WorldWideScience

Sample records for municipal refuse incinerator

  1. Refuse derived fuel incineration: Fuel gas monitoring and analysis

    International Nuclear Information System (INIS)

    Ranaldi, E.; Coronidi, M.; De Stefanis, P.; Di Palo, C.; Zagaroli, M.

    1993-11-01

    Experience and results on refuse derived fuel (selected from municipal solid wastes) incineration are reported. The study involved the investigation of inorganic compounds (heavy metals, acids and toxic gases) emissions, and included feeding materials and incineration residues characterization and mass balance

  2. Elemental composition of suspended particles released in refuse incineration

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira

    1979-01-01

    Suspended particles released in refuse incineration were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. The analytical results were compared with the elemental concentrations observed in the urban atmosphere, and the contribution of the refuse incineration to the urban atmosphere was roughly estimated. Greenberg et al. pointed out on the basis of their analyses that the refuse incineration can account for major portions of the Zn, Cd and Sb observed on urban aerosols. According to our results, the contribution of the refuse incineration for Zn, Cd and Sb is not negligible, but not so serious as in U.S.A. big cities. In Japan big cities there must be other more important sources of these elements. (author)

  3. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  4. Incineration with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, T.G.

    1986-02-01

    Motherwell Bridge Tacol Ltd. operate a 'Licence Agreement' with Deutsche Babcock Anlagen of Krefeld, West Germany, for the construction of Municipal Refuse Incineration plant and Industrial Waste plant with or without the incorporation of waste heat recovery equipment. The construction in the UK of a number of large incineration plants incorporating the roller grate incinerator unit is discussed. The historical background, combustion process, capacity, grate details, refuse analysis and use as fuel, heat recovery and costs are outlined.

  5. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  6. Behavior of cesium in municipal solid waste incineration.

    Science.gov (United States)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ignition processes in the refuse bed of a refuse incineration plant. Gomi shokyakuro ni okeru gomi sonai no chakka katei

    Energy Technology Data Exchange (ETDEWEB)

    Goromaru, T; Onishi, K; Iwakawa, N; Yoshikuni, N [Fukuoka Univ., Fukuoka, (Japan)

    1990-03-01

    The ignition process was studied in this paper, which was particularly connected with the drying process of refuse in the statical characteristics of refuse incinerators. Because of variety in refuse forms to be supplied to the incinerators, a physical model was composed, assuming that refuse was the layers of piled up refuse elements with uniform forms, and the ignition curves of the layers were drawn on the basis of the above model after a mathematical model was formed. The upper part of the curves was altered so that it suits to actual endothermic and heat velocity distribution on the assumption of temperature distribution in the incinerators at their inlet side. No particular alteration was made in their middle part, then the ignition curves were changed to almost straight lines inclined downward. Unburnt and refuse under firing were wrapped by ash and uncombustibles, so the lower part of the curves was only studied as a imaginary solid model by the two methods of finite element method and simple analytical one, and conversion was made into equivalent reduction in combustion temperature. 15 refs., 7 figs., 2 tabs.

  8. Analysis of fouling in refuse waste incinerators

    NARCIS (Netherlands)

    Beek, van M.C.; Rindt, C.C.M.; Wijers, J.G.; Steenhoven, van A.A.

    2001-01-01

    Gas-side fouling of waste-heat-recovery boilers, caused mainly by the deposition of particulate matter, reduces the heat transfer in the boiler. The fouling as observed on the tube bundles in the boiler of a Dutch refuse waste incinerator varied from thin and powdery for the economizer to thick and

  9. Experimental investigation in separating the heavy metal elements of refuse incineration fly ashes by using molten iron

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Chongqing Univ., Chongqing (China)]|[CPI-Yuanda Environmental-protection Engineering Co. Ltd., Chongqing (China); Liu, Q.; Dong, L. [Chongqing Univ., Chongqing (China); Du, Y. [CPI-Yuanda Environmental-protection Engineering Co. Ltd., Chongqing (China)

    2008-07-01

    One of the main waste treatment methods in the world for municipal solid waste (MSW) is incineration. It is effective in toxic substance destruction, waste volume reduction, and energy recovery. Some chemical substances are accumulated during incineration, most notably lead, zinc, chromium and cadmium, as well as other heavy metals. Untreated fly ash disposed in landfills can pollute the soil, surface water and groundwater because of the high levels of hazardous heavy metals and high salt concentration that can be leached out. This paper presented an experiment that melt-separated the heavy metal elements from fly ash generated during refuse incineration. Molted iron, was used as resolvent to dissolve the heavy metal elements in it. The paper described the materials and methods as well as the results of the study. It was concluded that using molted iron to separate the heavy metal elements from MSW incineration fly ash was feasible. The removal ratio of the main heavy metal elements was above 80 per cent, and some of it was above 99 per cent. 5 refs., 7 tabs., 1 fig.

  10. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  11. the development of new generation of solid waste refuse incinerators

    African Journals Online (AJOL)

    Apart from town refuse, there are wastes from agriculturally based industries especially ... depends on careful control of the 3T's (time, temperature and turbulence). ... These activities cause serious public health risks ... The modifications to the old bottle incinerators were developed by carefully assessing the failure modes.

  12. Risks of municipal solid waste incineration: an environmental perspective.

    Science.gov (United States)

    Denison, R A; Silbergeld, E K

    1988-09-01

    The central focus of the debate over incineration of municipal solid waste (MSW) has shifted from its apparent management advantages to unresolved risk issues. This shift is a result of the lack of comprehensive consideration of risks associated with incineration. We discuss the need to expand incinerator risk assessment beyond the limited view of incinerators as stationary air pollution sources to encompass the following: other products of incineration, ash in particular, and pollutants other than dioxins, metals in particular; routes of exposure in addition to direct inhalation; health effects in addition to cancer; and the cumulative nature of exposure and health effects induced by many incinerator-associated pollutants. Rational MSW management planning requires that the limitations as well as advantages of incineration be recognized. Incineration is a waste-processing--not a waste disposal--technology, and its products pose substantial management and disposal problems of their own. Consideration of the nature of these products suggests that incineration is ill-suited to manage the municipal wastestream in its entirety. In particular, incineration greatly enhances the mobility and bioavailability of toxic metals present in MSW. These factors suggest that incineration must be viewed as only one component in an integrated MSW management system. The potential for source reduction, separation, and recycling to increase the safety and efficiency of incineration should be counted among their many benefits. Risk considerations dictate that alternatives to the use of toxic metals at the production stage also be examined in designing an effective, long-term MSW management strategy.

  13. Electrodialytic remediation of municipal solid waste incineration residues using different membranes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues...... as a technology to upgrade municipal solid waste incineration residues....

  14. Development and prospects of municipal solid waste (MSW) incineration in China

    Institute of Scientific and Technical Information of China (English)

    Yongfeng NIE

    2008-01-01

    With the lack of space for new landfills, municipal solid waste (MSW) incineration is playing an increasingly important role in municipal solid waste management in China. The literatures on certain aspects of incineration plants in China are reviewed in this paper, including the development and status of the application of MSW incineration technologies, the treatment of leachate from stored MSW, air pollution control technologies, and the status of the fly-ash control method. Energy policy and its promotion of MSW-to-energy conversion are also elucidated.

  15. Incineration as an effective means in Malaysian municipal solid waste treatment

    International Nuclear Information System (INIS)

    Sharifah, A.S.A.K.; Subari, F.; Zainal Abidin, H.

    2006-01-01

    Malaysia is in dire need of an alternative to current method in municipal solid waste treatment. An industrial pilot plant incinerator has been constructed at Universiti Teknologi Mara Shah Alam campus. A study has been performed to investigate the performance of the locally developed and manufactured rotary kiln incinerator. On the overall, the temperature profiles are well in agreement with species concentration observed. The emission quality satisfy the air pollution standards and on the overall the rotary kiln incinerator shows great potential in municipal solid waste treatment. (Author)

  16. Solid municipal waste processing plants: Cost benefit analysis

    International Nuclear Information System (INIS)

    Gerardi, V.

    1992-01-01

    This paper performs cost benefit analyses on three solid municipal waste processing alternatives with plants of diverse daily outputs. The different processing schemes include: selected wastes incineration with the production of refuse derived fuels; selected wastes incineration with the production of refuse derived fuels and compost; pyrolysis with energy recovery in the form of electric power. The plant daily outputs range from 100 to 300 tonnes for the refuse derived fuel alternatives, and from 200 to 800 tonnes for the pyrolysis/power generation scheme. The cost analyses consider investment periods of fifteen years in duration and interest rates of 5%

  17. Chloride leaching from municipal solid waste incineration (MSWI) bottom ash

    NARCIS (Netherlands)

    Alam, Q.; Schollbach, K.; Florea, M.V.A.; Brouwers, H.J.H.; Vlastimil, Bilek; Kersner, Zbynek; Simonova, Hana

    2017-01-01

    The presence of chlorides in the Municipal Solid Waste Incineration bottom ashes (BA) hinders their potential for recycling in building materials. The contaminant content in the incineration residues is strictly regulated by the Dutch legislation Soil Quality Decree (2013). The fine fraction

  18. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  19. Energy recovery from municipal solid waste by refuse derived fuel production in Malaysia

    International Nuclear Information System (INIS)

    Sanaz Saheri; Noorezlin Ahmad Baseri; Masoud Aghajani Mir; Malmasi Saeed

    2010-01-01

    Energy recovery from municipal solid waste (MSW) is so beneficial both for the energy and for the positive environmental implications. Mainly related to the saving of primary energy derived from fossil fuel. Malaysia as a fast growing population country has the average amount of municipal solid waste (MSW) generated around 0.5-0.8 kg/person/day and it has been increased to 1.7 kg/person/day in major cities. Regarding characterization exercise, the main parts of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80 % of the waste by weight. Furthermore, the average moisture content of the MSW was about 55 %, making incineration a challenging mission. In addition waste sectors in Malaysia contributes to 1.3 million ton of CH 4 compare to total CH 4 emission which is 2.2 MT. In order to overcome waste problem considering other technical, environmental and economical methods seems to be necessarily. Resource recovery centers recovers the maximum proportion of recyclable and recoverable resources from the mixed municipal solid waste .The resource recovery process itself is one of the step-by-step segregation and elimination of all non-combustibles , and separation of the combustibles in the desired form of fuel for good combustion. Then, a further mechanical separation process converts combustible materials to refuse derived fuel (RDF) with moisture content between 20 and 30 % and an average calorific fuel value of about 3450 kcal/kg. So, the aim of this paper is taking into account resource recovery from waste using refuse derived fuel as a secondary resource with regarding advantages and disadvantages of this kind of energy production in Malaysia as a developing country. (author)

  20. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    Science.gov (United States)

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  1. Municipal solid waste incineration in China and the issue of acidification: A review.

    Science.gov (United States)

    Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua

    2016-04-01

    In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants. © The Author(s) 2016.

  2. Assessing potential health effects from municipal sludge incinerators: screening methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  3. AL(0) in municipal waste incinerator ash

    Science.gov (United States)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  4. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    Science.gov (United States)

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    Science.gov (United States)

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and Stack concentration of Hg were less than 0.4 microg/Nm(3). Since Hg emissions were at low concentrations, Hg in soil from atmospheric fallout near this incinerator including uptake by local weeds were very low ranging from non detectable to 399 micro g/kg. However, low but elevated levels of Hg (76-275 micro g/kg) were observed in surface soil and deeper layers (0-40 cm) in the predominant downwind direction of incinerator over a distance of between 0.5-5 km. Soil Hg concentrations measured from a reference/background track opposite of the prevailing wind direction were lower ranging between 7-46 micro g/kg. Nevertheless, the trend of Hg build up in soil was clearly seen in the wet season only, suggesting that wet deposition process is a major Hg pollution source. Hg concentrations in the sea bottom sediment collected next to the last station track was small with values between 35-67 micro g/kg. Based upon the overall findings, in terms of current potential environmental risk

  6. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis

    International Nuclear Information System (INIS)

    Chen, H.-W.; Chang, N.-B.; Chen, J.-C.; Tsai, S.-J.

    2010-01-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.

  7. FY 1997 report on the study on development of corrosion-resistant ceramics for refuse incinerators; 1997 nendo chosa hokokusho (gomi shokyakuroyo taishoku ceramics zairyo no kaihatsu ni kansuru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes development of structural materials for municipal refuse incinerators, in particular, high- temperature corrosion-resistant ceramics for inner walls. Unlike boiler tubes of which inner walls are cooled by water or water vapor, refractory for inner walls is subjected to high-temperature flame over 1000degC, corrosive gases such as HCl and SO2. and low-melting point corrosive dust such as chloride, sulfate and oxide under strong corrosive environment. Experiment was made on 14 kinds of ceramics including commercially available oxide system, non-oxide system and refractory system ceramics. Except graphite system ones, every ceramics, in particular, Al2O3, ZrO2, B4C-doped SiC and CVD-SiO showed superior properties. Commercially available ceramics, in particular, non-oxide system ones are very expensive. Since inner wall materials for refuse incinerators are heat-/corrosion-resistant consumption articles, it is suggested that improvement of reasonable oxide system ceramics or conventional SiC system ones is better. 73 refs., 89 figs., 39 tabs.

  8. Electric equipment for Koto Refuse Incineration Plant; Tokyoto Koto seiso kojo muke denki setsubi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-10

    Meidensha Corporation, intending to enter into refuse disposal business, delivered electric equipment to a Koto Refuse Incineration Plant, Koto Ward, Tokyo, and the facilities came into operation in October, 1998. The plant is the largest in Japan in terms of refuse processing capacity (1800t/day), and efforts are exerted to harmonize the plant with the surroundings, which involve pollution measures and a building that images a cruising yacht. The power receiving facility consists of a 66kV nominal two-circuit gas insulated switch and gas insulated transformer arranged in a space saving design. Heat from refuse incineration is fed to a steam turbine generator (yielding 50MW, the largest in Japan, with the surplus offered for sale after 15MW fed to loads in the site) and to neighboring facilities. For the suppression of fluctuations in voltage at the power receiving point, reactive power is subjected to control which is done by controlling the generator magnetic field system. An 11kV distribution system is provided to match the steam turbine generator voltage, and the voltage is stepped down to 6.6kV with the intermediary of a 23MVA gas insulated transformer. The power is fed to high voltage motors such as the one used for the induced draft fan, electric equipment in the buildings, power facilities in the plant, etc. A power monitoring board is provided in the central control room for general supervision over the power related facilities. (NEDO)

  9. Gaseous emissions from industrial processes: Municipal solid waste incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Cassitto, L.; Gallarini, V.; Magnani, P.; Rizzi, A. (Politecnico di Milano, Milan (Italy). Impianti Condizionamento e Fisica Tecnica Artea, Milan (Italy))

    A survey of European Communities proposed air pollution standards is coupled with an examination of the technical feasibility of building and operating municipal solid waste incineration plants that can successfully meet those standards. The results of the analysis indicate that modern incineration plants equipped with cogeneration and current-technology materials and energy recovery systems offer a significant contribution to meeting Italian national energy requirements and contemporaneously provide a decisive answer to the pressing need for safe and effective urban area waste disposal. The paper cautions however any final decision making must be based on extensive cost benefit analyses to determine the optimum combination of incinerator plant energy production and pollution control systems.

  10. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis.

    Science.gov (United States)

    Chen, Ho-Wen; Chang, Ni-Bin; Chen, Jeng-Chung; Tsai, Shu-Ju

    2010-07-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA)--a production economics tool--to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.

    1987-01-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  12. Energy potential of municipal solid waste incineration in urban areas of China.

    NARCIS (Netherlands)

    Zheng, Ling

    2006-01-01

    This study aims to evaluate the energy potential of municipal solid waste (MSW) incineration in Chinese cities from 1996 to 2020. In China, with improving the standard of living recently, the extreme increase of the municipal solid waste generation (MSWG)

  13. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil

    2014-01-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators....... The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting...

  14. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Science.gov (United States)

    Wielgosiński, Grzegorz; Namiecińska, Olga; Czerwińska, Justyna

    2018-01-01

    In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140), stoker-fired boilers (three OR-32 boilers) or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF) with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  15. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Directory of Open Access Journals (Sweden)

    Wielgosiński Grzegorz

    2018-01-01

    Full Text Available In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140, stoker-fired boilers (three OR-32 boilers or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  16. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment of methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e. facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium. (Refs. 5).

  17. Relationship Between Distance of Schools from the Nearest Municipal Waste Incineration Plant and Child Health in Japan

    International Nuclear Information System (INIS)

    Miyake, Y.; Yura, A.; Misaki, H.; Ikeda, Y.; Usui, T.; Iki, M.; Shimizu, T.

    2005-01-01

    In Japan, the main source of dioxins is incinerators. This study examined the relationship between the distance of schools from municipal waste incineration plants and the prevalence of allergic disorders and general symptoms in Japanese children. Study subjects were 450,807 elementary school children aged 6-12 years who attended 996 public elementary schools in Osaka Prefecture in Japan. Parents of school children completed a questionnaire that included items about illnesses and symptoms in the study child. Distance of each of the public elementary schools from all of the 37 municipal waste incineration plants in Osaka Prefecture was measured using geographical information systems packages. Adjustment was made for grade, socioeconomic status and access to health care per municipality. Decreases in the distance of schools from the nearest municipal waste incineration plant were independently associated with an increased prevalence of wheeze, headache, stomach ache, and fatigue (adjusted odds ratios [95% confidence intervals] for shortest vs. longest distance categories =1.08 [1.01-1.15], 1.05 [1.00-1.11], 1.06 [1.01-1.11], and 1.12 [1.08-1.17], respectively). A positive association with fatigue was pronounced in schools within 4 km of the second nearest municipal waste incineration plant. There was no evident relationship between the distance of schools from such a plant and the prevalence of atopic dermatitis or allergic rhinitis. The findings suggest that proximity of schools to municipal waste incineration plants may be associated with an increased prevalence of wheeze, headache, stomach ache, and fatigue in Japanese children

  18. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.

    Science.gov (United States)

    Beylot, Antoine; Villeneuve, Jacques

    2013-12-01

    Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e., 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of -58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    Science.gov (United States)

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density situation. © The Author(s) 2015.

  20. Municipal waste processing: Technical/economic comparison of composting and incineration options

    International Nuclear Information System (INIS)

    Bertanza, G.

    1993-01-01

    The first part of this paper which assessed the state-of-the-art of municipal waste composting and incineration technologies indicated that the advanced level of available technologies in this field now allows the realization of reliable and safe plants. This second part of the paper deals with the economics of the composting and incineration options. Cost benefit analyses using the discounted cash flow method are made for waste processing plants featuring composting alone, incineration only and mixed composting and incineration. The economic analyses show that plants employing conventional composting techniques work well for the case of exclusively organic waste materials. Incineration schemes are shown to be economically effective when they incorporate suitable energy recovery systems. The integrated composting-incineration waste processing plant appears to be the least attractive option in terms of economics. Current R ampersand D activities in this field are being directed towards the development of systems with lower environmental impacts and capital and operating costs

  1. Research paper 2000-B-8: the implementation of the municipal waste incineration directives

    Energy Technology Data Exchange (ETDEWEB)

    Lulofs, K. [Twente Univ., Center for Clean Technology and Environmental Policy, Enschede (Netherlands)

    2000-07-01

    End-of-pipe options are needed whenever recycling and source reduction can not cope with waste streams at acceptable costs. One of the disposal options is waste incineration. The incineration of waste was considered 'clean' for a long time. In the 1970's and 1980's it proved that the incineration of municipal waste was a significant source of air pollution. Notorious pollutants were hydrogen chloride, hydrogen florid, sulphur dioxide, oxides of nitrogen, fine particulate matter, 'heavy metals' and dioxines and furans. Most notorious and issue of public anxiety in some countries were emissions of dioxines and that might cause cancer and birth defects. Municipal waste is domestic waste from households and comparable waste from markets and companies. Consent is present that in the long history of waste incinerators, incineration in plants started in Europe around 1900, important steps to secure health and the environment have been taken and will be taken in the future. Debates are still going on the level of emissions that is negligible and acceptable. Also in the European arena waste management is about knowledge, perceptions, uncertainties and negotiations. Arguments are on the right level of ambition and the right level of fine-tuning where precautionary measures are discussed. The European Union decided to issue two European Directives on the atmospheric emissions from municipal waste incineration in 1989. This chapter focuses on the implementation and effects of the 1989 Directives. In section 2 of this chapter we summarize the bargaining on the 1989 European Directives. Section 2 indicates that characteristics of municipal waste incineration and the level of pre-existing national regulation sectors in individual member states played decisive roles. When the 1989 Directives came into force, the requirements had to be integrated in the national legislation in European Member States. In section 3 Germany and the Netherlands will prove

  2. Accumulative behavior of radioactive cesium during the incineration of municipal solid waste

    International Nuclear Information System (INIS)

    Mizuhara, Shinji; Kawamoto, Katsuya; Maeseto, Tomoharu; Kuramochi, Hidetoshi; Osako, Masahiro

    2015-01-01

    Understanding the long-term accumulation behavior of radioactive cesium (r- Cs) in municipal solid waste (MSW) incineration plants is important for safety management of them. In this study, first, not only air dose rate but also r-Cs activity in wall adhesion dust at different point in the inside of a MSW incineration plant were measured. The results showed that higher amounts of the Cs were observed in the surface layer of refractory and that higher air dose ratios were obtained in the upstream region in incineration process. However, the Cs content of adhered dust onto the surface material of incineration equipment was higher in downstream than upstream because of the decrease of flue gas temperature. (author)

  3. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  4. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    International Nuclear Information System (INIS)

    Beylot, Antoine; Villeneuve, Jacques

    2013-01-01

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO x emissions. • E.g. climate change impact ranges from −58 to 408 kg CO 2 -eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO 2 -eq to a relatively large burden of 408 kg CO 2 -eq, with 294 kg CO 2 -eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO x process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available

  5. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  6. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and {sup 187}Os/{sup 188}Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of {sup 187}Os/{sup 188}Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m{sup 2}/a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m{sup 2}/a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  7. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    International Nuclear Information System (INIS)

    Funari, Valerio; Meisel, Thomas; Braga, Roberto

    2016-01-01

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and 187 Os/ 188 Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of 187 Os/ 188 Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m 2 /a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m 2 /a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  8. Electrodialytic upgrading of municipal waste incineration fly ash for reuse

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2012-01-01

    As incineration becomes a more widespread means of waste treatment, volumes of incineration residues increase and new means of handling become a demand. Municipal Solid Waste Incineration (MSWI) fly ash is hazardous material, which is presently disposed off as such; primarily due to its high......]. In order to optimize the process and reach the lowest possible leachability of target constituents (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Zn, Cl, Na and SO4) at minimum time and energy consumption, the present work gives results of 10 pilot scale (8 kg MSWI fly ash each) electrodialysis experiments at different...... to investigate the leachability of salts and toxic elements as a function of treatment time and current density. Results show that a delicate balance between pH and treatment-time exist and that continuous monitoring of pH and conductivity may be used for controlling of the process at an industrial scale...

  9. Curbing dioxin emissions from municipal solid waste incineration in China: Re-thinking about management policies and practices

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Hefa, E-mail: hefac@umich.ed [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Hu Yuanan [Education Program for Gifted Youth, Stanford University, Stanford, CA 94025 (United States)

    2010-09-15

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. - The management policies and practices need to be improved to curb the increasing dioxin releases from municipal solid waste incineration in China.

  10. Curbing dioxin emissions from municipal solid waste incineration in China: Re-thinking about management policies and practices

    International Nuclear Information System (INIS)

    Cheng Hefa; Hu Yuanan

    2010-01-01

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. - The management policies and practices need to be improved to curb the increasing dioxin releases from municipal solid waste incineration in China.

  11. Mercury emission monitoring on municipal waste combustion

    International Nuclear Information System (INIS)

    Braun, H.; Gerig, A.

    1991-01-01

    In waste incineration, mercury is the only heavy metal to be released as a gas, mostly as mercury(II) chloride, because of its high volatility. Continuous emission monitoring is possible only when mercury occurs in its elemental form. This paper reports on various possibilities of converting Hg(II) into Hg(0) that has been studied and tested on a laboratory scale and in the TAMARA refuse incineration pilot facility. Continuous mercury emission measurement appears to be possible, provided mercury is converted in the flue gas condensate precipitated. The measuring results obtained on two municipal solid waste and on one sewage treatment sludge incineration plants show that the mercury monitor is a highly sensitive and selective continuously working instrument for mercury emission monitoring

  12. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Cieślik Ewelina

    2018-01-01

    Full Text Available One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  13. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Science.gov (United States)

    Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  14. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China

    DEFF Research Database (Denmark)

    Zhao, Yan; Xing, Wei; Lu, Wenjing

    2012-01-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal...... per ton of waste. Based on observed environmental impacts of incineration, fossil CO2 and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits......-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese...

  15. Metallic elements fractionation in municipal solid waste incineration residues

    Science.gov (United States)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  16. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Science.gov (United States)

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644

  17. Characterization of municipal solid waste incineration fly ash before and after electrodialytic treatment

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Gardner, Kevin H.

    2003-01-01

    Municipal solid waste incineration (MSWI) fly ash, which has been treated electrodialytically for the removal of heavy metals, may have changed characteristics compared to untreated fly ash. In this study, MSWI fly ash was characterized with respect to leaching properties (pH static leaching...

  18. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio

    2015-01-01

    Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered...

  19. Aluminium alloys in municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  20. Properties of municipal solid waste incineration ashes with respect to their separation temperature

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Pavlík, Z.; Tydlitát, V.; Volfová, P.; Švarcová, Silvie; Šyc, Michal; Černý, R.

    2012-01-01

    Roč. 30, č. 10 (2012), s. 1041-1048 ISSN 0734-242X Institutional support: RVO:61388980 ; RVO:67985858 Keywords : bottom ash * fly ash * municipal solid waste incinerator * pozzolanic activity * hydration heat * separation temperature * building industry Subject RIV: CA - Inorganic Chemistry Impact factor: 1.047, year: 2012

  1. Operating experience and data on revolving type fluidized bed incineration plants

    International Nuclear Information System (INIS)

    Nakayama, J.

    1990-01-01

    In refuse incinerators operating by revolving fluidization (Revolving Type Fluidized Bed Incinerator) a broad range of wastes, from low caloric refuse of high moisture content to high caloric value material including a wide variety of plastics, can be incinerated at high efficiency because the unit is outstanding in terms of distribution of waste in the incinerator bed and uniformity of heat. In addition, its vigorous revolving fluidization action is very effective in pulverizing refuse, so even relatively strict emission standards can be met without fine pre-shredding. Residues are discharged in a clean, dry form free of putrescible material. Data on practical operation of the revolving fluidized bed incinerator are presented in this paper

  2. Risk for non Hodgkin’s lymphoma in the vicinity of French municipal solid waste incinerators

    Directory of Open Access Journals (Sweden)

    Sauleau Erik-André

    2008-10-01

    Full Text Available Abstract Background Dioxin emissions from municipal solid waste incinerators are one of the major sources of dioxins and therefore are an exposure source of public concern. There is growing epidemiologic evidence of an increased risk for non-Hodgkin's lymphoma (NHL in the vicinity of some municipal solid waste incinerators with high dioxin emission levels. The purpose of this study was to examine this association on a larger population scale. Methods The study area consisted of four French administrative departments, comprising a total of 2270 block groups. NHL cases that had been diagnosed during the period 1990–1999, and were aged 15 years and over, were considered. Each case was assigned a block group by residential address geocoding. Atmospheric Dispersion Model System software was used to estimate immissions in the surroundings of 13 incinerators which operated in the study area. Then, cumulative ground-level dioxin concentrations were calculated for each block group. Poisson multiple regression models, incorporating penalized regression splines to control for covariates and dealing with Poisson overdispersion, were used. Five confounding factors were considered: population density, urbanisation, socio-economic level, airborne traffic pollution, and industrial pollution. Results A total of 3974 NHL incident cases was observed (2147 among males, and 1827 among females during the 1990–1999 time period. A statistically significant relationship was found at the block group level between risk for NHL and dioxin exposure, with a relative risk (RR of 1.120 (95% confidence interval [CI] 1.002 – 1.251 for persons living in highly exposed census blocks compared to those living in slightly exposed block groups. Population density appeared positively linked both to risk for NHL and dioxin exposure. Subgroup multivariate analyses per gender yielded a significant RR for females only (RR = 1.178, 95% CI 1.013 – 1.369. Conclusion This study, in

  3. Speciation and mobility of potentially toxic elements in municipal solid waste incineration bottom ash

    NARCIS (Netherlands)

    Schollbach, K.; Alam, Q.; Florea, M.V.A.; Brouwers, H.J.H.

    2017-01-01

    Bottom ash (BA) is the main residue from municipal solid waste incineration (MSWI), which can have some applications in construction materials, but is mostly landfilled in many countries. The main problem is the high concentration of potentially toxic elements (PTEs), particularly in the fine

  4. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  5. Waste incineration

    International Nuclear Information System (INIS)

    McCormack, M.D.

    1981-01-01

    As a result of the information gained from retrieval projects, the decision was made to perform an analysis of all the available incinerators to determine which was best suited for processing the INEL waste. A number of processes were evaluated for incinerators currently funded by DOE and for municipal incinerators. Slagging pyrolysis included the processes of three different manufacturers: Andco-Torrax, FLK and Purox

  6. Serum PCDDs/Fs levels for the residents living in the vicinity and workers of the municipal incinerators in Seoul, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Shin, D. [Inst. for environmental Research, Yonsei Univ., Seoul (Korea); Lim, Y. [Dept. of Environmental Health, Seonam Univ., Namwon (Korea); Chang, Y. [School of Environmental Engineering, Pohang Univ., Pohang (Korea)

    2004-09-15

    PCDDs and PCDFs are detected routinely, as they are widely distributed in the environment and accumulate in the food chain. Moreover, because human beings are at the top of food chain, a relatively high level of these compounds can be found in human adipose tissues, blood lipids, and breast milk fat. In Korea, the number of municipal and hazardous waste incinerators have increased since 1980. In addition, municipal waste incinerators are almost always located in residential areas. Therefore, the human health risks caused by dioxin is become an increasing public concern in Korea. The aim of this study was to determine the concentrations of PCDDs/PCDFs in blood from individuals living in the vicinity area of the municipal solid waste incinerator (MSWI), and to compare PCDDs/PCDFs levels in blood for residents living near the MSWI, workers at the MSWI and general population living in the urban area not including the MSWI. Analysis of the results was made in terms of sociodemographic characteristics such as age, sex, smoking habit, food consumption patters, and proximity to the MSWI.

  7. Protection of HCl dew point corrosion in municipal incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S.; Tsuruta, T.; Maeda, N.

    1976-12-01

    HCl dew point corrosion is often observed on the components of municipal incinerators used for burning wastes which contain polyvinyl chloride. In order to solve the problem, the relation between concentrations of gaseous HCl and the corresponding dew points as well as concentrations of condensed HCl, was investigated. A series of HCl dipping tests for the materials concerned was performed and the dip test results were compared with in-plant tests. As a result it was concluded that HCl dew point corrosion can be reliably predicted from measurements of HCl concentrations in the water and in the gas and the partial pressure of the saturated steam at the dew point.

  8. Fundamental aspects of municipal refuse generated in Beirut and Tripoli: field studies 1994-1996

    International Nuclear Information System (INIS)

    Ayoub, G.M.; Acra, A.; Abdallah, R.; Merhebi, F.

    1996-01-01

    This study presents socio-economic survey on collection and analysis of data pertaining to the municipal refuse generated in Beirut and Tripoli, Two big cities of Lebanon.Although the collection process applied in Beirut has progressed immensely in the past two years, the unsatisfactory methods of disposal that have been employed until now has an impact on the environment:marine environment as well as the air pollution becoming problems in the city of Beirut. In this respect, solid wastes characterization and generation rates in both cities of Beirut and Tripoli are presented. Mapping of refuse collection and disposal services in the two cities is described. Sources of refuse like hospitals, industries, household,...are enumerated. Recycling potentials of plastics, paper and cardboard, glass wastes, metallic wastes, textile wastes are described

  9. Application of thermally activated municipal solid waste incineration (MSWI) bottom ash fines as binder substitute

    NARCIS (Netherlands)

    Tang, P.; Florea, M.V.A.; Spiesz, P.R.; Brouwers, H.J.H.

    Untreated municipal solid waste incineration (MSWI) bottom ash fines (0–2 mm) have poor pozzolanic properties, and contain substances which can pose an environmental risk (e.g. heavy metals and salts). This study investigates combined treatments applied on bottom ash fines (BAF) to increase their

  10. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    Science.gov (United States)

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Research paper 2000-B-1: the implementation of the municipal waste incineration directive (89/429) in France

    Energy Technology Data Exchange (ETDEWEB)

    Schucht, S.

    2000-07-01

    This paper constitutes a contribution to the project 'IMPOL - The Implementation of EU Environmental Policies: Efficiency Issues'. The paper deals with the implementation of the EU Directives directed at atmospheric emissions from new (89/369/EEC) and existing (89/429/EEC) municipal waste incineration plants in France. The goal of this paper is twofold: a historic review of the implementation processes and their evaluation following economic criteria of environmental effectiveness and economic efficiency. The focus is on the implementation of the Directives' requirements towards existing municipal waste incineration plants, i.e. those plants having received their operation licence after December 1, 1990. For France we find a general picture of poor compliance. This result has to be differentiated, though: the current compliance rate of plants of a capacity above 6 t/h is almost 100% (although compliance often came late) while the majority of smaller plants does not comply with the Directive's requirements. With a waste incineration park of about 250 plants currently, many of which are very small plants and only treat weak amounts of waste, France constitutes an exception compared to other European countries. A further specific characteristic of France is the high share of waste incineration in total waste treatment (especially in the big cities) which amounts to almost 40%. The outline of the paper is the following: chapter two gives some context information on the French municipal waste incineration plant park and its structure, on the development of waste quantities, on the legal framework and on available subsidy schemes. Chapter three assesses environmental effectiveness, i.e. goal attainment and factors explaining the results. Chapter four comprises the assessment of cost efficiency. Chapter five contains the historic review, i.e. a characterisation of the implementation process, and chapter six concludes, linking the characterisation of

  12. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case

    International Nuclear Information System (INIS)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-01-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N 2 O emission factors from MSW incineration plants, and calculate the N 2 O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N 2 O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N 2 O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N 2 O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N 2 O emissions from MSW incineration comprised 19% of the total N 2 O emissions.

  13. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.

    Science.gov (United States)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N(2)O emission factors from MSW incineration plants, and calculate the N(2)O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N(2)O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N(2)O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153g-N(2)O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N(2)O emissions from MSW incineration comprised 19% of the total N(2)O emissions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Curbing dioxin emissions from municipal solid waste incineration in China: re-thinking about management policies and practices.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan

    2010-09-01

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Renewable municipal waste barometer - EurObserv'ER - December 2012

    International Nuclear Information System (INIS)

    2012-12-01

    +2,6 % the growth of primary energy output from renewable municipal waste in the EU relative to 2010. Energy recovery by incinerating household refuse in the European Union led to renewable energy production of more than 8.2 million tons of oil equivalent in 2011, which is a 2.6% increase on 2010. While the increase in waste-to-energy recovery is preferable to using landfills, under no circumstances should this growth be made at the cost of waste prevention and recycling policies

  16. Slags and ashes from municipal waste incineration in Poland - mineralogical and chemical composition

    Science.gov (United States)

    Kowalski, Piotr; Michalik, Marek

    2013-04-01

    In the next few years there will be a large change in the waste management system in Poland. Its primary aim will be reduction of the amount of landfilled waste by enhancing level of recycling, waste segregation, composting of biomass and incineration. The biggest investment during this transformation is construction of nine incinerators with assumed slags production around 200 thousand tons per year. Slag production is accompanied by fly ash generating. This ash can be a valuable raw material as fly ash from the power industry. Waste management system transformation will cause big increase in slag production in comparison to the present amount and will require taking necessary steps to ensure environmental safety. For this purpose, studies of slags and fly ashes in terms of environmental risk and potential impact on human health are significant. The object of the study are fly ashes and slags produced in the biggest municipal waste incineration power plant in Poland. Two series of samples obtained in municipal waste incineration process were studied in order to characterize mineralogical and chemical composition and to determine the concentrations of heavy metals and their possible negative environmental impact. Characteristics of these materials will be the basis for determining their value in application, for example in building industry. Mineralogical characteristic of slags was based on X-ray diffraction. Characteristic of structures and forms of occurrence of mineral phases was based on the optical microscopy and SEM imaging coupled with EDS analysis. Chemical analysis were performed using ICP-MS/ICP-AES methods. They allowed to follow variability between studied samples and gave basic information about metals. Metals in samples of slag and ashes are present as component of mineral phases and in the form of metallic inclusions in glass or minerals. Potentially hazardous concentrations for environment are observed for copper (330-4900ppm), zinc (1500-8100ppm

  17. A review of dioxin-related substances during municipal solid waste incineration.

    Science.gov (United States)

    Zhou, Hui; Meng, Aihong; Long, Yanqiu; Li, Qinghai; Zhang, Yanguo

    2015-02-01

    Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are among the most toxic chemicals and the main restriction on municipal solid waste incineration. To exert more effective control over the formation of dioxin homologues during municipal solid waste incineration, it is significant to investigate dioxin-related compounds. Despite the numerous studies about PCDD/Fs, a unified understanding regarding many problems has yet to be reached because the homologues of PCDD/Fs are excessive, the measurement of PCDD/Fs is difficult, and the formation mechanisms of PCDD/Fs are complicated. Firstly, this paper briefly introduces the different formation mechanisms of PCDD/Fs, including high temperature homogeneous reaction PCDD/Fs formation and low temperature heterogeneous reaction PCDD/Fs formation. Then the sources of PCDD/Fs including precursors (chlorophenols and polycyclic aromatic hydrocarbons) and residual carbon are summarized. In particular, this paper analyzes the substances that influence PCDD/Fs formation and their impact mechanisms, including different categories of chlorine (Cl2, HCl and chloride in fly ash), O2, copper, sulfur, water, and nitrogen compounds (ammonia and urea). Due to the high cost and complexity of PCDD/Fs measurement, PCDD/Fs indicators, especially chlorobenzenes and polycyclic aromatic hydrocarbons, are summarized, to find an effective surrogate for quick, convenient and real-time monitoring of PCDD/Fs. Finally, according to the results of the current study, recommendations for further research and industrial applications prospects are proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Ahrenfeldt, Jesper

    2017-01-01

    Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the o......Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed...... and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant...... processes and 10–15% in pyrolysis whereas no reduction was observed in incineration processes. The influence on other heavy metals was less pronounced. The plant availability of P in the substrates varied from almost zero to almost 100% of the plant availability of P in the untreated sludge. Post-oxidized...

  19. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  20. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  1. Risk of cancer in the vicinity of municipal solid waste incinerators: importance of using a flexible modelling strategy

    Directory of Open Access Journals (Sweden)

    Goria Sarah

    2009-05-01

    Full Text Available Abstract Background We conducted an ecological study in four French administrative departments and highlighted an excess risk in cancer morbidity for residents around municipal solid waste incinerators. The aim of this paper is to show how important are advanced tools and statistical techniques to better assess weak associations between the risk of cancer and past environmental exposures. Methods The steps to evaluate the association between the risk of cancer and the exposure to incinerators, from the assessment of exposure to the definition of the confounding variables and the statistical analysis carried out are detailed and discussed. Dispersion modelling was used to assess exposure to sixteen incinerators. A geographical information system was developed to define an index of exposure at the IRIS level that is the geographical unit we considered. Population density, rural/urban status, socio-economic deprivation, exposure to air pollution from traffic and from other industries were considered as potential confounding factors and defined at the IRIS level. Generalized additive models and Bayesian hierarchical models were used to estimate the association between the risk of cancer and the index of exposure to incinerators accounting for the confounding factors. Results Modelling to assess the exposure to municipal solid waste incinerators allowed accounting for factors known to influence the exposure (meteorological data, point source characteristics, topography. The statistical models defined allowed modelling extra-Poisson variability and also non-linear relationships between the risk of cancer and the exposure to incinerators and the confounders. Conclusion In most epidemiological studies distance is still used as a proxy for exposure. This can lead to significant exposure misclassification. Additionally, in geographical correlation studies the non-linear relationships are usually not accounted for in the statistical analysis. In studies of

  2. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.

    Science.gov (United States)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2014-09-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering

    NARCIS (Netherlands)

    Meima, J.A.; Comans, R.N.J.

    1999-01-01

    For a proper assessment of the environmental impact of the utilisation and disposal of Municipal Solid Waste Incinerator (MSWI) bottom ash it is necessary to understand weathering processes and their effects on (trace) element leaching. The authors have investigated the processes that control the

  4. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, Elisa, E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Maresca, Alberto; Olsson, Mikael Emil [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Holtze, Maria Sommer [Afatek Ltd., Selinevej 18, 2300 Copenhagen S (Denmark); Boldrin, Alessio; Astrup, Thomas Fruergaard [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark)

    2014-09-15

    Highlights: • Ferrous and non-ferrous metals were quantified in MSWI bottom ashes. • Metal recovery system efficiencies for bottom ashes were estimated. • Total content of critical elements was determined in bottom ash samples. • Post-incineration recovery is not viable for most critical elements. - Abstract: Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results

  5. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.

    Science.gov (United States)

    Samolada, M C; Zabaniotou, A A

    2014-02-01

    For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a 'zero waste' solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants

    NARCIS (Netherlands)

    Tang, P.; Florea, M.V.A.; Spiesz, P.R.; Brouwers, H.J.H.

    2015-01-01

    This study focuses on municipal solid waste incineration (MSWI) bottom ash characteristics, its heterogeneity, environmental properties, and their stability in time. The physical and chemical characteristics of bottom ashes from two plants were determined over time; results show that their

  7. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Electrodialytic remediation, an electrochemically assisted separation method, has previ-ously shown potential for removal of heavy metals from municipal solid waste incineration (MSWI) fly ashes. In this work electrodialytic remediation of MSWI fly ash using ammonium citrate as assisting agent...

  8. Measuring gas-residence times in large municipal incinerators, by means of a pseudo-random binary signal tracer technique

    International Nuclear Information System (INIS)

    Nasserzadeh, V.; Swithenbank, J.; Jones, B.

    1995-01-01

    The problem of measuring gas-residence time in large incinerators was studied by the pseudo-random binary sequence (PRBS) stimulus tracer response technique at the Sheffield municipal solid-waste incinerator (35 MW plant). The steady-state system was disturbed by the superimposition of small fluctuations in the form of a pseudo-random binary sequence of methane pulses, and the response of the incinerator was determined from the CO 2 concentration in flue gases at the boiler exit, measured with a specially developed optical gas analyser with a high-frequency response. For data acquisition, an on-line PC computer was used together with the LAB Windows software system; the output response was then cross-correlated with the perturbation signal to give the impulse response of the incinerator. There was very good agreement between the gas-residence time for the Sheffield MSW incinerator as calculated by computational fluid dynamics (FLUENT Model) and gas-residence time at the plant as measured by the PRBS tracer technique. The results obtained from this research programme clearly demonstrate that the PRBS stimulus tracer response technique can be successfully and economically used to measure gas-residence times in large incinerator plants. It also suggests that the common commercial practice of characterising the incinerator operation by a single-residence-time parameter may lead to a misrepresentation of the complexities involved in describing the operation of the incineration system. (author)

  9. Evaluation of low-level solid radioactive waste generated by a large hospital and disposed of with ordinary refuse

    International Nuclear Information System (INIS)

    Conte, L.; Pedroli, G.; Monciardini, M.; Bianchi, L.; Novario, R.; Beretta, A.

    1996-01-01

    In the Lombardy region some hospitals have recently been reported to the local authorities because of the presence of radioactivity in hospital refuse sent to the municipal tips for incineration. On various occasions the refuse collectors coming from the hospitals had to return with their refuse as traces of radioactivity were detected at the entrance to the tips equipped with monitoring systems. Hospitals administering radioactive substances for diagnostic or therapeutic purposes produce radioactive waste mainly in solid and liquid form. This waste is principally present in patient excreta and in contaminated materials. Radioactive waste present in patient excreta is normally disposed of through the sewage system provided that the concentration limits and annual activity stipulated by law are respected. The contaminated materials coming from the departments that carry out radioisotopic investigations and therapy with unsealed sources can be collected separately and sent to a tip after a period of storage to permit radioactive decay. However, part of the radioactive waste escapes all checks and inevitably mixes with normal refuse or with special hospital refuse that is not considered radioactive. This occurs in the case of: 1. excreta from patients who are not hospitalised after a radioisotopic investigation and materials contaminated by the excreta; 2. excreta from hospitalised patients which are eliminated outside the nuclear medicine and radiotherapy departments; 3. contaminated materials produced with unsealed sources in hospital departments other than those of nuclear medicine and radiotherapy; The waste indicated in point 1 is probably the main problem in ecological terms as the patients who are not hospitalised eliminate radioactive excreta into domestic sewage systems and can also contaminate materials that are disposed of with normal household refuse. In this case any solution to the problem would seriously affect diagnostic activities carried out in the

  10. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions.

