WorldWideScience

Sample records for multivariate regression model

  1. Regression Models For Multivariate Count Data.

    Science.gov (United States)

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2017-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.

  2. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  3. AN APPLICATION OF FUNCTIONAL MULTIVARIATE REGRESSION MODEL TO MULTICLASS CLASSIFICATION

    OpenAIRE

    Krzyśko, Mirosław; Smaga, Łukasz

    2017-01-01

    In this paper, the scale response functional multivariate regression model is considered. By using the basis functions representation of functional predictors and regression coefficients, this model is rewritten as a multivariate regression model. This representation of the functional multivariate regression model is used for multiclass classification for multivariate functional data. Computational experiments performed on real labelled data sets demonstrate the effectiveness of the proposed ...

  4. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu; Pourahmadi, Mohsen; Maadooliat, Mehdi

    2014-01-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both

  5. A generalized multivariate regression model for modelling ocean wave heights

    Science.gov (United States)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  6. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu

    2014-06-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  7. Collision prediction models using multivariate Poisson-lognormal regression.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2009-07-01

    This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

  8. Preference learning with evolutionary Multivariate Adaptive Regression Spline model

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for function approximation as well as being relatively easy to interpret. MARS models are evolved based on their efficiency in learning pairwise data. The method is tested on two datasets that collectively provide pairwise preference data of five cognitive states expressed by users. The method is analysed...

  9. Multivariate Frequency-Severity Regression Models in Insurance

    Directory of Open Access Journals (Sweden)

    Edward W. Frees

    2016-02-01

    Full Text Available In insurance and related industries including healthcare, it is common to have several outcome measures that the analyst wishes to understand using explanatory variables. For example, in automobile insurance, an accident may result in payments for damage to one’s own vehicle, damage to another party’s vehicle, or personal injury. It is also common to be interested in the frequency of accidents in addition to the severity of the claim amounts. This paper synthesizes and extends the literature on multivariate frequency-severity regression modeling with a focus on insurance industry applications. Regression models for understanding the distribution of each outcome continue to be developed yet there now exists a solid body of literature for the marginal outcomes. This paper contributes to this body of literature by focusing on the use of a copula for modeling the dependence among these outcomes; a major advantage of this tool is that it preserves the body of work established for marginal models. We illustrate this approach using data from the Wisconsin Local Government Property Insurance Fund. This fund offers insurance protection for (i property; (ii motor vehicle; and (iii contractors’ equipment claims. In addition to several claim types and frequency-severity components, outcomes can be further categorized by time and space, requiring complex dependency modeling. We find significant dependencies for these data; specifically, we find that dependencies among lines are stronger than the dependencies between the frequency and average severity within each line.

  10. Real estate value prediction using multivariate regression models

    Science.gov (United States)

    Manjula, R.; Jain, Shubham; Srivastava, Sharad; Rajiv Kher, Pranav

    2017-11-01

    The real estate market is one of the most competitive in terms of pricing and the same tends to vary significantly based on a lot of factors, hence it becomes one of the prime fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. Therefore in this paper, we present various important features to use while predicting housing prices with good accuracy. We have described regression models, using various features to have lower Residual Sum of Squares error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features (multiple regressions) or polynomial regression (applying a various set of powers in the features) is used for making better model fit. For these models are expected to be susceptible towards over fitting ridge regression is used to reduce it. This paper thus directs to the best application of regression models in addition to other techniques to optimize the result.

  11. Ultracentrifuge separative power modeling with multivariate regression using covariance matrix

    International Nuclear Information System (INIS)

    Migliavacca, Elder

    2004-01-01

    In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 460 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process variables, which significantly influence the δU values are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow rate F, cut θ and product line pressure P p . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heteroscedasticity with any explained regression model variable. The surface curves are made relating the separative power with the control variables F, θ and P p to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)

  12. Linear Multivariable Regression Models for Prediction of Eddy Dissipation Rate from Available Meteorological Data

    Science.gov (United States)

    MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.

    2005-01-01

    Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.

  13. Multivariate Regression Analysis and Slaughter Livestock,

    Science.gov (United States)

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  14. Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS

    Directory of Open Access Journals (Sweden)

    Soyoung Park

    2017-07-01

    Full Text Available This study mapped and analyzed groundwater potential using two different models, logistic regression (LR and multivariate adaptive regression splines (MARS, and compared the results. A spatial database was constructed for groundwater well data and groundwater influence factors. Groundwater well data with a high potential yield of ≥70 m3/d were extracted, and 859 locations (70% were used for model training, whereas the other 365 locations (30% were used for model validation. We analyzed 16 groundwater influence factors including altitude, slope degree, slope aspect, plan curvature, profile curvature, topographic wetness index, stream power index, sediment transport index, distance from drainage, drainage density, lithology, distance from fault, fault density, distance from lineament, lineament density, and land cover. Groundwater potential maps (GPMs were constructed using LR and MARS models and tested using a receiver operating characteristics curve. Based on this analysis, the area under the curve (AUC for the success rate curve of GPMs created using the MARS and LR models was 0.867 and 0.838, and the AUC for the prediction rate curve was 0.836 and 0.801, respectively. This implies that the MARS model is useful and effective for groundwater potential analysis in the study area.

  15. Parameter estimation of multivariate multiple regression model using bayesian with non-informative Jeffreys’ prior distribution

    Science.gov (United States)

    Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.

    2018-05-01

    Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.

  16. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    Science.gov (United States)

    Ulbrich, Norbert Manfred

    2013-01-01

    A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.

  17. PM10 modeling in the Oviedo urban area (Northern Spain) by using multivariate adaptive regression splines

    Science.gov (United States)

    Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza

    2014-10-01

    The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of

  18. Multivariate and semiparametric kernel regression

    OpenAIRE

    Härdle, Wolfgang; Müller, Marlene

    1997-01-01

    The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...

  19. Inference for multivariate regression model based on multiply imputed synthetic data generated via posterior predictive sampling

    Science.gov (United States)

    Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.

    2017-06-01

    The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.

  20. Multivariate Multiple Regression Models for a Big Data-Empowered SON Framework in Mobile Wireless Networks

    Directory of Open Access Journals (Sweden)

    Yoonsu Shin

    2016-01-01

    Full Text Available In the 5G era, the operational cost of mobile wireless networks will significantly increase. Further, massive network capacity and zero latency will be needed because everything will be connected to mobile networks. Thus, self-organizing networks (SON are needed, which expedite automatic operation of mobile wireless networks, but have challenges to satisfy the 5G requirements. Therefore, researchers have proposed a framework to empower SON using big data. The recent framework of a big data-empowered SON analyzes the relationship between key performance indicators (KPIs and related network parameters (NPs using machine-learning tools, and it develops regression models using a Gaussian process with those parameters. The problem, however, is that the methods of finding the NPs related to the KPIs differ individually. Moreover, the Gaussian process regression model cannot determine the relationship between a KPI and its various related NPs. In this paper, to solve these problems, we proposed multivariate multiple regression models to determine the relationship between various KPIs and NPs. If we assume one KPI and multiple NPs as one set, the proposed models help us process multiple sets at one time. Also, we can find out whether some KPIs are conflicting or not. We implement the proposed models using MapReduce.

  1. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    Science.gov (United States)

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  2. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    Science.gov (United States)

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  3. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models.

    Science.gov (United States)

    Lehermeier, Christina; Schön, Chris-Carolin; de Los Campos, Gustavo

    2015-09-01

    Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to "correct" for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. Copyright © 2015 by the Genetics Society of America.

  4. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    Science.gov (United States)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  5. A Model for Shovel Capital Cost Estimation, Using a Hybrid Model of Multivariate Regression and Neural Networks

    Directory of Open Access Journals (Sweden)

    Abdolreza Yazdani-Chamzini

    2017-12-01

    Full Text Available Cost estimation is an essential issue in feasibility studies in civil engineering. Many different methods can be applied to modelling costs. These methods can be divided into several main groups: (1 artificial intelligence, (2 statistical methods, and (3 analytical methods. In this paper, the multivariate regression (MVR method, which is one of the most popular linear models, and the artificial neural network (ANN method, which is widely applied to solving different prediction problems with a high degree of accuracy, have been combined to provide a cost estimate model for a shovel machine. This hybrid methodology is proposed, taking the advantages of MVR and ANN models in linear and nonlinear modelling, respectively. In the proposed model, the unique advantages of the MVR model in linear modelling are used first to recognize the existing linear structure in data, and, then, the ANN for determining nonlinear patterns in preprocessed data is applied. The results with three indices indicate that the proposed model is efficient and capable of increasing the prediction accuracy.

  6. Multivariate Regression Analysis and Statistical Modeling for Summer Extreme Precipitation over the Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2014-01-01

    Full Text Available Extreme precipitation is likely to be one of the most severe meteorological disasters in China; however, studies on the physical factors affecting precipitation extremes and corresponding prediction models are not accurately available. From a new point of view, the sensible heat flux (SHF and latent heat flux (LHF, which have significant impacts on summer extreme rainfall in Yangtze River basin (YRB, have been quantified and then selections of the impact factors are conducted. Firstly, a regional extreme precipitation index was applied to determine Regions of Significant Correlation (RSC by analyzing spatial distribution of correlation coefficients between this index and SHF, LHF, and sea surface temperature (SST on global ocean scale; then the time series of SHF, LHF, and SST in RSCs during 1967–2010 were selected. Furthermore, other factors that significantly affect variations in precipitation extremes over YRB were also selected. The methods of multiple stepwise regression and leave-one-out cross-validation (LOOCV were utilized to analyze and test influencing factors and statistical prediction model. The correlation coefficient between observed regional extreme index and model simulation result is 0.85, with significant level at 99%. This suggested that the forecast skill was acceptable although many aspects of the prediction model should be improved.

  7. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree

    Science.gov (United States)

    Heddam, Salim; Kisi, Ozgur

    2018-04-01

    In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.

  8. Multivariate regression models for the simultaneous quantitative analysis of calcium and magnesium carbonates and magnesium oxide through drifts data

    Directory of Open Access Journals (Sweden)

    Marder Luciano

    2006-01-01

    Full Text Available In the present work multivariate regression models were developed for the quantitative analysis of ternary systems using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS to determine the concentration in weight of calcium carbonate, magnesium carbonate and magnesium oxide. Nineteen spectra of standard samples previously defined in ternary diagram by mixture design were prepared and mid-infrared diffuse reflectance spectra were recorded. The partial least squares (PLS regression method was applied to the model. The spectra set was preprocessed by either mean-centered and variance-scaled (model 2 or mean-centered only (model 1. The results based on the prediction performance of the external validation set expressed by RMSEP (root mean square error of prediction demonstrated that it is possible to develop good models to simultaneously determine calcium carbonate, magnesium carbonate and magnesium oxide content in powdered samples that can be used in the study of the thermal decomposition of dolomite rocks.

  9. Modeling the potential risk factors of bovine viral diarrhea prevalence in Egypt using univariable and multivariable logistic regression analyses

    Directory of Open Access Journals (Sweden)

    Abdelfattah M. Selim

    2018-03-01

    Full Text Available Aim: The present cross-sectional study was conducted to determine the seroprevalence and potential risk factors associated with Bovine viral diarrhea virus (BVDV disease in cattle and buffaloes in Egypt, to model the potential risk factors associated with the disease using logistic regression (LR models, and to fit the best predictive model for the current data. Materials and Methods: A total of 740 blood samples were collected within November 2012-March 2013 from animals aged between 6 months and 3 years. The potential risk factors studied were species, age, sex, and herd location. All serum samples were examined with indirect ELIZA test for antibody detection. Data were analyzed with different statistical approaches such as Chi-square test, odds ratios (OR, univariable, and multivariable LR models. Results: Results revealed a non-significant association between being seropositive with BVDV and all risk factors, except for species of animal. Seroprevalence percentages were 40% and 23% for cattle and buffaloes, respectively. OR for all categories were close to one with the highest OR for cattle relative to buffaloes, which was 2.237. Likelihood ratio tests showed a significant drop of the -2LL from univariable LR to multivariable LR models. Conclusion: There was an evidence of high seroprevalence of BVDV among cattle as compared with buffaloes with the possibility of infection in different age groups of animals. In addition, multivariable LR model was proved to provide more information for association and prediction purposes relative to univariable LR models and Chi-square tests if we have more than one predictor.

  10. Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji

    2016-07-01

    Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.

  11. Research on refugees and immigrants social integration in Yunnan Border Area: An empirical analysis on the multivariable linear regression model

    Directory of Open Access Journals (Sweden)

    Peng Nai

    2016-03-01

    Full Text Available A great number of immigration populations resident permanently in Yunnan Border Area of China. To some extent, these people belong to refugees or immigrants in accordance with International Rules, which significantly features the social diversity of this area. However, this kind of social diversity always impairs the social order. Therefore, there will be a positive influence to the local society governance by a research on local immigration integration. This essay hereby attempts to acquire the data of the living situation of these border area immigration and refugees. The analysis of the social integration of refugees and immigration in Yunnan border area in China will be deployed through the modeling of multivariable linear regression based on these data in order to propose some more achievable resolutions.

  12. Modelling lecturer performance index of private university in Tulungagung by using survival analysis with multivariate adaptive regression spline

    Science.gov (United States)

    Hasyim, M.; Prastyo, D. D.

    2018-03-01

    Survival analysis performs relationship between independent variables and survival time as dependent variable. In fact, not all survival data can be recorded completely by any reasons. In such situation, the data is called censored data. Moreover, several model for survival analysis requires assumptions. One of the approaches in survival analysis is nonparametric that gives more relax assumption. In this research, the nonparametric approach that is employed is Multivariate Regression Adaptive Spline (MARS). This study is aimed to measure the performance of private university’s lecturer. The survival time in this study is duration needed by lecturer to obtain their professional certificate. The results show that research activities is a significant factor along with developing courses material, good publication in international or national journal, and activities in research collaboration.

  13. Sunspot Cycle Prediction Using Multivariate Regression and Binary ...

    Indian Academy of Sciences (India)

    49

    Multivariate regression model has been derived based on the available cycles 1 .... The flare index correlates well with various parameters of the solar activity. ...... 32) Sabarinath A and Anilkumar A K 2011 A stochastic prediction model for the.

  14. Multivariate Regression of Liver on Intestine of Mice: A ...

    African Journals Online (AJOL)

    Multivariate Regression of Liver on Intestine of Mice: A Chemotherapeutic Evaluation of Plant ... Using an analysis of covariance model, the effects ... The findings revealed, with the aid of likelihood-ratio statistic, a marked improvement in

  15. Retro-regression--another important multivariate regression improvement.

    Science.gov (United States)

    Randić, M

    2001-01-01

    We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.

  16. Study of risk factors affecting both hypertension and obesity outcome by using multivariate multilevel logistic regression models

    Directory of Open Access Journals (Sweden)

    Sepedeh Gholizadeh

    2016-07-01

    Full Text Available Background:Obesity and hypertension are the most important non-communicable diseases thatin many studies, the prevalence and their risk factors have been performedin each geographic region univariately.Study of factors affecting both obesity and hypertension may have an important role which to be adrressed in this study. Materials &Methods:This cross-sectional study was conducted on 1000 men aged 20-70 living in Bushehr province. Blood pressure was measured three times and the average of them was considered as one of the response variables. Hypertension was defined as systolic blood pressure ≥140 (and-or diastolic blood pressure ≥90 and obesity was defined as body mass index ≥25. Data was analyzed by using multilevel, multivariate logistic regression model by MlwiNsoftware. Results:Intra class correlations in cluster level obtained 33% for high blood pressure and 37% for obesity, so two level model was fitted to data. The prevalence of obesity and hypertension obtained 43.6% (0.95%CI; 40.6-46.5, 29.4% (0.95%CI; 26.6-32.1 respectively. Age, gender, smoking, hyperlipidemia, diabetes, fruit and vegetable consumption and physical activity were the factors affecting blood pressure (p≤0.05. Age, gender, hyperlipidemia, diabetes, fruit and vegetable consumption, physical activity and place of residence are effective on obesity (p≤0.05. Conclusion: The multilevel models with considering levels distribution provide more precise estimates. As regards obesity and hypertension are the major risk factors for cardiovascular disease, by knowing the high-risk groups we can d careful planning to prevention of non-communicable diseases and promotion of society health.

  17. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    Science.gov (United States)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross

  18. Multivariate Local Polynomial Regression with Application to Shenzhen Component Index

    Directory of Open Access Journals (Sweden)

    Liyun Su

    2011-01-01

    Full Text Available This study attempts to characterize and predict stock index series in Shenzhen stock market using the concepts of multivariate local polynomial regression. Based on nonlinearity and chaos of the stock index time series, multivariate local polynomial prediction methods and univariate local polynomial prediction method, all of which use the concept of phase space reconstruction according to Takens' Theorem, are considered. To fit the stock index series, the single series changes into bivariate series. To evaluate the results, the multivariate predictor for bivariate time series based on multivariate local polynomial model is compared with univariate predictor with the same Shenzhen stock index data. The numerical results obtained by Shenzhen component index show that the prediction mean squared error of the multivariate predictor is much smaller than the univariate one and is much better than the existed three methods. Even if the last half of the training data are used in the multivariate predictor, the prediction mean squared error is smaller than the univariate predictor. Multivariate local polynomial prediction model for nonsingle time series is a useful tool for stock market price prediction.

  19. Multivariate GARCH models

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    This article contains a review of multivariate GARCH models. Most common GARCH models are presented and their properties considered. This also includes nonparametric and semiparametric models. Existing specification and misspecification tests are discussed. Finally, there is an empirical example...

  20. A New Predictive Model Based on the ABC Optimized Multivariate Adaptive Regression Splines Approach for Predicting the Remaining Useful Life in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Paulino José García Nieto

    2016-05-01

    Full Text Available Remaining useful life (RUL estimation is considered as one of the most central points in the prognostics and health management (PHM. The present paper describes a nonlinear hybrid ABC–MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed, it is well-known that an accurate RUL estimation allows failure prevention in a more controllable way so that the effective maintenance can be carried out in appropriate time to correct impending faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS, which have been successfully adopted for regression problems, with the artificial bee colony (ABC technique. This optimization technique involves parameter setting in the MARS training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid ABC–MARS-based model from the remaining measured parameters (input variables for aircraft engines with success. A correlation coefficient equal to 0.92 was obtained when this hybrid ABC–MARS-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. The main advantage of this predictive model is that it does not require information about the previous operation states of the aircraft engine.

  1. Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique

    Science.gov (United States)

    Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad

    2015-11-01

    One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.

  2. Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.

    Science.gov (United States)

    Li, Yanming; Nan, Bin; Zhu, Ji

    2015-06-01

    We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associations between multiple traits and multiple predictors, with each trait and each predictor embedded in some biological functional groups such as genes, pathways or brain regions. The method is able to effectively remove unimportant groups as well as unimportant individual coefficients within important groups, particularly for large p small n problems, and is flexible in handling various complex group structures such as overlapping or nested or multilevel hierarchical structures. The method is evaluated through extensive simulations with comparisons to the conventional lasso and group lasso methods, and is applied to an eQTL association study. © 2015, The International Biometric Society.

  3. REGSTEP - stepwise multivariate polynomial regression with singular extensions

    International Nuclear Information System (INIS)

    Davierwalla, D.M.

    1977-09-01

    The program REGSTEP determines a polynomial approximation, in the least squares sense, to tabulated data. The polynomial may be univariate or multivariate. The computational method is that of stepwise regression. A variable is inserted into the regression basis if it is significant with respect to an appropriate F-test at a preselected risk level. In addition, should a variable already in the basis, become nonsignificant (again with respect to an appropriate F-test) after the entry of a new variable, it is expelled from the model. Thus only significant variables are retained in the model. Although written expressly to be incorporated into CORCOD, a code for predicting nuclear cross sections for given values of power, temperature, void fractions, Boron content etc. there is nothing to limit the use of REGSTEP to nuclear applications, as the examples demonstrate. A separate version has been incorporated into RSYST for the general user. (Auth.)

  4. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution

    Science.gov (United States)

    Kisi, Ozgur; Parmar, Kulwinder Singh

    2016-03-01

    This study investigates the accuracy of least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5Tree) in modeling river water pollution. Various combinations of water quality parameters, Free Ammonia (AMM), Total Kjeldahl Nitrogen (TKN), Water Temperature (WT), Total Coliform (TC), Fecal Coliform (FC) and Potential of Hydrogen (pH) monitored at Nizamuddin, Delhi Yamuna River in India were used as inputs to the applied models. Results indicated that the LSSVM and MARS models had almost same accuracy and they performed better than the M5Tree model in modeling monthly chemical oxygen demand (COD). The average root mean square error (RMSE) of the LSSVM and M5Tree models was decreased by 1.47% and 19.1% using MARS model, respectively. Adding TC input to the models did not increase their accuracy in modeling COD while adding FC and pH inputs to the models generally decreased the accuracy. The overall results indicated that the MARS and LSSVM models could be successfully used in estimating monthly river water pollution level by using AMM, TKN and WT parameters as inputs.

  5. A Scalable Local Algorithm for Distributed Multivariate Regression

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer environments. The algorithm can be used for distributed...

  6. An Efficient Local Algorithm for Distributed Multivariate Regression

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer environments. The algorithm is designed for distributed...

  7. Using Multivariate Regression Model with Least Absolute Shrinkage and Selection Operator (LASSO) to Predict the Incidence of Xerostomia after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    Science.gov (United States)

    Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Wu, Jia-Ming; Wang, Hung-Yu; Horng, Mong-Fong; Chang, Chun-Ming; Lan, Jen-Hong; Huang, Ya-Yu; Fang, Fu-Min; Leung, Stephen Wan

    2014-01-01

    Purpose The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patients treated with IMRT. Methods and Materials Quality of life questionnaire datasets from 206 patients with HNC were analyzed. The European Organization for Research and Treatment of Cancer QLQ-H&N35 and QLQ-C30 questionnaires were used as the endpoint evaluation. The primary endpoint (grade 3+ xerostomia) was defined as moderate-to-severe xerostomia at 3 (XER3m) and 12 months (XER12m) after the completion of IMRT. Normal tissue complication probability (NTCP) models were developed. The optimal and suboptimal numbers of prognostic factors for a multivariate logistic regression model were determined using the LASSO with bootstrapping technique. Statistical analysis was performed using the scaled Brier score, Nagelkerke R2, chi-squared test, Omnibus, Hosmer-Lemeshow test, and the AUC. Results Eight prognostic factors were selected by LASSO for the 3-month time point: Dmean-c, Dmean-i, age, financial status, T stage, AJCC stage, smoking, and education. Nine prognostic factors were selected for the 12-month time point: Dmean-i, education, Dmean-c, smoking, T stage, baseline xerostomia, alcohol abuse, family history, and node classification. In the selection of the suboptimal number of prognostic factors by LASSO, three suboptimal prognostic factors were fine-tuned by Hosmer-Lemeshow test and AUC, i.e., Dmean-c, Dmean-i, and age for the 3-month time point. Five suboptimal prognostic factors were also selected for the 12-month time point, i.e., Dmean-i, education, Dmean-c, smoking, and T stage. The overall performance for both time points of the NTCP model in terms of scaled Brier score, Omnibus, and Nagelkerke R2 was satisfactory and corresponded well with the expected values. Conclusions

  8. Seasonal variation of benzo(a)pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations.

    Science.gov (United States)

    Callén, M S; López, J M; Mastral, A M

    2010-08-15

    The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography mass-spectrometry mass-spectrometry (GC-MS-MS). Multivariate linear regression models (MLRM) were used to predict BaP air concentrations in two sampling places, taking PM10 and meteorological variables as possible predictors. The model obtained with data from two sampling sites (all sites model) (R(2)=0.817, PRESS/SSY=0.183) included the significant variables like PM10, temperature, solar radiation and wind speed and was internally and externally validated. The first validation was performed by cross validation and the last one by BaP concentrations from previous campaigns carried out in Zaragoza from 2001-2004. The proposed model constitutes a first approximation to estimate BaP concentrations in urban atmospheres with very good internal prediction (Q(CV)(2)=0.813, PRESS/SSY=0.187) and with the maximal external prediction for the 2001-2002 campaign (Q(ext)(2)=0.679 and PRESS/SSY=0.321) versus the 2001-2004 campaign (Q(ext)(2)=0.551, PRESS/SSY=0.449). Copyright 2010 Elsevier B.V. All rights reserved.

  9. Seasonal variation of benzo(a)pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations

    International Nuclear Information System (INIS)

    Callen, M.S.; Lopez, J.M.; Mastral, A.M.

    2010-01-01

    The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography mass-spectrometry mass-spectrometry (GC-MS-MS). Multivariate linear regression models (MLRM) were used to predict BaP air concentrations in two sampling places, taking PM10 and meteorological variables as possible predictors. The model obtained with data from two sampling sites (all sites model) (R 2 = 0.817, PRESS/SSY = 0.183) included the significant variables like PM10, temperature, solar radiation and wind speed and was internally and externally validated. The first validation was performed by cross validation and the last one by BaP concentrations from previous campaigns carried out in Zaragoza from 2001-2004. The proposed model constitutes a first approximation to estimate BaP concentrations in urban atmospheres with very good internal prediction (Q CV 2 =0.813, PRESS/SSY = 0.187) and with the maximal external prediction for the 2001-2002 campaign (Q ext 2 =0.679 and PRESS/SSY = 0.321) versus the 2001-2004 campaign (Q ext 2 =0.551, PRESS/SSY = 0.449).

  10. Asymptotics of Multivariate Regression with Consecutively Added Dependent Varibles

    NARCIS (Netherlands)

    Raats, V.M.; van der Genugten, B.B.; Moors, J.J.A.

    2004-01-01

    We consider multivariate regression where new dependent variables are consecutively added during the experiment (or in time).So, viewed at the end of the experiment, the number of observations decreases with each added variable. The explanatory variables are observed throughout.In a previous paper

  11. Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Lassi Rieppo

    Full Text Available Fourier Transform Infrared (FT-IR spectroscopic imaging has been earlier applied for the spatial estimation of the collagen and the proteoglycan (PG contents of articular cartilage (AC. However, earlier studies have been limited to the use of univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the present study was to evaluate the suitability of partial least squares regression (PLSR and principal component regression (PCR methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC. Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital densitometric measurements of Safranin O-stained sections provided the reference for PG content. The results showed that multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the area of carbohydrate region with or without amide I normalization or second derivative spectrum univariate parameters. Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When true molecular specificity is required, the multivariate models should be used.

  12. Multivariate analysis: models and method

    International Nuclear Information System (INIS)

    Sanz Perucha, J.

    1990-01-01

    Data treatment techniques are increasingly used since computer methods result of wider access. Multivariate analysis consists of a group of statistic methods that are applied to study objects or samples characterized by multiple values. A final goal is decision making. The paper describes the models and methods of multivariate analysis

  13. Prognostic factorsin inoperable adenocarcinoma of the lung: A multivariate regression analysis of 259 patiens

    DEFF Research Database (Denmark)

    Sørensen, Jens Benn; Badsberg, Jens Henrik; Olsen, Jens

    1989-01-01

    The prognostic factors for survival in advanced adenocarcinoma of the lung were investigated in a consecutive series of 259 patients treated with chemotherapy. Twenty-eight pretreatment variables were investigated by use of Cox's multivariate regression model, including histological subtypes and ...

  14. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

  15. Nonparametric Regression Estimation for Multivariate Null Recurrent Processes

    Directory of Open Access Journals (Sweden)

    Biqing Cai

    2015-04-01

    Full Text Available This paper discusses nonparametric kernel regression with the regressor being a \\(d\\-dimensional \\(\\beta\\-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate \\(\\sqrt{n(Th^{d}}\\, where \\(n(T\\ is the number of regenerations for a \\(\\beta\\-null recurrent process and the limiting distribution (with proper normalization is normal. Furthermore, we show that the two-step estimator for the volatility function is consistent. The finite sample performance of the estimate is quite reasonable when the leave-one-out cross validation method is used for bandwidth selection. We apply the proposed method to study the relationship of Federal funds rate with 3-month and 5-year T-bill rates and discover the existence of nonlinearity of the relationship. Furthermore, the in-sample and out-of-sample performance of the nonparametric model is far better than the linear model.

