We detail a scheme for preparing high-luminosity muon beams on timescales shorter than the muon lifetime, and an experiment to demonstrate aspects of this scheme at the Max Planck Institute for Physics. We also investigate the potentials to discover physics beyond the standard model at a muon collider. (orig.)

  5. Muon colliders, frictional cooling and universal extra dimensions

    International Nuclear Information System (INIS)

    Greenwald, Daniel E.

    2011-01-01

    A muon collider combines the advantages of proton-proton and electron-positron colliders, sidestepping many of their disadvantages, and has the potential to make discoveries and precision measurements at high energies. However, muons bring their own technical challenges, largely relating to their instability. We present a summary of the motivations and R and D efforts for a muon collider. We detail a scheme for preparing high-luminosity muon beams on timescales shorter than the muon lifetime, and an experiment to demonstrate aspects of this scheme at the Max Planck Institute for Physics. We also investigate the potentials to discover physics beyond the standard model at a muon collider. (orig.)

  6. Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux

    OpenAIRE

    Fedynitch, Anatoli; Tjus, Julia Becker; Desiati, Paolo

    2012-01-01

    The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to...

  7. Cosmic Muon Detection for Geophysical Applications

    Directory of Open Access Journals (Sweden)

    László Oláh

    2013-01-01

    Full Text Available A portable cosmic muon detector has been developed for environmental, geophysical, or industrial applications. The device is a tracking detector based on the Close Cathode Chamber, an MWPC-like technology, allowing operation in natural underground caves or artificial tunnels, far from laboratory conditions. The compact, low power consumption system with sensitive surface of 0.1 m2 measures the angular distribution of cosmic muons with a resolution of 10 mrad, allowing for a detailed mapping of the rock thickness above the muon detector. Demonstration of applicability of the muon telescope (REGARD Muontomograph for civil engineering and measurements in artificial underground tunnels or caverns are presented.

  8. Muon detector for the COSINE-100 experiment

    Science.gov (United States)

    Prihtiadi, H.; Adhikari, G.; Adhikari, P.; Barbosa de Souza, E.; Carlin, N.; Choi, S.; Choi, W. Q.; Djamal, M.; Ezeribe, A. C.; Ha, C.; Hahn, I. S.; Hubbard, A. J. F.; Jeon, E. J.; Jo, J. H.; Joo, H. W.; Kang, W.; Kang, W. G.; Kauer, M.; Kim, B. H.; Kim, H.; Kim, H. J.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Kudryavtsev, V. A.; Lee, H. S.; Lee, J.; Lee, J. Y.; Lee, M. H.; Leonard, D. S.; Lim, K. E.; Lynch, W. A.; Maruyama, R. H.; Mouton, F.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, J. S.; Park, K. S.; Pettus, W.; Pierpoint, Z. P.; Ra, S.; Rogers, F. R.; Rott, C.; Scarff, A.; Spooner, N. J. C.; Thompson, W. G.; Yang, L.; Yong, S. H.

    2018-02-01

    The COSINE-100 dark matter search experiment has started taking physics data with the goal of performing an independent measurement of the annual modulation signal observed by DAMA/LIBRA. A muon detector was constructed by using plastic scintillator panels in the outermost layer of the shield surrounding the COSINE-100 detector. It detects cosmic ray muons in order to understand the impact of the muon annual modulation on dark matter analysis. Assembly and initial performance tests of each module have been performed at a ground laboratory. The installation of the detector in the Yangyang Underground Laboratory (Y2L) was completed in the summer of 2016. Using three months of data, the muon underground flux was measured to be 328 ± 1(stat.)± 10(syst.) muons/m2/day. In this report, the assembly of the muon detector and the results from the analysis are presented.

  9. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  10. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  11. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  12. Energy related applications of elementary particle physics: Annual progress report, March 1, 1988--February 28, 1989

    International Nuclear Information System (INIS)

    Rafelski, J.

    1988-01-01

    Steady progress is reported towards the understanding of how to increase the number of fusions per muon and how to decrease the cost of muon production for muon. A better understanding of muon sticking and regeneration was reached, amplifying the physical significance of the observed anomalously high fusion yield. New fusion systems involving Z > 1 nuclei are explored and found to have an unexpectedly high potential fusion yield. Extensive numerical calculations of muon regeneration and Monte Carlo simulations of muon production have been performed. The problem of muon sticking in d-t fusion has been theoretically addressed and novel numerical approaches are being developed

  13. Latest Results on 2-FGHP Tetrode To Fulfill ITER ICRH Requirements

    International Nuclear Information System (INIS)

    Robert, Ch.

    2006-01-01

    The requirements for the RF generation of ITER ICRH include several parameters that are not compatible for a tetrode to fulfill. High power, from 1.7 to 2.5 MW according to the ICRH design options, have to combined with, both, a cw operation (more than 1000 seconds of continuous running time) and a high VSWR (higher than 1:2.0), over the required frequency range of 40 to 56 MHz. The proposed paper will overview the existing tetrodes on the market used in similar type of operations, i.e. in fusion applications. This analysis shows clearly the limitations of the conventional tetrode technology that can only fulfill some of the ICRH requirements, but not all together. The first part of the paper will describe the latest results on conventional tetrodes, after years of operation at TORE SUPRA and JET, for which tetrodes such as TH 525 and TH 526 are used. The results clearly indicate that tetrodes are well suited for Fusion applications but not with the combination of parameters necessary for ITER ICRH. The second part will describe the extended performance tetrodes, based on a Double Folded Grid High Performance (2-FGHP) tetrode technology, used for scientific and TV broadcast applications for years. This 2-FGHP concept extends drastically the performance of tetrodes, either in terms of frequency, or power or pulse duration, allowing such tetrodes to be used in ITER. The third part shows results of operation in these scientific and broadcast areas of 2-FGHP tetrodes in order to demonstrate the advantages of this technology over conventional tetrodes. Real operation data allow to give performance together with duration of operation in full service, on a 24 hour per day basis. Finally the last part will be dedicated to present the latest results obtained in a Fusion type tests at Thales Electron Devices in 2006 of a 2-FGHP tetrode. These results show the possibilities of this technology to fulfill ITER ICRH requirements and its capabilities to allow some evolutions of

  14. Forward scattering effects on muon imaging

    Science.gov (United States)

    Gómez, H.; Gibert, D.; Goy, C.; Jourde, K.; Karyotakis, Y.; Katsanevas, S.; Marteau, J.; Rosas-Carbajal, M.; Tonazzo, A.

    2017-12-01

    Muon imaging is one of the most promising non-invasive techniques for density structure scanning, specially for large objects reaching the kilometre scale. It has already interesting applications in different fields like geophysics or nuclear safety and has been proposed for some others like engineering or archaeology. One of the approaches of this technique is based on the well-known radiography principle, by reconstructing the incident direction of the detected muons after crossing the studied objects. In this case, muons detected after a previous forward scattering on the object surface represent an irreducible background noise, leading to a bias on the measurement and consequently on the reconstruction of the object mean density. Therefore, a prior characterization of this effect represents valuable information to conveniently correct the obtained results. Although the muon scattering process has been already theoretically described, a general study of this process has been carried out based on Monte Carlo simulations, resulting in a versatile tool to evaluate this effect for different object geometries and compositions. As an example, these simulations have been used to evaluate the impact of forward scattered muons on two different applications of muon imaging: archaeology and volcanology, revealing a significant impact on the latter case. The general way in which all the tools used have been developed can allow to make equivalent studies in the future for other muon imaging applications following the same procedure.

  15. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  17. Production of muons in hadron--nucleus collisions

    International Nuclear Information System (INIS)

    Smith, A.J.S.

    1976-01-01

    Muon pair production in pi + , pi - , and proton reactions on targets at 150 and 225 GeV are described, some of the results being preliminary and others final. Psi production total and differential cross sections, multi-muon production, and single prompt lepton production are discussed. Mass and cross section distributions are plotted. It is concluded that the measured muon pairs at 150 GeV are sufficient to explain the prompt single muon measurements in the kinematic range of the experiment. 36 references

  18. Electromagnetic production of trimuons in muon scattering: Bethe-Heitler reactions with muon and heavy-lepton pairs

    International Nuclear Information System (INIS)

    Ganapathi, V.; Smith, J.

    1981-01-01

    We analyze the Bethe-Heitler production of muon and heavy-lepton pairs using high-energy muon beams on a variety of targets. We give results for coherent production from a nucleus, for incoherent production from individual protons and neutrons, and for deep-inelastic production. Differential distributions are presented for the final leptons and the effects of experimental cuts are considered. This work complements our previous study of trimuon production via muon radiation, Compton radiation, and hadronic final-state interactions

  19. Muon reconstruction performance in ATLAS at Run2

    CERN Document Server

    Lesage, Arthur; The ATLAS collaboration

    2015-01-01

    The ATLAS muon reconstruction performance in early 2015 data at $\\sqrt{s} = 13$ TeV is presented. The muon reconstruction and isolation efficiencies are measured using dimuon resonances ($Z\\rightarrow\\mu\\mu$ and $J\\psi\\rightarrow\\mu\\mu$) as a function of the muon transverse momentum and pseudorapidity. The muon momentum corrections are also evaluated using the same dataset.

  20. The CMS Barrel Muon Trigger Upgrade

    CERN Document Server

    Triossi, Andrea

    2017-01-01

    ABSTRACT: The increase of luminosity expected by LHC during Phase 1 will impose several constrains for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors DT, RPC and HO. It arranges and fan-out the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent to the track finders. Results, from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown. SUMMARY: In view of the increase of luminosity during phase 1 upgrade of LHC, the muon trigger chain of the Compact Muon Solenoid (CMS) experiment underwent considerable improvements. The muon detector was designed for preserving the complementarity and redundancy of three separate muon detection systems, Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC), until ...

  1. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  2. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia

    2002-01-01

    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  3. Intense muon beams and neutrino factories

    International Nuclear Information System (INIS)

    Parsa, Z.

    2000-01-01

    High intensity muon sources are needed in exploring neutrino factories, lepton flavor violating muon processes, and lower energy experiments as the stepping phase towards building higher energy μ + μ - colliders. We present a brief overview, sketch of a neutrino source, and an example of a muon storage ring at BNL with detector(s) at Fermilab, Sudan, etc. Physics with low energy neutrino beams based on muon storage rings (μSR) and conventional Horn Facilities are described and compared. CP violation Asymmetries and a new Statistical Figure of Merit to be used for comparison is given. Improvements in the sensitivity of low energy experiments to study Flavor changing neutral currents are also included

  4. Direct cosmic ray muons and atmospheric neutrinos

    International Nuclear Information System (INIS)

    Ryazhskaya, O.G.; Volkova, L.V.; Zatsepin, G.T.

    2005-01-01

    A possible contribution of very short living particles (particles with life-time much shorter than that of charmed particles), for example, resonances, into cosmic ray muon and atmospheric neutrino fluxes (direct muons and neutrinos) is estimated. This contribution could become of the same order of magnitude as that from pions and kaons (conventional) already at energies of hundreds TeV and tens TeV for muons and muon neutrinos coming to the sea level in the vertical direction correspondingly. Of course, the estimation has quite a qualitative character and even it is quite arbitrary but it is necessary to keep this contribution in mind when studying EAS, cosmic ray muon component or trying to interpret data of experiments on cosmic neutrino searching at high energies

  5. Muon reconstruction performance in ATLAS at Run 2

    CERN Document Server

    Lesage, Arthur; The ATLAS collaboration

    2015-01-01

    The ATLAS muon reconstruction performance in early 2015 data at $\\sqrt{s} = 13 \\mbox{ TeV}$ is presented. The muon reconstruction and isolation efficiencies are measured using dimuon resonances ($Z\\rightarrow\\mu^{+}\\mu^{-}$ and $J/\\psi\\rightarrow\\mu^{+}\\mu^{-}$) as a function of the muon transverse momentum and pseudorapidity. The muon momentum corrections are also evaluated using the same dataset.

  6. Studies on muon tomography for archaeological internal structures scanning

    Science.gov (United States)

    Gómez, H.; Carloganu, C.; Gibert, D.; Jacquemier, J.; Karyotakis, Y.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A.

    2016-05-01

    Muon tomography is a potential non-invasive technique for internal structure scanning. It has already interesting applications in geophysics and can be used for archaeological purposes. Muon tomography is based on the measurement of the muon flux after crossing the structure studied. Differences on the mean density of these structures imply differences on the detected muon rate for a given direction. Based on this principle, Monte Carlo simulations represent a useful tool to provide a model of the expected muon rate and angular distribution depending on the composition of the studied object, being useful to estimate the expected detected muons and to better understand the experimental results. These simulations are mainly dependent on the geometry and composition of the studied object and on the modelling of the initial muon flux at surface. In this work, the potential of muon tomography in archaeology is presented and evaluated with Monte Carlo simulations by estimating the differences on the muon rate due to the presence of internal structures and its composition. The influence of the chosen muon model at surface in terms of energy and angular distributions in the final result has been also studied.

  7. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  8. Muon transfer to sulphur dioxide

    International Nuclear Information System (INIS)

    Mulhauser, F.; Schneuwly, H.

    1993-01-01

    A systematic study of muon capture and muon transfer has been performed in seven different H 2 + SO 2 gas mixtures. From the single-exponential time structure of the muonic sulphur x-rays, one determines the lifetime of the μp atoms under the given experimental conditions. The reduced muon transfer rates to the sulphur dioxide molecule, deduced from these lifetimes, all agree well with each other. The muonic oxygen time spectra show an additional structure as if μp atoms of another kind were present. Comparable time structures are observed in a D 2 + SO 2 mixture. (author)

  9. Influence of hadronic interaction models and the cosmic ray spectrum on the high-energy atmospheric muon and neutrino flux

    Directory of Open Access Journals (Sweden)

    Desiati Paolo

    2013-06-01

    Full Text Available The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to derive the inclusive differential spectra (yields of muons, muon neutrinos and electron neutrinos at the surface for energies between 80 GeV and hundreds of PeV. Using these results the differential flux and the flavor ratios of leptons were calculated. The air shower simulator CORSIKA 6.990 was used for showering and propagation of the secondary particles through the atmosphere, employing the established high energy hadronic interaction models SIBYLL 2.1, QGSJet-01 and QGSJet-II-03. We show that the performance of the interaction models allows makes it possible to predict the spectra within experimental uncertainties, while SIBYLL generally yields a higher flux at the surface than the QGSJet models. The calculation of the flavor and charge ratios has lead to inconsistent results, mainly influenced by the different representations of the K/π ratio within the models. The influence of the knee of cosmic rays is reflected in the secondary spectra at energies between 100 and 200 TeV. Furthermore, we could quantify systematic uncertainties of atmospheric muon- and neutrino fluxes, associated to the models of the primary cosmic ray spectrum and the interaction models. For most recent parametrizations of the cosmic ray primary spectrum, atmospheric muons can be determined with an uncertainty smaller than +15/-13% of the average flux. Uncertainties of the muon and electron neutrino fluxes can be calculated within an average error of +32/-22% and +25

  10. Muon Production in Relativistic Cosmic-Ray Interactions

    International Nuclear Information System (INIS)

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to 3 x 10 20 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is √s nn = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates aresensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p T ) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p T region where perturbative QCD should apply. With a 1 km 2 surface area, the full IceCube detector should observe hundreds of muons/year with p T in the pQCD regime.

  11. Muon Production in Relativistic Cosmic-Ray Interactions

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2009-01-01

    Cosmic-rays with energies up to 3x10 20 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is √(s nn )=700TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (>1TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates are sensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p T ) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p T region where perturbative QCD should apply. With a 1 km 2 surface area, the full IceCube detector should observe hundreds of muons/year with p T in the pQCD regime.

  12. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  13. Chemical reactions induced and probed by positive muons

    International Nuclear Information System (INIS)

    Ito, Yasuo

    1990-01-01

    The application of μ + science, collectively called μSR, but encompassing a variety of methods including muon spin rotation, muon spin relaxation, muon spin repolarization, muon spin resonance and level-crossing resonance, to chemistry is introduced emphasizing the special aspects of processes which are 'induced and probed' by the μ + itself. After giving a general introduction to the nature and methods of muon science and a short history of muon chemistry, selected topics are given. One concerns the usefulness of muonium as hydrogen-like probes of chemical reactions taking polymerization of vinyl monomers and reaction with thiosulphate as examples. Probing solitons in polyacetylene induced and probed by μ + is also an important example which shows the unique nature of muonium. Another important topic is 'lost polarization'. Although this term is particular to muonium. Another important topic is 'lost polarization'. Although this term is particular to muon chemistry, the chemistry underlining the phenomenon of lost polarization has an importance to both radiation and hot atom chemistries. (orig.)

  14. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  15. Muon Tomography for Geological Repositories.

    Science.gov (United States)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  16. Cosmic ray muons for spent nuclear fuel monitoring

    Science.gov (United States)

    Chatzidakis, Stylianos

    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks

  17. A Muon Collider scheme based on Frictional Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv University, Tel Aviv (Israel); Caldwell, A. [Max-Planck-Institut fuer Physik, Munich (Germany); Galea, R. [Nevis Laboratories, Columbia University, Irvington, NY (United States)]. E-mail: galea@nevis.columbia.edu; Schlenstedt, S. [DESY, Zeuthen (Germany)

    2005-07-11

    Muon Colliders would usher in a new era of scientific investigation in the field of high-energy particle physics. The cooling of muon beams is proving to be the greatest obstacle in the realization of a Muon Collider. Monte Carlo simulations of a muon cooling scheme based on Frictional Cooling were performed. Critical issues, which require further study, relating to the technical feasibility of such a scheme are identified. Frictional Cooling, as outlined in this paper, provides sufficient six-dimensional emittance to make luminous collisions possible. It holds exciting potential in solving the problem of Muon Cooling.

  18. A Muon Collider scheme based on Frictional Cooling

    International Nuclear Information System (INIS)

    Abramowicz, H.; Caldwell, A.; Galea, R.; Schlenstedt, S.

    2005-01-01

    Muon Colliders would usher in a new era of scientific investigation in the field of high-energy particle physics. The cooling of muon beams is proving to be the greatest obstacle in the realization of a Muon Collider. Monte Carlo simulations of a muon cooling scheme based on Frictional Cooling were performed. Critical issues, which require further study, relating to the technical feasibility of such a scheme are identified. Frictional Cooling, as outlined in this paper, provides sufficient six-dimensional emittance to make luminous collisions possible. It holds exciting potential in solving the problem of Muon Cooling

  19. Performance of the ATLAS Muon Trigger in Run 2

    CERN Document Server

    Morgenstern, Marcus; The ATLAS collaboration

    2018-01-01

    Events containing muons in the final state are an important signature for many analyses being carried out at the Large Hadron Collider (LHC), including both standard model measurements and searches for new physics. To be able to study such events, it is required to have an efficient and well-understood muon trigger. The ATLAS muon trigger consists of a hardware based system (Level 1), as well as a software based reconstruction (High Level Trigger). Due to high luminosity and pile up conditions in Run 2, several improvements have been implemented to keep the trigger rate low while still maintaining a high efficiency. Some examples of recent improvements include requiring coincidence hits between different layers of the muon spectrometer, improvements for handling overlapping muons, and optimised muon isolation. We will present an overview of how we trigger on muons, recent improvements, and the performance of the muon trigger in Run 2 data.

  20. A Detector Scenario for a Muon Cooling Demonstration Experiment

    Science.gov (United States)

    McDonald, Kirk T.; Lu, Changguo; Prebys, Eric J.

    1998-04-01

    As a verification of the concept of ionization cooling of a muon beam, the Muon Collider Collaboration is planning an experiment to cool the 6-dimensional normalized emittance by a factor of two. We have designed a princeton.edu/mumu/mumu-97-8.ps>detector system to measure the 6-dimensional emittance before and after the cooling apparatus. To avoid the cost associated with preparation of a muon beam bunched at 800 MHz, the nominal frequency of the RF in the muon cooler, we propose to use an unbunched muon beam. Muons will be measured in the detector individually, and a subset chosen corresponding to an ideal input bunch. The muons are remeasured after the cooling apparatus and the output bunch emittance calculated to show the expected reduction in phase-space volume. The technique of tracing individual muons will reproduce all effects encountered by a bunch except for space-charge.