    Science.gov (United States)

    Lu, Jia-Wei; Zhang, Sukun; Hai, Jing; Lei, Ming

    2017-11-01

    With the rapid expansion of municipal solid waste (MSW) incineration, the applicability, technical status, and future improvement of MSW incineration attract much attention in China. This paper aims to be a sensible response, with the aid of a comparison between China and some representative developed regions including the EU, the U.S., Japan, South Korea, and Taiwan area. A large number of up-to-date data and information are collected to quantitatively and impartially support the comparison, which covers a wider range of key points including spatial distribution, temporal evolution, technologies, emissions, and perspectives. Analysis results show that MSW incineration is not an outdated choice; however, policy making should prevent the potentially insufficient utilization of MSW incinerators. The structure of MSW incineration technologies is changing in China. The ratio of plants using fluidized bed is decreasing due to various realistic reasons. Decision-makers would select suitable combustion technologies by comprehensive assessments, rather than just by costs. Air pollution control systems are improved with the implementation of China's new emission standard. However, MSW incineration in China is currently blamed for substandard emissions. The reasons include the particular elemental compositions of Chinese MSW, the lack of operating experience, deficient fund for compliance with the emission standard, and the lack of reliable supervisory measures. Some perspectives and suggestions from both technical and managerial aspects are given for the compliance with the emission standard. This paper can provide strategic enlightenments for MSW management in China and other developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Process for producing a fuel suitable for degassing from refuse

    Energy Technology Data Exchange (ETDEWEB)

    Sulzberger, J

    1975-11-20

    Utilization of the heat energy of refuse in waste incineration plants is time-consuming and expensive due to high investment and operation costs. The inventor recommends to process the refuse to a sterile, handy and storable fuel. For this propose the refuse should be crushed, kneaded and pressed. The briquettes produced in this way should be dried.

  12. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  13. [Public health risk caused by emissions from refuse incinerators].

    Science.gov (United States)

    Wassermann, O; Kruse, H

    1995-01-01

    An irresponsible "approval on request" in favour of waste incineration written by a consulting committee of the German Federal Board of Physicians has meanwhile been widely distributed both nationally and internationally. The aim of this politically motivated paper is to dramatically increase the present number of 49 waste incinerators in Germany. It is our duty to warn of this intention. Health problems are known to exist both in workers at waste incinerators and in humans living in their vicinity. Furthermore, in the long run negative impact also to ecosystems should be expected from the emissions. Health problems in patients living downwind of waste incinerators repeatedly have been reported on by physicians. "Lack of statistical significance", often used as counter-argument, is only due to absence of funding of comprehensive epidemiological studies in Germany. Analyses of soil samples reveal the pollution from waste incineration. Considering the pre-load of the region, additional emissions caused by waste incineration and other sources have to be assessed. The application of preventive limit values is imperative. The presently used "limit values", being about 100 times too high, bear an unacceptable risk. Therefore, reliable regional registers of emissions have to be established immediately. Limit values continuously have to be adjusted to the progress of scientific knowledge. In this respect it is imperative to consider that the actual composition of emissions is unknown; isolated risk assessment of single compounds underestimates the total risk; the negative impact, e.g. of dioxins, on both the immune and hormone systems occurs at concentrations 100 times lower than those causing carcinogenic effects; the assumption of "threshold values" is obsolete; a considerable lack of knowledge exists about accumulation in food webs and in ecosystems; the demand of preservation of natural, geogenic situations is indispensable in assessments of soil and water pollution

  14. Elemental analysis of bottom ash from municipal incinerator by neutron activation analysis

    International Nuclear Information System (INIS)

    Kim, S. H.; Jang, S. H.; Moon, J. H.; Jung, Y. S.; Kim, Y. J.

    2003-01-01

    Elemental analysis of bottom ash generated from municipal solid waste incinerator was performed by neutron activation analysis. For this study, ash samples monthly collected from incinerator in D city were sieved with 5 mm mesh size, dried, pulverized by agate mortar and finally re-sieved with 200μ mesh size. Prepared samples were irradiated by neutrons using NAA No.1 irradiation hole in Korea Atomic Energy Research Institute. Activated samples were measured by gamma-ray spectrometer according to the relevant nuclear properties of target nuclides and the concentration of 33 elements were determined from the collected ash samples. Quality control was conducted by comparative analysis with two NIST standard reference materials simultaneously. Mean values and standard deviations of hazardous elements such as As, Cr, Cu, Fe, Mn, Sb and Zn among the determined elements were 3.8±6.9mg/kg, 620±0.12 %, 4.76±0.37 %, 0.26±0.10 %, 115±29 mg/kg and 0.71±0.19 %, respectively

  15. Emissions and dioxins formation from waste incinerators

    International Nuclear Information System (INIS)

    Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  16. Technical and economic assessment of power generation from municipal solid waste incineration on steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Romero Luna, Carlos Manuel; Carrocci, Luiz Roberto; Ferrufino, Gretta Larisa Aurora Arce; Balestieri, Jose Antonio Perrella [Dept. of Energy. UNESP, Sao Paulo State University, Guaratingueta, SP (Brazil)], e-mails: carrocci@feg.unesp.br, perrella@feg.unesp.br

    2010-07-01

    Nowadays, there is a concern in development of environmentally friendly methods for a municipal solid waste (MSW) management and demand for renewable energy sources. The source of waste is increasing, and the capacity and availability Landfill treatment and disposal are coming to be insufficient. In Sao Paulo City, the 10 million inhabitants produce 10,000 t of residential solid waste daily, being that 76% this quantity goes to landfill sites. In order to adopt a new treatment technology for MSW that will promote a solution minimizing this problem, within the order of priorities regarding waste management, the MSW incineration with energy recovery shown as the leading choice on the point of view of efficiency in converting energy. MSW incineration with energy recovery received wide acceptance from various countries including European Union members and the rest of the world in the past 15 years. Incineration has the ability decrease 90 % the volume of waste to be used in landfills, increasing the useful life of existing as well as a reduction in the emission of greenhouse gases. MSW incineration systems have a low global warming potential (GWP). now has become a less important source of dioxins and furans due to the current available technology. MSW incineration with energy recovery could contribute considerably in the energy matrix, thus promote the conservation of non-renewable resources. This paper proposes the assessment the technical and economic feasibility of a steam cycle with conventional steam generator for MSW incineration with energy recovery for power generation in Sao Paulo City. Will be developed a thermoeconomic analysis aiming at the total power generation product of MSW incineration, and the assessment investment cost regarding the total sale of power generated. The study shows that Sao Paulo City has potential for power generation from the MSW incineration, although it has a high cost investment this technology shown as a suitable alternative for

  17. Risk of congenital anomalies in the vicinity of municipal solid waste incinerators.

    Science.gov (United States)

    Cordier, S; Chevrier, C; Robert-Gnansia, E; Lorente, C; Brula, P; Hours, M

    2004-01-01

    Although municipal solid waste incineration (MSWI) has contributed to increase the overall environmental load of particulate matter containing dioxins and metals, evidence of health consequences to populations is sparse. To assess at a regional level (in southeast France) the impact of these emissions on birth defect rates. Communities with fewer than 50 000 inhabitants surrounding the 70 incinerators that operated at least one year from 1988 to 1997 were studied. Each exposed community (n = 194) was assigned an exposure index estimated from a Gaussian plume model. Poisson models and a reference population of the 2678 unexposed communities in the region were used to calculate relative risks for congenital malformations, adjusted for year of birth, maternal age, department of birth, population density, average family income, and when available, local road traffic. The rate of congenital anomalies was not significantly higher in exposed compared with unexposed communities. Some subgroups of major anomalies, specifically facial clefts and renal dysplasia, were more frequent in the exposed communities. Among exposed communities, a dose-response trend of risk with increasing exposure was observed for obstructive uropathies. Risks of cardiac anomalies, obstructive uropathies, and skin anomalies increased linearly with road traffic density. Although both incinerator emissions and road traffic may plausibly explain some of the excess risks observed, several alternative explanations, including exposure misclassification, ascertainment bias, and residual confounding cannot be excluded. Some of the effects observed, if real, might be attributable to old-technology MSWIs and the persistent pollution they have generated.

  18. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition

    International Nuclear Information System (INIS)

    Hu, Yuyan; Zhang, Pengfei; Chen, Dezhen; Zhou, Bin; Li, Jianyi; Li, Xian-wei

    2012-01-01

    Highlights: ► The first study to apply Fe-sulfate in hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition. ► The first study to comprehensively evaluate the effect of hydrothermal treatment on dioxin decomposition and heavy metal stabilization in municipal solid waste incineration fly ash. ► Gaussian software chemical computational simulation was performed to investigate the mechanism of dioxin decomposition based on quantum chemistry calculation, and to support the experimental data by the calculation results. - Abstract: Hydrothermal treatment of MSWI fly ash was performed in this paper with a purpose to reduce its dioxin content. First a hydrothermal reactor was set up with a mixture of ferric sulphate and ferrous sulphate serviced as the reactant, then the effects caused by reaction conditions such as reaction temperature, pre-treatment by water-washing and reactant dosage were checked; the results showed that as a promising technology, hydrothermal treatment exhibited considerable high efficiencies in decomposition of PCDDs/PCDFs and good stabilization of heavy metals as well. Experimental results also showed that for dioxin destruction, higher reaction temperature is the most important influencing factor followed by Fe addition, and pre-treatment of raw fly ash by water-washing increased the destruction efficiencies of dioxins only very slightly. Finally with help of Gaussian software chemical computational simulation was performed to investigate the mechanism of dioxin decomposition based on quantum chemistry calculation. The calculation results were supported by the experimental data. The leaching toxicities of hydrothermal products were higher than upper limits defined in the latest Chinese standard GB 16889-2008 for sanitary landfill disposal, thus an auxiliary process is suggested after the hydrothermal treatment for heavy metal stabilization.

  19. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag

    NARCIS (Netherlands)

    Gao, X.; Yuan, B.; Yu, Q. L.; Brouwers, H. J.H.

    2017-01-01

    In this paper, the feasibility of using two solid wastes in alkali activated slag composites as construction and building materials is evaluated. One waste is the municipal solid waste incineration (MSWI) bottom ash, and the other one is fine granite powder from aggregate manufacturing. These two

  20. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.

    Science.gov (United States)

    Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie

    2014-08-01

    Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching. © The Author(s) 2014.

  1. A feasibility study of municipal solid waste incineration fly ash utilisation in Estonia.

    Science.gov (United States)

    Berber, Hakan; Frey, Ruedi; Voronova, Viktoria; Koroljova, Arina

    2017-09-01

    The purpose of this paper is to discuss the alternative environmental management options for the utilisation of municipal solid waste (MSW) incineration fly ash (FA), which is generated at Iru Power Plant where MSW is incinerated in Estonia. To determine sustainable and economically feasible environmental management options for MSW incineration FA in Estonia, CO 2 sequestration with a further carbonation process was examined. A partial Cost & Benefit Analysis has been conducted to compare the carbonation process to the current situation. Two carbonation options were developed. Option 1 is to use carbonated FA in any other processes based on the waste-to-product principle. Option 2 is to send carbonated FA to the non-hazardous landfill in Tallinn, Estonia. Important parameters, such as Net Present Value (NPV), Internal Rate of Return (IRR), Benefit-Cost Ratio (BCR) and Break Even Point (BEP), have been calculated for carbonation options and the current case. In addition, a sensitivity analysis has been conducted to examine its robustness. The results showed that the best option is carbonation Option 1 with NPV of 9,209,662 EUR, IRR of 43%, BCR of 2.63 and BEP between 2018 and 2019. Both Options 1 and 2 constitute more sustainable and environmentally friendly management options compared to the current situation. It can be concluded that this preliminary feasibility study showed that running a carbonation plant may be profitable and sustainable for Estonia. Currently, there is no treatment technology for MSW incineration FA in Estonia and FA is sent to a neighbouring country for further utilisation. This is the first study to demonstrate FA management options with economic and environmental benefits.

  2. Fair fund distribution for a municipal incinerator using GIS-based fuzzy analytic hierarchy process.

    Science.gov (United States)

    Chang, Ni-Bin; Chang, Ying-Hsi; Chen, Ho-Wen

    2009-01-01

    Burning municipal solid waste (MSW) can generate energy and reduce the waste volume, which delivers benefits to society through resources conservation. But current practices by society are not sustainable because the associated environmental impacts of waste incineration on urbanized regions have been a long-standing concern in local communities. Public reluctance with regard to accepting the incinerators as typical utilities often results in an intensive debate concerning how much welfare is lost for those residents living in the vicinity of those incinerators. As the measure of welfare change with respect to environmental quality constraints nearby these incinerators remains critical, new arguments related to how to allocate the fair fund among affected communities became a focal point in environmental management. Given the fact that most County fair fund rules allow a great deal of flexibility for redistribution, little is known about what type of methodology may be a good fit to determine the distribution of such a fair fund under uncertainty. This paper purports to demonstrate a system-based approach that helps any fair fund distribution, which is made with respect to residents' possible claim for fair damages due to the installation of a new incinerator. Holding a case study using integrated geographic information system (GIS) and fuzzy analytic hierarchy process (FAHP) for finding out the most appropriate distribution strategy between two neighboring towns in Taipei County, Taiwan demonstrates the application potential. Participants in determining the use of a fair fund also follow a highly democratic procedure where all stakeholders involved eventually express a high level of satisfaction with the results facilitating the final decision making process. It ensures that plans for the distribution of such a fair fund were carefully thought out and justified with a multi-faceted nature that covers political, socio-economic, technical, environmental, public

  3. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    Science.gov (United States)

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  4. An assessment of dioxin contamination from the intermittent operation of a municipal waste incinerator in Japan and associated remediation.

    Science.gov (United States)

    Takeda, Nobuo; Takaoka, Masaki

    2013-04-01

    Significant dioxin (polychlorinated dibenzo-para-dioxins (PCDDs)/polychlorinated dibenzo-furans (PCDFs)) pollution from a municipal solid waste incinerator was discovered in 1997 in Osaka prefecture/Japan. The cause and mechanism of pollution was identified by a detailed assessment of the environment and incinerator plant. The primary sources of PCDD/PCDF pollution were high dioxin releases from an intermittently operated waste incinerator with PCDD/PCDF emissions of 150 ng-TEQ/Nm(3). PCDD/PCDF also accumulated in the wet scrubber system (3,000 μg TEQ/L) by adsorption and water recirculation in the incinerator. Scrubber water was air-cooled with a cooling tower located on the roof of the incinerator. High concentrations of dioxins in the cooling water were released as aerosols into the surrounding and caused heavy soil pollution in the area near the plant. These emissions were considered as the major contamination pathway from the plant. Decontamination and soil remediation in and around the incinerator plant were conducted using a variety of destruction technologies (including incineration, photochemical degradation and GeoMelt technology). Although the soil remediation process was successfully finished in December 2006 about 3% of the waste still remains. The case demonstrates that releases from incinerators which do not use best available technology or which are not operated according to best environmental practices can contaminate their operators and surrounding land. This significant pollution had a large impact on the Japanese government's approach toward controlling dioxin pollution. Since this incident, a ministerial conference on dioxins has successfully strengthened control measures.

  5. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  6. Metallic elements occurrences within metallic fragments in the municipal waste incineration bottom ash

    Science.gov (United States)

    Kowalski, Piotr; Kasina, Monika; Michalik, Marek

    2017-04-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) is composed of grainy ash material, residual components and metallic fragments (from few µm up to 3-5 cm). Its mineral and chemical composition is related to the composition of the waste stream in the incinerator operational area. Wide use of thermal techniques in management of solid waste makes important the studies on valuable components and their distribution within the material in terms of their further processing. By using various valorization or extraction techniques it is possible to extend the range of its possible further application. To investigate metallic elements distribution within metallic fragments of the MSWI BA material produced in municipal waste incineration plant in Poland were collected in 2015 and 2016. BA and its components were investigated using spectroscopic methods of chemical analysis: ICP-OES, ICP-MS, LECO and EDS (used for microanalysis during SEM observations). BA is a material rich in Si (22.5 wt%), Ca (13.4 wt%), Fe (4 wt%), Al (5.2 wt%) and Na (3.5 wt%), composed of equal part of amorphous (silicate glass dominated) and crystalline phase (rich in silicates, aluminosilicates, oxides of non- and metallic elements and sulphates). The content of metallic elements (Al, Fe, Mg, Ti, Mn, Cr, Ni, Sc, Mo, Cu, Pb, Zn, Sn) is 11.5 wt% with domination of Al (5.2 wt%) and Fe (4 wt%) and elevated values of Mg (1 wt%), Ti (0.54 wt%), Cu (0.26 wt%) and Zn (0.27 wt%) (Kowalski et al., 2016). They were mostly concentrated in the form of metallic fragments, mainly as metallic inclusions in the size of 1-20 µm and separated metallic grains in the size of 50-300 µm. Metallic fragments present in the BA are characterized by their composition heterogeneity and various oxygen content. Fragments are rarely composed of single metallic element and usually in their composition up to few main elements dominated over others. The most common were Fe-, Al- and Zn-rich fragments forming respectively

  7. Green, Eco, Innovative Design, and Manufacturing Technology of a 1-Ton per Batch Municipal Solid Waste Incinerator

    Directory of Open Access Journals (Sweden)

    Kerdsuwan Somrat

    2016-01-01

    Full Text Available The thermal treatment of waste by incineration is considered an ultimate solution in order to get rid of waste properly by using the combustible properties of waste and transforming them into inert form and gaseous emission, with the main advantage of a huge reduction in mass and volume of treated waste, destruction of the dangerous components in waste, and obtaining green and clean energy from the exothermal reaction from the completed combustion process. In order to achieve the main goal of incineration, a good design, construction, supervision, and intensive operation and maintenance must be taken into account, especially for the small-scale incinerator. This research will deal with the green, innovative, and eco design and manufacturing technology of a 1-ton per batch municipal solid waste (MSW incinerator. The concept design of the incinerator will focus on the design of the feeding process where only one batch of waste will be discharged into the combustion chamber at one time instead of the semi-feed process, as found in the conventional incinerator. This will ease the operation of the operator and reduce the operating cost. Moreover, the innovative design includes the redesign of combustion air injection into either the primary or secondary combustion chamber in order to achieve the 3Ts of combustion (time, temperature. and turbulence. This design can eliminate the use of an auxiliary burner in the primary combustion chamber. Rethinking the innovative design of using recirculation hot flue gas for preheating of wet garbage in order to pre-dry the waste before combustion is also taken into account. The manufacturing process of the wall composition as well as other parts of the incinerator are also examined.

  8. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates.

    Science.gov (United States)

    Quina, Margarida J; Bordado, João M; Quinta-Ferreira, Rosa M

    2014-02-01

    This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment. The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range. In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  10. Carbon-13 nuclear magnetic resonance spectroscopic characterization of humic substances from municipal refuse decomposing in a landfill

    International Nuclear Information System (INIS)

    Newman, R.H.; Theng, B.K.G.; Filip, Z.

    1987-01-01

    Municipal refuse was disposed of in simulated landfills and left for periods of more than 20 months. Three different 40 m 3 systems of disposals were studied, namely (i) where the refuse was compacted, (ii) where it was mixed with sewage sludge and left uncompacted, and (iii) where it was compacted with sewage sludge. At 2, 6, 12 and 20 months, the humic substances were extracted from each system, purified, and characterised by cross-polarisation 13 C NMR spectroscopy with 'magic-angle' sample spinning. The areas under the various signals were related to carbon percentages in different structural categories. The aromaticity of the humic acids increased with time of decomposition; those from refuse mixed with sewage sludge were particularly high in phenolic content. A signal at 174 p.p.m., assigned primarily to secondary amide linkages, reached maximum strength after 6 to 12 months decomposition. The carbohydrate contents of the humic acids showed only small variations as decomposition progressed. Polymethylene chains in lipids, particularly for the uncompacted system, accounted for a diminishing fraction of total carbon as time of refuse disposal increased. The spectrum of a soil humic acid showed features similar to those observed in spectra of humic acids derived from refuse, but the signals were less well resolved. 19 refs.; 8 figs.; 3 tabs

  11. Municipal solid wastes incineration with combined cycle: a case study from Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Cerda Balcazar, Juan Galvarino; Dias, Rubens Alves; Balestieri, Jose Antonio Perrella [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil)], E-mails: pos09007@feg.unesp.br, rubdias@feg.unesp.br

    2010-07-01

    Large urban centers have a huge demand for electricity, for the needs of its residents, and a growing problem of management of solid waste generated by it, that becomes an public administrative and great social problem. The correct disposal of solid waste generated by large urban centers is now one of the most complex engineering problems involving logistics, safety, environment, energy spent among other tools for sound management of municipal solid waste (MSW). This study was carried out a study of the use of incinerators and residue derived fuel and MSW with combined cycles, with the aim of producing thermal and mechanical energy (this later becomes electrical energy) and solid waste treatment in Sao Paulo. We used existing models and real plants in the European Union in this case, with the aim of making it the most viable and compatible with the current context of energy planning and resource today. A technical and economic feasibility study for a plant of this nature, using the scheme, is presented. It is expected a good attractiveness of using incinerators combined-cycle, due to its high efficiency and its ability to thermoelectric generation. (author)

  12. Energy from refuse by bioconversion, fermentation and residue disposal processes

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, J T; Liebman, J C

    1976-01-01

    Bioconversion of organic refuse to CH/sub 4/ by anaerobic fermentation is 1 mechanism by which the energy in urban waste can be reclaimed. Laboratory studies were made to determine the rate and amount of gas production at various operating temperatures. The dewatering characteristics of the spent fermentation slurry were evaluated. The spent solids can be dewatered to a sufficiently low moisture content such that incineration is self-sustaining. The incineration system was evaluated to determine the possible energy recovery from the spent cake. A process for treating the liquid blowdown from the system was developed. A mathematical simulation of the total system was constructed to evaluate performance under various operating conditions. A plant processing 908 tons of refuse/day will produce 3905 m/sup 3/ CH/sub 4//hr. Recovery of just CH/sub 4/ provides a 32.6% efficiency of energy recovery. This efficiency can be increased to 63.4% if steam from the incinerator can be sold.

  13. Renewable municipal waste barometer

    International Nuclear Information System (INIS)

    2014-01-01

    In the European Union the production of primary energy from the incineration of municipal waste increased by only 0.7% in 2013 and reached 8.7 million tep (tonnes of oil equivalent). Germany ranks first with the production of 2729 ktep followed by France with 1246 ktep. A positive point is that the sale of heat to heat networks has strongly increased in some countries which means that primary energy is better used. 2 tables give the production of electricity and heat from the incineration of municipal waste in the E.U. member states in 2012 and 2013. Germany ranks first in the 2 tables. The total production of electricity and heat from the incineration of municipal waste in E.U. in 2013 reached 18741 GWh and 2361 tep respectively. A list reviews the most significant companies working in Europe in the sector of waste incineration, 8 companies are listed, 2 are German: EEW, Remondis, 3 are French: SITA (Suez Environment, Veolia and TIRU (EDF), Urbaser is spanish, Gruppo Hera is Italian and AEB-Amsterdan is dutch. (A.C.)

  14. Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices.

    Science.gov (United States)

    Lu, Chien-Hsing; Chuang, Kui-Hao

    2016-01-01

    The purpose of this paper is to investigate the characteristics of fly and bottom ashes sampled from both fluidized bed (FB) and mass-burning (MB) municipal solid waste incinerators (MSWIs), respectively. Fly ashes from different locations at FB and MB MSWIs equipped with a cyclone, a semi-dry scrubber, and a bag filter as air pollution control devices were examined to provide the baseline information between physicochemical properties and leaching ability. Experimental results of leachability indicated that the bag filter fly ash (FB-FA(B)) from the FB incinerator meets Taiwan regulatory standards set through the toxicity characteristic leaching procedure. X-ray diffraction results revealed the presence of Cr5O12 and Pb2O3 in the cyclone fly ash (MB-FA(C)) and bag filter fly ash (MB-FA(B)), respectively, from the MB incinerator. To observe lead incorporation mechanism, mixture of simulate lead-laden waste with bed material were fired between 600 °C and 900 °C in a laboratory scale FB reactor. The results clearly demonstrate a substantial decrease in lead leaching ratio for products with an appropriate temperature. The concentration of Pb in the MB-FA(B) was 250 times that in the FB-FA(B), suggesting that incineration of MSW in FB is a good strategy for stabilizing hazardous metals.

  15. A full-scale study on thermal degradation of polychlorinated dibenzo- p-dioxins and dibenzofurans in municipal solid waste incinerator fly ash and its secondary air pollution control in China.

    Science.gov (United States)

    Gao, Xingbao; Ji, Bingjing; Yan, Dahai; Huang, Qifei; Zhu, Xuemei

    2017-04-01

    Degradation of polychlorinated dibenzo- p-dioxins and dibenzofurans in municipal solid waste incinerator fly ash is beneficial to its risk control. Fly ash was treated in a full-scale thermal degradation system (capacity 1 t d -1 ) to remove polychlorinated dibenzo- p-dioxins and dibenzofurans. Apart from the confirmation of the polychlorinated dibenzo- p-dioxin and dibenzofuran decomposition efficiency, we focused on two major issues that are the major obstacles for commercialising this decomposition technology in China, desorption and regeneration of dioxins and control of secondary air pollution. The toxic equivalent quantity values of polychlorinated dibenzo- p-dioxins and dibenzofurans decreased to air pollution control system. The degradation furnace released relatively large amounts of cadmium, lead and polychlorinated dibenzo- p-dioxins and dibenzofurans compared with the municipal solid waste incinerator, but the amounts emitted to the atmosphere did not exceed the Chinese national emission limits. Thermal degradation can therefore be used as a polychlorinated dibenzo- p-dioxin and dibenzofuran abatement method for municipal solid waste incinerator source in China.

  16. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    International Nuclear Information System (INIS)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    Highlights: ► We model the environmental impact of recycling and incineration of household waste. ► Recycling of paper, glass, steel and aluminium is better than incineration. ► Recycling and incineration of cardboard and plastic can be equally good alternatives. ► Recyclables can be transported long distances and still have environmental benefits. ► Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  17. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste.

    Science.gov (United States)

    Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G

    2013-03-15

    The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Science.gov (United States)

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  19. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Samolada, M.C. [Dept. Secretariat of Environmental and Urban Planning – Decentralized Area Macedonian Thrace, Taki Oikonomidi 1, 54008 Thessaloniki (Greece); Zabaniotou, A.A., E-mail: azampani@auth.gr [Aristotle University of Thessaloniki, Dept. of Chemical Engineering, University Box 455, University Campus, 541 24 Thessaloniki (Greece)

    2014-02-15

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.

  20. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    International Nuclear Information System (INIS)

    Samolada, M.C.; Zabaniotou, A.A.

    2014-01-01

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated

  1. Municipal Solid Waste Incineration For Accra Brewery Limited (Ghana)

    OpenAIRE

    Akoore, Alfred Akelibilna

    2016-01-01

    Waste incineration is a common practice of waste management tool in most developed countries, for the purpose of converting mass and volumes of waste into a very useful energy content. The aim of this study was to compare the costs benefits of waste incineration for Accra Brewery boiler plant and to investigate also the availability of waste and it´s compositions in Accra, as well as to determine the feasibility of using this waste as a source of fuel to the waste incineration plant. T...

  2. A historical context of municipal solid waste management in the United States.

    Science.gov (United States)

    Louis, Garrick E

    2004-08-01

    Municipal solid waste management (MSWM) in the United States is a system comprised of regulatory, administrative, market, technology, and social subcomponents, and can only be understood in the context of its historical evolution. American cities lacked organized public works for street cleaning, refuse collection, water treatment, and human waste removal until the early 1800s. Recurrent epidemics forced efforts to improve public health and the environment. The belief in anticontagionism led to the construction of water treatment and sewerage works during the nineteenth century, by sanitary engineers working for regional public health authorities. This infrastructure was capital intensive and required regional institutions to finance and administer it. By the time attention turned to solid waste management in the 1880s, funding was not available for a regional infrastructure. Thus, solid waste management was established as a local responsibility, centred on nearby municipal dumps. George Waring of New York City organized solid waste management around engineering unit operations; including street sweeping, refuse collection, transportation, resource recovery and disposal. This approach was adopted nationwide, and was managed by City Departments of Sanitation. Innovations such as the introduction of trucks, motorized street sweepers, incineration, and sanitary landfill were developed in the following decades. The Resource Conservation and Recovery Act of 1976 (RCRA), is the defining legislation for MSWM practice in America today. It forced the closure of open dumps nationwide, and required regional planning for MSWM. The closure of municipal dumps caused a 'garbage crisis' in the late 1980s and early 1990s. Private companies assumed an expanded role in MSWM through regional facilities that required the transportation of MSW across state lines. These transboundary movements of MSW created the issue of flow control, in which the US Supreme Court affirmed the protection

  3. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    Science.gov (United States)

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Significance of waste incineration in Germany; Stellenwert der Abfallverbrennung in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    The report on the relevance of waste incineration in Germany is covering the following issues: change of the issue waste incineration in the last century, the controversy on waste incineration in the 80ies; environmental relevance of waste incineration; utilization of incineration residues; contribution to environmental protection; possible hazards for human health due are waste incinerator plants; the central challenges of waste incineration today; potential restraints to energy utilization in thermal waste processing; optimization of the energetic utilization of municipal wastes; future of the waste management and the relevance of waste incineration.

  5. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: Daniel.Gauthier@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)

    2013-03-15

    Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.

  6. Distribution of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in municipal solid waste incinerators

    International Nuclear Information System (INIS)

    Wang, L.-C.; Hsi, H.-C.; Wang, Y.-F.; Lin, S.-L.; Guo-Ping Chang-Chien

    2010-01-01

    The stack flue gases and the ashes in different units of two municipal solid waste incinerators (MSWIs) are sampled to investigate the characteristics of polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Bottom ashes (BA) exhibited much higher PBDD/F (8.11-52.2 pg TEQ/g) and PBDE contents (20.4-186 ng/g) than those of fly ashes (0.0932-2.02 pg TEQ/g and 0.332-25.5 ng/g), revealing that the PBDD/Fs and PBDEs in the feeding waste may not be completely destroyed. The PBDE concentrations/contents in the stack flue gases (26.1-109 ng/Nm 3 ) and in the BA (20.4-186 ng/g) of the MSWIs could reach three orders higher than those in the atmosphere and reference soils. PBDE contributions to the environment from the stack flue gases or the reutilization of BA of MSWIs should not be ignored from the developing PBDE inventory. - Municipal solid waste incinerators contributed PBDEs and PBDD/Fs to the environment through stack flue gases and reutilization of bottom ashes.

  7. On-line early fault detection and diagnosis of municipal solid waste incinerators

    International Nuclear Information System (INIS)

    Zhao Jinsong; Huang Jianchao; Sun Wei

    2008-01-01

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI

  8. Computer simulation of flow ratios in a washing tower at Duesseldorf-Flingern refuse incineration plant; Computersimulation der Stroemungsverhaeltnisse in einem Waschturm der Muellverbrennungsanlage Duesseldorf-Flingern

    Energy Technology Data Exchange (ETDEWEB)

    Juengling, K [Technischer Ueberwachungs-Verein Rheinland e.V., Koeln (Germany); Koelle, P [Technischer Ueberwachungs-Verein Rheinland e.V., Koeln (Germany)

    1997-03-01

    Numeric investigations of flow ratios have been undertaken in order to optimise the operating performance of the washing towers of a refuse incineration plant during various modes of operation. On the basis of the kowledge gained from flow simulations, proposals have been developed, which have led to a significant prolongation of trouble-free operation. (orig.) [Deutsch] Zur Optimierung des Betriebsverhaltens der Waschtuerme einer Muellverbrennungsanlage bei unterschiedlichen Fahrweisen wurden numerische Untersuchungen der Stroemungsverhaeltnisse durchgefuehrt. Aufgrund der Erkenntnisse aus den Stroemungssimulationen wurden Vorschlaege entwickelt, die zu einer deutlichen Verlaengerung des stoerungsfreien Betriebs fuehrten. (orig.)

  9. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    Science.gov (United States)

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  10. Emissions and dioxins formation from waste incinerators; Emissioni di diossine da inceneritori

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, A I; Zagaroli, M [ENEA - Dipartimento Protezione Ambientale e Salute dell' Uomo, Centro Ricerche Energia, Casaccia (Italy)

    1989-01-15

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  11. Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate.

    Science.gov (United States)

    Dang, Yan; Lei, Yuqing; Liu, Zhao; Xue, Yiting; Sun, Dezhi; Wang, Li-Ying; Holmes, Dawn E

    2016-12-01

    A considerable amount of leachate with high fulvic acid (FA) content is generated during the municipal solid waste (MSW) incineration process. This incineration leachate is usually processed by downstream bio-methanogenic treatment. However, few studies have examined the impact that these compounds have on methanogenesis and how they are degraded and transformed during the treatment process. In this study, a laboratory-scale expanded granular sludge bed (EGSB) reactor was operated with MSW incineration leachate containing various concentrations of FA (1500 mg/L to 8000 mg/L) provided as the influent. We found that FA degradation rates decreased from 86% to 72% when FA concentrations in the reactor were increased, and that molecular size, level of humification and aromatization of the residual FA macromolecules all increased after bio-methanogenic treatment. Increasing FA influent concentrations also inhibited growth of hydrogenotrophic methanogens from the genus Methanobacterium and syntrophic bacteria from the genus Syntrophomonas, which resulted in a decrease in methane production and a concomitant increase in CO 2 content in the biogas. Sequences most similar to species from the genus Anaerolinea went up as FA concentrations increased. Bacteria from this genus are capable of extracellular electron transfer and may be using FA as an electron acceptor for growth or as a shuttle for syntrophic exchange with other microorganisms in the reactor. In order to determine whether FA could serve as an electron shuttle to promote syntrophy in an anaerobic digester, co-cultures of Geobacter metallireducens and G. sulfurreducens were grown in the presence of FA from raw leachate or from residual bioreactor effluent. While raw FA stimulated electron transfer between these two bacteria, residual FA did not have any electron shuttling abilities, indicating that FA underwent a significant transformation during the bio-methanogenic treatment process. These results are

  12. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment. Copyright © 2014. Published by Elsevier B.V.

  13. Relation between leaching characteristics of heavy metals and physical properties of fly ashes from typical municipal solid waste incinerators.

    Science.gov (United States)

    Ni, Peng; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2017-09-01

    Due to the alkalinity and high concentration of potentially hazardous heavy metals, fly ash from a municipal solid waste (MSW) incinerator is classified as hazardous waste, which should be of particular concern. Physical and chemical characterizations of the contrasted fly ashes were investigated to explore the relation between leaching characteristics of heavy metals and physical properties of fly ashes. The results showed that CaClOH, NaCl, Ca(OH) 2 , KCl and SiO 2 were primary mineral compositions in the MSWI fly ashes, and the particle size distribution of fly ash ranged between 10 μm and 300 μm. The smaller the particle size distribution of fly ash, the larger the BET-specific surface area, which was beneficial to the leaching of heavy metals. As a result of various pores, it easily accumulated heavy metals as well. The leaching tests exhibited a high leachability of heavy metals and the leaching concentration of Pb in almost all of the fly ash samples went far beyond the Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Thereupon, it is necessary to establish proper disposal systems and management strategies for environmental protection based on the characteristics of MSW incineration (MSWI) fly ash in China.

  14. WILCI: a LCA tool dedicated to MSW incineration in France

    OpenAIRE

    Beylot , Antoine; Muller , Stéphanie; Descat , Marie; Ménard , Yannick; Michel , Pascale; Villeneuve , Jacques

    2017-01-01

    International audience; Life Cycle Assessment (LCA) has been increasingly used in the last decades to evaluate the global environmental performance of waste treatment options. This is in particular the case considering incineration that is the major treatment route for Municipal Solid Waste (MSW) in France (28% of French MSW are incinerated, in 126 MSW incineration plants; ADEME, 2015). In this context, this article describes a new Excel-tool, WILCI (for Waste Incineration Life Cycle Inventor...

  15. Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0–2 mm) and industrial powder wastes by cold-bonding pelletization

    NARCIS (Netherlands)

    Tang, P.; Brouwers, H.J.H.

    2017-01-01

    The cold-bonding pelletizing technique is applied in this study as an integrated method to recycle municipal solid waste incineration (MSWI) bottom ash fines (BAF, 0–2 mm) and several other industrial powder wastes. Artificial lightweight aggregates are produced successfully based on the combination

  16. Predicting the calorific value of refuse derived fuel from the characteristics of municipal solid waste

    International Nuclear Information System (INIS)

    Sivapalan Kathiravale; Muhd Noor Muhd Yunus; Mohamad Puad Abu; Mohamad Azman Che Mat Isa; Mohd Fairus Abdul Farid; Norasalwa Zakaria; Khaironie Mohd Takip; Rohyiza Ba'an

    2006-01-01

    The Imposing need to manage the municipal solid waste generated by society in a proper manner has urged municipalities to look into new management methods, which are not only environmentally friendly but also economically profitable. One such way is by converting this waste material into fuel. Currently, Kajang in the State of Selangor, Malaysia, generates about 700 tons of Municipal Solid Waste (MSW) a day. Due to rapid development, lack of land area for new landfill and the environmental impact of raw landfills, the local municipal council has collaborated with a local company in the management of this waste. The company has proposed to convert the MSW to Refuse Derived Fuel (RDF). In view of this, a pilot plant to convert MSW to RDF was erected by the company and begun operation in January 2002. This pilot plant has the capability of converting 15 tons of MSW to 5 tons of RDF. At the same time studies, have been carried out to assess the plant performance, the flue gas analysis, and also the MSW and RDF characteristic. This paper will highlight the findings of the MSW and RDF characterization work carried out over the past year. Sampling and analysis was carried in accordance with ASTM standards. Results of the waste analysis showed that the calorific value of the resulting RDF could be predicted from the physical characteristics as well as the moisture content. Regression analysis on the available data has been used to create equations relating the proximate composition and moisture content of the incoming municipal solid waste to the calorific value of the RDF

  17. Geo-environmental application of municipal solid waste incinerator ash stabilized with cement

    Directory of Open Access Journals (Sweden)

    Davinder Singh

    2017-04-01

    Full Text Available The behavior of soluble salts contained in the municipal solid waste incinerator (MSWI ash significantly affects the strength development and hardening reaction when stabilized with cement. The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash. A series of indices such as unconfined compressive strength, split tensile strength, California bearing ratio (CBR and pH value was examined. Prior to this, the specimens were cured for 7 d, 14 d, and 28 d. The test results depict that the maximum dry density (MDD decreases and the optimum moisture content (OMC increases with the addition of cement. The test results also reveal that the cement increases the strength of the mixed specimens. Thus, the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.

  18. Waste incineration industry and development policies in China.

    Science.gov (United States)

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of COSMOS technologies in detoxifying municipal solid waste incineration fly ash, preliminary results

    Science.gov (United States)

    Piccinelli, Elsa; Lasagni, Marina; Collina, Elena; Bonaiti, Stefania; Bontempi, Elza

    2017-05-01

    This study investigates the effect of technologies for heavy metal stabilization on the concentration of PolyChlorinatedDibenzo-p-Dioxins (PCDD) and PolyChlorinatedDibenzoFurans (PCDF), abbreviated PCDD/F, in Municipal Solid Waste Incineration (MSWI) fly ash. We determined the variation of the Total Organic Carbon (TOC) and PCDD/F concentration between raw and stabilized material. The technologies, that already proved to be very promising for heavy metal entrapment, showed encouraging results also for PCDD/F detoxification. This result could be very impacting on the management of MSWI fly ash: at the best of our knowledge, there are no methods, in literature, that can provide good results in stabilization of heavy metals, and abatement of chlorinated organic pollutants contained in the same matrix.

  20. A cross-sectional analysis of dioxins and health effects in municipal and private waste incinerator workers in Japan

    Science.gov (United States)

    YAMAMOTO, Kenya; KUDO, Mitsuhiro; ARITO, Heihachiro; OGAWA, Yasutaka; TAKATA, Tsutomu

    2015-01-01

    This cross-sectional study was intended to examine health effects of 678 male workers employed during an 8-yr period from 2000 to 2007 at 36 municipal and private waste incineration plants in Japan. Blood samples were obtained for analysis of concentrations of dioxins including coplanar polychlorinated biphenyls (coplanar PCBs) and evaluation of health effects. Health effects including diabetes were surveyed via a physician’s interview or clinical data from blood samples. There was a certain difference in serum concentrations of polychlorinated dibenzofurans (PCDFs) between the incinerator workers and Japanese general population, although no differences in the concentrations of total dioxins or polychlorinated dibenzo-p-dioxins (PCDDs) were found between the two groups. A few positive correlations between serum levels of PCDDs and PCDFs and the results of laboratory and physiological tests were found, but coplanar PCBs showed significant relations with 14 parameters of the tests. The background serum levels of PCDDs, PCDFs and total dioxins were significantly associated with the prevalence of diabetes. No essential differences in serum concentrations of total dioxins and in prevalence of diabetes between our subjects and the general population suggested that the incinerator workers were marginally exposed to dioxins in the workplace without any recognizable adverse health effects. PMID:26212412

  1. Seventy years of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Dumbleton, Brian

    1995-06-08

    A third waste incineration plant, which will conform to new United Kingdom emission standards is currently under construction at Tyseley in Birmingham. The plant will generate 25MW of electricity for 25,000 households by burning 350,000 t of municipal wastes per year. The site has been used for such energy from waste schemes since 1926. The new plant includes the latest air pollution abatement equipment designed to absorb mercury vapour and dioxins together with fabric filters. Other improvements at the Tyseley site include a new purpose built public waste disposal facility, clinical waste and animal carcass incineration and the recovery of 16,000t of ferrous metals per year for recycling. Because these waste products are incinerated it also therefore reduce`s Birmingham`s need for landfill sites. (UK)

  2. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand

    International Nuclear Information System (INIS)

    Udomsri, Seksan; Martin, Andrew R.; Fransson, Torsten H.

    2010-01-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO 2 levels by 3% in comparison with current thermal power plants.

  3. Environment protection by coupling of a municipal waste incinerator to an existing coal fire steam boiler

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, I.; Stanescu, P.D.O.; Gruescu, C.; Savu, A.; Ungureanu, C. [University of Politehnic Timisoara, Timisoara (Romania)

    2006-12-15

    The paper offers an analysis of the potential coupling of a municipal waste incinerator in Romania, to an existing coal fired steam boiler. Considering the retention of heavy metals as well as HCl from the waste flue gases before entering the boiler, the simulation analysis of the boiler, under the situation that the gases from the scrubber are introduced, are presented As general conclusion one notes that it is possible to apply the concept even if the analysed case is of less importance, but more potential application are viewed for larger industrial application, for new concepts of modern power plants, to meet EU environmental regulations, especially for CO{sub 2} reduction.

  4. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution.

    Science.gov (United States)

    De Boom, Aurore; Aubert, Jean-Emmanuel; Degrez, Marc

    2014-05-01

    Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling.

  5. PCDD/Fs atmospheric deposition fluxes and soil contamination close to a municipal solid waste incinerator.

    Science.gov (United States)

    Vassura, Ivano; Passarini, Fabrizio; Ferroni, Laura; Bernardi, Elena; Morselli, Luciano

    2011-05-01

    Bulk depositions and surface soil were collected in a suburban area, near the Adriatic Sea, in order to assess the contribution of a municipal solid waste incinerator to the area's total contamination with polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs and PCDFs). Samples were collected at two sites, situated in the area most affected by plant emissions (according to the results of the Calpuff air dispersion model), and at an external site, considered as a reference. Results show that the studied area is subject to low contamination, as far as these compounds are concerned. Deposition fluxes range from 14.3 pg m(-2)d(-1) to 89.9 pg m(-2)d(-1) (0.75 pg-TEQ m(-2)d(-1) to 3.73 pg-TEQ m(-2)d(-1)) and no significant flow differences are observed among the three monitored sites. Total soil concentration amounts to 93.8 ng kg(-1) d.w. and 1.35 ng-TEQ kg(-1)d.w, on average, and confirms a strong homogeneity in the studied area. Furthermore, from 2006 to 2009, no PCDD/Fs enrichment in the soil was noticed. Comparing the relative congener distributions in environmental samples with those found in stack emissions from the incineration plant, significant differences are observed in the PCDD:PCDF ratio and in the contribution of the most chlorinated congeners. From this study we can conclude that the incineration plant is not the main source of PCDD/Fs in the studied area, which is apparently characterized by a homogeneous and widespread contamination situation, typical of an urban area. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Recycling ampersand incineration: Evaluating the choices

    International Nuclear Information System (INIS)

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for 'citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options

  7. The early days of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, M.

    1995-05-01

    Landfills reaching capacity, beaches fouled with trash, neighborhood residents protesting waste disposal sites in their backyards, and municipalities forced to recycle. Sound familiar? These issues might have been taken from today`s headlines, but they were also problems facing mechanical engineers a century ago. Conditions such as these were what led engineers to design the first incinerators for reducing the volume of municipal garbage, as well as for producing heat and electricity. The paper discusses these early days.

  8. Leaching behaviour, mechanical and durability properties of mortar containing municipal incineration bottom ash

    Science.gov (United States)

    Morales Hernandez, Maria B.