  16. A "Model" Multivariable Calculus Course.

    Science.gov (United States)

    Beckmann, Charlene E.; Schlicker, Steven J.

    1999-01-01

    Describes a rich, investigative approach to multivariable calculus. Introduces a project in which students construct physical models of surfaces that represent real-life applications of their choice. The models, along with student-selected datasets, serve as vehicles to study most of the concepts of the course from both continuous and discrete…

  17. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    Science.gov (United States)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  18. Regression Analysis for Multivariate Dependent Count Data Using Convolved Gaussian Processes

    OpenAIRE

    Sofro, A'yunin; Shi, Jian Qing; Cao, Chunzheng

    2017-01-01

    Research on Poisson regression analysis for dependent data has been developed rapidly in the last decade. One of difficult problems in a multivariate case is how to construct a cross-correlation structure and at the meantime make sure that the covariance matrix is positive definite. To address the issue, we propose to use convolved Gaussian process (CGP) in this paper. The approach provides a semi-parametric model and offers a natural framework for modeling common mean structure and covarianc...

  19. Multivariate Regression of Liver on Intestine of Mice: A ...

    African Journals Online (AJOL)

    FIRST LADY

    pairs recovered. Linear, semi-logarithmic and logarithmic-logarithmic (log- log) regressions were performed. He chose the log-log curves because its variance was more uniform. The statistical comparison of .... E(U1| U2 = u2) is the regression function of U1 on U2, and Var (U1|U2 = u2) is the conditional covariance matrix.

  20. Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel

    Science.gov (United States)

    Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.

    2017-12-01

    The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.

  1. Sparse Linear Identifiable Multivariate Modeling

    DEFF Research Database (Denmark)

    Henao, Ricardo; Winther, Ole

    2011-01-01

    and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...

  2. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    Science.gov (United States)

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  3. Logistic regression models

    CERN Document Server

    Hilbe, Joseph M

    2009-01-01

    This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...

  4. Multivariate linear regression of high-dimensional fMRI data with multiple target variables.

    Science.gov (United States)

    Valente, Giancarlo; Castellanos, Agustin Lage; Vanacore, Gianluca; Formisano, Elia

    2014-05-01

    Multivariate regression is increasingly used to study the relation between fMRI spatial activation patterns and experimental stimuli or behavioral ratings. With linear models, informative brain locations are identified by mapping the model coefficients. This is a central aspect in neuroimaging, as it provides the sought-after link between the activity of neuronal populations and subject's perception, cognition or behavior. Here, we show that mapping of informative brain locations using multivariate linear regression (MLR) may lead to incorrect conclusions and interpretations. MLR algorithms for high dimensional data are designed to deal with targets (stimuli or behavioral ratings, in fMRI) separately, and the predictive map of a model integrates information deriving from both neural activity patterns and experimental design. Not accounting explicitly for the presence of other targets whose associated activity spatially overlaps with the one of interest may lead to predictive maps of troublesome interpretation. We propose a new model that can correctly identify the spatial patterns associated with a target while achieving good generalization. For each target, the training is based on an augmented dataset, which includes all remaining targets. The estimation on such datasets produces both maps and interaction coefficients, which are then used to generalize. The proposed formulation is independent of the regression algorithm employed. We validate this model on simulated fMRI data and on a publicly available dataset. Results indicate that our method achieves high spatial sensitivity and good generalization and that it helps disentangle specific neural effects from interaction with predictive maps associated with other targets. Copyright © 2013 Wiley Periodicals, Inc.

  5. (Non) linear regression modelling

    NARCIS (Netherlands)

    Cizek, P.; Gentle, J.E.; Hardle, W.K.; Mori, Y.

    2012-01-01

    We will study causal relationships of a known form between random variables. Given a model, we distinguish one or more dependent (endogenous) variables Y = (Y1,…,Yl), l ∈ N, which are explained by a model, and independent (exogenous, explanatory) variables X = (X1,…,Xp),p ∈ N, which explain or

  6. Model Checking Multivariate State Rewards

    DEFF Research Database (Denmark)

    Nielsen, Bo Friis; Nielson, Flemming; Nielson, Hanne Riis

    2010-01-01

    We consider continuous stochastic logics with state rewards that are interpreted over continuous time Markov chains. We show how results from multivariate phase type distributions can be used to obtain higher-order moments for multivariate state rewards (including covariance). We also generalise...

  7. Non-proportional odds multivariate logistic regression of ordinal family data.

    Science.gov (United States)

    Zaloumis, Sophie G; Scurrah, Katrina J; Harrap, Stephen B; Ellis, Justine A; Gurrin, Lyle C

    2015-03-01

    Methods to examine whether genetic and/or environmental sources can account for the residual variation in ordinal family data usually assume proportional odds. However, standard software to fit the non-proportional odds model to ordinal family data is limited because the correlation structure of family data is more complex than for other types of clustered data. To perform these analyses we propose the non-proportional odds multivariate logistic regression model and take a simulation-based approach to model fitting using Markov chain Monte Carlo methods, such as partially collapsed Gibbs sampling and the Metropolis algorithm. We applied the proposed methodology to male pattern baldness data from the Victorian Family Heart Study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Supremum Norm Posterior Contraction and Credible Sets for Nonparametric Multivariate Regression

    NARCIS (Netherlands)

    Yoo, W.W.; Ghosal, S

    2016-01-01

    In the setting of nonparametric multivariate regression with unknown error variance, we study asymptotic properties of a Bayesian method for estimating a regression function f and its mixed partial derivatives. We use a random series of tensor product of B-splines with normal basis coefficients as a

  9. Multivariate pluvial flood damage models

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-01-01

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks

  10. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  11. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...

  12. Using Multivariate Adaptive Regression Spline and Artificial Neural Network to Simulate Urbanization in Mumbai, India

    Science.gov (United States)

    Ahmadlou, M.; Delavar, M. R.; Tayyebi, A.; Shafizadeh-Moghadam, H.

    2015-12-01

    Land use change (LUC) models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS), and a global parametric model called artificial neural network (ANN) to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC) to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM) and 2010 (ETM+) were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.

  13. On the degrees of freedom of reduced-rank estimators in multivariate regression.

    Science.gov (United States)

    Mukherjee, A; Chen, K; Wang, N; Zhu, J

    We study the effective degrees of freedom of a general class of reduced-rank estimators for multivariate regression in the framework of Stein's unbiased risk estimation. A finite-sample exact unbiased estimator is derived that admits a closed-form expression in terms of the thresholded singular values of the least-squares solution and hence is readily computable. The results continue to hold in the high-dimensional setting where both the predictor and the response dimensions may be larger than the sample size. The derived analytical form facilitates the investigation of theoretical properties and provides new insights into the empirical behaviour of the degrees of freedom. In particular, we examine the differences and connections between the proposed estimator and a commonly-used naive estimator. The use of the proposed estimator leads to efficient and accurate prediction risk estimation and model selection, as demonstrated by simulation studies and a data example.

  14. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  15. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  16. Depth-weighted robust multivariate regression with application to sparse data

    KAUST Repository

    Dutta, Subhajit; Genton, Marc G.

    2017-01-01

    A robust method for multivariate regression is developed based on robust estimators of the joint location and scatter matrix of the explanatory and response variables using the notion of data depth. The multivariate regression estimator possesses desirable affine equivariance properties, achieves the best breakdown point of any affine equivariant estimator, and has an influence function which is bounded in both the response as well as the predictor variable. To increase the efficiency of this estimator, a re-weighted estimator based on robust Mahalanobis distances of the residual vectors is proposed. In practice, the method is more stable than existing methods that are constructed using subsamples of the data. The resulting multivariate regression technique is computationally feasible, and turns out to perform better than several popular robust multivariate regression methods when applied to various simulated data as well as a real benchmark data set. When the data dimension is quite high compared to the sample size it is still possible to use meaningful notions of data depth along with the corresponding depth values to construct a robust estimator in a sparse setting.

  17. Correcting for multivariate measurement error by regression calibration in meta-analyses of epidemiological studies.

    NARCIS (Netherlands)

    Kromhout, D.

    2009-01-01

    Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements of the

  18. Comparing treatment effects after adjustment with multivariable Cox proportional hazards regression and propensity score methods

    NARCIS (Netherlands)

    Martens, Edwin P; de Boer, Anthonius; Pestman, Wiebe R; Belitser, Svetlana V; Stricker, Bruno H Ch; Klungel, Olaf H

    PURPOSE: To compare adjusted effects of drug treatment for hypertension on the risk of stroke from propensity score (PS) methods with a multivariable Cox proportional hazards (Cox PH) regression in an observational study with censored data. METHODS: From two prospective population-based cohort

  19. Depth-weighted robust multivariate regression with application to sparse data

    KAUST Repository

    Dutta, Subhajit

    2017-04-05

    A robust method for multivariate regression is developed based on robust estimators of the joint location and scatter matrix of the explanatory and response variables using the notion of data depth. The multivariate regression estimator possesses desirable affine equivariance properties, achieves the best breakdown point of any affine equivariant estimator, and has an influence function which is bounded in both the response as well as the predictor variable. To increase the efficiency of this estimator, a re-weighted estimator based on robust Mahalanobis distances of the residual vectors is proposed. In practice, the method is more stable than existing methods that are constructed using subsamples of the data. The resulting multivariate regression technique is computationally feasible, and turns out to perform better than several popular robust multivariate regression methods when applied to various simulated data as well as a real benchmark data set. When the data dimension is quite high compared to the sample size it is still possible to use meaningful notions of data depth along with the corresponding depth values to construct a robust estimator in a sparse setting.

  20. The value of multivariate model sophistication

    DEFF Research Database (Denmark)

    Rombouts, Jeroen; Stentoft, Lars; Violante, Francesco

    2014-01-01

    We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ in their spec....... In addition to investigating the value of model sophistication in terms of dollar losses directly, we also use the model confidence set approach to statistically infer the set of models that delivers the best pricing performances.......We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ...

  1. Risk factors for pedicled flap necrosis in hand soft tissue reconstruction: a multivariate logistic regression analysis.

    Science.gov (United States)

    Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun

    2018-03-01

    Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.

  2. Mixture of Regression Models with Single-Index

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2016-01-01

    In this article, we propose a class of semiparametric mixture regression models with single-index. We argue that many recently proposed semiparametric/nonparametric mixture regression models can be considered special cases of the proposed model. However, unlike existing semiparametric mixture regression models, the new pro- posed model can easily incorporate multivariate predictors into the nonparametric components. Backfitting estimates and the corresponding algorithms have been proposed for...

  3. Nonparametric Mixture of Regression Models.

    Science.gov (United States)

    Huang, Mian; Li, Runze; Wang, Shaoli

    2013-07-01

    Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.

  4. Multivariate generalized linear mixed models using R

    CERN Document Server

    Berridge, Damon Mark

    2011-01-01

    Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...

  5. Regional trends in short-duration precipitation extremes: a flexible multivariate monotone quantile regression approach

    Science.gov (United States)

    Cannon, Alex

    2017-04-01

    univariate technique, and cannot incorporate information from additional covariates, for example ENSO state or physiographic controls on extreme rainfall within a region. Here, the univariate MQR model is extended to allow the use of multiple covariates. Multivariate monotone quantile regression (MMQR) is based on a single hidden-layer feedforward network with the quantile regression error function and partial monotonicity constraints. The MMQR model is demonstrated via Monte Carlo simulations and the estimation and visualization of regional trends in moderate rainfall extremes based on homogenized sub-daily precipitation data at stations in Canada.

  6. Regression Models for Repairable Systems

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr

    2015-01-01

    Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf

  7. Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines

    International Nuclear Information System (INIS)

    Li, Yanting; He, Yong; Su, Yan; Shu, Lianjie

    2016-01-01

    Highlights: • Suggests a nonparametric model based on MARS for output power prediction. • Compare the MARS model with a wide variety of prediction models. • Show that the MARS model is able to provide an overall good performance in both the training and testing stages. - Abstract: Both linear and nonlinear models have been proposed for forecasting the power output of photovoltaic systems. Linear models are simple to implement but less flexible. Due to the stochastic nature of the power output of PV systems, nonlinear models tend to provide better forecast than linear models. Motivated by this, this paper suggests a fairly simple nonlinear regression model known as multivariate adaptive regression splines (MARS), as an alternative to forecasting of solar power output. The MARS model is a data-driven modeling approach without any assumption about the relationship between the power output and predictors. It maintains simplicity of the classical multiple linear regression (MLR) model while possessing the capability of handling nonlinearity. It is simpler in format than other nonlinear models such as ANN, k-nearest neighbors (KNN), classification and regression tree (CART), and support vector machine (SVM). The MARS model was applied on the daily output of a grid-connected 2.1 kW PV system to provide the 1-day-ahead mean daily forecast of the power output. The comparisons with a wide variety of forecast models show that the MARS model is able to provide reliable forecast performance.

  8. Multivariate nonparametric regression and visualization with R and applications to finance

    CERN Document Server

    Klemelä, Jussi

    2014-01-01

    A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generatingmechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functio

  9. Simultaneous chemometric determination of pyridoxine hydrochloride and isoniazid in tablets by multivariate regression methods.

    Science.gov (United States)

    Dinç, Erdal; Ustündağ, Ozgür; Baleanu, Dumitru

    2010-08-01

    The sole use of pyridoxine hydrochloride during treatment of tuberculosis gives rise to pyridoxine deficiency. Therefore, a combination of pyridoxine hydrochloride and isoniazid is used in pharmaceutical dosage form in tuberculosis treatment to reduce this side effect. In this study, two chemometric methods, partial least squares (PLS) and principal component regression (PCR), were applied to the simultaneous determination of pyridoxine (PYR) and isoniazid (ISO) in their tablets. A concentration training set comprising binary mixtures of PYR and ISO consisting of 20 different combinations were randomly prepared in 0.1 M HCl. Both multivariate calibration models were constructed using the relationships between the concentration data set (concentration data matrix) and absorbance data matrix in the spectral region 200-330 nm. The accuracy and the precision of the proposed chemometric methods were validated by analyzing synthetic mixtures containing the investigated drugs. The recovery results obtained by applying PCR and PLS calibrations to the artificial mixtures were found between 100.0 and 100.7%. Satisfactory results obtained by applying the PLS and PCR methods to both artificial and commercial samples were obtained. The results obtained in this manuscript strongly encourage us to use them for the quality control and the routine analysis of the marketing tablets containing PYR and ISO drugs. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Boosted regression trees, multivariate adaptive regression splines and their two-step combinations with multiple linear regression or partial least squares to predict blood-brain barrier passage: a case study.

    Science.gov (United States)

    Deconinck, E; Zhang, M H; Petitet, F; Dubus, E; Ijjaali, I; Coomans, D; Vander Heyden, Y

    2008-02-18

    The use of some unconventional non-linear modeling techniques, i.e. classification and regression trees and multivariate adaptive regression splines-based methods, was explored to model the blood-brain barrier (BBB) passage of drugs and drug-like molecules. The data set contains BBB passage values for 299 structural and pharmacological diverse drugs, originating from a structured knowledge-based database. Models were built using boosted regression trees (BRT) and multivariate adaptive regression splines (MARS), as well as their respective combinations with stepwise multiple linear regression (MLR) and partial least squares (PLS) regression in two-step approaches. The best models were obtained using combinations of MARS with either stepwise MLR or PLS. It could be concluded that the use of combinations of a linear with a non-linear modeling technique results in some improved properties compared to the individual linear and non-linear models and that, when the use of such a combination is appropriate, combinations using MARS as non-linear technique should be preferred over those with BRT, due to some serious drawbacks of the BRT approaches.

  11. Reporting quality of multivariable logistic regression in selected Indian medical journals.

    Science.gov (United States)

    Kumar, R; Indrayan, A; Chhabra, P

    2012-01-01

    Use of multivariable logistic regression (MLR) modeling has steeply increased in the medical literature over the past few years. Testing of model assumptions and adequate reporting of MLR allow the reader to interpret results more accurately. To review the fulfillment of assumptions and reporting quality of MLR in selected Indian medical journals using established criteria. Analysis of published literature. Medknow.com publishes 68 Indian medical journals with open access. Eight of these journals had at least five articles using MLR between the years 1994 to 2008. Articles from each of these journals were evaluated according to the previously established 10-point quality criteria for reporting and to test the MLR model assumptions. SPSS 17 software and non-parametric test (Kruskal-Wallis H, Mann Whitney U, Spearman Correlation). One hundred and nine articles were finally found using MLR for analyzing the data in the selected eight journals. The number of such articles gradually increased after year 2003, but quality score remained almost similar over time. P value, odds ratio, and 95% confidence interval for coefficients in MLR was reported in 75.2% and sufficient cases (>10) per covariate of limiting sample size were reported in the 58.7% of the articles. No article reported the test for conformity of linear gradient for continuous covariates. Total score was not significantly different across the journals. However, involvement of statistician or epidemiologist as a co-author improved the average quality score significantly (P=0.014). Reporting of MLR in many Indian journals is incomplete. Only one article managed to score 8 out of 10 among 109 articles under review. All others scored less. Appropriate guidelines in instructions to authors, and pre-publication review of articles using MLR by a qualified statistician may improve quality of reporting.

  12. Ranking multivariate GARCH models by problem dimension

    NARCIS (Netherlands)

    M. Caporin (Massimiliano); M.J. McAleer (Michael)

    2010-01-01

    textabstractIn the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. The two most widely known and used are the Scalar BEKK model of Engle and Kroner (1995) and Ding and Engle (2001), and the DCC model of Engle (2002). Some recent research has begun to

  13. Correcting for multivariate measurement error by regression calibration in meta-analyses of epidemiological studies

    DEFF Research Database (Denmark)

    Tybjærg-Hansen, Anne

    2009-01-01

    Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements...... of the risk factors are observed on a subsample. We extend the multivariate RC techniques to a meta-analysis framework where multiple studies provide independent repeat measurements and information on disease outcome. We consider the cases where some or all studies have repeat measurements, and compare study......-specific, averaged and empirical Bayes estimates of RC parameters. Additionally, we allow for binary covariates (e.g. smoking status) and for uncertainty and time trends in the measurement error corrections. Our methods are illustrated using a subset of individual participant data from prospective long-term studies...

  14. Preliminary Multivariable Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored

  15. Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis.

    Science.gov (United States)

    Ponsoda, Vicente; Martínez, Kenia; Pineda-Pardo, José A; Abad, Francisco J; Olea, Julio; Román, Francisco J; Barbey, Aron K; Colom, Roberto

    2017-02-01

    Neuroimaging research involves analyses of huge amounts of biological data that might or might not be related with cognition. This relationship is usually approached using univariate methods, and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the probability of false negatives is also increased. Multivariate frameworks have been proposed for helping to alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous analysis of biological and cognitive data, namely, structural connections among 82 brain regions and several latent factors estimating cognitive performance. We tested whether cognitive differences predict distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections among regions, the 36 edges better predicted by the individuals' cognitive scores were selected. Cognitive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity patterns. The selected edges connect regions distributed across the entire brain and the network defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control, (b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This multivariate study suggests that one widespread, but limited number, of regions in the human brain, supports high-level cognitive ability differences. Hum Brain Mapp 38:803-816, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Multivariate Option Pricing Using Dynamic Copula Models

    NARCIS (Netherlands)

    van den Goorbergh, R.W.J.; Genest, C.; Werker, B.J.M.

    2003-01-01

    This paper examines the behavior of multivariate option prices in the presence of association between the underlying assets.Parametric families of copulas offering various alternatives to the normal dependence structure are used to model this association, which is explicitly assumed to vary over

  17. Interpretation of commonly used statistical regression models.

    Science.gov (United States)

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  18. Modeling Covariance Breakdowns in Multivariate GARCH

    OpenAIRE

    Jin, Xin; Maheu, John M

    2014-01-01

    This paper proposes a flexible way of modeling dynamic heterogeneous covariance breakdowns in multivariate GARCH (MGARCH) models. During periods of normal market activity, volatility dynamics are governed by an MGARCH specification. A covariance breakdown is any significant temporary deviation of the conditional covariance matrix from its implied MGARCH dynamics. This is captured through a flexible stochastic component that allows for changes in the conditional variances, covariances and impl...

  19. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression.

    Science.gov (United States)

    Delwiche, Stephen R; Reeves, James B

    2010-01-01

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various

  20. Endpoint in plasma etch process using new modified w-multivariate charts and windowed regression

    Science.gov (United States)

    Zakour, Sihem Ben; Taleb, Hassen

    2017-09-01

    Endpoint detection is very important undertaking on the side of getting a good understanding and figuring out if a plasma etching process is done in the right way, especially if the etched area is very small (0.1%). It truly is a crucial part of supplying repeatable effects in every single wafer. When the film being etched has been completely cleared, the endpoint is reached. To ensure the desired device performance on the produced integrated circuit, the high optical emission spectroscopy (OES) sensor is employed. The huge number of gathered wavelengths (profiles) is then analyzed and pre-processed using a new proposed simple algorithm named Spectra peak selection (SPS) to select the important wavelengths, then we employ wavelet analysis (WA) to enhance the performance of detection by suppressing noise and redundant information. The selected and treated OES wavelengths are then used in modified multivariate control charts (MEWMA and Hotelling) for three statistics (mean, SD and CV) and windowed polynomial regression for mean. The employ of three aforementioned statistics is motivated by controlling mean shift, variance shift and their ratio (CV) if both mean and SD are not stable. The control charts show their performance in detecting endpoint especially W-mean Hotelling chart and the worst result is given by CV statistic. As the best detection of endpoint is given by the W-Hotelling mean statistic, this statistic will be used to construct a windowed wavelet Hotelling polynomial regression. This latter can only identify the window containing endpoint phenomenon.

  1. Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: a case study in the Sarvian area, central Iran

    Science.gov (United States)

    Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran

    2018-03-01

    This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).

  2. A Seemingly Unrelated Poisson Regression Model

    OpenAIRE

    King, Gary

    1989-01-01

    This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.

  3. Application of multivariate adaptive regression spine-assisted objective function on optimization of heat transfer rate around a cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Prasenjit; Dad, Ajoy K. [Mechanical Engineering Department, National Institute of Technology, Agartala (India)

    2016-12-15

    The present study aims to predict the heat transfer characteristics around a square cylinder with different corner radii using multivariate adaptive regression splines (MARS). Further, the MARS-generated objective function is optimized by particle swarm optimization. The data for the prediction are taken from the recently published article by the present authors [P. Dey, A. Sarkar, A.K. Das, Development of GEP and ANN model to predict the unsteady forced convection over a cylinder, Neural Comput. Appl. (2015). Further, the MARS model is compared with artificial neural network and gene expression programming. It has been found that the MARS model is very efficient in predicting the heat transfer characteristics. It has also been found that MARS is more efficient than artificial neural network and gene expression programming in predicting the forced convection data, and also particle swarm optimization can efficiently optimize the heat transfer rate.

  4. Multivariate Markov chain modeling for stock markets

    Science.gov (United States)

    Maskawa, Jun-ichi

    2003-06-01

    We study a multivariate Markov chain model as a stochastic model of the price changes of portfolios in the framework of the mean field approximation. The time series of price changes are coded into the sequences of up and down spins according to their signs. We start with the discussion for small portfolios consisting of two stock issues. The generalization of our model to arbitrary size of portfolio is constructed by a recurrence relation. The resultant form of the joint probability of the stationary state coincides with Gibbs measure assigned to each configuration of spin glass model. Through the analysis of actual portfolios, it has been shown that the synchronization of the direction of the price changes is well described by the model.

  5. Multivariate statistical modelling based on generalized linear models

    CERN Document Server

    Fahrmeir, Ludwig

    1994-01-01

    This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...

  6. Multivariate regression analysis for determining short-term values of radon and its decay products from filter measurements

    International Nuclear Information System (INIS)

    Kraut, W.; Schwarz, W.; Wilhelm, A.

    1994-01-01

    A multivariate regression analysis is applied to decay measurements of α-resp. β-filter activcity. Activity concentrations for Po-218, Pb-214 and Bi-214, resp. for the Rn-222 equilibrium equivalent concentration are obtained explicitly. The regression analysis takes into account properly the variances of the measured count rates and their influence on the resulting activity concentrations. (orig.) [de

  7. Crane cabins' interior space multivariate anthropometric modeling.

    Science.gov (United States)

    Essdai, Ahmed; Spasojević Brkić, Vesna K; Golubović, Tamara; Brkić, Aleksandar; Popović, Vladimir

    2018-01-01

    Previous research has shown that today's crane cabins fail to meet the needs of a large proportion of operators. Performance and financial losses and effects on safety should not be overlooked as well. The first aim of this survey is to model the crane cabin interior space using up-to-date crane operator anthropometric data and to compare the multivariate and univariate method anthropometric models. The second aim of the paper is to define the crane cabin interior space dimensions that enable anthropometric convenience. To facilitate the cabin design, the anthropometric dimensions of 64 crane operators in the first sample and 19 more in the second sample were collected in Serbia. The multivariate anthropometric models, spanning 95% of the population on the basis of a set of 8 anthropometric dimensions, have been developed. The percentile method was also used on the same set of data. The dimensions of the interior space, necessary for the accommodation of the crane operator, are 1174×1080×1865 mm. The percentiles results for the 5th and 95th model are within the obtained dimensions. The results of this study may prove useful to crane cabin designers in eliminating anthropometric inconsistencies and improving the health of operators, but can also aid in improving the safety, performance and financial results of the companies where crane cabins operate.

  8. A Multivariate Approach to Functional Neuro Modeling

    DEFF Research Database (Denmark)

    Mørch, Niels J.S.

    1998-01-01

    by the application of linear and more flexible, nonlinear microscopic regression models to a real-world dataset. The dependency of model performance, as quantified by generalization error, on model flexibility and training set size is demonstrated, leading to the important realization that no uniformly optimal model......, provides the basis for a generalization theoretical framework relating model performance to model complexity and dataset size. Briefly summarized the major topics discussed in the thesis include: - An introduction of the representation of functional datasets by pairs of neuronal activity patterns...... exists. - Model visualization and interpretation techniques. The simplicity of this task for linear models contrasts the difficulties involved when dealing with nonlinear models. Finally, a visualization technique for nonlinear models is proposed. A single observation emerges from the thesis...

  9. A binary logistic regression model with complex sampling design of ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Bi-variable and multi-variable binary logistic regression model with complex sampling design was fitted. .... Data was entered into STATA-12 and analyzed using. SPSS-21. .... lack of access/too far or costs too much. 35. 1.2.

  10. Validation of models with multivariate output

    International Nuclear Information System (INIS)

    Rebba, Ramesh; Mahadevan, Sankaran

    2006-01-01

    This paper develops metrics for validating computational models with experimental data, considering uncertainties in both. A computational model may generate multiple response quantities and the validation experiment might yield corresponding measured values. Alternatively, a single response quantity may be predicted and observed at different spatial and temporal points. Model validation in such cases involves comparison of multiple correlated quantities. Multiple univariate comparisons may give conflicting inferences. Therefore, aggregate validation metrics are developed in this paper. Both classical and Bayesian hypothesis testing are investigated for this purpose, using multivariate analysis. Since, commonly used statistical significance tests are based on normality assumptions, appropriate transformations are investigated in the case of non-normal data. The methodology is implemented to validate an empirical model for energy dissipation in lap joints under dynamic loading

  11. Gaussian Process Regression Model in Spatial Logistic Regression

    Science.gov (United States)

    Sofro, A.; Oktaviarina, A.

    2018-01-01

    Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.

  12. Use of multivariate extensions of generalized linear models in the analysis of data from clinical trials

    OpenAIRE

    ALONSO ABAD, Ariel; Rodriguez, O.; TIBALDI, Fabian; CORTINAS ABRAHANTES, Jose

    2002-01-01

    In medical studies the categorical endpoints are quite often. Even though nowadays some models for handling this multicategorical variables have been developed their use is not common. This work shows an application of the Multivariate Generalized Linear Models to the analysis of Clinical Trials data. After a theoretical introduction models for ordinal and nominal responses are applied and the main results are discussed. multivariate analysis; multivariate logistic regression; multicategor...