  1. Concepts for a Muon Accelerator Front-End

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Fermilab; Berg, Scott [Brookhaven; Neuffer, David [Fermilab

    2017-03-16

    We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate the performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.

  2. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Jeitler, Manfred; Rabady, Dinyar; Sakulin, Hannes; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run-II of the Large Hadron Collider poses new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run-I, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new μTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (μGMT) which sorts and removes duplicates from boundaries of the muon trigger sub-systems. Furthermore, it determines how isolated the muon candidates are based on calorimetric energy deposits. The μGMT will be implemented using a processing board that features a larg...

  3. The Level-0 Muon Trigger for the LHCb experiment

    CERN Document Server

    Aslanides, E; Cogan, J; Duval, P Y; Le Gac, R; Leroy, O; Liotard, PL; Marin, F; Favard, S; Tsaregorodtsev, A

    2006-01-01

    The Level-0 Muon Trigger looks for straight tracks crossing the five muon stations of the LHCb muon detector and measures their transverse momentum. The tracking uses a road algorithm relying on the projectivity of the muon detector. The architecture of the Level-0 muon trigger is pipeline and massively parallel. Receiving 130 GBytes/s of input data, it reconstructs muon candidates for each bunch crossing (25 ns) in less than 1.2 $\\mu$S. It relies on an intensive use of high speed multigigabit serial links where high speed serializers/deserializers are embedded in Field Programmable Gate Arrays (FPGAs).

  4. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  5. ATLAS Muon DCS Upgrades and Optimizations

    CERN Document Server

    Bakalis, Christos; The ATLAS collaboration

    2017-01-01

    The Muon subsystem is comprised of four detector types: Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) for trigger purposes, and Cathode Strip Chambers (CSC) and Muon Drift Tubes (MDT) for muon track reconstruction. The MDTs cover a large area at the outer part of the detector. In total, there are over a 1’000 MDT chambers, which are made of about 350’000 tubes. The luminosity upgrade of the HL-LHC is expected to pose a serious challenge to the MDTs. The expected increase of particle flux will set new, higher standards regarding the operation and control of the chambers. A step towards optimizing the ATLAS Muon Detector Control System (DCS) was to develop several DCS tools, namely a High Luminosity vs Trip Limit panel with its accompanying scripts and managers. The ultimate goal of this tool is to protect the MDT chambers from the rising particle flux and its associated increase in chamber current. In addition to optimizing the ATLAS Muon DCS, several tasks to accommodate the newly installed B...

  6. The first muon spin rotation experiment

    CERN Document Server

    Garwin, Richard L

    2003-01-01

    The February 15, 1957 issue of Physical Review Letters shows the first muon precession curve resulting from the stopping of `85 MeV' muons in graphite, and the resulting counting rate in a gate of fixed delay, duration, and orientation, as a function of an applied vertical magnetic field. The purpose of the four-day experiment was to test the conservation of parity in the weak interactions. It involved the sudden recognition that existing muon beams would be polarized if parity were not conserved, together with the appreciation that the angular distribution of decay electrons from the population of stopped muons could be observed (much more reliably and sensitively) by the variation with time or current of the detections in a fixed counter telescope than by the measurement of the decay asymmetry of nominally fixed muon spins. This retrospective paper explains the context, the state of the art at the time, and what we expected as a consequence of this experiment. We went on to study more accurately the magneti...

  7. Multimuon final states in high energy muon interactions

    International Nuclear Information System (INIS)

    Chen, K.W.

    1977-01-01

    Multimuon final states observed in the MSU-Fermilab deep inelastic muon scattering apparatus are presented. These events, observed at both 150 and 275-GeV, are more numerous and the extra muons have qualitative different production characteristics than muons expected from conventional sources. Origin of these events are examined. The implication of the data on the understanding of scaling violation observed in muon scattering is discussed. (orig.) [de

  8. ATLAS Detector Operation 2011 
Muon System

    CERN Document Server

    Iakovidis, G; The ATLAS collaboration

    2012-01-01

    During the 2011 LHC Data taking period the ATLAS Detector recorded 5.22 fb-1 which is 96.5% of the delivered data from proton-proton collisions. The Muon Spectrometer was improved to 100% operational fraction at the Level 1 trigger and more than 98.7% operational fraction of trigger and precision chambers. The recorded data with Muon Spectrometer was at a level of more than 99% good for physics analysis. This illustrates an excellent performance. This poster presents performance of the Muon Spectrometer trigger chambers as well as precision chambers. In addition a combined Muon Spectrometer performance is presented.

  9. High energy leptons from muons in transit

    International Nuclear Information System (INIS)

    Bulmahn, Alexander; Reno, Mary Hall

    2010-01-01

    The differential energy distribution for electrons and taus produced from lepton pair production from muons in transit through materials is numerically evaluated. We use the differential cross section to calculate underground lepton fluxes from an incident atmospheric muon flux, considering contributions from both conventional and prompt fluxes. An approximate form for the charged current differential neutrino cross section is provided and used to calculate single lepton production from atmospheric neutrinos. We compare the fluxes of underground leptons produced from incident muons with those produced from incident neutrinos and photons from muon bremsstrahlung. We discuss their relevance for underground detectors.

  10. Borehole Muon Detector Development

    Science.gov (United States)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  11. Upper limit of the muon-neutrino mass and charged-pion mass from the momentum analysis of a surface muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Kettle, P R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Using a surface muon beam and a magnetic spectrometer equipped with a position-sensitive detector, we have measured the muon momentum from pion decay at rest {pi}{sup +}{yields}{mu}{sup +}{nu}{sub {mu}}, to be p{sub {mu}{sup +}}=(29.79200{+-}0.00011)MeV/c. This value together with the muon mass and the favoured pion mass leads to an upper limit of 0.17 MeV (90%CL) for the muon-neutrino mass. (author) 4 figs., 5 refs.

  12. Global analysis of muon decay measurements

    International Nuclear Information System (INIS)

    Gagliardi, C.A.; Tribble, R.E.; Williams, N.J.

    2005-01-01

    We have performed a global analysis of muon decay measurements to establish model-independent limits on the space-time structure of the muon decay matrix element. We find limits on the scalar, vector, and tensor coupling of right- and left-handed muons to right- and left-handed electrons. The limits on those terms that involve the decay of right-handed muons to left-handed electrons are more restrictive than in previous global analyses, while the limits on the other nonstandard model interactions are comparable. The value of the Michel parameter η found in the global analysis is -0.0036±0.0069, slightly more precise than the value found in a more restrictive analysis of a recent measurement. This has implications for the Fermi coupling constant G F

  13. MUON ACCELERATION WITH THE RACETRACK FFAG

    International Nuclear Information System (INIS)

    TRBOJEVIC, D.; EBERHARD, K.; SESSLER, A.

    2007-01-01

    Muon acceleration for muon collider or neutrino factory is still in a stage where further improvements are likely as a result of further study. This report presents a design of the racetrack non-scaling Fixed Field Alternating Gradient (NS-FFAG) accelerator to allow fast muon acceleration in small number of turns. The racetrack design is made of four arcs: two arcs at opposite sides have a smaller radius and are made of closely packed combined function magnets, while two additional arcs, with a very large radii, are used for muon extraction, injection, and RF accelerating cavities. The ends of the large radii arcs are geometrically matched at the connections to the arcs with smaller radii. The dispersion and both horizontal and vertical amplitude fictions are matched at the central energy

  14. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  15. The "g-2" Muon Storage Ring

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The "g-2" muon storage ring, shortly before completion in June 1974. Bursts of pions (from a target, hit by a proton beam from the 26 GeV PS) are injected and polarized muons from their decay are captured on a stable orbit. When the muons decay too, their precession in the magnetic field of the storage ring causes a modulation of the decay-electron counting rate, from which the muon's anomalous magnetic moment can be determined. In 1977, the "g-2" magnets were modified to build ICE (Initial Cooling Experiment), a proton and antiproton storage ring for testing stochastic and electron cooling. Later on, the magnets had a 3rd life, when the ion storage ring CELSIUS was built from them in Uppsala. For later use as ICE, see 7711282, 7802099, 7809081,7908242.

  16. Magnetic interactions, bonding, and motion of positive muons in magnetite

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1985-01-01

    Positive-muon behavior in magnetite is investigated by the muon-spin-rotation technique. The observed muon relaxation rate in zero applied field, in conjunction with the measured local field, allows us to separate muon-motion effects from phase transitions associated with magnetite. The local magnetic field is observed to be 4.02 kOe directed along the axis, the easy axis of magnetization. Possible origins of this field are discussed in terms which include local muon diffusion and a supertransfer hyperfine interaction resulting from muon-oxygen bonding. An anomaly in the muon hyperfine interactions is observed at 247 K

  17. Theoretical Study of the Effects of Di-Muonic Molecules on Muon-Catalyzed Fusion

    Science.gov (United States)

    2012-03-01

    Pyramid of the Sun," Revista Méxicana de Física, vol. 49, no. 4, pp. 54-59, 2003. [19] V. Grabski, A. Morales, R. Reche and O. Orozco, "Feasibility...34 Inclusion of Explicit Electron- Proton Correlation in the Nuclear-Electronic Orbital Approach Using Gaussian-Type Geminal Functions," Journal of...energy levels calculated without including nuclear volume effects looks almost identical on this scale. Inclusion of nuclear volume effects in the

  18. Target and collection optimization for muon colliders

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Noble, R.J.; Van Ginneken, A.

    1996-01-01

    To achieve adequate luminosity in a muon collider it is necessary to produce and collect large numbers of muons. The basic method used in this paper follows closely a proposed scheme which starts with a proton beam impinging on a thick target (∼ one interaction length) followed by a long solenoid which collects muons resulting mainly from pion decay. Production and collection of pions and their decay muons must be optimized while keeping in mind limitations of target integrity and of the technology of magnets and cavities. Results of extensive simulations for 8 GeV protons on various targets and with various collection schemes are reported. Besides muon yields results include-energy deposition in target and solenoid to address cooling requirements for these systems. Target composition, diameter, and length are varied in this study as well as the configuration and field strengths of the solenoid channel. A curved solenoid field is introduced to separate positive and negative pions within a few meters of the target. This permits each to be placed in separate RF buckets for acceleration which effectively doubles the number of muons per bunch available for collisions and increases the luminosity fourfold

  19. Candidate muon-probe sites in oxide superconductors

    International Nuclear Information System (INIS)

    Dawson, W.K.; Tibbs, K.; Weathersby, S.P.; Boekema, C.; Chan, K.B.

    1988-01-01

    Two independent search methods (potential-energy and magnetic-dipole-field calculations) are used to determine muon stop sites in the RBa 2 Cu 3 O/sub x/ (x≅7) superconductors. Possible sites, located about 1 A away from oxygen ions, have been found and are prime candidates as muon-probe locations. The results are discussed in light of existing muon-spin-relaxation (μSR) data of these exciting oxides, and compared to H- and positron-oxide superconductor studies. Further work is in progress to establish in detail the muon-probe sites; this knowledge is an essential ingredient for a correct interpretation of μSR data of high-temperature superconducting oxides

  20. First muon acceleration using a radio-frequency accelerator

    Directory of Open Access Journals (Sweden)

    S. Bae

    2018-05-01

    Full Text Available Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu^{-}, which are bound states of positive muons (μ^{+} and two electrons, are generated from μ^{+}’s through the electron capture process in an aluminum degrader. The generated Mu^{-}’s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ. In the RFQ, the Mu^{-}’s are accelerated to 89 keV. The accelerated Mu^{-}’s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  1. Muon collider interaction region design

    Directory of Open Access Journals (Sweden)

    Y. I. Alexahin

    2011-06-01

    Full Text Available Design of a muon collider interaction region (IR presents a number of challenges arising from low β^{*}<1  cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can provide an average luminosity of 10^{34}  cm^{-2} s^{-1} with an adequate protection of magnet and detector components.

  2. Law of Conservation of Muons

    Science.gov (United States)

    Feinberg, G.; Weinberg, S.

    1961-02-01

    A multiplicative selection rule for mu meson-electron transitions is proposed. A "muon parity" = -1 is considered for the muon and its neutrino, while the "muon parity" for all other particles is +1. The selection rule then states that (-1) exp(no. of initial (-1) parity particles) = (-1) exp(no. of final (-1) parity particles). Several reactions that are forbidden by an additive law but allowed by the multiplicative law are suggested; these reactions include mu{sup +} .> e{sup +} + nu{sub mu} + {ovr nu}{sub e}, e{sup -} + e{sup -} .> mu{sup -} + mu{sup -}, and muonium .> antimuonium (mu{sup +} + e{sup -} .> mu{sup -} + e{sup +}). An intermediate-boson hypothesis is suggested. (T.F.H.)

  3. Managing the fusion burn to improve symbiotic system performance

    International Nuclear Information System (INIS)

    Renier, J.P.; Martin, J.G.

    1979-01-01

    Symbiotic power systems, in which fissile fuel is produced in fusion-powered factories and burned in thermal reactors characterized by high conversion ratios, constitute an interesting near-term fusion application. It is shown that the economic feasibility of such systems depend on adroit management of the fusion burn. The economics of symbiotes is complex: reprocessing and fabrication of the fusion reactor blankets are important components of the production cost of fissile fuel, but burning fissile material in the breeder blanket raises overall costs and lowers the support ratio. Analyses of factories which assume that the fusion power is constant during an irradiation cycle underestimate their potential. To illustrate the effect of adroit engineering of the fusion burn, this paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U-233 breeders. To make the D-T symbiote self-sufficient, tritium is bred in separate lithium blankets designed so as to minimize overall costs. All blankets are assumed to have spherical geometry, with 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries

  4. The Muon Portal Project: Development of an Innovative Scanning Portal Based on Muon Tomography

    International Nuclear Information System (INIS)

    Bonanno, D.-L.; Indelicato, V.; Rocca, P.-La; Leonora, E.; Longhitano, F.; Presti, D.Lo; Petta, C.; Pugliatti, C.; Randazzo, N.; Riggi, F.; Russo, G.V.; Zappala, G.; Santagati, G.; Bonanno, G.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluso, M.; Billotta, S.; Costa, A.; Massimino, P.; Pistagna, C.; Riggi, S.; Carbone, B.; Fallica, G.; Mazzillo, M.; Piana, A.; Sanfilippo, D.; Valvo, G.; Zaia, A.; Belluomo, F.; Puglisi, M.

    2013-06-01

    The Muon Portal is a recent Project [1] which aims at the construction of a 18 m 2 tracking detector for cosmic muons. This apparatus has been designed as a real-size prototype to inspect containers using the muon tomography technique, i.e. by measuring the deflection of muons when traversing high-Z materials. The detection setup is based on eight position-sensitive X-Y planes, four placed below and four above the volume to be inspected, with good tracking capabilities for charged particles. The detection planes are segmented into strips of extruded plastic scintillators with WLS fibres to transport the light produced in the scintillator material to the photo-sensors (SiPMs) at one of the fibre ends. Detailed GEANT4 simulations have been carried out under different scenarios to investigate the response of the apparatus. The tomographic images are reconstructed by tracking algorithms and suitable imaging software tools. Simulations have demonstrated the possibility to reconstruct a 3D image of the volume to be inspected in a reasonable amount of time, compatible with the requirement of a fast inspection technique. The first two of the 48 detection modules are presently under construction. (authors)

  5. Balancing particle absorption with structural support of the muon beam stop in muons-to-electrons experimental chamber

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Ryan [Northern Illinois Univ., DeKalb, IL (United States)

    2013-01-01

    The Mu2e experiment at Fermi National Accelerator Laboratory is seeking a full conversion from muon to electron. The design for Mu2e is based off MECO, another proposed experiment that sought a full conversion from muon to electron at Brookhaven National Laboratory in the 1990s. Mu2e will provide sensitivity that is four times the sensitivity of the previous experiment, SINDRUM II. Discovering muon to electron conversions could help explain physics beyond the standard model of the particle physics.

  6. One-sided muon tomography - A portable method for imaging critical infrastructure with a single muon detector

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, K., E-mail: bonifak@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada); Jonkmans, G. [Defence R& D Canada, Centre for Security Science, Ottawa, Ontario (Canada); Anghel, V.; Erlandson, A.; Thompson, M.; Livingstone, S. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2014-07-01

    High-energy muons generated from cosmic-ray particle showers have been shown to exhibit properties ideal for imaging the interior of large structures. This paper explores the possibility of using a single portable muon detector in conjunction with image reconstruction methods used in nuclear medicine to reconstruct a 3D image of the interior of man-made large structures such as the Zero Energy Deuterium (ZED-2) research reactor at Atomic Energy of Canada Ltd (AECL) Chalk River Laboratories (CRL). The ZED-2 reactor core and muon detector arrangement are modeled in GEANT4 and measurements of the resultant muon throughput and angular distribution at several angles of rotation around the reactor are generated. Statistical analysis is then performed on these measurements based on the well-defined flux and angular distribution of muons expected near the surface of the earth. The results of this analysis are shown to produce reconstructed images of the spatial distribution of nuclear fuel within the core for multiple fuel configurations. This “one-sided tomography” concept is a possible candidate for examining the internal structure of larger critical facilities, for example the Fukushima Daiichi power plant where the integrity of the containment infrastructure and the location of the reactor fuel is unknown. (author)

  7. Superconducting solenoids for an international muon cooling experiment

    International Nuclear Information System (INIS)

    Green, M.A.; Rey, J.M.

    2002-01-01

    The international muon ionization cooling experiment MICE will consist of two focusing cooling cells and a pair of uniform field solenoids used for particle identification and emittance measurements. The 2.75-meter long cooling cells have a pair of field flip coils and a coupling coil. The 0.52-meter diameter field flip coils surround an absorber that removes transverse and longitudinal momentum from the muons to be cooled. The beam in the absorber is at a minimum beta point so that scattering of the muons is minimized. The 1.7-meter diameter coupling coils are outside of conventional 201.25 MHz RF cavities that accelerate the muons putting longitudinal momentum into the muons without putting back the transverse momentum into the beam. A third set of flip coils helps the muon beam transition from and to the experimental solenoids. The 0.6-meter diameter experimental solenoids have a uniform field region (good to about 1 part in 1000) that is 1.3-meters long. The MICE experiment magnets must operate as a single unit so that the field profile will produce the maximum muon cooling

  8. On the Muon Decay Parameters

    CERN Document Server

    Chizhov, M V

    1996-01-01

    Predictions for the muon decay spectrum are usually derived from the derivative-free Hamiltonian. However, it is not the most general form of the possible interactions. Additional simple terms with derivatives can be introduced. In this work the distortion of the standard energy and angular distribution of the electrons in polarized muon decay caused by these terms is presented.

  9. A Muon Trigger with high pT-resolution for Phase-II of the LHC Upgrade, based on the ATLAS Muon Drift Tube Chambers

    CERN Document Server

    Nowak, S; The ATLAS collaboration

    2014-01-01

    The ATLAS Muon Trigger in the ATLAS end-cap region is based on Thin Gap Chambers (TGC) which have an excellent time resolution but a moderate spatial resolution. The Muon Trigger efficiency curves show that for a transverse momentum ($p_{t}$) threshold of 20 GeVc$^{-1}$ the trigger rate is mainly dominated by muons with a $p_{t}$ between 10 GeVc$^{-1}$ and 20 GeVc$^{-1}$. To cope with the expected Muon Trigger rate at HL-LHC luminosities, we propose to include the precision tracking chambers (MDT) in the Muon Trigger. According to a potential study based on ATLAS data and assuming the HL-LHC scenario, this leads to a dramatical reduction of the Muon Trigger rate below the nominal threshold. As the already existing MDT chamber read-out chain is not capable of reading out the MDT fast enough to be used for the Muon Trigger, an additional fast read-out (FRO) chain with moderate spatial resolution but low latency is necessary. To conduct fast track reconstruction and muon $p_{t}$ determination with the data acqui...