    The review of municipal solid waste (MSW) management scheme has indicated that the amount of MSW sent to incineration plants will increase in the UK in coming years. Therefore, the amount of municipal solid waste incineration (MSWI) residues generated will increase significantly. MSWI residues are divided into MSWI fly ash (MSWI-FA) and MSWI bottom ash (MSWI-BA). MSWI-FA is classified as hazardous residue thereby requires special treatment before disposal. MSWI-BA is mostly disposed in landfill sites. MSWI-BA fraction with particle size diameter below approximately 2mm has low engineering properties and may have an adverse effect on the environment due to its high porosity, solubility and leachability of possible toxic compounds. This research programme has investigated new potential uses and leaching behaviour of mortar containing MSWI-BA with particle size diameters below 2.36mm. Fraction of MSWI-BA with particle size diameters (φ) below 2.36 mm (φ <2.36) was divided into different sub-fractions to evaluate their influence on compressive strength of concrete when used as partial replacement of cement or sand. MSWI-BA fraction with φ <212mum (fine fraction) and 212mum < φ2.36mm (coarse fraction) used as partial replacement of cement and sand respectively, showed higher compressive strength compared with the other fractions examined. In addition, replacing sand with the coarse fraction of MSWI-BA exhibited similar or higher strength than the reference mix. Examination of physical and chemical properties of the fine and coarse fractions of MSWI-BA unbound indicated that both fractions had potential to be used as replacement of cement or sand. However, the evaluation of their leaching behaviour suggested that they should be bound in cement-based systems to avoid leaching of potential toxic elements. Evaluation of physical, mechanical and sulfate resistance properties of mortars containing 15% of the fine fraction of MSWI-BA as a partial replacement of cement and

  9. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View

    Science.gov (United States)

    Joseph, Aneeta Mary; Snellings, Ruben; Van den Heede, Philip; Matthys, Stijn

    2018-01-01

    Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow. PMID:29337887

  10. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View

    Directory of Open Access Journals (Sweden)

    Aneeta Mary Joseph

    2018-01-01

    Full Text Available Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow.

  11. Emissions from waste combustion. An application of statistical experimental design in a laboratory-scale boiler and an investigation from large-scale incineration plants

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojing, Zhang

    1997-05-01

    The aim of this thesis is a study of the emissions from the combustion of household refuse. The experiments were both on a laboratory-scale boiler and on full-scale incineration plants. In the laboratory, an artificial household refuse with known composition was fed into a pilot boiler with a stationary grate. Combustion was under non-optimum conditions. Direct sampling with a Tenax adsorbent was used to measure a range of VOCs. Measurements were also made of incompletely burnt hydrocarbons, carbon monoxide, carbon dioxide, oxygen and flue gas temperature. Combustion and emission parameters were recorded continuously by a multi-point data logger. VOCs were analysed by gas chromatography and mass spectrometry (GC/MS). The full-scale tests were on seven Swedish incineration plants. The data were used to evaluate the emissions from large-scale incineration plants with various type of fuels and incinerators, and were also compared with the laboratory results. The response surface model developed from the laboratory experiments was also validated. This thesis also includes studies on the gasification of household refuse pellets, estimations of particulate and soot emissions, and a thermodynamic analysis of PAHs from combustion flue gas. For pellet gasification, experiments were performed on single, well characterised refuse pellets under carefully controlled conditions. The aim was to see if the effects of pellets were different from those of untreated household refuse. The results from both laboratory and full-scale tests showed that the main contributions to emissions from household refuse are plastics and moisture. 142 refs, 82 figs, 51 tabs

  12. Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China.

    Science.gov (United States)

    Wang, Yanqing; Zhang, Xiaohong; Liao, Wenjie; Wu, Jun; Yang, Xiangdong; Shui, Wei; Deng, Shihuai; Zhang, Yanzong; Lin, Lili; Xiao, Yinlong; Yu, Xiaoyu; Peng, Hong

    2018-04-25

    China has become the largest generator of municipal solid waste (MSW) in the world with its rapid urbanization, population growth and raising living standard. Among diverse solid waste disposal technologies, MSW incineration has been becoming an attractive choice. In terms of systematic point, an integrated MSW incineration system should include an incineration subsystem and a bottom ash (BA) disposal subsystem. This paper employed an extend emergy assessment method with several improved indicators, which considers the emissions' impact, to evaluate the comprehensive performances of an integrated MSW incineration system. One existing incineration plant in Yibin City, Sichuan Province, China, as a case study, is evaluated using the proposed method. Three alternative scenarios (scenario A: the incineration subsystem + the BA landfill subsystem; scenario B: the incineration subsystem + the concrete paving brick production subsystem using BA as raw material; scenario C: the incineration subsystem + the non-burnt wall brick production subsystem using BA as raw material) were compared. The study results reveal that the ratio of positive output is 1.225, 2.861 and 1.230, the improved environmental loading ratio is 2.715, 2.742 and 1.533, and the improved environmental sustainability index is 0.451, 1.043 and 0.803 for scenario A, B and C respectively. Therefore, reuse of BA can enhance the sustainability level of this integrated system greatly. Comparatively, scenario B has the best comprehensive performance among the three scenarios. Finally, some targeted recommendations are put forward for decision-making. Copyright © 2018. Published by Elsevier Ltd.

  13. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators.

    Science.gov (United States)

    You, Haihui; Ma, Zengyi; Tang, Yijun; Wang, Yuelan; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa; Huang, Qunxing

    2017-10-01

    The heating values, particularly lower heating values of burning municipal solid waste are critically important parameters in operating circulating fluidized bed incineration systems. However, the heating values change widely and frequently, while there is no reliable real-time instrument to measure heating values in the process of incinerating municipal solid waste. A rapid, cost-effective, and comparative methodology was proposed to evaluate the heating values of burning MSW online based on prior knowledge, expert experience, and data-mining techniques. First, selecting the input variables of the model by analyzing the operational mechanism of circulating fluidized bed incinerators, and the corresponding heating value was classified into one of nine fuzzy expressions according to expert advice. Development of prediction models by employing four different nonlinear models was undertaken, including a multilayer perceptron neural network, a support vector machine, an adaptive neuro-fuzzy inference system, and a random forest; a series of optimization schemes were implemented simultaneously in order to improve the performance of each model. Finally, a comprehensive comparison study was carried out to evaluate the performance of the models. Results indicate that the adaptive neuro-fuzzy inference system model outperforms the other three models, with the random forest model performing second-best, and the multilayer perceptron model performing at the worst level. A model with sufficient accuracy would contribute adequately to the control of circulating fluidized bed incinerator operation and provide reliable heating value signals for an automatic combustion control system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Problems and prospects of refuse disposal in nigerian urban centres ...

    African Journals Online (AJOL)

    Refuse disposal is one of the major environmental problems that developing ... The problem of waste management has two parts, that of collection and that of disposal. ... Disposal methods such as dumping sites, incineration, recycling, shipping ... citizenry has roles to play in adopting more suitable solutions to this problem.

  15. Market forces in municipal and industrial waste-to-energy

    International Nuclear Information System (INIS)

    Makansi, J.

    1991-01-01

    The market for municipal and industrial waste-to-energy can be characterized simply as currently soft with continued excellent long-term prospects. But as in all markets large and small, niche opportunities exist now which can be profitable with proper definition and strategy. Economics of several projects have proven marginal, cost overruns are common, and revenue projections are sometimes overstates. Also contributing to poorer economics of late are lower prices for the electric power produced from these plants. New environmental restrictions are adding 10-15% to the capital costs of a given project. On the industrial front, the strength of waste-fuel firing continues to be evident for independent power production. Important fuel-niche markets have sprung up over the last decade including petroleum coke, coal-mining wastes, hospital or redbag wastes, biomass, used tires, and so on. Another fuel niche is hazardous waste incineration. In the municipal arena, realism has not yet hit the recycling and source reduction enthusiasts. Only 25-35% recycling is considered practical by experts. There are also limits to how often material can be recycled. Finally, in spite of the best efforts of the population to control the amount of refuse generated and to recycle that which is, population and economic growth may overtake any new sense of environmental responsibility. And, yes, the additional refuse still has to go somewhere exclamation point The best somewhere option continues to be a waste-to-energy plant. Current market opportunities and two other market forces (international activities and the role of US utilities) are discussed

  16. Marketization of refuse collection in Denmark

    DEFF Research Database (Denmark)

    Busck, Ole Gunni

    2006-01-01

      Danish municipalities' outsourcing and contracting of refuse collection are framed by a complex set of ideologies and objectives, besides regulation. Both at EU-level and at national level extreme demands for marketization of the public sector are counter-weighed by demands for social and envir......  Danish municipalities' outsourcing and contracting of refuse collection are framed by a complex set of ideologies and objectives, besides regulation. Both at EU-level and at national level extreme demands for marketization of the public sector are counter-weighed by demands for social...... and environmental considerations associated with the superior goal of sustainable development. In the EU regulative complex developments in normative and legal regulation of social and environmental requirements to member-states' performance have co-existed with tough requirements to ensure open competition...... in public authorities contracting. In the latest edition of the procurement directive it has been clarified that public authorities' commitment of private service-providers to social and environmental requirements by contracting is perfectly legitimate. At national level the municipalities when contracting...

  17. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    International Nuclear Information System (INIS)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon; Kim, Yunbok; Kwon, Youngbock

    2014-01-01

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  18. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon [HaJI Co., Ltd., Radiation Eng. Center, Siheung (Korea, Republic of); Kim, Yunbok; Kwon, Youngbock [KORAD, Daejeon (Korea, Republic of)

    2014-05-15

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  19. Determinants of efficiency in the provision of municipal street-cleaning and refuse collection services.

    Science.gov (United States)

    Benito-López, Bernardino; Moreno-Enguix, María del Rocio; Solana-Ibañez, José

    2011-06-01

    Effective waste management systems can make critical contributions to public health, environmental sustainability and economic development. The challenge affects every person and institution in society, and measures cannot be undertaken without data collection and a quantitative analysis approach. In this paper, the two-stage double bootstrap procedure of Simar and Wilson (2007) is used to estimate the efficiency determinants of Spanish local entities in the provision of public street-cleaning and refuse collection services. The purpose is to identify factors that influence efficiency. The final sample comprised 1072 municipalities. In the first stage, robust efficiency estimates are obtained with Data Envelopment Analysis (DEA). We apply the second stage, based on a truncated-regression, to estimate the effect of a group of environmental factors on DEA estimates. The results show the existence of a significant relation between efficiency and all the variables analysed (per capita income, urban population density, the comparative index of the importance of tourism and that of the whole economic activity). We have also considered the influence of a dummy categorical variable - the political sign of the governing party - on the efficient provision of the services under study. The results from the methodology proposed show that municipalities governed by progressive parties are more efficient. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Determinants of efficiency in the provision of municipal street-cleaning and refuse collection services

    International Nuclear Information System (INIS)

    Benito-Lopez, Bernardino; Rocio Moreno-Enguix, Maria del; Solana-Ibanez, Jose

    2011-01-01

    Effective waste management systems can make critical contributions to public health, environmental sustainability and economic development. The challenge affects every person and institution in society, and measures cannot be undertaken without data collection and a quantitative analysis approach. In this paper, the two-stage double bootstrap procedure of is used to estimate the efficiency determinants of Spanish local entities in the provision of public street-cleaning and refuse collection services. The purpose is to identify factors that influence efficiency. The final sample comprised 1072 municipalities. In the first stage, robust efficiency estimates are obtained with Data Envelopment Analysis (DEA). We apply the second stage, based on a truncated-regression, to estimate the effect of a group of environmental factors on DEA estimates. The results show the existence of a significant relation between efficiency and all the variables analysed (per capita income, urban population density, the comparative index of the importance of tourism and that of the whole economic activity). We have also considered the influence of a dummy categorical variable - the political sign of the governing party - on the efficient provision of the services under study. The results from the methodology proposed show that municipalities governed by progressive parties are more efficient.

  1. Study on potency of municipal solid waste conversion into renewable energy by thermal incineration and bioconversion: case study of Medan city

    Science.gov (United States)

    Sarah, Maya; Misran, Erni

    2018-03-01

    Municipal solid waste (MSW) in Medan City is facing problems either with the quantity and management of MSW. Local authority only dumped approximately 73.9% MSW in the landfill over the years. Spontaneous phenomena of methane formation in dumping site indicates the potency of MSW conversion into energy by biochemical conversion. On the contrary, the presence of plastics, woods, papers, etc. in the MSW show the potency of MSW to be treated by thermal conversion. Both thermal incineration and anaerobic digestion may convert MSW Medan City into energy. This study evaluates potency of MSW conversion into renewable energy using proximate and ultimate analysis. Overall, MSW of Medan City has the opportunities to be converted into energy by both thermal and biochemical conversion with a special requirement such as pre-dry the MSW prior incineration process and degrade organic MSW in a bioreactor.

  2. Copper leaching of MSWI bottom ash co-disposed with refuse: effect of short-term accelerated weathering.

    Science.gov (United States)

    Su, Lianghu; Guo, Guangzhai; Shi, Xinlong; Zuo, Minyu; Niu, Dongjie; Zhao, Aihua; Zhao, Youcai

    2013-06-01

    Co-disposal of refuse with municipal solid waste incinerator (MSWI) bottom ash (IBA) either multi-layered as landfill cover or mixed with refuse could pose additional risk to the environment because of enhanced leaching of heavy metals, especially Cu. This study applied short-term accelerated weathering to IBA, and monitored the mineralogical and chemical properties of IBA during the weathering process. Cu extractability of the weathered IBA was then evaluated using standard leaching protocols (i.e. SPLP and TCLP) and co-disposal leaching procedure. The results showed that weathering had little or no beneficial effect on Cu leaching in SPLP and TCLP, which can be explained by the adsorption and complexation of Cu with DOM. However, the Cu leaching of weathered IBA was reduced significantly when situated in fresh simulated landfill leachate. This was attributed to weakening Cu complexation with fulvic acid or hydrophilic fractions and/or intensifying Cu absorption to neoformed hydr(oxide) minerals in weathered IBA. The amount of total leaching Cu and Cu in free or labile complex fraction (the fraction with the highest mobility and bio-toxicity) of the 408-h weathered IBA were remarkably decreased by 86.3% and 97.6% in the 15-day co-disposal leaching test. Accelerated weathering of IBA may be an effective pretreatment method to decrease Cu leaching prior to its co-disposal with refuse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    Science.gov (United States)

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  4. Nanometer-sized emissions from municipal waste incinerators: A qualitative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David R., E-mail: david.r.johnson@ghd.com

    2016-12-15

    Municipal waste incinerators (MWI) are beneficial alternatives to landfills for waste management. A recent constituent of concern in emissions from these facilities is incidental nanometer-sized particles (INP{sub MWI}), i.e., particles smaller than 1 micrometer in size that may deposit in the deepest parts of the lungs, cross into the bloodstream, and affect different regions of the body. With limited data, the public may fear INP{sub MWI} due to uncertainty, which may affect public acceptance, regulatory permitting, and the increased lowering of air quality standards. Despite limited data, a qualitative risk assessment paradigm can be applied to determine the relative risk due to INP{sub MWI} emissions. This review compiles existing data on nanometer-sized particle generation by MWIs, emissions control technologies used at MWIs, emission releases into the atmosphere, human population exposure, and adverse health effects of nanometer-sized particles to generate a qualitative risk assessment and identify data gaps. The qualitative risk assessment conservatively concludes that INP{sub MWI} pose a low to moderate risk to individuals, primarily due to the lack of relevant toxicological data on INP{sub MWI} mixtures in ambient particulate matter.

  5. Systems analysis for the development of small resource recovery systems: system performance data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    The technologies that should be developed to make small-scale solid waste processing facilities attractive and viable for small municipalities with solid waste between 50 and 250 tons per day are identified. The resource recovery systems investigated were divided into three categories: thermal processng, mechanical separation, and biological processing. Thermal processing systems investigated are: excess-air incineration; starved-air incineration/gasification; and pyrolysis (indirect heating). Mechanical processing systems investigated are: coarse refuse derived fuel; materials separation; dust refuse derived fuel; densified refuse derived fuel; and fine refuse derived fuel. Mechanical processing components investigated include: receiving module; primary size reduction module; combustible separation module; refuse derived fuel preparation module; fuel densification; fuel storage module; ferrous separation; and building and facilities. Pretreatment processes and principle methods of bioconversion of MSW dealing with biological processing are investigated. (MCW)

  6. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland

    Science.gov (United States)

    Setyan, Ari; Patrick, Michael; Wang, Jing

    2017-10-01

    A field campaign has been performed in two municipal solid waste incineration (MSWI) plants in Switzerland, at Hinwil (ZH) and Giubiasco (TI). The aim was to measure airborne pollutants at different locations of the abatement systems (including those released from the stacks into the atmosphere) and at a near-field (∼1 km) downwind site, in order to assess the efficiency of the abatement systems and the environmental impact of these plants. During this study, we measured the particle number concentration with a condensation particle counter (CPC), and the size distribution with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). We also sampled particles on filters for subsequent analyses of the morphology, size and elemental composition with a scanning electron microscope coupled to an energy dispersive X-ray spectroscope (SEM/EDX), and of water soluble ions by ion chromatography (IC). Finally, volatile organic compounds (VOCs) were sampled on adsorbing cartridges and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS), and a portable gas analyzer was used to monitor NO, SO2, CO, CO2, and O2. The particle concentration decreased significantly at two locations of the plants: at the electrostatic precipitator and the bag-house filter. The particle concentrations measured at the stacks were very low (incinerators. At Giubiasco, no significant differences were observed for the morphology and chemical composition of the particles collected in the ambient background and at the downwind site, suggesting that the incineration plant released very limited amounts of particles to the surrounding areas.

  7. 40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.

    Science.gov (United States)

    2010-07-01

    ...) Primary copper smelters; (H) Municipal incinerators capable of charging more than 250 tons of refuse per...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black...

  8. Geopolymers based on the valorization of Municipal Solid Waste Incineration residues

    Science.gov (United States)

    Giro-Paloma, J.; Maldonado-Alameda, A.; Formosa, J.; Barbieri, L.; Chimenos, J. M.; Lancellotti, I.

    2017-10-01

    The proper management of Municipal Solid Waste (MSW) has become one of the main environmental commitments for developed countries due to the uncontrolled growth of waste caused by the consumption patterns of modern societies. Nowadays, municipal solid waste incineration (MSWI) is one of the most feasible solutions and it is estimated to increase in Europe where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion, which is classified as a non-hazardous residue that can be revalorized as a secondary aggregate in road sub-base, bulk lightweight filler in construction. In this way, revalorization of weathered BA (WBA) for the production of geopolymers may be a good alternative to common reuse as secondary aggregate material; however, the chemical process to obtain these materials involves several challenges that could disturb the stability of the material, mainly from the environmental point of view. Accordingly, it is necessary that geopolymers are able to stabilize heavy metals contained in the WBA in order to be classified as non-hazardous materials. In this regard, the SiO2/Al2O3 ratio plays an important role for the encapsulation of heavy metals and other toxic elements. The aim of this research is to formulate geopolymers starting from the 0 - 2 mm particle size fraction of WBA, as a unique raw material used as aluminumsilicate precursor. Likewise, leaching tests of the geopolymers formulated were performed to assess their environmental impact. The findings show that it is possible to formulate geopolymers using 100 % WBA as precursor, although more investigations are needed to sustain that geopolymer obtained can be considered as non-hazardous materials.

  9. Waste incineration, Part I: Technology.

    Science.gov (United States)

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  10. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.

    Science.gov (United States)

    Rocca, Stefania; van Zomeren, André; Costa, Giulia; Dijkstra, Joris J; Comans, Rob N J; Lombardi, Francesco

    2013-02-01

    The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA samples from a refuse derived fuel incineration (RDF-I) plant and a hospital waste incineration (HW-I) plant using thermogravimetric analysis and subsequent mass spectrometry (TG-MS) analysis of the gaseous thermal decomposition products. Results of TG-MS analysis on RDF-I BA indicated that the LOI measured at 550°C was due to moisture evaporation and dehydration of Ca(OH)(2) and hydrocalumite. Results for the HW-I BA showed that LOI at 550°C was predominantly related to the elemental carbon (EC) content of the sample. Decomposition of CaCO(3) around 700°C was identified in both materials. In addition, we have identified reaction mechanisms that underestimate the EC and overestimate the CaCO(3) contents of the HW-I BA during TG-MS analyses. These types of artefacts are expected to occur also when conventional LOI methods are adopted, in particular for materials that contain CaO/Ca(OH)(2) in combination with EC and/or organic carbon, such as e.g. municipal solid waste incineration (MSWI) bottom and fly ashes. We suggest that the same mechanisms that we have found (i.e. in situ carbonation) can also occur during combustion of the waste in the incinerator (between 450 and 650°C) demonstrating that the presence of carbonate in bottom ash is not necessarily indicative for weathering. These results may also give direction to further optimization of waste incineration technologies with regard to stimulating in situ carbonation during incineration and subsequent potential improvement of the leaching behavior of bottom ash. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Probabilistic and technology-specific modeling of emissions from municipal solid-waste incineration.

    Science.gov (United States)

    Koehler, Annette; Peyer, Fabio; Salzmann, Christoph; Saner, Dominik

    2011-04-15

    The European legislation increasingly directs waste streams which cannot be recycled toward thermal treatment. Models are therefore needed that help to quantify emissions of waste incineration and thus reveal potential risks and mitigation needs. This study presents a probabilistic model which computes emissions as a function of waste composition and technological layout of grate incineration plants and their pollution-control equipment. In contrast to previous waste-incineration models, this tool is based on a broader empirical database and allows uncertainties in emission loads to be quantified. Comparison to monitoring data of 83 actual European plants showed no significant difference between modeled emissions and measured data. An inventory of all European grate incineration plants including technical characteristics and plant capacities was established, and waste material mixtures were determined for different European countries, including generic elemental waste-material compositions. The model thus allows for calculation of country-specific and material-dependent emission factors and enables identification and tracking of emission sources. It thereby helps to develop strategies to decrease plant emissions by reducing or redirecting problematic waste fractions to other treatment options or adapting the technological equipment of waste incinerators.

  12. Mathematical modelling of municipal solid waste incineration and thermodynamic study of the behaviour of heavy metals; Modelisation de l'incineration sur grille d'ordures menageres et approche thermodynamique du comportement des metaux lourds

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Y

    2003-07-15

    The present dissertation describes experimental and theoretical investigations undertaken for the mathematical modelling of municipal solid waste (MSW) incineration in a grate furnace and the thermodynamic study of the speciation of heavy metals (HM), originally contained into MSW, during combustion. Thermogravimetric and gaseous analysis (mass spectrometry and gas chromatography) experiments were performed on MSW samples to get pyrolysis kinetics and to quantify the gaseous species that evolve during the primary reactions of devolatilization. Other experiments were carried out in a fixed bed pilot-scale reactor: the combustion of two types of solids (wood chips and MSW) was studied, and the influence of operating conditions (flow rate, staging and temperature of the primary air) as well as fuel characteristics (moisture content, inert material fraction, lower calorific value) was investigated. A mathematical model was developed for simulating the combustion of a solid fuel, either in a fixed bed reactor or on the grate of an incineration plant. It has been validated by comparison of the calculated results and the experiments carried out on the pilot. Thanks to this model, we have been able to localize the different processes taking place in the fuel bed and to evaluate the influence of the operating conditions on the combustion efficiency. Numerical simulations of the gas flow and combustion in the post-combustion chamber and the heater of an incineration plant were performed using the CFD code FLUENT. The local thermal conditions as well as local gaseous species concentrations obtained from these simulations were eventually used to carry out thermodynamic calculations of the speciation of HM during incineration. (author)

  13. Leaching of Antimony (Sb)from Municipal Solid Waste Incineration (MSWI) Residues

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Inga

    2004-07-01

    The mobility of antimony (Sb) in municipal solid waste incineration (MSWI) residues often exceeds the limit values stipulated by the European Union. As an ash treatment by washing is conceivable, this work investigated the Sb release from Swedish bottom ash and fly ash when mixed with water. The leaching experiments revealed the factors significantly (a = 0.05) affecting Sb release from the ashes. The following factors were investigated: Liquid to solid ratio (L/S), time, pH, carbonation (treatment with CO{sub 2}), ultrasonics and temperature. The data were evaluated using multiple linear regression (MLR). The impact of the factors could be quantified. The maximum Sb release calculated was 13 mg/kg DM for bottom ash and 51 mg/kg DM for fly ash. The derived models explained the observed data well. Nevertheless, the calculated values were subject to a high uncertainty. For bottom ash, a lowering of the Sb total content of approximately 22% could be achieved. If this also involves a sufficient lowering of the Sb mobility to meet EU limit values could not yet be assessed. Chemical equilibrium calculations were performed to explain the empirical results. However, no solid phases controlling Sb release from the ashes could be identified.

  14. A comparative assessment of waste incinerators in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.D., E-mail: j.nixon@kingston.ac.uk [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Wright, D.G.; Dey, P.K. [Aston Business School, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Ghosh, S.K. [Mechanical Engineering Department, Centre for Quality Management System, Jadavpur University, Kolkata 700 032 (India); Davies, P.A. [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)

    2013-11-15

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  15. A comparative assessment of waste incinerators in the UK

    International Nuclear Information System (INIS)

    Nixon, J.D.; Wright, D.G.; Dey, P.K.; Ghosh, S.K.; Davies, P.A.

    2013-01-01

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  16. Renewable municipal waste barometer - EurObserv'ER - November 2010

    International Nuclear Information System (INIS)

    2010-11-01

    7,7 Mtoe of primary energy produced from the combustion of renewable municipal waste in the European Union in 2009. Approximately half the energy produced in Union European's municipal waste incineration plants is obtained from fermentescible waste (ie biomass waste). To date, incineration is still the main energy conversion channel for renewable municipal waste, for in 2009, biomass energy output stood at 7.7 million toe, which is a 3.3% increase on 2008. Furthermore, this amount could be doubled, assuming a constant level of waste, by investing in modernisation and combustion efficiency improvements

  17. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge.

    Science.gov (United States)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Frandsen, Flemming J; Müller-Stöver, Dorette Sophie

    2017-08-01

    Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant availability in a short-term soil incubation study. The compositional changes related mainly to differences in the proximate composition as well as to the release of especially nitrogen, sulfur, cadmium and to some extent, phosphorus (P). The cadmium load per unit of P was reduced with 75-85% in gasification processes and 10-15% in pyrolysis whereas no reduction was observed in incineration processes. The influence on other heavy metals was less pronounced. The plant availability of P in the substrates varied from almost zero to almost 100% of the plant availability of P in the untreated sludge. Post-oxidized slow pyrolysis char was found to be the substrate with the highest P fertilizer value while ash from commercial fluid bed sludge incineration had the lowest P fertilizer quality. The high P fertilizer value in the best substrate is suggested to be a function of several different mechanisms including structural surface changes and improvements in the association of P to especially magnesium, calcium and aluminum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    Science.gov (United States)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Energy recovery from municipal solid wastes in Italy: Actual study and perspective for future

    International Nuclear Information System (INIS)

    Brunetti, N.; Ciampa, F.; De Cecco, C.

    1992-01-01

    Materials and energy recovery from municipal solid wastes (MSW) and assimilable waste, and their re-use is one of strong points of current regulations and tendencies, both at the national and at community level in Europe. In Italy, the interest in energy recovery from renewable sources has been encouraged by energy-savings law which included financial incentives for thermal plant building if low grade fuels such as MSW were employed. New electric power prices imposed by Italian Electric Power Authority, ENEL, encourage energy recovery from waste burners. This paper aims to point out the present state of energy recovery from wastes in Italy, trends and prospects to satisfy, with new plants, the need for waste thermal destruction and part of the demand for energy in the different Italian regions: only about 10% of MSW are burned and just a small percentage of the estimated amount of recoverable energy (2 MTOE/y) is recuperated. Different technological cycles are discussed: incineration of untreated wastes and energy recovery; incineration (or gasification) of RDF (refuse derived fuels) and heat-electricity co-generation; burning of RDF in industrial plants, in addition to other fuels

  20. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review.

    Science.gov (United States)

    Silva, R V; de Brito, J; Lynn, C J; Dhir, R K

    2017-10-01

    This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  2. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    International Nuclear Information System (INIS)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-01-01

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator

  3. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  4. Pilot-plant for NOx, SO2, HCl removal from flue-gas of municipal waste incinerator by electron beam irradiation

    International Nuclear Information System (INIS)

    Doi, Takeshi; Suda, Shoichi; Morishige, Atsushi; Tokunaga, Okihiro; Aoki, Yasushi; Sato, Shoichi; Komiya, Mikihisa; Hashimoto, Nobuo; Nakajima, Michihiro.

    1992-01-01

    A pilot-Plant for NO x , SO 2 and HCl removal from flue-gas of municipal waste incinerator by electron beam irradiation was designed and its construction at Matsudo City Waste Disposal Center was planned. The flue-gas of 1,000 Nm 3 /hr is guided from the waste incinerator flue-gas line of 30,000 Nm 3 /hr to the Pilot-Plant to be processed by spraying Ca(OH) 2 slurry (NKK-LIMAR Process) and irradiating high-energy electron beam of an accelerator. NO x , SO 2 and HCl are removed simultaneously from the flue-gas by the enhanced reaction with Ca(OH) 2 under irradiation. According to the basic research performed using a small size reactor at TRCRE of JAERI, the electron beam irradiation process was proved to be very effective for these harmful gases removal. Based on this result, the Pilot-Plant was designed for the demonstration of NO x , SO 2 and HCl removal performance using electron accelerator of maximum energy 0.95 MeV and maximum power 15 kW. The designing and planning were promoted by NKK in cooperation with JAERI and Matsudo City. (author)

  5. Levels and trends of PCDD/Fs in human blood and milk of residents in the vicinity of a modern municipal solid waste incinerator near to Lisbon

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, C.; M. Fatima Reis; J. Pereira Miguel [Inst. of Preventive Medicine, Univ. of Lisbon (Portugal); Aguiar, P. [National School of Public Health, New Univ. of Lisbon (Portugal)

    2004-09-15

    Possible health hazard from human exposure to municipal solid waste (MSW) incinerator emissions, which can include chlorinated persistent organic compounds such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDDs), is of great public concern. The needed rigorous control of these emissions should be reflected by not different time trends in the PCDD/Fs levels of both the populations residing in the vicinity of incinerators and others selected as control, similar in socio-demographic and other factors potentially influencing those levels. To check the possibility of enhanced body burdens due to MSW emissions, well-designed studies have to be performed to determine human exposure to PCDD/Fs over time. Biological (human) monitoring of these chemicals has several advantages over environmental monitoring, since it is able to measure human body burden and accounts for exposure from all sources, environmental pathways and routes of absorption. However, it is practically unable to identify specific sources, routes and pathways, important issues for risk management purposes. Since 1999, a modern municipal solid waste incinerator is operating in the Metropolitan Area of North-Lisbon, Portugal. In order to get a reliable data basis on the body burden of PCDD/Fs in the population residing in the vicinity of the plant, susceptible of identifying time trends and possible regional differences, a biomonitoring program was implemented in the ambit of the VALORSUL Environmental Health Survey, referred elsewhere. The present paper describes results of this biomonitoring program, which includes repeated cross-sectional studies and, as much as possible, regular examinations of blood and breast milk samples, to determine PCDD/F levels.

  6. Sex ratio of offspring and occupational exposure to fly ash : a historical cohort study of municipal solid waste incinerator workers in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Mori, I.; Ogawa, Y. [National Inst. of Industrial Health, Tokyo (Japan); Kumagai, S. [Osaka Prefectural Inst. of Public Health, Osaka (Japan); Koda, S. [Kochi Medical School, Nangoku (Japan); Ueno, M. [All-Japan Prefectural and Municipal Workers Union, Tokyo (Japan)

    2005-07-01

    This paper described a cohort study which focused on risk assessment for cancer mortality and changes in the sex ratio of offspring among municipal solid waste incinerator (MSWI) workers in Japan. A baseline survey was conducted by survey with both MSWI workers as well as a reference population of waste collection workers. Questions were related to offspring, job history, and frequency of exposure to fly ash during incinerator work. A total of 5211 records were then analyzed as well as 10,571 children. Duration of exposure to fly ash was used as a surrogate exposure index. Results showed that longer exposure to fly ash influenced the sex ratio. Results of a multivariate analysis conducted to compute the odds ratio of female birth by different exposure indices were similar to results obtained in a univariate analysis. It was concluded that an association between duration of exposure to fly ash and changes in sex ratio was determined. 5 refs., 3 tabs.

  7. Dioxin emissions by the municipal solid waste incinerators: is it a risk for the public health?; Emision de dioxinas por las incineradoras de R. S. U.: Un riesgo para la salud publica?

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, J. L. [Universidad Rovira i Virgili. Reus. Tarragona (Spain)

    1999-11-01

    Environmental contamination from particulate and gaseous emissions containing heavy metals, polychlorinated dibenzo-p-dioxin (PCDDs) and polychlorinated dibenzofurans (PCDFs), as well as other compounds from municipal solid waste incinerators (MSWI) is an issue of great concern. Recently, the controversy surrounding MSWI has intensified in our country. The key question for government agencies, public official, and public opinion is whether MSW incineration is an acceptable waste management option. Since a point-of view of public health, much concern and debate has arisen about human exposure to PCDD/Fs emitted from these facilities. The present paper provides an up-to-date perspective on MSW incineration as a source of human exposure to PCDD/Fs by comparing background PCDD/F concentrations with incinerator-emitted PCDD/F levels. It is concluded that PCDD/F exposure from MSWI would not reach percentage of 1% on total daily intake of PCDD/Fs. (Author) 18 refs.

  8. Modified fly ash from municipal solid waste incineration as catalyst support for Mn-Ce composite oxides

    Science.gov (United States)

    Chen, Xiongbo; Liu, Ying; Yang, Ying; Ren, Tingyan; Pan, Lang; Fang, Ping; Chen, Dingsheng; Cen, Chaoping

    2017-08-01

    Fly ash from municipal solid waste incineration was modified by hydrothermal treatment and used as catalyst support for Mn-Ce composite oxides. The prepared catalyst showed good activity for the selective catalytic reduction (SCR) of NO by NH3. A NO conversion of 93% could be achieved at 300 °C under a GHSV of 32857 h-1. With the help of characterizations including XRD, BET, SEM, TEM, XPS and TPR, it was found that hydrothermal treatment brought a large surface area and abundant mesoporous to the modified fly ash, and Mn-Ce composite oxides were highly dispersed on the surface of the support. These physical and chemical properties were the intrinsic reasons for the good SCR activity. This work transformed fly ash into high value-added products, providing a new approach to the resource utilization and pollution control of fly ash.

  9. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  10. Some economic and environmental considerations about the feasibility of a MSW (Municipal Solid Wastes) incinerator with energy recovery in the province of Cosenza

    International Nuclear Information System (INIS)

    Nicoletti, G.; Anile, F.; Marandola, C.

    1998-01-01

    From new years, also in Italy is increasing the awareness of the not deferability of the problems about energetic consumption and with environmental pollution. In this contest, in the present note it's pointed out the risk of the sell of unloading of the MSW (Municipal Solid Wastes) and also the importance of legislative directions promulgate recently to face correctly the problem. In this work is considered the qualitative-quantitative aspects of the municipal solid wastes in the province of Cosenza with some reference to the experiences made in this sector. It's also shown that a MSW incinerator with energy recovery is principally characterized for a strong contribution to the environmental healing and, in second step, but not less important, for a energetic saving of the fossil fuels [it

  11. Mathematical modelling of municipal solid waste incineration and thermodynamic study of the behaviour of heavy metals; Modelisation de l'incineration sur grille d'ordures menageres et approche thermodynamique du comportement des metaux lourds

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Y.

    2003-07-15

    The present dissertation describes experimental and theoretical investigations undertaken for the mathematical modelling of municipal solid waste (MSW) incineration in a grate furnace and the thermodynamic study of the speciation of heavy metals (HM), originally contained into MSW, during combustion. Thermogravimetric and gaseous analysis (mass spectrometry and gas chromatography) experiments were performed on MSW samples to get pyrolysis kinetics and to quantify the gaseous species that evolve during the primary reactions of devolatilization. Other experiments were carried out in a fixed bed pilot-scale reactor: the combustion of two types of solids (wood chips and MSW) was studied, and the influence of operating conditions (flow rate, staging and temperature of the primary air) as well as fuel characteristics (moisture content, inert material fraction, lower calorific value) was investigated. A mathematical model was developed for simulating the combustion of a solid fuel, either in a fixed bed reactor or on the grate of an incineration plant. It has been validated by comparison of the calculated results and the experiments carried out on the pilot. Thanks to this model, we have been able to localize the different processes taking place in the fuel bed and to evaluate the influence of the operating conditions on the combustion efficiency. Numerical simulations of the gas flow and combustion in the post-combustion chamber and the heater of an incineration plant were performed using the CFD code FLUENT. The local thermal conditions as well as local gaseous species concentrations obtained from these simulations were eventually used to carry out thermodynamic calculations of the speciation of HM during incineration. (author)

  12. Multi-criteria GIS-based siting of an incineration plant for municipal solid waste.

    Science.gov (United States)

    Tavares, Gilberto; Zsigraiová, Zdena; Semiao, Viriato

    2011-01-01

    Siting a municipal solid waste (MSW) incineration plant requires a comprehensive evaluation to identify the best available location(s) that can simultaneously meet the requirements of regulations and minimise economic, environmental, health, and social costs. A spatial multi-criteria evaluation methodology is presented to assess land suitability for a plant siting and applied to Santiago Island of Cape Verde. It combines the analytical hierarchy process (AHP) to estimate the selected evaluation criteria weights with Geographic Information Systems (GIS) for spatial data analysis that avoids the subjectivity of the judgements of decision makers in establishing the influences between some criteria or clusters of criteria. An innovative feature of the method lies in incorporating the environmental impact assessment of the plant operation as a criterion in the decision-making process itself rather than as an a posteriori assessment. Moreover, a two-scale approach is considered. At a global scale an initial screening identifies inter-municipal zones satisfying the decisive requirements (socio-economic, technical and environmental issues, with weights respectively, of 48%, 41% and 11%). A detailed suitability ranking inside the previously identified zones is then performed at a local scale in two phases and includes environmental assessment of the plant operation. Those zones are ranked by combining the non-environmental feasibility of Phase 1 (with a weight of 75%) with the environmental assessment of the plant operation impact of Phase 2 (with a weight of 25%). The reliability and robustness of the presented methodology as a decision supporting tool is assessed through a sensitivity analysis. The results proved the system effectiveness in the ranking process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Assessing the power generation, pollution control, and overall efficiencies of municipal solid waste incinerators in Taiwan

    International Nuclear Information System (INIS)

    Chang, Dong-Shang; Yang, Fu-Chiang

    2011-01-01

    This paper evaluates the productivity of municipal solid waste incinerators (MSWIs) by addressing the following questions: (1) to what extent should one further increase the production of power generation while maintaining the emission of noxious air at the current level?; (2) To what extent should one further decrease the emission of noxious air while maintaining the production of power generation at the current level?; and (3) To what extent should one increase the production of power generation and decrease the emission of noxious air simultaneously? To effectively address these questions to improve performance, the power generation and pollution control efficiencies are evaluated using TODEA (two-objective data envelopment analysis), as well as the overall efficiency evaluated using Tone's NS-overall model (slacks-based measure with non-separable desirable and undesirable outputs for evaluating overall efficiency). A MSWI case study in Taiwan with the panel data covering the period of 2004-2008 reveals that the power generation and overall efficiencies of build-operate-transfer are more efficient, on average, than those of public-own-operate and build-own-operate. However, the three building and operation types do not significantly differ in pollution control efficiency. - Research highlights: → The MSWIs implemented by private sectors are more effective than that by public sectors. → Policy makers should pay more attention to the reduction of CO during waste incineration. → Three alternatives for improving the performance of MSWIs can be made available.

  14. Leaching from municipal solid waste incineration residues

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.

    2008-02-15

    Leaching of pollutants from Municipal Solid Waste Incineration (MSWI) residues has been investigated combining a range of laboratory leaching experiments with geochemical modeling. Special attention was paid to assessing the applicability of laboratory data for subsequent modeling with respect to presumed full-scale conditions; both sample pretreatment and actual influence of leaching conditions on the results of laboratory experiments were considered. It was shown that sample pretreatment may have large impact on leaching test data. In particular, a significant fraction of Pb was shown mobile during the washing of residues with water. In addition, drying of residues (i.e. slow oxidation) prior to leaching experiments increased the leaching of Cr significantly. Significant differences regarding the leaching behavior of individual elements with respect to (non)equilibrium conditions in column percolation experiments were observed in the study. As a result, three groups of elements were identified based on the predominant leaching control and the influence of (non)equilibrium on the results of the laboratory column experiments: I. Predominantly availability-controlled elements (e.g. Na, K, Cl) II. Solubility-controlled elements (e.g. Ca, S, Si, Al, Ba, and Zn) III. Complexation-controlled elements (e.g. Cu and Ni) With respect to the above groups it was suggested that results of laboratory column experiments can, with consideration, be used to estimate full-scale leaching of elements from Group I and II. However, in order to avoid large underestimations in the assessment of leaching from Group III, it is imperative to describe the time-dependent transport of dissolved organic carbon (DOC) in the tested system or to minimize the physical non-equilibrium during laboratory experiments (e.g. bigger column, slower flow velocity). Forward geochemical modeling was applied to simulate long-term release of elements from a MSWI air-pollution-control residue. Leaching of a

  15. Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete.

    Science.gov (United States)

    Sorlini, Sabrina; Collivignarelli, Maria Cristina; Abbà, Alessandro

    2017-09-01

    The aim of this work was to assess the leaching behaviour of the bottom ash derived from municipal solid waste incineration (MSWI) used in concrete production. In particular, the release of pollutants was evaluated by the application of different leaching tests, both on granular materials and monolithic samples (concrete mixtures cast with bottom ash). The results confirmed that, according to Italian regulations, unwashed bottom ashes present critical issues for the use as alternative aggregates in the construction sector due to the excessive release of pollutants; instead, the leachate from washed bottom ashes was similar to natural aggregates. The concentration of pollutants in the leachate from concrete mixtures was lower than regulation limits for reuse. The crushing process significantly influenced the release of pollutants: this behaviour was due both to the increase in surface area and the release of contaminants from cement. Moreover, the increase in contact time (up to 64 days) involved more heavy metals to be released.

  16. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    Science.gov (United States)

    Kong, Qingna; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill. PMID:28044139

  17. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.

    Science.gov (United States)

    Kong, Qingna; Yao, Jun; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill.

  18. Cylindrical Electrolyser Enhanced Electrokinetic Remediation of Municipal Solid Waste Incineration Fly Ashes

    Science.gov (United States)

    Huang, Tao; Zhou, Lulu; Tao, Junjun; Liu, Longfei

    2018-01-01

    The paper discusses enhancement and efficiency of removing spiked heavy metal (HM) contaminants from the municipal solid waste incineration (MSWI) fly ashes in the cylindrical electrolyser device. The characterization parameters of the electrolyte solution pH, electric current, electrical conductivity, voltage gradient were discussed after the experiment. The chemical speciation of HMs was analysed between the original samples and remediated ones by BCR sequential extraction. The detoxification efficiencies of Zn, Pb, Cu and Cd in the column-uniform device were compared with that in the traditional rectangular apparatus. The pH value changed smoothly with small amplitude of oscillation in general in cathode and anode compartments except the initial break. The electrical current rapidly increased on the first day of the experiment and steadily declined after that and the electrical conductivity presented a clear rising trend. The residual partition of detoxified samples were obviously lifted which was much higher than the analysis data of the raw materials. The pH and the electrical conductivity in sample region were distributed more uniformly and the blind area was effectively eliminated in the electrolytic cells which was indirectly validated by the contrastive detoxification result of the spiked HMs between the rectangular and cylindrical devices.

  19. Use of cyanopropyl-bonded hplc column for bioassay-directed fractionation of organic extracts from incinerator emissions

    International Nuclear Information System (INIS)

    DeMarini, D.M.; Williams, R.W.; Brooks, L.R.; Taylor, M.S.

    1992-01-01

    The present study has shown that cyanopropyl-(CN) bonded silica HPLC columns are applicable for the fractionation of mass and mutagenic activity of organic extracts from some incinerator emissions. Dichloromethane-extractable organics from particles emitted by two different municipal waste incinerators and by a pilot-scale rotary kiln incinerator that was combusting polyethylene were fractionated by HPLC, and the mutagenicity of the fractions was determined by means of a microsuspension mutagenicity assay with Salmonella TA98. The CN-bonded silica columns provided high (80-100 percent) mass and mutagenicity recoveries for most emission extracts, and it fractionated the mutagenic activity. The results suggest that the emissions from municipal waste incinerators contain a high amount of direct-acting (-S9) mutagenic activity that is resolvable by HPLC using CN-bonded silica. Sub-fractionation of selected mutagenic HPLC fractions and subsequent analysis by gas chromatography/mass spectroscopy can be used to identify mutagenic species within complex incinerator emissions. The coupling of microsuspension bioassays to HPLC fractionation should be a useful tool for this type of analysis

  20. Production, quality and quality assurance of Refuse Derived Fuels (RDFs).

    Science.gov (United States)

    Sarc, R; Lorber, K E

    2013-09-01

    This contribution describes characterization, classification, production, application and quality assurance of Refuse Derived Fuels (RDFs) that are increasingly used in a wide range of co-incineration plants. It is shown in this paper, that the fuel-parameter, i.e. net calorific value [MJ/kg(OS)], particle size d(90) or d(95) [mm], impurities [w%], chlorine content [w%], sulfur content [w%], fluorine content [w%], ash content [w%], moisture [w%] and heavy metals content [mg/kg(DM)], can be preferentially used for the classification of different types of RDF applied for co-incineration and substitution of fossil-fuel in different industial sectors. Describing the external production of RDF by processing and confectioning of wastes as well as internal processing of waste at the incineration plant, a case study is reported on the application of RDF made out of different household waste fractions in a 120,000t/yr Waste to Energy (WtE) circulating fluidized bed (CFB) incinerator. For that purpose, delivered wastes, as well as incinerator feedstock material (i.e. after internal waste processing) are extensively investigated. Starting with elaboration of sampling plan in accordance with the relevant guidelines and standards, waste from different suppliers was sampled. Moreover, manual sorting analyses and chemical analyses were carried out. Finally, results of investigations are presented and discussed in the paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  2. Wastes incineration and public health: status of recent knowledge and risk evaluation; L'incineration des dechets et la sante publique: bilan des connaissances recentes et evaluation du risque

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The incineration of municipal and industrial wastes produces combustion products with various pollutants like: dusts, acid gases, heavy metals, nitrogen oxides, dioxines etc.. This report analyzes the toxicity of different pollutants (particulates, polycyclic halogenated compounds, cadmium, mercury, lead), the exposure of the population with respect to incineration pollutants (occupational and general exposure), and the risks linked with this exposure (hazard identification, exposure evaluation, risk characterization, results). (J.S.)