  13. Selecting minimum dataset soil variables using PLSR as a regressive multivariate method

    Science.gov (United States)

    Stellacci, Anna Maria; Armenise, Elena; Castellini, Mirko; Rossi, Roberta; Vitti, Carolina; Leogrande, Rita; De Benedetto, Daniela; Ferrara, Rossana M.; Vivaldi, Gaetano A.

    2017-04-01

    Long-term field experiments and science-based tools that characterize soil status (namely the soil quality indices, SQIs) assume a strategic role in assessing the effect of agronomic techniques and thus in improving soil management especially in marginal environments. Selecting key soil variables able to best represent soil status is a critical step for the calculation of SQIs. Current studies show the effectiveness of statistical methods for variable selection to extract relevant information deriving from multivariate datasets. Principal component analysis (PCA) has been mainly used, however supervised multivariate methods and regressive techniques are progressively being evaluated (Armenise et al., 2013; de Paul Obade et al., 2016; Pulido Moncada et al., 2014). The present study explores the effectiveness of partial least square regression (PLSR) in selecting critical soil variables, using a dataset comparing conventional tillage and sod-seeding on durum wheat. The results were compared to those obtained using PCA and stepwise discriminant analysis (SDA). The soil data derived from a long-term field experiment in Southern Italy. On samples collected in April 2015, the following set of variables was quantified: (i) chemical: total organic carbon and nitrogen (TOC and TN), alkali-extractable C (TEC and humic substances - HA-FA), water extractable N and organic C (WEN and WEOC), Olsen extractable P, exchangeable cations, pH and EC; (ii) physical: texture, dry bulk density (BD), macroporosity (Pmac), air capacity (AC), and relative field capacity (RFC); (iii) biological: carbon of the microbial biomass quantified with the fumigation-extraction method. PCA and SDA were previously applied to the multivariate dataset (Stellacci et al., 2016). PLSR was carried out on mean centered and variance scaled data of predictors (soil variables) and response (wheat yield) variables using the PLS procedure of SAS/STAT. In addition, variable importance for projection (VIP

  14. Nonparametric Bayes Modeling of Multivariate Categorical Data.

    Science.gov (United States)

    Dunson, David B; Xing, Chuanhua

    2012-01-01

    Modeling of multivariate unordered categorical (nominal) data is a challenging problem, particularly in high dimensions and cases in which one wishes to avoid strong assumptions about the dependence structure. Commonly used approaches rely on the incorporation of latent Gaussian random variables or parametric latent class models. The goal of this article is to develop a nonparametric Bayes approach, which defines a prior with full support on the space of distributions for multiple unordered categorical variables. This support condition ensures that we are not restricting the dependence structure a priori. We show this can be accomplished through a Dirichlet process mixture of product multinomial distributions, which is also a convenient form for posterior computation. Methods for nonparametric testing of violations of independence are proposed, and the methods are applied to model positional dependence within transcription factor binding motifs.

  15. Models and Inference for Multivariate Spatial Extremes

    KAUST Repository

    Vettori, Sabrina

    2017-12-07

    The development of flexible and interpretable statistical methods is necessary in order to provide appropriate risk assessment measures for extreme events and natural disasters. In this thesis, we address this challenge by contributing to the developing research field of Extreme-Value Theory. We initially study the performance of existing parametric and non-parametric estimators of extremal dependence for multivariate maxima. As the dimensionality increases, non-parametric estimators are more flexible than parametric methods but present some loss in efficiency that we quantify under various scenarios. We introduce a statistical tool which imposes the required shape constraints on non-parametric estimators in high dimensions, significantly improving their performance. Furthermore, by embedding the tree-based max-stable nested logistic distribution in the Bayesian framework, we develop a statistical algorithm that identifies the most likely tree structures representing the data\\'s extremal dependence using the reversible jump Monte Carlo Markov Chain method. A mixture of these trees is then used for uncertainty assessment in prediction through Bayesian model averaging. The computational complexity of full likelihood inference is significantly decreased by deriving a recursive formula for the nested logistic model likelihood. The algorithm performance is verified through simulation experiments which also compare different likelihood procedures. Finally, we extend the nested logistic representation to the spatial framework in order to jointly model multivariate variables collected across a spatial region. This situation emerges often in environmental applications but is not often considered in the current literature. Simulation experiments show that the new class of multivariate max-stable processes is able to detect both the cross and inner spatial dependence of a number of extreme variables at a relatively low computational cost, thanks to its Bayesian hierarchical

  16. Multivariate Receptor Models for Spatially Correlated Multipollutant Data

    KAUST Repository

    Jun, Mikyoung; Park, Eun Sug

    2013-01-01

    The goal of multivariate receptor modeling is to estimate the profiles of major pollution sources and quantify their impacts based on ambient measurements of pollutants. Traditionally, multivariate receptor modeling has been applied to multiple air

  17. Emulating facial biomechanics using multivariate partial least squares surrogate models.

    Science.gov (United States)

    Wu, Tim; Martens, Harald; Hunter, Peter; Mithraratne, Kumar

    2014-11-01

    A detailed biomechanical model of the human face driven by a network of muscles is a useful tool in relating the muscle activities to facial deformations. However, lengthy computational times often hinder its applications in practical settings. The objective of this study is to replace precise but computationally demanding biomechanical model by a much faster multivariate meta-model (surrogate model), such that a significant speedup (to real-time interactive speed) can be achieved. Using a multilevel fractional factorial design, the parameter space of the biomechanical system was probed from a set of sample points chosen to satisfy maximal rank optimality and volume filling. The input-output relationship at these sampled points was then statistically emulated using linear and nonlinear, cross-validated, partial least squares regression models. It was demonstrated that these surrogate models can mimic facial biomechanics efficiently and reliably in real-time. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Multivariate Heteroscedasticity Models for Functional Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Christof Seiler

    2017-12-01

    Full Text Available Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI. We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  19. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy)

    Science.gov (United States)

    Conoscenti, Christian; Ciaccio, Marilena; Caraballo-Arias, Nathalie Almaru; Gómez-Gutiérrez, Álvaro; Rotigliano, Edoardo; Agnesi, Valerio

    2015-08-01

    In this paper, terrain susceptibility to earth-flow occurrence was evaluated by using geographic information systems (GIS) and two statistical methods: Logistic regression (LR) and multivariate adaptive regression splines (MARS). LR has been already demonstrated to provide reliable predictions of earth-flow occurrence, whereas MARS, as far as we know, has never been used to generate earth-flow susceptibility models. The experiment was carried out in a basin of western Sicily (Italy), which extends for 51 km2 and is severely affected by earth-flows. In total, we mapped 1376 earth-flows, covering an area of 4.59 km2. To explore the effect of pre-failure topography on earth-flow spatial distribution, we performed a reconstruction of topography before the landslide occurrence. This was achieved by preparing a digital terrain model (DTM) where altitude of areas hosting landslides was interpolated from the adjacent undisturbed land surface by using the algorithm topo-to-raster. This DTM was exploited to extract 15 morphological and hydrological variables that, in addition to outcropping lithology, were employed as explanatory variables of earth-flow spatial distribution. The predictive skill of the earth-flow susceptibility models and the robustness of the procedure were tested by preparing five datasets, each including a different subset of landslides and stable areas. The accuracy of the predictive models was evaluated by drawing receiver operating characteristic (ROC) curves and by calculating the area under the ROC curve (AUC). The results demonstrate that the overall accuracy of LR and MARS earth-flow susceptibility models is from excellent to outstanding. However, AUC values of the validation datasets attest to a higher predictive power of MARS-models (AUC between 0.881 and 0.912) with respect to LR-models (AUC between 0.823 and 0.870). The adopted procedure proved to be resistant to overfitting and stable when changes of the learning and validation samples are

  20. Regression models of reactor diagnostic signals

    International Nuclear Information System (INIS)

    Vavrin, J.

    1989-01-01

    The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)

  1. Variable importance in latent variable regression models

    NARCIS (Netherlands)

    Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.

    2014-01-01

    The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable

  2. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  3. [From clinical judgment to linear regression model.

    Science.gov (United States)

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.

  4. Multivariate regression applied to the performance optimization of a countercurrent ultracentrifuge - a preliminary study

    International Nuclear Information System (INIS)

    Migliavacca, Elder; Andrade, Delvonei Alves de

    2004-01-01

    In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting in order to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 173 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process control variables, which significantly influence the δU values, are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow F and cut θ . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heterocedasticity with any regression model variable. The response curves are made relating the separative power with the control variables F and θ, to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)

  5. Regression Models for Market-Shares

    DEFF Research Database (Denmark)

    Birch, Kristina; Olsen, Jørgen Kai; Tjur, Tue

    2005-01-01

    On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put on the interpretat......On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put...... on the interpretation of the parameters in relation to models for the total sales based on discrete choice models.Key words and phrases. MCI model, discrete choice model, market-shares, price elasitcity, regression model....

  6. Categorical regression dose-response modeling

    Science.gov (United States)

    The goal of this training is to provide participants with training on the use of the U.S. EPA’s Categorical Regression soft¬ware (CatReg) and its application to risk assessment. Categorical regression fits mathematical models to toxicity data that have been assigned ord...

  7. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic.

    Science.gov (United States)

    McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S

    2017-12-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.

  8. Prediction of diffuse solar irradiance using machine learning and multivariable regression

    International Nuclear Information System (INIS)

    Lou, Siwei; Li, Danny H.W.; Lam, Joseph C.; Chan, Wilco W.H.

    2016-01-01

    Highlights: • 54.9% of the annual global irradiance is composed by its diffuse part in HK. • Hourly diffuse irradiance was predicted by accessible variables. • The importance of variable in prediction was assessed by machine learning. • Simple prediction equations were developed with the knowledge of variable importance. - Abstract: The paper studies the horizontal global, direct-beam and sky-diffuse solar irradiance data measured in Hong Kong from 2008 to 2013. A machine learning algorithm was employed to predict the horizontal sky-diffuse irradiance and conduct sensitivity analysis for the meteorological variables. Apart from the clearness index (horizontal global/extra atmospheric solar irradiance), we found that predictors including solar altitude, air temperature, cloud cover and visibility are also important in predicting the diffuse component. The mean absolute error (MAE) of the logistic regression using the aforementioned predictors was less than 21.5 W/m"2 and 30 W/m"2 for Hong Kong and Denver, USA, respectively. With the systematic recording of the five variables for more than 35 years, the proposed model would be appropriate to estimate of long-term diffuse solar radiation, study climate change and develope typical meteorological year in Hong Kong and places with similar climates.

  9. A retrospective study: Multivariate logistic regression analysis of the outcomes after pressure sores reconstruction with fasciocutaneous, myocutaneous, and perforator flaps.

    Science.gov (United States)

    Chiu, Yu-Jen; Liao, Wen-Chieh; Wang, Tien-Hsiang; Shih, Yu-Chung; Ma, Hsu; Lin, Chih-Hsun; Wu, Szu-Hsien; Perng, Cherng-Kang

    2017-08-01

    Despite significant advances in medical care and surgical techniques, pressure sore reconstruction is still prone to elevated rates of complication and recurrence. We conducted a retrospective study to investigate not only complication and recurrence rates following pressure sore reconstruction but also preoperative risk stratification. This study included 181 ulcers underwent flap operations between January 2002 and December 2013 were included in the study. We performed a multivariable logistic regression model, which offers a regression-based method accounting for the within-patient correlation of the success or failure of each flap. The overall complication and recurrence rates for all flaps were 46.4% and 16.0%, respectively, with a mean follow-up period of 55.4 ± 38.0 months. No statistically significant differences of complication and recurrence rates were observed among three different reconstruction methods. In subsequent analysis, albumin ≤3.0 g/dl and paraplegia were significantly associated with higher postoperative complication. The anatomic factor, ischial wound location, significantly trended toward the development of ulcer recurrence. In the fasciocutaneous group, paraplegia had significant correlation to higher complication and recurrence rates. In the musculocutaneous flap group, variables had no significant correlation to complication and recurrence rates. In the free-style perforator group, ischial wound location and malnourished status correlated with significantly higher complication rates; ischial wound location also correlated with significantly higher recurrence rate. Ultimately, our review of a noteworthy cohort with lengthy follow-up helped identify and confirm certain risk factors that can facilitate a more informed and thoughtful pre- and postoperative decision-making process for patients with pressure ulcers. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All

  10. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  11. A short note on multivariate dependence modeling

    Czech Academy of Sciences Publication Activity Database

    Bína, V.; Jiroušek, Radim

    2013-01-01

    Roč. 49, č. 3 (2013), s. 420-432 ISSN 0023-5954 Grant - others:GA ČR(CZ) GAP403/12/2175 Program:GA Institutional support: RVO:67985556 Keywords : multivariate distribution * dependence * copula Subject RIV: IN - Informatics, Computer Science Impact factor: 0.563, year: 2013 http://library.utia.cas.cz/separaty/2014/MTR/jirousek-0427848.pdf

  12. New strategy for determination of anthocyanins, polyphenols and antioxidant capacity of Brassica oleracea liquid extract using infrared spectroscopies and multivariate regression

    Science.gov (United States)

    de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.

    2018-04-01

    A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.

  13. Multivariate linear models and repeated measurements revisited

    DEFF Research Database (Denmark)

    Dalgaard, Peter

    2009-01-01

    Methods for generalized analysis of variance based on multivariate normal theory have been known for many years. In a repeated measurements context, it is most often of interest to consider transformed responses, typically within-subject contrasts or averages. Efficiency considerations leads...... to sphericity assumptions, use of F tests and the Greenhouse-Geisser and Huynh-Feldt adjustments to compensate for deviations from sphericity. During a recent implementation of such methods in the R language, the general structure of such transformations was reconsidered, leading to a flexible specification...

  14. Dental age assessment of young Iranian adults using third molars: A multivariate regression study.

    Science.gov (United States)

    Bagherpour, Ali; Anbiaee, Najmeh; Partovi, Parnia; Golestani, Shayan; Afzalinasab, Shakiba

    2012-10-01

    In recent years, a noticeable increase in forensic age estimations of living individuals has been observed. Radiologic assessment of the mineralisation stage of third molars is of particular importance, with regard to the relevant age group. To attain a referral database and regression equations for dental age estimation of unaccompanied minors in an Iranian population was the goal of this study. Moreover, determination was made concerning the probability of an individual being over the age of 18 in case of full third molar(s) development. Using the scoring system of Gleiser and Hunt, modified by Köhler, an investigation of a cross-sectional sample of 1274 orthopantomograms of 885 females and 389 males aged between 15 and 22 years was carried out. Using kappa statistics, intra-observer reliability was tested. With Spearman correlation coefficient, correlation between the scores of all four wisdom teeth, was evaluated. We also carried out the Wilcoxon signed-rank test on asymmetry and calculated the regression formulae. A strong intra-observer agreement was displayed by the kappa value. No significant difference (p-value for upper and lower jaws were 0.07 and 0.59, respectively) was discovered by Wilcoxon signed-rank test for left and right asymmetry. The developmental stage of upper right and upper left third molars yielded the greatest correlation coefficient. The probability of an individual being over the age of 18 is 95.6% for males and 100.0% for females in case four fully developed third molars are present. Taking into consideration gender, location and number of wisdom teeth, regression formulae were arrived at. Use of population-specific standards is recommended as a means of improving the accuracy of forensic age estimates based on third molars mineralisation. To obtain more exact regression formulae, wider age range studies are recommended. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Application of Multivariate Adaptive Regression Splines to Sheet Metal Bending Process for Springback Compensation

    Directory of Open Access Journals (Sweden)

    Dilan Rasim Aşkın

    2016-01-01

    Full Text Available An intelligent regression technique is applied for sheet metal bending processes to improve bending performance. This study is a part of another extensive study, automated sheet bending assistance for press brakes. Data related to material properties of sheet metal is collected in an online manner and fed to an intelligent system for determining the most accurate punch displacement without any offline iteration or calibration. The overall system aims to reduce the production time while increasing the performance of press brakes.

  16. Testing homogeneity in Weibull-regression models.

    Science.gov (United States)

    Bolfarine, Heleno; Valença, Dione M

    2005-10-01

    In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.

  17. Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models

    Science.gov (United States)

    Price, Larry R.

    2012-01-01

    The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…

  18. A Range-Based Multivariate Model for Exchange Rate Volatility

    NARCIS (Netherlands)

    B. Tims (Ben); R.J. Mahieu (Ronald)

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are

  19. Economic viability in concrete dams by multivariable regression tool for implantation of small hydroelectric plants

    International Nuclear Information System (INIS)

    Lima, Reginaldo Agapito de; Ribeiro Junior, Leopoldo Uberto

    2010-01-01

    For implantation of a SHP, the barrage is the main structure where its sizing represents from 30% - 50% of general cost of civil works. Considering this it is very important to have a fast, didactic and accurate tool for elaborating a budget, also allowing a quantitative analysis of inherent cost for civil building of barrages concrete made for small hydropower plants. In face of this, the multi changing regression tool is very important as it allows a fast and correct establishing of preliminary costs, even approximate, for estimates of barrages in concrete cost, enabling to ease the budget, guiding feasibility decisions for selecting or neglecting new alternatives of fall. (author)

  20. Mixed-effects regression models in linguistics

    CERN Document Server

    Heylen, Kris; Geeraerts, Dirk

    2018-01-01

    When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed.  In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...

  1. Regression modeling methods, theory, and computation with SAS

    CERN Document Server

    Panik, Michael

    2009-01-01

    Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,

  2. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    Science.gov (United States)

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Diagnostic accuracy of atypical p-ANCA in autoimmune hepatitis using ROC- and multivariate regression analysis.

    Science.gov (United States)

    Terjung, B; Bogsch, F; Klein, R; Söhne, J; Reichel, C; Wasmuth, J-C; Beuers, U; Sauerbruch, T; Spengler, U

    2004-09-29

    Antineutrophil cytoplasmic antibodies (atypical p-ANCA) are detected at high prevalence in sera from patients with autoimmune hepatitis (AIH), but their diagnostic relevance for AIH has not been systematically evaluated so far. Here, we studied sera from 357 patients with autoimmune (autoimmune hepatitis n=175, primary sclerosing cholangitis (PSC) n=35, primary biliary cirrhosis n=45), non-autoimmune chronic liver disease (alcoholic liver cirrhosis n=62; chronic hepatitis C virus infection (HCV) n=21) or healthy controls (n=19) for the presence of various non-organ specific autoantibodies. Atypical p-ANCA, antinuclear antibodies (ANA), antibodies against smooth muscles (SMA), antibodies against liver/kidney microsomes (anti-Lkm1) and antimitochondrial antibodies (AMA) were detected by indirect immunofluorescence microscopy, antibodies against the M2 antigen (anti-M2), antibodies against soluble liver antigen (anti-SLA/LP) and anti-Lkm1 by using enzyme linked immunosorbent assays. To define the diagnostic precision of the autoantibodies, results of autoantibody testing were analyzed by receiver operating characteristics (ROC) and forward conditional logistic regression analysis. Atypical p-ANCA were detected at high prevalence in sera from patients with AIH (81%) and PSC (94%). ROC- and logistic regression analysis revealed atypical p-ANCA and SMA, but not ANA as significant diagnostic seromarkers for AIH (atypical p-ANCA: AUC 0.754+/-0.026, odds ratio [OR] 3.4; SMA: 0.652+/-0.028, OR 4.1). Atypical p-ANCA also emerged as the only diagnostically relevant seromarker for PSC (AUC 0.690+/-0.04, OR 3.4). None of the tested antibodies yielded a significant diagnostic accuracy for patients with alcoholic liver cirrhosis, HCV or healthy controls. Atypical p-ANCA along with SMA represent a seromarker with high diagnostic accuracy for AIH and should be explicitly considered in a revised version of the diagnostic score for AIH.

  4. Influence diagnostics in meta-regression model.

    Science.gov (United States)

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  5. AIRLINE ACTIVITY FORECASTING BY REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Н. Білак

    2012-04-01

    Full Text Available Proposed linear and nonlinear regression models, which take into account the equation of trend and seasonality indices for the analysis and restore the volume of passenger traffic over the past period of time and its prediction for future years, as well as the algorithm of formation of these models based on statistical analysis over the years. The desired model is the first step for the synthesis of more complex models, which will enable forecasting of passenger (income level airline with the highest accuracy and time urgency.

  6. Identification of Civil Engineering Structures using Multivariate ARMAV and RARMAV Models

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    This paper presents how to make system identification of civil engineering structures using multivariate auto-regressive moving-average vector (ARMAV) models. Further, the ARMAV technique is extended to a recursive technique (RARMAV). The ARMAV model is used to identify measured stationary data....... The results show the usefulness of the approaches for identification of civil engineering structures excited by natural excitation...

  7. Differential diagnosis of degenerative dementias using basic neuropsychological tests: multivariable logistic regression analysis of 301 patients.

    Science.gov (United States)

    Jiménez-Huete, Adolfo; Riva, Elena; Toledano, Rafael; Campo, Pablo; Esteban, Jesús; Barrio, Antonio Del; Franch, Oriol

    2014-12-01

    The validity of neuropsychological tests for the differential diagnosis of degenerative dementias may depend on the clinical context. We constructed a series of logistic models taking into account this factor. We retrospectively analyzed the demographic and neuropsychological data of 301 patients with probable Alzheimer's disease (AD), frontotemporal degeneration (FTLD), or dementia with Lewy bodies (DLB). Nine models were constructed taking into account the diagnostic question (eg, AD vs DLB) and subpopulation (incident vs prevalent). The AD versus DLB model for all patients, including memory recovery and phonological fluency, was highly accurate (area under the curve = 0.919, sensitivity = 90%, and specificity = 80%). The results were comparable in incident and prevalent cases. The FTLD versus AD and DLB versus FTLD models were both inaccurate. The models constructed from basic neuropsychological variables allowed an accurate differential diagnosis of AD versus DLB but not of FTLD versus AD or DLB. © The Author(s) 2014.

  8. Fractional and multivariable calculus model building and optimization problems

    CERN Document Server

    Mathai, A M

    2017-01-01

    This textbook presents a rigorous approach to multivariable calculus in the context of model building and optimization problems. This comprehensive overview is based on lectures given at five SERC Schools from 2008 to 2012 and covers a broad range of topics that will enable readers to understand and create deterministic and nondeterministic models. Researchers, advanced undergraduate, and graduate students in mathematics, statistics, physics, engineering, and biological sciences will find this book to be a valuable resource for finding appropriate models to describe real-life situations. The first chapter begins with an introduction to fractional calculus moving on to discuss fractional integrals, fractional derivatives, fractional differential equations and their solutions. Multivariable calculus is covered in the second chapter and introduces the fundamentals of multivariable calculus (multivariable functions, limits and continuity, differentiability, directional derivatives and expansions of multivariable ...

  9. Modeling oil production based on symbolic regression

    International Nuclear Information System (INIS)

    Yang, Guangfei; Li, Xianneng; Wang, Jianliang; Lian, Lian; Ma, Tieju

    2015-01-01

    Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak

  10. Modelling and Forecasting Multivariate Realized Volatility

    DEFF Research Database (Denmark)

    Chiriac, Roxana; Voev, Valeri

    . We provide an empirical application of the model, in which we show by means of stochastic dominance tests that the returns from an optimal portfolio based on the model's forecasts second-order dominate returns of portfolios optimized on the basis of traditional MGARCH models. This result implies...

  11. Modelling the Covariance Structure in Marginal Multivariate Count Models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Olivero, J.; Grande-Vega, M.

    2017-01-01

    The main goal of this article is to present a flexible statistical modelling framework to deal with multivariate count data along with longitudinal and repeated measures structures. The covariance structure for each response variable is defined in terms of a covariance link function combined...... be used to indicate whether there was statistical evidence of a decline in blue duikers and other species hunted during the study period. Determining whether observed drops in the number of animals hunted are indeed true is crucial to assess whether species depletion effects are taking place in exploited...... with a matrix linear predictor involving known matrices. In order to specify the joint covariance matrix for the multivariate response vector, the generalized Kronecker product is employed. We take into account the count nature of the data by means of the power dispersion function associated with the Poisson...

  12. Perioperative factors predicting poor outcome in elderly patients following emergency general surgery: a multivariate regression analysis

    Science.gov (United States)

    Lees, Mackenzie C.; Merani, Shaheed; Tauh, Keerit; Khadaroo, Rachel G.

    2015-01-01

    Background Older adults (≥ 65 yr) are the fastest growing population and are presenting in increasing numbers for acute surgical care. Emergency surgery is frequently life threatening for older patients. Our objective was to identify predictors of mortality and poor outcome among elderly patients undergoing emergency general surgery. Methods We conducted a retrospective cohort study of patients aged 65–80 years undergoing emergency general surgery between 2009 and 2010 at a tertiary care centre. Demographics, comorbidities, in-hospital complications, mortality and disposition characteristics of patients were collected. Logistic regression analysis was used to identify covariate-adjusted predictors of in-hospital mortality and discharge of patients home. Results Our analysis included 257 patients with a mean age of 72 years; 52% were men. In-hospital mortality was 12%. Mortality was associated with patients who had higher American Society of Anesthesiologists (ASA) class (odds ratio [OR] 3.85, 95% confidence interval [CI] 1.43–10.33, p = 0.008) and in-hospital complications (OR 1.93, 95% CI 1.32–2.83, p = 0.001). Nearly two-thirds of patients discharged home were younger (OR 0.92, 95% CI 0.85–0.99, p = 0.036), had lower ASA class (OR 0.45, 95% CI 0.27–0.74, p = 0.002) and fewer in-hospital complications (OR 0.69, 95% CI 0.53–0.90, p = 0.007). Conclusion American Society of Anesthesiologists class and in-hospital complications are perioperative predictors of mortality and disposition in the older surgical population. Understanding the predictors of poor outcome and the importance of preventing in-hospital complications in older patients will have important clinical utility in terms of preoperative counselling, improving health care and discharging patients home. PMID:26204143

  13. Geographically weighted regression model on poverty indicator

    Science.gov (United States)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  14. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

  15. Sparse Multivariate Modeling: Priors and Applications

    DEFF Research Database (Denmark)

    Henao, Ricardo

    This thesis presents a collection of statistical models that attempt to take advantage of every piece of prior knowledge available to provide the models with as much structure as possible. The main motivation for introducing these models is interpretability since in practice we want to be able...... a general yet self-contained description of every model in terms of generative assumptions, interpretability goals, probabilistic formulation and target applications. Case studies, benchmark results and practical details are also provided as appendices published elsewhere, containing reprints of peer...

  16. A Range-Based Multivariate Model for Exchange Rate Volatility

    OpenAIRE

    Tims, Ben; Mahieu, Ronald

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are interpreted as the underlying currency specific components. Due to the normality of logarithmic volatilities the model can be estimated conveniently with standard Kalman filter techniques. Our resu...

  17. Effects of univariate and multivariate regression on the accuracy of hydrogen quantification with laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ytsma, Cai R.; Dyar, M. Darby

    2018-01-01

    Hydrogen (H) is a critical element to measure on the surface of Mars because its presence in mineral structures is indicative of past hydrous conditions. The Curiosity rover uses the laser-induced breakdown spectrometer (LIBS) on the ChemCam instrument to analyze rocks for their H emission signal at 656.6 nm, from which H can be quantified. Previous LIBS calibrations for H used small data sets measured on standards and/or manufactured mixtures of hydrous minerals and rocks and applied univariate regression to spectra normalized in a variety of ways. However, matrix effects common to LIBS make these calibrations of limited usefulness when applied to the broad range of compositions on the Martian surface. In this study, 198 naturally-occurring hydrous geological samples covering a broad range of bulk compositions with directly-measured H content are used to create more robust prediction models for measuring H in LIBS data acquired under Mars conditions. Both univariate and multivariate prediction models, including partial least square (PLS) and the least absolute shrinkage and selection operator (Lasso), are compared using several different methods for normalization of H peak intensities. Data from the ChemLIBS Mars-analog spectrometer at Mount Holyoke College are compared against spectra from the same samples acquired using a ChemCam-like instrument at Los Alamos National Laboratory and the ChemCam instrument on Mars. Results show that all current normalization and data preprocessing variations for quantifying H result in models with statistically indistinguishable prediction errors (accuracies) ca. ± 1.5 weight percent (wt%) H2O, limiting the applications of LIBS in these implementations for geological studies. This error is too large to allow distinctions among the most common hydrous phases (basalts, amphiboles, micas) to be made, though some clays (e.g., chlorites with ≈ 12 wt% H2O, smectites with 15-20 wt% H2O) and hydrated phases (e.g., gypsum with ≈ 20

  18. Global Nonlinear Model Identification with Multivariate Splines

    NARCIS (Netherlands)

    De Visser, C.C.