  10. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy.

    Science.gov (United States)

    Farrow, Scott C; Hagel, Jillian M; Beaudoin, Guillaume A W; Burns, Darcy C; Facchini, Peter J

    2015-09-01

    The gateway to morphine biosynthesis in opium poppy (Papaver somniferum) is the stereochemical inversion of (S)-reticuline since the enzyme yielding the first committed intermediate salutaridine is specific for (R)-reticuline. A fusion between a cytochrome P450 (CYP) and an aldo-keto reductase (AKR) catalyzes the S-to-R epimerization of reticuline via 1,2-dehydroreticuline. The reticuline epimerase (REPI) fusion was detected in opium poppy and in Papaver bracteatum, which accumulates thebaine. In contrast, orthologs encoding independent CYP and AKR enzymes catalyzing the respective synthesis and reduction of 1,2-dehydroreticuline were isolated from Papaver rhoeas, which does not accumulate morphinan alkaloids. An ancestral relationship between these enzymes is supported by a conservation of introns in the gene fusions and independent orthologs. Suppression of REPI transcripts using virus-induced gene silencing in opium poppy reduced levels of (R)-reticuline and morphinan alkaloids and increased the overall abundance of (S)-reticuline and its O-methylated derivatives. Discovery of REPI completes the isolation of genes responsible for known steps of morphine biosynthesis.

  11. The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    Energy Technology Data Exchange (ETDEWEB)

    Antonuccio, V. [INAF - Osservatorio Astrofisico di Catania (Italy); Bandieramonte, M. [CERN, Geneva (Switzerland); Becciani, U. [INAF - Osservatorio Astrofisico di Catania (Italy); Bonanno, D.L., E-mail: danilo.bonanno@ct.infn.it [INFN Sezione di Catania, Catania (Italy); Bonanno, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Bongiovanni, D. [INFN Sezione di Catania, Catania (Italy); Fallica, P.G. [STMicroelectronics, Catania (Italy); Garozzo, S.; Grillo, A. [INAF - Osservatorio Astrofisico di Catania (Italy); La Rocca, P. [INFN Sezione di Catania, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Leonora, E.; Longhitano, F. [INFN Sezione di Catania, Catania (Italy); Lo Presti, D. [INFN Sezione di Catania, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Marano, D. [INAF - Osservatorio Astrofisico di Catania (Italy); Parasole, O. [INFN Sezione di Catania, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Pugliatti, C. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Randazzo, N. [INFN Sezione di Catania, Catania (Italy); Riggi, F. [INFN Sezione di Catania, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Riggi, S. [INAF - Osservatorio Astrofisico di Catania (Italy); INFN Sezione di Catania, Catania (Italy); Romeo, G. [INAF - Osservatorio Astrofisico di Catania (Italy); and others

    2017-02-11

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype (6×3×7 m{sup 3}) for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as on the preliminary results obtained with the first detection planes.

  12. The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    Science.gov (United States)

    Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Bonanno, D. L.; Bonanno, G.; Bongiovanni, D.; Fallica, P. G.; Garozzo, S.; Grillo, A.; La Rocca, P.; Leonora, E.; Longhitano, F.; Lo Presti, D.; Marano, D.; Parasole, O.; Pugliatti, C.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Romeo, M.; Russo, G. V.; Santagati, G.; Timpanaro, M. C.; Valvo, G.

    2017-02-01

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype (6×3×7 m3) for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as on the preliminary results obtained with the first detection planes.

  13. imaging volcanos with gravity and muon tomography measurements

    Science.gov (United States)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; Deroussi, Sébastien; Dufour, Fabrice; de Bremond d'Ars, Jean; Ianigro, Jean-Christophe; Gardien, Serge; Girerd, Claude

    2015-04-01

    Both muon tomography and gravimetry are geohysical methods that provide information on the density structure of the Earth's subsurface. Muon tomography measures the natural flux of cosmic muons and its attenuation produced by the screening effect of the rock mass to image. Gravimetry generally consists in measurements of the vertical component of the local gravity field. Both methods are linearly linked to density, but their spatial sensitivity is very different. Muon tomography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes while gravimetry measurements are linked to density by a 3-dimensional integral encompassing the whole studied domain. We show that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. Examples taken from field experiments performed on La Soufrière of Guadeloupe volcano are discussed.

  14. Reconstruction of cosmic and beam-halo muons with the CMS detector

    CERN Document Server

    Liu, Chang; Amapane, Nicola; Fernandez Bedoya, Cristina; Bellan, Riccardo; Biallass, Philipp; Bolognesi, Sara; Cerminara, Gianluca; Fouz Iglesias, Mary-Cruz; Giunta, Marina; Guiducci, Luigi; Hoepfner, Kerstin; Lacaprara, Stefano; Masetti, Gianni; Meneguzzo, Anna; Paolucci, Pierluigi; Puerta Pelayo, Jesus; Travaglini, Riccardo; Zanetti, Marco; Villanueva, Carlos

    2008-01-01

    The powerful muon and tracker systems of the CMS detector together with dedicated reconstruction software allow precise and efficient measurement of muon tracks originating from proton-proton collisions. The standard muon reconstruction algorithms, however, are inadequate to deal with muons that do not originate from collisions. This note discusses the design, implementation, and performance results of a dedicated cosmic muon track reconstruction algorithm, which features pattern recognition optimized for muons that are not coming from the interaction point, i.e., cosmic muons and beam-halo muons. To evaluate the performance of the new algorithm, data taken during Cosmic Challenge phases I and II were studied and compared with simulated cosmic data. In addition, a variety of more general topologies of cosmic muons and beam-halo muons were studied using simulated data to demonstrate some key features of the new algorithm.

  15. submitter The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    CERN Document Server

    Antonuccio, V; Becciani, U; Bonanno, D L; Bonanno, G; Bongiovanni, D; Fallica, P G; Garozzo, S; Grillo, A; La Rocca, P; Leonora, E; Longhitano, F; Lo Presti, D; Marano, D; Parasole, O; Pugliatti, C; Randazzo, N; Riggi, F; Riggi, S; Romeo, G; Romeo, M; Russo, G V; Santagati, G; Timpanaro, M C; Valvo, G

    2017-01-01

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype $(6×3×7 m^3)$ for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as o...

  16. FACT. Multivariate extraction of muon ring images

    Energy Technology Data Exchange (ETDEWEB)

    Noethe, Maximilian; Temme, Fabian; Buss, Jens [Experimentelle Physik 5b, TU Dortmund, Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    In ground-based gamma-ray astronomy, muon ring images are an important event class for instrument calibration and monitoring of its properties. In this talk, a multivariate approach will be presented, that is well suited for real time extraction of muons from data streams of Imaging Atmospheric Cherenkov Telescopes (IACT). FACT, the First G-APD Cherenkov Telescope is located on the Canary Island of La Palma and is the first IACT to use Silicon Photomultipliers for detecting the Cherenkov photons of extensive air showers. In case of FACT, the extracted muon events are used to calculate the time resolution of the camera. In addition, the effect of the mirror alignment in May 2014 on properties of detected muons is investigated. Muon candidates are identified with a random forest classification algorithm. The performance of the classifier is evaluated for different sets of image parameters in order to compare the gain in performance with the computational costs of their calculation.

  17. Atmospheric neutrino-induced muons in the MACRO detector

    CERN Document Server

    Ronga, F

    1999-01-01

    A measurement of the flux of neutrino-induced muons using the MACRO detector is presented. Different event topologies, corresponding to different neutrino parent energies can be detected. The upward throughgoing muon sample is the larger event sample. The observed upward-throughgoing muons are 26% fewer than expected and the zenith angle distribution does not fit with the expected one. Assuming neutrino oscillations, both measurements suggest maximum mixing and Dm2 of a few times 10-3 eV2. The other samples are due to the internally produced events and to upward-going stopping muons. These data show a regular deficit of observed events in each angular bin, as expected assuming neutrino oscillations with maximum mixing, in agreement with the analysis of the upward-throughgoing muon sample.

  18. The CMS muon system status and upgrades for LHC run-2 and performance of muon reconstruction with 13 TeV data

    CERN Document Server

    Battilana, Carlo

    2016-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run-1 and Run-2 data. During the Long Shutdown (2013-2014), as well as during the last year-end technical stop (2015-2016), significant consolidation and upgrades have been carried out on the muon detectors and on the L1 muon trigger. The algorithms for muon reconstruction and identification have also been improved for both the High-Level Trigger and the offline reconstruction. Results of the performance of muon detectors, reconstruction and trigger, obtained using data collected at 13 TeV center-of-mass energy during the 2015 and 2016 LHC runs, will be presented. Comparison of simulation with experimental data will also be discussed where relevant. The system's state of the art performance will be shown, and the improvements foreseen to achieve excellent overall quality of muon reconstruction in CMS, in the conditions expected during the high-luminosity phase of Run-2, will be described.

  19. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  20. The future IKO-PION-MUON-facility

    International Nuclear Information System (INIS)

    Goudsmit, P.F.A.; Arnold, H.; Dantzig, R. van; Konijn, J.

    1975-09-01

    Information is given on the pion and muon physics facility planned at the Institute for Nuclear Physics Research (IKO) with special notice of the fluxes of pions and muons expected at this facility, as well as on the structure of these secondary beams

  1. Muon g − 2 and Tests of Relativity

    CERN Document Server

    Farley, Francis J M

    2015-01-01

    After a brief introduction to the muon anomalous moment a ≡ (g−2)/2, the pioneering measurements at CERN are described. This includes the CERN cyclotron experiment, the first Muon Storage Ring, the invention of the “magic energy”, the second Muon Storage Ring and stringent tests of special relativity.

  2. Muon spin rotation in superconductors

    International Nuclear Information System (INIS)

    Gladisch, M.; Orth, H.; Putlitz, G. zu; Wahl, W.; Wigand, M.; Herlach, D.; Seeger, A.; Metz, H.; Teichler, H.

    1979-01-01

    By means of the muon spin rotation technique (μ + SR), the temperature dependence of the magnetic field inside the normal-conducting domains of high-purity tantalum crystals in the intermediate state has been measured in the temperature range 2.36 K + SR. Possible applications of these findings to the study of long-range diffusion of positive muons at low temperatures are indicated. (Auth.)

  3. Composition from high pT muons in IceCube

    Directory of Open Access Journals (Sweden)

    Soldin Dennis

    2015-01-01

    Full Text Available Cosmic rays with energies up to 1011 GeV enter the atmosphere and produce showers of secondary particles. Inside these showers muons with high transverse momentum (pT ≳ 2 GeV are produced from the decay of heavy hadrons, or from high pT pions and kaons very early in the shower development. These isolated muons can have large transverse separations from the shower core up to several hundred meters, together with the muon bundle forming a double or triple track signature in IceCube. The separation from the core is a measure of the transverse momentum of the muon's parent particle. Assuming the validity of perturbative quantum chromodynamics (pQCD the muon lateral distribution depends on the composition of the incident nuclei, thus the composition of high energy cosmic rays can be determined from muon separation measurements. Vice versa these muons can help to understand uncertainties due to phenomenological models as well as test pQCD predictions of high energy interactions involving heavy nuclei. After introducing the physics scenario of high pT muons in kilometer-scale neutrino telescopes we will review results from IceCube in its 59-string configuration as a starting point and discuss recent studies on composition using laterally separated muons in the final detector configuration.

  4. Proceedings of the workshop on fundamental muon physics: atoms, nuclei, and particles

    International Nuclear Information System (INIS)

    Hoffman, C.M.; Hughes, V.W.; Leon, M.

    1986-05-01

    This report contains the proceedings of a workshop held at Los Alamos, January 20-22, 1986, to discuss present and future experiments with muons in particle, nuclear, and atomic physics. Special attention was paid to new developments in muon beams and detection devices. The workshop sessions were Muon Decay, Muon Capture, QED and Electroweak Interactions, Laser Spectroscopy of Muonic Atoms, High-Energy Muon-Nucleon and Muon-Nucleus Scattering, Muon Beams - New Developments, and Muon Catalysis

  5. Design and characterization of a small muon tomography system

    Science.gov (United States)

    Jo, Woo Jin; An, Su Jung; Kim, Hyun-Il; Lee, Chae Young; Chung, Heejun; Chung, Yong Hyun

    2015-02-01

    Muon tomography is a useful method for monitoring special nuclear materials (SNMs) because it can provide effective information on the presence of high-Z materials, has a high enough energy to deeply penetrate large amounts of shielding, and does not lead to any health risks and danger above background. We developed a 2-D muon detector and designed a muon tomography system employing four detector modules. Two top and two bottom detectors are, respectively, employed to record the incident and the scattered muon trajectories. The detector module for the muon tomography system consists of a plastic scintillator, wavelength-shifting (WLS) fiber arrays placed orthogonally on the top and the bottom of the scintillator, and a position-sensitive photomultiplier (PSPMT). The WLS fiber arrays absorb light photons emitted by the plastic scintillator and re-emit green lights guided to the PSPMT. The light distribution among the WLS fiber arrays determines the position of the muon interaction; consequently, 3-D tomographic images can be obtained by extracting the crossing points of the individual muon trajectories by using a point-of-closest-approach algorithm. The goal of this study is to optimize the design parameters of a muon tomography system by using the Geant4 code and to experimentally evaluate the performance of the prototype detector. Images obtained by the prototype detector with a 420-nm laser light source showed good agreement with the simulation results. This indicates that the proposed detector is feasible for use in a muon tomography system and can be used to verify the Z-discrimination capability of the muon tomography system.

  6. Definitive evidence for Ufd2-catalyzed elongation of the ubiquitin chain through Lys48 linkage

    International Nuclear Information System (INIS)

    Saeki, Yasushi; Tayama, Yoko; Toh-e, Akio; Yokosawa, Hideyoshi

    2004-01-01

    Saccharomyces cerevisiae Ufd2 is a ubiquitin chain elongation factor in the ubiquitin fusion degradation (UFD) pathway and functions in stress tolerance. A recent study has suggested that the mammalian Ufd2 homologue UFD2a catalyzes formation of Lys27- and Lys33-linked polyubiquitin chains rather than the Lys48-linked chain, but the linkage type of the polyubiquitin chain formed by yeast Ufd2 remains unclear. To determine the property of Ufd2, we reconstituted the UFD pathway using purified enzymes from yeast. Direct determination of the ubiquitin chain linkage type in polyubiquitinated UFD substrates by MALDI-TOF mass spectrometry revealed that Ufd2 catalyzes elongation of the ubiquitin chain through Lys48 linkage

  7. Anterior cervical fusion: the role of anterior plating.

    Science.gov (United States)

    Daffner, Scott D; Wang, Jeffrey C

    2009-01-01

    Treatment of cervical pathology requires a clear understanding of the biomechanical benefits and limitations of cervical plates, their indications, and their associated complications. The use of anterior cervical plates has evolved significantly since their early application in cervical trauma. They have become widely used for anterior cervical decompression and fusion for cervical spondylosis. Plate design has undergone significant refinement and innovation, from the initial unlocked plates requiring bicortical purchase to the latest rotationally and translationally semiconstrained dynamic plates. Excellent clinical results have been reported for single-level anterior cervical decompression and fusion with or without plate fixation; however, the addition of an anterior cervical plate clearly leads to earlier fusion and better clinical results in longer fusions. Longer fusions should ideally consist of corpectomies and strut grafting because the decreased number of fusion surfaces tends to lead to higher fusion rates. Although anterior plate fixation leads to higher fusion rates in fusions of three or more levels, the associated pseudarthrosis rate is still high. The use of dynamic plates, through increased load sharing across the graft and decreased stress shielding, may improve fusion rates, particularly in long fusions. Nevertheless, adjuvant posterior fixation is recommended for fusions of more than three vertebral levels. Anterior plate fixation may be of particular benefit in the management of traumatic injuries, in revision settings, and in the treatment of smokers. Complications unique to plate fixation include hardware breakage and migration as well as ossification of the adjacent disk levels.

  8. Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18 mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140-350 microns and 30-200 microradians. Systematic errors on displacements are estimated to be 340-590 microns based on comparisons with independent photogrammetry measurements.

  9. Nuclear excitations and reaction mechanisms

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1989-01-01

    This Progress Report describes the work of the Brown University Nuclear Theory Group for the period 1 August 1988--31 July 1989 under Grant FG02-87ER40334. Completed and on-going research includes various theoretical and numerical studies on: virtual photons, electric polarizability, the Cabibo-Radicati sum rule, photon scattering, electron scattering, electron scattering sum rules, muon catalyzed fusion, few body collisions and breakup phenomena. Since it accompanies the three-year Renewal Proposal of the Group, it goes into more detail than our typical one-year reports

  10. Magnetic interactions, bonding, and motion of positive muons in magnetite

    NARCIS (Netherlands)

    Boekema, C.; Lichti, R.L.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1985-01-01

    Positive-muon behavior in magnetite is investigated by the muon-spin-rotation technique. The observed muon relaxation rate in zero applied field, in conjunction with the measured local field, allows us to separate muon-motion effects from phase transitions associated with magnetite. The local

  11. R and D Toward a Neutrino Factory and Muon Collider

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2011-01-01

    Significant progress has been made in recent years in R and D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R and D efforts. This paper will review the U.S. MAP R and D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  12. Imaging CO2 reservoirs using muons borehole detectors

    Science.gov (United States)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  13. Muon reconstruction performance using cosmic rays in CMS

    CERN Document Server

    Calderon, Alicia

    2009-01-01

    After the incident with the Large Hadron Collider (LHC) in September 2008, the Compact Muon Solenoid (CMS) collaboration invested a considerable effort in further refining the understanding of the detector using cosmic muon data. About 300 million cosmic events were recorded with the CMS detector fully operational and the central solenoid switched on at the nominal value of 3.8 Tesla. The resulting data set provides ample statistics to study in great detail the detector performance and allows to analyze properties of cosmic rays. We present recent results on detector performance from the cosmic muon analysis activities and compare cosmic data to dedicated cosmic Monte Carlo samples. These results demonstrate the readiness of the CMS detector to do physics analysis with muons, and the study of cosmic muon properties provides interesting links to astrophysics.

  14. Review of possible applications of cosmic muon tomography

    International Nuclear Information System (INIS)

    Checchia, P.

    2016-01-01

    Muon radiographic methods can be used to explore inaccessible volumes profiting of the property of muons to penetrate thick materials. An extension of the muon radiographic methods, the muon scattering tomography, was proposed for the first time in 2003 and it is based on the measurement of the multiple Coulomb scattering of muons crossing the volume under investigation. In this talk, the principles of tomographic image reconstruction are first outlined and then the experimental setup and the most adequate detectors are described. A review of the possible applications of this technique is reported, with specific reference to security in transports and monitoring of industrial processes. The technique can also be used to provide precise measurements of the properties of various materials. The experimental challenge related to this activity is discussed.

  15. Review of possible applications of cosmic muon tomography

    Science.gov (United States)

    Checchia, P.

    2016-12-01

    Muon radiographic methods can be used to explore inaccessible volumes profiting of the property of muons to penetrate thick materials. An extension of the muon radiographic methods, the muon scattering tomography, was proposed for the first time in 2003 and it is based on the measurement of the multiple Coulomb scattering of muons crossing the volume under investigation. In this talk, the principles of tomographic image reconstruction are first outlined and then the experimental setup and the most adequate detectors are described. A review of the possible applications of this technique is reported, with specific reference to security in transports and monitoring of industrial processes. The technique can also be used to provide precise measurements of the properties of various materials. The experimental challenge related to this activity is discussed.