  3. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.

    Science.gov (United States)

    Panepinto, Deborah; Genon, Giuseppe

    2014-07-01

    Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme. © The Author(s) 2014.

  4. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Life cycle analysis of sanitary landfill and incineration of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    倪晋仁; 韦洪莲; 刘阳生; 赵智杰

    2002-01-01

    Environmental consequences from sanitary landfill as well as incineration with power generation were compared in terms of life cycle analysis (LCA) for Laohukeng Waste-disposal Plant that is under consideration in Shenzhen. A variety of differences will be resulted from the two technologies, from which the primary issue that affects the conclusion is if the compensatory phase in power generation can be properly considered in the boundary definition of LCA. Upon the compensatory phase is taken into account in the landfill system, the negative environmental consequences from the landfill will be more significant than those from the incineration with power generation, although the reversed results can be obtained as the compensatory phase is neglected. In addition, mitigation of environmental impacts through the pollutant treatment in the incineration process will be more effective than in the landfill process.

  6. Wastes incineration and public health: status of recent knowledge and risk evaluation; L'incineration des dechets et la sante publique: bilan des connaissances recentes et evaluation du risque

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The incineration of municipal and industrial wastes produces combustion products with various pollutants like: dusts, acid gases, heavy metals, nitrogen oxides, dioxines etc.. This report analyzes the toxicity of different pollutants (particulates, polycyclic halogenated compounds, cadmium, mercury, lead), the exposure of the population with respect to incineration pollutants (occupational and general exposure), and the risks linked with this exposure (hazard identification, exposure evaluation, risk characterization, results). (J.S.)

  7. Sieving of municipal solid waste incineration (MSWI) bottom ash; Siktning av askor fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Todorovic, Jelena

    2010-07-01

    Waste-to-Energy is steadily increasing in Sweden and more than 46 % of municipal solid waste (MSW) is being incinerated. Solid residues from MSW incineration (MSWI) mainly constitute of bottom ash and air pollution control (APC) residues. Bottom ashes from MSWI amounted to 0.7 millions of tons and APC residues to 0.2 millions of tons in 2008. Bottom ashes from MSWI contain pollutants like metals (e.g. Pb, Zn, Cu), metalloids (e.g. As, Se), elements forming oxyanions (e.g. Sb, Cr, Mo) and easily soluble salts like chlorides and sulphates. These constituents can leach out polluting the environment if ash comes in contact with water. Treatment methods for decreasing the amount of pollutants in ashes or their mobility are therefore needed. Sieving was investigated as a separate or a complementary treatment method for MSWI ashes. Hypothesis was that the large share of pollutant concentrations could be removed from the ashes through separation of the finest fractions. The rest is less harmful to the environment, more acceptable as secondary construction material or less costly to landfill. Investigation included three MSWI ashes, namely bottom ash from Boraas Energy och Miljoe's plant with fluid bad, boiler ash from the same plant and bottom ash from Renova's stocker grate type plant. Ashes were sieved in 2-4 size fractions. Total content of pollutants and their leachability (batch leaching test, L/S=10 l/kg) was assessed for each of the fractions. Leaching results were compared to limit values stipulated by Swedish Environmental Protection Agency for acceptance of waste at landfills as wells as to recommendations for reuse of waste as a construction material. Results from bottom ash from the stocker grate type incinerator and from the boiler ash confirm the hypothesis that pollutants leach out in higher concentrations from the finer fractions. A large amount of pollutant could be removed from the ashes through sieving, but the goal to produce a fraction that

  8. Possibilities for gas turbine and waste incinerator integration

    NARCIS (Netherlands)

    Korobitsyn, M.A.; Jellema, P.; Hirs, Gerard

    1999-01-01

    The aggressive nature of the flue gases in municipal waste incinerators does not allow the temperature of steam in the boiler to rise above 400°C. An increase in steam temperature can be achieved by external superheating in a heat recovery steam generator positioned behind a gas turbine, so that

  9. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    International Nuclear Information System (INIS)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-01-01

    Highlights: ► Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. ► Means of stabilizing the incinerator ash for use in construction applications. ► Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. ► Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA’s Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson’s ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg

  10. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    Science.gov (United States)

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace.

    Science.gov (United States)

    Zhao, Peng; Ni, Guohua; Jiang, Yiman; Chen, Longwei; Chen, Mingzhou; Meng, Yuedong

    2010-09-15

    Due to the toxicity of dioxins, furans and heavy metals, there is a growing environmental concern on municipal solid waste incinerator (MSWI) fly ash in China. The purpose of this study is directed towards the volume-reduction of fly ash without any additive by thermal plasma and recycling of vitrified slag. This process uses extremely high-temperature in an oxygen-starved environment to completely decompose complex waste into very simple molecules. For developing the proper plasma processes to treat MSWI fly ash, a new crucible-type plasma furnace was built. The melting process metamorphosed fly ash to granulated slag that was less than 1/3 of the volume of the fly ash, and about 64% of the weight of the fly ash. The safety of the vitrified slag was tested. The properties of the slag were affected by the differences in the cooling methods. Water-cooled and composite-cooled slag showed more excellent resistance against the leaching of heavy metals and can be utilized as building material without toxicity problems. Copyright 2010 Elsevier B.V. All rights reserved.

  12. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues.

    Science.gov (United States)

    Guarienti, Michela; Cardozo, Sdenka Moscoso; Borgese, Laura; Lira, Gloria Rodrigo; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-07-01

    Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Environmental and technical evaluation of the management of municipal solid waste of Ouagadougou: diagrams of management and experimentation of incineration; Evaluation environnementale et technique de la gestion des dechets menagers de Ouagadougou: schemas de gestion et experimentation de traitement thermique

    Energy Technology Data Exchange (ETDEWEB)

    Tezanou, J.

    2003-05-15

    This work deals with the environmental and technical evaluation of the implementation of municipal waste management schemes for the city of Ouagadougou (Burkina Faso). The context is the one of a low income developing country with no pollution regulation and with a governmental will of decentralization of the waste management activity towards the city authorities with the participation of the private and associative sectors. A status of the existing system and of the characteristics of the municipal wastes is made first (grain size, calorific value, humidity). On the basis of the life cycle analysis (LCA) methodology, 4 management systems are proposed and analyzed: complete disposal, sorting and composting of the fermentescible part, sorting and incineration of the combustible part, and composting and incineration. An inventory analysis and a qualitative impact analysis of each of these systems is performed. An experiment of incineration of these wastes has been carried out from a mixture of wood, cardboard and plastics representative of the combustible fraction of the Ouagadougou municipal wastes. A counterflow fixed bed reactor has been used to analyze the influence of the air excess on the combustion process and on the abatement of pollutant emissions (NO and CO). Finally, a technical-economical analysis of the management systems is presented with respect to their socio-economical implementation possibilities. (J.S.)

  14. Municipal solid waste processing methods: Technical-economic comparison

    International Nuclear Information System (INIS)

    Bertanza, G.

    1993-01-01

    This paper points out the advantages and disadvantages of municipal solid waste processing methods incorporating different energy and/or materials recovery techniques, i.e., those involving composting or incineration and those with a mix of composting and incineration. The various technologies employed are compared especially with regard to process reliability, flexibility, modularity, pollution control efficiency and cost effectiveness. For that which regards composting, biodigestors are examined, while for incineration, the paper analyzes systems using combustion with complete recovery of vapour, combustion with total recovery of available electric energy, and combustion with cogeneration. Each of the processing methods examined includes an iron recovery cycle

  15. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    Science.gov (United States)

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A survey of Trace Metals Determination in Hospital Waste Incinerator in Lucknow City, India

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar

    2004-08-01

    Full Text Available Information on the elemental content of incinerator burning of human organ, animal and medical waste is scanty in India Nineteen trace elements were analyzed in the incinerator ash from four major hospitals, one municipal waste incinerator and two R & D laboratories engaged in animal experiment in Lucknow city. Concentrations of Zinc and Lead were found to be very high in comparison to other metals due to burning of plastic products. The source of Ca, P and K are mainly bone, teeth and other animal organs. A wide variation in trace concentration of several toxic elements have been seen due to variation in initial waste composition, design of the incinerator and operating conditions.

  17. Management of municipal solid waste incineration residues

    International Nuclear Information System (INIS)

    Sabbas, T.; Polettini, A.; Pomi, R.; Astrup, T.; Hjelmar, O.; Mostbauer, P.; Cappai, G.; Magel, G.; Salhofer, S.; Speiser, C.; Heuss-Assbichler, S.; Klein, R.; Lechner, P.

    2003-01-01

    The management of residues from thermal waste treatment is an integral part of waste management systems. The primary goal of managing incineration residues is to prevent any impact on our health or environment caused by unacceptable particulate, gaseous and/or solute emissions. This paper provides insight into the most important measures for putting this requirement into practice. It also offers an overview of the factors and processes affecting these mitigating measures as well as the short- and long-term behavior of residues from thermal waste treatment under different scenarios. General conditions affecting the emission rate of salts and metals are shown as well as factors relevant to mitigating measures or sources of gaseous emissions

  18. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Sortino, Orazio [Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Universita degli Studi di Catania, Via Valdisavoia 5, 95123 Catania (Italy); Dipasquale, Mauro [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Montoneri, Enzo, E-mail: enzo.montoneri@unito.it [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Tomasso, Lorenzo; Perrone, Daniele G. [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe [Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Universita di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  19. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    International Nuclear Information System (INIS)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-01-01

    Highlights: ► Municipal bio-wastes are a sustainable source of bio-based products. ► Refuse derived soluble bio-organics promote chlorophyll synthesis. ► Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. ► Sustainable chemistry exploiting urban refuse allows sustainable development. ► Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  20. Waste incineration on its way to the power plants; Muellverbrennung auf dem Weg zum Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J. [STEAG encotec GmbH, Essen (Germany); Neukirchen, B. [STEAG AG, Essen (Germany)

    2004-07-01

    Looking at the year 2005 and the end of disposal of untreated domestic waste the politic hopes that the prognosticated lack of waste treatment capacity is remedied by coal-fired power plants. The classical municipal waste incinerators by contrast want to get recognition as energetic recycler in comparison with power stations. The decision of the European Court of Justice concerning recycling and disposal of domestic waste by incineration has started the discussion and competition on fuel-rich commercial waste. Are municipal waste incineration plants power stations or must power plants be regarded as incinerators? These questions are still open. (orig.) [German] Mit Blick auf das Jahr 2005 und das Ende der Ablagerung von unbehandeltem Siedlungsabfall hofft die Politik, dass der prognostizierte Mangel an Vorbehandlungskapazitaeten von den Kohlekraftwerken behoben wird. Die klassischen Muellverbrennungsanlagen wollen dagegen mit dem Kraftwerksvergleich die Anerkennung als energetische Verwerter erreichen. Das EuGH-Urteil zur Verwertung oder Beseitigung von Siedlungsabfall durch Verbrennen hat in diesem Jahr die Diskussion und den Kampf um den heizwertreichen Gewerbeabfall angeheizt. Die Frage, wie weit in Zukunft die Muellverbrennungsanlagen als Kraftwerke, aber auch die Kraftwerke als Muellverbrennungsanlagen angesehen werden muessen, ist noch offen. (orig.)

  1. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul

    2006-01-01

    that is least soluble. Hence electrodialytic treatment of the ash suspended in water is not a solution to improve the ash quality in terms of Pb. The water-soluble Cl content per unit weight of the original ash was 12.4%. The removal of water-soluble Cl was efficient and >98% of Cl was removed (calculated......The possibility of using fly ash from municipal solid waste incineration (MSWI) in, for example, concrete is considered. MSWI fly ash, however, has too high a concentration of heavy metals, which may cause leaching problems during use or problems with waste handling at the end of the lifetime...... of the concrete. The Cl content in MSWI fly ash is also too high and will cause corrosion problems in reinforced concrete. The possibility of removing some of the unwanted heavy metals (Cu and Pb) together with Cl from an MSWI fly ash suspended in water using an electrodialytic separation method was investigated...

  2. Remedial Measures for Erroneous Environmental Policies: Assessing Infrastructure Projects of Waste-to-Energy Incineration in Taiwan with a Case Study of the Taitung Incinerator

    Directory of Open Access Journals (Sweden)

    Lih-Ren Liu

    2016-12-01

    Full Text Available Taiwan, like many other countries, often incentivizes private investors to participate in the construction of infrastructures for environmental protection. The build-operate-transfer (BOT or build-operate-own (BOO model of financing public infrastructure was introduced to Taiwan in the 1990s. Among them, the construction of incinerators to treat the municipal solid waste using the BOT/BOO model was quite a success in the beginning. With the socio-technical change of lifestyle and waste generation, the amount of amount of trash dropped dramatically. The policy failed eventually, however, because the government over-estimated the trash quantity and refrained from inter-municipality cooperation to treat trash efficiently. This failure triggered a rash of intense debates and legal disputes. In the case of the Taitung incinerator, the 26th incinerator located in southeastern Taiwan, the arbitration resulted in the government making significant compensation payments to the private sector. The finished construction was consequently converted into a “mothballed and pensioned off” facility. This study applies in-depth interviews and literature review to discuss aspects contributing to the policy failure and proposes some possible remedial measures. Five aspects are summarized, namely, the administrative organization’s rigid attitude, the irrationality of the BOT/BOO contracts, the loss of the spirit of BOO partnerships, the heavy financial burden on local government, and the abandonment of inter-municipality cooperation. The remedial measures for the policy failure are presented in the form of thorough policy evaluation, room for contract adjustments under the BOT/BOO model, encouragement of cross-boundary cooperation, and revision of the legal framework for implementing decentralization.

  3. Alteration of municipal and industrial slags under atmospheric conditions

    Science.gov (United States)

    Rafał Kowalski, Piotr; Michalik, Marek

    2014-05-01

    The Waste Management System in Poland is being consequently built since 1998. After important changes in legislation, local governments have taken over the duty of waste collection. New points of selective collection of wastes have been opened and new sorting and composting plants were built. The last stage of introducing the Waste Management System is construction of waste incineration power plants. From nine installations which were planned, six are now under construction and they will start operating within the next two years. It is assumed that the consumption of raw wastes for these installations will reach 974 thousand tons per year. These investments will result in increased slags and ashes production. Now in Poland several local waste incinerators are operating and predominant amount of produced incineration residues is landfilled. These materials are exposed to atmospheric conditions in time of short term storage (just after incineration) and afterwards for a longer period of time on the landfill site. During the storage of slags low temperature mineral transformations and chemical changes may occur and also some components can be washed out. These materials are stored wet because of the technological processes. The aim of this study is to investigate the influence of storage in atmospheric conditions on slags from incineration of industrial and municipal wastes. The experiment started in January 2013. During this period slag samples from incineration of industrial and municipal wastes were exposed to atmospheric conditions. Samples were collected after 6 and 12 months. Within this time the pH value was measured monthly, and during the experimental period remained constant on the level of 9.5. After 6 months of exposure only slight changes in mineral compositions were observed in slags. The results of XRD analysis of municipal slags showed increase in content of carbonate minerals in comparison to the raw slag samples. In industrial slags, a decrease in

  4. Municipal sludge disposal economics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [SRI International, Menlo Park, CA; Bomberger, Jr, D C; Lewis, F M

    1977-10-01

    Costs for disposal of sludges from a municipal wastewater treatment plant normally represents greater than or equal to 25% of the total plant operating cost. The following 5 sludge handling options are considered: chemical conditioning followed by vacuum filtration, and incineration; high-pressure wet-air oxidation and vacuum filtration or filter press prior to incineration; thermal conditioning, vacuum filtraton, and incineration; high-pressure wet-air oxidation and vacuum filtration, with ash to landfill; aerobic or anaerobic digestion, followed by chemical conditioning, vacuum filtration, and disposal on land; and chemical conditioning, followed by a filter press, flash dryer, and sale as fertilizer. The 1st 2 options result in the ultimate disposal of small amounts of ash in a landfill; the digestion options require a significant landfill; the fertilizer option requires a successful marketing and sales effort. To compare the economies of scale for the options, analyses were performed for 3 plant capacities - 10, 100, and 500 mgd; as plant size increases, the economies of scale for incineration system are quite favorable. The anaerobic digestion system has a poorer capital cost-scaling factor. The incinerator options which start with chemical conditioning consume much less electrical power at all treatment plant sizes; incinerator after thermal conditioning uses more electricity but less fuel. Digestion requires no direct external fossil fuel input. The relative use of fuel is constant at all plant sizes for other options. The incinerator options can produce a significant amount of steam which may be used. The anaerobic digestion process can be a significant net producer of fuel gas.

  5. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    Science.gov (United States)

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  6. Study on incinerating method of leather scraps and recovery of chromium f om incinerated residues. Kakusetsu no nensho hoho no kento narabi ni nensho nokoribun kara no chromium no kaishu

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, H. (Showa Women' s Univ., Tokyo (Japan) Tokyo Toritsu Hikaku Gijutsu Center, Tokyo (Japan)); Imai, T. (Tokyo Toritsu Hikaku Gijutsu Center, Tokyo (Japan))

    1991-11-05

    In Japan, it is the present situation that most of chromium contained side refuse generated in the leather manufacturing process are treated by means of using them for landfilling or incineration, etc. Even confining to the grownup oxhides and cowhides imported from North America, its total amount is 125,000t in terms of anhydride equivalent, hence it is estimated that about 1.14t of Cr{sub 2}O{sub 3} is discharged in the way mentioned above as a chromium tanning agent. Since Japan imports almost all chromium material from overseas, it is desirable to recover chromium from the above incinerated residues. In this article, based on the study results in the past concerning the recovery of chromium from incineration of leather scraps, an experimental furnace of the retorting two stage incineration system was experimentally built and a wet alkali scrubber and a hot water boiler utilizing combustion exhaust gas heat were installed. And by using them, the fuel condition to reduce the harmful gas component and the removal effect to be made with the scrubber, the chemical composition of the incinerated residues and its utilization, etc. were examined. As a result, by the above system, it was found that chromium could be recovered and reutilized. 9 refs., 6 figs., 6 tabs.

  7. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials.

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Santoro, Luciano; Cioffi, Raffaele

    2013-08-12

    In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA) have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  8. Incinerators and health. guide for the behavior to have during a local demand of sanitary investigations around a domestic refuse incinerator; Incinerateurs et sante. Guide pour la conduite a tenir lors d'une demande locale d'investigations sanitaires autour d'un incinerateur d'ordures menageres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-15

    11,4 million tons of municipal solid and assimilated waste were incinerated in France in 2000. The 123 incinerators compliant with the Order in Council of January 25, 1991 have undergone significant modifications in the last years, and the incineration techniques used are of great concern to the public. The backfitting to new regulations and the many research works have answered some of the rightful questions of the population on health risks caused by waste incineration. However, many doubts remain and there has been many requests by the local population for epidemiological investigations to be conducted on this issue. The objectives of this document, requested by the Health General Directorate and presented as 'actions to be taken', are to inform the decentralized services of the government and regional epidemiology units of the health problems caused by waste incineration facilities and to help them grasp on a local level the situation met around these facilities. Therefore, this paper provides some scientific arguments to justify the need (or not) for setting up some specific studies as part of an informed public health management. This document is divided in three parts. The first part describes the actions to be taken at the local level. The methodological framework is based on: i) an analysis of the local situation; ii) finding a new definition in terms of public health to the one or more questions raised, and the usefulness to set up one or more health investigations; iii) the relevance of a specific type of study which would allow to answer these questions; and iv) the feasibility of this type of study. The second part briefly describes the various types of health studies and their use as a decision-making tool on waste-incineration facilities. These results stem mainly from the analysis of studies already put forward and carried out in past local situations. The third part points out what is currently found in today's literature on

  9. Environmental impact and human health risks of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of a new hazardous waste incinerator: a case study.

    OpenAIRE

    Ferré-Huguet, Núria; Nadal, Martí; Schuhmacher, Marta; Domingo, José L.

    2006-01-01

    KEYWORDS - CLASSIFICATION: adverse effects;analysis;Benzofurans;cancer epidemiology;Dioxins;Environmental Exposure;Environmental Health;Environmental Monitoring;Hazardous Waste;Humans;Incineration;metabolism;Refuse Disposal;Research;Risk Assessment;Spain;Toxicology. The purpose of this study was to assess the environmental impact of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the vicinity of a new hazardous waste incinerator (HWI) 4 years after regular operation of the...

  10. Risk identification for PPP waste-to-energy incineration projects in China

    International Nuclear Information System (INIS)

    Song, Jinbo; Song, Danrong; Zhang, Xueqing; Sun, Yan

    2013-01-01

    Municipal solid waste (MSW) is regarded as a renewable energy source. In China, the sharp increase of MSW has precipitated the rapid growth of waste-to-energy (WTE) incineration plants. Private capital has been getting into the WTE incineration industry through the public–private partnership (PPP) arrangement. Due to the large construction cost and the long concession period commonly associated with this arrangement, a number of failures have emerged in PPP WTE incineration projects. The aim of this paper is to investigate the key risks of PPP WTE incineration projects in China and study the strategies for managing these risks by drawing experience and learning lessons from these projects. First, we analyzed the MSW management practices, relevant legislations and policies, and the development of PPP WTE incineration projects in China. Second, we identified ten key risks through interviews, surveys and visits to some selected projects, and provided detailed analysis of these risks. Lastly, we developed response strategies for these risks from the perspectives of both public and private sectors. - Highlights: • We analyze MSW management practices, relevant legislations and policies in China. • Through case study on PPP WTE incineration projects, ten key risks are identified. • Response strategies for key risks are developed

  11. Incineration of municipal and assimilated wastes in France: assessment of latest energy and material recovery performances.

    Science.gov (United States)

    Autret, Erwan; Berthier, Francine; Luszezanec, Audrey; Nicolas, Florence

    2007-01-31

    Incineration has an important place in waste management in France. In 2003, around 130 incineration plants have treated 12.6 Mt of non-dangerous waste, mainly composed of household waste (10.8 Mt), non-dangerous waste from industry, business, services (1.0 Mt), sewage sludge (0.2 Mt) or clinical waste (0.1 Mt). The incineration of these wastes generated 3.0 Mt of bottom ash of which 2.3 Mt were used for roads construction and 0.2 Mt of ferrous and non-ferrous metal were recycled. It also produced 2,900,000 MWh of electricity, of which 2,200,000 MWh were sold to Electricité de France (EDF) and 9,100,000 MWh of heat, of which 7,200,000 MWh were sold to private or public users. These French incinerators of non-hazardous waste are currently being thoroughly modernized, thus making possible the consolidation and the enhancement of their environmental and energy performance. This process is related to the implementation of the European Directive 2000/76/CE whose expiration date is 28 December 2005. Upon request of ADEME, the engineering company GIRUS has realised the first technical and economical evaluation of works necessary to bring incinerators into compliance. The financial estimations, carried out in 30 June 2003, show that the investments to be devoted could reach 750 million euros. This assessment shed new light on the situation of non-hazardous waste incinerators, including an identification and a rank ordering for each incinerator of the most frequent and the most complex non-conformities to be solved in term of cost and delay. At last, this assessment gives the solutions for each non-compliance.

  12. Incineration of municipal and assimilated wastes in France: Assessment of latest energy and material recovery performances

    International Nuclear Information System (INIS)

    Autret, Erwan; Berthier, Francine; Luszezanec, Audrey; Nicolas, Florence

    2007-01-01

    Incineration has an important place in waste management in France. In 2003, around 130 incineration plants have treated 12.6 Mt of non-dangerous waste, mainly composed of household waste (10.8 Mt), non-dangerous waste from industry, business, services (1.0 Mt), sewage sludge (0.2 Mt) or clinical waste (0.1 Mt). The incineration of these wastes generated 3.0 Mt of bottom ash of which 2.3 Mt were used for roads construction and 0.2 Mt of ferrous and non-ferrous metal were recycled. It also produced 2 900 000 MWh of electricity, of which 2 200 000 MWh were sold to Electricite de France (EDF) and 9 100 000 MWh of heat, of which 7 200 000 MWh were sold to private or public users. These French incinerators of non-hazardous waste are currently being thoroughly modernized, thus making possible the consolidation and the enhancement of their environmental and energy performance. This process is related to the implementation of the European Directive 2000/76/CE whose expiration date is 28 December 2005. Upon request of ADEME, the engineering company GIRUS has realised the first technical and economical evaluation of works necessary to bring incinerators into compliance. The financial estimations, carried out in 30 June 2003, show that the investments to be devoted could reach 750 million euros. This assessment shed new light on the situation of non-hazardous waste incinerators, including an identification and a rank ordering for each incinerator of the most frequent and the most complex non-conformities to be solved in term of cost and delay. At last, this assessment gives the solutions for each non-compliance

  13. Biomonitoring of organochlorine compounds (PCDDs, PCDFs, PCBs and DDTs) near a municipal solid waste incinerator using black kites (Milvus migrans) as sentinel organism

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B.; Merino, R. [CSIC, Inst. of Organic Chemistry, Madrid (Spain); Olie, K. [Univ. of Amterdam (Netherlands); Blanco, G.; Frias, O. [CSIC, IREC, Ciudad Real (Spain)

    2004-09-15

    Wildlife has received much attention during last decades as an indicator of ecosystems health. Kubiak at al. (1989) showed that there are significant effect on reproductive success due to organochlorines, not only in hatching success, but also in chick health. Due to the widespread distribution of these xenoestrogens, there is a need for screening and risk evaluation of these endocrine disrupters in living organisms from the global point of view of ecosystems health. Aspects of the life history of the black kites (Milvus migrans) make them a useful species for contaminants monitoring. They are long-lived birds, adapt well to human areas and many feeds at dumps, garbage tips, etc. where a wide range of contaminants can be found3. Effects of chlorinated pollutants have not been widely studied in this species. In 2001, a monitoring program was initiated in order to evaluate the health of a population of black kites nesting in the Regional Park of the Southeastern of Madrid (RPSM), Spain. This study is part of a larger research investigation of the influence of a Municipal Solid Waste Incinerator (MSWI) on the kites'surroundings. Since Municipal Solid Waste Incinerators (MSWI) are suspected to produce some highly toxic POPs (Persistent Organic Pollutants) such as polychlorinated dibenzo-pdioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs) as well as other short of toxic chemicals (e.g. PCBs and heavy metals) this study was initiated with the aim of investigating the potential toxicity of these compounds on the kites population. The purpose of this study was to conduct the evaluation in a non-destructive way. Since eggs are known to reflect the accumulation of lipophilic contaminants in birds, the study was based on the use of unhatched eggs obtained from black kites.

  14. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-08-01

    Full Text Available In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  15. Production and characterization refuse derived fuel (RDF) from high organic and moisture contents of municipal solid waste (MSW)

    Science.gov (United States)

    Dianda, P.; Mahidin; Munawar, E.

    2018-03-01

    Many cities in developing countries is facing a serious problems to dealing with huge municipal solid waste (MSW) generated. The main approach to manage MSW is causes environmental impact associated with the leachate and landfill gas emissions. On the other hand, the energy available also limited by rapid growth of population and economic development due to shortage of the natural resource. In this study, the potential utilized of MSW to produce refuse derived fuel (RDF) was investigate. The RDF was produced with various organic waste content. Then, the RDF was subjected to laboratory analysis to determine its characteristic including the calorific value. The results shows the moisture content was increased by increasing organic waste content, while the calorific value was found 17-36 MJ/kg. The highest calorific value was about 36 MJ/kg obtained at RDF with 40% organic waste content. This results indicated that the RDF can be use to substitute coal in main burning process and calcinations of cement industry.

  16. Proposal for a protocol on environmental impact assessment in the context of incineration with energy recovery from municipal solid waste in Costa Rica

    International Nuclear Information System (INIS)

    Montero Salas, Alvaro Enrique

    2015-01-01

    A proposal for a protocol is performed for the evaluation of environmental impact in the context of incineration with energy recovery from municipal solid waste (MSW). An analysis of the related and current regulations is done at national and international level. The methodology of the Secretaria Tecnica Nacional Ambiental (SETENA) for environmental impact assessment has been exposed. Susceptible environmental factors and elements of the heat treatment of RSU that generate environmental impacts are identified. The air has been the environmental factor extensively addressed in the investigation. The aspects included in the protocol proposal are defined in order to generate conclusions and determinants recommendations on environmental viability of any work, activity or project [es

  17. Environmental impacts of waste incineration in a regional system (Emilia Romagna, Italy) evaluated from a life cycle perspective

    International Nuclear Information System (INIS)

    Morselli, Luciano; De Robertis, Claudia; Luzi, Joseph; Passarini, Fabrizio; Vassura, Ivano

    2008-01-01

    The advisability of using incineration, among the other technologies in Municipal Solid Waste Management, is still a debated issue. However, technological evolution in the field of waste incineration plants has strongly decreased their environmental impacts in the last years. A description of a regional situation in Northern Italy (Emilia Romagna Region) is here presented, to assess the impacts of incinerators by the application of Life Cycle Assessment (LCA) methodology and to stress the most impacting steps in incineration process. The management of solid residues and heavy metal emission resulted the most important environmental concerns. Furthermore, a tentative comparison with the environmental impact of landfill disposal, for the same amount of waste, pointed out that incineration process must be considered environmentally preferable

  18. [Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].

    Science.gov (United States)

    Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong

    2016-03-15

    Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.

  19. Modification of an environmental surveillance program to monitor PCDD/Fs and metals around a municipal solid waste incinerator.

    Science.gov (United States)

    Vilavert, Lolita; Nadal, Martí; Mari, Montse; Schuhmacher, Marta; Domingo, José L

    2009-11-01

    Since the mid-90s, an environmental surveillance program has been on-going to provide information on the levels of PCDD/Fs and various metals in soil and vegetation samples collected in the vicinity of a municipal solid waste incinerator (MSWI) in Tarragona (Catalonia, Spain). However, the presence of other potential sources of pollution in the zone, such as traffic, forest fires, local industries, etc., makes hard to determine the impact concerning the MSWI. Therefore, in 2007 a change in the monitoring program was implemented by collecting additional ambient air samples through active and passive sampling devices. Mean PCDD/F levels in herbage and soil were 0.10 ng I-TEQ/kg dry weight (range: 0.05-0.17 ng I-TEQ/kg dw) and 0.64 ng I-TEQ/kg dw (range: 0.13-2.41 ng I-TEQ/kg dw), respectively. A significant reduction of the PCDD/F concentration in both monitors was observed with respect to our previous surveys. Air mean concentrations of PCDD/Fs were 12.04 and 15.21 fg WHO-TEQ/m(3) in 2007 and 2008, respectively, meaning a non-significant increase of 26%. In addition, a generalized increase of environmental metal levels with respect to our baseline study was not observed. The current concentrations of PCDD/Fs and metals in the vicinity of the MSWI of Tarragona are relatively low in comparison with other areas under the influence of emissions from waste incinerators. This indicates that the environmental impact of the MSWI of Tarragona is not significant. Moreover, the modification of the surveillance program has proven to be successful.

  20. Assessing the power generation, pollution control, and overall efficiencies of municipal solid waste incinerators in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dong-Shang; Yang, Fu-Chiang [Department of Business Administration, National Central University, 300 Jhongda Rd., Jhongli City, Taoyuan County, 320 Taiwan (China)

    2011-02-15

    This paper evaluates the productivity of municipal solid waste incinerators (MSWIs) by addressing the following questions: (1) to what extent should one further increase the production of power generation while maintaining the emission of noxious air at the current level?; (2) To what extent should one further decrease the emission of noxious air while maintaining the production of power generation at the current level?; and (3) To what extent should one increase the production of power generation and decrease the emission of noxious air simultaneously? To effectively address these questions to improve performance, the power generation and pollution control efficiencies are evaluated using TODEA (two-objective data envelopment analysis), as well as the overall efficiency evaluated using Tone's NS-overall model (slacks-based measure with non-separable desirable and undesirable outputs for evaluating overall efficiency). A MSWI case study in Taiwan with the panel data covering the period of 2004-2008 reveals that the power generation and overall efficiencies of build-operate-transfer are more efficient, on average, than those of public-own-operate and build-own-operate. However, the three building and operation types do not significantly differ in pollution control efficiency. (author)

  1. Gas generation in incinerator ash; Gasbildning i aska

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Lindeberg, Johanna; Rodin, Aasa; Oehrstroem, Anna; Backman, Rainer; Oehman, Marcus; Bostroem, Dan

    2006-02-15

    In recent years, explosions have occurred in certain phases of ash handling in Sweden. Investigations have revealed that hydrogen may have been present in all cases. The hydrogen is believed to be generated by chemical reactions of aluminium and other metals within the ash in the presence of water. The purpose with this study is to increase the knowledge of gas generation of incinerator ash. Thereby, guides for appropriate ash management can be introduced and the risk for further explosions prevented. The study has comprised analyses of the ash properties, such as chemical and physical composition and the pH, of ash from 14 incineration plants (mostly waste incineration plants). Different fractions of ash materials representing different parts of the process in each plant have been analysed. Furthermore, the fuel and the technical differences between the plants have been analysed. A tool for measuring the gas generation in the laboratory has been developed and the gas generation of the different ash materials at natural and increased pH was measured. Gas analyses and thermodynamic calculations have also been performed. The results showed that: bottom ash from fluidised bed boilers generated small amounts of gas at increased pH, much smaller amounts than the idle pass, cyclone and filter ash did, bottom ash from grate fired boilers generated more gas at increased pH than their cyclone ash and filter ash, with exception of the Linkoeping plant, all bio waste incineration plants generated ash with low gas generation potential, all fly ash materials with a gas generation potential of more than 10 l/kg originated from municipal waste incineration plants, filter ash that had been stored in oxygen rich environment generated significant less gas than fresh filter ash of the same origin, hardly any other gases were generated apart from hydrogen (very small amounts of acetone, furane, benzene and most likely methane were detected in some of the ash materials), there were no

  2. Metal releases from a municipal solid waste incineration air pollution control residue mixed with compost.

    Science.gov (United States)

    Van Praagh, M; Persson, K M

    2008-08-01

    The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.

  3. Simulation of the plume emitted by a municipal waste incinerator located in the Madeira island

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, M.; Ribeiro, C.; Pereira, M.; Borrego, C. [Campus Univ., AVEIRO (Portugal). IDAD - Inst. of Environment and Development

    2004-07-01

    The study of meteorological circulations in small islands has been quite limited with the majority of the research published concerning the analysis of the eolic potential for energy production. Other researchers focused on the description of the dispersion of gases emitted by volcanic activity. In this paper, a mesoscale meteorological and dispersion model was applied to simulate the behaviour of the plume of a municipal waste incinerator (MSW) that was constructed in the southern slope of the Madeira island at an altitude of 1380 m. Madeira is a Portuguese island located in the Atlantic Ocean at approximately 32 40'N and 16 52'W with a clear east-west development. The island is relatively small (60 x 20 km{sup 2}) but is characterized by very complex orography with maximum peaks reaching 1800 m. The fact that the orography has the same east-west development creates a very strong distinction between the northern and the southern slopes. The northern slope is strongly exposed to the prevalent synoptic flows and the southern slope is much warmer, quiet and where the majority of the population lives. The climate is very mild with small thermal amplitudes and maximum temperatures between 18 to 28 C. Sea temperature during summer rises to 22-23 C. (orig.)

  4. Dioxins from medical waste incineration: Normal operation and transient conditions.

    Science.gov (United States)

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  5. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    Science.gov (United States)

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. Copyright © 2010 Elsevier B.V. All rights

  6. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  7. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator

    DEFF Research Database (Denmark)

    Møller, Jacob; Munk, Bjarne; Crillesen, Kim

    2011-01-01

    Selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator was investigated using LCA. The relationship between NOx-cleaning and ammonia dosage was measured at the plant. Un-reacted ammonia – the ammonia slip – leaving the flue-gas cleaning system......-cleaning efficiency, the fate of the ammonia slip as well as the environmental impact from ammonia production, the potential acidification and nutrient enrichment from NOx-cleaning was calculated as a function of ammonia dosage. Since the exact fate of the ammonia slip could not be measured directly, a number...... of scenarios were set up ranging from “best case” with no ammonia from the slip ending up in the environment to “worst case” where all the ammonia slip eventually ended up in the environment and contributed to environmental pollution. In the “best case” scenario the highest ammonia dosage was most beneficial...

  8. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... continuously estimate load level (for example, the feed rate of municipal solid waste or refuse-derived fuel... municipal waste combustion unit? 62.15265 Section 62.15265 Protection of Environment ENVIRONMENTAL... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units...

  9. Flow analysis of metals in a municipal solid waste management system

    International Nuclear Information System (INIS)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small

  10. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK.

    Science.gov (United States)

    Yap, H Y; Nixon, J D

    2015-12-01

    Energy recovery from municipal solid waste plays a key role in sustainable waste management and energy security. However, there are numerous technologies that vary in suitability for different economic and social climates. This study sets out to develop and apply a multi-criteria decision making methodology that can be used to evaluate the trade-offs between the benefits, opportunities, costs and risks of alternative energy from waste technologies in both developed and developing countries. The technologies considered are mass burn incineration, refuse derived fuel incineration, gasification, anaerobic digestion and landfill gas recovery. By incorporating qualitative and quantitative assessments, a preference ranking of the alternative technologies is produced. The effect of variations in decision criteria weightings are analysed in a sensitivity analysis. The methodology is applied principally to compare and assess energy recovery from waste options in the UK and India. These two countries have been selected as they could both benefit from further development of their waste-to-energy strategies, but have different technical and socio-economic challenges to consider. It is concluded that gasification is the preferred technology for the UK, whereas anaerobic digestion is the preferred technology for India. We believe that the presented methodology will be of particular value for waste-to-energy decision-makers in both developed and developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A sustainability analysis of an incineration project in Serbia.

    Science.gov (United States)

    Mikic, Miljan; Naunovic, Zorana

    2013-11-01

    The only option for municipal solid waste (MSW) treatment adopted so far in Serbia is landfilling. Similarly to other south-eastern European countries, Serbia is not recovering any energy from MSW. Fifty percent of electricity in Serbia is produced in coal-fired power plants with emission control systems dating from the 1980s. In this article, the option of MSW incineration with energy recovery is proposed and examined for the city of Novi Sad. A sustainability analysis consisting of financial, economic and sensitivity analyses was done in the form of a cost-benefit analysis following recommendations from the European Commission. Positive and negative social and environmental effects of electricity generation through incineration were valuated partly using conversion factors and shadow prices, and partly using the results of previous studies. Public aversion to MSW incineration was considered. The results showed that the incineration project would require external financial assistance, and that an increase of the electricity and/or a waste treatment fee is needed to make the project financially positive. It is also more expensive than the landfilling option. However, the economic analysis showed that society would have net benefits from an incineration project. The feed-in tariff addition of only €0.03 (KWh)(-1) to the existing electricity price, which would enable the project to make a positive contribution to economic welfare, is lower than the actual external costs of electricity generation from coal in Serbia.

  12. A comparative assessment of waste incinerators in the UK.

    Science.gov (United States)

    Nixon, J D; Wright, D G; Dey, P K; Ghosh, S K; Davies, P A

    2013-11-01

    The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. New techniques for the characterization of refuse-derived fuels and solid recovered fuels.

    Science.gov (United States)

    Rotter, Vera Susanne; Lehmann, Annekatrin; Marzi, Thomas; Möhle, Edda; Schingnitz, Daniel; Hoffmann, Gaston

    2011-02-01

    Solid recovered fuel (SRF) today refers to a waste-derived fuel meeting defined quality specifications, in terms of both origin (produced from non-hazardous waste) and levels of certain fuel properties. Refuse-derived fuel (RDF) nowadays is more used for unspecified waste after a basic processing to increase the calorific value and therefore this term usually refers to the segregated, high calorific fraction of municipal solid waste (MSW), commercial or industrial wastes. In comparison with conventional fuels, both types of secondary fuel show waste of inherently varying quality and an increased level of waste-specific contaminants.The transition from RDF to SRF in the emerging national and European market requires a quality assurance system with defined quality parameters and analytical methods to ensure reliable fuel characterization. However, due to the quality requirements for RDF and SRF, the current standardized analysis methods often do not meet these practical demands. Fast test methods, which minimize personnel, financial and time efforts and which are applicable for producers as well as users can be an important supporting tool for RDF- and SRF-characterization. Currently, a fast test system based on incineration and correlation analyses which enable the determination of relevant fuel parameters is under development. Fast test methods are not aimed at replacing current standardized test methods, but have to be considered as practical supporting tools for the characterization of RDF and SRF.

  14. Eco-efficiency assessment of options for metal recovery from incineration residues: a conceptual framework.

    Science.gov (United States)

    Meylan, Grégoire; Spoerri, Andy

    2014-01-01

    Residues from municipal solid waste (MSW) incineration in Switzerland have been a hot topic in recent years, both in the research and practice communities. Regarded by many as an economically and environmentally sound solution to this issue, technological retrofitting of existing grate incinerators has the dual purpose of enhancing the metal recovery of bottom and fly ashes and improving the inertization of residues to be landfilled. How does context influence the economic and environmental performance of this particular technological option? Under which conditions would this technological option be implemented nationwide in the future? What are stakeholders' views on sustainable transitions of MSW incineration? We propose a three-stage methodological procedure to address these questions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction.

    Science.gov (United States)

    Becquart, Frederic; Bernard, Fabrice; Abriak, Nor Edine; Zentar, Rachid

    2009-04-01

    Municipal solid waste incineration (MSWI) bottom ash is an atypical granular material because it may include industrial by-products that result from the incineration of domestic waste. The prospects for the beneficial use of this particular material mainly lie in the field of road construction, as a substitute for the traditional natural aggregates. However, its mechanical properties are still little known, particularly in term of stiffness and deformability, characteristics that are essential to the construction of a durable roadway. The purpose of this paper is to describe better the mechanical behaviour of this recycled material. In order to reach this objective, a large experimental campaign is presented. The first part of this paper presents and comments in detail on the results obtained from static monotonic tests. Oedometric and triaxial shear tests were performed on MSWI bottom ash both before and after treatment with a specific hydraulic binder. These tests allow specification of the mechanical characteristics of the MSWI bottom ash, such as the initial Young's modulus, Poisson's ratio, the compressibility index, the friction angle, and the contracting or dilating behaviour of the material. The results reveal a mechanical behaviour similar to that of initially dense standard materials (sands, unbound granular materials) and a dependence on the applied average pressure, characteristic of the mechanical behaviour of granular media. More laboratory data on other samples of MSWI bottom ash are required to ensure that this comparison is statistically valid.

  16. Power generation potential using landfill gas from Ontario municipal solid waste landfills. Appendix B2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Twenty-six landfill sites have been identified in Ontario with potential gas production rates suitable for recovery and use in power plant applications. If 70% of the gas naturally generated from these sites was collected and utilized, ca 88 MW could be produced in 1991 (declining to 74 MW by 2001) from the gas generated. Assuming the current average generation rate of one tonne per capita, an estimated nine million tonnes of municipal refuse is produced annually in Ontario, and landfilling is expected to continue to play a major role. It is suggested that the level of gas generation identified for the year 1991 will be sustainable given that as old landfills are spent, new ones are built. The accuracy of the prediction depends largely on future government policies regarding incineration, the effects of present waste reduction programs, and approval of new landfill sites. Due to the combined costs of the gas collection system, auxiliary equipment, and gas processing system, installed cost of a landfill-gas fired power plant is high relative to that of conventional natural gas-fired plants. For landfills presently without a gas collection system, the high initial capital investment for gas field test programs and for the installation of a collection system is a barrier that deters municipalities from tapping this energy potential. 2 figs., 3 tabs

  17. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios

    NARCIS (Netherlands)

    Rocca, S.; Zomeren, van A.; Costa, G.; Dijkstra, J.J.; Comans, R.N.J.; Lombardi, F.

    2012-01-01

    Thermal treatment of refuse derived fuel (RDF) in waste-to-energy (WtE) plants is considered a promising solution to reduce waste volumes for disposal, while improving material and energy recovery from waste. Incineration is commonly applied for the energetic valorisation of RDF, although RDF

  18. Tracing source and migration of Pb during waste incineration using stable Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang, Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Shao, Li-Ming; He, Pin-Jing [Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Research and Training Center on Rural Waste Management, Ministry of Housing and Urban-Rural Development of P.R. China, 1239 Siping Road, Shanghai 200092 (China)

    2017-04-05

    Highlights: • The migration of Pb during waste incineration was investigated using Pb isotopes. • Source tracing of Pb during incineration by isotopic technology was feasible. • Contributions of MSW components were measured to trace Pb sources quantitatively. • Isotopic technology helps understand the migration of Pb during thermal treatment. - Abstract: Emission of Pb is a significant environmental concern during solid waste incineration. To target Pb emission control strategies effectively, the major sources of Pb in the waste incineration byproducts must be traced and quantified. However, identifying the migration of Pb in each waste component is difficult because of the heterogeneity of the waste. This study used a laboratory-scale incinerator to simulate the incineration of municipal solid waste (MSW). The Pb isotope ratios of the major waste components ({sup 207}Pb/{sup 206}Pb = 0.8550–0.8627 and {sup 208}Pb/{sup 206}Pb = 2.0957–2.1131) and their incineration byproducts were measured to trace sources and quantify the Pb contribution of each component to incineration byproducts. As the proportions of food waste (FW), newspaper (NP), and polyethylene bag (PE) in the artificial MSW changed, the contribution ratios of FW and PE to Pb in fly ash changed accordingly, ranging from 31.2% to 50.6% and from 35.0% to 41.8%, respectively. The replacement of PE by PVC significantly increased the partitioning and migration ratio of Pb. The use of Pb isotope ratios as a quantitative tool for tracing Pb from raw waste to incineration byproducts is a feasible means for improving Pb pollution control.