    2011-01-01

    At present, model based control systems play an essential role in many aspects of modern society. Application areas of model based control systems range from food processing to medical imaging, and from process control in oil refineries to the flight control systems of modern aircraft. Central to a

  19. A Multivariate Model of Physics Problem Solving

    Science.gov (United States)

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  20. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    Science.gov (United States)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  1. Multivariate Birnbaum-Saunders Distributions: Modelling and Applications

    Directory of Open Access Journals (Sweden)

    Robert G. Aykroyd

    2018-03-01

    Full Text Available Since its origins and numerous applications in material science, the Birnbaum–Saunders family of distributions has now found widespread uses in some areas of the applied sciences such as agriculture, environment and medicine, as well as in quality control, among others. It is able to model varied data behaviour and hence provides a flexible alternative to the most usual distributions. The family includes Birnbaum–Saunders and log-Birnbaum–Saunders distributions in univariate and multivariate versions. There are now well-developed methods for estimation and diagnostics that allow in-depth analyses. This paper gives a detailed review of existing methods and of relevant literature, introducing properties and theoretical results in a systematic way. To emphasise the range of suitable applications, full analyses are included of examples based on regression and diagnostics in material science, spatial data modelling in agricultural engineering and control charts for environmental monitoring. However, potential future uses in new areas such as business, economics, finance and insurance are also discussed. This work is presented to provide a full tool-kit of novel statistical models and methods to encourage other researchers to implement them in these new areas. It is expected that the methods will have the same positive impact in the new areas as they have had elsewhere.

  2. [Multivariate ordinal logistic regression analysis on the association between consumption of fried food and both esophageal cancer and precancerous lesions].

    Science.gov (United States)

    Guo, L W; Liu, S Z; Zhang, M; Chen, Q; Zhang, S K; Sun, X B

    2017-12-10

    Objective: To investigate the effect of fried food intake on the pathogenesis of esophageal cancer and precancerous lesions. Methods: From 2005 to 2013, all the residents aged 40-69 years from 11 counties (cities) where cancer screening of upper gastrointestinal cancer had been conducted in rural areas of Henan province, were recruited as the subjects of study. Information on demography and lifestyle was collected. The residents under study were screened with iodine staining endoscopic examination and biopsy samples were diagnosed pathologically, under standardized criteria. Subjects with high risk were divided into the groups based on their different pathological degrees. Multivariate ordinal logistic regression analysis was used to analyze the relationship between the frequency of fried food intake and esophageal cancer and precancerous lesions. Results: A total number of 8 792 cases with normal esophagus, 3 680 with mild hyperplasia, 972 with moderate hyperplasia, 413 with severe hyperplasia carcinoma in situ, and 336 cases of esophageal cancer were recruited. Results from multivariate logistic regression analysis showed that, when compared with those who did not eat fried food, the intake of fried food (food appeared a risk factor for both esophageal cancer and precancerous lesions.

  3. Modelling and Forecasting Multivariate Realized Volatility

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    2011-01-01

    This paper proposes a methodology for dynamic modelling and forecasting of realized covariance matrices based on fractionally integrated processes. The approach allows for flexible dependence patterns and automatically guarantees positive definiteness of the forecast. We provide an empirical appl...

  4. Multivariate Density Modeling for Retirement Finance

    OpenAIRE

    Rook, Christopher J.

    2017-01-01

    Prior to the financial crisis mortgage securitization models increased in sophistication as did products built to insure against losses. Layers of complexity formed upon a foundation that could not support it and as the foundation crumbled the housing market followed. That foundation was the Gaussian copula which failed to correctly model failure-time correlations of derivative securities in duress. In retirement, surveys suggest the greatest fear is running out of money and as retirement dec...

  5. Multivariable Wind Modeling in State Space

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.

    2011-01-01

    Turbulence of the incoming wind field is of paramount importance to the dynamic response of wind turbines. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical...... for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modeling method....... the succeeding state space and ARMA modeling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross...

  6. A simplified parsimonious higher order multivariate Markov chain model

    Science.gov (United States)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.

  7. A tridiagonal parsimonious higher order multivariate Markov chain model

    Science.gov (United States)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.

  8. MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION

    Science.gov (United States)

    Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...

  9. Structural Equation Modeling of Multivariate Time Series

    Science.gov (United States)

    du Toit, Stephen H. C.; Browne, Michael W.

    2007-01-01

    The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…

  10. Adaptive regression for modeling nonlinear relationships

    CERN Document Server

    Knafl, George J

    2016-01-01

    This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...

  11. Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling

    International Nuclear Information System (INIS)

    Flickinger, John C.; Kondziolka, Douglas; Pollock, Bruce E.; Maitz, Ann H.; Lunsford, L. Dade

    1997-01-01

    Purpose/Objective: To assess the relationships of radiosurgery treatment parameters to the development of complications from radiosurgery for arteriovenous malformations (AVM). Methods and Materials: We evaluated follow-up imaging and clinical data in 307 AVM patients who received gamma knife radiosurgery at the University of Pittsburgh between 1987 and 1993. All patients had regular clinical or imaging follow up for a minimum of 2 years (range: 24-96 months, median = 44 months). Results: Post-radiosurgical imaging (PRI) changes developed in 30.5% of patients with regular follow-up magnetic resonance imaging, and were symptomatic in 10.7% of all patients at 7 years. PRI changes resolved within 3 years developed significantly less often (p = 0.0274) in patients with symptoms (52.8%) compared to asymptomatic patients (94.8%). The 7-year actuarial rate for developing persistent symptomatic PRI changes was 5.05%. Multivariate logistic regression modeling found that the 12 Gy volume was the only independent variable that correlated significantly with PRI changes (p < 0.0001) while symptomatic PRI changes were correlated with both 12 Gy volume (p = 0.0013) and AVM location (p 0.0066). Conclusion: Complications from AVM radiosurgery can be predicted with a statistical model relating the risks of developing symptomatic post-radiosurgical imaging changes to 12 Gy treatment volume and location

  12. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  13. Multivariate Term Structure Models with Level and Heteroskedasticity Effects

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2005-01-01

    The paper introduces and estimates a multivariate level-GARCH model for the long rate and the term-structure spread where the conditional volatility is proportional to the ãth power of the variable itself (level effects) and the conditional covariance matrix evolves according to a multivariate GA...... and the level model. GARCH effects are more important than level effects. The results are robust to the maturity of the interest rates. Udgivelsesdato: MAY...

  14. Confidence bands for inverse regression models

    International Nuclear Information System (INIS)

    Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo

    2010-01-01

    We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract

  15. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Directory of Open Access Journals (Sweden)

    Drzewiecki Wojciech

    2016-12-01

    Full Text Available In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques.

  16. Admissible Estimators in the General Multivariate Linear Model with Respect to Inequality Restricted Parameter Set

    Directory of Open Access Journals (Sweden)

    Shangli Zhang

    2009-01-01

    Full Text Available By using the methods of linear algebra and matrix inequality theory, we obtain the characterization of admissible estimators in the general multivariate linear model with respect to inequality restricted parameter set. In the classes of homogeneous and general linear estimators, the necessary and suffcient conditions that the estimators of regression coeffcient function are admissible are established.

  17. Preliminary Multi-Variable Parametric Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    This slide presentation reviews creating a preliminary multi-variable cost model for the contract costs of making a space telescope. There is discussion of the methodology for collecting the data, definition of the statistical analysis methodology, single variable model results, testing of historical models and an introduction of the multi variable models.

  18. Multitask Quantile Regression under the Transnormal Model.

    Science.gov (United States)

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2016-01-01

    We consider estimating multi-task quantile regression under the transnormal model, with focus on high-dimensional setting. We derive a surprisingly simple closed-form solution through rank-based covariance regularization. In particular, we propose the rank-based ℓ 1 penalization with positive definite constraints for estimating sparse covariance matrices, and the rank-based banded Cholesky decomposition regularization for estimating banded precision matrices. By taking advantage of alternating direction method of multipliers, nearest correlation matrix projection is introduced that inherits sampling properties of the unprojected one. Our work combines strengths of quantile regression and rank-based covariance regularization to simultaneously deal with nonlinearity and nonnormality for high-dimensional regression. Furthermore, the proposed method strikes a good balance between robustness and efficiency, achieves the "oracle"-like convergence rate, and provides the provable prediction interval under the high-dimensional setting. The finite-sample performance of the proposed method is also examined. The performance of our proposed rank-based method is demonstrated in a real application to analyze the protein mass spectroscopy data.

  19. Crime Modeling using Spatial Regression Approach

    Science.gov (United States)

    Saleh Ahmar, Ansari; Adiatma; Kasim Aidid, M.

    2018-01-01

    Act of criminality in Indonesia increased both variety and quantity every year. As murder, rape, assault, vandalism, theft, fraud, fencing, and other cases that make people feel unsafe. Risk of society exposed to crime is the number of reported cases in the police institution. The higher of the number of reporter to the police institution then the number of crime in the region is increasing. In this research, modeling criminality in South Sulawesi, Indonesia with the dependent variable used is the society exposed to the risk of crime. Modelling done by area approach is the using Spatial Autoregressive (SAR) and Spatial Error Model (SEM) methods. The independent variable used is the population density, the number of poor population, GDP per capita, unemployment and the human development index (HDI). Based on the analysis using spatial regression can be shown that there are no dependencies spatial both lag or errors in South Sulawesi.

  20. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study

    Directory of Open Access Journals (Sweden)

    Tania Dehesh

    2015-01-01

    Full Text Available Background. Univariate meta-analysis (UM procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS method as a multivariate meta-analysis approach. Methods. We evaluated the efficiency of four new approaches including zero correlation (ZC, common correlation (CC, estimated correlation (EC, and multivariate multilevel correlation (MMC on the estimation bias, mean square error (MSE, and 95% probability coverage of the confidence interval (CI in the synthesis of Cox proportional hazard models coefficients in a simulation study. Result. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. Conclusion. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  1. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    Science.gov (United States)

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  2. application of multilinear regression analysis in modeling of soil

    African Journals Online (AJOL)

    Windows User

    Accordingly [1, 3] in their work, they applied linear regression ... (MLRA) is a statistical technique that uses several explanatory ... order to check this, they adopted bivariate correlation analysis .... groups, namely A-1 through A-7, based on their relative expected ..... Multivariate Regression in Gorgan Province North of Iran” ...

  3. A High-Dimensional, Multivariate Copula Approach to Modeling Multivariate Agricultural Price Relationships and Tail Dependencies

    Science.gov (United States)

    Xuan Chi; Barry Goodwin

    2012-01-01

    Spatial and temporal relationships among agricultural prices have been an important topic of applied research for many years. Such research is used to investigate the performance of markets and to examine linkages up and down the marketing chain. This research has empirically evaluated price linkages by using correlation and regression models and, later, linear and...

  4. Using Apparent Density of Paper from Hardwood Kraft Pulps to Predict Sheet Properties, based on Unsupervised Classification and Multivariable Regression Techniques

    Directory of Open Access Journals (Sweden)

    Ofélia Anjos

    2015-07-01

    Full Text Available Paper properties determine the product application potential and depend on the raw material, pulping conditions, and pulp refining. The aim of this study was to construct mathematical models that predict quantitative relations between the paper density and various mechanical and optical properties of the paper. A dataset of properties of paper handsheets produced with pulps of Acacia dealbata, Acacia melanoxylon, and Eucalyptus globulus beaten at 500, 2500, and 4500 revolutions was used. Unsupervised classification techniques were combined to assess the need to perform separated prediction models for each species, and multivariable regression techniques were used to establish such prediction models. It was possible to develop models with a high goodness of fit using paper density as the independent variable (or predictor for all variables except tear index and zero-span tensile strength, both dry and wet.

  5. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  6. Univariate and Multivariate Specification Search Indices in Covariance Structure Modeling.

    Science.gov (United States)

    Hutchinson, Susan R.

    1993-01-01

    Simulated population data were used to compare relative performances of the modification index and C. Chou and P. M. Bentler's Lagrange multiplier test (a multivariate generalization of a modification index) for four levels of model misspecification. Both indices failed to recover the true model except at the lowest level of misspecification. (SLD)

  7. Multivariate operational risk: dependence modelling with Lévy copulas

    OpenAIRE

    Böcker, K. and Klüppelberg, C.

    2015-01-01

    Simultaneous modelling of operational risks occurring in different event type/business line cells poses the challenge for operational risk quantification. Invoking the new concept of L´evy copulas for dependence modelling yields simple approximations of high quality for multivariate operational VAR.

  8. Robust Ranking of Multivariate GARCH Models by Problem Dimension

    NARCIS (Netherlands)

    M. Caporin (Massimiliano); M.J. McAleer (Michael)

    2012-01-01

    textabstractDuring the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. Recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. We provide an empirical comparison of alternative MGARCH models,

  9. Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation

    NARCIS (Netherlands)

    M. Caporin (Massimiliano); M.J. McAleer (Michael)

    2011-01-01

    textabstractIn the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. Recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. In this paper, we provide an empirical comparison of a set of models,

  10. An Additive-Multiplicative Cox-Aalen Regression Model

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects...

  11. Trochanteric entry femoral nails yield better femoral version and lower revision rates-A large cohort multivariate regression analysis.

    Science.gov (United States)

    Yoon, Richard S; Gage, Mark J; Galos, David K; Donegan, Derek J; Liporace, Frank A

    2017-06-01

    Intramedullary nailing (IMN) has become the standard of care for the treatment of most femoral shaft fractures. Different IMN options include trochanteric and piriformis entry as well as retrograde nails, which may result in varying degrees of femoral rotation. The objective of this study was to analyze postoperative femoral version between three types of nails and to delineate any significant differences in femoral version (DFV) and revision rates. Over a 10-year period, 417 patients underwent IMN of a diaphyseal femur fracture (AO/OTA 32A-C). Of these patients, 316 met inclusion criteria and obtained postoperative computed tomography (CT) scanograms to calculate femoral version and were thus included in the study. In this study, our main outcome measure was the difference in femoral version (DFV) between the uninjured limb and the injured limb. The effect of the following variables on DFV and revision rates were determined via univariate, multivariate, and ordinal regression analyses: gender, age, BMI, ethnicity, mechanism of injury, operative side, open fracture, and table type/position. Statistical significance was set at pregression analysis revealed that a lower BMI was significantly associated with a lower DFV (p=0.006). Controlling for possible covariables, multivariate analysis yielded a significantly lower DFV for trochanteric entry nails than piriformis or retrograde nails (7.9±6.10 vs. 9.5±7.4 vs. 9.4±7.8°, pregression analysis. However, this is not to state that the other nail types exhibited abnormal DFV. Translation to the clinical impact of a few degrees of DFV is also unknown. Future studies to more in-depth study the intricacies of femoral version may lead to improved technology in addition to potentially improved clinical outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modeling rainfall-runoff relationship using multivariate GARCH model

    Science.gov (United States)

    Modarres, R.; Ouarda, T. B. M. J.

    2013-08-01

    The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.

  13. Variable selection and model choice in geoadditive regression models.

    Science.gov (United States)

    Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard

    2009-06-01

    Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.

  14. Multivariate Receptor Models for Spatially Correlated Multipollutant Data

    KAUST Repository

    Jun, Mikyoung

    2013-08-01

    The goal of multivariate receptor modeling is to estimate the profiles of major pollution sources and quantify their impacts based on ambient measurements of pollutants. Traditionally, multivariate receptor modeling has been applied to multiple air pollutant data measured at a single monitoring site or measurements of a single pollutant collected at multiple monitoring sites. Despite the growing availability of multipollutant data collected from multiple monitoring sites, there has not yet been any attempt to incorporate spatial dependence that may exist in such data into multivariate receptor modeling. We propose a spatial statistics extension of multivariate receptor models that enables us to incorporate spatial dependence into estimation of source composition profiles and contributions given the prespecified number of sources and the model identification conditions. The proposed method yields more precise estimates of source profiles by accounting for spatial dependence in the estimation. More importantly, it enables predictions of source contributions at unmonitored sites as well as when there are missing values at monitoring sites. The method is illustrated with simulated data and real multipollutant data collected from eight monitoring sites in Harris County, Texas. Supplementary materials for this article, including data and R code for implementing the methods, are available online on the journal web site. © 2013 Copyright Taylor and Francis Group, LLC.

  15. Critical elements on fitting the Bayesian multivariate Poisson Lognormal model

    Science.gov (United States)

    Zamzuri, Zamira Hasanah binti

    2015-10-01

    Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.

  16. Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits

    DEFF Research Database (Denmark)

    Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo

    2014-01-01

    A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented co...... applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed......A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant...

  17. Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits

    DEFF Research Database (Denmark)

    Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo

    2013-01-01

    A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented co...... applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed......A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant...

  18. Copula Based Factorization in Bayesian Multivariate Infinite Mixture Models

    OpenAIRE

    Martin Burda; Artem Prokhorov

    2012-01-01

    Bayesian nonparametric models based on infinite mixtures of density kernels have been recently gaining in popularity due to their flexibility and feasibility of implementation even in complicated modeling scenarios. In economics, they have been particularly useful in estimating nonparametric distributions of latent variables. However, these models have been rarely applied in more than one dimension. Indeed, the multivariate case suffers from the curse of dimensionality, with a rapidly increas...

  19. Using multiobjective tradeoff sets and Multivariate Regression Trees to identify critical and robust decisions for long term water utility planning

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Balaji, R.

    2017-12-01

    In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.

  20. Multivariate Adaptative Regression Splines (MARS, una alternativa para el análisis de series de tiempo

    Directory of Open Access Journals (Sweden)

    Jairo Vanegas

    2017-05-01

    Full Text Available Multivariate Adaptative Regression Splines (MARS es un método de modelación no paramétrico que extiende el modelo lineal incorporando no linealidades e interacciones de variables. Es una herramienta flexible que automatiza la construcción de modelos de predicción, seleccionando variables relevantes, transformando las variables predictoras, tratando valores perdidos y previniendo sobreajustes mediante un autotest. También permite predecir tomando en cuenta factores estructurales que pudieran tener influencia sobre la variable respuesta, generando modelos hipotéticos. El resultado final serviría para identificar puntos de corte relevantes en series de datos. En el área de la salud es poco utilizado, por lo que se propone como una herramienta más para la evaluación de indicadores relevantes en salud pública. Para efectos demostrativos se utilizaron series de datos de mortalidad de menores de 5 años de Costa Rica en el periodo 1978-2008.

  1. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  2. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By de…nition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modi…ed like- lihood function, or estimating function, corresponding...

  3. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    2014-01-01

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By definition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modified likelihood function, or estimating function, corresponding...

  4. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By de…nition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modi…ed likelihood function, or estimating function, corresponding...

  5. Multivariate time series modeling of selected childhood diseases in ...

    African Journals Online (AJOL)

    This paper is focused on modeling the five most prevalent childhood diseases in Akwa Ibom State using a multivariate approach to time series. An aggregate of 78,839 reported cases of malaria, upper respiratory tract infection (URTI), Pneumonia, anaemia and tetanus were extracted from five randomly selected hospitals in ...

  6. Bootstrapping Cox’s Regression Model.

    Science.gov (United States)

    1985-11-01

    crucial points a multivariate martingale central limit theorem. Involved in this is a p x p covariance matrix Z with elements T j2= f {2(s8 ) - s(l)( s ,8o...1980). The statistical analaysis of failure time data. Wiley, New York. Meyer, P.-A. (1971). Square integrable martingales, a survey. Lecture Notes

  7. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis

    CERN Document Server

    Harrell , Jr , Frank E

    2015-01-01

    This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap.  The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes.  This text realistically...

  8. Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren

    2008-01-01

    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...

  9. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  10. Is ovarian hyperstimulation associated with higher blood pressure in 4-year-old IVF offspring? Part I: multivariable regression analysis.

    Science.gov (United States)

    Seggers, Jorien; Haadsma, Maaike L; La Bastide-Van Gemert, Sacha; Heineman, Maas Jan; Middelburg, Karin J; Roseboom, Tessa J; Schendelaar, Pamela; Van den Heuvel, Edwin R; Hadders-Algra, Mijna

    2014-03-01

    Does ovarian hyperstimulation, the in vitro procedure, or a combination of these two negatively influence blood pressure (BP) and anthropometrics of 4-year-old children born following IVF? Higher systolic blood pressure (SBP) percentiles were found in 4-year-old children born following conventional IVF with ovarian hyperstimulation compared with children born following IVF without ovarian hyperstimulation. Increasing evidence suggests that IVF, which has an increased incidence of preterm birth and low birthweight, is associated with higher BP and altered body fat distribution in offspring but the underlying mechanisms are largely unknown. We performed a prospective, assessor-blinded follow-up study in which 194 children were assessed. The attrition rate up until the 4-year-old assessment was 10%. We measured BP and anthropometrics of 4-year-old singletons born following conventional IVF with controlled ovarian hyperstimulation (COH-IVF, n = 63), or born following modified natural cycle IV (MNC-IVF, n = 52), or born to subfertile couples who conceived naturally (Sub-NC, n = 79). Both IVF and ICSI were performed. Primary outcome measures were the SBP percentiles and diastolic BP (DBP) percentiles. Anthropometric measures included triceps and subscapular skinfold thickness. Several multivariable regression analyses were applied in order to correct for subsets of confounders. The value 'B' is the unstandardized regression coefficient. SBP percentiles were significantly lower in the MNC-IVF group (mean 59, SD 24) than in the COH-IVF (mean 68, SD 22) and Sub-NC groups (mean 70, SD 16). The difference in SBP between COH-IVF and MNC-IVF remained significant after correction for current, early life and parental characteristics (B: 14.09; 95% confidence interval (CI): 5.39-22.79), whereas the difference between MNC-IVF and Sub-NC did not. DBP percentiles did not differ between groups. After correction for early life factors, subscapular skinfold thickness was thicker in the

  11. A joint model for multivariate hierarchical semicontinuous data with replications.

    Science.gov (United States)

    Kassahun-Yimer, Wondwosen; Albert, Paul S; Lipsky, Leah M; Nansel, Tonja R; Liu, Aiyi

    2017-01-01

    Longitudinal data are often collected in biomedical applications in such a way that measurements on more than one response are taken from a given subject repeatedly overtime. For some problems, these multiple profiles need to be modeled jointly to get insight on the joint evolution and/or association of these responses over time. In practice, such longitudinal outcomes may have many zeros that need to be accounted for in the analysis. For example, in dietary intake studies, as we focus on in this paper, some food components are eaten daily by almost all subjects, while others are consumed episodically, where individuals have time periods where they do not eat these components followed by periods where they do. These episodically consumed foods need to be adequately modeled to account for the many zeros that are encountered. In this paper, we propose a joint model to analyze multivariate hierarchical semicontinuous data characterized by many zeros and more than one replicate observations at each measurement occasion. This approach allows for different probability mechanisms for describing the zero behavior as compared with the mean intake given that the individual consumes the food. To deal with the potentially large number of multivariate profiles, we use a pairwise model fitting approach that was developed in the context of multivariate Gaussian random effects models with large number of multivariate components. The novelty of the proposed approach is that it incorporates: (1) multivariate, possibly correlated, response variables; (2) within subject correlation resulting from repeated measurements taken from each subject; (3) many zero observations; (4) overdispersion; and (5) replicate measurements at each visit time.

  12. Simultaneous determination of estrogens (ethinylestradiol and norgestimate) concentrations in human and bovine serum albumin by use of fluorescence spectroscopy and multivariate regression analysis.

    Science.gov (United States)

    Hordge, LaQuana N; McDaniel, Kiara L; Jones, Derick D; Fakayode, Sayo O

    2016-05-15

    The endocrine disruption property of estrogens necessitates the immediate need for effective monitoring and development of analytical protocols for their analyses in biological and human specimens. This study explores the first combined utility of a steady-state fluorescence spectroscopy and multivariate partial-least-square (PLS) regression analysis for the simultaneous determination of two estrogens (17α-ethinylestradiol (EE) and norgestimate (NOR)) concentrations in bovine serum albumin (BSA) and human serum albumin (HSA) samples. The influence of EE and NOR concentrations and temperature on the emission spectra of EE-HSA EE-BSA, NOR-HSA, and NOR-BSA complexes was also investigated. The binding of EE with HSA and BSA resulted in increase in emission characteristics of HSA and BSA and a significant blue spectra shift. In contrast, the interaction of NOR with HSA and BSA quenched the emission characteristics of HSA and BSA. The observed emission spectral shifts preclude the effective use of traditional univariate regression analysis of fluorescent data for the determination of EE and NOR concentrations in HSA and BSA samples. Multivariate partial-least-squares (PLS) regression analysis was utilized to correlate the changes in emission spectra with EE and NOR concentrations in HSA and BSA samples. The figures-of-merit of the developed PLS regression models were excellent, with limits of detection as low as 1.6×10(-8) M for EE and 2.4×10(-7) M for NOR and good linearity (R(2)>0.994985). The PLS models correctly predicted EE and NOR concentrations in independent validation HSA and BSA samples with a root-mean-square-percent-relative-error (RMS%RE) of less than 6.0% at physiological condition. On the contrary, the use of univariate regression resulted in poor predictions of EE and NOR in HSA and BSA samples, with RMS%RE larger than 40% at physiological conditions. High accuracy, low sensitivity, simplicity, low-cost with no prior analyte extraction or separation

  13. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  14. Introduction to the use of regression models in epidemiology.

    Science.gov (United States)

    Bender, Ralf

    2009-01-01

    Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.

  15. Multivariate Product-Shot-noise Cox Point Process Models

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Mateu, Jorge

    We introduce a new multivariate product-shot-noise Cox process which is useful for model- ing multi-species spatial point patterns with clustering intra-specific interactions and neutral, negative or positive inter-specific interactions. The auto and cross pair correlation functions of the process...... can be obtained in closed analytical forms and approximate simulation of the process is straightforward. We use the proposed process to model interactions within and among five tree species in the Barro Colorado Island plot....

  16. Emulating facial biomechanics using multivariate partial least squares surrogate models

    OpenAIRE

    Martens, Harald; Wu, Tim; Hunter, Peter; Mithraratne, Kumar

    2014-01-01

    This is the author’s final, accepted and refereed manuscript to the article. Locked until 2015-05-06 A detailed biomechanical model of the human face driven by a network of muscles is a useful tool in relating the muscle activities to facial deformations. However, lengthy computational times often hinder its applications in practical settings. The objective of this study is to replace precise but computationally demanding biomechanical model by a much faster multivariate meta-mode...

  17. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  18. Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits

    National Research Council Canada - National Science Library

    Gravier, Michael

    1999-01-01

    .... The research identified logistic regression as a powerful tool for analysis of DMSMS and further developed twenty models attempting to identify the "best" way to model and predict DMSMS using logistic regression...

  19. Music Genre Classification using the multivariate AR feature integration model

    DEFF Research Database (Denmark)

    Ahrendt, Peter; Meng, Anders

    2005-01-01

    informative decisions about musical genre. For the MIREX music genre contest several authors derive long time features based either on statistical moments and/or temporal structure in the short time features. In our contribution we model a segment (1.2 s) of short time features (texture) using a multivariate...... autoregressive model. Other authors have applied simpler statistical models such as the mean-variance model, which also has been included in several of this years MIREX submissions, see e.g. Tzanetakis (2005); Burred (2005); Bergstra et al. (2005); Lidy and Rauber (2005)....

  20. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE.

    Science.gov (United States)

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-10-01

    The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran's universities. This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran's public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran's libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries.

  1. Identification of multivariate models for noise analysis of nuclear plant

    International Nuclear Information System (INIS)

    Zwingelstein, G.C.; Upadhyaya, B.R.