  16. Directional sensitivity of MuSTAnG muon telescope

    Directory of Open Access Journals (Sweden)

    Ganeva Marina

    2013-04-01

    Full Text Available We investigate directional sensitivity of MuSTAnG muon telescope by deriving the distribution of secondary muons, which create the counting rate of telescope, by asymptotic directions of primary protons. This distribution, defined as “directivity function”, allows us to clarify protons appearing from which direction essentially contribute to counting rate of detector. Directivity function has different behavior for the muons falling on the telescope at different zenith and polar angles. Vertical, West, and East fluxes exhibit strong maximums near the asymptotic longitude about 61°, whereas North and South fluxes have larger spread distributions. About 65% of muons, which create the Vertical counting rate of MuSTAnG, are produced by the primary protons, coming in the interval of asymptotic longitudes about (50°, 80°. Using directivity function will allow one to more correctly determine the location of interplanetary disturbances. Analogous analysis, made for other muon detectors, will clarify their directional sensitivities, improving by this the forecasting capability of network of ground-based muon detectors.

  17. Large vessel imaging using cosmic-ray muons

    International Nuclear Information System (INIS)

    Jenneson, P.M.

    2004-01-01

    Cosmic-ray muons are assessed for their practical use in the tomographic imaging of the internal composition of large vessels over 2 m in diameter. The technique is based on the attenuation and scattering of cosmic-ray muons passing through a vessel and has advantages over photon-based methods of tomography that it is extendable to object containing high-density materials over many tens of metres. The main disadvantage is the length of time required to produce images of sufficient resolution and hence cosmic ray muon tomography will be most suited to the imaging of large structures whose internal composition is effectively static for the duration of the imaging period. Simulation and theoretical results are presented here which demonstrate the feasibility of cosmic ray muon tomography

  18. Relativistic shifts of bound negative-muon precession frequencies

    International Nuclear Information System (INIS)

    Brewer, J.H.; Froese, A. M.; Fryer, B.A.; Ghandi, K.

    2005-01-01

    High-field negative-muon spin precession experiments have been performed using a backward-muon beam with substantial transverse spin polarization, facilitating high-precision measurements of the magnetogyric ratio of negative muons bound to nuclei in the ground states of muonic atoms. These results may provide a testing ground for quantum electrodynamics in very strong electromagnetic fields

  19. Local tracking in the ATLAS muon spectrometer

    CERN Document Server

    Primor, David; Mikenberg, Giora

    2007-01-01

    The LHC, the largest hadron collider accelerator ever built, presents new challenges for scientists and engineers. With the anticipated luminosity of the LHC, it is expected to have as many as one billion total collisions per second, of which at most 10 to 100 per second might be of potential scientific interest. One of the two major, general-purpose experiments at LHC is called ATLAS. Since muons are one of the important signs of new physics, the need of their detection has lead to the construction of a stand- alone Muon Spectrometer. This system is located in a high radiation background environment (mostly neutrons and photons) which makes the muon tracking a very challenging task. The Muon Spectrometer consists of two types of precision chambers, the Monitor Drift Tube (MDT) chambers, and the Cathode Strip Chambers (CSC). In order to detect the muon and estimate its track parameters, it is very important to detect and precisely estimate its local tracks within the CSC and MDT chambers. Using advanced signa...

  20. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Lingemann, Joschka; Sakulin, Hannes; Jeitler, Manfred; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run 2 of the Large Hadron Collider pose new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run 1, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new microTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (GMT) which combines information from the muon trigger sub-systems and assigns the isolation variable. The upgraded GMT will be implemented using a Master Processor 7 card, built by Imperial College, that features a large Xilinx Virtex 7 FPGA. Up to 72 optical links at...

  1. Summary muon detection working group

    International Nuclear Information System (INIS)

    Stanton, N.R.

    1993-01-01

    The areas of concentration of the Muon Working Group reflected its composition: about half of the group was interested primarily is extending the capability of existing general purpose colliders (CDF, D0). Smaller numbers of people were interested in B physics with general purpose colliders at the SSC and LHC, with SSC fixed target experiments, and with dedicated forward colliders. Good muon tagging, and possibly also muon triggering, is essential for studying CP violation in B i →J/ψX, J/ψ→μ + μ - ; as a flavor tag, with the semimuonic decay B→μ + X or bar B→μ - X tagging the flavor of the partner; for studying the physics of the semimuonic B decays themselves; and for looking for really rare decays like B→μ + μ -

  2. Muon SR Newsletter, No. 29, April 5, 1984

    International Nuclear Information System (INIS)

    Crowe, K.M.; Portis, A.M.; Yamazaki, T.

    1984-01-01

    Muon SR stands for Muon Spin Relaxation, Rotation, Resonance, Research, or what have you. The intention of the mnemonic acronym is to draw attention to the analogy with NMR and ESR, the range of whose applications is well known. Any study of the interactions of the muon spin by virtue of the asymmetric decay is considered μSR, but this definition is not intended to exclude any peripherally related phenomena, especially if relevant to the use of the muon's mganetic moment as a delicate probe of matter. Abstracts of individual items from this issue were prepared separately for the data base

  3. Resonance amplification of the nuclear reaction X(a,b)Y near the a+X channel threshold

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1991-01-01

    Deviation of the cross section for the nuclear reaction X(a,b)Y from the Gamow formula due to an interaction additional to the Coulomb one in the entrance channel has been analyzed. It is shown that the reaction cross section has an oscillating structure at low energies. If the maximum of the first oscillation is close to the threshold of the channel a+X, it has a resonance behaviour. The peculiarity of the cross sections leads to the resonance amplification of the rate for a muon-catalyzed fusion reaction ('in flight' fusion) tμ+d→ 4 He+n+μ at the energy =76 eV and may influence the μ-capture rate in a dense mixture of hydrogen isotopes. 26 refs.; 4 figs

  4. The arrival time distribution of muons in extensive air showers

    International Nuclear Information System (INIS)

    Van der Walt, D.J.

    1984-01-01

    An experiment was done to investigate the lateral dependence of the muon arrival time distribution in extensive air showers at small core distances. In the present experiment the muon arrival time distribution was investigated by measuring the relative arrival times between single muons in five fast Cerenkov detectors beneath 500g/cm 2 of concrete and at an atmospheric depth of 880g/cm 2 . It is shown that, although it is not possible to determine the arrival time distribution as such, it is possible to interpret the relative arrival times between muons in terms of the differences between the order statistics of a sample drawn from the arrival time distribution. The relationship between the arrival time distribution of muons relative to the first detected muon and the muon arrival time distribution is also derived. It was found that the dispersion of the muon arrival time distribution does not increase significantly with increasing core distance between 10m and 60m from the core. A comparison with theoretical distributions obtained from model calculations for proton initiated showers indicate that 1. the mean delay of muons with respect to the first detected muon is significantly larger than that expected from the model and 2. the observed dispersion is also significantly larger than the predicted dispersion for core distances between 10m and 60m

  5. Progress in absorber R and D for muon cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.M. E-mail: kaplan@fnal.gov; Black, E.L.; Boghosian, M.; Cassel, K.W.; Johnson, R.P.; Geer, S.; Johnstone, C.J.; Popovic, M.; Ishimoto, S.; Yoshimura, K.; Bandura, L.; Cummings, M.A.; Dyshkant, A.; Hedin, D.; Kubik, D.; Darve, C.; Kuno, Y.; Errede, D.; Haney, M.; Majewski, S.; Reep, M.; Summers, D

    2003-05-01

    A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

  6. The g - 2 muon anomaly in di-muon production with the torsion in LHC

    Science.gov (United States)

    Syromyatnikov, A. G.

    2016-06-01

    It was considered within the framework of the conformal gauge gravitational theory CGTG coupling of the standard model fermions to the axial torsion and preliminary discusses the impact of extra dimensions, in particular, in a five-dimensional space-time with Randall-Sundrum metric, where the fifth dimension is compactified on an S1/Z 2 orbifold, which as it turns out is conformally to the fifth dimension flat Euclidean space with permanent trace of torsion, with a compactification radius R in terms of the radius of a CGTG gravitational screening, through torsion in a process Z → μ+μ- and LHC data. In general, have come to the correct set of the conformal calibration curvature the Faddeev-Popov diagram technique type, that follows directly from dynamics. This leads to the effect of restrictions on neutral spin currents of gauge fields by helicity and the Regge’s form theory. The diagrams reveals the fact of opening of the fine spacetime structure in a process pp → γ/Z/T → μ+μ- with a center-of-mass energy of 14TeV, indicated by dotted lines and texture columns, as a result of p-p collision on 1.3 ṡ 10-18cm scales from geometric shell gauge bosons of the SM continued by the heavy axial torsion resonance, and even by emerging from the inside into the outside of the ultra-light (freely-frozen in muon’s spin) axial torsion. We then evaluate the contribution of the torsion to the muon anomaly to derive new constraints on the torsion parameters. It was obtained that on the πN scattering through the exchange of axial torsion accounting, the nucleon anomalous magnetic moment in the eikonal phase leads to additive additives which is responsible for the spin-flip in the scattering process, the scattering amplitude is classical and characterized by a strong the torsion coupling ηT≅1. So the scattering of particles, occurs as on the Coulomb center with the charge fT This is the base model which is the g-2 muon anomaly. The muon anomaly contribution due to

  7. Studying High pT muons in Cosmic-Ray Air Showers

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2006-01-01

    Most cosmic-ray air shower arrays have focused on detecting electromagnetic shower particles and low energy muons. A few groups (most notably MACRO + EASTOP and SPASE + AMANDA) have studied the high energy muon component of showers. However, these experiments had small solid angles, and did not study muons far from the core. The IceTop + IceCube combination, with its 1 km 2 muon detection area can study muons far from the shower core. IceCube can measure their energy loss (dE/dx), and hence their energy. With the energy, and the known distribution of production heights, the transverse momentum (p T ) spectrum of high p T muons can be determined. The production of the semuons is calculable in perturbative QCD, so the measured muon spectra can be used to probe the composition of incident cosmic-rays

  8. Imaging Fukushima Daiichi reactors with muons

    Directory of Open Access Journals (Sweden)

    Haruo Miyadera

    2013-05-01

    Full Text Available A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  9. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    Science.gov (United States)

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  10. Inverse Flux versus Pressure of Muons from Cosmic Rays

    Science.gov (United States)

    Buitrago, D.; Armendariz, R.

    2017-12-01

    When an incoming cosmic ray proton or atom collides with particles in earth's atmosphere a shower of secondary muons is created. Cosmic ray muon flux was measured at the Queensborough Community College using a QuarkNet detector consisting of three stacked scintillator muon counters and a three-fold coincidence trigger. Data was recorded during a three-day period during a severe weather storm that occurred from March 13-17, 2017. A computer program was created in Python to read the muon flux rate and atmospheric pressure sensor readings from the detector's data acquisition board. The program converts the data from hexadecimal to decimal, re-bins the data in a more suitable format, creates and overlays plots of muon flux with atmospheric pressure. Results thus far show a strong correlation between muon flux and atmospheric pressure. More data analysis will be done to verify the above conclusion.

  11. Rhodium-catalyzed annulation of arenes with alkynes through weak chelation-assisted C-H activation.

    Science.gov (United States)

    Yang, Yudong; Li, Kaizhi; Cheng, Yangyang; Wan, Danyang; Li, Mingliang; You, Jingsong

    2016-02-18

    The purpose of this article is to give a brief review of weak chelation-assistance as a powerful means for the rhodium-catalyzed annulation of arenes with alkynes. The use of commonly occurring functional groups (e.g., ketones, aldehydes, carboxylic acids and alcohols) as the directing groups enriches the versatility of auxiliary ligands and extends the scope of products. This short article offers an overview on emerging procedures, highlights their advantages and limitations, and covers the latest progress in the rapid synthesis of organic functional materials and natural products.

  12. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    Science.gov (United States)

    Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Sciacca, E.; Vitello, F.

    2013-11-01

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full GEANT4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  13. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    Energy Technology Data Exchange (ETDEWEB)

    Riggi, S., E-mail: simone.riggi@ct.infn.it [INAF—Osservatorio Astrofisico di Catania (Italy); Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A. [INAF—Osservatorio Astrofisico di Catania (Italy); La Rocca, P. [Dip. di Fisica e Astronomia, Università di Catania (Italy); INFN Section of Catania (Italy); Massimino, P. [INAF—Osservatorio Astrofisico di Catania (Italy); Petta, C. [Dip. di Fisica e Astronomia, Università di Catania (Italy); INFN Section of Catania (Italy); Pistagna, C. [INAF—Osservatorio Astrofisico di Catania (Italy); Riggi, F. [Dip. di Fisica e Astronomia, Università di Catania (Italy); INFN Section of Catania (Italy); Sciacca, E.; Vitello, F. [INAF—Osservatorio Astrofisico di Catania (Italy)

    2013-11-11

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full GEANT4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  14. Use of proportional tubes in a muon polarimeter

    International Nuclear Information System (INIS)

    Kenney, C.J.; Eckhause, M.; Ginkel, J.F.

    1988-01-01

    A prototype muon polarimeter was built to study the feasibility of measuring the positive muon polarization in the decay K/sub L/ → μ + μ/sup /minus//. The system consisted of alternating layers of extruded aluminum gas proportional tubes and polarization-retaining absorber plates of either aluminum or marble. Longitudinally polarized positive muons from the Stopped Muon Channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) were stopped in the absorber plates where they precessed in a field of 60 gauss. Decay times were recorded in 100 ns first-in-first-out memories for all wires hit during a 12.8 μs period centered about the muon stop trigger. The performance of the system was studied for different beam rates and absorber thicknesses. The value of imposing time and spacial cuts on track data to enhance the precession signal was also investigated. 7 refs., 4 figs., 1 tab

  15. Polarization Effects at a Muon Collider

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-01-01

    For Muon Colliders, Polarization will be a useful tool if high polarization is achievable with little luminosity loss. Formulation and effects of beam polarization and luminosity including polarization effects in Higgs resonance studies are discussed for improving precision measurements and Higgs resonance ''discovery'' capability e.g. at the First Muon Collider (FMC)

  16. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Coffield, F.E.; Davis, G.E.; Felker, B.

    1979-01-01

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  17. LHCb - Novel Muon Identification Algorithms for the LHCb Upgrade

    CERN Multimedia

    Cogoni, Violetta

    2016-01-01

    The present LHCb Muon Identification procedure was optimised to guarantee high muon detection efficiency at the istantaneous luminosity $\\mathcal{L}$ of $2\\cdot10^{32}$~cm$^{-2}$~s$^{-1}$. In the current data taking conditions, the luminosity is higher than foreseen and the low energy background contribution to the visible rate in the muon system is larger than expected. A worse situation is expected for Run III when LHCb will operate at $\\mathcal{L} = 2\\cdot10^{33}$~cm$^{-2}$~s$^{-1}$ causing the high particle fluxes to deteriorate the muon detection efficiency, because of the increased dead time of the electronics, and in particular to worsen the muon identification capabilities, due to the increased contribution of the background, with deleterious consequences especially for the analyses requiring high purity signal. In this context, possible new algorithms for the muon identification will be illustrated. In particular, the performance on combinatorial background rejection will be shown, together with the ...

  18. Studying the muon background component in the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Dennis

    2013-03-28

    The reactor anti-neutrino experiment Double Chooz (DC) will measure the third neutrino mixing angle θ{sub 13} with very high precision. This mixing angle is connected to fundamental questions in particle physics beyond the current Standard Model. In DC neutrinos are detected via the Inverse Beta Decay reaction, which provides a clean signal distinguishable from most backgrounds. However, as neutrino interactions in the detector are very rare and an interfering muon background is present, a proper understanding and reduction of this background is mandatory. This is crucial because muons create fast neutrons and βn-emitters which lead to background capable of mimicking the neutrino interaction in the detector. This thesis covers different analysis topics related to the cosmic ray muon background at the DC far site. The thesis covers the identification of muons, the applied rejection technique and the determination of the muon rate at DC far site. Utilizing the muon rejection cuts of the neutrino analysis a muon rate of 13 s{sup -1} in the Inner Detector (ID) and of 46 s{sup -1} in the Inner Muon Veto (IV) was found. The efficiency of the IV to identify and reject cosmic ray muons was measured and a value greater than 99.97% has been found. The stability of the determined muon rates was examined and a seasonal modulation was found, compatible with a variation of the temperature profile of the atmosphere over the year. The parameter describing the strength between the relationship of temperature and muon rate change, the effective temperature coefficient was obtained: αT=0.39±0.01(stat.)±0.02(syst.). This gave the opportunity to measure the atmospheric kaon to pion ratio with the DC far detector which was found to be r(K/π)=0.14±0.06. Additional variations of muon rate with surface pressure were found and the barometric coefficient describing this effect was measured as βp=-0.59±0.20(stat.)±0.10(syst.) permille /mbar. Another central theme of this work was

  19. Studying the muon background component in the Double Chooz experiment

    International Nuclear Information System (INIS)

    Dietrich, Dennis

    2013-01-01

    The reactor anti-neutrino experiment Double Chooz (DC) will measure the third neutrino mixing angle θ 13 with very high precision. This mixing angle is connected to fundamental questions in particle physics beyond the current Standard Model. In DC neutrinos are detected via the Inverse Beta Decay reaction, which provides a clean signal distinguishable from most backgrounds. However, as neutrino interactions in the detector are very rare and an interfering muon background is present, a proper understanding and reduction of this background is mandatory. This is crucial because muons create fast neutrons and βn-emitters which lead to background capable of mimicking the neutrino interaction in the detector. This thesis covers different analysis topics related to the cosmic ray muon background at the DC far site. The thesis covers the identification of muons, the applied rejection technique and the determination of the muon rate at DC far site. Utilizing the muon rejection cuts of the neutrino analysis a muon rate of 13 s -1 in the Inner Detector (ID) and of 46 s -1 in the Inner Muon Veto (IV) was found. The efficiency of the IV to identify and reject cosmic ray muons was measured and a value greater than 99.97% has been found. The stability of the determined muon rates was examined and a seasonal modulation was found, compatible with a variation of the temperature profile of the atmosphere over the year. The parameter describing the strength between the relationship of temperature and muon rate change, the effective temperature coefficient was obtained: αT=0.39±0.01(stat.)±0.02(syst.). This gave the opportunity to measure the atmospheric kaon to pion ratio with the DC far detector which was found to be r(K/π)=0.14±0.06. Additional variations of muon rate with surface pressure were found and the barometric coefficient describing this effect was measured as βp=-0.59±0.20(stat.)±0.10(syst.) permille /mbar. Another central theme of this work was the extrapolation

  20. Detection of atmospheric muons with ALICE detectors

    International Nuclear Information System (INIS)

    Alessandro, B.; Cortes Maldonado, I.; Cuautle, E.; Fernandez Tellez, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Herrera Corral, G.; Leon, I.; Martinez, M.I.; Munoz Mata, J.L.; Podesta, P.; Ramirez Reyes, A.; Rodriguez Cahuantzi, M.; Sitta, M.; Subieta, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.

    2010-01-01

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  1. Subsequent development of the normal temperature fusion reaction. Joon kakuyugo sonogo no shinten

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T. (Hokkaido University, Sapporo (Japan). Faculty of Engineering)

    1991-04-24

    This paper reports on a NATTOH model made public in May 1989 by T. Matsumoto who took notice of abnormality of the normal temperature fusion reaction. The NATTO model is based on a chain reaction by hydrogen with a hydrogen-catalyzed fusion reaction which is the normal temperature fusion reaction as an elementary process. If a high temperature fusion reaction is a small-size simulation of the fusion reaction rising on the surface of the sparkling star like the sun, the normal temperature fusion reaction can be a small-size simulation of the phenomena in the last years of the star in the far distance of the space. This gives reality to the normal temperature fusion reaction. The reaction mechanism of the normal temperature fusion reaction is almost being clarified by a NATTOH model. There remain problems on a possibility of generation of unknown radioactive rays and identification of radioactive wastes, but it seems that a prospect of commercialization can be talked about now. As for the utilization as energy, sea water may be used as it is. 10 ref., 5 figs.

  2. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    Science.gov (United States)

    Lenzi, T.