  19. Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India.

    Science.gov (United States)

    Sharma, Bhupendra K; Chandel, Munish K

    2017-01-01

    Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO 2 eq t -1 of municipal solid waste, 0.124 kg SO 2 eq t -1 , 0.46 kg PO 4 -3 eq t -1 , 0.44 kg 1,4-DB eq t -1 to 892.34 kg CO 2 eq t -1 , 0.121 kg SO 2 eq t -1 , 0.36 kg PO 4 -3 eq t -1 , 0.40 kg 1,4-DB eq t -1 , respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.

  20. Cadmium complexation by solid waste leachates

    DEFF Research Database (Denmark)

    Xu Ze Lun; Christensen, Thomas H.

    1989-01-01

    A previously reported method for determination of Cd species in solid waste leachates has been applied to ten leachate samples representing five different types of solid waste: refuse compost, flyash from coal combustion, sewage sludge, refuse incineration residues and landfilled municipal waste......, slowly labile complexes and stable complexes. Leachates originating from the same type of solid waste showed different fractions of Cd, in particular with respect to free divalent Cd and stable Cd complexes. Only coal flyash showed almost identical fractions of Cd in the two leachates. The latter is due...

  1. Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions

    OpenAIRE

    Bakare Babatunde Femi

    2011-01-01

    Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This p...

  2. Bioleaching of fly ash from municipal solid waste incineration using kitchen waste saccharified solution as culture medium

    International Nuclear Information System (INIS)

    Wei, S.; Juan, W.; Qunhui, W.

    2013-01-01

    Summary: Reduced sugar in saccharified solution from kitchen waste was used as the carbon source. Domesticated A. niger AS 3.879C , which can withstand 20% of kitchen waste, was used as the inoculum in the bioleaching process of municipal solid waste incineration fly ash. The effect of reduced sugar concentration, fly ash concentration, and medium volume on the heavy metal extraction and yield of fly ash as well as the optimum bioleaching conditions; the inoculation amount of AS 3 .879C 1% (v/v), reduced sugar concentration of 80 g/l, fly ash concentration of 20 g/l, medium volume of 200 ml, and the addition of fly ash (20 g/l) after culturing for 4 days at 30 degree C and 140 r/min were obtained. Under the optimum condition, the extraction yield of the seven tested heavy metals are in the order of Cd > Zn > Cu > Mn > Pb > Cr > Fe; the extraction yield of Cd and Zn reached 88.7% and 73.1% respectively. Fly ash satisfied the Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes (GB 18598-2001) after heavy metal extraction. (author)

  3. Greenhouse gases emission from municipal waste management: The role of separate collection.

    Science.gov (United States)

    Calabrò, Paolo S

    2009-07-01

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  4. Thermal treatments available for destruction of industrial wastes. Application to the incineration of radioactive wastes

    International Nuclear Information System (INIS)

    Chevalier, Gerard.

    1981-08-01

    Both the collecting and processing circuits and the physicochemical laws of combustion and thermal degradation of industrial wastes are recalled. The various incineration processes are reviewed considering especially conversion of refuse to energy and recovery of raw materials either before or after treatment. Wastes are devided into three classes according to their physical state: solid, liquid or sludge, gas. Some processes based on pyrolysis in the absence of air or at sub-stoichiometric levels are presented. A similar study is carried out on radioactive wastes, taking into account the particular aspects raised by incineration. Operational devices are described and some lines of research about the application of new techniques are summarized. The results derived from laboratory or pilot plant experiments are presented [fr

  5. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    DEFF Research Database (Denmark)

    Damgaard, Anders; Riber, C.; Fruergaard, Thilde

    2010-01-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion...... impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during...... of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction...

  6. Stabilization of lead in an alkali-activated municipal solid waste incineration fly ash-Pyrophyllite-based system.

    Science.gov (United States)

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Aminuddin, Siti Fatimah; Oshita, Kazuyuki; Fujimori, Takashi

    2017-10-01

    This work focuses on the stabilization and speciation of lead (Pb) in a composite solid produced from an alkali-activated municipal solid waste incineration fly ash (MSWIFA)-pyophyllite-based system. The solid product was synthesized after mixtures of raw materials (dehydrated pyrophyllite, MSWIFA, 14 mol/L aqueous sodium hydroxide, and sodium silicate solution) were cured at 105 °C for 24 h. The product could reduce the leaching of Pb and the Pb concentration in the leachate was 7.0 × 10 -3 using the Japanese leaching test and 9.7 × 10 -4  mg/L using toxicity characteristics leaching procedure method, which satisfied the respective test criteria and successfully stabilized Pb in this system. The solid product had a compressive strength of 2 MPa and consisted mainly of crystalline phases. Scanning electron microscopy with X-ray analysis and X-ray absorption fine structure suggested that Pb was present along with Al, Si, and O, and that the atomic environment around the Pb was similar to that of PbSiO 3 . These results suggest that the alkali-activated MSWIFA-pyrophyllite-based system could be used to stabilize Pb in MSWIFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete

    International Nuclear Information System (INIS)

    Shi Huisheng; Kan Lili

    2009-01-01

    The characteristics of municipal solid waste incineration (MSWI) fly ash, surface leaching toxicity and successive leaching concentration of heavy metals from MSWI fly ash-cement hardened pastes were studied. And, the relationships between leaching concentrations of heavy metals and leaching time were also discussed. Experimental results showed that immobilization effect of cement on MSWI fly ash is good. Even if MSWI fly ash-cement hardened pastes were damaged, the leaching toxicity is still in a safety range. In early leaching stage, the surface leaching rate is relatively a little high, up to 10 -5 -10 -4 cm d -1 order of magnitude, in the later time of leaching, its rate rapidly declined, down to 10 -7 . Most of leached heavy metals are produced at early ages. The leaching concentration of heavy metals and leaching time has strong positive relationships. In factual utilizing circumstances, heavy metals' leaching from MSWI fly ash-cement hardened pastes is a very slow and gradually diluting process. The leaching toxicity of heavy metals is far lower than that of the National Standard of China, and minimum harmful matters can be contained and released in the environment. Reusing of MSWI fly ash as partial replacement for cement in concrete mixes is potentially feasible.

  8. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching.

    Science.gov (United States)

    Funari, V; Mäkinen, J; Salminen, J; Braga, R; Dinelli, E; Revitzer, H

    2017-02-01

    Bio- and hydrometallurgical experimental setups at 2-l reactor scale for the processing of fly ash from municipal waste incinerators were explored. We aimed to compare chemical H 2 SO 4 leaching and bioleaching; the latter involved the use of H 2 SO 4 and a mixed culture of acidophilic bacteria. The leaching yields of several elements, including some of those considered as critical (Mg, Co, Ce, Cr, Ga, Nb, Nd, Sb and Sm), are provided. At the end of the experiments, both leaching methods resulted in comparable yields for Mg and Zn (>90%), Al and Mn (>85%), Cr (∼65%), Ga (∼60%), and Ce (∼50%). Chemical leaching showed the best yields for Cu (95%), Fe (91%), and Ni (93%), whereas bioleaching was effective for Nd (76%), Pb (59%), and Co (55%). The two leaching methods generated solids of different quality with respect to the original material as we removed and significantly reduced the metals amounts, and enriched solutions where metals can be recovered for example as mixed salts for further treatment. Compared to chemical leaching the bioleaching halved the use of H 2 SO 4 , i.e., a part of agent costs, as a likely consequence of bio-produced acid and improved metal solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Viscosity of ashes from energy production and municipal solid waste handling: A comparative study between two different experimental setups

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming; Folkedahl, B.

    2008-01-01

    This paper discusses the viscosity characteristics of ash fractions produced from the co-combustion of coal and biomass in a pilot-scale pulverized fuel (PF) boiler and from the incineration of municipal solid waste (MSW) in a Danish incinerator that were determined using the high...

  10. Life cycle assessment of waste incineration in Denmark and Italy using two LCA models

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    In Europe, about 20% of municipal solid waste is incinerated. Large differences can be found between northern and southern Europe regarding energy recovery efficiencies, flue gas cleaning technologies and residue management. Life-cycle assessment (LCA) of waste incineration often provides....... The overall environmental performance of the Danish system was better than the Italian, mainly because of higher heat recovery at the Danish plant. Flue gas cleaning at the Italian plant was, however, preferable to the Danish, indicating that efficient flue gas cleaning may provide significant benefits...... contradictory results if these local conditions are not properly accounted for. The importance of regional differences and site-specific data, and choice of LCA model itself, was evaluated by assessment of two waste incinerators representing northern and southern Europe (Denmark and Italy) based on two...

  11. Introduction of a waste incineration tax. Effects on the Swedish waste flows

    Energy Technology Data Exchange (ETDEWEB)

    Sahlin, Jenny [Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, SE-41296 Goeteborg (Sweden); Ekvall, Tomas [Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, SE-41296 Goeteborg (Sweden); IVL Swedish Environmental Research Institute, P.O. Box 5302, SE-40014 Goeteborg (Sweden); Bisaillon, Mattias; Sundberg, Johan [Profu AB, Goetaforsliden 13, SE-43134 Moelndal (Sweden)

    2007-10-15

    A tax on waste-to-energy incineration of fossil carbon in municipal solid waste from households was introduced in Sweden on July 1, 2006. The tax has led to higher incineration gate fees. One of the main purposes with the tax is to increase the incentive for recycling of materials, including biological treatment. We investigate whether and to what extent this effect can be expected. A spreadsheet model is developed in order to estimate the net marginal cost of alternative waste treatment methods, i.e., the marginal cost of alternative treatment minus avoided cost of incineration. The value of the households' time needed for source separation is discussed and included. The model includes the nine largest fractions, totalling 85% (weight), of the household waste currently being sent to waste incineration: food waste, newsprint, paper packaging, soft and hard plastic packaging, diapers, yard waste, other paper waste, and non-combustible waste. Our results indicate that the incineration tax will have the largest effect on biological treatment of kitchen and garden waste, which may increase by 9%. The consequences of an incineration tax depend on: (a) the level of the tax, (b) whether the tax is based on an assumed average Swedish fossil carbon content or on the measured carbon content in each incineration plant, (c) institutional factors such as the cooperation between waste incinerators, and (d) technological factors such as the availability of central sorting of waste or techniques for measurement of fossil carbon in exhaust gases, etc. Information turns out to be a key factor in transferring the governing force of the tax to the households as well improving the households' attitudes towards material recycling. (author)

  12. Introduction of a waste incineration tax. Effects on the Swedish waste flows

    International Nuclear Information System (INIS)

    Sahlin, Jenny; Ekvall, Tomas; Bisaillon, Mattias; Sundberg, Johan

    2007-01-01

    A tax on waste-to-energy incineration of fossil carbon in municipal solid waste from households was introduced in Sweden on July 1, 2006. The tax has led to higher incineration gate fees. One of the main purposes with the tax is to increase the incentive for recycling of materials, including biological treatment. We investigate whether and to what extent this effect can be expected. A spreadsheet model is developed in order to estimate the net marginal cost of alternative waste treatment methods, i.e., the marginal cost of alternative treatment minus avoided cost of incineration. The value of the households' time needed for source separation is discussed and included. The model includes the nine largest fractions, totalling 85% (weight), of the household waste currently being sent to waste incineration: food waste, newsprint, paper packaging, soft and hard plastic packaging, diapers, yard waste, other paper waste, and non-combustible waste. Our results indicate that the incineration tax will have the largest effect on biological treatment of kitchen and garden waste, which may increase by 9%. The consequences of an incineration tax depend on: (a) the level of the tax, (b) whether the tax is based on an assumed average Swedish fossil carbon content or on the measured carbon content in each incineration plant, (c) institutional factors such as the cooperation between waste incinerators, and (d) technological factors such as the availability of central sorting of waste or techniques for measurement of fossil carbon in exhaust gases, etc. Information turns out to be a key factor in transferring the governing force of the tax to the households as well improving the households' attitudes towards material recycling. (author)

  13. Investigation of waste incineration of fluorotelomer-based polymers as a potential source of PFOA in the environment.

    Science.gov (United States)

    Taylor, P H; Yamada, T; Striebich, R C; Graham, J L; Giraud, R J

    2014-09-01

    In light of the widespread presence of perfluorooctanoic acid (PFOA) in the environment, a comprehensive laboratory-scale study has developed data requested by the U.S. Environmental Protection Agency (EPA) to determine whether municipal and/or medical waste incineration of commercial fluorotelomer-based polymers (FTBPs) at end of life is a potential source of PFOA that may contribute to environmental and human exposures. The study was divided into two phases (I and II) and conducted in accordance with EPA Good Laboratory Practices (GLPs) as described in the quality assurance project plan (QAPP) for each phase. Phase I testing determined that the PFOA transport efficiency across the thermal reactor system to be used in Phase II was greater than 90%. Operating at 1000°C over 2s residence time with 3.2-6.6mgdscm(-1) hydrogen fluoride (HF), corrected to 7% oxygen (O2), and continuously monitored exhaust oxygen of 13%, Phase II testing of the FTBP composites in this thermal reactor system yielded results demonstrating that waste incineration of fluorotelomer-based polymers does not result in the formation of detectable levels of PFOA under conditions representative of typical municipal waste combustor (MWC) and medical waste incinerator (MWI) operations in the U.S. Therefore, waste incineration of these polymers is not expected to be a source of PFOA in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

    Science.gov (United States)

    Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf

    2016-04-05

    Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.

  15. Municipal solid waste disposal in Portugal

    International Nuclear Information System (INIS)

    Magrinho, Alexandre; Didelet, Filipe; Semiao, Viriato

    2006-01-01

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day

  16. Inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant.

    Science.gov (United States)

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi

    2015-09-01

    Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH4(+)-N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH4(+)-N concentration increasing to 1000mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH4(+)-N concentration rising to 1000mg/L, without any rebounding during 30days of operation. Decreasing NH4(+)-N concentration to 500mg/L in influent, the COD removal efficiency recovered to about 85% after 26days. 1000mg/L of NH4(+)-N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH4(+)-N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.

    Science.gov (United States)

    Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing

    2010-07-01

    Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    International Nuclear Information System (INIS)

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-01-01

    Highlights: ► Aluminium packaging partitioning in MSW incineration residues is evaluated. ► The amount of aluminium packaging recoverable from the bottom ashes is evaluated. ► Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. ► 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  19. Mercury risk assessment combining internal and external exposure methods for a population living near a municipal solid waste incinerator.

    Science.gov (United States)

    Deng, Chunyan; Xie, Han; Ye, Xuejie; Zhang, Haoran; Liu, Maodian; Tong, Yindong; Ou, Langbo; Yuan, Wen; Zhang, Wei; Wang, Xuejun

    2016-12-01

    Risk assessments for human health have been conducted for municipal solid waste incinerators (MSWIs) in many western countries, whereas only a few risk assessments have been performed for MSWIs in developing countries such as China where the use of waste incineration is increasing rapidly. To assess the mercury exposure risks of a population living near the largest MSWI in South China, we combined internal exposure and external exposure assessment with an individual-specific questionnaire. The mercury concentrations in air, soil, and locally collected food around the MSWI were assessed. The total mercury (T-Hg) and methylmercury (MeHg) of 447 blood samples from a control group, residential exposure group, and MSWI workers were measured. The internal and external exposures of the subject population were analyzed. Significant difference in MeHg concentrations was observed between the control group and the exposed group, between the control group and the MSWI workers, and between the exposed group and the MSWI workers (median levels: 0.70 μg/L, 0.81 μg/L, and 1.02 μg/L for the control group, exposed group, and MSWI workers, respectively). The MeHg/T-Hg ratio was 0.51 ± 0.19, 0.59 ± 0.17 and 0.58 ± 0.25, respectively. Multiple linear regression analysis indicated that MeHg concentrations were positively correlated with the gaseous mercury in the air. Combining internal and external exposure assessment showed that the direct contribution of MSWI emissions was minor compared with the dietary contribution. The external and internal exposures were well matched with each other. This study also suggested that an integrated method combining internal and external exposure assessment with an individual-specific questionnaire is feasible to assess the risks for a population living near a MSWI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.

    Science.gov (United States)

    Bujak, J

    2015-08-01

    The article presents a mathematical model to determine the flux of incinerated waste in terms of its calorific values. The model is applicable in waste incineration systems equipped with rotary kilns. It is based on the known and proven energy flux balances and equations that describe the specific losses of energy flux while considering the specificity of waste incineration systems. The model is universal as it can be used both for the analysis and testing of systems burning different types of waste (municipal, medical, animal, etc.) and for allowing the use of any kind of additional fuel. Types of waste incinerated and additional fuel are identified by a determination of their elemental composition. The computational model has been verified in three existing industrial-scale plants. Each system incinerated a different type of waste. Each waste type was selected in terms of a different calorific value. This allowed the full verification of the model. Therefore the model can be used to optimize the operation of waste incineration system both at the design stage and during its lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    Science.gov (United States)

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DEFF Research Database (Denmark)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further...... rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed...... of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste....

  3. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises.

    Science.gov (United States)

    Tabata, Tomohiro

    2013-11-01

    Municipal solid waste (MSW) incineration is a greenhouse gas (GHG) emitter; however, if GHG reductions, achieved by accounting for waste-to-energy, exceed GHG emissions, incineration can be considered as a net GHG reducer. In Japan, only 24.5% of MSW incineration plants perform energy recovery despite 80% of MSW being incinerated; therefore, there is great potential to extract more energy from MSW. In this study, the factors that should be considered to achieve net GHG reductions from incineration were analysed from a life cycle perspective. These considerations were then applied to the energy supply requirements in seven Japanese metropolises. Firstly, the carbon footprints of approximately 1500 incineration plants in Japan were calculated. Then, the incineration plants with negative carbon footprint values were classified as net GHG reducers. Next, the processes that contribute to the carbon footprint were evaluated, and two processes-plastic burning and electricity savings-were found to have the greatest influence. Based on the results, the energy supply requirements were analysed and discussed for seven metropolises (Sapporo, Tokyo, Nagoya, Osaka, Kobe, Takamatsu and Fukuoka) taking into account the energy demands of households. In Kobe, 16.2% of the electricity demand and 25.0% of the hot water demand could be satisfied by incineration to realise a net GHG reducer, although urban design for energy utilisation would be required.

  4. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.

    Science.gov (United States)

    Diaz-Loya, E Ivan; Allouche, Erez N; Eklund, Sven; Joshi, Anupam R; Kupwade-Patil, Kunal

    2012-08-01

    Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5

  5. Global warming factors modelled for 40 generic municipal waste management scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2009-01-01

    Global warming factors (kg CO2-eq.-tonne—1 of waste) have been modelled for 40 different municipal waste management scenarios involving a variety of recycling systems (paper, glass, plastic and organics) and residual waste management by landfilling, incineration or mechanical—biological waste...... treatment. For average European waste composition most waste management scenarios provided negative global warming factors and hence overall savings in greenhouse gas emissions: Scenarios with landfilling saved 0—400, scenarios with incineration saved 200—700, and scenarios with mechanical...

  6. A systematic critical review of epidemiological studies on public health concerns of municipal solid waste handling.

    Science.gov (United States)

    Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku

    2017-03-01

    The ultimate aim of this review was to summarise the epidemiological evidence on the association between municipal solid waste management operations and health risks to populations residing near landfills and incinerators, waste workers and recyclers. To accomplish this, the sub-aims of this review article were to (1) examine the health risks posed by municipal solid waste management activities, (2) determine the strengths and gaps of available literature on health risks from municipal waste management operations and (3) suggest possible research needs for future studies. The article reviewed epidemiological literature on public health concerns of municipal solid waste handling published in the period 1995-2014. The PubMed and MEDLINE computerised literature searches were employed to identify the relevant papers using the keywords solid waste, waste management, health risks, recycling, landfills and incinerators. Additionally, all references of potential papers were examined to determine more articles that met the inclusion criteria. A total of 379 papers were identified, but after intensive screening only 72 met the inclusion criteria and were reviewed. Of these studies, 33 were on adverse health effects in communities living near waste dumpsites or incinerators, 24 on municipal solid waste workers and 15 on informal waste recyclers. Reviewed studies were unable to demonstrate a causal or non-causal relationship due to various limitations. In light of the above findings, our review concludes that overall epidemiological evidence in reviewed articles is inadequate mainly due to methodological limitations and future research needs to develop tools capable of demonstrating causal or non-causal relationships between specific waste management operations and adverse health endpoints.

  7. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  8. Cesium distribution and phases in proxy experiments on the incineration of radioactively contaminated waste from the Fukushima area.

    Science.gov (United States)

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kakuta, Yoshitada; Kawano, Takashi

    2014-10-01

    After the March 11, 2011 Tohoku earthquake and Fukushima I Nuclear Power Plant accident, incineration was initially adopted as an effective technique for the treatment of post-disaster wastes. Accordingly, considerable amounts of radioactively contaminated residues were immediately generated through incineration. The level of radioactivity associated with radiocesium in the incineration ash residues (bottom ash and fly ash) became significantly high (several thousand to 100,000 Bq/kg) as a result of this treatment. In order to understand the modes of occurrence of radiocesium, bottom ash products were synthesized through combusting of refuse-derived fuel (RDF) with stable Cs salts in a pilot incinerator. Microscopic and microanalytical (SEM-EDX) techniques were applied and the following Cs categories were identified: low and high concentrations in the matrix glass, low-level partitioning into some newly-formed silicate minerals, partitioning into metal-sulfide compounds, and occurring in newly-formed Cs-rich minerals. These categories that are essentially silicate-bound are the most dominant forms in large and medium size bottom ash particles. It is expected that these achievements provide solutions to the immobilization of radiocesium in the incineration ash products contaminated by Fukushima nuclear accident. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Fiscal 2000 survey report. Refuse-fueled power generation introduction technology, etc. Part 2. Survey of general refuse-fueled power generation; 2000 nendo chosa hokokusho. Haikibutsu hatsuden donyu gijutsu chosa to - Ippan haikibutsu hatsuden chosa Part 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Surveys were conducted of the effect on waste quality of the Law for Promotion of Sorted Collection and Recycling of Containers and Packaging, diffusion of PFI (private finance initiative) involving refuse-fueled power generation, recycling of slag, etc. Questionnairing was conducted for the survey of the effect on waste of the effectuation of the recycling law, size of population supplying the waste and the amount actually incinerated, actually measured data of the composition of incinerated waste, assorted collection programs, amount reducing measures, and the like. Studies were made as to if the empirical formulas applied in the survey of the preceding fiscal year would remain applicable after the coming into force of the recycling law. In the survey of PFI popularization, it was found that the rate it was taken into account for concrete projects was so low as 13.8% though most of the autonomous bodies had cognizance of PFI. It was requested that it be clearly stipulated that 'the conventional subsidies and grants apply also to PFI projects.' In the survey of conversion of residue into molten slag in refuse-fueled power generation and its reuse, four kinds of slag specimens were examined for physical properties, elution, and analyzed for ingredients, and then it was found that they posed no problems like heavy metal elution. (NEDO)

  10. Combustion aerosols from municipal waste incineration - Effect of fuel feedstock and plant operation

    DEFF Research Database (Denmark)

    Zeuthen, J.H.; Pedersen, Anne Juul; Hansen, Jørn

    2007-01-01

    ( NaCl), batteries, and automotive shredder waste. Also, runs with different changes in the operational conditions of the incinerator were made. Mass- based particle size distributions were measured using a cascade impactor and the number- based size distributions were measured using a Scanning...

  11. A Review of Exposure Assessment Methods in Epidemiological Studies on Incinerators

    Directory of Open Access Journals (Sweden)

    Michele Cordioli

    2013-01-01

    Full Text Available Incineration is a common technology for waste disposal, and there is public concern for the health impact deriving from incinerators. Poor exposure assessment has been claimed as one of the main causes of inconsistency in the epidemiological literature. We reviewed 41 studies on incinerators published between 1984 and January 2013 and classified them on the basis of exposure assessment approach. Moreover, we performed a simulation study to explore how the different exposure metrics may influence the exposure levels used in epidemiological studies. 19 studies used linear distance as a measure of exposure to incinerators, 11 studies atmospheric dispersion models, and the remaining 11 studies a qualitative variable such as presence/absence of the source. All reviewed studies utilized residence as a proxy for population exposure, although residence location was evaluated with different precision (e.g., municipality, census block, or exact address. Only one study reconstructed temporal variability in exposure. Our simulation study showed a notable degree of exposure misclassification caused by the use of distance compared to dispersion modelling. We suggest that future studies (i make full use of pollution dispersion models; (ii localize population on a fine-scale; and (iii explicitly account for the presence of potential environmental and socioeconomic confounding.

  12. Retention and leaching of nitrite by municipal solid waste incinerator bottom ash under the landfill circumstance.

    Science.gov (United States)

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng

    2015-01-01

    The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Incineration and flue gas cleaning in China - a Review

    International Nuclear Information System (INIS)

    Buekens, Alfons; Yan, Mi; Jiang, Xuguan; Li, Xiaodong; Lu, Shengyong; Chi, Yong; Yan, Jianhua; Cen, Kefa

    2010-01-01

    Waste incineration is rapidly developing in China. Different technologies are proposed for Municipal Solid Waste (MSW), Hazardous Waste (HW), and Medical Waste (MW). The required technologies are either imported, or developed locally. Some data are cited to illustrate these rapid developments. Incinerator flue gas arises at rather limited scale (10,000-100,000 Nm 3 /h), compared to power generation, yet the number of pollutants to be counted with is huge: dust and grit, acid gases, NO x , selected heavy metals, aerosols and nanoparticles, Polycyclic Aromatic Hydrocarbons, and dioxins. Major options in flue gas cleaning can be derived from Best Available Technologies (BAT), as were developed in the European Union. Hence, E.U. practice is analyzed in some detail, by considering the present situation in selected E.U. countries (Germany, Sweden, the Netherlands, Denmark, Belgium). A comparison is made with China. Also, the situation in Japan is examined. Based on this wide experience, a number of technical suggestions regarding incineration, flue gas cleaning, and emission control are formulated. Also, the possibility of co incineration is considered. Starting from the particular experience of Zhejiang University (as a designer of Fluid Bed and Rotary Kiln plant, with large experience in Fluid Bed processes, coal firing, gasification and pyrolysis, and actively monitoring thermal units throughout China) some specific Case Studies are examined, e.g., a fluidized bed incinerator and its gas cleaning system (MSWI and HWI from ITPE). Some attention is paid to the potential threats in China from uncontrolled combustion sources. As a conclusion, some recommendations are formulated regarding flue gas cleaning in Developing Nations at large and in China in particular. (author)

  14. CO-incineration

    International Nuclear Information System (INIS)

    Boehmer, S.; Rumplmayr, A.

    2001-01-01

    'Co-incineration plant means a stationary or mobile plant whose main purpose is the generation of energy or production of material products and which uses wastes as a regular or additional fuel; or in which waste is thermally treated for the purpose of disposal. This definition covers the site and the entire plant including all incineration lines, waste reception, storage, an site pre-treatment facilities; its waste-, fuel- and air-supply systems; the boiler; facilities for treatment or storage of the residues, exhaust gas and waste water; the stack; devices and systems for controlling incineration operations, recording and monitoring incineration conditions (proposal for a council directive an the incineration of waste - 98/C 372/07). Waste incinerators primarily aim at rendering waste inert, at reduction of its volume and at the generation of energy from waste. The main aim of co-incineration an the other hand is either the recovery of energy from waste, the recovery of its material properties or a combination of the latter in order to save costs for primary energy. Two main groups of interest have lately been pushing waste towards co-incineration: conventional fossil fuels are getting increasingly scarce and hence expensive and generate carbon dioxide (greenhouse gas). The use of high calorific waste fractions is considered as an alternative. In many countries land filling of waste is subject to increasingly strict regulations in order to reduce environmental risk and landfill volume. The Austrian Landfill Ordinance for instance prohibits the disposal of untreated waste from the year 2004. Incineration seems to be the most effective treatment option to destroy organic matter. However the capacities of waste incinerators are limited, giving rise to a search for additional incineration capacity. The obvious advantages of co-incineration, such as the saving of fossil fuels and raw materials, the thermal treatment of waste fractions and possible economic benefits by

  15. Development of incineration and incineration-melting system for radioactive incombustible wastes

    International Nuclear Information System (INIS)

    Karita, Y.; Kanagawa, Y.; Teshima, T.

    2000-01-01

    Radioactive combustible solid wastes produced by nuclear power plants are generally incinerated for the purpose of volume reduction and stabilization. However incombustible wastes, such as PVC and rubber wastes are not incinerated and are still being stored since the off-gas treatment problems of a large amount of soot and harmful HCl and SO x gas need to be resolved. The authors have developed a new types of incineration system which consists of a water-cooling jacket type incinerator, ceramic filter, HEPA and wet scrubber. And as an application of its incinerator, the hybrid incineration-melting furnace, which is a unification of the incinerator and induction melting furnace, is being tested. Furthermore, the new type of dry absorber for removing HCl and SO x is also being tested. This report mainly describes an outline and the test results of the above incineration system, and secondly, the possibility of the incineration-melting system and dry absorber. (author)

  16. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  17. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark

    International Nuclear Information System (INIS)

    Boldrin, Alessio; Andersen, Jacob K.; Christensen, Thomas H.

    2011-01-01

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg -1 ww for the non-toxic categories and up to 100 mPE Mg -1 ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.

  18. A comparative study of PCDD/F emissions from medical and industrial waste incinerators in Medellin-Colombia (South America)

    Energy Technology Data Exchange (ETDEWEB)

    Aristizabal, B; Montes, C; Cobo, M [Antioquia Univ., Medellin (Colombia); Abad, E; Rivera, J [CID-CSIC, Barcelona (Spain). Dept. of Ecotechnologies

    2004-09-15

    Municipal waste management often combines different strategies such as recycling, composting, thermal treatment or landfill disposal. In Colombia, urban solid waste is landfill disposed but, industrial and medical wastes are incinerated. The total medical and pathological wastes generated in this zone are about 1643 ton/year from which 1022 ton/year are incinerated in six plants operating in Medellin metropolitan area. As a result, new regulations governing stack gas emissions have been enforced with the aim of reducing air pollutant emissions. Few incinerators are equipped with a gas-cleaning system and thus, most do not have any cleaning system. Medical waste incineration has been recognized as one of the major known sources of polychlorinated dibenzo-pdioxins and polychlorinated dibenzofurans (PCDD/PCDF). To the best of our knowledge, there are not reports about emissions of dioxins and furans from the incineration sector in Colombia. The first aim of this work was to evaluate PCDD/PCDF emissions from the largest incinerators operating in Medellin (Colombia). In this contribution we report results obtained from three incinerators (A, B and C). The incinerated waste in plant A consisted of polymerization sludge, whereas in plants B and C medical and pathological residues were incinerated. Common medical wastes include dirty bandages, culture dishes, plastic, surgical gloves and instruments (including needles) as well as human tissue.

  19. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Gorla, Leopoldo; Nessi, Simone; Grosso, Mario [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  20. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  1. Studies of the combustion of coal/refuse derived fuels using thermogravimetric-Fourier transform infrared-mass spectrometry

    International Nuclear Information System (INIS)

    Lu, Huagang; Li, Jigui; Lloyd, W.G.

    1995-01-01

    According to a report of the Environmental Protection Agency (EPA), 'Characterization of Municipal Solid Waste (MSW) in the United States', the total MSW produced in the U.S. increased from 179 million tons in 1988 to 195 million tons in 1990. The EPA predicted that the country would produce about 216 million tons of garbage in the year 2000. The amount of waste generated and the rapidly declining availability of sanitary landfills has forced most municipalities to evaluate alternative waste management technologies for reducing the volume of waste sent to landfills. The fraction of MSW that is processed by such technologies as separation and recycling, composting, and waste-to-energy was forecast to increase from a few percent today to 30-40% by the year 2000. Waste-to-energy conversion of MSW can appear to be attractive because of the energy recovered, the economic value of recycled materials, and the cost savings derived from reduced landfill usage. However, extra care needs to be taken in burning MSW or refuse-derived fuel (RDF) to optimize the operating conditions of a combustor so that the combustion takes place in an environmentally acceptable manner. For instance, polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) have been found in the precipitator fly ash and flue gas of some incinerator facilities in the United States and Europe. The amount of PCDDs and PCDFs occurs only in the parts-per-billion to parts-per-trillion range, but these chlorinated organics exhibit very high toxicity (LD 50 < 10 μg/Kg). The compound 2,3,7,8-tetrachlorodibenzodioxin has been found to be acnegenic, carcinogenic, and teratogenic. This has slowed or even stopped the construction and operation of waste-to-energy plants

  2. Studies of the combustion of coal/refuse derived fuels using thermogravimetric-Fourier transform infrared-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Huagang; Li, Jigui; Lloyd, W.G.

    1995-11-01

    According to a report of the Environmental Protection Agency (EPA), `Characterization of Municipal Solid Waste (MSW) in the United States`, the total MSW produced in the U.S. increased from 179 million tons in 1988 to 195 million tons in 1990. The EPA predicted that the country would produce about 216 million tons of garbage in the year 2000. The amount of waste generated and the rapidly declining availability of sanitary landfills has forced most municipalities to evaluate alternative waste management technologies for reducing the volume of waste sent to landfills. The fraction of MSW that is processed by such technologies as separation and recycling, composting, and waste-to-energy was forecast to increase from a few percent today to 30-40% by the year 2000. Waste-to-energy conversion of MSW can appear to be attractive because of the energy recovered, the economic value of recycled materials, and the cost savings derived from reduced landfill usage. However, extra care needs to be taken in burning MSW or refuse-derived fuel (RDF) to optimize the operating conditions of a combustor so that the combustion takes place in an environmentally acceptable manner. For instance, polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) have been found in the precipitator fly ash and flue gas of some incinerator facilities in the United States and Europe. The amount of PCDDs and PCDFs occurs only in the parts-per-billion to parts-per-trillion range, but these chlorinated organics exhibit very high toxicity (LD{sub 50} < 10 {mu}g/Kg). The compound 2,3,7,8-tetrachlorodibenzodioxin has been found to be acnegenic, carcinogenic, and teratogenic. This has slowed or even stopped the construction and operation of waste-to-energy plants.

  3. Energy potential from municipal solid waste in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Sivapalan Kathirvale; Muhd Noor Muhd Yunus [Malaysian Institute for Nuclear Technology Research, Selangor Darul Ehsan (Malaysia). Incineration and Renewable Energy Center; Kamaruzzaman Sopian; Abdul Halim Samsuddin [University Kebangsaan Malaysia, Selangor Darul Ehsan (Malaysia). Faculty of Engineering

    2004-04-01

    The average amount of municipal solid waste (MSW) generated in Malaysia is 0.5-0.8 kg/person/day and has increased to 1.7 kg/person/day in major cities. This paper highlights the MSW characteristics for the city of Kuala Lumpur. Currently, the waste management approach being employed is landfill, but due to rapid development and lack of space for new landfills, big cities in Malaysia are switching to incineration. A simple evaluation was conducted to establish the amount of energy that would be recovered based on the characteristics of the MSW if it were to be incinerated. From the characterization exercise, the main components of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80% of the waste by weight. The average moisture content of the MSW was about 55%, making incineration a challenging task. The calorific value of the Malaysian MSW ranged between 1500 and 2600 kcal/kg. However, the energy potential from an incineration plant operating based on 1500 ton of MSW/day with an average calorific value of 2200 kcal/kg is assessed to be at 640 kW/day. (author)

  4. Data supporting the comparative life cycle assessment of different municipal solid waste management scenarios

    Science.gov (United States)

    Ali Rajaeifar, Mohammad; Tabatabaei, Meisam; Ghanavati, Hossein

    2015-01-01

    Environmental assessment of municipal solid waste (MSW) management scenarios would help to select eco-friendly scenarios. In this study, the inventory data in support of life cycle assessment of different MSW are presented. The scenarios were defined as: anaerobic digestion (AD, Sc-0), landfilling combined with composting (Sc-1), incineration (Sc-2), incineration combined with composting (Sc-3), and AD combined with incineration (Sc-4). The current article contains flowcharts of the different scenarios. Additionally, six supplementary files including inventory data on the different scenarios, data on the different damage assessment categories, normalization, and single scores are presented (Supplementary files 1–6). The analysis of the different scenarios revealed that the most eco-friendly scenario to be implemented in the future would be the combination of AD and incineration (Sc-4). PMID:26217743

  5. Data supporting the comparative life cycle assessment of different municipal solid waste management scenarios

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajaeifar

    2015-06-01

    Full Text Available Environmental assessment of municipal solid waste (MSW management scenarios would help to select eco-friendly scenarios. In this study, the inventory data in support of life cycle assessment of different MSW are presented. The scenarios were defined as: anaerobic digestion (AD, Sc-0, landfilling combined with composting (Sc-1, incineration (Sc-2, incineration combined with composting (Sc-3, and AD combined with incineration (Sc-4. The current article contains flowcharts of the different scenarios. Additionally, six supplementary files including inventory data on the different scenarios, data on the different damage assessment categories, normalization, and single scores are presented (Supplementary files 1–6. The analysis of the different scenarios revealed that the most eco-friendly scenario to be implemented in the future would be the combination of AD and incineration (Sc-4.

  6. Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China

    International Nuclear Information System (INIS)

    Tang, YuTing; Ma, XiaoQian; Lai, ZhiYi; Chen, Yong

    2013-01-01

    The entire life cycle of a municipal solid waste (MSW) oxy-fuel incineration power plant was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impacts. The functional unit was 1000 kg (1 t) MSW. During the life cycle, the saving standard coal by electricity generation was more than diesel consumption, and the effect of soot and ashes was the greatest among all calculated categorization impacts. The total weighted resource consumption and total weighted environment potential of MSW oxy-fuel incineration were −0.37 mPR 90 (milli person equivalent) and −0.27 PET 2010 (person equivalent), better than MSW incineration with CO 2 capture via monoethanolamine (MEA) absorption. The sensitivity analysis showed that the electric power consumption of air separation unit (ASU) was the primary influencing parameter, and the influence of electric power consumption of CO 2 compressor was secondary, while transport distance had small influence. Overall, MSW oxy-fuel incineration technology has certain development potential with the increment of MSW power supply efficiency and development of ASU in the future. - Highlights: • Life cycle assessment of a MSW oxy-fuel incineration power plant is novel. • The MSW oxy-fuel incineration was better than the MSW incineration with MEA. • Among calculated impacts, the effect of soot and ashes was the greatest. • The electric power consumption of ASU was the primary influencing parameter

  7. Incineration of toluene and chlorobenzene in a laboratory incinerator

    International Nuclear Information System (INIS)

    Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators

  8. Regionalization of municipal solid waste management in Japan: balancing the proximity principle with economic efficiency.

    Science.gov (United States)

    Okuda, Itaru; Thomson, Vivian E

    2007-07-01

    The proximity principle - disposing of waste close to its origin - has been a central value in municipal solid waste (MSW) management in Japan for the last 30 years and its widespread adoption has helped resolve numerous "Not in My Backyard" issues related to MSW management. However, MSW management costs have soared, in large part because of aggressive recycling efforts and because most MSW is incinerated in a country that has scarce landfill capacity. In addition, smaller, less sophisticated incinerators have been closed because of high dioxin emissions. Rising costs combined with the closure of smaller incinerators have shifted MSW management policy toward regionalization, which is the sharing of waste management facilities across municipalities. Despite the increased use of regionalized MSW facilities, the proximity principle remains the central value in Japanese MSW management. Municipal solid waste management has become increasingly regionalized in the United States, too, but different driving forces are at work in these two countries. The transition to regionalized MSW management in Japan results from strong governmental control at all levels, with the central government providing funds and policy direction and prefectures and municipalities being the primary implementing authorities. By contrast, market forces are a much stronger force with US MSW management, where local governments - with state government oversight - have primary responsibility for MSW management. We describe recent changes in Japan's MSW programs. We examine the connections between MSW facility regionalization, on the one hand, and, on the other hand, the proximity principle, coordination among local governments, central government control, and financing mechanisms.

  9. Prevention of PCDD/Fs emission from a municipal wastewater sludge incinerator through enhanced control of copper aerosol

    Directory of Open Access Journals (Sweden)

    Peña, E.

    2012-10-01

    Full Text Available Municipal wastewater sludge incineration (MWSI leads to products of incomplete combustion, including chlorinated species such as dioxins and furans (PCDD/Fs. Other pollutants, such as heavy metals (HM, are released too as a consequence of feed traces, which depend on the specific activities of each area. The main aim of this work is to determine whether the early separation of the potential catalysts on the PCDD/Fs formation –HM as copper or zinc– offers a promising way to prevent the emission of these trace pollutants, considering that the current end-of-pipe measures don’t ensure their stable emission. Experimental results cover the size distributed target metal contents along the incineration line. These results show a high concentration of copper in the most penetrating aerosol size range of the electrostatic precipitator (0.6 μm - 1.0 μm, and how low emission values of both, total and metallic aerosol (mass basis, are compatible with irregular and unexplained outliers of PCDD/Fs emission.

    La incineración de lodos de aguas residuales urbanas acarrea la formación de compuestos derivados de combustiones incompletas, incluyendo especies cloradas como dioxinas y furanos (PCDD/Fs. Otros contaminantes, como metales pesados, se emiten como consecuencia de las trazas del lodo, las cuales dependen de las actividades del entorno. El objetivo principal es determinar si la separación de catalizadores potenciales en reacciones de formación de PCDD/Fs (cobre o zinc puede abrir vías para prevenir la emisión de contaminantes traza, considerando que ninguna de las técnicas de prevención actuales aseguran emisiones estables de metales pesados o PCDD/Fs. Se determinan concentraciones de metales pesados segregados por tamaño de partícula a lo largo de la línea de incineración. Los resultados muestran concentraciones elevadas de cobre en el aerosol de máxima penetración del electrofiltro (0,6 μm - 1,0 μm, y cómo concentraciones

  10. Dioxin formation from waste incineration.

    Science.gov (United States)

    Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo

    2007-01-01

    occurring in an incinerator is extremely complex, and there are many factors in addition to combustion temperature influencing dioxin formation. Even though it is possible to hypothesize reasonable formation mechanisms of dioxins produced in exhaust gases according to the results obtained from experiments in classical chemistry, the reactions involved in an incinerator are extremely complex and heterogeneous. More detailed investigation of the many individual factors influencing dioxin formation is needed to find ways to reduce their formation in individual and municipal incinerators.

  11. Energy recovery from waste incineration: Assessing the importance of district heating networks

    International Nuclear Information System (INIS)

    Fruergaard, T.; Christensen, T.H.; Astrup, T.

    2010-01-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO 2 accounts showed significantly different results: waste incineration in one network caused a CO 2 saving of 48 kg CO 2 /GJ energy input while in the other network a load of 43 kg CO 2 /GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

  12. Evaluation and monitoring of an household waste incineration plant in Paris area

    International Nuclear Information System (INIS)

    Person, A.; Le Moullec, Y.; Gilibert, E.

    1995-01-01

    Urban population is more and more concerned by air quality and waste disposal. In Paris Area, municipal waste are incinerated in three large plants all equipped with gas cleaning systems, except one that will be equipped in June 1995. It appeared interesting to characterize and evaluate the impact of this incinerator on ambient air quality in an area where other sources interfere. An sampling campaign was set up on six sites of AIRPARIF (ile de France Air Quality Monitoring Network). Nitrogen oxides. Sulphur dioxide and black smokes are measured in continuously. Other pollutants, considered more specific of waste incineration plants were analysed on a 24 h-sampling basis (heavy metals, hydrochloride acid, Chlorides). The first results seem to show some trends. Regarding usual pollutants, it appears downwind sites present higher average level that upwind sites. For hydrochloric acid, 24 h. averages are higher when the site was frequently downwind during the day. The size of the data set is small for heavy metals, however it seems that an impact can be detected for Cd and Zn. (author)

  13. Evaluation of the influence of mechanical activation on physical and chemical properties of municipal solid waste incineration sludge.

    Science.gov (United States)

    Caprai, V; Florea, M V A; Brouwers, H J H

    2018-06-15

    Despite numerous studies concerning the application of by-products in the construction field, municipal solid waste incineration (MSWI) residues are not widely used as secondary building materials. In some European countries, washing treatment to the full bottom ash (BA) fraction (0-32 mm) is applied, isolating more contaminated particles, smaller than 0.063 mm. Therefore, a MWSI sludge is produced, having a high moisture content, and thus a limited presence of soluble species. In order to enhance its performance as building material, here, dry mechanical activation is applied on MSWI sludge. Thereafter, a reactivity comparison between reference BA and untreated and treated MSWI sludge is provided, evaluating their behaviour in the presence of cement and their pozzolanic activity. Moreover, the mechanical performances, as 25% substitution of Portland cement (PC) are assessed, based on the EN 450. Mechanical activation enhances MSWI sludge physically due to the improved particle morphology and packing. Chemically, the hydration degree of PC is enhanced by the MSWI sludge by ≈25%. The milling treatment proved to be beneficial to the residues performances in the presence of PC, providing 32% higher strength than untreated sample. Environmentally, the compliance with the unshaped material legislation is successfully verified, according to the Soil Quality Decree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    Science.gov (United States)

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  15. Impact of community engagement on public acceptance towards waste-to-energy incineration projects: Empirical evidence from China.