    1979-01-01

    During the normal operation of a pressurized water reactor, neutron noise analysis with multivariate autoregressive procedures in a valuable diagnostic tool to extract dynamic characteristics for incipient failure detection. The first part of the paper will describe in details the equations for estimating the multivariate autoregressive model matrices and the structure of various matrices. The matrices are estimated by solving a set of matrix operations, called Yule-Walker equations. The selection of optimal model order will also be discussed. Once the optimal parameter set is obtained, simple and fast calculations are used to determine the auto power spectral density, cross spectra, coherence function, phase. In addition the spectra may be decomposed into components being contributed from different noise sources. An application using neutron flux data collected on a nuclear plant will illustrate the efficiency of the method

  2. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    Science.gov (United States)

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  3. Variable selection in Logistic regression model with genetic algorithm.

    Science.gov (United States)

    Zhang, Zhongheng; Trevino, Victor; Hoseini, Sayed Shahabuddin; Belciug, Smaranda; Boopathi, Arumugam Manivanna; Zhang, Ping; Gorunescu, Florin; Subha, Velappan; Dai, Songshi

    2018-02-01

    Variable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process. In biomedical research, the purpose of variable selection is to select clinically important and statistically significant variables, while excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it commonly trapped in local optima. The best subset approach can systematically search the entire covariate pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-step approach to the use of GA in variable selection. The R code provided in the text can be extended and adapted to other data analysis needs.

  4. PARAMETRIC AND NON PARAMETRIC (MARS: MULTIVARIATE ADDITIVE REGRESSION SPLINES) LOGISTIC REGRESSIONS FOR PREDICTION OF A DICHOTOMOUS RESPONSE VARIABLE WITH AN EXAMPLE FOR PRESENCE/ABSENCE OF AMPHIBIANS

    Science.gov (United States)

    The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...

  5. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    Science.gov (United States)

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  6. MULTIVARIATE MODEL FOR CORPORATE BANKRUPTCY PREDICTION IN ROMANIA

    OpenAIRE

    Daniel BRÎNDESCU – OLARIU

    2016-01-01

    The current paper proposes a methodology for bankruptcy prediction applicable for Romanian companies. Low bankruptcy frequencies registered in the past have limited the importance of bankruptcy prediction in Romania. The changes in the economic environment brought by the economic crisis, as well as by the entrance in the European Union, make the availability of performing bankruptcy assessment tools more important than ever before. The proposed methodology is centred on a multivariate model, ...

  7. Multivariable robust adaptive controller using reduced-order model

    Directory of Open Access Journals (Sweden)

    Wei Wang

    1990-04-01

    Full Text Available In this paper a multivariable robust adaptive controller is presented for a plant with bounded disturbances and unmodeled dynamics due to plant-model order mismatches. The robust stability of the closed-loop system is achieved by using the normalization technique and the least squares parameter estimation scheme with dead zones. The weighting polynomial matrices are incorporated into the control law, so that the open-loop unstable or/and nonminimum phase plants can be handled.

  8. Various forms of indexing HDMR for modelling multivariate classification problems

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, Çağrı [Bahçeşehir University, Information Technologies Master Program, Beşiktaş, 34349 İstanbul (Turkey); Tunga, M. Alper [Bahçeşehir University, Software Engineering Department, Beşiktaş, 34349 İstanbul (Turkey)

    2014-12-10

    The Indexing HDMR method was recently developed for modelling multivariate interpolation problems. The method uses the Plain HDMR philosophy in partitioning the given multivariate data set into less variate data sets and then constructing an analytical structure through these partitioned data sets to represent the given multidimensional problem. Indexing HDMR makes HDMR be applicable to classification problems having real world data. Mostly, we do not know all possible class values in the domain of the given problem, that is, we have a non-orthogonal data structure. However, Plain HDMR needs an orthogonal data structure in the given problem to be modelled. In this sense, the main idea of this work is to offer various forms of Indexing HDMR to successfully model these real life classification problems. To test these different forms, several well-known multivariate classification problems given in UCI Machine Learning Repository were used and it was observed that the accuracy results lie between 80% and 95% which are very satisfactory.

  9. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  10. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  11. The MIDAS Touch: Mixed Data Sampling Regression Models

    OpenAIRE

    Ghysels, Eric; Santa-Clara, Pedro; Valkanov, Rossen

    2004-01-01

    We introduce Mixed Data Sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Technically speaking MIDAS models specify conditional expectations as a distributed lag of regressors recorded at some higher sampling frequencies. We examine the asymptotic properties of MIDAS regression estimation and compare it with traditional distributed lag models. MIDAS regressions have wide applicability in macroeconomics and �nance.

  12. Model selection in kernel ridge regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    2013-01-01

    Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...

  13. A multivariate model for predicting segmental body composition.

    Science.gov (United States)

    Tian, Simiao; Mioche, Laurence; Denis, Jean-Baptiste; Morio, Béatrice

    2013-12-01

    The aims of the present study were to propose a multivariate model for predicting simultaneously body, trunk and appendicular fat and lean masses from easily measured variables and to compare its predictive capacity with that of the available univariate models that predict body fat percentage (BF%). The dual-energy X-ray absorptiometry (DXA) dataset (52% men and 48% women) with White, Black and Hispanic ethnicities (1999-2004, National Health and Nutrition Examination Survey) was randomly divided into three sub-datasets: a training dataset (TRD), a test dataset (TED); a validation dataset (VAD), comprising 3835, 1917 and 1917 subjects. For each sex, several multivariate prediction models were fitted from the TRD using age, weight, height and possibly waist circumference. The most accurate model was selected from the TED and then applied to the VAD and a French DXA dataset (French DB) (526 men and 529 women) to assess the prediction accuracy in comparison with that of five published univariate models, for which adjusted formulas were re-estimated using the TRD. Waist circumference was found to improve the prediction accuracy, especially in men. For BF%, the standard error of prediction (SEP) values were 3.26 (3.75) % for men and 3.47 (3.95)% for women in the VAD (French DB), as good as those of the adjusted univariate models. Moreover, the SEP values for the prediction of body and appendicular lean masses ranged from 1.39 to 2.75 kg for both the sexes. The prediction accuracy was best for age < 65 years, BMI < 30 kg/m2 and the Hispanic ethnicity. The application of our multivariate model to large populations could be useful to address various public health issues.

  14. The multivariate supOU stochastic volatility model

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Stelzer, Robert

    Using positive semidefinite supOU (superposition of Ornstein-Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modelling long range dependence effects. The finiteness of moments and the second order...... structure of the volatility, the log returns, as well as their "squares" are discussed in detail. Moreover, we give several examples in which long memory effects occur and study how the model as well as the simple Ornstein-Uhlenbeck type stochastic volatility model behave under linear transformations....... In particular, the models are shown to be preserved under invertible linear transformations. Finally, we discuss how (sup)OU stochastic volatility models can be combined with a factor modelling approach....

  15. Drought Patterns Forecasting using an Auto-Regressive Logistic Model

    Science.gov (United States)

    del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.

    2014-12-01

    Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.

  16. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach

    Science.gov (United States)

    Michael S. Balshi; A. David McGuire; Paul Duffy; Mike Flannigan; John Walsh; Jerry Melillo

    2009-01-01

    We developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5o (latitude x longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was...

  17. A Cyber-Attack Detection Model Based on Multivariate Analyses

    Science.gov (United States)

    Sakai, Yuto; Rinsaka, Koichiro; Dohi, Tadashi

    In the present paper, we propose a novel cyber-attack detection model based on two multivariate-analysis methods to the audit data observed on a host machine. The statistical techniques used here are the well-known Hayashi's quantification method IV and cluster analysis method. We quantify the observed qualitative audit event sequence via the quantification method IV, and collect similar audit event sequence in the same groups based on the cluster analysis. It is shown in simulation experiments that our model can improve the cyber-attack detection accuracy in some realistic cases where both normal and attack activities are intermingled.

  18. Algorithm of Dynamic Model Structural Identification of the Multivariable Plant

    Directory of Open Access Journals (Sweden)

    Л.М. Блохін

    2004-02-01

    Full Text Available  The new algorithm of dynamic model structural identification of the multivariable stabilized plant with observable and unobservable disturbances in the regular operating  modes is offered in this paper. With the help of the offered algorithm it is possible to define the “perturbed” models of dynamics not only of the plant, but also the dynamics characteristics of observable and unobservable casual disturbances taking into account the absence of correlation between themselves and control inputs with the unobservable perturbations.

  19. Using the Logistic Regression model in supporting decisions of establishing marketing strategies

    Directory of Open Access Journals (Sweden)

    Cristinel CONSTANTIN

    2015-12-01

    Full Text Available This paper is about an instrumental research regarding the using of Logistic Regression model for data analysis in marketing research. The decision makers inside different organisation need relevant information to support their decisions regarding the marketing strategies. The data provided by marketing research could be computed in various ways but the multivariate data analysis models can enhance the utility of the information. Among these models we can find the Logistic Regression model, which is used for dichotomous variables. Our research is based on explanation the utility of this model and interpretation of the resulted information in order to help practitioners and researchers to use it in their future investigations

  20. Linear regression crash prediction models : issues and proposed solutions.

    Science.gov (United States)

    2010-05-01

    The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

  1. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia; Rue, Haavard

    2018-01-01

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite

  2. Forecasting Ebola with a regression transmission model

    Directory of Open Access Journals (Sweden)

    Jason Asher

    2018-03-01

    Full Text Available We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes traditional Susceptible-Infected-Recovered (SIR disease modeling approaches and allows for the flexible consideration of outbreaks with complex trajectories of disease dynamics. Keywords: Ebola, Forecasting, Mathematical modeling, Bayesian inference

  3. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    International Nuclear Information System (INIS)

    Rupšys, P.

    2015-01-01

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE

  4. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    Energy Technology Data Exchange (ETDEWEB)

    Rupšys, P. [Aleksandras Stulginskis University, Studenų g. 11, Akademija, Kaunas district, LT – 53361 Lithuania (Lithuania)

    2015-10-28

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.

  5. Multivariable control system for dynamic PEM fuel cell model

    International Nuclear Information System (INIS)

    Tanislav, Vasile; Carcadea, Elena; Capris, Catalin; Culcer, Mihai; Raceanu, Mircea

    2010-01-01

    Full text: The main objective of this work was to develop a multivariable control system of robust type for a PEM fuel cells assembly. The system will be used in static and mobile applications for different values of power, generated by a fuel cell assembly of up to 10 kW. Intermediate steps were accomplished: a study of a multivariable control strategy for a PEM fuel cell assembly; a mathematic modeling of mass and heat transfer inside of fuel cell assembly, defining the response function to hydrogen and oxygen/air mass flow and inlet pressure changes; a testing stand for fuel cell assembly; experimental determinations of transient response for PEM fuel cell assembly, and more others. To define the multivariable control system for a PEM fuel cell assembly the parameters describing the system were established. Also, there were defined the generic mass and energy balance equations as functions of derivative of m i , in and m i , out , representing the mass going into and out from the fuel cell, while Q in is the enthalpy and Q out is the enthalpy of the unused reactant gases and heat produced by the product, Q dis is the heat dissipated to the surroundings, Q c is the heat taken away from the stack by active cooling and W el is the electricity generated. (authors)

  6. Multivariate moment closure techniques for stochastic kinetic models

    International Nuclear Information System (INIS)

    Lakatos, Eszter; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.

    2015-01-01

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs

  7. Multivariate moment closure techniques for stochastic kinetic models

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H., E-mail: m.stumpf@imperial.ac.uk [Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.

  8. Multivariate longitudinal data analysis with mixed effects hidden Markov models.

    Science.gov (United States)

    Raffa, Jesse D; Dubin, Joel A

    2015-09-01

    Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.

  9. Forecasting Ebola with a regression transmission model

    OpenAIRE

    Asher, Jason

    2017-01-01

    We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes ...

  10. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China

    Directory of Open Access Journals (Sweden)

    Ling-Ling Pei

    2018-03-01

    Full Text Available The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China’s pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N model based on the nonlinear least square (NLS method. The Gauss–Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N and the NLS-based TNGM (1, N models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC, and per capita emissions of SO2 and dust, alongside GDP per capita in China during the period 1996–2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N model presents greater precision when forecasting WDPC, SO2 emissions and dust emissions per capita, compared to the traditional GM (1, N model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO2 and dust reduce accordingly.

  11. Model Selection in Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels......, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based...... on these interpretations, we provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely...

  12. Study of cyanotoxins presence from experimental cyanobacteria concentrations using a new data mining methodology based on multivariate adaptive regression splines in Trasona reservoir (Northern Spain).

    Science.gov (United States)

    Garcia Nieto, P J; Sánchez Lasheras, F; de Cos Juez, F J; Alonso Fernández, J R

    2011-11-15

    There is an increasing need to describe cyanobacteria blooms since some cyanobacteria produce toxins, termed cyanotoxins. These latter can be toxic and dangerous to humans as well as other animals and life in general. It must be remarked that the cyanobacteria are reproduced explosively under certain conditions. This results in algae blooms, which can become harmful to other species if the cyanobacteria involved produce cyanotoxins. In this research work, the evolution of cyanotoxins in Trasona reservoir (Principality of Asturias, Northern Spain) was studied with success using the data mining methodology based on multivariate adaptive regression splines (MARS) technique. The results of the present study are two-fold. On one hand, the importance of the different kind of cyanobacteria over the presence of cyanotoxins in the reservoir is presented through the MARS model and on the other hand a predictive model able to forecast the possible presence of cyanotoxins in a short term was obtained. The agreement of the MARS model with experimental data confirmed the good performance of the same one. Finally, conclusions of this innovative research are exposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Regression and regression analysis time series prediction modeling on climate data of quetta, pakistan

    International Nuclear Information System (INIS)

    Jafri, Y.Z.; Kamal, L.

    2007-01-01

    Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)

  14. Corporate prediction models, ratios or regression analysis?

    NARCIS (Netherlands)

    Bijnen, E.J.; Wijn, M.F.C.M.

    1994-01-01

    The models developed in the literature with respect to the prediction of a company s failure are based on ratios. It has been shown before that these models should be rejected on theoretical grounds. Our study of industrial companies in the Netherlands shows that the ratios which are used in

  15. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    ... downstream Obigbo station show: consistent time-trends in degree of contamination; linear and non-linear relationships for water quality models against total dissolved solids (TDS), total suspended sediment (TSS), chloride, pH and sulphate; and non-linear relationship for streamflow and water quality transport models.

  16. Optimal model-free prediction from multivariate time series

    Science.gov (United States)

    Runge, Jakob; Donner, Reik V.; Kurths, Jürgen

    2015-05-01

    Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation.

  17. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  18. Multiattribute shopping models and ridge regression analysis

    NARCIS (Netherlands)

    Timmermans, H.J.P.

    1981-01-01

    Policy decisions regarding retailing facilities essentially involve multiple attributes of shopping centres. If mathematical shopping models are to contribute to these decision processes, their structure should reflect the multiattribute character of retailing planning. Examination of existing

  19. Linear Regression Models for Estimating True Subsurface ...

    Indian Academy of Sciences (India)

    47

    The objective is to minimize the processing time and computer memory required. 10 to carry out inversion .... to the mainland by two long bridges. .... term. In this approach, the model converges when the squared sum of the differences. 143.

  20. Moderation analysis using a two-level regression model.

    Science.gov (United States)

    Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

    2014-10-01

    Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

  1. Alternative regression models to assess increase in childhood BMI

    OpenAIRE

    Beyerlein, Andreas; Fahrmeir, Ludwig; Mansmann, Ulrich; Toschke, André M

    2008-01-01

    Abstract Background Body mass index (BMI) data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Methods Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs), quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS). We analyzed data of 4967 childre...

  2. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  3. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  4. Implementing Modifed Burg Algorithms in Multivariate Subset Autoregressive Modeling

    Directory of Open Access Journals (Sweden)

    A. Alexandre Trindade

    2003-02-01

    Full Text Available The large number of parameters in subset vector autoregressive models often leads one to procure fast, simple, and efficient alternatives or precursors to maximum likelihood estimation. We present the solution of the multivariate subset Yule-Walker equations as one such alternative. In recent work, Brockwell, Dahlhaus, and Trindade (2002, show that the Yule-Walker estimators can actually be obtained as a special case of a general recursive Burg-type algorithm. We illustrate the structure of this Algorithm, and discuss its implementation in a high-level programming language. Applications of the Algorithm in univariate and bivariate modeling are showcased in examples. Univariate and bivariate versions of the Algorithm written in Fortran 90 are included in the appendix, and their use illustrated.

  5. MULTIVARIATE MODEL FOR CORPORATE BANKRUPTCY PREDICTION IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Daniel BRÎNDESCU – OLARIU

    2016-06-01

    Full Text Available The current paper proposes a methodology for bankruptcy prediction applicable for Romanian companies. Low bankruptcy frequencies registered in the past have limited the importance of bankruptcy prediction in Romania. The changes in the economic environment brought by the economic crisis, as well as by the entrance in the European Union, make the availability of performing bankruptcy assessment tools more important than ever before. The proposed methodology is centred on a multivariate model, developed through discriminant analysis. Financial ratios are employed as explanatory variables within the model. The study has included 53,252 yearly financial statements from the period 2007 – 2010, with the state of the companies being monitored until the end of 2012. It thus employs the largest sample ever used in Romanian research in the field of bankruptcy prediction, not targeting high levels of accuracy over isolated samples, but reliability and ease of use over the entire population.

  6. Clustering Multivariate Time Series Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Shima Ghassempour

    2014-03-01

    Full Text Available In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs, where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers.

  7. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  8. Mixed Frequency Data Sampling Regression Models: The R Package midasr

    Directory of Open Access Journals (Sweden)

    Eric Ghysels

    2016-08-01

    Full Text Available When modeling economic relationships it is increasingly common to encounter data sampled at different frequencies. We introduce the R package midasr which enables estimating regression models with variables sampled at different frequencies within a MIDAS regression framework put forward in work by Ghysels, Santa-Clara, and Valkanov (2002. In this article we define a general autoregressive MIDAS regression model with multiple variables of different frequencies and show how it can be specified using the familiar R formula interface and estimated using various optimization methods chosen by the researcher. We discuss how to check the validity of the estimated model both in terms of numerical convergence and statistical adequacy of a chosen regression specification, how to perform model selection based on a information criterion, how to assess forecasting accuracy of the MIDAS regression model and how to obtain a forecast aggregation of different MIDAS regression models. We illustrate the capabilities of the package with a simulated MIDAS regression model and give two empirical examples of application of MIDAS regression.

  9. Impact of multicollinearity on small sample hydrologic regression models

    Science.gov (United States)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  10. Models and analysis for multivariate failure time data

    Science.gov (United States)

    Shih, Joanna Huang

    The goal of this research is to develop and investigate models and analytic methods for multivariate failure time data. We compare models in terms of direct modeling of the margins, flexibility of dependency structure, local vs. global measures of association, and ease of implementation. In particular, we study copula models, and models produced by right neutral cumulative hazard functions and right neutral hazard functions. We examine the changes of association over time for families of bivariate distributions induced from these models by displaying their density contour plots, conditional density plots, correlation curves of Doksum et al, and local cross ratios of Oakes. We know that bivariate distributions with same margins might exhibit quite different dependency structures. In addition to modeling, we study estimation procedures. For copula models, we investigate three estimation procedures. the first procedure is full maximum likelihood. The second procedure is two-stage maximum likelihood. At stage 1, we estimate the parameters in the margins by maximizing the marginal likelihood. At stage 2, we estimate the dependency structure by fixing the margins at the estimated ones. The third procedure is two-stage partially parametric maximum likelihood. It is similar to the second procedure, but we estimate the margins by the Kaplan-Meier estimate. We derive asymptotic properties for these three estimation procedures and compare their efficiency by Monte-Carlo simulations and direct computations. For models produced by right neutral cumulative hazards and right neutral hazards, we derive the likelihood and investigate the properties of the maximum likelihood estimates. Finally, we develop goodness of fit tests for the dependency structure in the copula models. We derive a test statistic and its asymptotic properties based on the test of homogeneity of Zelterman and Chen (1988), and a graphical diagnostic procedure based on the empirical Bayes approach. We study the

  11. Hidden Markov latent variable models with multivariate longitudinal data.

    Science.gov (United States)

    Song, Xinyuan; Xia, Yemao; Zhu, Hongtu

    2017-03-01

    Cocaine addiction is chronic and persistent, and has become a major social and health problem in many countries. Existing studies have shown that cocaine addicts often undergo episodic periods of addiction to, moderate dependence on, or swearing off cocaine. Given its reversible feature, cocaine use can be formulated as a stochastic process that transits from one state to another, while the impacts of various factors, such as treatment received and individuals' psychological problems on cocaine use, may vary across states. This article develops a hidden Markov latent variable model to study multivariate longitudinal data concerning cocaine use from a California Civil Addict Program. The proposed model generalizes conventional latent variable models to allow bidirectional transition between cocaine-addiction states and conventional hidden Markov models to allow latent variables and their dynamic interrelationship. We develop a maximum-likelihood approach, along with a Monte Carlo expectation conditional maximization (MCECM) algorithm, to conduct parameter estimation. The asymptotic properties of the parameter estimates and statistics for testing the heterogeneity of model parameters are investigated. The finite sample performance of the proposed methodology is demonstrated by simulation studies. The application to cocaine use study provides insights into the prevention of cocaine use. © 2016, The International Biometric Society.

  12. Optimisation of Marine Boilers using Model-based Multivariable Control

    DEFF Research Database (Denmark)

    Solberg, Brian

    Traditionally, marine boilers have been controlled using classical single loop controllers. To optimise marine boiler performance, reduce new installation time and minimise the physical dimensions of these large steel constructions, a more comprehensive and coherent control strategy is needed....... This research deals with the application of advanced control to a specific class of marine boilers combining well-known design methods for multivariable systems. This thesis presents contributions for modelling and control of the one-pass smoke tube marine boilers as well as for hybrid systems control. Much...... of the focus has been directed towards water level control which is complicated by the nature of the disturbances acting on the system as well as by low frequency sensor noise. This focus was motivated by an estimated large potential to minimise the boiler geometry by reducing water level fluctuations...

  13. Multivariate Bias Correction Procedures for Improving Water Quality Predictions from the SWAT Model

    Science.gov (United States)

    Arumugam, S.; Libera, D.

    2017-12-01

    Water quality observations are usually not available on a continuous basis for longer than 1-2 years at a time over a decadal period given the labor requirements making calibrating and validating mechanistic models difficult. Further, any physical model predictions inherently have bias (i.e., under/over estimation) and require post-simulation techniques to preserve the long-term mean monthly attributes. This study suggests a multivariate bias-correction technique and compares to a common technique in improving the performance of the SWAT model in predicting daily streamflow and TN loads across the southeast based on split-sample validation. The approach is a dimension reduction technique, canonical correlation analysis (CCA) that regresses the observed multivariate attributes with the SWAT model simulated values. The common approach is a regression based technique that uses an ordinary least squares regression to adjust model values. The observed cross-correlation between loadings and streamflow is better preserved when using canonical correlation while simultaneously reducing individual biases. Additionally, canonical correlation analysis does a better job in preserving the observed joint likelihood of observed streamflow and loadings. These procedures were applied to 3 watersheds chosen from the Water Quality Network in the Southeast Region; specifically, watersheds with sufficiently large drainage areas and number of observed data points. The performance of these two approaches are compared for the observed period and over a multi-decadal period using loading estimates from the USGS LOADEST model. Lastly, the CCA technique is applied in a forecasting sense by using 1-month ahead forecasts of P & T from ECHAM4.5 as forcings in the SWAT model. Skill in using the SWAT model for forecasting loadings and streamflow at the monthly and seasonal timescale is also discussed.

  14. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  15. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.

    Science.gov (United States)

    Kostoglou, Kyriaki; Debert, Chantel T; Poulin, Marc J; Mitsis, Georgios D

    2014-05-01

    We examined the time-varying characteristics of cerebral autoregulation and hemodynamics during a step hypercapnic stimulus by using recursively estimated multivariate (two-input) models which quantify the dynamic effects of mean arterial blood pressure (ABP) and end-tidal CO2 tension (PETCO2) on middle cerebral artery blood flow velocity (CBFV). Beat-to-beat values of ABP and CBFV, as well as breath-to-breath values of PETCO2 during baseline and sustained euoxic hypercapnia were obtained in 8 female subjects. The multiple-input, single-output models used were based on the Laguerre expansion technique, and their parameters were updated using recursive least squares with multiple forgetting factors. The results reveal the presence of nonstationarities that confirm previously reported effects of hypercapnia on autoregulation, i.e. a decrease in the MABP phase lead, and suggest that the incorporation of PETCO2 as an additional model input yields less time-varying estimates of dynamic pressure autoregulation obtained from single-input (ABP-CBFV) models. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Utilização de regressão multivariada para avaliação espectrofotométrica da demanda química de oxigênio em amostras de relevância ambiental Use of multivariate regression in spectrophotometric evaluation of chemical oxigen demand in samples of environmental relevance

    Directory of Open Access Journals (Sweden)

    Patricio Peralta-Zamora

    2005-10-01

    Full Text Available In this work, a partial least squares regression routine was used to develop a multivariate calibration model to predict the chemical oxygen demand (COD in substrates of environmental relevance (paper effluents and landfill leachates from UV-Vis spectral data. The calibration models permit the fast determination of the COD with typical relative errors lower by 10% with respect to the conventional methodology.

  17. Multivariate Models for Prediction of Human Skin Sensitization ...

    Science.gov (United States)

    One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine

  18. Production optimisation in the petrochemical industry by hierarchical multivariate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Magnus; Furusjoe, Erik; Jansson, Aasa

    2004-06-01

    This project demonstrates the advantages of applying hierarchical multivariate modelling in the petrochemical industry in order to increase knowledge of the total process. The models indicate possible ways to optimise the process regarding the use of energy and raw material, which is directly linked to the environmental impact of the process. The refinery of Nynaes Refining AB (Goeteborg, Sweden) has acted as a demonstration site in this project. The models developed for the demonstration site resulted in: Detection of an unknown process disturbance and suggestions of possible causes; Indications on how to increase the yield in combination with energy savings; The possibility to predict product quality from on-line process measurements, making the results available at a higher frequency than customary laboratory analysis; Quantification of the gradually lowered efficiency of heat transfer in the furnace and increased fuel consumption as an effect of soot build-up on the furnace coils; Increased knowledge of the relation between production rate and the efficiency of the heat exchangers. This report is one of two reports from the project. It contains a technical discussion of the result with some degree of detail. A shorter and more easily accessible report is also available, see IVL report B1586-A.

  19. Identification of Influential Points in a Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Jan Grosz

    2011-03-01

    Full Text Available The article deals with the detection and identification of influential points in the linear regression model. Three methods of detection of outliers and leverage points are described. These procedures can also be used for one-sample (independentdatasets. This paper briefly describes theoretical aspects of several robust methods as well. Robust statistics is a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. A simulation model of the simple linear regression is presented.

  20. Optimal non-periodic inspection for a multivariate degradation model

    NARCIS (Netherlands)

    Barker, C.T.; Newby, M.J.