    2017-01-01

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). The GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. The architecture of the readout system is based on the use of the microTCA standard hosting FPGA-based Advanced Mezzanine Card (AMC) and of the Versatile Link with the GBT chipset to link the on-detector electronics to the micro-TCA boards. For the front-end electronics a new ASIC, called VFAT3, is being developed. On the detector, a Xilinx Virtex-6 FPGA mezzanine board, called the OptoHybrid, has to collect the data from 24 VFAT3s and to transmit the data optically to the off-detector micro-TCA electronics, as well as to transmit the trigger data at 40 MHz to the CMS Cathode Strip Chamber (CSC) trigger. The microTCA electronics provides the interfaces from the detector (and front-end electronics) to the CMS DAQ, TTC (Timing, Trigger and Control) and Trigger systems. In this paper, we will describe the DAQ system of the Triple-GEM project and provide results from the latest test beam campaigns done at CERN.

  3. Going to the school of muons

    CERN Multimedia

    2005-01-01

    Italian secondary school pupils will be given the opportunity to take part in a large-scale experiment looking at cosmic muons thanks to the EEE Project. Two Italian pupils building an MRPC muon chamber in CERN's Building 29. For several months, Italian secondary school pupils have been coming to CERN each week and heading for Building 29. They are not just visiting. They are participating in the EEE (Extreme Energy Events) Project, the aim of which is to carry out a real-life experiment in search of large atmospheric showers using muon detectors located in their schools. In this hall at CERN they are helping to build and test muon chambers - MRPCs (Multigap Resistive Plate Chambers). These chambers, which were invented several years ago by Crispin Williams as part of the LAA Project led by Professor Antonino Zichichi, are similar to those that will be used for ALICE's TOF (Time of Flight) detector at the LHC. In this way, the pupils are receiving a direct, practical and effective initiation to particle phy...

  4. Statistical reconstruction for cosmic ray muon tomography.

    Science.gov (United States)

    Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J

    2007-08-01

    Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.

  5. Do muons oscillate?

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.

    1997-01-01

    We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)

  6. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  7. The Muon Portal Project: A large-area tracking detector for muon tomography

    Science.gov (United States)

    Riggi, F.

    2016-05-01

    The Muon Portal Project [1] is a joint initiative between research and industrial partners, aimed at the construction of a real size detector protoype to search for hidden high-Z fissile materials inside containers by the muon scattering technique. The detector is based on a set of 48 detection modules (1 m × 3 m), so as to provide four X-Y detection planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction of the full size detector has already started and will be completed in a few months.

  8. Performance of CMS Muon Reconstruction in Cosmic-Ray Events

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The performance of muon reconstruction in CMS is evaluated using a large data sample of cosmic-ray muons recorded in 2008. Efficiencies of various high-level trigger, identification, and reconstruction algorithms have been measured for a broad range of muon momenta, and were found to be in good agreement with expectations from Monte Carlo simulation. The relative momentum resolution for muons crossing the barrel part of the detector is better than 1% at 10 GeV/c and is about 8% at 500 GeV/c, the latter being only a factor of two worse than expected with ideal alignment conditions. Muon charge misassignment ranges from less than 0.01% at 10 GeV/c to about 1% at 500 GeV/c.

  9. Muon Production in Relativistic Cosmic-Ray Interactions

    OpenAIRE

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to $3\\times10^{20}$ eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is $\\sqrt{s_{nn}} = 700$ TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy ($>$ 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon de...

  10. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  11. Front-end electronics for the Muon Portal project

    Energy Technology Data Exchange (ETDEWEB)

    Garozzo, S.; Marano, D.; Bonanno, G.; Grillo, A.; Romeo, G.; Timpanaro, M.C. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Lo Presti, D.; Riggi, F.; Russo, V.; Bonanno, D.; La Rocca, P.; Longhitano, F.; Bongiovanni, D.G. [Università di Catania, Dipartimento di Fisica e Astronomia, and INFN, Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Fallica, G.; Valvo, G. [ST-Microelectronics, Stradale V Primosole 50, Catania (Italy)

    2016-10-11

    The Muon Portal Project was born as a joint initiative between Italian research and industrial partners, aimed at the construction of a real-size working detector prototype to inspect the content of traveling containers by means of secondary cosmic-ray muon radiation and recognize potentially dangerous hidden materials. The tomographic image is obtained by reconstructing the incoming and outgoing muon trajectories when crossing the inspected volume, employing two tracker planes located above and below the container under inspection. In this paper, the design and development of the front-end electronics of the Muon Portal detector is presented, with particular emphasis being devoted to the photo-sensor devices detecting the scintillation light and to the read-out circuitry which is in charge of processing and digitizing the analog pulse signals. In addition, the remote control system, mechanical housing, and thermal cooling system of all structural blocks of the Muon Portal tracker are also discussed, demonstrating the effectiveness and functionality of the adopted design.

  12. Energy and zenith angle dependence of atmospheric muons

    CERN Document Server

    Maeda, K

    1973-01-01

    The recently proposed new process for energetic-muon production in the atmosphere should be tested at Mt. Chacaltaya. Rigorous calculations of zenith-angle distribution of atmospheric muons have been made for the altitude of 5200 m above sea level with energy range from 100 GeV to 100 TeV and for zenith angles from 0 degrees to 92.3 degrees . Calculations are based on the extension of the Chapman function to the case of a non-isothermal atmosphere, taking into account (i) energy- dependent nuclear-interaction mean free path of cosmic-ray hadrons in air, (ii) different magnitudes of photonuclear cross-section in the energy-loss process of muons in the atmosphere, (iii) contributions of atmospheric muons arriving below the horizontal directions, and (iv) atmospheric structure and geomagnetic deflection. Results are compared with those corresponding to sea level. Range straggling, particularly its effect on horizontally incident muons, is investigated by Monte Carlo calculation, indicating that its effects and t...

  13. Muon background studies for shallow depth Double - Chooz near detector

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, H. [Laboratoire Astroparticule et Cosmologie (APC) - Université Paris 7. Paris (France)

    2015-08-17

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  14. Muon background studies for shallow depth Double - Chooz near detector

    International Nuclear Information System (INIS)

    Gómez, H.

    2015-01-01

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector

  15. Muon spin-rotation study on magnetite

    International Nuclear Information System (INIS)

    Boekema, C.; Brabers, V.A.M.; Denison, A.B.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Schillaci, M.E.

    1982-01-01

    Muon spin-rotation (μSR) results on synthetic single crystals of magnetite (Fe 3 O 4 ) support the idea of muon bond formation in oxides. The anomaly in the temperature dependence of the μSR signal observed in Fe 3 O 4 may be attributed to the existence of molecular polarons in the Verwey transition-temperature region

  16. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Present trends in magnetic fusion research and development indicate the promise of commercialization of one of a limited number of inexhaustible energy options early in the next century. Operation of the large-scale fusion experiments, such as the Joint European Torus (JET) and Takamak Fusion Test Reactor (TFTR) now under construction, are expected to achieve the scientific break even point. Early design concepts of power producing reactors have provided problem definition, whereas the latest concepts, such as STARFIRE, provide a desirable set of answers for commercialization. Safety and environmental concerns have been considered early in the development of magnetic fusion reactor concepts and recognition of proplem areas, coupled with a program to solve these problems, is expected to provide the basis for safe and environmentally acceptable commercial reactors. First generation reactors addressed in this paper are expected to burn deuterium and tritium fuel because of the relatively high reaction rates at lower temperatures compared to advanced fuels such as deuterium-deuterium. This paper presents an overwiew of the safety and environmental problems presently perceived, together with some of the programs and techniques planned and/or underway to solve these problems. A preliminary risk assessment of fusion technology relative to other energy technologies is made. Improvements based on material selection are discussed. Tritium and neutron activation products representing potential radiological hazards in fusion reactor are discussed, and energy sources that can lead to the release of radioactivity from fusion reactors under accident conditions are examined. The handling and disposal of radioactive waste are discussed; the status of biological effects of magnetic fields are referenced; and release mechanisms for tritium and activation products, including analytical methods, are presented. (orig./GG)

  17. Muon Studies with the First CMS Data at the LHC; Estudios de Muones con los Primeros Datos de CMS en el LHC

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, C.; Garcia-Abia, P.; Hernandez, J. M.

    2011-05-13

    In this work an analysis of the first data recorded with the CMS detector at the LHC collider is presented. The properties of the detected muons are analyzed and compared with simulated data. The J/Psi ,Psi(2S) and Upsilon(nS) mesons as well as the Z boson have been reconstructed in the muon-anti muon decay channel. These analyses have allowed us to improve the understanding of the CMS detector in terms of muon detection efficiency, resolution and accuracy in the measurement of the momentum and the description of the detector in the simulation. (Author) 17 refs.

  18. 20 years of cosmic muons research performed in IFIN-HH

    Energy Technology Data Exchange (ETDEWEB)

    Mitrica, Bogdan [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest, P.O.B.MG-6 (Romania)

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show

  19. Muon problem in UHECR investigations

    International Nuclear Information System (INIS)

    Petrukhin, A A; Bogdanov, A G; Kokoulin, R P

    2013-01-01

    In many UHECR experiments, some excess of muons is observed, which cannot be explained in frame of the existing theoretical models of hadron interaction. Attempts of its explanation through a heavy mass composition of PCR contradict the results of X max measurements. Really, the excess of muons appears already at lower energies (10 16 − 10 17 eV), but in this domain it may be explained by the trend to a heavier mass composition, which is in a qualitative agreement with the galactic model of CR origin. The absence of heavy nuclei at energies of the order of 10 18 eV requires to consider other possibilities of the appearance of muon excess, including changes of hadron interaction model. The actuality of the considered problem is connected with plans of future experiments in UHECR physics, in which the necessity of its solution must be taken into account.

  20. Recent progress in fusion gyrotron development

    International Nuclear Information System (INIS)

    Shively, J.F.; Stone, D.S.

    1981-01-01

    The gyrotron, a microwave tube capable of producing high power output at millimeter wavelengths, has recently found applications for electron cyclotron resonance heating of plasmas in controlled thermonuclear fusion reactor experiments. This paper describes work in progress to develop a gyrotron oscillator to deliver 200 kW CW at 60 GHz (/lambda/sub //. 5 mm). A pulsed oscillator is described which produced over 200 kw peak power. A CW oscillator is under construction. The latest experimental results are presented

  1. Part 1, Angular distribution measurement of beam-foil muonium, Part 2, Muon injection simulation for a new muon g-2 experiment

    International Nuclear Information System (INIS)

    Ahn, H.E.

    1992-10-01

    The angular and energy distributions of positive muons μ + and muonium M produced by the beam-foil method have been measured for the first time. A 7 MeV/c subsurface μ + beam was delivered to our apparatus from the Stopped Muon Channel at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). The μ + formed M by electron capture in a thin Al target foil. A low pressure multi-wire proportional chamber upstream of the target foil was used both as a moderator and as a muon counter. To observe muonium, muons sere swept away by a bending magnet which was placed downstream of the target foil. This magnet was turned off while measuring the μ + distribution. Beyond the magnetic field, particles were collimated and then stopped by a microchannel plate detector located at various angles to the incident muon beam axis. Two pairs of scintillators mounted above (St) and below (Sb) the MC-P were used to detect the decay positrons to verify from the lifetime spectrum that the particles detected by the MCP are muons. The intensities of μ + and M emerging from the Al foil at different angles were obtained from both a time-of-flight spectrum and a lifetime spectrum

  2. An improved muon reconstruction algorithm for INO-ICAL experiment

    International Nuclear Information System (INIS)

    Bhattacharya, Kolahal; MandaI, Naba K.

    2013-01-01

    The charge current interaction of neutrino in INO-ICAL detector will be identified with a muon (μ ± ) in the detector whose kinematics is related with the kinematics of the neutrino. So, muon reconstruction is a very important step in achieving INO physics goals. The existing muon reconstruction package for INO-ICAL has poor performance in specific regimes of experimental interest: (a) for larger zenith angle (θ > 50°), (b) for lower energies (E < 1 GeV); mainly due to poor error propagation scheme insensitive to energy E, angle (θ, φ) and inhomogeneous magnetic field along the muon track. Since, a significant fraction of muons from atmospheric neutrino interactions will have initial energy < 1 GeV and almost uniform distribution in cosθ a robust package for muon reconstruction is essential. We have implemented higher order correction terms in the propagation of the state and error covariance matrices of the Kalman Iter. The algorithm ensures track element merging in most cases and also increases reconstruction efficiency. The performance of this package will be presented in comparison with the previous one. (author)

  3. Investigation into the feasibility of a soft muon experiment

    International Nuclear Information System (INIS)

    Tincknell, M.L.

    1990-06-01

    Issues relevant in a soft ( -4 ). Absorber penetration is the only means available to identify high energy muons among a large number of hadrons. Three important sources of background are sail-through hadrons that fail to interact in the absorber, the decays of pions and kaons to muons in the absorber, and leakage of hadronic shower products through the absorber. An absorber thick enough to limit the ratio of combinatorical background pairs to pions to ο (10 -4 ) imposes a significant muon kinetic energy threshold due to muon range in the absorber. Absorbers with low atomic number Z are preferred to keep this threshold low, and to avoid loss of invariant mass resolution due to energy loss straggling and multiple coulomb scattering. Long-lived meson to muon decays can be directly suppressed only by picking an absorber with short interaction length, which implies a high density, high Z material. With sufficiently high statistics, a subtraction of the spectra of like-sign pairs from the spectrum of opposite-sign pairs should recover the direct muon pair spectrum. 9 refs., 9 figs., 2 tabs

  4. Investigation into the feasibility of a soft muon experiment

    International Nuclear Information System (INIS)

    Tincknell, M.L.

    1990-01-01

    Issues relevant in a soft ( -4 ). Absorber penetration is the only means available to identify high energy muons among a large number of hadrons. Three important sources of background are sail-through hadrons that fail to interact in the absorber, the decays of pions and kaons to muons in the absorber, and leakage of hadronic shower products through the absorber. An absorber thick enough to limit the ratio of combinatorial background pairs to pions to Ο(10 -4 ) imposes a significant muon kinetic energy threshold due to muon range in the absorber. Absorbers with low atomic number Z are preferred to keep this threshold low, and to avoid loss of invariant mass resolution due to energy loss straggling and multiple coulomb scattering. Long-lived meson to muon decays can be directly suppressed only by picking an absorber with short interaction length, which implies a high density, high Z material. With sufficiently high statistics, a subtraction of the spectra of like-sign pairs from the spectrum of opposite-sign pairs should recover the direct muon pair spectrum

  5. Preparations for Muon Experiments at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.J.; Popovic, M.; Prebys, E.; /Fermilab; Ankenbrandt, C.; /Muons Inc., Batavia

    2009-05-01

    The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

  6. Computing for magnetic fusion energy research: An updated vision

    International Nuclear Information System (INIS)

    Henline, P.; Giarrusso, J.; Davis, S.; Casper, T.

    1993-01-01

    This Fusion Computing Council perspective is written to present the primary of the fusion computing community at the time of publication of the report necessarily as a summary of the information contained in the individual sections. These concerns reflect FCC discussions during final review of contributions from the various working groups and portray our latest information. This report itself should be considered as dynamic, requiring periodic updating in an attempt to track rapid evolution of the computer industry relevant to requirements for magnetic fusion research. The most significant common concern among the Fusion Computing Council working groups is networking capability. All groups see an increasing need for network services due to the use of workstations, distributed computing environments, increased use of graphic services, X-window usage, remote experimental collaborations, remote data access for specific projects and other collaborations. Other areas of concern include support for workstations, enhanced infrastructure to support collaborations, the User Service Centers, NERSC and future massively parallel computers, and FCC sponsored workshops

  7. Diffractive corrections to the muon Bremsstrahlung

    International Nuclear Information System (INIS)

    Kel'ner, S.R.; Fedotov, A.M.

    1999-01-01

    The corrections to the muon Bremsstrahlung cross section due to diffraction of hard photons on nuclei are obtained. In this process the momentum is transmitted to a nucleus not by a charged particle but by the photon the interaction of which with the nucleus can be considered as diffraction on weakly absorbing ball. The amplitude of the process interferes with the usual Bremsstrahlung amplitude, therefore in the cross section together with the diffraction correction the interference term also appears, possessing different sings for μ + and μ - . The photon emission cross section also depends on the sing of muon charge and for muon energy about 10 TeV the difference between the cross section may reach 10%. The corrections to the radiation energy loss are also calculated [ru

  8. Electron and muon physics sessions: Summary

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1988-06-01

    The electromagnetic interaction needs no introduction as a probe of the structure of systems on many scales. The continued use of this technique dominated the sessions on Electron and Muon Physics at the Samoset Meeting. The experimental results continue to stimulate large numbers of theorists and the results on polarized deep inelastic muon scattering and their various interpretations permeated beyond these sessions. The breadth of physics attacked with electrons and muons makes a summary such as this rather peculiar. As one of my nuclear physics friends (I think) commented after my summary, ''it was interesting to see Nuclear Physics from a long distance with the telescope inverted.'' The comment may well be applied to this written version of the summary talk. 21 refs

  9. Muon Telescope (MuTe): A first study using Geant4

    Science.gov (United States)

    Asorey, H.; Balaguera-Rojas, A.; Calderon-Ardila, R.; Núñez, L. A.; Sanabria-Gómez, J. D.; Súarez-Durán, M.; Tapia, A.

    2017-07-01

    Muon tomography is based on recording the difference of absorption of muons by matter, as ordinary radiography does for using X-rays. The interaction of cosmic rays with the atmosphere produces extensive air showers which provides an abundant source for atmospheric muons, benefiting various applications of muon tomography, particularly the study of the inner structure of volcanoes. The MuTe (for Muon Telescope) is a hybrid detector composed of scintillation bars and a water Cherenkov detector designed to measure cosmic muon flux crossing volcanic edifices. This detector consists of two scintillator plates (1.44 m2 with 30 x 30 pixels), with a maximum distance of 2.0m of separation. In this work we report the first simulation of the MuTe using GEANT4 -set of simulation tools, based in C++ - that provides information about the interaction between radiation and matter. This computational tool allows us to know the energy deposited by the muons and modeling the response of the scintillators and the water cherenkov detector to the passage of radiation which is crucial to compare to our data analysis.

  10. The University of Texas Maya Muon Project

    International Nuclear Information System (INIS)

    Schwitters, Roy

    2007-01-01

    Plans to explore the ruin of a Maya Pyramid in Belize using cosmic ray muon tomography will be described. Muon tomography was pioneered by Luis Alvarez in the 1960's to explore the Second Pyramid of Chephren in Egypt. Improvements in detector technology since the Alvarez experiment suggest that muon tomography may be a practical method for exploring and monitoring relatively large underground volumes when exposure times of order months are acceptable. A prototype detector based on Fermilab/MINOS scintillator strip/WLS fiber technology has been built and is being tested at UT Austin. Initial results using the detector will be discussed.

  11. Beryllium for fusion application - recent results

    International Nuclear Information System (INIS)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-01-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described

  12. Beryllium for fusion application - recent results

    Science.gov (United States)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-12-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.

  13. Muon diffusion in noble metals

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Boekema, C.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Dodds, S.A.; MacLaughlin, D.E.; Richards, P.M.

    1982-01-01

    Diffusion-induced muon depolarization was measured in dilute AgGd and AgEr in the temperature range 200 to 700 0 K and have thereby determined the muon diffusion parameters in Ag. The diffusion parameters for μ + in Cu, Ag, and Au are compared with those of hydrogen. For Ag and Au, the μ + parameters are similar to those of hydrogen, whereas for Cu, the μ + parameters are much smaller. Lattice-activated tunneling and over-barrier hopping are investigated with computational models

  14. Radiative muon capture on hydrogen

    International Nuclear Information System (INIS)

    Bertl, W.; Ahmad, S.; Chen, C.Q.; Gumplinger, P.; Hasinoff, M.D.; Larabee, A.J.; Sample, D.G.; Schott, W.; Wright, D.H.; Armstrong, D.S.; Blecher, M.; Azuelos, G.; Depommier, P.; Jonkmans, G.; Gorringe, T.P.; Henderson, R.; Macdonald, J.A.; Poutissou, J.M.; Poutissou, R.; Von Egidy, T.; Zhang, N.S.; Robertson, B.D.