    Science.gov (United States)

    Liu, Yong; Sun, Chenjunyan; Xia, Bo; Cui, Caiyun; Coffey, Vaughan

    2018-02-20

    As one of the most popular methods for the treatment of municipal solid waste (MSW), waste-to-energy (WTE) incineration offers effective solutions to deal with the MSW surge and globe energy issues. Nevertheless, the construction of WTE facilities faces considerable and strong opposition from local communities due to the perceived potential risks. The present study aims to understand whether, and how, community engagement improves local residents' public acceptance towards waste-to-energy (WTE) incineration facilities using a questionnaire survey conducted with nearby residents of two selected WTE incineration plants located in Zhejiang province, China. The results of data analysis using Structural Equation Modeling (SEM) reveal that firstly, a lower level of public acceptance exists among local residents of over the age of 35, of lower education levels, living within 3 km from the WTE Plant and from WTE incineration Plants which are under construction. Secondly, the public trust of local government and other authorities was positively associated with the public acceptance of the WTE incineration project, both directly and indirectly based on perceived risk. Thirdly, community engagement can effectively enhance public trust in local government and other authorities related to the WTE incineration project. The findings contribute to the literature on MSW treatment policy-making and potentially hazardous facility siting, by exploring the determinants of public acceptance towards WTE incineration projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Emission of greenhouse gases from waste incineration in Korea.

    Science.gov (United States)

    Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk

    2017-07-01

    Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and

  17. An Industrial Ecology Approach to Municipal Solid Waste ...

    Science.gov (United States)

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery, gasification, anaerobic digestion, and fermentation. In these cases electricity and ethanol are the products considered, but other products and attempts at symbiosis can be made. The four technologies are in various states of commercial development. To highlight their relative complexities some adjustable parameters which are important for the operability of each process are discussed. While these technologies need to be considered for specific locations and circumstances, generalized economic and environmental information suggests relative comparisons for newly conceptualized processes. The results of industrial ecology-based analysis suggest that anaerobic digestion may improve seven emission categories, while fermentation, gasification, and incineration successively improve fewer emissions. A conceptual level analysis indicates that gasification, anaerobic digestion, and fermentation alternatives lead to positive economic results. In each case the alternatives and their assumptions need further analysis for any particular community. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  18. Effect of drying on leaching testing of treated municipal solid waste incineration APC-residues

    DEFF Research Database (Denmark)

    Hu, Y.; Hyks, Jiri; Astrup, Thomas

    2008-01-01

    Air-pollution-control (APC) residues from waste incinerators are hazardous waste according to European legislation and must be treated prior to landfilling. Batch and column leaching data determine which type of landfill can receive the treated APC-residues. CEN standards are prescribed...

  19. Electricity production from municipal solid waste in Brazil.

    Science.gov (United States)

    Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-07-01

    Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.

  20. Mathematical modelling of MSW incineration in a packed bed

    DEFF Research Database (Denmark)

    Chen, Guanyi; Gu, Tianbao; He, Xiao

    2017-01-01

    Grate-firing is the most commonly used technology for municipal solid waste (MSW) incineration for heat and power generation, in which MSW undergoes thermochemical conversion (e.g., drying, devolatilization, char gasification and oxidation) in the fuel bed on the grate while the combustible gases...... and the entrained fine particles are further burned in the freeboard. Nevertheless, grate-firing generally needs to be improved in terms of efficiency and overall environmental impacts, in which computational fluid dynamics (CFD) modelling plays the vital role. In this paper, a comprehensive mathematical model...

  1. Reconstruction of the Leudelange refuse incineration plant with integration of existing plant parts; Erneuerung der MVA Leudelange unter Integration vorhandener Anlagenteile

    Energy Technology Data Exchange (ETDEWEB)

    Buechner, Harm-Peter; Jolas, Uwe [EEW Energy from Waste GmbH, Helmstedt (Germany)

    2013-10-01

    SIDOR, a special purpose association for waste management in Luxembourg, manages the waste disposal of around two-thirds of Luxembourg's entire population. E.ON Energy from Waste (EEW) participated in SIDOR's tender process for both constructing as well as operating a new incineration line with an overall capacity of 150,000 t/a, which was accepted by SIDOR in October 2006. The new incineration line with an overall gross heat output of 67 MWth replaced the existing lines after completion. (orig.)

  2. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  3. Renewable municipal waste barometer - EurObserv'ER - November 2014

    International Nuclear Information System (INIS)

    2014-11-01

    EurObserv'ER reckons that the energy recovered from renewable municipal waste incineration that takes into account the organic part (cartons, kitchen waste, etc.) increased slightly in 2013 (by 0.7% over 2012), giving output of about 8.7 Mtoe. Heat sales to district heating networks stepped up conspicuously in 2013, as synergy between the incineration plants and the heating networks improved. Heat output increased 7.8% over 2012 to reach 2.4 Mtoe, while electricity output remained stable at 18.7 TWh. This development demonstrates the increased energy efficiency of the incineration plants that is stimulated by European legislation, primarily through the transposition of the framework directive on waste (2008/98/EC) that encourages operators to optimize the energy efficiency of their plants, primarily by looking for new outlets for heat production. The Directive stipulates that the incinerators can only be classed as waste-to- energy recovery units if they meet minimum yield criteria, which in the case of plant constructed since 31 December 2008 must be at least equal to 65%. The energy efficiency of those constructed prior to 2008 must be at least 60%. If these criteria are not met, the waste incineration process will not be recognized as treatment eligible for waste ranking as imposed by the directive

  4. Solidification and Biotoxicity Assessment of Thermally Treated Municipal Solid Waste Incineration (MSWI) Fly Ash.

    Science.gov (United States)

    Gong, Bing; Deng, Yi; Yang, Yuanyi; Tan, Swee Ngin; Liu, Qianni; Yang, Weizhong

    2017-06-10

    In the present work, thermal treatment was used to stabilize municipal solid waste incineration (MSWI) fly ash, which was considered hazardous waste. Toxicity characteristic leaching procedure (TCLP) results indicated that, after the thermal process, the leaching concentrations of Pb, Cu, and Zn decreased from 8.08 to 0.16 mg/L, 0.12 to 0.017 mg/L and 0.39 to 0.1 mg/L, respectively, which well met the limits in GB5085.3-2007 and GB16689-2008. Thermal treatment showed a negative effect on the leachability of Cr with concentrations increasing from 0.1 to 1.28 mg/L; nevertheless, it was still under the limitations. XRD analysis suggested that, after thermal treatments, CaO was newly generated. CaO was a main contribution to higher Cr leaching concentrations owing to the formation of Cr (VI)-compounds such as CaCrO₄. SEM/EDS tests revealed that particle adhesion, agglomeration, and grain growth happened during the thermal process and thus diminished the leachability of Pb, Cu, and Zn, but these processes had no significant influence on the leaching of Cr. A microbial assay demonstrated that all thermally treated samples yet possessed strong bactericidal activity according to optical density (OD) test results. Among all samples, the OD value of raw fly ash (RFA) was lowest followed by FA700-10, FA900-10, and FA1100-10 in an increasing order, which indicated that the sequence of the biotoxicity for these samples was RFA > FA700-10 > FA900-10 > FA1100-10. This preliminary study indicated that, apart from TCLP criteria, the biotoxicity assessment was indispensable for evaluating the effect of thermal treatment for MSWI fly ash.

  5. Environmental assessment of incinerator residue utilisation.

    Science.gov (United States)

    Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y

    2009-07-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.

  6. Feasibility of a medium-size central cogenerated energy facility, energy management memorandum

    Science.gov (United States)

    Porter, R. W.

    1982-09-01

    The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.

  7. Generation and distribution of PAHs in the process of medical waste incineration.

    Science.gov (United States)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-01

    After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8×10(3) times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. UTYLIZATION METHODS OF SLAGS AND ASH FROM WASTE INCINERATION PLANTS

    Directory of Open Access Journals (Sweden)

    Janusz Mikuła

    2017-06-01

    Full Text Available The paper presents modern management methods, solidification and immobilization of ash and slag from waste incineration plants. The innovative technologies for solving this kind of problem were described. Results focused on the most promising technologies of solidification, among others geopolymerization processes. The paper presents examples of the results of solidified ash and slag in the geopolymer matrix. The studies showed that the leachable of heavy metals from the geopolymer matrix containing ashes from the incineration of municipal waste qualifies them for storage in landfills for non-hazardous and inert. Moreover, these studies demonstrated practically 100% effectiveness for immobilization of the elements: bar (Ba, cadmium (Cd, zinc (Zn, mercury (Hg, nickel (Ni, lead (Pb. In the case of chromium III (Cr+3 97% level of effectiveness of the immobilization was achieved. In order to immobilize chromium VI (Cr+6 introduced additions of sulfur compounds. The study confirmed the low efficiency of the immobilization of: arsenic (As, selenium (Se and molybdenum (Mo.

  9. Past and future cadmium emissions from municipal solid-waste incinerators in Japan for the assessment of cadmium control policy.

    Science.gov (United States)

    Ono, Kyoko

    2013-11-15

    Cadmium (Cd) is a harmful pollutant emitted from municipal solid-waste incinerators (MSWIs). Cd stack emissions from MSWIs have been estimated between 1970 and 2030 in Japan. The aims of this study are to quantify emitted Cd by category and to analyze Cd control policies to reduce emissions. Emissions were estimated using a dynamic substance flow analysis (SFA) that took into account representative waste treatment flows and historical changes in emission factors. This work revealed that the emissions peaked in 1973 (11.1t) and were ten times those in 2010 (1.2 t). Emission from MSWIs was two-thirds of that from non-ferrous smelting in 2010. The main Cd emission source was pigment use in the 1970s, but after 2000 it had shifted to nickel-cadmium (Ni-Cd) batteries. Future emissions were estimated for 2030. Compared to the business-as-usual scenario, an intensive collection of used Ni-Cd batteries and a ban on any future use of Ni-Cd batteries will reduce emissions by 0.09 and 0.3 1t, respectively, in 2030. This approach enables us to identify the major Cd emission source from MSWIs, and to prioritize the possible Cd control policies. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Leaching from waste incineration bottom ashes treated in a rotary kiln

    DEFF Research Database (Denmark)

    Hyks, Jiri; Nesterov, Igor; Mogensen, Erhardt

    2011-01-01

    Leaching from municipal solid waste incineration bottom ash treated in a rotary kiln was quantified using a combination of lab-scale leaching experiments and geochemical modelling. Thermal treatment in the rotary kiln had no significant effect on the leaching of Al, Ba, Ca, Mg, Si, Sr, Zn, sulfate...... the thermal treatment. Overall, rotary kiln thermal treatment of bottom ashes can be recommended to reduce the leaching of Cu, Pb, Cl and DOC; however, increased leaching of Cr and Mo should be expected....

  11. Municipal waste - management and treatment

    International Nuclear Information System (INIS)

    Paudel, E.S.R.

    2005-01-01

    Though per capita waste generation in Nepalese urban cities is not so high, the lack of proper waste management is considered one of the severe problems to be faced by urban people in future. With rapid urbanization, life style of people is changing their habits and consuming more materials and producing a large volume of waste in urban areas in Nepal. The nature and amount of waste generated in municipality is dependent of demography and geography. But most common aspect of municipal waste in Nepal is more than 60% of the waste biodegradable. Whatever the nature and amount of waste generated, the most common practice of managing municipal waste is to dispose in the riverside nearby or dumped elsewhere. The involvement of private sector in waste management is a new concept adopted by many municipalities in Nepal. One of the most progress approaches, 4R (reduces, reuse, recycle and refuse) principle is being practiced. The need of awareness progressive like segregation of wastes at collection point also being practiced in Nepal. Finally, Proper formulation of program and legislation and its application is one of the major challenges for local authorities in Nepal. (author)

  12. Baseline levels of bioaerosols and volatile organic compounds around a municipal waste incinerator prior to the construction of a mechanical-biological treatment plant

    International Nuclear Information System (INIS)

    Vilavert, Lolita; Nadal, Marti; Inza, Isabel; Figueras, Maria J.; Domingo, Jose L.

    2009-01-01

    New waste management programs are currently aimed at developing alternative treatment technologies such as mechanical-biological treatment (MBT) and composting plants. However, there is still a high uncertainty concerning the chemical and microbiological risks for human health, not only for workers of these facilities, but also for the population living in the neighborhood. A new MBT plant is planned to be constructed adjacently to a municipal solid waste incinerator (MSWI) in Tarragona (Catalonia, Spain). In order to evaluate its potential impact and to differentiate the impacts of MSWI from those of the MBT when the latter is operative, a pre-operational survey was initiated by determining the concentrations of 20 volatile organic compounds (VOCs) and bioaerosols (total bacteria, Gram-negative bacteria, fungi and Aspergillus fumigatus) in airborne samples around the MSWI. The results indicated that the current concentrations of bioaerosols (ranges: 382-3882, 18-790, 44-926, and 3 for fungi at 25 deg. C, fungi at 37 deg. C, total bacteria, and Gram-negative bacteria, respectively) and VOCs (ranging from 0.9 to 121.2 μg/m 3 ) are very low in comparison to reported levels in indoor and outdoor air in composting and MBT plants, as well in urban and industrial zones. With the exception of total bacteria, no correlations were observed between the environmental concentrations of biological agents and the direction/distance from the facility. However, total bacteria presented significantly higher levels downwind. Moreover, a non-significant increase of VOCs was detected in sites closer to the incinerator, which means that the MSWI could have a very minor impact on the surrounding environment.

  13. The Design of a Portable Municipal Waste Incinerator With Fuzzy Logic Based Support for Emission Estimation

    Directory of Open Access Journals (Sweden)

    Jude C. Akpe

    2016-12-01

    Full Text Available A fuzzy logic interface system to estimate oxygen requirement for complete combustion as well as the level of pollution from incinerator gas flue in order to manage solid waste from domestic, institutional, medical and industrial sources was designed. The designed incinerator is double chambered operating with a maximum temperature of 760 °C in the lower chamber and 1000°C in the upper chamber.  The insulating wall is made up of a refractory brick of 55mm in thickness having a 2mm thickness low carbon steel as the outer wall.  Hydrogen Chloride (HCl and Nitrous oxides (NOx are the gases was used to demonstrate the Fuzzy Inference System (FIS model. The FIS was built with five input variables (Food, PVC, Polythene, Paper and Textile and three input variables with two membership functions. The FIS was developed to estimation the degree of possibility distribution of pollution that should be expected when a certain composition of waste is incinerated. The plots of composition of waste high in food against oxygen require for combustion gives a possibility distribution of about 0.9 which is high according to the fuzzy set definition while the plot of waste composition high in PVC against HCL shows linearity.

  14. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment.

    Science.gov (United States)

    Kitamura, Hiroki; Sawada, Takaya; Shimaoka, Takayuki; Takahashi, Fumitake

    2016-01-01

    Leaching behaviors of heavy metals contained in municipal solid waste incineration (MSWI) fly ash have been studied well. However, micro-characteristics of MSWI fly ash particles are still uncertain and might be non-negligible to describe their leaching behaviors. Therefore, this study investigated micro-characteristics of MSWI fly ash particles, especially their structural properties and impacts of chelate treatment on surface characteristics. According to SEM observations, raw fly ash particles could be categorized into four types based on their shapes. Because chelate treatment changed the surface of fly ash particles dramatically owing to secondary mineral formations like ettringite, two more types could be categorized for chelate-treated fly ash particles. Acid extraction experiments suggest that fly ash particles, tested in this study, consist of Si-base insoluble core structure, Al/Ca/Si-base semi-soluble matrices inside the body, and KCl/NaCl-base soluble aggregates on the surface. Scanning electron microscope (SEM) observations of the same fly ash particles during twice moistening treatments showed that KCl/NaCl moved under wet condition and concentrated at different places on the particle surface. However, element mobility depended on secondary mineral formations. When insoluble mineral like gypsum was generated and covered the particle surface, it inhibited element transfer under wet condition. Surface characteristics including secondary mineral formation of MSWI fly ash particles are likely non-negligible to describe trace element leaching behaviors.

  15. Dynamic evaluation of municipal solid waste ash leachate

    International Nuclear Information System (INIS)

    Theis, T.L.; Gardner, K.H.

    1992-01-01

    The incineration of municipal solid waste (MSW) produces ashes which are concentrated in many inorganic species. The release of toxic elements from the ash to the aqueous environment is of concern as present methods of ash disposal consist primarily of landfilling. It was the goal of this paper to achieve an understanding of the mechanisms by which elements are transported from the solid ash phase to the aqueous phase. Twelve ash samples were collected from six different incinerators with varying designs and capacities. The leaching experiments were conducted using small (mini) dynamic columns to investigate the variation of leachate chemical characteristics with time. In analyzing the data, a multicomponent chemical equilibrium model was used to determine chemical speciation and component activities. Auxiliary experiments included an array of physical measurements, and aqueous batch leach tests

  16. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  17. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  18. CFD simulation of MSW combustion and SNCR in a commercial incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zihong; Li, Jian; Wu, Tingting [Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai (China); Chen, Caixia, E-mail: cxchen@ecust.edu.cn [Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai (China); Zhang, Xiaoke [Shanghai Environment Group Company, 1881 Hongqiao Road, Shanghai 200336 (China)

    2014-09-15

    Highlights: • Presented a CFD scheme for modeling MSW incinerator including SNCR process. • Performed a sensitivity analysis of SNCR operating conditions. • Non-uniform distributions of gas velocity, temperature and NO{sub x} in the incinerator. • The injection position of reagent was critical for a desirable performance of SNCR. • A NSR 1.5 was recommended as a compromise of NO{sub x} reduction rates and NH{sub 3} slip. - Abstract: A CFD scheme was presented for modeling municipal solid waste (MSW) combustion in a moving-grate incinerator, including the in-bed burning of solid wastes, the out-of-bed burnout of gaseous volatiles, and the selective non-catalytic reduction (SNCR) process between urea (CO(NH{sub 2}){sub 2}) and NO{sub x}. The in-bed calculations provided 2-D profiles of the gas–solid temperatures and the gas species concentrations along the bed length, which were then used as inlet conditions for the out-of-bed computations. The over-bed simulations provided the profiles of incident radiation heat flux on the top of bed. A 3-dimensional benchmark simulation was conducted with a 750 t/day commercial incinerator using the present coupling scheme incorporating with a reduced SNCR reduction mechanism. Numerical tests were performed to investigate the effects of operating parameters such as injection position, injection speed and the normalized stoichiometric ratio (NSR) on the SNCR performance. The simulation results showed that the distributions of gas velocity, temperature and NO{sub x} concentration were highly non-uniform, which made the injection position one of the most sensitive operating parameters influencing the SNCR performance of moving grate incinerators. The simulation results also showed that multi-layer injections were needed to meet the EU2000 standard, and a NSR 1.5 was suggested as a compromise of a satisfactory NO{sub x} reduction and reasonable NH{sub 3} slip rates. This work provided useful guides to the design and

  19. Alkali/chloride release during refuse incineration on a grate: Full-scale experimental findings

    DEFF Research Database (Denmark)

    Bøjer, Martin; Jensen, Peter Arendt; Frandsen, Flemming

    2008-01-01

    in waste cause relatively high super heater corrosion rates. The Cl-content in waste is one of the key-factors for volatilisation of alkali and heavy metals in WtE plants. Little is known about the release of Cl, Na, K, Zn, Pb, and S along grate of waste incineration plants. The 26 t h(-1) WtE plant......Waste to energy (WtE) plants are utilised for the production of heat and electricity. However, due to corrosion at super heater surfaces a relatively low 25% of the waste lower heating value can with the present technology be converted to electricity. High contents of Cl, Na, K, Zn, Pb and S...... of the grate near port 3 with a high temperature, that contains relatively low amounts of corrosive elements, and lead to a separate high temperature super heater and thus increase the electrical efficiency....

  20. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    International Nuclear Information System (INIS)

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-01-01

    Highlights: ► Residential waste diversion initiatives are more successful with organic waste. ► Using a incineration to manage part of the waste is better environmentally. ► Incineration leads to more power plant emission offsets. ► Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  1. Study of the behaviour of gaseous pollutants during the incineration of municipal solid waste in a circulating fluidized bed; Etude du devenir des polluants gazeux lors de l`incineration d`ordures menageres en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Desroches-Ducarne, E

    1997-09-30

    The Circulating Fluidized Bed (CFB) combustor seems to be a promising tool, being able to burn a variety of fuels whilst maintaining low emissions levels. The present work describes an experimental and theoretical investigation into the formation and destruction of acid gases (HCl and SO{sub 2}) and nitrogen oxides (NO and N{sub 2}O) during Municipal Solid Waste incineration. Experiments were conducted on six different fuels (namely MSW, mixtures of wood, paper, plastics, polyethylene...). The effect of five parameters (temperature, excess air, air staging, calcium addition and moisture) on the emissions levels was investigated. A statistical study on the experimental data allowed us to quantify the impact of the operating conditions and the influence of the fuel characteristics. A mathematical model has been developed which includes the main physical and chemical steps of combustion in CFB and which predicts the pollutant emissions under various operating conditions. A parametric study of the influence of operating conditions on emissions showed that in most cases the trends predicted by the model are in agreement with the experimental observations. (author) 175 refs.

  2. The Studsvik incinerator

    International Nuclear Information System (INIS)

    Hetzler, F.

    1988-01-01

    The Studsvik Incinerator is a Faurholdt designed, multi-stage, partial pyrolysis, controlled-air system taken into operation in 1976. The incinerator was initially operated without flue-gas filtration from 1976 until 1979 and thereafter with a bag-house filter. The Studsvik site has been host to radioactive activities for approximately 30 years. The last 10 years have included on site incineration of more than 3,000 tons of LLW. During this time routine sampling for activity has been performed, of releases and in the environment, to carefully monitor the area. The author discusses records examined to determine levels of activity prior to incinerator start-up, without and with filter

  3. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  4. Design Of Fluidized-bed Incinerator

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book tells of design of fluidized-bed incinerator, which includes outline of fluidized-bed incinerator such as definition, characteristic, structure of principle of incineration and summary of the system, facilities of incinerator with classification of incinerator apparatus of supply of air, combustion characteristic, burnup control and point of design of incinerator, preconditioning facilities on purpose, types and characteristic of that system, a crusher, point of design of preconditioning facilities, rapid progress equipment, ventilation equipment, chimney facilities, flue gas cooling facilities boiler equipment, and removal facility of HCI/SOX and NOX.

  5. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration.

    Science.gov (United States)

    Weibel, Gisela; Eggenberger, Urs; Schlumberger, Stefan; Mäder, Urs K

    2017-04-01

    This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu 0 -alloy-phase and to a minor degree due to secondary precipitation (PbCl 2 ). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash.

    Science.gov (United States)

    Wang, Lei; Chen, Qi; Jamro, Imtiaz Ali; Li, Rundong; Li, Yanlong; Li, Shaobai; Luan, Jingde

    2016-06-01

    Municipal solid waste incinerator (MSWI) fly ashes are characterized by high calcium oxide (CaO) content. Carbon dioxide (CO2) adsorption by MSWI fly ash was discussed based on thermogravimetry (TG)/differential thermal analysis (DTA), minerology analysis, and adapting the Stenoir equation. TG/DTA analysis showed that the weight gain of the fly ash below 440 °C was as high as 5.70 %. An adapted Stenoir equation for MSWI fly ash was discussed. The chloride in MSWI fly ash has a major impact on CO2 adsorption by MSWI fly ash or air pollution control (APC) residues. Geochemical modeling of the critical trace elements copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), and antimony (Sb) before and after carbonation was performed using a thermodynamic equilibrium model for solubility and a surface complexation model for metal sorption. Leaching of critical trace elements was generally found to be strongly dependent on the degree of carbonation attained, and their solubility appeared to be controlled by several minerals. Adsorption on ferrum (Fe) and aluminum (Al) colloids was also responsible for removal of the trace elements Cd, Pb, and Sb. We used Hakanson's potential ecological risk index (HPERI) to evaluate the risk of trace element leaching in general. The results demonstrate that the ecological risk showed a V-shaped dependency on pH; the optimum pH of the carbonated fly ash was found to be 10.3-11, resulting from the optimum carbonation (liquid-to-solid (L/S) ratio = 0.25, carbonation duration = ∼30-48 h). The dataset and modeling results presented here provide a contribution to assessing the leaching behavior of MSWI fly ash under a wide range of conditions.

  7. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Morf, Leo S., E-mail: leo.morf@bd.zh.ch [Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, Zurich (Switzerland); Gloor, Rolf; Haag, Olaf [Bachema AG, Schlieren (Switzerland); Haupt, Melanie [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland); Skutan, Stefan [Bachema AG, Schlieren (Switzerland); Lorenzo, Fabian Di; Böni, Daniel [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland)

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  8. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    International Nuclear Information System (INIS)

    Morf, Leo S.; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Lorenzo, Fabian Di; Böni, Daniel

    2013-01-01

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  9. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    Science.gov (United States)

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  10. Effect of intermediate soil cover on municipal solid waste decomposition.

    Science.gov (United States)

    Márquez-Benavides, L; Watson-Craik, I

    2003-01-01

    A complex series of chemical and microbiological reactions is initiated with the burial of refuse in a sanitary landfill. At the end of each labour day, the municipal solid wastes (MSW) are covered with native soil (or an alternative material). To investigate interaction between the intermediate cover and the MSW, five sets of columns were set up, one packed with refuse only, and four with a soil-refuse mixture (a clay loam, an organic-rich peaty soil, a well limed sandy soil and a chalky soil). The anaerobic degradation over 6 months was followed in terms of leachate volatile fatty acids, chemical oxygen demand, pH and ammoniacal-N performance. Results suggest that the organic-rich peaty soil may accelerate the end of the acidogenic phase. Clay appeared not to have a significant effect on the anaerobic degradation process.

  11. Evaluation of the risk for heavy metals and dioxin from the incineration plant of urban solid wastes; Evaluacion del riesgo por exposicion a metales pesados y dioxinas emitidos por una planta incineradora de RSU

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, J.L.; Schuhmacher, M.

    1997-12-31

    Public fear of dioxin and cancer has heightened the controversy surrounding municipal solid waste (MSW) incinerators. Concern about MSW incineration has focused especial attention on the emissions of dioxins together with metals, as potential sources of human exposure to these toxics. This paper provides data on the assessment of the human health risks for the population living in the neighbourhood of a modern MSW incinerator. Results show that food is the major source of human exposure to metals and dioxin, while MSW incineration is not a principal source of human exposure. The authors conclude suggesting that studies on the background levels of metals and dioxin in the vicinity of new MSW incinerators are essentials. (Author) 7 refs.

  12. Chemistry and melting characteristics of fireside deposits taken from boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2011-01-01

    Highlights: → We examine tube deposits taken from boilers of municipal solid waste incinerators. → Literature survey is done on the corrosion mechanism of tube steels. → Chemical analyses, X-ray diffraction, DSC, and corrosion test were conducted. → Melting behavior of salt constituents affected the corrosiveness of the deposits. - Abstract: Twenty-three tube deposits taken from seven heat-recovery boilers of municipal solid waste incinerators were examined by chemical analyses and X-ray diffraction. These deposits were measured by Differential Scanning Calorimeter (DSC) in N 2 to investigate their melting characteristics. Sixteen deposits were used to evaluate their corrosiveness to carbon steel by high-temperature corrosion test conducted at 400 o C for 20 h in 1500 ppm HCl - 300 ppm SO 2 - 7.5%O 2 - 7.5%CO 2 - 20%H 2 O - N 2 . Total heat of endothermic reactions of the deposits taking place between 200 and 400 o C can be related to the corrosion rate of carbon steel at 400 o C. Corrosion initiated at temperatures when the deposits started to melt, became severe when fused salt constituents increased, and alleviated when the majority of the deposits became fused. The corrosion can be interpreted as fused salt corrosion caused by chloride and sulfate salts.

  13. Improvement of incineration efficiency of spent ion exchange resins on the incinerator at nuclear power plants. Manufacturing the solids of the resins mixed with paraffin wax and their incinerating test results on actual incinerator

    International Nuclear Information System (INIS)

    Izumi, Takeshi; Ohtsu, Takashi; Inagawa, Hirofumi; Kawakami, Takashi; Hagiwara, Masahiro; Ino, Takao; Ishiyama, Yuji

    2011-01-01

    In nuclear power plants, ion exchange resins are used at water purification systems such as condensate demineralizers. After usage, used ion exchange resins are stored at plants as low level radioactive wastes. Ion exchange resins contain water and so, those are flame resistant materials. At present, ion exchange resins are incinerated with other inflammable materials at incinerators. Furthermore, ion exchange resins are fine particle beads and are easy to be scattered in all directions, so operators must pay attentions for treatment. Then, we have developed the new solidification system of ion exchange resins with paraffin wax. Ion exchange resins are mixed and extruded with paraffin wax and these solids are enabled to incinerate at existing incinerators. In order to demonstrate this new method, we made the large amount of solids and incinerated them at actual incinerator. From these results, we have estimated to be able to incinerate the solids only at actual incinerator. (author)

  14. Emissions of polychlorinated diphenyl ethers from a municipal solid waste incinerator during the start-up operation

    International Nuclear Information System (INIS)

    Yang, Jing-Sing; Lin, Sheng-Lun; Lin, Ta-Chang; Wu, Yee-Lin; Wang, Lin-Chi; Chang-Chien, Guo-Ping

    2015-01-01

    Highlights: • This is the first study on the PCDE emission during a MSWI start-up procedure. • The highest PCDE level occurred similar to the PCDD/F reformation temperature. • The pollution control were modified and reduce 86% PCDE peak emission. • Multiple start-ups are analyzed for their effects on the annual PCDE emission. - Abstract: This study examines the emissions of polychlorinated diphenyl ethers (PCDEs) during the start-up processes of a municipal solid waste incinerator (MSWI). Both normal and modified emission control start-ups were tested. Fifteen samples were taken from the flue gas with increasing furnace temperature. Peak PCDE concentrations of 1.48–10.3 ng/Nm 3 were observed at 8–11 h after the start of combustion, when the furnace temperature was in the range of 267–440 °C, that also needed for PCDD/F formation by de novo synthesis. The PCDE emissions could thus, be reduced by current control techniques. Furthermore, the modified control strategies inhibited PCDE formation at the beginning of combustion, and led to an 86% reduction in the maximum PCDE concentration. The overall start-up emissions were calculated as 1.01–3.08 mg, while the annual PCDE emissions with one start-up operation were found to be 7.48–9.64 mg. However, total PCDE emissions will increase by 12–69% if the number of start-up runs increases to between two and eight times per year. Consequently, the prevention of the unnecessary start-ups and advanced activation of the related emission control system are both efficient ways to reduce PCDE emissions.

  15. Emissions of polychlorinated diphenyl ethers from a municipal solid waste incinerator during the start-up operation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing-Sing [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Lin, Sheng-Lun, E-mail: cbmsgml@gmail.com [Department of Civil Engineering and Geomatics, Cheng Shiu University, Kaohsiung 83347, Taiwan (China); Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 83347, Taiwan (China); Lin, Ta-Chang; Wu, Yee-Lin [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, Lin-Chi [Department of Civil Engineering and Geomatics, Cheng Shiu University, Kaohsiung 83347, Taiwan (China); Chang-Chien, Guo-Ping, E-mail: guoping@csu.edu.tw [Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 83347, Taiwan (China); Department of Cosmetic and Fashion Styling, Kaohsiung 83347, Taiwan (China)

    2015-12-15

    Highlights: • This is the first study on the PCDE emission during a MSWI start-up procedure. • The highest PCDE level occurred similar to the PCDD/F reformation temperature. • The pollution control were modified and reduce 86% PCDE peak emission. • Multiple start-ups are analyzed for their effects on the annual PCDE emission. - Abstract: This study examines the emissions of polychlorinated diphenyl ethers (PCDEs) during the start-up processes of a municipal solid waste incinerator (MSWI). Both normal and modified emission control start-ups were tested. Fifteen samples were taken from the flue gas with increasing furnace temperature. Peak PCDE concentrations of 1.48–10.3 ng/Nm{sup 3} were observed at 8–11 h after the start of combustion, when the furnace temperature was in the range of 267–440 °C, that also needed for PCDD/F formation by de novo synthesis. The PCDE emissions could thus, be reduced by current control techniques. Furthermore, the modified control strategies inhibited PCDE formation at the beginning of combustion, and led to an 86% reduction in the maximum PCDE concentration. The overall start-up emissions were calculated as 1.01–3.08 mg, while the annual PCDE emissions with one start-up operation were found to be 7.48–9.64 mg. However, total PCDE emissions will increase by 12–69% if the number of start-up runs increases to between two and eight times per year. Consequently, the prevention of the unnecessary start-ups and advanced activation of the related emission control system are both efficient ways to reduce PCDE emissions.

  16. Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China

    DEFF Research Database (Denmark)

    Guo, Hanwen; Duan, Zhenhan; Zhao, Yan

    2017-01-01

    Transfer station, incineration plant, and landfill site made up the major parts of municipal solid waste disposal system of S city in Eastern China. Characteristics of volatile compounds (VCs) and odor pollution of each facility were investigated from a systematic perspective. Also major index...... in the waste tipping port of the incineration plant. A positive correlation between the olfactory and chemical odor concentrations was found with R2 = 0.918 (n = 15, P technology to deal...... with the non-source-separated waste. Strong attention thus needs to be paid on the enclosed systems in incineration plant to avoid any accidental odor emission....

  17. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    Science.gov (United States)

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Fluidized-bed incineration plant equipped with waste heat boilers. Developed for mid-size municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Handa, Hitoshi

    1988-01-20

    A fluidized bed incineration plant with a waste heat boiler was installed to dispose wastes in Sakura City on March, 1987 and has waste disposing capacity of 120tons/d. Sands are fluidized in the furnace at 700-800/sup 0/C and wastes are burned completely for a short time. The waste heat boiler is used to utilize waste heat to send steam to aquiculturing farms and hot water to the community plaza and further supplies steam to two 90kW back pressure turbines for driving forced draft fan used for the incineration plant. Harmful gases in waste gas are removed by the harmful gas eliminator to lower HCl to 120ppm or less and K value of SOx to 9.0 or less and then cleaned gas is exhausted through the electostatic precipitator and the chimney. Dust and fly ash are transferred to a reservior through a superior seal tight air transportation system, pelletized and disposed for land fill. Bulk waste disposing capacity is 50 tons/d and harmful wastes, magnetic materials, unburnable and burnable wastes are classified and separated. Separated iron purity is 95% or more. (4 figs, 2 photos)

  19. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.

    Science.gov (United States)

    Baun, Dorthe L; Christensen, Thomas H; Bergfeldt, Brita; Vehlow, Jürgen; Mogensen, Erhardt P B

    2004-02-01

    With the perspective of generating only one solid residue from waste incineration, co-feeding of municipal solid waste and air pollution control residues stabilized by the Ferrox process was investigated in the TAMARA pilot plant incinerator as described in Bergfeldt et al. (Waste Management Research, 22, 49-57, 2004). This paper reports on leaching from the combined bottom ashes. Batch leaching test, pH-static leaching tests, availability tests and column leaching tests were used to characterize the leaching properties. The leaching properties are key information in the context of reuse in construction or in landfilling of the combined residue. In general, the combined bottom ashes had leaching characteristics similar to the reference bottom ash, which contained no APC residue. However, As and Pb showed slightly elevated leaching from the combined bottom ashes, while Cr showed less leaching. The investigated combined bottom ashes had contents of metals comparable to what is expected at steady state after continuous co-feeding of APC residues. Only Cd and Pb were partly volatilized (30-40%) during the incineration process and thus the combined bottom ashes had lower contents of Cd and Pb than expected at steady state. Furthermore, a major loss of Hg was, not surprisingly, seen and co-feeding of Ferrox-products together with municipal solid waste will require dedicated removal of Hg in the flue gas to prevent a build up of Hg in the system. In spite of this, a combined single solid residue from waste incineration seems to be a significant environmental improvement to current technology.

  20. A unique approach to municipal waste management in Chianti, Italy

    International Nuclear Information System (INIS)

    Dhargalkar, P.H.

    1991-01-01

    Innovative solutions are required to manage the growing problem of disposal of municipal waste throughout the world. Recovery of energy by combustion of municipal waste has become an acceptable approach in many communities. A unique system with a capacity of 200 tons of waste per day with simultaneous production of electric power and fuel gas is currently under construction in Greve located in the famous wine region of Chianti, Italy. The refuse-derived fuel will be treated in a fluidized bed gasifier. A portion of the gas produced by the gasifier will be used to produce 6.7 MW of electric power; the remaining gas will be used as a fuel in the neighboring cement plant. The plant will be equipped with a state-of-the-art emission control system including an afterburner, a quench reactor, dry venturi and a fabric filter to minimize emissions to the atmosphere. This is the first plant in Europe to employ the fluidized bed gasifier technology on refuse-derived fuel. Design highlights of the overall plant including the air quality control system are presented in this paper

  1. An environmentally sustainable decision model for urban solid waste management

    International Nuclear Information System (INIS)

    Costi, P.; Minciardi, R.; Robba, M.; Rovatti, M.; Sacile, R.

    2004-01-01

    The aim of this work is to present the structure and the application of a decision support system (DSS) designed to help decision makers of a municipality in the development of incineration, disposal, treatment and recycling integrated programs. Specifically, within a MSW management system, several treatment plants and facilities can generally be found: separators, plants for production of refuse derived fuel (RDF), incinerators with energy recovery, plants for treatment of organic material, and sanitary landfills. The main goal of the DSS is to plan the MSW management, defining the refuse flows that have to be sent to recycling or to different treatment or disposal plants, and suggesting the optimal number, the kinds, and the localization of the plants that have to be active. The DSS is based on a decision model that requires the solution of a constrained non-linear optimization problem, where some decision variables are binary and other ones are continuous. The objective function takes into account all possible economic costs, whereas constraints arise from technical, normative, and environmental issues. Specifically, pollution and impacts, induced by the overall solid waste management system, are considered through the formalization of constraints on incineration emissions and on negative effects produced by disposal or other particular treatments

  2. Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction.

    Science.gov (United States)

    Lidelöw, S; Lagerkvist, A

    2007-01-01

    Three years of leachate emissions from municipal solid waste incineration bottom ash and crushed rock in a full-scale test road were evaluated. The impact of time, construction design, and climate on the emissions was studied, and the predicted release from standard leaching tests was compared with the measured release from the road. The main pollutants and their respective concentrations in leachate from the roadside slope were Al (12.8-85.3 mg l(-1)), Cr (2-125 microg l(-1)), and Cu (0.15-1.9 mg l(-1)) in ash leachate and Zn (1-780 microg l(-1)) in crushed rock leachate. From the ash, the initial Cl(-) release was high ( approximately 20 g l(-1)). After three years, the amount of Cu and Cl(-) was in the same range in both leachates, while that of Al and Cr still was more than one order of magnitude higher in ash leachate. Generally, the release was faster from material in the uncovered slopes than below the pavement. Whether the road was asphalted or not, however, had minor impacts on the leachate quality. During rain events, diluted leachates with respect to, e.g., salts were observed. The leaching tests failed to simulate field leaching from the crushed rock, whereas better agreement was observed for the ash. Comparisons of constituent release from bottom ash and conventional materials solely based on such tests should be avoided.

  3. 40 CFR 761.70 - Incineration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Incineration. 761.70 Section 761.70... and Disposal § 761.70 Incineration. This section applies to facilities used to incinerate PCBs... regular intervals of no longer than 15 minutes. (4) The temperatures of the incineration process shall be...

  4. Metal recovery from municipal solid waste incineration bottom ash (MSWIBA): state of the art, potential and environmental benefits

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Holtze, Maria S.; Astrup, Thomas Fruergaard

    Incineration has a central role in the waste management system in Denmark (e.g. 52% of the household waste) resulting in approximately 726000t of solid residues each year. However, the targets imposed by the Danish Waste Strategy and the increasing discussions about resource in waste raise an issue...... on resource losses through waste incineration. In this framework, this study provides actual data on the state of the art of the recovery of resource in MSWIBA in Denmark (i.e. metals), on the potential for further recovery and on the environmental benefits or burdens assessed through the Life Cycle...

  5. Alpha waste incineration prototype incinerator and industrial project

    International Nuclear Information System (INIS)

    Caramelle, D.; Meyere, A.

    1988-01-01

    To meet our requirements with respect to the processing of solid alpha wastes, a pilot cold incinerator has been used for R and D. This unit has a capacity of 5 kg/hr. The main objectives assigned to this incineration process are: a good reduction factor, controlled combustion, ash composition compatible with plutonium recovery, limited secondary solid and fluid wastes, releases within the nuclear and chemical standards, and in strict observance of the confinement and criticality safety rules. After describing the process we will discuss the major results of the incineration test campaigns with representative solid wastes (50 % PVC). We will then give a description of an industrial project with a capacity of 7 kg/hr, followed by a cost estimate

  6. Generation and distribution of PAHs in the process of medical waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: echochen327@163.com [School of Environment, Tsinghua University, Beijing 100084 (China); National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029 (China); Zhao, Rongzhi [Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Xue, Jun [National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029 (China); Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China)

    2013-05-15

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between

  7. Generation and distribution of PAHs in the process of medical waste incineration

    International Nuclear Information System (INIS)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-01-01

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10 3 times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total

  8. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    International Nuclear Information System (INIS)

    Habib, Komal; Schmidt, Jannick H.; Christensen, Per

    2013-01-01

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP 100 ), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO 2 -eq. tonne −1 to net saving of 670 kg CO 2 -eq. tonne −1 of MSWM

  9. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Komal, E-mail: koh@kbm.sdu.dk [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohr’s Alle 1, 5230 Odense M (Denmark); Schmidt, Jannick H.; Christensen, Per [Department of Development and Planning, Aalborg University, Fibigerstraede 13, DK-9220 Aalborg OE (Denmark)

    2013-09-15

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup −1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup −1} of MSWM.

  10. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  11. Controlled air incineration

    International Nuclear Information System (INIS)

    Seitz, K.A.

    1991-01-01

    From 1960 to 1970, incineration was recognized as an economical method of solid waste disposal with many incinerators in operation through the country. During this period a number of legislation acts began to influence the solid waste disposal industry, namely, the Solid Waste Disposal Act of 1965; Resource Conservation Recovery Act (RCRA) of 1968; Resource Recovery Act of 1970; and Clean Air Act of 1970. This period of increased environmental awareness and newly created regulations began the closure of many excess air incineration facilities and encouraged the development of new controlled air, also known as Starved-Air incinerator systems which could meet the more stringent air emission standards without additional emission control equipment. The Starved-Air technology initially received little recognition because it was considered unproven and radically different from the established and accepted I.I.A. standards. However, there have been many improvements and developments in the starved-air incineration systems since the technology was first introduced and marketed, and now these systems are considered the proven technology standard

  12. Influence of ammonia on leaching behaviors of incineration fly ash and its geochemical modeling

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Guan, Zhen Zhen; Chen, De Zhen

    2013-01-01

    Incineration fly ash could be contaminated with NH3 that was slipped from the ammonia-based selective non-catalytic reduction(SNCR) process and from evaporation of municipal solid wastes' leachate involved in the wastes. This research was conducted to investigate the impacts of ammonia on leaching....... It was proved that at pH>9, the leaching of DOC increased significantly in the presence of high concentrations of ammonia (≥1357 mg·L-1), but there was little effect when the ammonia level in eluates was not higher than 537 mg·L-1. At pH12, for Cd, Cu, Ni and Zn, their leaching species were predominantly...... by precipitation/dissolution and surface complexation/precipitation processes; Visual MINTEQ modeling could well describe the leaching behaviors of Al, Cu, Pb and Zn from incineration fly ash....

  13. LCA to choose among alternative design solutions: The case study of a new Italian incineration line

    International Nuclear Information System (INIS)

    Scipioni, A.; Mazzi, A.; Niero, M.; Boatto, T.

    2009-01-01

    At international level LCA is being increasingly used to objectively evaluate the performances of different Municipal Solid Waste (MSW) management solutions. One of the more important waste management options concerns MSW incineration. LCA is usually applied to existing incineration plants. In this study LCA methodology was applied to a new Italian incineration line, to facilitate the prediction, during the design phase, of its potential environmental impacts in terms of damage to human health, ecosystem quality and consumption of resources. The aim of the study was to analyse three different design alternatives: an incineration system with dry flue gas cleaning (without- and with-energy recovery) and one with wet flue gas cleaning. The last two technological solutions both incorporating facilities for energy recovery were compared. From the results of the study, the system with energy recovery and dry flue gas cleaning revealed lower environmental impacts in relation to the ecosystem quality. As LCA results are greatly affected by uncertainties of different types, the second part of the work provides for an uncertainty analysis aimed at detecting the extent output data from life cycle analysis are influenced by uncertainty of input data, and employs both qualitative (pedigree matrix) and quantitative methods (Monte Carlo analysis).