    2009-01-01

    We address the problem of determining inspection and maintenance strategy for a system whose state is described by a multivariate stochastic process. We relax and extend the usual approaches. The system state is a multivariate stochastic process, decisions are based on a performance measure defined

  1. Detection of epistatic effects with logic regression and a classical linear regression model.

    Science.gov (United States)

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  2. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting

    Science.gov (United States)

    2014-01-01

    Background Before considering whether to use a multivariable (diagnostic or prognostic) prediction model, it is essential that its performance be evaluated in data that were not used to develop the model (referred to as external validation). We critically appraised the methodological conduct and reporting of external validation studies of multivariable prediction models. Methods We conducted a systematic review of articles describing some form of external validation of one or more multivariable prediction models indexed in PubMed core clinical journals published in 2010. Study data were extracted in duplicate on design, sample size, handling of missing data, reference to the original study developing the prediction models and predictive performance measures. Results 11,826 articles were identified and 78 were included for full review, which described the evaluation of 120 prediction models. in participant data that were not used to develop the model. Thirty-three articles described both the development of a prediction model and an evaluation of its performance on a separate dataset, and 45 articles described only the evaluation of an existing published prediction model on another dataset. Fifty-seven percent of the prediction models were presented and evaluated as simplified scoring systems. Sixteen percent of articles failed to report the number of outcome events in the validation datasets. Fifty-four percent of studies made no explicit mention of missing data. Sixty-seven percent did not report evaluating model calibration whilst most studies evaluated model discrimination. It was often unclear whether the reported performance measures were for the full regression model or for the simplified models. Conclusions The vast majority of studies describing some form of external validation of a multivariable prediction model were poorly reported with key details frequently not presented. The validation studies were characterised by poor design, inappropriate handling

  3. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Science.gov (United States)

    Drzewiecki, Wojciech

    2016-12-01

    In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

  4. Multivariate analysis with LISREL

    CERN Document Server

    Jöreskog, Karl G; Y Wallentin, Fan

    2016-01-01

    This book traces the theory and methodology of multivariate statistical analysis and shows how it can be conducted in practice using the LISREL computer program. It presents not only the typical uses of LISREL, such as confirmatory factor analysis and structural equation models, but also several other multivariate analysis topics, including regression (univariate, multivariate, censored, logistic, and probit), generalized linear models, multilevel analysis, and principal component analysis. It provides numerous examples from several disciplines and discusses and interprets the results, illustrated with sections of output from the LISREL program, in the context of the example. The book is intended for masters and PhD students and researchers in the social, behavioral, economic and many other sciences who require a basic understanding of multivariate statistical theory and methods for their analysis of multivariate data. It can also be used as a textbook on various topics of multivariate statistical analysis.

  5. An Alternative Flight Software Trigger Paradigm: Applying Multivariate Logistic Regression to Sense Trigger Conditions Using Inaccurate or Scarce Information

    Science.gov (United States)

    Smith, Kelly M.; Gay, Robert S.; Stachowiak, Susan J.

    2013-01-01

    In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles.

  6. An Alternative Flight Software Paradigm: Applying Multivariate Logistic Regression to Sense Trigger Conditions using Inaccurate or Scarce Information

    Science.gov (United States)

    Smith, Kelly; Gay, Robert; Stachowiak, Susan

    2013-01-01

    In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles

  7. Multivariate statistical models for disruption prediction at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Aledda, R.; Cannas, B.; Fanni, A.; Sias, G.; Pautasso, G.

    2013-01-01

    In this paper, a disruption prediction system for ASDEX Upgrade has been proposed that does not require disruption terminated experiments to be implemented. The system consists of a data-based model, which is built using only few input signals coming from successfully terminated pulses. A fault detection and isolation approach has been used, where the prediction is based on the analysis of the residuals of an auto regressive exogenous input model. The prediction performance of the proposed system is encouraging when it is applied to the same set of campaigns used to implement the model. However, the false alarms significantly increase when we tested the system on discharges coming from experimental campaigns temporally far from those used to train the model. This is due to the well know aging effect inherent in the data-based models. The main advantage of the proposed method, with respect to other data-based approaches in literature, is that it does not need data on experiments terminated with a disruption, as it uses a normal operating conditions model. This is a big advantage in the prospective of a prediction system for ITER, where a limited number of disruptions can be allowed

  8. Random regression models for detection of gene by environment interaction

    Directory of Open Access Journals (Sweden)

    Meuwissen Theo HE

    2007-02-01

    Full Text Available Abstract Two random regression models, where the effect of a putative QTL was regressed on an environmental gradient, are described. The first model estimates the correlation between intercept and slope of the random regression, while the other model restricts this correlation to 1 or -1, which is expected under a bi-allelic QTL model. The random regression models were compared to a model assuming no gene by environment interactions. The comparison was done with regards to the models ability to detect QTL, to position them accurately and to detect possible QTL by environment interactions. A simulation study based on a granddaughter design was conducted, and QTL were assumed, either by assigning an effect independent of the environment or as a linear function of a simulated environmental gradient. It was concluded that the random regression models were suitable for detection of QTL effects, in the presence and absence of interactions with environmental gradients. Fixing the correlation between intercept and slope of the random regression had a positive effect on power when the QTL effects re-ranked between environments.

  9. Improvement of a Robotic Manipulator Model Based on Multivariate Residual Modeling

    Directory of Open Access Journals (Sweden)

    Serge Gale

    2017-07-01

    Full Text Available A new method is presented for extending a dynamic model of a six degrees of freedom robotic manipulator. A non-linear multivariate calibration of input–output training data from several typical motion trajectories is carried out with the aim of predicting the model systematic output error at time (t + 1 from known input reference up till and including time (t. A new partial least squares regression (PLSR based method, nominal PLSR with interactions was developed and used to handle, unmodelled non-linearities. The performance of the new method is compared with least squares (LS. Different cross-validation schemes were compared in order to assess the sampling of the state space based on conventional trajectories. The method developed in the paper can be used as fault monitoring mechanism and early warning system for sensor failure. The results show that the suggested methods improves trajectory tracking performance of the robotic manipulator by extending the initial dynamic model of the manipulator.

  10. Multiple regression and beyond an introduction to multiple regression and structural equation modeling

    CERN Document Server

    Keith, Timothy Z

    2014-01-01

    Multiple Regression and Beyond offers a conceptually oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. Covers both MR and SEM, while explaining their relevance to one another Also includes path analysis, confirmatory factor analysis, and latent growth modeling Figures and tables throughout provide examples and illustrate key concepts and techniques For additional resources, please visit: http://tzkeith.com/.

  11. Tutorial on Using Regression Models with Count Outcomes Using R

    Directory of Open Access Journals (Sweden)

    A. Alexander Beaujean

    2016-02-01

    Full Text Available Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the R syntax used run the example analyses are included in the Appendix.

  12. Correlation-regression model for physico-chemical quality of ...

    African Journals Online (AJOL)

    abusaad

    areas, suggesting that groundwater quality in urban areas is closely related with land use ... the ground water, with correlation and regression model is also presented. ...... WHO (World Health Organization) (1985). Health hazards from nitrates.

  13. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    Science.gov (United States)

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  14. Linear multivariate evaluation models for spatial perception of soundscape.

    Science.gov (United States)

    Deng, Zhiyong; Kang, Jian; Wang, Daiwei; Liu, Aili; Kang, Joe Zhengyu

    2015-11-01

    Soundscape is a sound environment that emphasizes the awareness of auditory perception and social or cultural understandings. The case of spatial perception is significant to soundscape. However, previous studies on the auditory spatial perception of the soundscape environment have been limited. Based on 21 native binaural-recorded soundscape samples and a set of auditory experiments for subjective spatial perception (SSP), a study of the analysis among semantic parameters, the inter-aural-cross-correlation coefficient (IACC), A-weighted-equal sound-pressure-level (L(eq)), dynamic (D), and SSP is introduced to verify the independent effect of each parameter and to re-determine some of their possible relationships. The results show that the more noisiness the audience perceived, the worse spatial awareness they received, while the closer and more directional the sound source image variations, dynamics, and numbers of sound sources in the soundscape are, the better the spatial awareness would be. Thus, the sensations of roughness, sound intensity, transient dynamic, and the values of Leq and IACC have a suitable range for better spatial perception. A better spatial awareness seems to promote the preference slightly for the audience. Finally, setting SSPs as functions of the semantic parameters and Leq-D-IACC, two linear multivariate evaluation models of subjective spatial perception are proposed.

  15. Prosthetic alignment after total knee replacement is not associated with dissatisfaction or change in Oxford Knee Score: A multivariable regression analysis.

    Science.gov (United States)

    Huijbregts, Henricus J T A M; Khan, Riaz J K; Fick, Daniel P; Jarrett, Olivia M; Haebich, Samantha

    2016-06-01

    Approximately 18% of the patients are dissatisfied with the result of total knee replacement. However, the relation between dissatisfaction and prosthetic alignment has not been investigated before. We retrospectively analysed prospectively gathered data of all patients who had a primary TKR, preoperative and one-year postoperative Oxford Knee Scores (OKS) and postoperative computed tomography (CT). The CT protocol measures hip-knee-ankle (HKA) angle, and coronal, sagittal and axial component alignment. Satisfaction was defined using a five-item Likert scale. We dichotomised dissatisfaction by combining '(very) dissatisfied' and 'neutral/not sure'. Associations with dissatisfaction and change in OKS were calculated using multivariable logistic and linear regression models. 230 TKRs were implanted in 105 men and 106 women. At one year, 12% were (very) dissatisfied and 10% neutral. Coronal alignment of the femoral component was 0.5 degrees more accurate in patients who were satisfied at one year. The other alignment measurements were not different between satisfied and dissatisfied patients. All radiographic measurements had a P-value>0.10 on univariate analyses. At one year, dissatisfaction was associated with the three-months OKS. Change in OKS was associated with three-months OKS, preoperative physical SF-12, preoperative pain and cruciate retaining design. Neither mechanical axis, nor component alignment, is associated with dissatisfaction at one year following TKR. Patients get the best outcome when pain reduction and function improvement are optimal during the first three months and when the indication to embark on surgery is based on physical limitations rather than on a high pain score. 2. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Wavelet regression model in forecasting crude oil price

    Science.gov (United States)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  17. Application of random regression models to the genetic evaluation ...

    African Journals Online (AJOL)

    The model included fixed regression on AM (range from 30 to 138 mo) and the effect of herd-measurement date concatenation. Random parts of the model were RRM coefficients for additive and permanent environmental effects, while residual effects were modelled to account for heterogeneity of variance by AY. Estimates ...

  18. The APT model as reduced-rank regression

    NARCIS (Netherlands)

    Bekker, P.A.; Dobbelstein, P.; Wansbeek, T.J.

    Integrating the two steps of an arbitrage pricing theory (APT) model leads to a reduced-rank regression (RRR) model. So the results on RRR can be used to estimate APT models, making estimation very simple. We give a succinct derivation of estimation of RRR, derive the asymptotic variance of RRR

  19. Alternative regression models to assess increase in childhood BMI

    Directory of Open Access Journals (Sweden)

    Mansmann Ulrich

    2008-09-01

    Full Text Available Abstract Background Body mass index (BMI data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Methods Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs, quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS. We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. Results GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. Conclusion GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.

  20. Alternative regression models to assess increase in childhood BMI.

    Science.gov (United States)

    Beyerlein, Andreas; Fahrmeir, Ludwig; Mansmann, Ulrich; Toschke, André M

    2008-09-08

    Body mass index (BMI) data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs), quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS). We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.

  1. Analysis and parameter identification for characteristic equations of single- and double-effect absorption chillers by means of multivariable regression

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; López-Villada, Jesús; Bruno, Joan Carles

    2010-01-01

    Two approaches to the characteristic equation method have been compared in order to find a simple model that best describes the performance of thermal chillers. After comparing the results obtained using experimental data from a single-effect absorption chiller, we concluded that the adaptation o...... chillers. The characteristic parameters for these chillers are given and can be incorporated as a chiller module in thermal modelling and simulation packages....

  2. Robust mislabel logistic regression without modeling mislabel probabilities.

    Science.gov (United States)

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  3. Multivariate genetic divergence among sugarcane clones by multivariate analysis associated with mixed models

    Directory of Open Access Journals (Sweden)

    Valéria Rosa Lopes

    2014-02-01

    Full Text Available This work had the aim to evaluate the genetic divergence in sugarcane clones using the methodology of graphic dispersion by principal components analysis associated to linear mixed models, indentifying the more divergent and productive genotypes with more precision, for a subsequent combination. 138 sugarcane clones of the RB97 series of the Sugarcane Breeding Program of the Universidade Federal do Parana, more two standard cultivars were evaluated in three environments, with two replications. The two first components explained 96% of the total variation, sufficiently for explaining the divergence found. The variable that contributed the most to de divergence was kilogram of brix per plot (BKP followed by brix, mass of 10 stalks and number of stalks per plot. The more divergent sugarcane clones were RB975008, RB975112, RB975019, RB975153 and RB975067 and the more productive clones were RB975269, RB977533, RB975102, RB975317 and RB975038.

  4. Partitioning of Multivariate Phenotypes using Regression Trees Reveals Complex Patterns of Adaptation to Climate across the Range of Black Cottonwood (Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Regis Wendpouire Oubida

    2015-03-01

    Full Text Available Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13 to 0.32 and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP, and mean annual precipitation (MAP. These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar.

  5. Linear regression models for quantitative assessment of left ...

    African Journals Online (AJOL)

    Changes in left ventricular structures and function have been reported in cardiomyopathies. No prediction models have been established in this environment. This study established regression models for prediction of left ventricular structures in normal subjects. A sample of normal subjects was drawn from a large urban ...

  6. Geographically Weighted Logistic Regression Applied to Credit Scoring Models

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Melo Albuquerque

    Full Text Available Abstract This study used real data from a Brazilian financial institution on transactions involving Consumer Direct Credit (CDC, granted to clients residing in the Distrito Federal (DF, to construct credit scoring models via Logistic Regression and Geographically Weighted Logistic Regression (GWLR techniques. The aims were: to verify whether the factors that influence credit risk differ according to the borrower’s geographic location; to compare the set of models estimated via GWLR with the global model estimated via Logistic Regression, in terms of predictive power and financial losses for the institution; and to verify the viability of using the GWLR technique to develop credit scoring models. The metrics used to compare the models developed via the two techniques were the AICc informational criterion, the accuracy of the models, the percentage of false positives, the sum of the value of false positive debt, and the expected monetary value of portfolio default compared with the monetary value of defaults observed. The models estimated for each region in the DF were distinct in their variables and coefficients (parameters, with it being concluded that credit risk was influenced differently in each region in the study. The Logistic Regression and GWLR methodologies presented very close results, in terms of predictive power and financial losses for the institution, and the study demonstrated viability in using the GWLR technique to develop credit scoring models for the target population in the study.

  7. Multivariate Models for Prediction of Human Skin Sensitization Hazard

    Science.gov (United States)

    Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M.; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole

    2016-01-01

    One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression (LR) and support vector machine (SVM), to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy (92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries combining data from the individual methods (accuracy = 75%). These results suggest that computational methods are promising tools to effectively identify potential human skin sensitizers without animal testing. PMID:27480324

  8. The dynamics of a nonlinear relationship between crude oil spot and futures prices. A multivariate threshold regression approach

    International Nuclear Information System (INIS)

    Huang, Bwo-Nung; Yang, C.W.; Hwang, M.J.

    2009-01-01

    This paper segments daily data from January of 1986 to April of 2007 into three periods based on certain important events. Both periods I and II indicate that the spot prices in general are higher than futures prices as was well-known in the literature. Only period-III (2001/9/11-2007/4/30) displays a reverse phenomenon: futures prices, in general, exceed spot prices. When the absolute value of a basis (futures-spot) is greater than the threshold value in the arbitrage area (regime 1 and 3), at least one of the error correction coefficients, representing adjustment towards equilibrium, is statistically significant. That is, there exists a tendency in the oil market in which prices move toward equilibrium. With respect to the short-run dynamic interaction between spot price change ((delta)s t ) and futures price change ((delta)f t ), our results indicate that when the spot price is higher than futures price, and the basis is less than certain threshold value (regime 3), there exists at least one causal relationship between (delta)s t and (delta)f t . Conversely, when the futures price is higher than spot price and the basis is higher than certain threshold value (regime 1), there exists at least one causal relationship between (delta)s t and (delta)f t . Finally, we use the method suggested by Diebold and Mariano [Diebold, Francis X., Mariano, Roberto S., 1995. Comparing predictive accuracy. Journal of Business and Economic Statistics 13 (3), 253-263] to compare the predictive power between the linear and nonlinear models. Our empirical results indicate that the in-sample prediction of the nonlinear model is clearly superior to that of the linear model. (author)

  9. Multivariate Analysis and Modeling of Sediment Pollution Using Neural Network Models and Geostatistics

    Science.gov (United States)

    Golay, Jean; Kanevski, Mikhaïl

    2013-04-01

    The present research deals with the exploration and modeling of a complex dataset of 200 measurement points of sediment pollution by heavy metals in Lake Geneva. The fundamental idea was to use multivariate Artificial Neural Networks (ANN) along with geostatistical models and tools in order to improve the accuracy and the interpretability of data modeling. The results obtained with ANN were compared to those of traditional geostatistical algorithms like ordinary (co)kriging and (co)kriging with an external drift. Exploratory data analysis highlighted a great variety of relationships (i.e. linear, non-linear, independence) between the 11 variables of the dataset (i.e. Cadmium, Mercury, Zinc, Copper, Titanium, Chromium, Vanadium and Nickel as well as the spatial coordinates of the measurement points and their depth). Then, exploratory spatial data analysis (i.e. anisotropic variography, local spatial correlations and moving window statistics) was carried out. It was shown that the different phenomena to be modeled were characterized by high spatial anisotropies, complex spatial correlation structures and heteroscedasticity. A feature selection procedure based on General Regression Neural Networks (GRNN) was also applied to create subsets of variables enabling to improve the predictions during the modeling phase. The basic modeling was conducted using a Multilayer Perceptron (MLP) which is a workhorse of ANN. MLP models are robust and highly flexible tools which can incorporate in a nonlinear manner different kind of high-dimensional information. In the present research, the input layer was made of either two (spatial coordinates) or three neurons (when depth as auxiliary information could possibly capture an underlying trend) and the output layer was composed of one (univariate MLP) to eight neurons corresponding to the heavy metals of the dataset (multivariate MLP). MLP models with three input neurons can be referred to as Artificial Neural Networks with EXternal

  10. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  11. multivariate time series modeling of selected childhood diseases

    African Journals Online (AJOL)

    2016-06-17

    Jun 17, 2016 ... KEYWORDS: Multivariate Approach, Pre-whitening, Vector Time Series, .... Alternatively, the process may be written in mean adjusted form as .... The AIC criterion asymptotically over estimates the order with positive probability, whereas the BIC and HQC criteria ... has the same asymptotic distribution as Ǫ.

  12. Multivariate models to classify Tuscan virgin olive oils by zone.

    Directory of Open Access Journals (Sweden)

    Alessandri, Stefano

    1999-10-01

    Full Text Available In order to study and classify Tuscan virgin olive oils, 179 samples were collected. They were obtained from drupes harvested during the first half of November, from three different zones of the Region. The sampling was repeated for 5 years. Fatty acids, phytol, aliphatic and triterpenic alcohols, triterpenic dialcohols, sterols, squalene and tocopherols were analyzed. A subset of variables was considered. They were selected in a preceding work as the most effective and reliable, from the univariate point of view. The analytical data were transformed (except for the cycloartenol to compensate annual variations, the mean related to the East zone was subtracted from each value, within each year. Univariate three-class models were calculated and further variables discarded. Then multivariate three-zone models were evaluated, including phytol (that was always selected and all the combinations of palmitic, palmitoleic and oleic acid, tetracosanol, cycloartenol and squalene. Models including from two to seven variables were studied. The best model shows by-zone classification errors less than 40%, by-zone within-year classification errors that are less than 45% and a global classification error equal to 30%. This model includes phytol, palmitic acid, tetracosanol and cycloartenol.

    Para estudiar y clasificar aceites de oliva vírgenes Toscanos, se utilizaron 179 muestras, que fueron obtenidas de frutos recolectados durante la primera mitad de Noviembre, de tres zonas diferentes de la Región. El muestreo fue repetido durante 5 años. Se analizaron ácidos grasos, fitol, alcoholes alifáticos y triterpénicos, dialcoholes triterpénicos, esteroles, escualeno y tocoferoles. Se consideró un subconjunto de variables que fueron seleccionadas en un trabajo anterior como el más efectivo y fiable, desde el punto de vista univariado. Los datos analíticos se transformaron (excepto para el cicloartenol para compensar las variaciones anuales, rest

  13. Time-series panel analysis (TSPA): multivariate modeling of temporal associations in psychotherapy process.

    Science.gov (United States)

    Ramseyer, Fabian; Kupper, Zeno; Caspar, Franz; Znoj, Hansjörg; Tschacher, Wolfgang

    2014-10-01

    Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia

    2018-04-10

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite the fact that this leads to a proper posterior for the regression coefficients, the resulting posterior variance is however affected by an unidentifiable parameter, hence any inferential procedure beside point estimation is unreliable. We propose a model-based approach for quantile regression that considers quantiles of the generating distribution directly, and thus allows for a proper uncertainty quantification. We then create a link between quantile regression and generalised linear models by mapping the quantiles to the parameter of the response variable, and we exploit it to fit the model with R-INLA. We extend it also in the case of discrete responses, where there is no 1-to-1 relationship between quantiles and distribution\\'s parameter, by introducing continuous generalisations of the most common discrete variables (Poisson, Binomial and Negative Binomial) to be exploited in the fitting.

  15. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.

    Science.gov (United States)

    Chatzis, Sotirios P; Andreou, Andreas S

    2015-11-01

    Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.

  16. Multivariate Normal Tissue Complication Probability Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors

    International Nuclear Information System (INIS)

    Cella, Laura; Liuzzi, Raffaele; Conson, Manuel; D’Avino, Vittoria; Salvatore, Marco; Pacelli, Roberto

    2013-01-01

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced asymptomatic heart valvular defects (RVD). Methods and Materials: Fifty-six patients treated with sequential chemoradiation therapy for Hodgkin lymphoma (HL) were retrospectively reviewed for RVD events. Clinical information along with whole heart, cardiac chambers, and lung dose distribution parameters was collected, and the correlations to RVD were analyzed by means of Spearman's rank correlation coefficient (Rs). For the selection of the model order and parameters for NTCP modeling, a multivariate logistic regression method using resampling techniques (bootstrapping) was applied. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). Results: When we analyzed the whole heart, a 3-variable NTCP model including the maximum dose, whole heart volume, and lung volume was shown to be the optimal predictive model for RVD (Rs = 0.573, P<.001, AUC = 0.83). When we analyzed the cardiac chambers individually, for the left atrium and for the left ventricle, an NTCP model based on 3 variables including the percentage volume exceeding 30 Gy (V30), cardiac chamber volume, and lung volume was selected as the most predictive model (Rs = 0.539, P<.001, AUC = 0.83; and Rs = 0.557, P<.001, AUC = 0.82, respectively). The NTCP values increase as heart maximum dose or cardiac chambers V30 increase. They also increase with larger volumes of the heart or cardiac chambers and decrease when lung volume is larger. Conclusions: We propose logistic NTCP models for RVD considering not only heart irradiation dose but also the combined effects of lung and heart volumes. Our study establishes the statistical evidence of the indirect effect of lung size on radio-induced heart toxicity

  17. Forecasting daily meteorological time series using ARIMA and regression models

    Science.gov (United States)

    Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir

    2018-04-01

    The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.

  18. Multiple Response Regression for Gaussian Mixture Models with Known Labels.

    Science.gov (United States)

    Lee, Wonyul; Du, Ying; Sun, Wei; Hayes, D Neil; Liu, Yufeng

    2012-12-01

    Multiple response regression is a useful regression technique to model multiple response variables using the same set of predictor variables. Most existing methods for multiple response regression are designed for modeling homogeneous data. In many applications, however, one may have heterogeneous data where the samples are divided into multiple groups. Our motivating example is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we consider modeling the data coming from a mixture of several Gaussian distributions with known group labels. A naive approach is to split the data into several groups according to the labels and model each group separately. Although it is simple, this approach ignores potential common structures across different groups. We propose new penalized methods to model all groups jointly in which the common and unique structures can be identified. The proposed methods estimate the regression coefficient matrix, as well as the conditional inverse covariance matrix of response variables. Asymptotic properties of the proposed methods are explored. Through numerical examples, we demonstrate that both estimation and prediction can be improved by modeling all groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals some interesting common and unique gene relationships across different cancer subtypes.

  19. Thermal Efficiency Degradation Diagnosis Method Using Regression Model

    International Nuclear Information System (INIS)

    Jee, Chang Hyun; Heo, Gyun Young; Jang, Seok Won; Lee, In Cheol

    2011-01-01

    This paper proposes an idea for thermal efficiency degradation diagnosis in turbine cycles, which is based on turbine cycle simulation under abnormal conditions and a linear regression model. The correlation between the inputs for representing degradation conditions (normally unmeasured but intrinsic states) and the simulation outputs (normally measured but superficial states) was analyzed with the linear regression model. The regression models can inversely response an associated intrinsic state for a superficial state observed from a power plant. The diagnosis method proposed herein is classified into three processes, 1) simulations for degradation conditions to get measured states (referred as what-if method), 2) development of the linear model correlating intrinsic and superficial states, and 3) determination of an intrinsic state using the superficial states of current plant and the linear regression model (referred as inverse what-if method). The what-if method is to generate the outputs for the inputs including various root causes and/or boundary conditions whereas the inverse what-if method is the process of calculating the inverse matrix with the given superficial states, that is, component degradation modes. The method suggested in this paper was validated using the turbine cycle model for an operating power plant

  20. Flexible competing risks regression modeling and goodness-of-fit

    DEFF Research Database (Denmark)

    Scheike, Thomas; Zhang, Mei-Jie

    2008-01-01

    In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause...... models that is easy to fit and contains the Fine-Gray model as a special case. One advantage of this approach is that our regression modeling allows for non-proportional hazards. This leads to a new simple goodness-of-fit procedure for the proportional subdistribution hazards assumption that is very easy...... of the flexible regression models to analyze competing risks data when non-proportionality is present in the data....

  1. The art of regression modeling in road safety

    CERN Document Server

    Hauer, Ezra

    2015-01-01

    This unique book explains how to fashion useful regression models from commonly available data to erect models essential for evidence-based road safety management and research. Composed from techniques and best practices presented over many years of lectures and workshops, The Art of Regression Modeling in Road Safety illustrates that fruitful modeling cannot be done without substantive knowledge about the modeled phenomenon. Class-tested in courses and workshops across North America, the book is ideal for professionals, researchers, university professors, and graduate students with an interest in, or responsibilities related to, road safety. This book also: · Presents for the first time a powerful analytical tool for road safety researchers and practitioners · Includes problems and solutions in each chapter as well as data and spreadsheets for running models and PowerPoint presentation slides · Features pedagogy well-suited for graduate courses and workshops including problems, solutions, and PowerPoint p...

  2. Model building strategy for logistic regression: purposeful selection.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-03-01

    Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.

  3. Regression analysis of a chemical reaction fouling model

    International Nuclear Information System (INIS)

    Vasak, F.; Epstein, N.

    1996-01-01

    A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs

  4. Multivariate η-μ fading distribution with arbitrary correlation model

    Science.gov (United States)

    Ghareeb, Ibrahim; Atiani, Amani

    2018-03-01

    An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.

  5. Spatial stochastic regression modelling of urban land use

    International Nuclear Information System (INIS)

    Arshad, S H M; Jaafar, J; Abiden, M Z Z; Latif, Z A; Rasam, A R A

    2014-01-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable

  6. Direction of Effects in Multiple Linear Regression Models.

    Science.gov (United States)

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.

  7. Logistic regression for risk factor modelling in stuttering research.

    Science.gov (United States)

    Reed, Phil; Wu, Yaqionq

    2013-06-01

    To outline the uses of logistic regression and other statistical methods for risk factor analysis in the context of research on stuttering. The principles underlying the application of a logistic regression are illustrated, and the types of questions to which such a technique has been applied in the stuttering field are outlined. The assumptions and limitations of the technique are discussed with respect to existing stuttering research, and with respect to formulating appropriate research strategies to accommodate these considerations. Finally, some alternatives to the approach are briefly discussed. The way the statistical procedures are employed are demonstrated with some hypothetical data. Research into several practical issues concerning stuttering could benefit if risk factor modelling were used. Important examples are early diagnosis, prognosis (whether a child will recover or persist) and assessment of treatment outcome. After reading this article you will: (a) Summarize the situations in which logistic regression can be applied to a range of issues about stuttering; (b) Follow the steps in performing a logistic regression analysis; (c) Describe the assumptions of the logistic regression technique and the precautions that need to be checked when it is employed; (d) Be able to summarize its advantages over other techniques like estimation of group differences and simple regression. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Modeling and prediction of flotation performance using support vector regression

    Directory of Open Access Journals (Sweden)

    Despotović Vladimir

    2017-01-01

    Full Text Available Continuous efforts have been made in recent year to improve the process of paper recycling, as it is of critical importance for saving the wood, water and energy resources. Flotation deinking is considered to be one of the key methods for separation of ink particles from the cellulose fibres. Attempts to model the flotation deinking process have often resulted in complex models that are difficult to implement and use. In this paper a model for prediction of flotation performance based on Support Vector Regression (SVR, is presented. Representative data samples were created in laboratory, under a variety of practical control variables for the flotation deinking process, including different reagents, pH values and flotation residence time. Predictive model was created that was trained on these data samples, and the flotation performance was assessed showing that Support Vector Regression is a promising method even when dataset used for training the model is limited.