    1992-01-01

    The radiative capture of negative muons by protons can be used to measure the weak induced pseudoscalar form factor. Brief arguments why this method is preferable to ordinary muon capture are given followed by a discussion of the experimental difficulties. The solution to these problems as attempted by experiment no. 452 at TRIUMF is presented together with preliminary results from the first run in August 1990. An outlook on the expected final precision and the experimental schedule is also given. (orig.)

  15. Simulations of Muon Flux in Slanic Salt Mine

    Directory of Open Access Journals (Sweden)

    Mehmet Bektasoglu

    2012-01-01

    Full Text Available Geant4 simulation package was used to simulate muon fluxes at different locations, the floor of UNIREA mine and two levels of CANTACUZINO mine, of Slanic Prahova site in Romania. This site is specially important since it is one of the seven sites in Europe that are under consideration of housing large detector components of Large Apparatus studying Grand Unification and Neutrino Astrophysics (LAGUNA project. Simulations were performed for vertical muons and for muons with a zenith angle θ≤60°. Primary muon flux and energies at ground level were obtained from previous measurements. Results of the simulations are in general agreement with previous simulations made using MUSIC simulation program and with the measurements made using a mobile detector.

  16. Muon Pair Production in ep Collisions at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, C.; Berger, N.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.D.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kuckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luders, S.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz, I.; Milstead, D.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Poschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Trevino, A.Vargas; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winde, M.; Winter, G.G.; Wissing, C.; Woehrling, E.E.; Wunsch, E.; Yan, W.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2003-01-01

    Cross sections for the production of two isolated muons up to high di-muon masses are measured in ep collisions at HERA with the H1 detector in a data sample corresponding to an integrated luminosity of 71 pb^-1 at a centre of mass energy of sqrt{s} = 319 GeV. The results are in good agreement with Standard Model predictions, the dominant process being photon-photon interactions. Additional muons or electrons are searched for in events with two high transverse momentum muons using the full data sample corresponding to 114 pb^-1, where data at sqrt{s} = 301 GeV and sqrt{s} = 319 GeV are combined. Both the di-lepton sample and the tri-lepton sample agree well with the predictions.

  17. The Muon Portal Project: A large-area tracking detector for muon tomography

    Directory of Open Access Journals (Sweden)

    Riggi F.

    2016-01-01

    Full Text Available The Muon Portal Project [1] is a joint initiative between research and industrial partners, aimed at the construction of a real size detector protoype to search for hidden high-Z fissile materials inside containers by the muon scattering technique. The detector is based on a set of 48 detection modules (1 m × 3 m, so as to provide four X-Y detection planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction of the full size detector has already started and will be completed in a few months.

  18. Muon shielding for PEP

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Thomas, R.H.

    1974-01-01

    The first stage of construction of PEP will consist of electron and positron storage rings. At a later date a 200 GeV proton storage ring may be added. It is judicious therefore, to ensure that the first and second phases of construction are compatible with each other. One of several factors determining the elevation at which the storage rings will be constructed is the necessity to provide adequate radiation shielding. The overhead shielding of PEP is determined by the reproduction of neutrons in the hadron cascade generated by primary protons lost from the storage ring. The minimum overburden planned for PEP is 5.5 meters of earth (1100 gm cm/sup /minus/2/). To obtain a rough estimate of the magnitude of the muon radiation problem this note presents some preliminary calculations. Their purpose is intended merely to show that the presently proposed design for PEP will present no major shielding problems should the protons storage ring be installed. More detailed calculations will be made using muon yield computer codes developed at CERN and NAL and muon transport codes developed at SLAC, when details of the proton storage ring become settled. 9 refs., 4 figs

  19. Rare muon decays and lepton-family number conservation

    International Nuclear Information System (INIS)

    Hoffman, C.M.

    1984-04-01

    A brief historical survey of the discovery of the muon, interest in neutrinoless processes, and lepton-number conservation laws is given. The present view of lepton-number conservation laws and the search for μ → eγ are described. Other experiments are discussed including μ + → e + e + e - decay, μ - Z → e - Z reactions, μ → e γγ decay, other rare muon processes, strangeness-changing muon-number-nonconserving decays, and tau decays. 52 references

  20. Inclusive anomalous muon production in e+e- annihilation

    International Nuclear Information System (INIS)

    Feldman, G.J.; Bulos, F.; Lueke, D.; Abrams, G.S.; Alam, M.S.; Boyarski, A.M.; Breidenbach, M.; Dorfan, J.; Friedberg, C.E.; Fryberger, D.; Goldhaber, G.; Hanson, G.; Heile, F.B.; Jaros, J.A.; Kadyk, J.A.; Larsen, R.R.; Litke, A.M.; Lueth, V.; Madaras, R.J.; Morehouse, C.C.; Nguyen, H.K.; Paterson, J.M.; Perl, M.L.; Peruzzi, I.; Piccolo, M.; Pierre, F.M.; Pun, T.P.; Rapidis, P.; Richter, B.; Sadoulet, B.; Schwitters, R.F.; Tanenbaum, W.; Trilling, G.H.; Vannucci, F.; Whitaker, J.S.; Wiss, J.E.

    1977-01-01

    We present measurements of inclusive anomalous muon production in e + e - annihilations in three energy ranges. In all three ranges we observe a large anomalous muon production rate in two-prong events which is compatible with the expected decays of pairs of heavy leptons. In the highest energy range there is also appreciable anomalous muon production in multiprong events which, due to its magnitude and momentum dependence, must come in part from a source other than a heavy lepton

  1. Charge exchange of muons in gases

    International Nuclear Information System (INIS)

    Turner, R.E.; Senba, M.

    1983-06-01

    The effects of the charge exchange process on muon spin dynamics have been investigated using a density operator formalism with special interest placed upon the diamagnetic muon and paramagnetic muonium signals observed after thermalization. In the charge exchange region the dynamics of the spin density operator is assumed to be determined by the muonium hyperfine interaction and by electron capture and loss processes for muons. Analytical expressions are obtained for the amplitudes and phases of the diamagnetic muon and paramagnetic muonium signals as a function of the duration of the charge exchange region, tsub(c), which is inversely proportional to the number density of the moderating gas. The theoretical signals exhibit three features which have, as yet, to be experimentally observed, namely: i) that the amplitudes associated with the muonium Larmor frequency and with the hyperfine frequency are not, in general, equal, ii) that all the amplitudes are, in general, damped oscillatory functions of tsub(c) (temperature/pressure) and iii) that phase jumps occur when an amplitude decreases to zero and then increases with falling pressure. Fits to the experimental argon data are discussed in light of the above points

  2. The CMS Muon System Alignment

    CERN Document Server

    Martinez Ruiz-Del-Arbol, P

    2009-01-01

    The alignment of the muon system of CMS is performed using different techniques: photogrammetry measurements, optical alignment and alignment with tracks. For track-based alignment, several methods are employed, ranging from a hit and impact point (HIP) algorithm and a procedure exploiting chamber overlaps to a global fit method based on the Millepede approach. For start-up alignment as long as available integrated luminosity is still significantly limiting the size of the muon sample from collisions, cosmic muon and beam halo signatures play a very strong role. During the last commissioning runs in 2008 the first aligned geometries have been produced and validated with data. The CMS offline computing infrastructure has been used in order to perform improved reconstructions. We present the computational aspects related to the calculation of alignment constants at the CERN Analysis Facility (CAF), the production and population of databases and the validation and performance in the official reconstruction. Also...

  3. Charge exchange of muons in gases. Kinetic equations

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    Kinetic equations for the spin-density operators of the diamagnetic and paramagnetic states of the positive muon are obtained for the description of the slowing-down process encountered when high-energy muons thermalize in a single-component gas. The motion of this two-species system is generated by the Liouville superoperators associated with the diamagnetic and paramagnetic spin Hamiltonians and by time-dependent rate superoperators which depict the probabilities per collision that an electron is captured or lost. These rates are translational averages of the appropriate Boltzmann collision operators. That is, they are momentum and position integrals of the product of either the electron capture or loss total cross section with the single-particle translational density operators for the muon (or muonium) and a gas particle. These rates are time dependent because the muon (or muonium) translational density operator is time dependent. The initial amplitudes and phases of the observed thermal spin polarization in muon-spin-rotation (μSR) experiments are then obtained in terms of the spin-density operators emerging from the stopping regime

  4. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  5. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  6. The Level-1 Global Muon Trigger for the CMS Experiment

    OpenAIRE

    Sakulin, H; Taurok, Anton

    2003-01-01

    The three independent Level-1 muon trigger systems in CMS deliver up to 16 muon candidates per bunch crossing, each described by transverse momentum, direction, charge and quality. The Global Muon Trigger combines these measurements in order to find the best four muon candidates in the entire detector and attaches bits from the calorimeter trigger to denote calorimetric isolation and confirmation. A single-board logic design is presented: via a special front panel and a custom back plane more...

  7. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  8. Characteristics of the NE-213 large-volume neutron counters for muon catalyzed fusion investigation

    International Nuclear Information System (INIS)

    Bystritsky, V.M.; Wozniak, J.; Zinov, V.G.

    1984-01-01

    The Monte-Carlo method was used to establish the properties and feasibility of a large-volume NE-213 scin illator as an efficient neutron detector. The recoil proton spectra, calculated efficiencies for different detection thresholds and scintillator sizes are presented for the neutron energy up to 15 MeV. The time characteristics, e. g., time resolution, are discussed. It is also shown that no strong influence of light attenuation by the scintilla or itself on calculated efficiencies is observed, when gamma-calibration technique is used. The detector vol me of approximately 100 l is suggested for application in investigations of μ-atom and μ-molecular processes

  9. Measurements of the electron and muon inclusive cross-sections

    Indian Academy of Sciences (India)

    We present the measurements of the differential cross-sections for inclusive electron and muon production in proton–proton collisions at a centre-of-mass energy of s = 7 TeV, using ∼ 1.4 pb-1 of data collected by the ATLAS detector at the Large Hadron Collider. The muon cross-section is measured as a function of muon ...

  10. Solar diurnal anisotropy measured using muons in GRAPES-3 ...

    Indian Academy of Sciences (India)

    The mean energy of muons at sea level is ∼4 GeV with a rel- .... of decays of mesons and muons work against each other resulting in temperature coef- ..... The mean muon rate of 16 modules measured every 15 min for one week interval from .... 4. 8. 12. 16. 20. 24. Hours. Figure 12. Solar diurnal anisotropy measured in ...

  11. Muon reconstruction with a geometrical model in JUNO

    Science.gov (United States)

    Genster, C.; Schever, M.; Ludhova, L.; Soiron, M.; Stahl, A.; Wiebusch, C.

    2018-03-01

    The Jiangmen Neutrino Underground Observatory (JUNO) is a 20 kton liquid scintillator detector currently under construction near Kaiping in China. The physics program focuses on the determination of the neutrino mass hierarchy with reactor anti-neutrinos. For this purpose, JUNO is located 650 m underground with a distance of 53 km to two nuclear power plants. As a result, it is exposed to a muon flux that requires a precise muon reconstruction to make a veto of cosmogenic backgrounds viable. Established muon tracking algorithms use time residuals to a track hypothesis. We developed an alternative muon tracking algorithm that utilizes the geometrical shape of the fastest light. It models the full shape of the first, direct light produced along the muon track. From the intersection with the spherical PMT array, the track parameters are extracted with a likelihood fit. The algorithm finds a selection of PMTs based on their first hit times and charges. Subsequently, it fits on timing information only. On a sample of through-going muons with a full simulation of readout electronics, we report a spatial resolution of 20 cm of distance from the detector's center and an angular resolution of 1.6o over the whole detector. Additionally, a dead time estimation is performed to measure the impact of the muon veto. Including the step of waveform reconstruction on top of the track reconstruction, a loss in exposure of only 4% can be achieved compared to the case of a perfect tracking algorithm. When including only the PMT time resolution, but no further electronics simulation and waveform reconstruction, the exposure loss is only 1%.

  12. Muon diffusion in noble metals

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Bokema, C.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Dodds, S.A.; MacLaughlin, D.E.; Richards, P.M.

    1983-01-01

    Diffusion-induced muon depolarization in dilute AgGd and AgEr were measured in the temperature range 200-700 K and have thereby determined the muon diffusion parameters in Ag. The diffusion parameters for μ + in Cu, Ag, and Au are compared with those of hydrogen. For Ag and Au, the μ + parameters are similar to those of hydrogen, whereas for Cu, the μ + parameters are much smaller. Lattice-activated tunneling and over-barrier hopping are investigated with computational models. 15 references, 1 figure, 2 tables

  13. The Muon-Induced Neutron Indirect-Detection EXperiment. MINIDEX

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Matteo

    2016-06-06

    A new experiment to measure muon-induced neutrons is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, is presented and its installation and commissioning in the Tuebingen Shallow Underground Laboratory are described. Results from its first data taking period, run I, are presented. Muon-induced neutrons are not only an interesting physics topic by itself, but they are also an important source of background in searches for possible new rare phenomena like neutrinoless double beta decay or directly observable interactions of dark matter. These subjects are of great importance to understand the development of the early universe. Therefore, a new generation of ton-scale experiments which require extremely low background levels is under consideration. Reliable Monte Carlo simulations are needed to design such future experiments and estimate their background levels and sensitivities. The background due to muon-induced neutrons is hard to estimate, because of inconsistencies between different experimental results and discrepancies between measurements and Monte Carlo predictions. Especially for neutron production in high-Z materials, more experimental data and related simulation studies are clearly needed. MINIDEX addresses exactly this subject. Already the first five months of data taking provided valuable data on neutron production, propagation and interaction in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions are presented. In particular, the predictions of two Monte Carlo packages, based on GEANT4, are compared to the data. The data show an overall 70-100% higher rate of muon-induced events than predicted by the Monte Carlo packages. These packages also predict a faster time evolution of the muon-induced signal than observed in the data. Nevertheless, the time until the signal from the muon-induced events is completely collected was correctly predicted by the Monte Carlos. MINIDEX is foreseen

  14. New target solution for a muon collider or a muon-decay neutrino beam facility: The granular waterfall target

    Directory of Open Access Journals (Sweden)

    Han-Jie Cai

    2017-02-01

    Full Text Available A new target solution, the granular waterfall target, is proposed here for a muon collider or a muon-decay neutrino beam facility, especially for the moment which adopts a 15 MW continuous-wave (cw superconducting linac. Compared to the mercury jet target, the granular waterfall target works by a much simpler mechanism which can operate with a much more powerful beam, which are indicated by the detailed investigations into the heat depositions and the evaluations of the temperature increases for different target concepts. By varying proton beam kinetic energy and the geometrical parameters of the waterfall target, an overall understanding of the figure of merit concerning muon production for this target concept as the target solutions of the long-baseline neutrino factory and the medium-baseline moment is obtained. With 8 GeV beam energy and the optimal geometrical parameters, the influence on muon yield by adopting different beam-target interaction parameters is explored. Studies and discussions of the design details concerning beam dumping are also presented.

  15. Muon g-2 Reconstruction and Analysis Framework for the Muon Anomalous Precession Frequency

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, Kim Siang [Washington U., Seattle

    2017-10-21

    The Muon g-2 experiment at Fermilab, with the aim to measure the muon anomalous magnetic moment to an unprecedented level of 140~ppb, has started beam and detector commissioning in Summer 2017. To deal with incoming data projected to be around tens of petabytes, a robust data reconstruction and analysis chain based on Fermilab's \\textit{art} event-processing framework is developed. Herein, I report the current status of the framework, together with its novel features such as multi-threaded algorithms for online data quality monitor (DQM) and fast-turnaround operation (nearline). Performance of the framework during the commissioning run is also discussed.

  16. A windowless frozen hydrogen target system

    International Nuclear Information System (INIS)

    Knowles, P.E.; Beer, G.A.; Beveridge, J.L.

    1995-06-01

    A cryogenic target system has been constructed in which gaseous mixtures of all three hydrogen isotopes have been frozen onto a thin, 65 mm diameter gold foil. The foil is cooled to 3 K while inside a 70 K radiation shield, all of which is mounted in a vacuum system maintained at 10 -9 torr. Stable multi-layer hydrogen targets of known uniformity and thickness have been maintained for required measurement times of up to several days. To date, hundreds of targets have been successfully used in muon-catalyzed fusion experiments at TRIUMF. (author). 12 refs., 6 figs

  17. The Muon g-2 Experiment Overview and Status

    Energy Technology Data Exchange (ETDEWEB)

    Holzbauer, J. L. [Mississippi U.

    2017-12-16

    The Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 parts per billion, which is a factor of four improvement over the previous E821 measurement at Brookhaven. The experiment will also extend the search for the muon electric dipole moment (EDM) by approximately two orders of magnitude. Both of these measurements are made by combining a precise measurement of the 1.45T storage ring magnetic field with an analysis of the modulation of the decay rate of the higher-energy positrons from the (anti-)muon decays recorded by 24 calorimeters and 3 straw tracking detectors. The current status of the experiment as well as results from the initial beam delivery and commissioning run in the summer of 2017 will be discussed.

  18. Optimized capture section for a muon accelerator front end

    Directory of Open Access Journals (Sweden)

    Hisham Kamal Sayed

    2014-07-01

    Full Text Available In a muon accelerator complex, a target is bombarded by a multi-MW proton beam to produce pions, which decay into the muons which are thereafter bunched, cooled, and accelerated. The front end of the complex captures those pions, then manipulates their phase space, and that of the muons into which they decay, to maximize the number of muons within the acceptance of the downstream systems. The secondary pion beam produced at the target is captured by a high field target solenoid that tapers down to a constant field throughout the rest of the front end. In this study we enhance the useful muon flux by introducing a new design of the longitudinal profile of the solenoid field at, and downstream of, the target. We find that the useful muon flux exiting the front end is larger when the field at the target is higher, the distance over which the field tapers down is shorter, and the field at the end of the taper is higher. We describe how the solenoid field profile impacts the transverse and longitudinal phase space of the beam and thereby leads to these dependencies.

  19. ATLAS proton-proton event containing four muons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event with four identified muons from a proton-proton collision in ATLAS. This event is consistent with coming from two Z particles decaying: both Z particles decay to two muons each. Such events are produced by Standard Model processes without Higgs particles. They are also a possible signature for Higgs particle production, but many events must be analysed together in order to tell if there is a Higgs signal. This view is a zoom into the central part of the detector. The four muons are picked out as red tracks. Other tracks and deposits of energy in the calorimeters are shown in yellow.

  20. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  1. Charged current weak interaction of polarized muons

    International Nuclear Information System (INIS)

    Smadja, G.; Vesztergombi, G.

    1983-01-01

    The polarization of the muon beam can be used to test the presence of right-handed couplings in charged current interaction of muons in process μ+N->#betta#+X. The experimental feasibility and the limits which can be obtained on the mass of right-handed intermediate boson are discussed. (orig.)

  2. ATLAS detector records its first curved muon

    CERN Multimedia

    2007-01-01

    The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet. This was an important test of the chambers in their final configurations, and marked the first triggering and measurement of curved cosmic ray muons in ATLAS.

  3. Neutron Production by Muon Spallation I: Theory

    International Nuclear Information System (INIS)

    Luu, T; Hagmann, C

    2006-01-01

    We describe the physics and codes developed in the Muon Physics Package. This package is a self-contained Fortran90 module that is intended to be used with the Monte Carlo package MCNPX. We calculate simulated energy spectra, multiplicities, and angular distributions of direct neutrons and pions from muon spallation

  4. Simulations of muon-induced neutron flux at large depths underground

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.; Spooner, N.J.C.; McMillan, J.E.