  14. FY 1999 report on the results of the development of technology of the environmentally friendly next generation small incinerator; 1999 nendo kankyo taio jisedai kogata shokyakuro gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development was proceeded with of a next generation small incinerator of low dioxin emission. Concretely, the technology to be developed is for a next generation small incinerator of low dioxin emission in which the exhaust gas treatment system enabling various kinds of heat utilization is connected to the small incinerator mixing the fixed bed two stage combustion technology of industrial waste use low dioxin oxygen concentration control system and the high performance industrial furnace heat storage combustion technology. The trial-manufactured small incinerator has characteristics as follows: The incinerator can complement the decrease in efficiency in the wide-area refuse collection. It can remarkably reduce the emission of environmental pollutants such as CO2. It contributes to reduction in CO2 emission and reduction in fossil fuel consumption amount by effective utilization of exhaust heat. The incinerator is lower in price than the existing one of low dioxin emission type. The subjects are verification of the overall effect of the lower dioxin emission, verification of effects of reduction in CO2 emission and reduction in fossil fuel consumption amount by heat utilization, and study of the spread/promotion system. The report contains items of the development of an environmentally friendly next generation small incinerator and the evaluation survey for the commercialization, and photos as supplementary data. (NEDO)

  15. Municipal Development of Anaerobic Digestion/ Combined Heat and Power in Massachusetts

    Science.gov (United States)

    Pike, Brenda

    With a commercial food waste ban going into effect in Massachusetts in October 2014, businesses, institutions, and municipalities are considering alternatives to landfills and incinerators for organic waste. Anaerobic digestion is one such alternative. Similar to composting, but in an environment devoid of oxygen, anaerobic digestion produces byproducts such as methane (which can be burned for heat or electricity) and liquid or solid digestate (which can be used as fertilizer, cattle bedding, and more). Thus, disposal of food waste and other organic materials can become a source of revenue rather than just an expense. Municipalities interested in developing anaerobic digestion/combined heat and power (AD/CHP) facilities have the benefit of desirable options for sites, such as landfill gas facilities and wastewater treatment plants, and potential feedstocks in source-separated residential or municipal food waste or wastewater. This thesis examines the opportunities and challenges for municipal development of AD/CHP facilities in Massachusetts.

  16. Caregivers who refuse preventive care for their children: the relationship between immunization and topical fluoride refusal.

    Science.gov (United States)

    Chi, Donald L

    2014-07-01

    The aim of this study was to examine caregivers' refusal of preventive medical and dental care for children. Prevalence rates of topical fluoride refusal based on dental records and caregiver self-reports were estimated for children treated in 3 dental clinics in Washington State. A 60-item survey was administered to 1024 caregivers to evaluate the association between immunization and topical fluoride refusal. Modified Poisson regression models were used to estimate prevalence rate ratios (PRRs). The prevalence of topical fluoride refusal was 4.9% according to dental records and 12.7% according to caregiver self-reports. The rate of immunization refusal was 27.4%. In the regression models, immunization refusal was significantly associated with topical fluoride refusal (dental record PRR = 1.61; 95% confidence interval [CI] = 1.32, 1.96; P refuse both immunizations and topical fluoride (P refusal of immunizations is associated with topical fluoride refusal. Future research should identify the behavioral and social factors related to caregiver refusal of preventive care with the goal of developing multidisciplinary strategies to help caregivers make optimal preventive care decisions for children.

  17. Conventional incinerator redesign for the incineration of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    Lara Z, L.E.C.

    1997-01-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author)

  18. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Power generation from refuse derived fuel

    International Nuclear Information System (INIS)

    Surroop, Dinesh; Mohee, Romeela

    2010-01-01

    Full text: The beginning of the third millennium has been characterized by a progressive increase in the demand for fossil fuels, which has caused a steep rise in oil price. At the same time, several environmental disasters have increased the sensitivity of world-wide public opinion towards the effect that environmental pollution has on human health and climate change. These conditions have fostered a renewed interest in renewable energy like solar energy, wind energy, biomass and solid wastes. In addition, the disposal of municipal solid waste (MSW) has become a critical and costly problem. The traditional landfill method requires large amounts of land and contaminates air, water and soil. The increase in socio-economic condition during the past ten years has also significantly increased the amount of solid waste generated. There are around 1200 tons of municipal solid waste (MSW) generated daily, of which the combustibles namely plastics, paper and textile waste represent 28%, and with the present generation rate, the landfill will be filled by 2012. The study was, therefore, initiated to assess the potential of power generation from refused derived fuels (RDF) from municipal solid waste (MSW) in order to reduce the dependency on fossil fuels. There are 336 tons which is equivalent to 12 tons/ h of RDF that can be generated daily from the MSW and this would generate 19.2 MW power. There will be 312 kg/ h of ash that would be generated and the NO x and SO 2 concentration were found to be 395.5 and 43.3 mg/ Nm 3 respectively. It was also found that the amount of non-biogenic CO 2 produced was 471 g/ kWhe. (author)

  20. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    Science.gov (United States)

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. What is the future potential for imports of combustible municipal waste to countries with extensive district heating hetworks? - A case study of Denmark

    DEFF Research Database (Denmark)

    Pizarro, Amalia Rosa; Münster, Marie; Salvucci, Raffaele

    2015-01-01

    In Europe landfilling is the most widely used method for managing municipal solid waste. By constrart, the northern European waste market is characterized by high capacities from energy recovery plants, mostly incineration in cogeneration facilities. In Denmark, there is an overcapacity of incine...... are described through linking of mathematical models, taking a holistic approach. In the short-term it pays off to import waste, avoiding landfilling; however, in the longer-term, benefits from waste trading will depend on the price of heat markets.......In Europe landfilling is the most widely used method for managing municipal solid waste. By constrart, the northern European waste market is characterized by high capacities from energy recovery plants, mostly incineration in cogeneration facilities. In Denmark, there is an overcapacity...

  2. Experimental investigation of the Rowe's dilatancy law on an atypical granular medium from a municipal solid waste incineration bottom ash

    Science.gov (United States)

    Becquart, Frédéric; Abriak, Nor Edine

    2013-06-01

    Municipal Solid Waste Incineration (MSWI) bottom ashes are irregular granular media because of their origin and are very heterogeneous with a large quantity of angular particles of different chemical species. MSWI bottom ash is a renewable granular resource alternative to the use of non-renewable standard granular materials. Beneficial use of these alternative granular materials mainly lies in road engineering. However, the studies about mechanical properties of such granular media still remain little developed, those being mainly based on empirical considerations. In this paper, a study of mechanical behaviour of a MSWI bottom ash under axisymmetric triaxial loadings conditions is presented. Samples are initially dense after Proctor compaction, are saturated and tested in drained conditions, under different effective confining pressures ranging from 100 to 600 kPa. The evolutions of volumetric strains show an initial contracting phase followed by a dilatancy phase, more pronounced when the confining pressure is low. The stresses ratios at the characteristic state and at the critical state appear in good agreement and with a null rate of volume variation. The angles of internal friction and dilatancy of the studied MSWI bottom ash are estimated and are similar to conventional granular materials used especially in road engineering. The dilatancy law of Rowe is well experimentally verified on this irregular recycled granular material.

  3. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    Science.gov (United States)

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  4. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  5. An Industrial Ecology Approach to Municipal Solid Waste Management: II. Case Studies for Recovering Energy from the Organic Fraction of MSW

    Science.gov (United States)

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery...

  6. Environmental assessment of incinerator residue utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna

    2008-10-15

    In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerator residue utilisation, particularly bottom ash from municipal solid waste incineration (MSWI). A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for i) road construction with or without MSWI bottom ash, ii) three management scenarios for MSWI bottom ash and iii) three management scenarios for wood ash. Different types of potential environmental impact predominated in the activities of the system and the scenarios differed in use of resources and energy. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill. There is a potential for trace element leaching regardless of how the ash is managed. Trace element leaching, particularly of copper (Cu), was identified as being relatively important for environmental assessment of MSWI bottom ash utilisation. CuO is suggested as the most important type of Cu-containing mineral in weathered MSWI bottom ash, whereas in the leachate Cu is mainly present in complexes with dissolved organic matter (DOM). The hydrophilic components of the DOM were more important for Cu

  7. Process engineering design of pathological waste incinerator with an integrated combustion gases treatment unit.

    Science.gov (United States)

    Shaaban, A F

    2007-06-25

    Management of medical wastes generated at different hospitals in Egypt is considered a highly serious problem. The sources and quantities of regulated medical wastes have been thoroughly surveyed and estimated (75t/day from governmental hospitals in Cairo). From the collected data it was concluded that the most appropriate incinerator capacity is 150kg/h. The objective of this work is to develop the process engineering design of an integrated unit, which is technically and economically capable for incinerating medical wastes and treatment of combustion gases. Such unit consists of (i) an incineration unit (INC-1) having an operating temperature of 1100 degrees C at 300% excess air, (ii) combustion-gases cooler (HE-1) generating 35m(3)/h hot water at 75 degrees C, (iii) dust filter (DF-1) capable of reducing particulates to 10-20mg/Nm(3), (iv) gas scrubbers (GS-1,2) for removing acidic gases, (v) a multi-tube fixed bed catalytic converter (CC-1) to maintain the level of dioxins and furans below 0.1ng/Nm(3), and (vi) an induced-draft suction fan system (SF-1) that can handle 6500Nm(3)/h at 250 degrees C. The residence time of combustion gases in the ignition, mixing and combustion chambers was found to be 2s, 0.25s and 0.75s, respectively. This will ensure both thorough homogenization of combustion gases and complete destruction of harmful constituents of the refuse. The adequate engineering design of individual process equipment results in competitive fixed and operating investments. The incineration unit has proved its high operating efficiency through the measurements of different pollutant-levels vented to the open atmosphere, which was found to be in conformity with the maximum allowable limits as specified in the law number 4/1994 issued by the Egyptian Environmental Affairs Agency (EEAA) and the European standards.

  8. Pilot-scale test on electron beam treatment of municipal solid waste flue gas with spraying slaked-lime slurry

    International Nuclear Information System (INIS)

    You Osada; Masahiro Sudo; Koichi Hirota

    1995-01-01

    Simultaneous removal of NO x , SO 2 and HCl in flue gas of a municipal solid waste incinerator was studied by using electron beam irradiation technology. The flue gas of around 1000 Nm 3 /h was led to a spray-dryer-type reactor from an inlet of ESP of the municipal waste incinerator by spraying slaked-lime slurry with one or more stoichiometric amount of the pollutants, concentrations of HCl (400 ppm) and SO 2 (50 ppm) decreased almost completely, while concentrations of NO x (100 ppm) were markedly decreased to about 20 ppm by electron beam irradiation with a dose of 10 kGy at 150 o C under spraying slaked-lime slurry of two stoichiometric amounts. The removal of NO x was improved by increasing the dose and the amount of spraying slaked-lime slurry, and by lowering of the irradiation temperature. (Author)

  9. Pyrolysis technologies for municipal solid waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-12-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  10. Results of full scale dry injection tests at MSW-incinerators using a new active absorbent

    International Nuclear Information System (INIS)

    Felsvang, K.S.; Helvind, O.

    1991-01-01

    Worldwide incineration of municipal solid waste (MSW) has been utilized to reduce the volume of waste to be disposed of. Increasing environmental concerns over the potential air pollution impacts have led to emission limits for pollutants such as HCl, SO 2 , particulate, and more recently also for mercury and dioxins. For a certain size of incinerators, dry sorbent injection is the preferred technology for air pollution control. This paper describes the development of a new active sorbent, Scansorb, which is particularly suited for use in dry injection processes. The new sorbent is a lime based product with adjustable properties. Scansorb can be produced with a specific surface area of 30 to 100 m 2 /g. Pilot plant development work has shown that a considerable reduction in the absorbent quantity can be achieved when Scansorb is used instead of commercial hydrated lime. Full scale tests performed at four different MSW incinerators have confirmed the viability of the new active absorbent. The full scale tests have demonstrated that more than 50% SO 2 removal can be achieved with Scansorb at quantities much less than with commercial hydrated lime

  11. Behaviour, capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Vassilev, S.V.; Braekman-Danheux, C.; Laurent, P.; Thiemann, T.; Fontana, A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Central Lab. of Mineralogy and Crystallography

    1999-08-01

    An investigation of refuse-derived char (RDC) generated by thermolysis of municipal solid waste (MSW) was undertaken to elucidate the behaviour of some toxic and potentially toxic trace elements (Cr, Cu, Mn, Ni, Pb, Sb and Zn) plus Fe during combustion of RDC. About 87% of Sb, 66% of Pb, 60% of Cu and significant parts of Fe{gt}Zn{gt}Ni{gt}Mn{gt}Cr from the RDC are volatile at 1200{degree}C, and their behaviour in the temperature interval 500-1200{degree}C is characterized. The use of sorbents (zeolite, kaolinite, montmorillonite, coals enriched in kaolinite and calcite, and lime plus portlandite) for capture, solidification and inertization of the most volatile elements during combustion of RDC is also described. Perspective sorbents and inertants for a retention of the most volatile Pb, Sb and Cu in RDC ash are kaolinite and montmorillonite or coals enriched in these minerals. In addition, when there is an effective RDC washing (dechlorination and desulphurization), the use of sorbents for capture of some metals could be reduced or even avoided. Recommendations are given for RDC utilization and improvisation of the collection, separation procedures and removal efficiency of some heavy-metal, chloride and sulphate compounds from MSW and RDC prior to their use. The results show that a long-term strategy based on detailed understanding of the source, formation, behaviour and fate of the elements and their modes of occurrence in MSW, RDC and combustion waste residues is required in order to validate a perspective waste pyrolytic processes development. 55 refs., 3 figs., 6 tabs.

  12. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia

    International Nuclear Information System (INIS)

    Tan, Sie Ting; Ho, Wai Shin; Hashim, Haslenda; Lee, Chew Tin; Taib, Mohd Rozainee; Ho, Chin Siong

    2015-01-01

    Highlights: • 3E impact of WTE derived from MSW were performed. • MSW treatment technologies significantly effects the economic and environmental benefits of WTE. • Different scenarios are conducted based on the waste projections and production. • Comprehensive discussion on the trade-off of both incineration and anaerobic digestion for MSWM. - Abstract: The utilisation of municipal solid waste (MSW) for energy production has been implemented globally for many decades. Malaysia, however, is still highly dependent on landfills for MSW management. Because of the concern for greenhouse gases (GHG) emission and the scarcity of land, Malaysia has an urgent need for a better waste management strategy. This study aims to evaluate the energy, economic and environmental (3E) impact of waste-to-energy (WTE) for municipal solid waste management. An existing landfill in Malaysia is selected as the case study for consideration to adopt the advanced WTE technologies including the landfill gas recovery system (LFGRS), incineration, anaerobic digestion (AD), and gasification. The study presented an interactive comparison of different WTE scenarios and followed by further discussion on waste incineration and AD as the two potential WTE options in Malaysia. The 3E assessment reveals incineration as the superior technology choice when the production of electricity and heat were considered; however, AD is found to be more favourable under the consideration of electricity production only

  13. Refuse derived fuel potential in DKI Jakarta

    Science.gov (United States)

    Widyatmoko, H.

    2018-01-01

    Combustible waste fractions of municipal solid waste (MSW) which can not be easily separated or sorted, reused or recycled, may have a high calorifiv value (CV) that can be used in a fuel for energy recovery. The objective of this study was to explore the Refuse Derived Fuel (RDF) potential of municipal solid waste from DKI Jakarta to produce electricity and to promote it to be socially and politically acceptable. For this purpose, 24 sampels of RDF were taken from Bantargebang, cabonized, molded and pressed to be briquette. All samples were analized for moisture, ash, and calorific value in the physical and chemistry Laboratory of ITB Bandung. The analysis of calorific value (CV) shows the CV difference of 1815.8 cal/g between the briquettes (8051.25 cal/g) and the RDF (9867.12 cal/g. The total waste DKI which can be used as briquettes 5253 ton / day or equivalent with 49154115 kWh / day. If the efficiency of electricity production from RDF was 25%, then Jakarta is able to generate electricity from RDF of 12288529 kWh / day or as much as energy needed by 573,480 middle-class households with energy needs of 642.84 kWh/month.

  14. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.

    1982-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Increasing transportation and disposal costs have caused industry to consider incineration as a cost-effective means of volume reduction of combustible LLW. Repeated inquiries from the nuclear industry regarding the applicability of the Los Alamos controlled air incineration (CAI) design led the DOE to initiate a commercial demonstration program in FY-1980. Development studies and results in support of this program involving ion exchange resin incineration and fission/activation product distributions within the Los Alamos CAI are described

  15. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  16. Gas fuelled heavy-duty trucks for municipal services

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, A. (City of Helsinki Construction Services (Finland)); Hietanen, L. (Lassila and Tikanoja, Jyvaeskylae (Finland)); Nylund, N.-O. (TEC TransEnergy Consulting, Espoo (Finland))

    2009-07-01

    Helsinki City Public Works Department (HKR) and the environmental management company Lassila and Tikanoja joined forces to demonstrate the suitability of heavy-duty gas fuelled trucks for municipal services. HKR acquired two and Lassila and Tikanoja five Mercedes-Benz Econic trucks. HKR's trucks are equipped with interchangeable platforms, Lassila an Tikanoja's trucks with refuse collection equipment. The trucks are subjected to a two-year follow-up study to establish reliability, operational costs and exhaust emissions. Diesel trucks representing up-to-date technology are used as reference. If the gas fuelled trucks perform well, this can lead to increased numbers of natural gas trucks in municipal services, and in the long run to the introduction of biogas fuelled trucks. (orig.)

  17. An incinerator for combustable radwastes

    International Nuclear Information System (INIS)

    Li Jingquan; Jiang Yun; Zhang Yinsheng; Chen Boling; Zhang Shihang

    1989-01-01

    An incinerator has been built up in Shanghai. In this paper, the devices of the incinerator, main parameters of the process, and the results of non-radioactive waste and simulated radwaste combustion tests were contributed. That provides reference information for radwaste treatment with incineration process

  18. Numerical study of SNCR application to a full-scale stoker incinerator at Daejon 4th industrial complex

    International Nuclear Information System (INIS)

    Hey-Suk Kim; Mi-Soo Shin; Dong-Soon Jang; Tae-In Ohm

    2004-01-01

    Considering the rapid variation of waste composition and the more severe regulation trend of pollutant emission in this country, the importance of the development of a reliable computer program for a full-scale, stoker-type incinerator cannot be emphasized too much, especially in the view of proper design and optimal determination of operating condition of existing and future constructed facility. To this end, a comprehensive, numerical model related with the process of the waste-off gaseous combustion with the capacity of 200 tons/day is successfully made. This includes development of several phenomenological models such as municipal waste-off gaseous reaction, NO pollutant generation and destruction in turbulence-related environment. Especially in this study a number of sound assumptions have been made for the NO reaction model, 3-D geometry of incinerator and waste-bed model to achieve the efficient incorporation of the empirical models and enhancement of the stability of calculation process. First of all, the turbulence-related, complex combustion chemistry involved with NO reaction is modeled by the harmonic mean method, which is given by the relative strength of the rates of chemistry and turbulent mixing. Further, the 3-D rectangular shape of the incinerator is simply approximated by a 3-D axi-symmetric geometry with equivalent area. And the modeling of complex waste-burning process on moving grate is described by a pure gaseous combustion process of waste off-gas. The program developed in this study is successfully validated by comparing with the experimental data such as temperature and NO concentration profiles in the incinerator located at 4th industrial complex of Daejon, S. Korea. Using the program developed, a series of parametric investigations have been made for the evaluation of SNCR process and thereby evaluate various important design and the operating variables. The major parameters considered in this parametric study are heating value of

  19. Waste collection systems for recyclables: An environmental and economic assessment for the municipality of Aarhus (Denmark)

    International Nuclear Information System (INIS)

    Larsen, A.W.; Merrild, H.; Moller, J.; Christensen, T.H.

    2010-01-01

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables at recycling centres was not recommendable because the recycling rate would decrease to 20%. In general, the results showed that enhancing recycling and avoiding incineration was recommendable because the environmental performance was improved in several impact categories. The municipal costs for collection and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought.

  20. SRL incinerator components test facility

    International Nuclear Information System (INIS)

    Freed, E.J.

    1982-08-01

    A full-scale (5 kg waste/hour) controlled-air incinerator, the ICTF, is presently being tested with simulated waste as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible waste that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm, and 252 Cf. Automatic incinerator operation and control has been incorporated into the design, simulating the future plant design which minimizes operator radiation exposure. Over 3000 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr. Safety and reliability were the major design objectives. In addition to the incinerator tests, technical data were gathered on two different off-gas systems: a wet system composed of three scrubbers in series, and a dry system employing sintered metal filters

  1. Comparison of municipal solid waste treatment technologies from a life cycle perspective in China.

    Science.gov (United States)

    Dong, Jun; Chi, Yong; Zou, Daoan; Fu, Chao; Huang, Qunxing; Ni, Mingjiang

    2014-01-01

    China has endured the increasing generation of municipal solid waste; hence, environmental analysis of current waste management systems is of crucial importance. This article presents a comprehensive life cycle assessment of three waste treatment technologies practiced in Hangzhou, China: landfill with and without energy recovery, and incineration with waste-to-energy. Adopting region-specific data, the study covers various environmental impacts, such as global warming, acidification, nutrient enrichment, photochemical ozone formation, human toxicity and ecotoxicity. The results show that energy recovery poses a positive effect in environmental savings. Environmental impacts decrease significantly in landfill with the utilization of biogas owing to combined effects by emission reduction and electricity generation. Incineration is preferable to landfill, but toxicity-related impacts also need to be improved. Furthermore, sensitivity analysis shows that the benefit of carbon sequestration will noticeably decrease global warming potential of both landfill scenarios. Gas collection efficiency is also a key parameter influencing the performance of landfill. Based on the results, improvement methods are proposed. Energy recovery is recommended both in landfill and incineration. For landfill, gas collection systems should be upgraded effectively; for incineration, great efforts should be made to reduce heavy metals and dioxin emissions.

  2. Waste incineration with production of clean and reliable energy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlas, Martin; Tous, Michal; Klimek, Petr; Bebar, Ladislav [Brno University of Technology, Department of Process and Environmental Engineering (UPEI VUT Brno), Brno (Czech Republic)

    2011-08-15

    Discussion about utilization of waste for energy production (waste-to-energy, WTE) has moved on to next development phase. Waste fired power plants are discussed and investigated. These facilities focus on electricity production whereas heat supply is diminished and operations are not limited by insufficient heat demand. Present results of simulation prove that increase of net electrical efficiency above 20% for units processing 100 kt/year (the most common ones) is problematic and tightly bound with increased investments. Very low useful heat production in Rankine-cycle based cogeneration system with standard steam parameters leads to ineffective utilization of energy. This is documented in this article with the help of newly developed methodology based on primary energy savings evaluation. This approach is confronted with common method for energy recovery efficiency evaluation required by EU legislation (Energy Efficiency - R1 Criteria). New term highly-efficient WTE is proposed and condition under which is the incinerator classified as highly efficient are specified and analyzed. Once sole electricity production is compelled by limited local heat demand, application of non-conventional arrangements is highly beneficial to secure effective energy utilization. In the paper a system where municipal solid waste incinerator is integrated with combined gas-steam cycle is evaluated in the same manner. (orig.)

  3. A Study on The Management of Municipal Residential Solid Waste in China

    Institute of Scientific and Technical Information of China (English)

    Lu Mingzhong; Shao Tianyi; Li Huayou

    2004-01-01

    As the main organic pollutant in municipal living waste, kitchen waste causes secondary pollution in the course of its being gathered and transported to the landfill by mixing with other refuse and by decomposition. This makes pollution prevention more difficult and raises the cost of landfill engineering. However, the amount of solid waste to be treated can be decreased and such pollution burden lessened by disposing of the solid waste in local municipal areas. The program in Beijing also shows that this works well with our situation in China and can accelerate marketization and public participation.

  4. Incineration of spent ion exchange resin

    International Nuclear Information System (INIS)

    Hasegawa, Chiaki

    1990-01-01

    It is a pressing need to reduce radioactive waste which is generated from the maintenance and operation of a nuclear power plant. Incineration of low level combustible solid waste such as polyethylene seats, paper and others have been successfully performed since 1984 at the Shimane Nuclear Power Station. Furthermore, for extending incineration treatment to spent ion exchange resin, the incineration test was carried out in 1989. However, as the cation exchange resin contains sulfur and then incineration generates SOx gases, so the components of this facility will be in a corrosive environment. We surveyed incineration conditions to improve the corrosive environment at the exhaust gas treatment system. This paper includes these test results and improved method to incinerate spent ion exchange resin. (author)

  5. Electrodialytic removal of heavy metals and chloride from municipal solid waste incineration fly ash and air pollution control residue in suspension - test of a new two compartment experimental cell

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Magro, Cátia; Guedes, Paula

    2015-01-01

    Municipal solid waste incineration (MSWI) residues such as fly ash and air pollution control (APC) residues are classified as hazardous waste and disposed of, although they contain potential resources. The most problematic elements in MSWI residues are leachable heavy metals and salts. For reuse...... of MSWI residues in for instance concrete, the aim of remediation should be reduction of the heavy metal leaching, while at the same time keeping the alkaline pH, so the residue can replace cement. In this study a MSWI residues were subjected to electrodialytic remediation under various experimental...... heavy metal leaching except when the pH was reduced to a level below 8 for the fly ash. On the other hand, Cr leaching increased by the electrodialytic treatment. Cl leaching from the MSWI residues was less dependent on experimental conditions and was reduced in all experiments compared to the initial...

  6. Estimation of optimal biomass fraction measuring cycle formunicipal solid waste incineration facilities in Korea.

    Science.gov (United States)

    Kang, Seongmin; Cha, Jae Hyung; Hong, Yoon-Jung; Lee, Daekyeom; Kim, Ki-Hyun; Jeon, Eui-Chan

    2018-01-01

    This study estimates the optimum sampling cycle using a statistical method for biomass fraction. More than ten samples were collected from each of the three municipal solid waste (MSW) facilities between June 2013 and March 2015 and the biomass fraction was analyzed. The analysis data were grouped into monthly, quarterly, semi-annual, and annual intervals and the optimum sampling cycle for the detection of the biomass fraction was estimated. Biomass fraction data did not show a normal distribution. Therefore, the non-parametric Kruskal-Wallis test was applied to compare the average values for each sample group. The Kruskal-Wallis test results showed that the average monthly, quarterly, semi-annual, and annual values for all three MSW incineration facilities were equal. Therefore, the biomass fraction at the MSW incineration facilities should be calculated on a yearly cycle which is the longest period of the temporal cycles tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests.

    Science.gov (United States)

    Fujii, Kengo; Ochi, Kotaro; Ohbuchi, Atsushi; Koike, Yuya

    2018-07-01

    After the Fukushima Daiichi-Nuclear Power Plant accident, environmental recovery was a major issue because a considerable amount of municipal solid waste incineration (MSWI) fly ash was highly contaminated with radioactive cesium. To the best of our knowledge, only a few studies have evaluated the detailed physicochemical properties of radioactive cesium in MSWI fly ash to propose an effective method for the solidification and reuse of MSWI fly ash. In this study, MSWI fly ash was sampled in Fukushima Prefecture. The physicochemical properties of radioactive cesium in MSWI fly ash were evaluated by particle size classification (less than 25, 25-45, 45-100, 100-300, 300-500, and greater than 500 μm) and the Japanese leaching test No. 13 called "JLT-13". These results obtained from the classification of fly ash indicated that the activity concentration of radioactive cesium and the content of the coexisting matter (i.e., chloride and potassium) temporarily change in response to the particle size of fly ash. X-ray diffraction results indicated that water-soluble radioactive cesium exists as CsCl because of the cooling process and that insoluble cesium is bound to the inner sphere of amorphous matter. These results indicated that the distribution of radioactive cesium depends on the characteristics of MSWI fly ash. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A vermicompostagem do lodo de lagoas de tratamento de efluentes industriais consorciada com composto de lixo urbano The vermicomposting of an industrial sludge combined with a compost of municipal solid refuse

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues Valadares Veras

    2004-09-01

    Full Text Available A destinação dos resíduos sólidos constitui um sério problema ambiental para a humanidade, principalmente em regiões de grande concentração urbana, onde a disponibilidade de áreas para disposição dos rejeitos é quase sempre restrita. Com a intenção de fornecer mais uma alternativa para solução do problema, desenvolveu-se um estudo para avaliar a vermicompostagem de um lodo industrial, resultante do processamento de frutas, consorciado com composto de lixo urbano. Através desse processo, pode-se obter a reciclagem dos resíduos, produzindo-se um composto denominado húmus ou vermicomposto. Dentre os resultados obtidos pode-se destacar bons indicadores do nível de maturidade dos resíduos, representados pela relação carbono/nitrogênio, a influência da minhoca na elevação do pH e sua contribuição para uma estabilização mais acelerada da matéria orgânica.The final disposal of solid wastes is a serious environmental problem, mainly in big towns, where the areas to put the refuses on are not much available. To provide one more alternative to solve this problem, a research was developed to analyse the vermicomposting of industrial sludge combined with a compost of municipal solid refuse. By this process, it was possible to obtain the recycling of the wastes, producing a material called humus or vermicompost. The results showed good maturity levels of the refuses, presented by the carbon/nitrogen relations, the worms influence in the pH elevation and their possible acceleration of the organic material stabilization.

  9. Partnerships for development: municipal solid waste management in Kasese, Uganda.

    Science.gov (United States)

    Christensen, David; Drysdale, David; Hansen, Kenneth; Vanhille, Josefine; Wolf, Andreas

    2014-11-01

    Municipal solid waste management systems of many developing countries are commonly constrained by factors such as limited financial resources and poor governance, making it a difficult proposition to break with complex, entrenched and unsustainable technologies and systems. This article highlights strategic partnerships as a way to affect a distributed agency among several sets of stakeholders to break so-called path dependencies, which occur when such unsustainable pathways arise, stabilize and become self-reinforcing over time. Experiences from a North-South collaborative effort provide some lessons in such partnership building: In Uganda and Denmark, respectively, the World Wildlife Fund and the network organization access2innovation have mobilized stakeholders around improving the municipal solid waste management system in Kasese District. Through a municipal solid waste management system characterization and mapping exercise, some emergent lessons and guiding principles in partnership building point to both pitfalls and opportunities for designing sustainable pathways. First, socio-technical lock-in effects in the municipal solid waste management system can stand in the way of partnerships based on introducing biogas or incineration technologies. However, opportunities in the municipal solid waste management system can exist within other areas, and synergies can be sought with interlinking systems, such as those represented with sanitation. © The Author(s) 2014.

  10. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong.

    Science.gov (United States)

    Woon, K S; Lo, Irene M C

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH4) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH4 recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A two-stage treatment for Municipal Solid Waste Incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants.

    Science.gov (United States)

    Alam, Qadeer; Florea, M V A; Schollbach, K; Brouwers, H J H

    2017-09-01

    In this lab study, a two-stage treatment was investigated to achieve the valorization of a municipal solid waste incineration (MSWI) bottom ash fraction below 4mm. This fraction of MSWI bottom ash (BA) is the most contaminated one, containing potentially toxic elements (Cu, Cr, Mo and Sb), chlorides and sulfates. The BA was treated for recycling by separating agglomerated fine particles (≤125µm) and soluble contaminants by using a sequence of sieving and washing. Initially, dry sieving was performed to obtain BA-S (≤125µm), BA-M (0.125-1mm) and BA-L (1-4mm) fractions from the original sample. The complete separation of fine particles cannot be achieved by conventional sieving, because they are bound in a cementitious matrix around larger BA grains. Subsequently, a washing treatment was performed to enhance the liberation of the agglomerated fine particles from the BA-M and BA-L fractions. These fine particles were found to be similar to the particles of BA-S fraction in term of chemical composition. Furthermore, the leaching behavior of Cr, Mo Sb, chlorides and sulfates was investigated using various washing parameters. The proposed treatment for the separation of agglomerated fine particles with dry sieving and washing (L/S 3, 60min) was successful in bringing the leaching of contaminants under the legal limit established by the Dutch environmental norms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.

    Science.gov (United States)

    Tang, Jinfeng; Steenari, Britt-Marie

    2016-02-01

    Ash from municipal solid waste incineration (MSWI) may be quite cumbersome to handle. Some ash fractions contain organic pollutants, such as dioxins, as well as toxic metals. Additionally, some of the metals have a high value and are considered as critical to the industry. Recovery of copper, zinc and lead from MSWI ashes, for example, will not only provide valuable metals that would otherwise be landfilled but also give an ash residue with lower concentrations of toxic metals. In this work, fly ash and bottom ash from an MSWI facility was used for the study and optimization of metal leaching using different solutions (nitric acid, hydrochloric acid and sulfuric acid) and parameters (temperature, controlled pH value, leaching time, and liquid/solid ratio). It was found that hydrochloric acid is relatively efficient in solubilizing copper (68.2±6.3%) and zinc (80.8±5.3%) from the fly ash in less than 24h at 20°C. Efficient leaching of cadmium and lead (over 92% and 90% respectively) was also achieved. Bottom ash from the same combustion unit was also characterized and leached using acid. The metal yields were moderate and the leachates had a tendency to form a gelatinous precipitate, which indicates that the solutions were actually over-saturated with respect to some components. This gel formation will cause problems for further metal purification processes, e.g. solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterising boiler ash from a circulating fluidised bed municipal solid waste incinerator and distribution of PCDD/F and PCB.

    Science.gov (United States)

    Zhang, Mengmei; Buekens, Alfons; Li, Xiaodong

    2018-05-31

    In this study, ash samples were collected from five locations situated in the boiler of a circulating fluidised bed municipal solid waste incinerator (high- and low-temperature superheater, evaporator tubes and upper and lower economiser). These samples represent a huge range of flue gas temperatures and were characterised for their particle size distribution, surface characteristics, elemental composition, chemical forms of carbon and chlorine and distribution of polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and biphenyls (PCB). Enrichment of chlorine, one of the main elements of organochlorinated pollutants, and copper, zinc and lead, major catalytic metals for dioxin-like compounds, was observed in lower-temperature ash deposits. The speciation of carbon and chlorine on ash surfaces was established, showing a positive correlation between organic chlorine and oxygen-containing carbon functional groups. The load of PCDD/F and PCB (especially dioxin-like PCB) tends to rise rapidly with falling temperature of flue gas, reaching their highest value in economiser ashes. The formation of PCDD/F congeners through the chlorophenol precursor route apparently was enhanced downstream the boiler. Principal component analysis (PCA) was applied to study the links between the ash characteristics and distribution of chloro-aromatics. The primary purpose of this study is improving the understanding of any links between the characteristics of ash from waste heat systems and its potential to form PCDD/F and PCB. The question is raised whether further characterisation of fly ash may assist to establish a diagnosis of poor plant operation, inclusive the generation, destruction and eventual emission of persistent organic pollutants (POPs).

  14. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    Science.gov (United States)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas

  15. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    International Nuclear Information System (INIS)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H.

    2010-01-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  16. Description of different techniques and their potentials of development for the reduction of nitrous oxides in the exhaust gases of waste incinerators and refuse-derived fuel-fired power plants in terms of performance, cost and power consumption; Beschreibung unterschiedlicher Techniken und deren Entwicklungspotentiale zur Minderung von Stickstoffoxiden im Abgas von Abfallverbrennungsanlagen und Ersatzbrennstoff-Kraftwerken hinsichtlich Leistungsfaehigkeit, Kosten und Energieverbrauch

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Michael [Technische Univ. Dresden (Germany)

    2011-11-15

    On 22nd July, 2002 the European Parliament passes the sixth Environmental Action Programme of the European Community. According to this Programme, the environmental pollution can be reduced to a level at which adverse effects on human health have to be reduced. Under this aspect, the author of the contribution under consideration describes various techniques and their development potential for the reduction of nitrogen oxides in the exhaust of waste incinerators and refuse-derived fuel-fired power plants in terms of performance, cost and power consumption. Primary measures (air staging, flue gas recirculation) and secondary measures (SNCR, SCR process, combined procedure) were used as techniques.

  17. Central de eliminación de basuras - Frankfort (Alemania Federal

    Directory of Open Access Journals (Sweden)

    von Steinbüchel-Rheinwall, Rambald

    1972-02-01

    Full Text Available The plant described serves to incinerate the city refuse, and the energy generated is utilised for heating and electricity production, which is consumed by the city of Frankfurt. The article describes the process of total calcination of the refuse. Previously, the storing of this refuse was a severe municipal problem. This plant is made of reinforced concrete, refractory bricks and metal beams for the roof structure.En el artículo se describe la construcción de esta instalación singular, destinada a utilizar la combustión de las basuras de la ciudad para fines calefactores y productores de energía eléctrica al servicio de la propia ciudad. Se explica igualmente el proceso seguido para el aprovechamiento integral de residuos cuyo almacenamiento constituía, antiguamente, un verdadero problema en las grandes urbes. El edificio se ha realizado a base de hormigón armado, ladrillo refractario y vigas metálicas en la cubierta.

  18. Emission and speciation of mercury from waste incinerators with mass distribution investigations

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Jung, Seung Jae; Bhatta, Dhruba

    2010-01-01

    In this paper mercury emission and removal characteristics in municipal wastes incinerators (MWIs), hazardous waste incinerators (HWIs) and hospital medical and infectious waste incinerators (HMIWIs) with mercury mass distribution within the system are presented. Mercury speciation in flue gas at inlet and outlet of each air pollution control devices (APCDs) were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by U.S. EPA method 7470A and 7471A, respectively. Cold vapor atomic absorption spectroscopy was used for analysis. On an average, Hg emission concentrations in flue gas from MWIs ranged 173.9 to 15.3 μg Sm -3 at inlet and 10.5 to 3.8 μg Sm -3 at outlet of APCDs respectively. Mercury removal efficiency ranged 50 to 95% in MWIs, 7.2 to 59.9% in HWIs as co-beneficial results of APCDs for removing other air pollutants like particulate matter, dioxin and acidic gases. In general, mercury in incineration facilities was mainly distributed in fly ash followed by flue gas and bottom ash. In MWIs 94.4 to 74% of Hg were distributed in fly ash. In HWIs with dry type APCDs, Hg removal was less and 70.6% of mercury was distributed in flue gas. The variation of Hg concentration, speciation and finally the distribution in the tested facilities was related to the non-uniform distribution of Hg in waste combined with variation in waste composition (especially Cl, S content), operating parameters, flue gas components, fly ash properties, operating conditions, APCDs configuration. Long term data incorporating more number of tests are required to better understand mercury behavior in such sources and to apply effective control measures. (author)

  19. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  20. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece.

    Science.gov (United States)

    Karagiannidis, A; Kontogianni, St; Logothetis, D

    2013-02-01

    The primary goal of managing MSW incineration residues is to avoid any impact on human health or the environment. Incineration residues consist of bottom ash, which is generally considered as rather harmless and fly ash which usually contains compounds which are potentially harmful for public health. Small quantities of ash (both bottom and fly) are produced currently in Greece, mainly from the healthcare waste incineration facility in Attica region. Once incineration plants for MSW (currently under planning) are constructed in Greece, the produced ash quantities will increase highly. Thus, it is necessary to organize, already at this stage, a roadmap towards disposal/recovery methods of these ash quantities expected. Certain methods, related to the treatment of the future generated ash which are more appropriate to be implemented in Greece are highlighted in the present paper. The performed analysis offers a waste management approach, having 2016 as a reference year for two different incineration rates; 30% and 100% of the remaining MSW after recycling process. The results focus on the two greater regions of Greece: Attica and Central Macedonia. The quantity of potential future ash generation ranges from 137 to 459 kt for Attica region and from 62 to 207 kt for central Macedonia region depending on the incineration rate applied. Three alternative scenarios for the treatment of each kind of ash are compiled and analysed. Metal recovery and reuse as an aggregate in concrete construction proved to be the most advantageous -in terms of economy-bottom ash management scenario. Concerning management of the fly ash, chemical treatment with phosphoric solution addition results to be the lowest total treatment cost and is considered as the most profitable solution. The proposed methodology constitutes a safe calculation model for operators of MSW incineration plants regardless of the region or country they are located in. Crown Copyright © 2012. Published by Elsevier Ltd

  1. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  2. Use plan for demonstration radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1982-04-01

    The University of Maryland at Baltimore was awarded a grant from the Department of Energy to test a specially modified incinerator to burn biomedical radioactive waste. In preparation for the incinerator, the Radiation Safety Office devised a comprehensive plan for its safe and effective use. The incinerator plan includes a discussion of regulations regarding on-site incineration of radioactive waste, plans for optimum use in burning four principal waste forms, controlled air incineration technology, and standard health physics safety practices; a use plan, including waste categorization and segregation, processing, and ash disposition; safety procedures, including personnel and area monitoring; and methods to evaluate the incinerator's effectiveness by estimating its volume reduction factors, mass and activity balances, and by determining the cost effectiveness of incineration versus commercial shallow land burial

  3. Inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi, E-mail: sdzlab@126.com

    2015-09-15

    Highlights: • High NH{sub 4}{sup +}–N concentrations inhibit anaerobic treatment of leachate. • Inhibitory effect of NH{sub 4}{sup +}–N concentrations on anaerobic granular sludge is reversible. • High NH{sub 4}{sup +}–N concentrations inhibit bioactivities of microorganisms instead of survival. - Abstract: Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH{sub 4}{sup +}–N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH{sub 4}{sup +}–N concentration increasing to 1000 mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH{sub 4}{sup +}–N concentration rising to 1000 mg/L, without any rebounding during 30 days of operation. Decreasing NH{sub 4}{sup +}–N concentration to 500 mg/L in influent, the COD removal efficiency recovered to about 85% after 26 days. 1000 mg/L of NH{sub 4}{sup +}–N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH{sub 4}{sup +}–N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency.

  4. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    Science.gov (United States)

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  5. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  6. Use of municipal solid waste incineration bottom ash and crop by-product for producing lightweight aggregate

    Science.gov (United States)

    Giro-Paloma, J.; Ribas-Manero, V.; Maldonado-Alameda, A.; Formosa, J.; Chimenos, J. M.

    2017-10-01

    Due to the growing amount of residues in Europe, it is mandatory to provide a viable alternative for managing wastes contributing to the efficient use of resources. Besides, it is also essential to move towards a low carbon economy, priority EU by 2050. Among these, it is important to highlight the development of sustainable alternatives capable of incorporating different kind of wastes in their formulations.Municipal Solid Waste Incineration (MSWI) is estimated to increase in Europe, where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion. BA is a mixture of calcium-rich compounds and others silicates enriched in iron and sodium. In addition, it is categorized as non-hazardous waste which can be revalorized as secondary material in construction or civil engineering fields, previous weathering stabilization during 2 - 3 months. Taking into account the relative proportion of each size fraction and the corresponding material characterization, the content of glass (primary and secondary) is estimated to be around 60 wt%. Furthermore, as a renewable resource and according to waste management European policies, residual agricultural biomass has attracted attention in preparation of advanced materials for various applications, due to their low cost, abundance, and environment friendliness. Among this residual biomass, rice husk is a by-product of rice milling industry which has high content of silica and has been widely used in buildings as natural thermal insulation material.Weathered BA (WBA) with a particle size less than 30 mm was milled under 100 μm, mixed with 2.0 - 5.0 mm rice husk, formed into ball-shaped pellets and sintered by different thermal treatments, which remove the organic matter content generating a large porosity. Physico-chemical analysis and mechanical behavior of the manufactured lightweight aggregates were tested

  7. Gray correlation analysis and prediction models of living refuse generation in Shanghai city.

    Science.gov (United States)

    Liu, Gousheng; Yu, Jianguo

    2007-01-01

    A better understanding of the factors that affect the generation of municipal living refuse (MLF) and the accurate prediction of its generation are crucial for municipal planning projects and city management. Up to now, most of the design efforts have been based on a rough prediction of MLF without any actual support. In this paper, based on published data of socioeconomic variables and MLF generation from 1990 to 2003 in the city of Shanghai, the main factors that affect MLF generation have been quantitatively studied using the method of gray correlation coefficient. Several gray models, such as GM(1,1), GIM(1), GPPM(1) and GLPM(1), have been studied, and predicted results are verified with subsequent residual test. Results show that, among the selected seven factors, consumption of gas, water and electricity are the largest three factors affecting MLF generation, and GLPM(1) is the optimized model to predict MLF generation. Through this model, the predicted MLF generation in 2010 in Shanghai will be 7.65 million tons. The methods and results developed in this paper can provide valuable information for MLF management and related municipal planning projects.

  8. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge.

    Science.gov (United States)

    Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G

    2016-03-01

    Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants.

  9. New alloys for high temperature applications in incineration plants

    International Nuclear Information System (INIS)

    Martinz, H.P.; Koeck, W.