  9. Bayesian approach to errors-in-variables in regression models

    Science.gov (United States)

    Rozliman, Nur Aainaa; Ibrahim, Adriana Irawati Nur; Yunus, Rossita Mohammad

    2017-05-01

    In many applications and experiments, data sets are often contaminated with error or mismeasured covariates. When at least one of the covariates in a model is measured with error, Errors-in-Variables (EIV) model can be used. Measurement error, when not corrected, would cause misleading statistical inferences and analysis. Therefore, our goal is to examine the relationship of the outcome variable and the unobserved exposure variable given the observed mismeasured surrogate by applying the Bayesian formulation to the EIV model. We shall extend the flexible parametric method proposed by Hossain and Gustafson (2009) to another nonlinear regression model which is the Poisson regression model. We shall then illustrate the application of this approach via a simulation study using Markov chain Monte Carlo sampling methods.

  10. Time series regression model for infectious disease and weather.

    Science.gov (United States)

    Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro

    2015-10-01

    Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Variable Selection for Regression Models of Percentile Flows

    Science.gov (United States)

    Fouad, G.

    2017-12-01

    Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high

  12. Linearity and Misspecification Tests for Vector Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    Teräsvirta, Timo; Yang, Yukai

    The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...

  13. Application of multilinear regression analysis in modeling of soil ...

    African Journals Online (AJOL)

    The application of Multi-Linear Regression Analysis (MLRA) model for predicting soil properties in Calabar South offers a technical guide and solution in foundation designs problems in the area. Forty-five soil samples were collected from fifteen different boreholes at a different depth and 270 tests were carried out for CBR, ...

  14. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2009-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  15. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2010-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  16. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2011-01-01

    In this paper, two non-parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel-based approaches. The second estimator

  17. Transpiration of glasshouse rose crops: evaluation of regression models

    NARCIS (Netherlands)

    Baas, R.; Rijssel, van E.

    2006-01-01

    Regression models of transpiration (T) based on global radiation inside the greenhouse (G), with or without energy input from heating pipes (Eh) and/or vapor pressure deficit (VPD) were parameterized. Therefore, data on T, G, temperatures from air, canopy and heating pipes, and VPD from both a

  18. Genetic Parameters for Body condition score, Body weigth, Milk yield and Fertility estimated using random regression models

    NARCIS (Netherlands)

    Berry, D.P.; Buckley, F.; Dillon, P.; Evans, R.D.; Rath, M.; Veerkamp, R.F.

    2003-01-01

    Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields

  19. Multivariate analysis of nystatin and metronidazole in a semi-solid matrix by means of diffuse reflectance NIR spectroscopy and PLS regression.

    Science.gov (United States)

    Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A

    2006-01-23

    A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.

  20. A comparison between univariate probabilistic and multivariate (logistic regression) methods for landslide susceptibility analysis: the example of the Febbraro valley (Northern Alps, Italy)

    Science.gov (United States)

    Rossi, M.; Apuani, T.; Felletti, F.

    2009-04-01

    The aim of this paper is to compare the results of two statistical methods for landslide susceptibility analysis: 1) univariate probabilistic method based on landslide susceptibility index, 2) multivariate method (logistic regression). The study area is the Febbraro valley, located in the central Italian Alps, where different types of metamorphic rocks croup out. On the eastern part of the studied basin a quaternary cover represented by colluvial and secondarily, by glacial deposits, is dominant. In this study 110 earth flows, mainly located toward NE portion of the catchment, were analyzed. They involve only the colluvial deposits and their extension mainly ranges from 36 to 3173 m2. Both statistical methods require to establish a spatial database, in which each landslide is described by several parameters that can be assigned using a main scarp central point of landslide. The spatial database is constructed using a Geographical Information System (GIS). Each landslide is described by several parameters corresponding to the value of main scarp central point of the landslide. Based on bibliographic review a total of 15 predisposing factors were utilized. The width of the intervals, in which the maps of the predisposing factors have to be reclassified, has been defined assuming constant intervals to: elevation (100 m), slope (5 °), solar radiation (0.1 MJ/cm2/year), profile curvature (1.2 1/m), tangential curvature (2.2 1/m), drainage density (0.5), lineament density (0.00126). For the other parameters have been used the results of the probability-probability plots analysis and the statistical indexes of landslides site. In particular slope length (0 ÷ 2, 2 ÷ 5, 5 ÷ 10, 10 ÷ 20, 20 ÷ 35, 35 ÷ 260), accumulation flow (0 ÷ 1, 1 ÷ 2, 2 ÷ 5, 5 ÷ 12, 12 ÷ 60, 60 ÷27265), Topographic Wetness Index 0 ÷ 0.74, 0.74 ÷ 1.94, 1.94 ÷ 2.62, 2.62 ÷ 3.48, 3.48 ÷ 6,00, 6.00 ÷ 9.44), Stream Power Index (0 ÷ 0.64, 0.64 ÷ 1.28, 1.28 ÷ 1.81, 1.81 ÷ 4.20, 4.20 ÷ 9

  1. Approximating prediction uncertainty for random forest regression models

    Science.gov (United States)

    John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne

    2016-01-01

    Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as...

  2. CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Hansen, Lars Kai

    2004-01-01

    We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least square...... estimation. We demonstrate the method on synthetic data and finally separate speech and music in a real room recording....

  3. Multivariable Regression Analysis in Schistosoma mansoni-Infected Individuals in the Sudan Reveals Unique Immunoepidemiological Profiles in Uninfected, egg+ and Non-egg+ Infected Individuals.

    Science.gov (United States)

    Elfaki, Tayseer Elamin Mohamed; Arndts, Kathrin; Wiszniewsky, Anna; Ritter, Manuel; Goreish, Ibtisam A; Atti El Mekki, Misk El Yemen A; Arriens, Sandra; Pfarr, Kenneth; Fimmers, Rolf; Doenhoff, Mike; Hoerauf, Achim; Layland, Laura E

    2016-05-01

    In the Sudan, Schistosoma mansoni infections are a major cause of morbidity in school-aged children and infection rates are associated with available clean water sources. During infection, immune responses pass through a Th1 followed by Th2 and Treg phases and patterns can relate to different stages of infection or immunity. This retrospective study evaluated immunoepidemiological aspects in 234 individuals (range 4-85 years old) from Kassala and Khartoum states in 2011. Systemic immune profiles (cytokines and immunoglobulins) and epidemiological parameters were surveyed in n = 110 persons presenting patent S. mansoni infections (egg+), n = 63 individuals positive for S. mansoni via PCR in sera but egg negative (SmPCR+) and n = 61 people who were infection-free (Sm uninf). Immunoepidemiological findings were further investigated using two binary multivariable regression analysis. Nearly all egg+ individuals had no access to latrines and over 90% obtained water via the canal stemming from the Atbara River. With regards to age, infection and an egg+ status was linked to young and adolescent groups. In terms of immunology, S. mansoni infection per se was strongly associated with increased SEA-specific IgG4 but not IgE levels. IL-6, IL-13 and IL-10 were significantly elevated in patently-infected individuals and positively correlated with egg load. In contrast, IL-2 and IL-1β were significantly lower in SmPCR+ individuals when compared to Sm uninf and egg+ groups which was further confirmed during multivariate regression analysis. Schistosomiasis remains an important public health problem in the Sudan with a high number of patent individuals. In addition, SmPCR diagnostics revealed another cohort of infected individuals with a unique immunological profile and provides an avenue for future studies on non-patent infection states. Future studies should investigate the downstream signalling pathways/mechanisms of IL-2 and IL-1β as potential diagnostic markers in order to

  4. A new multivariate zero-adjusted Poisson model with applications to biomedicine.

    Science.gov (United States)

    Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen

    2018-05-25

    Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Joint density of eigenvalues in spiked multivariate models.

    Science.gov (United States)

    Dharmawansa, Prathapasinghe; Johnstone, Iain M

    2014-01-01

    The classical methods of multivariate analysis are based on the eigenvalues of one or two sample covariance matrices. In many applications of these methods, for example to high dimensional data, it is natural to consider alternative hypotheses which are a low rank departure from the null hypothesis. For rank one alternatives, this note provides a representation for the joint eigenvalue density in terms of a single contour integral. This will be of use for deriving approximate distributions for likelihood ratios and 'linear' statistics used in testing.

  6. On concurvity in nonlinear and nonparametric regression models

    Directory of Open Access Journals (Sweden)

    Sonia Amodio

    2014-12-01

    Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.

  7. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Directory of Open Access Journals (Sweden)

    Minh Vu Trieu

    2017-03-01

    Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  8. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Science.gov (United States)

    Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno

    2017-03-01

    This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  9. Detection of Outliers in Regression Model for Medical Data

    Directory of Open Access Journals (Sweden)

    Stephen Raj S

    2017-07-01

    Full Text Available In regression analysis, an outlier is an observation for which the residual is large in magnitude compared to other observations in the data set. The detection of outliers and influential points is an important step of the regression analysis. Outlier detection methods have been used to detect and remove anomalous values from data. In this paper, we detect the presence of outliers in simple linear regression models for medical data set. Chatterjee and Hadi mentioned that the ordinary residuals are not appropriate for diagnostic purposes; a transformed version of them is preferable. First, we investigate the presence of outliers based on existing procedures of residuals and standardized residuals. Next, we have used the new approach of standardized scores for detecting outliers without the use of predicted values. The performance of the new approach was verified with the real-life data.

  10. Multivariate Modeling of Cytochrome P450 Enzymes for 4 ...

    African Journals Online (AJOL)

    Conclusion: Apart from insights into important molecular properties for CYP inhibition, the findings may also guide further investigations of novel drug candidates that are unlikely to inhibit multiple CYP sub-types. Keywords: Antimalarial, Chloroquine, Cytochrome P450, Genetic algorithm-based multiple linear regression, ...

  11. A multivariate time series approach to modeling and forecasting demand in the emergency department.

    Science.gov (United States)

    Jones, Spencer S; Evans, R Scott; Allen, Todd L; Thomas, Alun; Haug, Peter J; Welch, Shari J; Snow, Gregory L

    2009-02-01

    The goals of this investigation were to study the temporal relationships between the demands for key resources in the emergency department (ED) and the inpatient hospital, and to develop multivariate forecasting models. Hourly data were collected from three diverse hospitals for the year 2006. Descriptive analysis and model fitting were carried out using graphical and multivariate time series methods. Multivariate models were compared to a univariate benchmark model in terms of their ability to provide out-of-sample forecasts of ED census and the demands for diagnostic resources. Descriptive analyses revealed little temporal interaction between the demand for inpatient resources and the demand for ED resources at the facilities considered. Multivariate models provided more accurate forecasts of ED census and of the demands for diagnostic resources. Our results suggest that multivariate time series models can be used to reliably forecast ED patient census; however, forecasts of the demands for diagnostic resources were not sufficiently reliable to be useful in the clinical setting.

  12. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  13. Electricity consumption forecasting in Italy using linear regression models

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio [DIAM, Seconda Universita degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)

    2009-09-15

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of {+-}1% for the best case and {+-}11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  14. Electricity consumption forecasting in Italy using linear regression models

    International Nuclear Information System (INIS)

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio

    2009-01-01

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of ±1% for the best case and ±11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  15. Asymptotics for the Conditional-Sum-of-Squares Estimator in Multivariate Fractional Time-Series Models

    DEFF Research Database (Denmark)

    Ørregård Nielsen, Morten

    2015-01-01

    the multivariate non-cointegrated fractional autoregressive integrated moving average (ARIMA) model. The novelty of the consistency result, in particular, is that it applies to a multivariate model and to an arbitrarily large set of admissible parameter values, for which the objective function does not converge...

  16. Regression Model to Predict Global Solar Irradiance in Malaysia

    Directory of Open Access Journals (Sweden)

    Hairuniza Ahmed Kutty

    2015-01-01

    Full Text Available A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE, mean bias error (MBE, and the coefficient of determination (R2 with other models available from literature studies. Seven models based on single parameters (PM1 to PM7 and five multiple-parameter models (PM7 to PM12 are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.

  17. Two-step variable selection in quantile regression models

    Directory of Open Access Journals (Sweden)

    FAN Yali

    2015-06-01

    Full Text Available We propose a two-step variable selection procedure for high dimensional quantile regressions, in which the dimension of the covariates, pn is much larger than the sample size n. In the first step, we perform ℓ1 penalty, and we demonstrate that the first step penalized estimator with the LASSO penalty can reduce the model from an ultra-high dimensional to a model whose size has the same order as that of the true model, and the selected model can cover the true model. The second step excludes the remained irrelevant covariates by applying the adaptive LASSO penalty to the reduced model obtained from the first step. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. We conduct a simulation study and a real data analysis to evaluate the finite sample performance of the proposed approach.

  18. Multivariate zero-inflated modeling with latent predictors: Modeling feedback behavior

    NARCIS (Netherlands)

    Fox, Gerardus J.A.

    2013-01-01

    In educational studies, the use of computer-based assessments leads to the collection of multiple outcomes to assess student performance. The student-specific outcomes are correlated and often measured in different scales, such as continuous and count outcomes. A multivariate zero-inflated model

  19. Development of multivariate NTCP models for radiation-induced hypothyroidism: a comparative analysis

    International Nuclear Information System (INIS)

    Cella, Laura; Liuzzi, Raffaele; Conson, Manuel; D’Avino, Vittoria; Salvatore, Marco; Pacelli, Roberto

    2012-01-01

    Hypothyroidism is a frequent late side effect of radiation therapy of the cervical region. Purpose of this work is to develop multivariate normal tissue complication probability (NTCP) models for radiation-induced hypothyroidism (RHT) and to compare them with already existing NTCP models for RHT. Fifty-three patients treated with sequential chemo-radiotherapy for Hodgkin’s lymphoma (HL) were retrospectively reviewed for RHT events. Clinical information along with thyroid gland dose distribution parameters were collected and their correlation to RHT was analyzed by Spearman’s rank correlation coefficient (Rs). Multivariate logistic regression method using resampling methods (bootstrapping) was applied to select model order and parameters for NTCP modeling. Model performance was evaluated through the area under the receiver operating characteristic curve (AUC). Models were tested against external published data on RHT and compared with other published NTCP models. If we express the thyroid volume exceeding X Gy as a percentage (V x (%)), a two-variable NTCP model including V 30 (%) and gender resulted to be the optimal predictive model for RHT (Rs = 0.615, p < 0.001. AUC = 0.87). Conversely, if absolute thyroid volume exceeding X Gy (V x (cc)) was analyzed, an NTCP model based on 3 variables including V 30 (cc), thyroid gland volume and gender was selected as the most predictive model (Rs = 0.630, p < 0.001. AUC = 0.85). The three-variable model performs better when tested on an external cohort characterized by large inter-individuals variation in thyroid volumes (AUC = 0.914, 95% CI 0.760–0.984). A comparable performance was found between our model and that proposed in the literature based on thyroid gland mean dose and volume (p = 0.264). The absolute volume of thyroid gland exceeding 30 Gy in combination with thyroid gland volume and gender provide an NTCP model for RHT with improved prediction capability not only within our patient population but also in an

  20. New robust statistical procedures for the polytomous logistic regression models.

    Science.gov (United States)

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  1. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE

    OpenAIRE

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-01-01

    Background: The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran?s universities. Methods: This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran?s public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For pr...

  2. Online Statistical Modeling (Regression Analysis) for Independent Responses

    Science.gov (United States)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  3. A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2016-01-01

    textabstractThe paper derives a Multivariate Asymmetric Long Memory conditional volatility model with Exogenous Variables (X), or the MALMX model, with dynamic conditional correlations, appropriate regularity conditions, and associated asymptotic theory. This enables checking of internal consistency

  4. Reconstruction of missing daily streamflow data using dynamic regression models

    Science.gov (United States)

    Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault

    2015-12-01

    River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.

  5. Predicting and Modelling of Survival Data when Cox's Regression Model does not hold

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects...

  6. Asymptotics for the conditional-sum-of-squares estimator in multivariate fractional time series models

    DEFF Research Database (Denmark)

    Ørregård Nielsen, Morten

    This paper proves consistency and asymptotic normality for the conditional-sum-of-squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time series models. The model is parametric and quite general, and, in particular, encompasses...... the multivariate non-cointegrated fractional ARIMA model. The novelty of the consistency result, in particular, is that it applies to a multivariate model and to an arbitrarily large set of admissible parameter values, for which the objective function does not converge uniformly in probablity, thus making...

  7. Modelling and Multi-Variable Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Slot; Holm, J. R.

    2003-01-01

    In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static as the dyn......In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static...... as the dynamic behavior. Based on this model the effects of the cross couplings has been examined. The influence of the cross couplings on the achievable control performance has been investigated. A MIMO controller is designed and the performance is compared with the control performance achieved by using...

  8. Extended cox regression model: The choice of timefunction

    Science.gov (United States)

    Isik, Hatice; Tutkun, Nihal Ata; Karasoy, Durdu

    2017-07-01

    Cox regression model (CRM), which takes into account the effect of censored observations, is one the most applicative and usedmodels in survival analysis to evaluate the effects of covariates. Proportional hazard (PH), requires a constant hazard ratio over time, is the assumptionofCRM. Using extended CRM provides the test of including a time dependent covariate to assess the PH assumption or an alternative model in case of nonproportional hazards. In this study, the different types of real data sets are used to choose the time function and the differences between time functions are analyzed and discussed.

  9. A test of inflated zeros for Poisson regression models.

    Science.gov (United States)

    He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan

    2017-01-01

    Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.

  10. Modelling world gold prices and USD foreign exchange relationship using multivariate GARCH model

    Science.gov (United States)

    Ping, Pung Yean; Ahmad, Maizah Hura Binti

    2014-12-01

    World gold price is a popular investment commodity. The series have often been modeled using univariate models. The objective of this paper is to show that there is a co-movement between gold price and USD foreign exchange rate. Using the effect of the USD foreign exchange rate on the gold price, a model that can be used to forecast future gold prices is developed. For this purpose, the current paper proposes a multivariate GARCH (Bivariate GARCH) model. Using daily prices of both series from 01.01.2000 to 05.05.2014, a causal relation between the two series understudied are found and a bivariate GARCH model is produced.

  11. Estimation of a multivariate mean under model selection uncertainty

    Directory of Open Access Journals (Sweden)

    Georges Nguefack-Tsague

    2014-05-01

    Full Text Available Model selection uncertainty would occur if we selected a model based on one data set and subsequently applied it for statistical inferences, because the "correct" model would not be selected with certainty.  When the selection and inference are based on the same dataset, some additional problems arise due to the correlation of the two stages (selection and inference. In this paper model selection uncertainty is considered and model averaging is proposed. The proposal is related to the theory of James and Stein of estimating more than three parameters from independent normal observations. We suggest that a model averaging scheme taking into account the selection procedure could be more appropriate than model selection alone. Some properties of this model averaging estimator are investigated; in particular we show using Stein's results that it is a minimax estimator and can outperform Stein-type estimators.

  12. Augmented Beta rectangular regression models: A Bayesian perspective.

    Science.gov (United States)

    Wang, Jue; Luo, Sheng

    2016-01-01

    Mixed effects Beta regression models based on Beta distributions have been widely used to analyze longitudinal percentage or proportional data ranging between zero and one. However, Beta distributions are not flexible to extreme outliers or excessive events around tail areas, and they do not account for the presence of the boundary values zeros and ones because these values are not in the support of the Beta distributions. To address these issues, we propose a mixed effects model using Beta rectangular distribution and augment it with the probabilities of zero and one. We conduct extensive simulation studies to assess the performance of mixed effects models based on both the Beta and Beta rectangular distributions under various scenarios. The simulation studies suggest that the regression models based on Beta rectangular distributions improve the accuracy of parameter estimates in the presence of outliers and heavy tails. The proposed models are applied to the motivating Neuroprotection Exploratory Trials in Parkinson's Disease (PD) Long-term Study-1 (LS-1 study, n = 1741), developed by The National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson's Disease (NINDS NET-PD) network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bayesian semiparametric regression models to characterize molecular evolution

    Directory of Open Access Journals (Sweden)

    Datta Saheli

    2012-10-01

    Full Text Available Abstract Background Statistical models and methods that associate changes in the physicochemical properties of amino acids with natural selection at the molecular level typically do not take into account the correlations between such properties. We propose a Bayesian hierarchical regression model with a generalization of the Dirichlet process prior on the distribution of the regression coefficients that describes the relationship between the changes in amino acid distances and natural selection in protein-coding DNA sequence alignments. Results The Bayesian semiparametric approach is illustrated with simulated data and the abalone lysin sperm data. Our method identifies groups of properties which, for this particular dataset, have a similar effect on evolution. The model also provides nonparametric site-specific estimates for the strength of conservation of these properties. Conclusions The model described here is distinguished by its ability to handle a large number of amino acid properties simultaneously, while taking into account that such data can be correlated. The multi-level clustering ability of the model allows for appealing interpretations of the results in terms of properties that are roughly equivalent from the standpoint of molecular evolution.

  14. Multivariable Regression Analysis in Schistosoma mansoni-Infected Individuals in the Sudan Reveals Unique Immunoepidemiological Profiles in Uninfected, egg+ and Non-egg+ Infected Individuals.

    Directory of Open Access Journals (Sweden)

    Tayseer Elamin Mohamed Elfaki

    2016-05-01

    Full Text Available In the Sudan, Schistosoma mansoni infections are a major cause of morbidity in school-aged children and infection rates are associated with available clean water sources. During infection, immune responses pass through a Th1 followed by Th2 and Treg phases and patterns can relate to different stages of infection or immunity.This retrospective study evaluated immunoepidemiological aspects in 234 individuals (range 4-85 years old from Kassala and Khartoum states in 2011. Systemic immune profiles (cytokines and immunoglobulins and epidemiological parameters were surveyed in n = 110 persons presenting patent S. mansoni infections (egg+, n = 63 individuals positive for S. mansoni via PCR in sera but egg negative (SmPCR+ and n = 61 people who were infection-free (Sm uninf. Immunoepidemiological findings were further investigated using two binary multivariable regression analysis.Nearly all egg+ individuals had no access to latrines and over 90% obtained water via the canal stemming from the Atbara River. With regards to age, infection and an egg+ status was linked to young and adolescent groups. In terms of immunology, S. mansoni infection per se was strongly associated with increased SEA-specific IgG4 but not IgE levels. IL-6, IL-13 and IL-10 were significantly elevated in patently-infected individuals and positively correlated with egg load. In contrast, IL-2 and IL-1β were significantly lower in SmPCR+ individuals when compared to Sm uninf and egg+ groups which was further confirmed during multivariate regression analysis.Schistosomiasis remains an important public health problem in the Sudan with a high number of patent individuals. In addition, SmPCR diagnostics revealed another cohort of infected individuals with a unique immunological profile and provides an avenue for future studies on non-patent infection states. Future studies should investigate the downstream signalling pathways/mechanisms of IL-2 and IL-1β as potential diagnostic markers

  15. Modeling the number of car theft using Poisson regression

    Science.gov (United States)

    Zulkifli, Malina; Ling, Agnes Beh Yen; Kasim, Maznah Mat; Ismail, Noriszura

    2016-10-01

    Regression analysis is the most popular statistical methods used to express the relationship between the variables of response with the covariates. The aim of this paper is to evaluate the factors that influence the number of car theft using Poisson regression model. This paper will focus on the number of car thefts that occurred in districts in Peninsular Malaysia. There are two groups of factor that have been considered, namely district descriptive factors and socio and demographic factors. The result of the study showed that Bumiputera composition, Chinese composition, Other ethnic composition, foreign migration, number of residence with the age between 25 to 64, number of employed person and number of unemployed person are the most influence factors that affect the car theft cases. These information are very useful for the law enforcement department, insurance company and car owners in order to reduce and limiting the car theft cases in Peninsular Malaysia.

  16. ATLS Hypovolemic Shock Classification by Prediction of Blood Loss in Rats Using Regression Models.

    Science.gov (United States)

    Choi, Soo Beom; Choi, Joon Yul; Park, Jee Soo; Kim, Deok Won

    2016-07-01

    In our previous study, our input data set consisted of 78 rats, the blood loss in percent as a dependent variable, and 11 independent variables (heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, respiration rate, temperature, perfusion index, lactate concentration, shock index, and new index (lactate concentration/perfusion)). The machine learning methods for multicategory classification were applied to a rat model in acute hemorrhage to predict the four Advanced Trauma Life Support (ATLS) hypovolemic shock classes for triage in our previous study. However, multicategory classification is much more difficult and complicated than binary classification. We introduce a simple approach for classifying ATLS hypovolaemic shock class by predicting blood loss in percent using support vector regression and multivariate linear regression (MLR). We also compared the performance of the classification models using absolute and relative vital signs. The accuracies of support vector regression and MLR models with relative values by predicting blood loss in percent were 88.5% and 84.6%, respectively. These were better than the best accuracy of 80.8% of the direct multicategory classification using the support vector machine one-versus-one model in our previous study for the same validation data set. Moreover, the simple MLR models with both absolute and relative values could provide possibility of the future clinical decision support system for ATLS classification. The perfusion index and new index were more appropriate with relative changes than absolute values.

  17. Accurate and versatile multivariable arbitrary piecewise model regression of nonlinear fluidic muscle behavior

    NARCIS (Netherlands)

    Veale, A.J.; Xie, Sheng Quan; Anderson, Iain Alexander

    2017-01-01

    Wearable exoskeletons and soft robots require actuators with muscle-like compliance. These actuators can benefit from the robust and effective interaction that biological muscles' compliance enables them to have in the uncertainty of the real world. Fluidic muscles are compliant but difficult to

  18. Multivariate Regression Model of Impedance of Normal and Chemically Irritated Skin Shows Predictive Ability

    National Research Council Canada - National Science Library

    Aberg, P

    2001-01-01

    ... before and after application of chemicals on volar forearms of volunteers, Tegobetaine and sodium lauryl sulphate were used to induce the irritations, The spectra were filtered using orthogonal signal correction (OSC...

  19. Factors Associated with Increased Pain in Primary Dysmenorrhea: Analysis Using a Multivariate Ordered Logistic Regression Model.

    Science.gov (United States)

    Tomás-Rodríguez, María I; Palazón-Bru, Antonio; Martínez-St John, Damian R J; Navarro-Cremades, Felipe; Toledo-Marhuenda, José V; Gil-Guillén, Vicente F

    2017-04-01

    In the literature about primary dysmenorrhea (PD), either a pain gradient has been studied just in women with PD or pain was assessed as a binary variable (presence or absence). Accordingly, we decided to carry out a study in young women to determine possible factors associated with intense pain. A cross-sectional observational study. A Spanish University in 2016. A total of 306 women, aged 18-30 years. A questionnaire was filled in by the participants to assess associated factors with dysmenorrhoea. Our outcome measure was the Andersch and Milsom scale (grade from 0 to 3). grade 0 (menstruation is not painful and daily activity is unaffected), grade 1 (menstruation is painful but seldom inhibits normal activity, analgesics are seldom required, and mild pain), grade 2 (daily activity affected, analgesics required and give relief so that absence from work or school is unusual, and moderate pain), and grade 3 (activity clearly inhibited, poor effect of analgesics, vegetative symptoms and severe pain). Factors significantly associated with more extreme pain: a higher menstrual flow (odds ratio [OR], 2.11; P < .001), a worse quality of life (OR, 0.97; P < .001) and use of medication for PD (OR, 8.22; P < .001). We determined factors associated with extreme pain in PD in a novel way. Further studies are required to corroborate our results. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  20. Dynamic Regression Intervention Modeling for the Malaysian Daily Load

    Directory of Open Access Journals (Sweden)

    Fadhilah Abdrazak

    2014-05-01

    Full Text Available Malaysia is a unique country due to having both fixed and moving holidays.  These moving holidays may overlap with other fixed holidays and therefore, increase the complexity of the load forecasting activities. The errors due to holidays’ effects in the load forecasting are known to be higher than other factors.  If these effects can be estimated and removed, the behavior of the series could be better viewed.  Thus, the aim of this paper is to improve the forecasting errors by using a dynamic regression model with intervention analysis.   Based on the linear transfer function method, a daily load model consists of either peak or average is developed.  The developed model outperformed the seasonal ARIMA model in estimating the fixed and moving holidays’ effects and achieved a smaller Mean Absolute Percentage Error (MAPE in load forecast.