    2003-01-01

    The production of neutrons by cosmic-ray muons at large depths underground is discussed. The most recent versions of the muon propagation code MUSIC, and particle transport code FLUKA are used to evaluate muon and neutron fluxes. The results of simulations are compared with experimental data

  5. The Level-1 Tile-Muon Trigger in the Tile Calorimeter upgrade program

    International Nuclear Information System (INIS)

    Ryzhov, A.

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's outermost radial layer can assist in muon tagging in the Level-1 Muon Trigger by rejecting fake muon triggers due to slow charged particles (typically protons) without degrading the efficiency of the trigger. The main activity of the Tile-Muon Trigger in the ATLAS Phase-0 upgrade program was to install and to activate the TileCal signal processor module for providing trigger inputs to the Level-1 Muon Trigger. This report describes the Tile-Muon Trigger, focusing on the new detector electronics such as the Tile Muon Digitizer Board (TMDB) that receives, digitizes and then provides the signal from eight TileCal modules to three Level-1 muon endcap Sector-Logic Boards.

  6. Muon identification algorithms in ATLAS Poster for EPS-HEP 2009

    CERN Document Server

    Resende, B; The ATLAS collaboration

    2009-01-01

    In the midst of the intense activity that will arise from the proton-proton collisions at the LHC, muons will be very useful to spot rare events of interest. The good resolution expected for their momentum measurement shall also make them powerful tools in event reconstruction. Muon identification will thus be a crucial issue in the ATLAS experiment at the LHC. Their charged tracks can be reconstructed in the external spectrometer only, but the combination of such "stand-alone" tracks with tracks from the inner detector shall increase the precision and reliablilty of the reconstructed muon. This is particularly true in the lower part of the pT spectrum, where the inner detector is more performant. We will present here the various strategies for combined muon identification in the ATLAS experiment. The main algorithms, called Staco and Muid, perform the combination of existing tracks in the inner detector and in the muon spectrometer, allowing the best identification of muon tracks. Their efficiency is complet...

  7. The performance of the Muon Veto of the Gerda experiment

    Energy Technology Data Exchange (ETDEWEB)

    Freund, K.; Falkenstein, R.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Ritter, F.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Lubsandorzhiev, B. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Jitnikov, I.; Shevchik, E.; Shirchenko, M.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-05-15

    Low background experiments need a suppression of cosmogenically induced events. The Gerda experiment located at Lngs is searching for the 0νββ decay of {sup 76}Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the water tank surrounding the Gerda cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of ε{sub μd} = (99.935 ± 0.015)% was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of ε{sub μr} = (99.2{sub -0.4}{sup +0.3})% was found. Without veto condition the muons by themselves would cause a background index of BI{sub μ} = (3.16 ± 0.85) x 10{sup -3} cts/(keV . kg . year) at Q{sub ββ}. (orig.)

  8. Energy spectrum and angular distribution of prompt cosmic-ray muons

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Picchi, P [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale); Castellina, A; D' Ettorre Piazzoli, B; Mannocchi, G; Vernetto, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1984-07-01

    The energy spectrum and angular distribution of atmospheric prompt muons are calculated by using an integral solution for production of charmed particles, their decay and muon transport in the atmosphere. Current experimental information from accelerator and theoretical ideas about charm cross-section and semi-leptonic decay are used to give a reference prompt muon spectrum to compare with that from conventional sources (..pi.. and K decay). The obtained differential spectrum has an energy dependence which approaches that of the primary cosmic rays. The integral intensity of prompt muons is equal to the conventional one at about 250 TeV. The angular distribution is found to be practically flat in the range (0/80)/sup 0/ irrespective of the muon energy. On the basis of this analysis we estimate that accurate measurements of muon energy spectrum and angular distribution at energies greater than 10 TeV should allow one to obtain useful information regarding charm hadroproduction cross-section in the 100 TeV region.

  9. Phenomenology of muon number violation in spontaneously broken gauge theories

    International Nuclear Information System (INIS)

    Shanker, O.U.

    1980-01-01

    The phenomenology of muon number violation in gauge theories of weak and electromagnetic interactions is studied. In the first chapter a brief introduction to the concept of muon number and to spontaneously broken gauge theories is given. A review of the phenomenology and experimental situation regarding different muon number violating processes is made in the second chapter. A detailed phenomenological study of the μe conversion process μ - + (A,Z) → e - + (A,Z) is given in the third chapter. In the fourth chapter some specific gauge theories incorporating spontaneously broken horizontal gauge symmetries between different fermion generations are discussed with special reference to muon number violation in the theories. The μe conversion process seems to be a good process to search for muon number violation if it occurs. The K/sub L/-K/sub S/ mass difference is likely to constrain muon number violating rates to lie far below present experimental limits unless strangeness changing neutral currents changing strangeness by two units are suppressed

  10. Muon reconstruction performance of the ATLAS detector in 2016

    CERN Document Server

    Marchese, Luigi; The ATLAS collaboration

    2017-01-01

    Muons are of key importance to study some of the most interesting physics topics at the LHC. We show the status of the performance of the muon reconstruction in the analysis of proton-proton collisions at the LHC, recorded by the ATLAS detector in 2016. Reconstruction efficiency and momentum resolution have been measured using "$J/\\psi$" and "$Z$" decays for different classes of reconstructed muons.

  11. An rf separator for cloud muons at TRIUMF

    International Nuclear Information System (INIS)

    Macdonald, J.A.; Blackmore, E.W.; Bryman, D.A.; Doornbos, J.; Erdman, K.L.; Pearce, R.M.; Poirier, R.L.; Poutissou, J-M.; Spuller, J.

    1983-03-01

    A particle separator utilizing a magnetic field crossed with an rf electric field has been built and incorporated into the M9 secondary channel to produce a clean negative muon beam at 77 MeV/c +- 5 %. The separator is driven at the main cyclotron frequency (23 MHz) and is phase locked to the primary proton beam. Separation is achieved by using the temporal and velocity differences between the muons produced near the production target (cloud muons), and the pion and electron contaminants in the beam

  12. Mass limits for the muon neutrino

    International Nuclear Information System (INIS)

    Hoffman, C.M.; Sandberg, V.D.

    1982-01-01

    The possibility of improving the present limit on the mass of the muon neutrino is discussed. It is found that decays of muons and pions are not useful means to significantly improve this limit. On the other hand, the decays K 0 /sub L/ → π/sup +-/μ/sup -+/nu/sub μ/ and K + → π 0 μ + nu/sub μ/ appear to be quite promising. Possible experiments are discussed

  13. Muon Colliders: the Ultimate Neutrino Beamlines

    International Nuclear Information System (INIS)

    King, Bruce J.

    1999-01-01

    It is shown that muon decays in straight sections of muon collider rings will naturally produce highly collimated neutrino beams that can be several orders of magnitude stronger than the beams at existing accelerators. We discuss possible experimental setups and give a very brief overview of the physics potential from such beamlines. Formulae are given for the neutrino event rates at both short and long baseline neutrino experiments in these beams

  14. Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\\sqrt{s} = $ 13 TeV

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Seva, Tomislav; Starling, Elizabeth; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Salva Diblen, Sinem; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Vit, Martina; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; Caudron, Adrien; David, Pieter; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Jing; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdalla, Hassan; Assran, Yasser; Mohamed, Amr; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Leloup, Clément; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Granier de Cassagnac, Raphael; Jo, Mihee; Kucher, Inna; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Juillot, Pierre; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Zhang, Sijing; Lomidze, Irakli; Toriashvili, Tengizi; Bagaturia, Iuri; Lomidze, David; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Philipps, Barthel; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Zantis, Franz Peter; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Kousouris, Konstantinos; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Dhingra, Nitish; Kaur, Anterpreet; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Chauhan, Sushil; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Bhowmik, Debabrata; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Rout, Prasant Kumar; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Singh, Bipen; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Errico, Filippo; Fiore, Luigi; Franco, Michele; Iaselli, Giuseppe; Lacalamita, Nicola; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Martiradonna, Sabino; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Balbi, Gabriele; Baldanza, Casimiro; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Cafaro, Vittorio Domenico; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giordano, Vincenzo; Grandi, Claudio; Guiducci, Luigi; Iemmi, Fabio; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Caponero, Michele; Fabbri, Franco; Ferrini, Mauro; Passamonti, Luciano; Piccolo, Davide; Pierluigi, Daniele; Primavera, Federica; Russo, Alessandro; Saviano, Giovanna; Calvelli, Valerio; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Barcellan, Lorenzo; Bellato, Marco; Benato, Lisa; Benettoni, Massimo; Biasotto, Massimo; Bisello, Dario; Boletti, Alessio; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Ciano, Luca; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Fantinel, Sergio; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Gulmini, Michele; Isocrate, Roberto; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Mocellin, Giovanni; Montecassiano, Fabio; Passaseo, Marina; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Sgaravatto, Massimo; Simonetto, Franco; Tiko, Andres; Toniolo, Nicola; Torassa, Ezio; Ventura, Sandro; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bianchini, Lorenzo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Cotto, Giorgio; Covarelli, Roberto; Dattola, Domenico; De Remigis, Paolo; Dellacasa, Giulio; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Mazza, Giovanni; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Rotondo, Francesco; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Reyes-Almanza, Rogelio; Ramirez-Sanchez, Gabriel; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Bheesette, Srinidhi; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hassan, Qamar; Hoorani, Hafeez R; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Ershov, Yuri; Evdokimov, Anton; Gavrilenko, Mikhail; Golunov, Alexander; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kurenkov, Alexander; Lanev, Alexander; Makankin, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Vasilyev, Sergey; Voytishin, Nikolay; Zarubin, Anatoli; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Polikarpov, Sergey; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Bogdanova, Galina; Boos, Edouard; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Volkov, Vladimir; Blinov, Vladimir; Shtol, Dmitry; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Bachiller, Irene; Barrio Luna, Mar; Calvo, Enrique; Cela Ruiz, José Manuel; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Francia Ferrero, David; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Navarro Tobar, Álvaro; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Redondo Ferrero, David Daniel; Romero, Luciano; Sastre, Javier; Senghi Soares, Mara; Triossi, Andrea; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Curras, Esteban; Duarte Campderros, Jordi; Fernandez, Marcos; Fernández Manteca, Pedro José; Garcia-Ferrero, Juan; García Alonso, Andrea; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Prieels, Cédric; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Gulhan, Doga; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pitters, Florian Michael; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Klijnsma, Thomas; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Reichmann, Michael; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Candelise, Vieri; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Bakirci, Mustafa Numan; Bat, Ayse; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Tali, Bayram; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Agaras, Merve Nazlim; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Di Maria, Riccardo; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Morton, Alexander; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Stolp, Dustin; Taylor, Devin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Bunn, Julian; Dutta, Irene; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; MacDonald, Emily; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Cheng, Yangyang; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Weimin; Acosta, Darin; Avery, Paul; Barashko, Victor; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Madorsky, Alexander; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Harris, Philip; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Hiltbrand, Joshua; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Folgueras, Santiago; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Parashar, Neeti; Stupak, John; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Guilbaud, Maxime; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Gutierrez, Alfredo; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Rekovic, Vladimir; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Woods, Nathaniel

    2018-01-01

    The CMS muon detector system, muon reconstruction software, and high-level trigger underwent significant changes in 2013-2014 in preparation for running at higher LHC collision energy and instantaneous luminosity. The performance of the modified system is studied using proton-proton collision data at center-of-mass energy $\\sqrt{s} = $ 13 TeV, collected at the LHC in 2015 and 2016. The measured performance parameters, including spatial resolution, efficiency, and timing, are found to meet all design specifications and are well reproduced by simulation. Despite the more challenging running conditions, the modified muon system is found to perform as well as, and in many aspects better than, previously.

  15. Muon radiography method for fundamental and applied research

    Science.gov (United States)

    Alexandrov, A. B.; Vladymyrov, M. S.; Galkin, V. I.; Goncharova, L. A.; Grachev, V. M.; Vasina, S. G.; Konovalova, N. S.; Malovichko, A. A.; Managadze, A. K.; Okat'eva, N. M.; Polukhina, N. G.; Roganova, T. M.; Starkov, N. I.; Tioukov, V. E.; Chernyavsky, M. M.; Shchedrina, T. V.

    2017-12-01

    This paper focuses on the basic principles of the muon radiography method, reviews the major muon radiography experiments, and presents the first results in Russia obtained by the authors using this method based on emulsion track detectors.

  16. Studies of scintillator-based muon triggers in CMS

    Energy Technology Data Exchange (ETDEWEB)

    Scheuch, Florian

    2017-03-16

    The CMS experiment at the LHC will face challenges due to upgrades and improvements of the LHC in future. Especially, the upgrade towards the high luminosity LHC in 2025 with a foreseen center of mass energy of 14 TeV, an instantaneous luminosity of O(10{sup 35} cm{sup -2} s{sup -1}) and the concurrent aging of and radiation damage to the detectors will have an impact on the fast CMS trigger system and the CMS sub-detectors. Especially, the impact on the CMS muon system - and more particular on the drift tube (DT) system - is of vital interest. In order to respond to these challenges the performance of the DT system as part of the L1 muon trigger and the use of a scintillator-based muon trigger as supportive detector are analyzed in this thesis. First, the concept of such a scintillator-based muon trigger, the Muon Track fast Tag (MTT), as support for the DT trigger system, is presented. The conducted related R and D is described. Exploiting the similarity of the MTT concept and the existing hadron outer calorimeter (HO), studies are presented that evaluate the impact of the challenges on the L1 Trigger as well as the potential of the HO detector as a possible response to these challenges. It is shown that the HO detector can be of help in case of DT detector failures and it is able to improve the muon recognition of the DT detector in the L1 Trigger. The reduction of L1 muon ambiguities with the HO detector is found to be not feasible. The results, that were obtained using HO, are extrapolated towards the MTT concept. The MTT concept is rated as valuable backup solution that, however, will not increase the benefit above the HO detector in the presented application scenarios. After a summary of the performed analyses, the conclusion is drawn, that the HO detector should be included into the L1 Trigger decision. The initiated upgrade process of the HO integration into the L1 muon trigger, that was motivated by these studies, is presented. The preceding upgrade of HO

  17. Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz Angelina [IIT, Chicago; Snopok, Pavel [IIT, Chicago; Neuffer, David [Fermilab; Rogers, Chris [Rutherford

    2017-10-12

    The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.

  18. Status of Neutrino Factory R and D within the Muon Collaboration

    International Nuclear Information System (INIS)

    Rajendran Raja

    2004-01-01

    The authors describe the current status of the research within the Muon Collaboration towards realizing a Neutrino Factory. The authors describe briefly the physics motivation behind the neutrino factory approach to studying neutrino oscillations and the longer term goal of building the Muon Collider. The benefits of a step by step staged approach of building a proton driver, collecting and cooling muons followed by the acceleration and storage of cooled muons are emphasized. Several usages of cooled muons open up at each new stage in such an approach and new physics opportunities are realized at the completion of each stage

  19. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere-Institut de recherche sur les lois fondamentales de l' Univers-Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC)-Universitat Politecnica de Valencia. C/ Paranimf 1, 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); and others

    2012-05-21

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  20. The Level-1 Tile-Muon Trigger in the Tile Calorimeter Upgrade Program

    CERN Document Server

    Ryzhov, Andrey; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). The TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's last radial layer can assist in muon tagging using Level-1 muon trigger. It can help in the rejection of fake muon triggers arising from background radiation (slow charged particles - protons) without degrading the efficiency of the trigger. The TileCal main activity for Phase-0 upgrade ATLAS program (2013-2014) was the activation of the TileCal third layer signal for assisting the muon trigger at 1.0<|η|<1.3 (Tile-Muon Trigger). This report describes the Tile-Muon Trigger at TileCal upgrade activities, focusing on the new on-detector electronics such as Tile Muon Digitizer Board (TMDB) to provide (receive and digitize) the signal from eight TileCal modules to three Level-1 muon endcap sector logic blocks.

  1. Atmospheric muons reconstruction with Antares; Reconstruction de muons atmospheriques avec ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Melissas, M

    2007-09-15

    The ANTARES collaboration is building a neutrino telescope in the Mediterranean Sea. This detector contains 900 photomultiplier tubes, dispatched on 12 lines, in order to detect Cerenkov light from muon induced by neutrino interactions in the the vicinity of the detector. Currently the first 5 lines have been deployed. A first task consists in studying the stability of the detector calibration, which is a necessary step to understand the detector response. Then we studied optical properties of water, for this we developed a reconstruction method dedicated to LED Beacon. The extracted parameters are compatible with earlier measurements. A quality criteria to reject badly reconstructed track has been developed based on the likelihood of the tracks fit versus point fit. This has been applied to real data and a preliminary analysis of atmospheric muons with a 5-lines detector is performed. (author)

  2. Search for the neutrinoless muon decay μ+ → e+γ

    International Nuclear Information System (INIS)

    Wilson, S.L.

    1985-07-01

    Separate muon, electron, and tau numbers are conserved in the minimal standard model of electroweak interactions with massless neutrinos. However, in many extensions to the standard model, separate lepton numbers are not expected to be conserved quantities. A new search for muon number non-conserving processes has been undertaken at the Los Alamos Meson Physics Facility (LAMPF), specifically to look for three neutrinoless decay modes of the muon. The search for the decay of a muon to an electron and a photon is discussed here. A new detector facility, located in the LAMPF stopped muon channel, was developed for this experiment. This Crystal Box detector consists of a cylindrical drift chamber surrounded by a plastic scintillator hodoscope and a large solid angle, modularized, NaI(Tl) calorimeter. The apparatus measures the trajectories, relative timing, and energies of charged particles and photons from the decays of positive muons stopped in a central target. The assembly and calibration of the detector are described, and the procedure for taking data is discussed. The sample of 1.3 million candidate events, from the first data run of the Crystal Box, was analyzed using a maximum-likelihood method. The upper limit on the branching ratio, relative to normal muon decay, for a muon decaying to an electron and a photon is found to be consistent with previous measurements. With 90% confidence, the branching ratio for this neutrinoless decay is observed to be less than 2.8 x 10 10

  3. Muon-flux measurements for SHiP at H4

    CERN Document Server

    van Herwijnen, E

    2017-01-01

    A major concern for the design of the SHiP experiment is the lack of a precise knowledge of the muon flux. This is a proposal to measure the expected muon flux in the SHiP experiment by installing a replica of the SHiP target in a 400 GeV/c proton beam at H4. We intend building a spectrometer using the drift tube prototypes that were constructed for OPERA. A muon tagger will be built using RPCs, which will also serve as a module-0 for SHiP. We propose to do this measurement in early 2018. Accumulating $\\sim 10^{11}$ 400 GeV/c POT will enable us to make a more realistic design of the muon shield. With some modifications, this setup can also be used to measure the charm cross section (including the cascade production). We intend to test this setup after the measurement of the muon flux.

  4. Precision Muon Tracking Detectors for High-Energy Hadron Colliders

    CERN Document Server

    Gadow, Philipp; Kroha, Hubert; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimized for mass production and provide sense wire positioning accuracy of better than 10 ?m. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and gamma-rays, by an order of magnitude, which is sufficient for almost the whole muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  5. Gravitational effects on measurements of the muon dipole moments

    Directory of Open Access Journals (Sweden)

    Andrew Kobach

    2016-10-01

    Full Text Available If the technology for muon storage rings one day permits sensitivity to precession at the order of 10−8 Hz, the local gravitational field of Earth can be a dominant contribution to the precession of the muon, which, if ignored, can fake the signal for a nonzero muon electric dipole moment (EDM. Specifically, the effects of Earth's gravity on the motion of a muon's spin is indistinguishable from it having a nonzero EDM of magnitude dμ∼10−29 ecm in a storage ring with vertical magnetic field of ∼1 T, which is significantly larger than the expected upper limit in the Standard Model, dμ≲10−36 ecm. As a corollary, measurements of Earth's local gravitational field using stored muons would be a unique test to distinguish classical gravity from general relativity with a bonafide quantum mechanical entity, i.e., an elementary particle's spin.