    1993-01-01

    The hot components of incineration plants exposed to temperatures between 800 and 1,200 C like boilers, grates, thermocouple sheaths and nozzles suffer from severe joint slag and hot gas attack. Considering corrosion resistance only, ceramic materials show excellent performance under these conditions. But because of the ceramics' brittleness metallic materials exhibit an overall advantage although being corroded faster. Within the class of suitable metals PM-ODS (oxide dispersion strengthened)-superalloys based on iron or nickel and PM-Cr-base-alloys are among the most promising ones. This can be derived from various laboratory and field tests which were performed up to now. Laboratory oxidation tests indicate that these new alloys can be used at temperatures up to 1,300 C in hot air. High temperature erosion tests with quartz particles show that PM 2,000 (Fe 19,5Cr5,5Al0,5Ti0,5Y 2 O 3 ) and Ducropur (99.7% Cr) have almost the same resistance against particle impact as alumina or zirconia at 900 C. The corresponding laboratory and field tests under typical joint slag and hot gas conditions at temperatures up to 1,200 C show good results for PM 2,000 and already lead to the actual application of boiler components. Extensive testing has been performed in the field of municipal waste incineration. Depending on temperature, slag and hot gas composition selected grades of the PM-ODS and Cr-base-alloy-group give satisfactory results in the field tests. In the pulp industry black liquor, an alkaline solution with high concentrations of organic waste, is incinerated for the recovery of caustic soda. Flame sprayed coatings of Ducrolloy Cr50Ni give a sixfold increase of the lifetime of the burner nozzles compared to unprotected stainless steel

  10. Sustainable kerbside recycling in the municipal garbage contract.

    Science.gov (United States)

    Chowdhury, Moe

    2009-12-01

    In an era of global warming, rising energy costs and increasing volumes of wastes destined for landfills and incinerators, communities should set up environmentally sustainable services that are cost-effective for their citizens and revenue generators for municipalities. A win-win garbage collection and kerbside recycling program established more than eight years ago in a small rural community in Ohio, US is still going strong. It is offering a relatively inexpensive way for waste disposal by providing an incentive-based and highly participatory kerbside recycling and at the same time bringing in substantial franchise fees for the municipal coffers. Unlike garbage contracts in most communities that are designed for only residential waste collection, this program extends disposal and recycling services to non-residential establishments. It picks up hard-to-dispose household furniture, appliances and other bulky items without additional costs to the residents. By being creative and assessing local political and socio-economic milieu, public officials can implement a comprehensive service package for taking care of their community throwaways. However, before establishing such programs in partnership with a private firm, city administrators must understand the intricacies of bid specifications customized for municipal wastes and recyclable materials.

  11. Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete.

    Science.gov (United States)

    Yang, Sheng-Fu; Wang, To-Mai; Lee, Wen-Cheng; Sun, Kin-Seng; Tzeng, Chin-Ching

    2010-10-15

    This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete. 2010 Elsevier B.V. All rights reserved.

  12. Mound cyclone incinerator. Volume I. Description and performance

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    The Mound cyclone incinerator was developed to fill a need for a simple, relaible incinerator for volume reduction of dry solid waste contaminated with plutonium-238. Although the basic design of the incinerator is for batch burning of solid combustible waste, the incinerator has also been adapted to volume reduction of other waste forms. Specialized waste feeding equipment enables continuous burning of both solid and liquid waste, including full scintillation vials. Modifications to the incinerator offgas system enable burning of waste contaminated with isotopes other than plutonium-238. This document presents the design and performance characteristics of the Mound Cyclone Incinerator for incineration of both solid and liquid waste. Suggestions are included for adaptation of the incinerator to specialized waste materials

  13. Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  14. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    Kawahara, Yuuzou; Nakamura, Masanori; Shibuya, Eiichi; Yukawa, Kenichi

    1995-01-01

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  15. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  16. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  17. Predicting the co-melting temperatures of municipal solid waste incinerator fly ash and sewage sludge ash using grey model and neural network.

    Science.gov (United States)

    Pai, Tzu-Yi; Lin, Kae-Long; Shie, Je-Lung; Chang, Tien-Chin; Chen, Bor-Yann

    2011-03-01

    A grey model (GM) and an artificial neural network (ANN) were employed to predict co-melting temperature of municipal solid waste incinerator (MSWI) fly ash and sewage sludge ash (SSA) during formation of modified slag. The results indicated that in the aspect of model prediction, the mean absolute percentage error (MAPEs) were between 1.69 and 13.20% when adopting seven different GM (1, N) models. The MAPE were 1.59 and 1.31% when GM (1, 1) and rolling grey model (RGM (1, 1)) were adopted. The MAPEs fell within the range of 0.04 and 0.50% using different types of ANN. In GMs, the MAPE of 1.31% was found to be the lowest when using RGM (1, 1) to predict co-melting temperature. This value was higher than those of ANN2-1 to ANN8-1 by 1.27, 1.25, 1.24, 1.18, 1.16, 1.14 and 0.81%, respectively. GM only required a small amount of data (at least four data). Therefore, GM could be applied successfully in predicting the co-melting temperature of MSWI fly ash and SSA when no sufficient information is available. It also indicates that both the composition of MSWI fly ash and SSA could be applied on the prediction of co-melting temperature.

  18. ORGDP RCRA/PCB incinerator facility

    International Nuclear Information System (INIS)

    Rogers, T.

    1987-01-01

    A dual purpose solid/liquid incinerator is currently being constructed at the Oak Ridge Gaseous Diffusion Plant [ORGDP (K-25)] to destroy uranium contaminated, hazardous organic wastes in compliance with the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). These wastes are generated by the gaseous diffusion plants in Oak Ridge, TN; Paducah, KY; and Portsmouth, OH. In addition, waste will also be received from the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the Feed Materials Production Center (FMPC). Destruction of PCBs and hazardous liquid organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. This system was selected faster a study of various alternatives. Incineration was chosen because it is dependable, permanent, detoxifies organics, and reduces volume. The rotary kiln incinerator was selected because it can thermally destroy organic constituents of liquids, solids, and sludges to produce an organically inert ash. In addition to the incineration off-gas treatment system, the facility includes a tank farm, drum storage buildings, a solids preparation area, a control room, and a data management system. The incineration system, off-gas treatment system, and related instrumentation and controls are being provided by International Waste Energy Systems (IWES) which is responsible for design, construction, startup, and performances testing

  19. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  20. Reprint of: Pyrolysis technologies for municipal solid waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-03-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  1. Mercury sedimentation in lakes in western Whatcom County, Washington, USA and its relation to local industrial and municipal atmospheric sources

    Science.gov (United States)

    Paulson, A.J.; Norton, D.

    2008-01-01

    Concentrations of mercury (Hg) were measured in six dated cores from four lakes in western Whatcom County, Washington, USA, that were at various bearings from a chlor-alkali plant, two municipal waste incinerators and a municipal sewage sludge incinerator. The importance of atmospheric emissions of Hg from these local municipal and industrial sources was evaluating by comparing the temporal trends in sedimentation of the lake cores with the emission history of each Hg species and by examining the geographical distribution of Hg sedimentation in relation to the region's primary wind pattern. Local municipal and industrial sources of atmospheric Hg were not responsible for the majority of the Hg in the upper layer of sediments of Whatcom County lakes because of (1) the significant enrichment of Hg in lake sediments prior to emissions of local industrial and municipal sources in 1964, (2) smaller increases in Hg concentrations occurred after 1964, (3) the similarity of maximum enrichments found in Whatcom County lakes to those in rural lakes around the world, (4) the inconsistency of the temporal trends in Hg sedimentation with the local emission history, and (5) the inconsistency of the geographic trends in Hg sedimentation with estimated deposition. Maximum enrichment ratios of Hg in lake sediments between 2 and 3 that are similar to rural areas in Alaska, Minnesota, and New England suggest that global sources of Hg were primarily responsible for increases of Hg in Whatcom County lakes beginning about 1900. ?? 2007 GovernmentEmployee: U.S. Government, Department of Interior, U.S. Geological Survey.

  2. Incineration of wastes from nuclear installations with the Juelich incineration process

    International Nuclear Information System (INIS)

    Wilke, M.

    1979-01-01

    In the Juelich Research Center a two-stage incineration process has been developed which, due to an integral thermal treatment stage, is most suitable for the incineration of heterogeneous waste material. The major advantages of this technique are to be seen in the fact that mechanical treatment of the waste material is no longer required and that off gas treatment is considerably facilitated. (orig.) [de

  3. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh; Christensen, Thomas Højlund

    2011-01-01

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting...... was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of −6 to 8mPEMg−1ww...... from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly....

  4. Identification and characteristics of vaccine refusers

    OpenAIRE

    Wei, Feifei; Mullooly, John P; Goodman, Mike; McCarty, Maribet C; Hanson, Ann M; Crane, Bradley; Nordin, James D

    2009-01-01

    Abstract Background This study evaluated the utility of immunization registries in identifying vaccine refusals among children. Among refusers, we studied their socioeconomic characteristics and health care utilization patterns. Methods Medical records were reviewed to validate refusal status in the immunization registries of two health plans. Racial, education, and income characteristics of children claiming refusal were collected based on the census tract of each child. Health care utilizat...

  5. FORMATION OF DIOXINS AND FURANS DURING MUNICIPAL SOLID WASTE GASIFICATION

    Directory of Open Access Journals (Sweden)

    E. J. Lopes

    2015-03-01

    Full Text Available Abstract Thermal treatment is an interesting strategy to dispose of municipal solid waste: it reduces the volume and weight of the material dumped in landfills and generates alternative energy. However, the process emits pollutants, such as dioxins and furans. The present study evaluated MSW gasification-combustion integrated technologies in terms of dioxin and furan emission; and compared the obtained data with literature results on incineration, to point out which operational features differentiate the release of pollutants by these two processes. The results show that the process of integrated gasification and combustion emitted 0.28 ng N-1 m-3, expressed in TEQ (Total Equivalent Toxicity, of PCDD/F, less than the maximum limits allowed by local and international laws, whereas incineration normally affords values above these limits and requires a gas treatment system. The distinct operational conditions of the two thermal processes, especially those related to temperature and the presence of oxygen and fixed carbon, led to a lower PCDD/F emission in gasification.

  6. USDOE radioactive waste incineration technology: status review

    International Nuclear Information System (INIS)

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included

  7. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  8. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  9. The mineral phase evolution behaviour in the production of glass-ceramics from municipal solid waste incineration fly ash by melting technology.

    Science.gov (United States)

    Luan, Jingde; Chai, Meiyun; Li, Rundong; Yao, Pengfei; Khan, Agha Saood

    2016-01-01

    High energy consumption was the major obstacle to the widespread application of melting technology in the treatment of municipal solid waste incineration fly ash. Aiming to lower the ash-melting temperature (AMT) for energy-saving, differential scanning calorimetry, X-ray diffraction and the scanning electron microscope were used to investigate the relations between AMT and the mineral evolution. The results indicated that the change of AMT was determined by the types and the contents of mineral crystals. The transition from refractory minerals to fluxing minerals was the key. The transition of the main crystalline phase from pseudowollastonite (Ca3(Si3O9)) to wollastonite (CaSiO3) played a significant role in AMT reduction. A quantum chemistry calculation was carried out to investigate the effect of crystal reaction activity on AMT. In the chemical reaction, the highest occupied molecular orbital and the lowest unoccupied molecular orbital played a more important role than any other orbits. Cations (Ca(2+), Mg(2+), Na(+), K(+)) were apt to enter into the crystal lattice of wollastonite and gehlenite mainly through Si (3), O (1), Si (6), O (10) and Al (2), O (10), and broke the covalent bonds of Si (3)-O (7), Al (1)-O (9) and Al (1)-O (15), respectively. This deconstruction behaviour provided convenient conditions for restructuring and promoted the formation of fluxing minerals. In melts, the excess SiO2 monomers which existed in the form of cristobalite and quartz caused AMT increase.

  10. Life cycle assessment of four municipal solid waste management scenarios in China

    International Nuclear Information System (INIS)

    Hong Jinglan; Li Xiangzhi; Zhaojie Cui

    2010-01-01

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

  11. Incineration: efficient, economical and environmental

    International Nuclear Information System (INIS)

    Mascarenhas, A.

    2003-01-01

    Significant improvements in incinerator design and technology resulting in optimal performance, increased reliability and reduced capital and operating costs are discussed. The objective of the discussion is to draw attention to incineration as a cost effective and environmentally responsible means of disposing of the waste products generated by the oil and gas industry, while improving air quality and reduce greenhouse gas emissions at the same time. The main point put forward is that because the global warming potential of methane is 21 times greater than that of carbon dioxide, the complete combustion potential of incineration, combined with the fact that incineration requires significantly less fuel gas to combust low heat content streams, offers significantly reduced greenhouse gas emissions and improved air quality

  12. Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Kai Hsien; Chang, Moo Been [Graduate Institute of Environmental Engineering, National Central University, Chungli 320 (Taiwan); Chang-Chien, Guo Ping [Department of Chemical Engineering, Cheng-Shiu University, Kaohsiung 833 (Taiwan); Lin, Chieh [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 920 (Taiwan)

    2005-07-15

    Partitioning of PCDD/F (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuran) congeners between gaseous and particulate phases and removal efficiencies of the existing air pollution control devices (APCDs) for PCDD/Fs at two large-scale municipal waste incinerators (MWIs) in Taiwan are evaluated via stack sampling and analysis. Two MWIs investigated are equipped with activated carbon injection (ACI) and selective catalytic reduction system (SCR) as major PCDD/F control devices, respectively. The average PCDD/F concentrations of stack gases are 2.35 and 1.49 ng/N m{sup 3}, and the international toxic equivalent quantity (TEQ) are 0.17 and 0.043 ng TEQ/N m{sup 3} in MWI-A and MWI-B, respectively. The average removal efficiency of PCDD/Fs achieved with ACI+BF (bag filters) reaches 95% (MWI-A) while that achieved with the WS (wet scrubber)+SCR system reaches 99% (MWI-B). The results obtained on gas/particulate partitioning in flue gases indicate that particulate-phase PCDD/Fs accounted for 27.7% and 24.7% of the total PCDD/F concentrations at the outlets of cyclone (CY) and electrostatic precipitator (EP) for MWI-A and MWI-B, respectively. But the gas/particulate partitioning in flue gas after PCDD/Fs control devices is quite different in two MWIs. This study also indicates that total 2,3,7,8-substituted PCDD/F discharges are 142.3 {mu}g TEQ/ton waste for MWI-A and 98.6 {mu}g TEQ/ton waste for MWI-B, respectively.

  13. Loading device for incinerator

    International Nuclear Information System (INIS)

    Hempelmann, W.

    1983-01-01

    An incinerator for radioactive waste is described. Heat radiation from the incinerator into the loading device is reduced by the design of the slider with a ceramic plate and the conical widening of the pot, and also by fixing a metal plate between the pot and the floor. (PW) [de

  14. The impact of municipal waste combustion in small heat sources

    Science.gov (United States)

    Vantúch, Martin; Kaduchová, Katarína; Lenhard, Richard

    2016-06-01

    At present there is a tendency to make greater use for heating houses for burning solid fuel, such as pieces of wood, coal, coke, local sources of heat to burn natural gas. This tendency is given both the high price of natural gas as well as the availability of cheaper solid fuel. In many cases, in the context saving heating costs, respectively in the context of the disposal of waste is co-incinerated with municipal solid fuels and wastes of different composition. This co entails increased production emissions such as CO (carbon monoxide), NOx (nitrogen oxides), particulate matter (particulate matter), PM10, HCl (hydrogen chloride), PCDD/F (polychlorinated dibenzodioxins and dibenzofurans), PCBs (polychlorinated biphenyls) and others. The experiment was focused on the emission factors from the combustion of fossil fuels in combination with municipal waste in conventional boilers designed to burn solid fuel.

  15. Incineration conference 1990

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of the 1990 incineration conference. The proceedings are organized under the following headings: Regulations- international comparison, Current trends in facility design, Oxygen enhancement, Metals, Off-gas treatment, Operating experience: transportable, Materials, Operating experience: R/A and mixed, Incineration of specific wastes, Medical waste management, Ash qualification, Ash solidification/ immobilization, Innovative technologies, Operating experience : medical waste, Instrumentation and monitoring, process control and modeling, Risk assessment/management, Operating considerations

  16. Formation and degradation of PCDD/F in waste incineration ashes

    International Nuclear Information System (INIS)

    Lundin, Lisa

    2007-11-01

    The disposal of combustible wastes by incineration is a controversial issue that is strongly debated by both scientists and environmental activists due to the resulting emissions of noxious compounds, including (inter alia) polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), heavy metals and acid gases like sulfur dioxide. Currently available air pollution control devices are capable of effectively cleaning flue gases, and PCDD/F emissions to air from modern municipal solid waste (MSW) incinerators are low. However, the PCDD and PCDF end up in ash fractions that, in Sweden, are usually deposited in landfills. The European Union has recently set a maximum permitted total concentration of 15 μg TEQ/kg for PCDD/F species in waste. Fly ash from municipal solid waste (MSW) incineration containing PCDD/Fs at concentrations above this limit will have to be remediated to avoid disposing of them in landfills; an expensive and environmentally unfriendly option. Therefore, effective, reliable and cost-effective methods for degrading PCDD/F in fly ash are required, and a better understanding of the behavior of PCDDs and PCDFs during thermal treatment will be needed to develop them. In the studies this thesis is based upon both the formation and degradation of PCDDs and PCDFs in ashes from MSW incineration were studied. The main findings of the investigations regarding PCCD/F formation were: The concentrations of PCDD and PCDF in fly ash increased with reductions in the temperature in the post-combustion zone. The homologue profile in the ash changed when the temperature in the post-combustion zone changed. The final amounts of PCDD and PCDF present were affected by their rates of both formation and degradation, and the mechanisms involved differ between PCDDs and PCDFs. The main findings from the degradation studies were: The chemical composition of ash has a major impact on the degradation potential of PCDD and PCDF. The presence of oxygen during thermal

  17. CFD modeling of an industrial municipal solid waste combustor

    International Nuclear Information System (INIS)

    Hussain, A.; Ani, F.N.; Darus, A.N.; Mustafa, A.

    2006-01-01

    The average amount of municipal solid waste (MSW) generated in Malaysia is 0.5-0.8 kg/person/day and has increased to 1.7 kg/person/day in major cities. Due to rapid development and lack of space for new landfills, big cities in Malaysia are now switching to incineration. However, a major public concern over this technology also is the perception of the emission of pollutants of any form. Design requirements of high performance incinerators are sometimes summarized as the achievement of 3Ts (time, temperature, and turbulence). An adequate retention time in hot environment is crucial to destroy the products of incomplete combustion and organic pollutants. Also turbulent mixing enhances uniform distributions of temperature and oxygen availability. CFD modeling is now in the development phase of becoming a useful tool for 3D modeling of the complex geometry and flow conditions in incinerators. However, CFD flow simulations enable detailed parametric variations of design variables. CFD modeling of an industrial scale MSW incinerator was done using FLUENT Ver. 6.1. The 3D modeling was based on conversation equations for mass, momentum and energy. The differential equations were discretized by the Finite Volume Method and were solved by the SIMPLE algorithm. The k-e turbulence model was employed. The meshing was done using Gambit 2. 0. The cold flow simulations were performed initially to develop the flow and velocity field. Numerical simulations of the flow field inside the primary and secondary combustion chambers provided the temperature profiles and the concentration data at the nodal points of computational grids. Parametric study was also done to minimize the NOx emissions. (author)

  18. Effect of natural ageing on volume stability of MSW and wood waste incineration residues

    International Nuclear Information System (INIS)

    Gori, Manuela; Bergfeldt, Britta; Reichelt, Jürgen; Sirini, Piero

    2013-01-01

    Highlights: ► Natural weathering on BA from MSW and wood waste incineration was evaluated. ► Type of mineral phases, pH and volume stability were considered. ► Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of the mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability

  19. Incineration process fire and explosion protection

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Two incinerators will be installed in the plutonium recovery facility under construction at the Rocky Flats Plant. The fire and explosion protection features designed into the incineration facility are discussed as well as the nuclear safety and radioactive material containment features. Even though the incinerator system will be tied into an emergency power generation system, a potential hazard is associated with a 60-second delay in obtaining emergency power from a gas turbine driven generator. This hazard is eliminated by the use of steam jet ejectors to provide normal gas flow through the incinerator system during the 60 s power interruption. (U.S.)

  20. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.

    Science.gov (United States)

    Boesch, Michael E; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-02-01

    A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Low-level waste institutional waste incinerator program

    International Nuclear Information System (INIS)

    Thompson, J.D.

    1980-04-01

    Literature surveyed indicated that institutional LLW is composed of organic solids and liquids, laboratory equipment and trash, and some pathological waste. Some toxic and hazardous chemicals are included in the variety of LLW generated in the nation's hospitals, universities, and research laboratories. Thus, the incinerator to be demonstrated in this program should be able to accept each of these types of materials as feedstock. Effluents from the DOE institutional incinerator demonstration should be such that all existing and proposed environmental standards be met. A design requirement was established to meet the most stringent flue gas standards. LLW incineration practice was reviewed in a survey of institutional LLW generators. Incinerator manufacturers were identified by the survey, and operational experience in incineration was noted for institutional users. Manufacturers identified in the survey were contacted and queried with regard to their ability to supply an incinerator with the desired capability. Special requirements for ash removal characteristics and hearth type were imposed on the selection. At the present time, an incinerator type, manufacturer, and model have been chosen for demonstration

  2. Public Health Risks from Mismanagement of Healthcare Wastes in Shinyanga Municipality Health Facilities, Tanzania

    Directory of Open Access Journals (Sweden)

    Kizito Kuchibanda

    2015-01-01

    Full Text Available The increase of healthcare facilities in Shinyanga municipality has resulted in an increase of healthcare wastes, which poses serious threats to the environment, health workers, and the general public. This research was conducted to investigate management practices of healthcare wastes in Shinyanga municipality with a view of assessing health risks to health workers and the general public. The study, which was carried out in three hospitals, involved the use of questionnaires, in-depth interview, and observation checklist. The results revealed that healthcare wastes are not quantified or segregated in all the three hospitals. Healthcare wastes at the Shinyanga Regional Referral Hospital are disposed of by on-site incineration and burning and some wastes are disposed off-site. At Kolandoto DDH only on-site burning and land disposal are practiced, while at Kambarage UHC healthcare solid wastes are incinerated, disposed of on land disposal, and burned. Waste management workers do not have formal training in waste management techniques and the hospital administrations pay very little attention to appropriate management of healthcare wastes. In light of this, it is evident that management of healthcare solid wastes is not practiced in accordance with the national and WHO’s recommended standards.

  3. School Refusal: Clinical Features, Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Kayhan Bahali

    2010-12-01

    Full Text Available Children regularly and voluntarily go to school in order to fulfill the expectations of society from them to continue their education or schooling. School continuation has been made compulsory by laws. Nonetheless, contrary to popular belief, for some children it is distressing to go to school. These children have difficulty continuing school and/or refuse to go to school. Today school refusal is defined as a child’s inability to continue school for reasons, such as anxiety and depression. The prevalence of school refusal has been reported to be approximately 1% in school-age children and 5% in child psychiatry samples. The prevalence of school refusal is similar among boys and girls. School refusal can occur at any time throughout the child’s academic life and at all socio-economic levels. School refusal is considered a symptom rather than a clinical diagnosis and can manifest itself as a sign of many psychiatric disorders, with anxiety disorders predominant. Separation anxiety disorder, generalized anxiety disorder, social phobia, specific phobia, and adjustment disorder with anxiety symptoms are the most common disorders co-occurring with school refusal. While separation anxiety disorder is associated with school refusal in younger children, other anxiety disorders, especially phobias, are associated with school refusal in adolescents. Children who have parents with psychiatric disorders have a higher incidence of school refusal, and psychiatric disorders are more frequently seen in adult relatives of children with school refusal, which supports a significant role of genetic and environmental factors in th etiology of school refusal. School refusal is a emergency state for child mental health. As it leads to detrimental effects in the short term and the long term, it should be regarded as a serious problem. The long-lasting follow-up studies of school refusing children have revealed that these children have a higher incidence of

  4. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration.

    Science.gov (United States)

    Panepinto, D; Zanetti, M C

    2018-03-01

    This study proposes a multi-step approach to evaluating the environmental and economic aspects of a thermal treatment plant with an energy-recovery configuration. In order to validate the proposed approach, the Turin incineration plant was analyzed, and the potential of the incinerator and several different possible connections to the district heating network were then considered. Both local and global environmental balances were defined. The global-scale results provided information on carbon dioxide emissions, while the local-scale results were used as reference values for the implementation of a Gaussian model that could evaluate the actual concentrations of pollutants released into the atmosphere. The economic aspects were then analyzed, and a correspondence between the environmental and economic advantages defined. The results showed a high energy efficiency for the combined production of heat and electricity, and the opportunity to minimize environmental impacts by including cogeneration in a district heating scheme. This scheme showed an environmental advantage, whereas the electricity-only configuration showed an economic advantage. A change in the thermal energy price (specifically, to 40 €/MWh), however, would make it possible to obtain both environmental and economic advantages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Construction of an interim storage field using recovered municipal solid waste incineration bottom ash: Field performance study.

    Science.gov (United States)

    Sormunen, Laura Annika; Kolisoja, Pauli

    2017-06-01

    The leaching of hazardous substances from municipal solid waste incineration (MSWI) bottom ash (BA) has been studied in many different scales for several years. Less attention has been given to the mechanical performance of MSWI BA in actual civil engineering structures. The durability of structures built with this waste derived material can have major influence on the functional properties of such structures and also the potential leaching of hazardous substances in the long term. Hence, it is necessary to properly evaluate in which type of structures MSWI BA can be safely used in a similar way as natural and crushed rock aggregates. In the current study, MSWI BA treated with ADR (Advance Dry Recovery) technology was used in the structural layers of an interim storage field built within a waste treatment centre. During and half a year after the construction, the development of technical and mechanical properties of BA materials and the built structures were investigated. The aim was to compare these results with the findings of laboratory studies in which the same material was previously investigated. The field results showed that the mechanical performance of recovered BA corresponds to the performance of natural aggregates in the lower structural layers of field structures. Conversely, the recovered MSWI BA cannot be recommended to be used in the base layers as such, even though its stiffness properties increased over time due to material aging and changes in moisture content. The main reason for this is that BA particles are prone for crushing and therefore inadequate to resist the higher stresses occurring in the upper parts of road and field structures. These results were in accordance with the previous laboratory findings. It can thus be concluded that the recovered MSWI BA is durable to be used as a replacement of natural aggregates especially in the lower structural layers of road and field structures, whereas if used in the base layers, an additional base

  6. Fly ash: Chemical-physical and mineralogical characterization

    International Nuclear Information System (INIS)

    Paoletti, L.; Diociaiuti, M.; Ziemacki, G.; Viviano, G.; Gianfagna, A.

    1992-01-01

    Fly ash from fossil fuel power plants, municipal waste incinerators and refuse fueled boilers is now being utilized as road construction material. With the aim of facilitating health risk assessments of this practice by providing a sound basis for thorough toxicological examinations, this paper reports on a study in which the crystalline and amorphous constituents of fly ash, according to type of combustion plant and fuel, were identified and analyzed by the use of various analytical techniques which included: scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and absorption, X-ray, and energy loss spectroscopy

  7. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.

    Science.gov (United States)

    Jeswani, H K; Azapagic, A

    2016-04-01

    Even though landfilling of waste is the least favourable option in the waste management hierarchy, the majority of municipal solid waste (MSW) in many countries is still landfilled. This represents waste of valuable resources and could lead to higher environmental impacts compared to energy recovered by incineration, even if the landfill gas is recovered. Using life cycle assessment (LCA) as a tool, this paper aims to find out which of the following two options for MSW disposal is more environmentally sustainable: incineration or recovery of biogas from landfills, each producing either electricity or co-generating heat and electricity. The systems are compared on a life cycle basis for two functional units: 'disposal of 1 tonne of MSW' and 'generation of 1 kWh of electricity'. The results indicate that, if both systems are credited for their respective recovered energy and recyclable materials, energy from incineration has much lower impacts than from landfill biogas across all impact categories, except for human toxicity. The impacts of incineration co-generating heat and electricity are negative for nine out of 11 categories as the avoided impacts for the recovered energy and materials are higher than those caused by incineration. By improving the recovery rate of biogas, some impacts of landfilling, such as global warming, depletion of fossil resources, acidification and photochemical smog, would be significantly reduced. However, most impacts of the landfill gas would still be higher than the impacts of incineration, except for global warming and human toxicity. The analysis on the basis of net electricity produced shows that the LCA impacts of electricity from incineration are several times lower in comparison to the impacts of electricity from landfill biogas. Electricity from incineration has significantly lower global warming and several other impacts than electricity from coal and oil but has higher impacts than electricity from natural gas or UK grid. At

  8. Incineration experiences at the Tsuruga P.S. and outline of the advanced type incineration system at the Tokai No. 2 P.S

    International Nuclear Information System (INIS)

    Yui, K.; Kurihara, Y.; Inoue, S.; Takamori, H.; Karita, Y.

    1987-01-01

    In 1978, the first radwaste incineration plant among Japanese nuclear power stations started its operation at Tsuruga P.S., and the first advanced radwaste incineration plant has been constructed and accomplished the test operation in September 1986. This paper describes the outline of Tsuruga incineration plant and its operation achievements, and the outline of advanced incineration technology, Tokai No. 2 incineration plant and its test operation results

  9. Assessment of an on-line CI-mass spectrometer as a continuous emission monitor for sewage sludge incinerators

    International Nuclear Information System (INIS)

    Campbell, K.R.; Hallett, D.J.; Resch, R.J.; Villinger, J.; Federer, V.

    1991-01-01

    ELI Eco Technologies Inc. tested two sewage sludge incinerators using regulator methods and a V and F CIMS-500 chemical ionization mass spectrometer. Correlations between dioxins and dibenzofurans from the regulatory MM5 trains and the continuous readings form the CIMS-500 for chlorobenzenes and chlorophenols were noted. As well, correlations between chlorinated organics and other volatile organics were obvious under poor combustion conditions. ELI Eco Technologies Inc. recently completed an extensive survey of organic chemical emissions including VOCs, chlorobenzenes, chlorophenols, chlorinated dioxins and dibenzofurans from two sewage sludge incinerators. The program was funded by the Municipality of Metro Toronto, Environment Ontario, and Environment Canada. Contaminants were measured by regulatory methods (ASME Modified Method 5) and simultaneously with the continuous mass spectrometer. The purpose of the study was to provide regulatory testing and at the same time evaluate the usefulness of the CIMS-500 mass spectrometer in assessing emissions. This paper describes the evaluation of the usefulness of this mass spectrometer

  10. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  11. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.

    Science.gov (United States)

    Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-11-01

    Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.

  12. Organic household waste - incineration or recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  13. Incineration and flue gas treatment technologies

    International Nuclear Information System (INIS)

    1997-01-01

    The proceedings are presented of an international symposium on Incineration and Flue Gas Treatment Technologies, held at Sheffield University in July 1997. Papers from each of the six sessions cover the behaviour of particles in incinerator clean-up systems, pollution control technologies, the environmental performance of furnaces and incinerators, controlling nitrogen oxide emissions, separation processes during flue gas treatment and regulatory issues relating to these industrial processes. (UK)

  14. Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth.

    Science.gov (United States)

    Lei, Yuqing; Sun, Dezhi; Dang, Yan; Chen, Huimin; Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E

    2016-12-01

    Bio-methanogenic digestion of incineration leachate is hindered by high OLRs, which can lead to build-up of VFAs, drops in pH and ultimately in reactor souring. It was hypothesized that incorporation of carbon cloth into reactors treating leachate would promote DIET and enhance reactor performance. To examine this possibility, carbon cloth was added to laboratory-scale UASB reactors that were fed incineration leachate. As expected, the carbon-cloth amended reactor could operate stably with a 34.2% higher OLR than the control (49.4 vs 36.8kgCOD/(m 3 d)). Microbial community analysis showed that bacteria capable of extracellular electron transfer and methanogens known to participate in DIET were enriched on the carbon cloth surface, and conductivity of sludge from the carbon cloth amended reactor was almost twofold higher than sludge from the control (9.77 vs 5.47μS/cm), suggesting that microorganisms in the experimental reactor may have been expressing electrically conductive filaments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Contamination of incinerator at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Takahashi, Mutsuo

    1994-01-01

    Originally, at Tokai Reprocessing Plant an incinerator was provided in the auxiliary active facility(waste treatment building). This incinerator had treated low level solid wastes generated every facilities in the Tokai Reprocessing Plant since 1974 and stopped the operation in March 1992 because of degeneration. The radioactivity inventory and distribution was evaluated to break up incinerator, auxiliary apparatuses(bag filter, air scrubbing tower, etc.), connecting pipes and off-gas ducts. This report deals with the results of contamination survey of incinerator and auxiliary apparatuses. (author)

  16. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    International Nuclear Information System (INIS)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-01-01

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm 3 , weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  17. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  18. 33 CFR 401.89 - Transit refused.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Transit refused. 401.89 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations General § 401.89 Transit refused. (a) An officer may refuse to allow a vessel to transit when, (1) The vessel is not equipped in accordance with §§ 401.5 to...

  19. Quantifying capital goods for waste incineration

    International Nuclear Information System (INIS)

    Brogaard, L.K.; Riber, C.; Christensen, T.H.

    2013-01-01

    Highlights: • Materials and energy used for the construction of waste incinerators were quantified. • The data was collected from five incineration plants in Scandinavia. • Included were six main materials, electronic systems, cables and all transportation. • The capital goods contributed 2–3% compared to the direct emissions impact on GW. - Abstract: Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000–26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14 kg CO 2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO 2 per tonne of waste combusted

  20. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan

    2010-06-01

    With rapid economic growth and massive urbanization, China faces the problem of municipal solid waste (MSW) disposal and the pressing need for development of alternative energy. Waste-to-energy (WTE) incineration, which recovers energy from discarded MSW and produces electricity and/or steam for heating, is recognized as a renewable source of energy and is playing an increasingly important role in MSW management in China. This article provides an overview of the WTE industry, discusses the major challenges in expanding WTE incineration in China, namely, high capital and operational costs, equipment corrosion, air pollutant emissions, and fly ash disposal. A perspective on MSW as a renewable energy source in China is also presented. Currently, only approximately 13% of MSW generated in China is disposed in WTE facilities. With the significant benefits of environmental quality, the reduction of greenhouse gas (GHG) emissions, and government policies and financial incentives as a renewable energy source, WTE incineration industry is expected to experience significant growth in the coming decade and make greater contribution to supplying renewable energy in China. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Life cycle assessment of four municipal solid waste management scenarios in China.

    Science.gov (United States)

    Hong, Jinglan; Li, Xiangzhi; Zhaojie, Cui

    2010-11-01

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  3. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  4. Commercial Cyclone Incinerator Demonstration Program: April-September 1979

    International Nuclear Information System (INIS)

    Alexander, B.M.

    1979-01-01

    The commercial cyclone incinerator program was designed to study the effects of burning low-level waste contaminated with beta and gamma emitters in a cyclone system. The ultimate program goal is the demonstration of a cyclone incinerator at a nuclear power plant. During the past six months, the first program objective, NRC review of the Feasibility Plan, was achieved, and work began on the second objective, Complete Incinerator Feasibility Plan. Potential applications for the cyclone incinerator have been investigated. The feasibility plan for the incinerator system was reviewed with the Nuclear Regulatory Commission (NRC). Following a series of cold checkout burns, implementation of the feasibility plan was begun with the start of laboratory-scale experiments. Inconel 601 is being investigated as a material of construction for the incinerator burn chamber

  5. Environmental impacts assessment study on residential-industrial suburban community of Rome, Italy

    International Nuclear Information System (INIS)

    Barni, E.

    1991-01-01

    Valle Galeria, a 8x5 km Roman suburb, with a population of about 30,000 residents, is host to a 4.3 million tonnes/year refinery, a 5,500 tonnes/day municipal waste dump site, an asphalt production plant and an incinerator for hospital and industrial wastes. To assist community planners in their decision making relative to the proposed construction of a refuse derived power plant, a new incinerator complex and a turbogas electric power station, ENEA (Italian Agency for New Technology, Energy and the Environment) performed a study to characterize the community's current environmental quality, in particular, its air quality. In addition to the effects caused by present industrial activities, the local natural environment has already suffered negative effects in the past due to the presence of numerous quarries. This paper tables the study's results concerning air pollution concentration levels and sources of air pollution

  6. Incineration of contaminated oil from Sellafield - 16246

    International Nuclear Information System (INIS)

    Broadbent, Craig; Cassidy, Helen; Stenmark, Anders

    2009-01-01

    Studsvik have been incinerating Low Level Waste (LLW) at its licensed facility in Sweden since the mid-1970's. This process not only enables the volume of waste to be significantly reduced but also produces an inert residue suitable for final disposal. The facility has historically incinerated only solid dry LLW, however in 2008 an authorisation was obtained to permit the routine incineration of LLW contaminated oil at the facility. Prior to obtaining the authorisation to incinerate oils and other organic liquids - both from clean-up activities on the Studsvik site and on a commercial basis - a development program was established. The primary aims of this were to identify the optimum process set-up for the incinerator and also to demonstrate to the regulatory authorities that the appropriate environmental and radiological parameters would be maintained throughout the new process. The final phase of the development program was to incinerate a larger campaign of contaminated oil from the nuclear industry. A suitable accumulation of oil was identified on the Sellafield site in Cumbria and a commercial contract was established to incinerate approximately 40 tonnes of oil from the site. The inventory of oil chosen for the trial incineration represented a significant challenge to the incineration facility as it had been generated from various facilities on-site and had degraded significantly following years of storage. In order to transport the contaminated oil from the Sellafield site in the UK to the Studsvik facility in Sweden several challenges had to be overcome. These included characterisation, packaging and international transportation (under a Transfrontier Shipment (TFS) authorisation) for one of the first transports of liquid radioactive wastes outside the UK. The incineration commenced in late 2007 and was successfully completed in early 2008. The total volume reduction achieved was greater than 97%, with the resultant ash packaged and returned to the UK (for

  7. Clean burn: Incinerators get more efficient

    International Nuclear Information System (INIS)

    Budd, G.

    2003-01-01

    Combustion efficiency and accuracy of today's new breed of incinerators is discussed. The latest of these units are capable of delivering 99.99 per cent combustion efficiency with no visible flame, black smoke or detectable odour. Near-complete combustion is achieved with incineration because of the very high temperatures reached in the enclosed combustion chamber as a combination of temperature, time for burning, and a good mix of gases and oxygen. Controlling these inputs is the key to efficient incineration, as is high quality fibre refractory lining; control means control of the stack top temperature, which will affect what comes out of the top water and how well the combustion byproducts are dispersed. Until recently, incinerators have not been highly regarded by the oil industry. However, with the growing concerns about greenhouse gases, carcinogens and in response to increasing regulations aimed at reducing venting and flaring, incinerators are coming into their own. Today they are seen more and more frequently in well testing, coalbed methane testing, at battery sites and at gas plants

  8. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  9. The IRIS Incinerator at Cea-Valduc assessment after more than one ton and a half of active waste incineration

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteau, P.; Longuet, T.; Lemort, F.; Lannaud, J.; Lorich, M.; Medzadourian, M.

    2000-01-01

    During the operation of its facilities, the Valduc Research Center produces alpha-contaminated solid waste. An incineration facility has been built to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process, which was developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run during more than 2,500 hours in 1997-1998. Active commissioning of the facility was performed in March 1999. Since then five campaigns with active waste and a complete plutonium cleaning session have been carried out, the results of which are given in the paper. The Valduc incinerator is the first industrial active application of the IRIS process. (authors)

  10. The Legal Ethical Backbone of Conscientious Refusal

    DEFF Research Database (Denmark)

    Munthe, Christian; Nielsen, Morten Ebbe Juul

    2017-01-01

    This article analyzes the idea of a legal right to conscientious refusal for healthcare professionals from a basic legal ethical standpoint, using refusal to perform tasks related to legal abortion (in cases of voluntary employment) as a case in point. The idea of a legal right to conscientious...... refusal is distinguished from ideas regarding moral rights or reasons related to conscientious refusal, and none of the latter are found to support the notion of a legal right. Reasons for allowing some sort of room for conscientious refusal for healthcare professionals based on the importance of cultural...... identity and the fostering of a critical atmosphere might provide some support, if no countervailing factors apply. One such factor is that a legal right to healthcare professionals’ conscientious refusal must comply with basic legal ethical tenets regarding the rule of law and equal treatment...

  11. Life cycle assessment of municipal solid waste management scenarios on the small island of Mauritius.

    Science.gov (United States)

    Rajcoomar, Avinash; Ramjeawon, Toolseeram

    2017-03-01

    The aim of this study was to use the life cycle assessment tool to assess, from an environmental point of view, the different possible municipal solid waste (MSW) management scenarios for the island of Mauritius. The scenarios include landfilling with energy recovery (S1), incineration with energy recovery (S2), composting, incineration and landfilling (S3) and finally composting, recycling, incineration and landfilling (S4). The MSW generated in 2010 was selected as the functional unit. Foreground data were collected through surveys and literature. Background data were obtained from ecoinvent data in SimaPro 8 libraries. The scenarios were compared both through the CML-IA baseline-midpoint method and the ReCiPe end-point method. From the midpoint method, the results obtained indicates that landfilling (S1) has the greatest impact in all the analyzed impact categories except ozone layer depletion and human toxicity, while incineration (S2) has the least impact on almost all the analyzed damage categories except in global warming potential and human toxicity. The collection and transportation of waste has a significant impact on the environment. From the end-point method, S4 reduces the damage impact categories on Human Health, Ecosystems and Resources due to the recycling process. S3 is not favorable due to the impact caused by the composting process. However, it is also very important to emphasize that for incineration, the best available technology with energy recovery shall be considered. It is recommended that S2 and S4 are considered for strategic planning.

  12. Incineration of ion-exchange resins

    International Nuclear Information System (INIS)

    Valkiainen, M.; Nykyri, M.

    1985-01-01

    Incineration of ion-exchange resins in a fluidized bed was studied on a pilot plant scale at the Technical Research Centre of Finland. Both granular and powdered resins were incinerated in dry and slurry form. Different bed materials were used in order to trap as much cesium and cobalt (inactive tracers) as possible in the bed. Also the sintering of the bed materials was studied in the presence of sodium. When immobilized with cement the volume of ash-concrete is 4 to 22% of the concrete of equal compressive strength acquired by direct solidification. Two examples of multi-purpose equipment capable of incinerating ion-exchange resins are presented. (orig.)

  13. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  14. Low-level and mixed waste incinerator survey report

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1988-10-01

    The Low-Level and Mixed Waste Survey Task was initiated to investigate and document current and planned incinerator facilities in the Department of Energy Defense Programs (DOE-DP) system. A survey was mailed to the DOE field offices requesting information regarding existing or planned incinerator facilities located under their jurisdiction. The information requested included type, capacities, uses, costs, and mechanical description of the incinerators. The results of this survey are documented in this report. Nine sites responded to the survey, with eight sites listing nine incineration units in several stages of operations. The Idaho National Engineering Laboratory listed two operational facilities. There are four incinerators that are planned for start-up in 1991. Of the existing incinerators, three are used mostly for low-level wastes, while the planned units will be used for low-level, mixed, and hazardous wastes. This report documents the current state of the incineration facilities in the DOE-DP system and provides a preliminary strategy for management of low-level wastes and a basis for implementing this strategy. 5 refs., 4 figs., 14 tabs

  15. 40 CFR 60.2886 - What is a new incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which... incineration unit? (a) A new incineration unit is an incineration unit subject to this subpart that meets...

  16. Incineration of Sludge in a Fluidized-Bed Combustor

    OpenAIRE

    Chien-Song Chyang; Yu-Chi Wang

    2017-01-01

    For sludge disposal, incineration is considered to be better than direct burial because of regulations and space limitations in Taiwan. Additionally, burial after incineration can effectively prolong the lifespan of a landfill. Therefore, it is the most satisfactory method for treating sludge at present. Of the various incineration technologies, the fluidized bed incinerator is a suitable choice due to its fuel flexibility. In this work, sludge generated from industrial plants was treated in ...

  17. Current practice of incineration of low-level institutional radioactive waste

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1981-02-01

    During 1972, 142 medical and academic institutions were surveyed to assess the current practice of incineration of low-level radioactive waste. This was one activity carried out by the University of Maryland as part of a contract with EG and G Idaho, Inc., to site a radioactive waste incineration system. Of those surveyed, 46 (approximately 32%) were presently incinerating some type of radioactive waste. All were using controlled-air, multistage incinerators. Incinerators were most often used to burn animal carcasses and other biological wastes (96%). The average size unit had a capacity of 113 kg/h. Disposal of liquid scintillation vials posed special problems; eight institutions incinerated full scintillation vials and five incinerated scintillation fluids in bulk form. Most institutions (87%) used the incinerator to dispose of other wastes in addition to radioactive wastes. About half (20) of the institutions incinerating radioactive wastes reported shortcomings in their incineration process; those most often mentioned were: problems with liquid scintillation wastes, ash removal, melting glass, and visible smoke. Frequently cited reasons for incinerating wastes were: less expensive than shipping for commercial shallow land burial, volume reduction, convenience, and closure of existing disposal sites

  18. 40 CFR 60.2015 - What is a new incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999 or for... is a new incineration unit? (a) A new incineration unit is an incineration unit that meets either of...

  19. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    Science.gov (United States)

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Characterization of fly ashes from a municipal solid waste incinerator to explore its using in construction; Caracterizacion de cenizas procedentes de plantas de incineracion de residuos solidos urbanos para su posible utilizacion en construccion

    Energy Technology Data Exchange (ETDEWEB)

    Alaejos Gutierrez, M. P.

    2002-07-01

    The paper describes the physical and chemical characterization of fly ashes from municipal solid waste incinerator. The objective is to explore potential applications of this residue in construction products. The results show the no pozzolanic nature of the fly ashes, so its utilization as mineral admixture is discarded. however, the study reveals the expansive character of the fly ashes when are mixed with water. The results of X-ray diffraction confirm the presence of metallic aluminium in the fly ash as the origin of this expansion. This chemical reaction generates a considerable amount of hydrogen, inflammable gas. Three ways to avoid this reaction are proposed. On the other way, the expansive behaviour of the fly ashes allow to explore its possible application to produce cellular mortars, as the traditional production of these mortars have several similarities with the reaction of fly ash and water. (Author) 9 refs.