  6. Muon reconstruction and the search for leptoquarks at LHC

    CERN Document Server

    Ruckert, B

    2006-01-01

    This diploma thesis focuses on the reconstruction of high-energetic muons. This simulation study was performed within the ATLAS experiment at the Large Hadron Collider (LHC) which is a pp-collider with a centre-of-mass energy p s = 14 TeV. The purpose of this study was to identify muons with strongly overestimated transverse momentum using Monte Carlo simulated data which has been generated using Pythia and run through a full detector simulation. These muons can lead to a faked leptoquark signal, as leptoquark-decays can include high-energetic muons. If leptoquarks exist, only a small number of such events is expected which makes the safe momentum measurement a crucial point. To achieve an optimal reconstruction, selection criteria have been developed which compare the track’s 2, the particle’s -direction and the reconstructed pT s from the different reconstruction algorithms, namely the inner detector standalone reconstruction, the muon spectrometer standalone reconstruction and a combination of both. Th...

  7. The muon trigger of the SAPHIR shower detector

    International Nuclear Information System (INIS)

    Rufeger-Hurek, H.

    1989-12-01

    The muon trigger system of the SAPHIR shower counter consists of 4 scintillation counters. The total trigger rate of cosmic muons is about 55 Hz which is reduced to about 45 Hz by the selecting algorithms. This rate of clean muon events allows a simultaneous monitoring of the whole electronics system and the calibration of the gas sandwich detector by measuring the gas gain. The dependences of the signals on the geometry have been simulated with the help of a Monte Carlo program. The comparison of simulated and measured pulse heights shows that faults in the electronics as well as defects in the detector hardware, e.g., the HV system, or temperature effects, can be recognized at the level of a few percent. In addition the muon signals are used to determine the calibration factor for each cathode channel individually. (orig.) [de

  8. Image characterization metrics for muon tomography

    Science.gov (United States)

    Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt

    2014-05-01

    Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.

  9. Generation of low-energy muons with laser resonant ionization

    International Nuclear Information System (INIS)

    Matsuda, Y.; Bakule, P.; Iwasaki, M.; Matsuzaki, T.; Miyake, Y.; Ikedo, Y.; Strasser, P.; Shimomura, K.; Makimura, S.; Nagamine, K.

    2006-01-01

    We have constructed a low-energy muSR spectrometer at RIKEN-RAL muon facility in ISIS, the UK. With low-background of pulsed muon beam, and short pulse width from laser resonant ionization method, it is hoped this instrument will open new possibilities for studies of material sciences with muon beam. It is enphasized that this method is well suited to the facility where intense pulsed proton beam is available

  10. Characterization of the atmospheric muon flux in IceCube

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yáñez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2016-05-01

    Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.

  11. Overview of the Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, SeungCheon [Cornell U., Phys. Dept.

    2015-01-01

    The measurement of the anomalous magnetic moment of muon provides a precision test of the Standard Model. The Brookhaven muon g-2 experiment (E821) measured the muon magnetic moment anomaly with 0.54 ppm precision, a more than 3 deviation from the Standard Model predictions, spurring speculation about the possibility of new physics. The new g-2 experiment at Fermilab (E989) will reduce the combined statistical and systematic error of the BNL experiment by a factor of 4. An overview of the new experiment is described in this article.

  12. Beam Dynamics in a Muon Ionisation Cooling Channel

    International Nuclear Information System (INIS)

    Rogers, Chris

    2008-01-01

    The Neutrino Factory has been proposed as a facility to provide an intense source of neutrinos suitable for the measurement of neutrino oscillation parameters and a possible CP violating phase to unprecedented precision. In the Neutrino Factory, neutrinos are produced by the decay of a muon beam with 20-50 GeV per muon. Initially, the muon beam occupies a large volume in phase space, which must be reduced before the beam can be accelerated. The proposed method to achieve this is to use a solenoidal ionisation colling channel.

  13. Muon (g-2) Technical Design Report

    CERN Document Server

    Grange, J; Winter, P; Wood, K; Zhao, H; Carey, R M; Gastler, D; Hazen, E; Kinnaird, N; Miller, J P; Mott, J; Roberts, B L; Benante, J; Crnkovic, J; Morse, W M; Sayed, H; Tishchenko, V; Druzhinin, V P; Khazin, B I; Koop, I A; Logashenko, I; Shatunov, Y M; Solodov, E; Korostelev, M; Newton, D; Wolski, A; Bjorkquist, R; Eggert, N; Frankenthal, A; Gibbons, L; Kim, S; Mikhailichenko, A; Orlov, Y; Rubin, D; Sweigart, D; Allspach, D; Annala, G; Barzi, E; Bourland, K; Brown, G; Casey, B C K; Chappa, S; Convery, M E; Drendel, B; Friedsam, H; Gadfort, T; Hardin, K; Hawke, S; Hayes, S; Jaskierny, W; Johnstone, C; Johnstone, J; Kashikhin, V; Kendziora, C; Kiburg, B; Klebaner, A; Kourbanis, I; Kyle, J; Larson, N; Leveling, A; Lyon, A L; Markley, D; McArthur, D; Merritt, K W; Mokhov, N; Morgan, J P; Nguyen, H; Ostiguy, J-F; Para, A; Popovic, C C Polly M; Ramberg, E; Rominsky, M; Schoo, D; Schultz, R; Still, D; Soha, A K; Strigonov, S; Tassotto, G; Turrioni, D; Villegas, E; Voirin, E; Velev, G; Wolff, D; Worel, C; Wu, J-Y; Zifko, R

    2015-01-01

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  14. Muon (g-2) Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grange, J. [Argonne National Lab. (ANL), Argonne, IL (United States); et al.

    2015-01-27

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  15. Prototype SDC Muon alignment-position monitoring concepts

    International Nuclear Information System (INIS)

    Eartly, D.; Johnson, P.

    1991-01-01

    We have developed and tested some prototype ideas, components, and systems for monitoring the relative planar orientations, spacings between, transverse positions and rotations of the multi Muon supermodule layers in a given SDC Muon chamber projective tower. These are described and parameterized from measurements. Their resolutions are given, and long term stabilities have been determined

  16. Low pT muons in b-jets in ATLAS TILECAL

    International Nuclear Information System (INIS)

    Bosman, M.; Budagov, Yu.A.; Pantea, D.

    1995-01-01

    ATLAS Tile Calorimeter possibilities to identify b-jets that contain low p T muons are investigated. This is made in order to extend the capability of b-tagging through muon b-quark semileptonic decays beyond the muon detector limits of efficient registration. Results obtained by Monte Carlo simulation of single isolated jets in ATLAS detector indicate that for b-jets that contain low p T muons in the range 2 T < 5 GeV, one can separate them from light quark or gluon jets. 3 refs., 11 figs

  17. The first-level muon trigger system advances

    CERN Multimedia

    Ellis, N.

    2006-01-01

    Important advances have been made in the last few months in the first-level muon trigger, both for the barrel system and for the endcap system, in a close collaboration between the detector and trigger-electronics groups for the RPCs (Resistive-Plate Chambers) and TGCs (Thin-Gap Chambers). These trigger systems are crucial for the success of the muon-related physics programme of the experiment; events that are not triggered will be lost forever, and the trigger chambers also provide the second coordinate for the reconstruction of muons that are only measured in the bending plane by the MDT detectors. Integration and installation of the barrel muon trigger electronics on the RPC detectors is in full swing. The on-detector electronics consists of more than 800 units each of "Splitter" and "Pad" boxes which have been tested and integrated by a team of physicists, engineers and technicians from Italy and Romania. This work will continue for a further few months until the complete system has been installed and so...

  18. Detecting special nuclear material using muon-induced neutron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius II, Joseph [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, Adam [University of New Mexico, Albuquerque, NM 87131 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States); Miyadera, Haruo; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Perry, John [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States); Poulson, Daniel [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-21

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  19. Higgs boson produced via vector boson fusion event recorded by CMS (Run 2, 13 TeV)

    CERN Multimedia

    Mc Cauley, Thomas

    2016-01-01

    Real proton-proton collision event at 13 TeV in the CMS detector in which two high-energy electrons (green lines), two high-energy muons (red lines), and two-high energy jets (dark yellow cones) are observed. The event shows characteristics expected from Higgs boson production via vector boson fusion with subsequent decay of the Higgs boson in four leptons, and is also consistent with background standard model physics processes.

  20. Muon Fluence Measurements for Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

    2010-08-10

    This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

  1. Muon trackers for imaging a nuclear reactor

    Science.gov (United States)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  2. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Lin Zhenquan

    2008-01-01

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels I n (n = 1,2,3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkj v and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k,j)=Lkj v , where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species a k (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v k (t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, a k (t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely

  3. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  4. Where to place the positive muon in the Periodic Table?

    Science.gov (United States)

    Goli, Mohammad; Shahbazian, Shant

    2015-03-14

    In a recent study it was suggested that the positively charged muon is capable of forming its own "atoms in molecules" (AIM) in the muonic hydrogen-like molecules, composed of two electrons, a muon and one of the hydrogen's isotopes, thus deserves to be placed in the Periodic Table [Phys. Chem. Chem. Phys., 2014, 16, 6602]. In the present report, the capacity of the positively charged muon in forming its own AIM is considered in a large set of molecules replacing muons with all protons in the hydrides of the second and third rows of the Periodic Table. Accordingly, in a comparative study the wavefunctions of both sets of hydrides and their muonic congeners are first derived beyond the Born-Oppenheimer (BO) paradigm, assuming protons and muons as quantum waves instead of clamped particles. Then, the non-BO wavefunctions are used to derive the AIM structures of both hydrides and muonic congeners within the context of the multi-component quantum theory of atoms in molecules. The results of the analysis demonstrate that muons are generally capable of forming their own atomic basins and the properties of these basins are not fundamentally different from those AIM containing protons. Particularly, the bonding modes in the muonic species seem to be qualitatively similar to their congener hydrides and no new bonding model is required to describe the bonding of muons to a diverse set of neighboring atoms. All in all, the positively charged muon is similar to a proton from the structural and bonding viewpoint and deserves to be placed in the same box of hydrogen in the Periodic Table. This conclusion is in line with a large body of studies on the chemical kinetics of the muonic molecules portraying the positively charged muon as a lighter isotope of hydrogen.

  5. Superconductivity and fusion energy—the inseparable companions

    Science.gov (United States)

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  6. The Alignment System of the ATLAS Muon End-Cap Spectrometer

    CERN Document Server

    Schricker, Alexander

    2002-01-01

    The Large Hadron Collider at CERN will offer an unparalleled opportunity to probe fundamental physics at an energy scale well beyond that reached by current experiments. The ATLAS detector is being designed to fully exploit the potential of the LHC for revealing new aspects of the fundamental structure of nature. The muon spectrometer itself must measure with a momentum resolution of s10% for muons with a transverse momentum of pT =1TeV, to fully exploit the advantages offered by the open superconducting air core muon toroid magnet system. At this level of momentum resolution the muon spectrometer relies heavily on the ability to master the alignment of the large muon chambers spaced far apart. The overall contribution of the alignment to the total sagitta error must be less than 30 μm r.m.s. In order to meet the stringent alignment requirements the positions of the muon chambers are constantly monitored with optical alignment technologies. The end-caps of this spectrometer are therefore embedded in an align...

  7. Muon Event Filter Software for the ATLAS Experiment at LHC

    CERN Document Server

    Biglietti, M; Assamagan, Ketevi A; Baines, J T M; Bee, C P; Bellomo, M; Bogaerts, J A C; Boisvert, V; Bosman, M; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Conde, P; Conde-Muíño, P; De Santo, A; De Seixas, J M; Di Mattia, A; Dos Anjos, A; Dosil, M; Díaz-Gómez, M; Ellis, Nick; Emeliyanov, D; Epp, B; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kabana, S; Khomich, A; Kilvington, G; Konstantinidis, N P; Kootz, A; Lowe, A; Luminari, L; Maeno, T; Masik, J; Meessen, C; Mello, A G; Merino, G; Moore, R; Morettini, P; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Panikashvili, N; Parodi, F; Pinfold, J L; Pinto, P; Primavera, M; Pérez-Réale, V; Qian, Z; Resconi, S; Rosati, S; Santamarina-Rios, C; Scannicchio, D A; Schiavi, C; Segura, E; Sivoklokov, S Yu; Soluk, R A; Stefanidis, E; Sushkov, S; Sutton, M; Sánchez, C; Tapprogge, Stefan; Thomas, E; Touchard, F; Venda-Pinto, B; Ventura, A; Vercesi, V; Werner, P; Wheeler, S; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, G; Computing In High Energy Physics

    2005-01-01

    At LHC the 40 MHz bunch crossing rate dictates a high selectivity of the ATLAS Trigger system, which has to keep the full physics potential of the experiment in spite of a limited storage capability. The level-1 trigger, implemented in a custom hardware, will reduce the initial rate to 75 kHz and is followed by the software based level-2 and Event Filter, usually referred as High Level Triggers (HLT), which further reduce the rate to about 100 Hz. In this paper an overview of the implementation of the offline muon recostruction algortihms MOORE (Muon Object Oriented REconstruction) and MuId (Muon Identification) as Event Filter in the ATLAS online framework is given. The MOORE algorithm performs the reconstruction inside the Muon Spectrometer providing a precise measurement of the muon track parameters outside the calorimeters; MuId combines the measurements of all ATLAS sub-detectors in order to identify muons and provides the best estimate of their momentum at the production vertex. In the HLT implementatio...

  8. Instruments for calibration and monitoring of the LHCb Muon Detector

    CERN Document Server

    Deplano, C; Lai, A

    2006-01-01

    The subject of this Ph. D. thesis is the study and the development of the instruments needed to monitor and calibrate the Muon Detector of the LHCb (Large Hadron Collider beauty) experiment. LHCb is currently under installation at the CERN Large Hadron Collider (LHC) and will start to take data during 2007. The experiment will study B mesons decays to achieve a profound understanding of favour physics in the Standard Model framework and to search signs of new physics beyond. Muons can be found in the final states of many B-decays which are sensitive to CP violation. The Muon Detector has the crucial role to identify the muon particles generated by the b-hadron decays through a measurement of their transverse momentum, already at the first trigger level (Level-0). A 95% effciency in events selection is required for the Muon Trigger, which operates at the Level-0. 1380 detectors are used to equip the whole Muon System and the corresponding 122,112 readout channels must be time aligned and monitored with a resol...

  9. Probing Very High Energy Prompt Muon and Neutrino fluxes and the cosmic ray knee via Underground Muons

    OpenAIRE

    Gandhi, Raj; Panda, Sukanta

    2005-01-01

    We calculate event rate and demonstrate the observational feasibility of very high energy muons (1-1000 TeV) in a large mass underground detector operating as a pair-meter. This energy range corresponds to surface muon energies of $\\sim$(5 TeV - 5000 TeV) and primary cosmic ray energies of $\\sim$ (50 TeV - 5 $\\times 10^4$ TeV). Such measurements would significantly assist in an improved understanding of the prompt contribution to $\

  10. Standalone vertex finding in the ATLAS muon spectrometer

    DEFF Research Database (Denmark)

    Aad, A.; Abajyan, T.; Abbott, B.

    2014-01-01

    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The perf......A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths....... The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011....

  11. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  12. Performance of the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Aleksa, M.

    1999-09-01

    ATLAS is a general-purpose experiment for the future large hadron collider (LHC) at CERN. Its Muon Spectrometer will require ∼5500 m 2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5 m to 15 m length, embedded in a magnetic field of ∼0.5 T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼1200 drift chambers. The LHC physics discovery range indicates the need for a momentum resolution of ∼10 % for muons with a transverse momentum of p T =1 TeV/c. Following a detailed engineering optimisation of the magnetic-field strength versus the chamber resolution, the ATLAS collaboration opted for a drift-chamber system with very high spatial resolution, σ 2 93/7). Measurements performed in a high-background environment - similar to the ATLAS operational environment - gave us a complete understanding of the individual effects which deteriorate the spatial resolution at high rates. Four effects responsible for a resolution deterioration have been identified: two electronics effects which depend on the count rate of a tube (baseline shift and baseline fluctuations), and two space-charge effects that depend on the local count rate (gain drop and field fluctuations). The understanding of these effects had a major impact on the choice of the drift gas and the front-end electronics. The strong dependence of the drift velocity on the drift field is one major disadvantage of the baseline gas. In this work the full set of effects which lead to systematic errors to the track-position measurement in one tube (e.g. variations of the background rate) was investigated and quantified for realistic LHC operating conditions. For the biggest effects analytical corrections are presented. Finally, the muon-system performance was investigated and a calibration method for the absolute mass scale developed. By means of simulation it was shown that the energy

  13. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  14. Muon Studies with the First CMS Data at the LHC

    International Nuclear Information System (INIS)

    Santiago, C.; Garcia-Abia, P.; Hernandez, J. M.

    2011-01-01

    In this work an analysis of the first data recorded with the CMS detector at the LHC collider is presented. The properties of the detected muons are analyzed and compared with simulated data. The J/Psi ,Psi(2S) and Upsilon(nS) mesons as well as the Z boson have been reconstructed in the muon-anti muon decay channel. These analyses have allowed us to improve the understanding of the CMS detector in terms of muon detection efficiency, resolution and accuracy in the measurement of the momentum and the description of the detector in the simulation. (Author) 17 refs.

  15. Measurement of the Muon Stopping Power in Lead Tungstate

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    A large sample of cosmic ray events collected by the CMS detector is exploited to measure the specific energy loss of muons in the lead tungstate of the electromagnetic calorimeter. The measurement spans a momentum range from 5 GeV/c to 1 TeV/c. The results are consistent with the expectations over the entire range. The calorimeter energy scale, set with 120 GeV/c electrons, is validated down to the sub-GeV region using energy deposits, of order 100 MeV, associated with low-momentum muons. The muon critical energy in lead tungstate is measured to be 160+5/-6 plus or minus 8 GeV, in agreement with expectations. This is the first experimental determination of muon critical energy.

  16. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  17. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  18. The fusion of dt{mu}, tt{mu} and dd{mu} molecules in three-layer arrangement including deuterium degrader and moderator

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R. [Physics Department, Persian Gulf University, Bushehr 75169 (Iran)

    2010-09-15

    Muon dynamics and forced chemical confinement fusion in three-layer arrangement consisting of the H/T, D{sub 2} (the degrader and moderator) and D/T fusion layers are investigated with a new kinetic model. Point kinematic equations are numerically solved to calculate the numbers of dt{mu}, tt{mu} and dd{mu} chain reactions. We show that the {mu}-cycling coefficient X{sub c} approximately equals 156, at optimal condition. Our model and results are in contradiction with beliefs of Mahdavi and Zanganeh. Our model is confirmed by recent experiment where was performed for the hydrogen mixture. (author)

  19. Noise reduction in muon tomography for detecting high density objects

    International Nuclear Information System (INIS)

    Benettoni, M; Checchia, P; Cossutta, L; Furlan, M; Gonella, F; Pegoraro, M; Garola, A Rigoni; Ronchese, P; Vanini, S; Viesti, G; Bettella, G; Bonomi, G; Donzella, A; Subieta, M; Zenoni, A; Calvagno, G; Cortelazzo, G; Zanuttigh, P; Calvini, P; Squarcia, S

    2013-01-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented

  20. Muon radiography technology for detecting high-Z materials

    International Nuclear Information System (INIS)

    Ma Lingling; Wang Wenxin; Zhou Jianrong; Sun Shaohua; Liu Zuoye; Li Lu; Du Hongchuan; Zhang Xiaodong; Hu Bitao

    2010-01-01

    This paper studies the possibility of using the scattering of cosmic muons to identify threatening high-Z materials. Various scenarios of threat material detection are simulated with the Geant4 toolkit. PoCA (Point of Closest Approach) algorithm reconstructing muon track gives 3D radiography images of the target material. Z-discrimination capability, effects of the placement of high-Z materials, shielding materials inside the cargo, and spatial resolution of position sensitive detector for muon radiography are carefully studied. Our results show that a detector position resolution of 50 μm is good enough for shielded materials detection. (authors)