  1. Learning Supervised Topic Models for Classification and Regression from Crowds.

    Science.gov (United States)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete; Pereira, Francisco C

    2017-12-01

    The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.

  2. Continuous validation of ASTEC containment models and regression testing

    International Nuclear Information System (INIS)

    Nowack, Holger; Reinke, Nils; Sonnenkalb, Martin

    2014-01-01

    The focus of the ASTEC (Accident Source Term Evaluation Code) development at GRS is primarily on the containment module CPA (Containment Part of ASTEC), whose modelling is to a large extent based on the GRS containment code COCOSYS (COntainment COde SYStem). Validation is usually understood as the approval of the modelling capabilities by calculations of appropriate experiments done by external users different from the code developers. During the development process of ASTEC CPA, bugs and unintended side effects may occur, which leads to changes in the results of the initially conducted validation. Due to the involvement of a considerable number of developers in the coding of ASTEC modules, validation of the code alone, even if executed repeatedly, is not sufficient. Therefore, a regression testing procedure has been implemented in order to ensure that the initially obtained validation results are still valid with succeeding code versions. Within the regression testing procedure, calculations of experiments and plant sequences are performed with the same input deck but applying two different code versions. For every test-case the up-to-date code version is compared to the preceding one on the basis of physical parameters deemed to be characteristic for the test-case under consideration. In the case of post-calculations of experiments also a comparison to experimental data is carried out. Three validation cases from the regression testing procedure are presented within this paper. The very good post-calculation of the HDR E11.1 experiment shows the high quality modelling of thermal-hydraulics in ASTEC CPA. Aerosol behaviour is validated on the BMC VANAM M3 experiment, and the results show also a very good agreement with experimental data. Finally, iodine behaviour is checked in the validation test-case of the THAI IOD-11 experiment. Within this test-case, the comparison of the ASTEC versions V2.0r1 and V2.0r2 shows how an error was detected by the regression testing

  3. Modeling of the Monthly Rainfall-Runoff Process Through Regressions

    Directory of Open Access Journals (Sweden)

    Campos-Aranda Daniel Francisco

    2014-10-01

    Full Text Available To solve the problems associated with the assessment of water resources of a river, the modeling of the rainfall-runoff process (RRP allows the deduction of runoff missing data and to extend its record, since generally the information available on precipitation is larger. It also enables the estimation of inputs to reservoirs, when their building led to the suppression of the gauging station. The simplest mathematical model that can be set for the RRP is the linear regression or curve on a monthly basis. Such a model is described in detail and is calibrated with the simultaneous record of monthly rainfall and runoff in Ballesmi hydrometric station, which covers 35 years. Since the runoff of this station has an important contribution from the spring discharge, the record is corrected first by removing that contribution. In order to do this a procedure was developed based either on the monthly average regional runoff coefficients or on nearby and similar watershed; in this case the Tancuilín gauging station was used. Both stations belong to the Partial Hydrologic Region No. 26 (Lower Rio Panuco and are located within the state of San Luis Potosi, México. The study performed indicates that the monthly regression model, due to its conceptual approach, faithfully reproduces monthly average runoff volumes and achieves an excellent approximation in relation to the dispersion, proved by calculation of the means and standard deviations.

  4. Genetic evaluation of European quails by random regression models

    Directory of Open Access Journals (Sweden)

    Flaviana Miranda Gonçalves

    2012-09-01

    Full Text Available The objective of this study was to compare different random regression models, defined from different classes of heterogeneity of variance combined with different Legendre polynomial orders for the estimate of (covariance of quails. The data came from 28,076 observations of 4,507 female meat quails of the LF1 lineage. Quail body weights were determined at birth and 1, 14, 21, 28, 35 and 42 days of age. Six different classes of residual variance were fitted to Legendre polynomial functions (orders ranging from 2 to 6 to determine which model had the best fit to describe the (covariance structures as a function of time. According to the evaluated criteria (AIC, BIC and LRT, the model with six classes of residual variances and of sixth-order Legendre polynomial was the best fit. The estimated additive genetic variance increased from birth to 28 days of age, and dropped slightly from 35 to 42 days. The heritability estimates decreased along the growth curve and changed from 0.51 (1 day to 0.16 (42 days. Animal genetic and permanent environmental correlation estimates between weights and age classes were always high and positive, except for birth weight. The sixth order Legendre polynomial, along with the residual variance divided into six classes was the best fit for the growth rate curve of meat quails; therefore, they should be considered for breeding evaluation processes by random regression models.

  5. Multivariate Hawkes process models of the occurrence of regulatory elements

    DEFF Research Database (Denmark)

    Carstensen, L; Sandelin, A; Winther, Ole

    2010-01-01

    distribution of the occurrences of these TREs along the genome. RESULTS: We present a model of TRE occurrences known as the Hawkes process. We illustrate the use of this model by analyzing two different publically available data sets. We are able to model, in detail, how the occurrence of one TRE is affected....... For each of the two data sets we provide two results: first, a qualitative description of the dependencies among the occurrences of the TREs, and second, quantitative results on the favored or avoided distances between the different TREs. CONCLUSIONS: The Hawkes process is a novel way of modeling the joint...

  6. Preliminary Multi-Variable Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. This paper reviews the methodology used to develop space telescope cost models; summarizes recently published single variable models; and presents preliminary results for two and three variable cost models. Some of the findings are that increasing mass reduces cost; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and technology development as a function of time reduces cost at the rate of 50% per 17 years.

  7. Determination of osteoporosis risk factors using a multiple logistic regression model in postmenopausal Turkish women.

    Science.gov (United States)

    Akkus, Zeki; Camdeviren, Handan; Celik, Fatma; Gur, Ali; Nas, Kemal

    2005-09-01

    To determine the risk factors of osteoporosis using a multiple binary logistic regression method and to assess the risk variables for osteoporosis, which is a major and growing health problem in many countries. We presented a case-control study, consisting of 126 postmenopausal healthy women as control group and 225 postmenopausal osteoporotic women as the case group. The study was carried out in the Department of Physical Medicine and Rehabilitation, Dicle University, Diyarbakir, Turkey between 1999-2002. The data from the 351 participants were collected using a standard questionnaire that contains 43 variables. A multiple logistic regression model was then used to evaluate the data and to find the best regression model. We classified 80.1% (281/351) of the participants using the regression model. Furthermore, the specificity value of the model was 67% (84/126) of the control group while the sensitivity value was 88% (197/225) of the case group. We found the distribution of residual values standardized for final model to be exponential using the Kolmogorow-Smirnow test (p=0.193). The receiver operating characteristic curve was found successful to predict patients with risk for osteoporosis. This study suggests that low levels of dietary calcium intake, physical activity, education, and longer duration of menopause are independent predictors of the risk of low bone density in our population. Adequate dietary calcium intake in combination with maintaining a daily physical activity, increasing educational level, decreasing birth rate, and duration of breast-feeding may contribute to healthy bones and play a role in practical prevention of osteoporosis in Southeast Anatolia. In addition, the findings of the present study indicate that the use of multivariate statistical method as a multiple logistic regression in osteoporosis, which maybe influenced by many variables, is better than univariate statistical evaluation.

  8. Interpreting parameters in the logistic regression model with random effects

    DEFF Research Database (Denmark)

    Larsen, Klaus; Petersen, Jørgen Holm; Budtz-Jørgensen, Esben

    2000-01-01

    interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects......interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects...

  9. Multivariate Modelling of Extreme Load Combinations for Wind Turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2015-01-01

    into a periodic part and a perturbation term, where each part has a known probability distribution. The proposed model shows good agreement with simulated data under stationary conditions, and a design load envelope based on this model is comparable to the load envelope estimated using the standard procedure...

  10. Evaluation of multivariate calibration models transferred between spectroscopic instruments

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae; Hansen, Per W.; Skov, Thomas

    2016-01-01

    In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions for the ......In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions...... for the same samples using the transferred model. However, sometimes the success of a model transfer is evaluated by comparing the transferred model predictions with the reference values. This is not optimal, as uncertainties in the reference method will impact the evaluation. This paper proposes a new method...... for calibration model transfer evaluation. The new method is based on comparing predictions from different instruments, rather than comparing predictions and reference values. A total of 75 flour samples were available for the study. All samples were measured on ten near infrared (NIR) instruments from two...

  11. Functionally unidimensional item response models for multivariate binary data

    DEFF Research Database (Denmark)

    Ip, Edward; Molenberghs, Geert; Chen, Shyh-Huei

    2013-01-01

    The problem of fitting unidimensional item response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that have a strong dimension but also contain minor nuisance dimensions. Fitting a unidimensional model to such multidimensio......The problem of fitting unidimensional item response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that have a strong dimension but also contain minor nuisance dimensions. Fitting a unidimensional model...... to such multidimensional data is believed to result in ability estimates that represent a combination of the major and minor dimensions. We conjecture that the underlying dimension for the fitted unidimensional model, which we call the functional dimension, represents a nonlinear projection. In this article we investigate...... tool. An example regarding a construct of desire for physical competency is used to illustrate the functional unidimensional approach....

  12. Modeling the Pineapple Express phenomenon via Multivariate Extreme Value Theory

    Science.gov (United States)

    Weller, G.; Cooley, D. S.

    2011-12-01

    The pineapple express (PE) phenomenon is responsible for producing extreme winter precipitation events in the coastal and mountainous regions of the western United States. Because the PE phenomenon is also associated with warm temperatures, the heavy precipitation and associated snowmelt can cause destructive flooding. In order to study impacts, it is important that regional climate models from NARCCAP are able to reproduce extreme precipitation events produced by PE. We define a daily precipitation quantity which captures the spatial extent and intensity of precipitation events produced by the PE phenomenon. We then use statistical extreme value theory to model the tail dependence of this quantity as seen in an observational data set and each of the six NARCCAP regional models driven by NCEP reanalysis. We find that most NCEP-driven NARCCAP models do exhibit tail dependence between daily model output and observations. Furthermore, we find that not all extreme precipitation events are pineapple express events, as identified by Dettinger et al. (2011). The synoptic-scale atmospheric processes that drive extreme precipitation events produced by PE have only recently begun to be examined. Much of the current work has focused on pattern recognition, rather than quantitative analysis. We use daily mean sea-level pressure (MSLP) fields from NCEP to develop a "pineapple express index" for extreme precipitation, which exhibits tail dependence with our observed precipitation quantity for pineapple express events. We build a statistical model that connects daily precipitation output from the WRFG model, daily MSLP fields from NCEP, and daily observed precipitation in the western US. Finally, we use this model to simulate future observed precipitation based on WRFG output driven by the CCSM model, and our pineapple express index derived from future CCSM output. Our aim is to use this model to develop a better understanding of the frequency and intensity of extreme

  13. Multivariate calibration on NIR data: development of a model for the rapid evaluation of ethanol content in bakery products.

    Science.gov (United States)

    Bello, Alessandra; Bianchi, Federica; Careri, Maria; Giannetto, Marco; Mori, Giovanni; Musci, Marilena

    2007-11-05

    A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new "leave one out" method, so that the number of original variables resulted further reduced.

  14. The effect of hospital mergers on long-term sickness absence among hospital employees: a fixed effects multivariate regression analysis using panel data.

    Science.gov (United States)

    Kjekshus, Lars Erik; Bernstrøm, Vilde Hoff; Dahl, Espen; Lorentzen, Thomas

    2014-02-03

    Hospitals are merging to become more cost-effective. Mergers are often complex and difficult processes with variable outcomes. The aim of this study was to analyze the effect of mergers on long-term sickness absence among hospital employees. Long-term sickness absence was analyzed among hospital employees (N = 107 209) in 57 hospitals involved in 23 mergers in Norway between 2000 and 2009. Variation in long-term sickness absence was explained through a fixed effects multivariate regression analysis using panel data with years-since-merger as the independent variable. We found a significant but modest effect of mergers on long-term sickness absence in the year of the merger, and in years 2, 3 and 4; analyzed by gender there was a significant effect for women, also for these years, but only in year 4 for men. However, men are less represented among the hospital workforce; this could explain the lack of significance. Mergers has a significant effect on employee health that should be taken into consideration when deciding to merge hospitals. This study illustrates the importance of analyzing the effects of mergers over several years and the need for more detailed analyses of merger processes and of the changes that may occur as a result of such mergers.

  15. A comparative study of artificial neural network and multivariate regression analysis to analyze optimum renal stone fragmentation by extracorporeal shock wave lithotripsy

    Directory of Open Access Journals (Sweden)

    Goyal Neeraj

    2010-01-01

    Full Text Available To compare the accuracy of artificial neural network (ANN analysis and multi-variate regression analysis (MVRA for renal stone fragmentation by extracorporeal shock wave lithotripsy (ESWL. A total of 276 patients with renal calculus were treated by ESWL during December 2001 to December 2006. Of them, the data of 196 patients were used for training the ANN. The predictability of trained ANN was tested on 80 subsequent patients. The input data include age of patient, stone size, stone burden, number of sittings and urinary pH. The output values (predicted values were number of shocks and shock power. Of these 80 patients, the input was analyzed and output was also calculated by MVRA. The output values (predicted values from both the methods were compared and the results were drawn. The predicted and observed values of shock power and number of shocks were compared using 1:1 slope line. The results were calculated as coefficient of correlation (COC (r2 . For prediction of power, the MVRA COC was 0.0195 and ANN COC was 0.8343. For prediction of number of shocks, the MVRA COC was 0.5726 and ANN COC was 0.9329. In conclusion, ANN gives better COC than MVRA, hence could be a better tool to analyze the optimum renal stone fragmentation by ESWL.

  16. A comparative study of artificial neural network and multivariate regression analysis to analyze optimum renal stone fragmentation by extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Neeraj K Goyal, Abhay Kumar; Sameer Trivedi

    2010-01-01

    To compare the accuracy of artificial neural network (ANN) analysis and multivariate regression analysis (MVRA) for renal stone fragmentation by extracorporeal shock wave lithotripsy (ESWL). A total of 276 patients with renal calculus were treated by ESWL during December 2001 to December 2006. Of them, the data of 196 patients were used for training the ANN. The predictability of trained ANN was tested on 80 subsequent patients. The input data include age of patient, stone size, stone burden, number of sittings and urinary pH. The output values (predicted values) were number of shocks and shock power. Of these 80 patients, the input was analyzed and output was also calculated by MVRA. The output values (predicted values) from both the methods were compared and the results were drawn. The predicted and observed values of shock power and number of shocks were compared using 1:1 slope line. The results were calculated as coefficient of correlation (COC) (r2 ). For prediction of power, the MVRA COC was 0.0195 and ANN COC was 0.8343. For prediction of number of shocks, the MVRA COC was 0.5726 and ANN COC was 0.9329. In conclusion, ANN gives better COC than MVRA, hence could be a better tool to analyze the optimum renal stone fragmentation by ESWL (Author).

  17. Learning Supervised Topic Models for Classification and Regression from Crowds

    DEFF Research Database (Denmark)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete

    2017-01-01

    problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages...... annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression...

  18. Predicting Performance on MOOC Assessments using Multi-Regression Models

    OpenAIRE

    Ren, Zhiyun; Rangwala, Huzefa; Johri, Aditya

    2016-01-01

    The past few years has seen the rapid growth of data min- ing approaches for the analysis of data obtained from Mas- sive Open Online Courses (MOOCs). The objectives of this study are to develop approaches to predict the scores a stu- dent may achieve on a given grade-related assessment based on information, considered as prior performance or prior ac- tivity in the course. We develop a personalized linear mul- tiple regression (PLMR) model to predict the grade for a student, prior to attempt...

  19. Multivariate Modelling of the Career Intent of Air Force Personnel.

    Science.gov (United States)

    1980-09-01

    index (HOPP) was used as a measure of current job satisfaction . As with the Vroom and Fishbein/Graen models, two separate validations were accom...34 Organizational Behavior and Human Performance , 23: 251-267, 1979. Lewis, Logan M. "Expectancy Theory as a Predictive Model of Career Intent, Job Satisfaction ...W. Albright. "Expectancy Theory Predictions of the Satisfaction , Effort, Performance , and Retention of Naval Aviation Officers," Organizational

  20. Analytical and regression models of glass rod drawing process

    Science.gov (United States)

    Alekseeva, L. B.

    2018-03-01

    The process of drawing glass rods (light guides) is being studied. The parameters of the process affecting the quality of the light guide have been determined. To solve the problem, mathematical models based on general equations of continuum mechanics are used. The conditions for the stable flow of the drawing process have been found, which are determined by the stability of the motion of the glass mass in the formation zone to small uncontrolled perturbations. The sensitivity of the formation zone to perturbations of the drawing speed and viscosity is estimated. Experimental models of the drawing process, based on the regression analysis methods, have been obtained. These models make it possible to customize a specific production process to obtain light guides of the required quality. They allow one to find the optimum combination of process parameters in the chosen area and to determine the required accuracy of maintaining them at a specified level.

  1. Modeling and Control of Multivariable Process Using Intelligent Techniques

    Directory of Open Access Journals (Sweden)

    Subathra Balasubramanian

    2010-10-01

    Full Text Available For nonlinear dynamic systems, the first principles based modeling and control is difficult to implement. In this study, a fuzzy controller and recurrent fuzzy controller are developed for MIMO process. Fuzzy logic controller is a model free controller designed based on the knowledge about the process. In fuzzy controller there are two types of rule-based fuzzy models are available: one the linguistic (Mamdani model and the other is Takagi–Sugeno model. Of these two, Takagi-Sugeno model (TS has attracted most attention. The fuzzy controller application is limited to static processes due to their feedforward structure. But, most of the real-time processes are dynamic and they require the history of input/output data. In order to store the past values a memory unit is needed, which is introduced by the recurrent structure. The proposed recurrent fuzzy structure is used to develop a controller for the two tank heating process. Both controllers are designed and implemented in a real time environment and their performance is compared.

  2. A multivariate model of stakeholder preference for lethal cat management.

    Science.gov (United States)

    Wald, Dara M; Jacobson, Susan K

    2014-01-01

    Identifying stakeholder beliefs and attitudes is critical for resolving management conflicts. Debate over outdoor cat management is often described as a conflict between two groups, environmental advocates and animal welfare advocates, but little is known about the variables predicting differences among these critical stakeholder groups. We administered a mail survey to randomly selected stakeholders representing both of these groups (n=1,596) in Florida, where contention over the management of outdoor cats has been widespread. We used a structural equation model to evaluate stakeholder intention to support non-lethal management. The cognitive hierarchy model predicted that values influenced beliefs, which predicted general and specific attitudes, which in turn, influenced behavioral intentions. We posited that specific attitudes would mediate the effect of general attitudes, beliefs, and values on management support. Model fit statistics suggested that the final model fit the data well (CFI=0.94, RMSEA=0.062). The final model explained 74% of the variance in management support, and positive attitudes toward lethal management (humaneness) had the largest direct effect on management support. Specific attitudes toward lethal management and general attitudes toward outdoor cats mediated the relationship between positive (pstakeholder intention to support non-lethal cat management. Our findings suggest that stakeholders can simultaneously perceive both positive and negative beliefs about outdoor cats, which influence attitudes toward and support for non-lethal management.

  3. BN-FLEMOps pluvial - A probabilistic multi-variable loss estimation model for pluvial floods

    Science.gov (United States)

    Roezer, V.; Kreibich, H.; Schroeter, K.; Doss-Gollin, J.; Lall, U.; Merz, B.

    2017-12-01

    Pluvial flood events, such as in Copenhagen (Denmark) in 2011, Beijing (China) in 2012 or Houston (USA) in 2016, have caused severe losses to urban dwellings in recent years. These floods are caused by storm events with high rainfall rates well above the design levels of urban drainage systems, which lead to inundation of streets and buildings. A projected increase in frequency and intensity of heavy rainfall events in many areas and an ongoing urbanization may increase pluvial flood losses in the future. For an efficient risk assessment and adaptation to pluvial floods, a quantification of the flood risk is needed. Few loss models have been developed particularly for pluvial floods. These models usually use simple waterlevel- or rainfall-loss functions and come with very high uncertainties. To account for these uncertainties and improve the loss estimation, we present a probabilistic multi-variable loss estimation model for pluvial floods based on empirical data. The model was developed in a two-step process using a machine learning approach and a comprehensive database comprising 783 records of direct building and content damage of private households. The data was gathered through surveys after four different pluvial flood events in Germany between 2005 and 2014. In a first step, linear and non-linear machine learning algorithms, such as tree-based and penalized regression models were used to identify the most important loss influencing factors among a set of 55 candidate variables. These variables comprise hydrological and hydraulic aspects, early warning, precaution, building characteristics and the socio-economic status of the household. In a second step, the most important loss influencing variables were used to derive a probabilistic multi-variable pluvial flood loss estimation model based on Bayesian Networks. Two different networks were tested: a score-based network learned from the data and a network based on expert knowledge. Loss predictions are made

  4. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models

    NARCIS (Netherlands)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A.; van t Veld, Aart A.

    2012-01-01

    PURPOSE: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator

  5. Linear models for multivariate, time series, and spatial data

    CERN Document Server

    Christensen, Ronald

    1991-01-01

    This is a companion volume to Plane Answers to Complex Questions: The Theory 0/ Linear Models. It consists of six additional chapters written in the same spirit as the last six chapters of the earlier book. Brief introductions are given to topics related to linear model theory. No attempt is made to give a comprehensive treatment of the topics. Such an effort would be futile. Each chapter is on a topic so broad that an in depth discussion would require a book-Iength treatment. People need to impose structure on the world in order to understand it. There is a limit to the number of unrelated facts that anyone can remem­ ber. If ideas can be put within a broad, sophisticatedly simple structure, not only are they easier to remember but often new insights become avail­ able. In fact, sophisticatedly simple models of the world may be the only ones that work. I have often heard Arnold Zellner say that, to the best of his knowledge, this is true in econometrics. The process of modeling is fundamental to understand...

  6. Individual loss reserving with the Multivariate Skew Normal model

    NARCIS (Netherlands)

    Pigeon, M.; Antonio, K.; Denuit, M.

    2011-01-01

    In general insurance, the evaluation of future cash ows and solvency capital has become increasingly important. To assist in this process, the present paper proposes an individual discrete-time loss re- serving model describing the occurrence, the reporting delay, the timeto the first payment, and

  7. The Multivariate Regression Statistics Strategy to Investigate Content-Effect Correlation of Multiple Components in Traditional Chinese Medicine Based on a Partial Least Squares Method.

    Science.gov (United States)

    Peng, Ying; Li, Su-Ning; Pei, Xuexue; Hao, Kun

    2018-03-01

    Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.

  8. The Multivariate Regression Statistics Strategy to Investigate Content-Effect Correlation of Multiple Components in Traditional Chinese Medicine Based on a Partial Least Squares Method

    Directory of Open Access Journals (Sweden)

    Ying Peng

    2018-03-01

    Full Text Available Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.

  9. Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model

    Directory of Open Access Journals (Sweden)

    Erasmo Cadenas

    2016-02-01

    Full Text Available Two on step ahead wind speed forecasting models were compared. A univariate model was developed using a linear autoregressive integrated moving average (ARIMA. This method’s performance is well studied for a large number of prediction problems. The other is a multivariate model developed using a nonlinear autoregressive exogenous artificial neural network (NARX. This uses the variables: barometric pressure, air temperature, wind direction and solar radiation or relative humidity, as well as delayed wind speed. Both models were developed from two databases from two sites: an hourly average measurements database from La Mata, Oaxaca, Mexico, and a ten minute average measurements database from Metepec, Hidalgo, Mexico. The main objective was to compare the impact of the various meteorological variables on the performance of the multivariate model of wind speed prediction with respect to the high performance univariate linear model. The NARX model gave better results with improvements on the ARIMA model of between 5.5% and 10. 6% for the hourly database and of between 2.3% and 12.8% for the ten minute database for mean absolute error and mean squared error, respectively.

  10. Development of infill drilling recovery models for carbonates reservoirs using neural networks and multivariate statistical as a novel method

    International Nuclear Information System (INIS)

    Soto, R; Wu, Ch. H; Bubela, A M

    1999-01-01

    This work introduces a novel methodology to improve reservoir characterization models. In this methodology we integrated multivariate statistical analyses, and neural network models for forecasting the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations in west Texas. Development of the oil recovery forecast models help us to understand the relative importance of dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the database, forecast recoveries for possible new units in similar geological setting, and make operational (infill drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We have developed intelligent software (Soto, 1998), oilfield intelligence (01), as an engineering tool to improve the characterization of oil and gas reservoirs. 01 integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and inference engine modules. One of the challenges in this research was to identify the dominant and the optimum number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net thickness, gross thickness, formation volume factor, pressure, viscosity, API gravity, number of wells in initial water flooding, number of wells for primary recovery, number of infill wells over the initial water flooding, PRUR, IWUR, and IDUR. Multivariate principal component analysis is used to identify the dominant and the optimum number of independent variables. We compared the results from neural network models with the non-parametric approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it retains a large variance of forecast results for a particular data set. We also used neural network concepts to develop recovery

  11. Application of Multivariate Modeling for Radiation Injury Assessment: A Proof of Concept

    Directory of Open Access Journals (Sweden)

    David L. Bolduc

    2014-01-01

    Full Text Available Multivariate radiation injury estimation algorithms were formulated for estimating severe hematopoietic acute radiation syndrome (H-ARS injury (i.e., response category three or RC3 in a rhesus monkey total-body irradiation (TBI model. Classical CBC and serum chemistry blood parameters were examined prior to irradiation (d 0 and on d 7, 10, 14, 21, and 25 after irradiation involving 24 nonhuman primates (NHP (Macaca mulatta given 6.5-Gy 60Co Υ-rays (0.4 Gy min−1 TBI. A correlation matrix was formulated with the RC3 severity level designated as the “dependent variable” and independent variables down selected based on their radioresponsiveness and relatively low multicollinearity using stepwise-linear regression analyses. Final candidate independent variables included CBC counts (absolute number of neutrophils, lymphocytes, and platelets in formulating the “CBC” RC3 estimation algorithm. Additionally, the formulation of a diagnostic CBC and serum chemistry “CBC-SCHEM” RC3 algorithm expanded upon the CBC algorithm model with the addition of hematocrit and the serum enzyme levels of aspartate aminotransferase, creatine kinase, and lactate dehydrogenase. Both algorithms estimated RC3 with over 90% predictive power. Only the CBC-SCHEM RC3 algorithm, however, met the critical three assumptions of linear least squares demonstrating slightly greater precision for radiation injury estimation, but with significantly decreased prediction error indicating increased statistical robustness.

  12. Regression Models for Predicting Force Coefficients of Aerofoils

    Directory of Open Access Journals (Sweden)

    Mohammed ABDUL AKBAR

    2015-09-01

    Full Text Available Renewable sources of energy are attractive and advantageous in a lot of different ways. Among the renewable energy sources, wind energy is the fastest growing type. Among wind energy converters, Vertical axis wind turbines (VAWTs have received renewed interest in the past decade due to some of the advantages they possess over their horizontal axis counterparts. VAWTs have evolved into complex 3-D shapes. A key component in predicting the output of VAWTs through analytical studies is obtaining the values of lift and drag coefficients which is a function of shape of the aerofoil, ‘angle of attack’ of wind and Reynolds’s number of flow. Sandia National Laboratories have carried out extensive experiments on aerofoils for the Reynolds number in the range of those experienced by VAWTs. The volume of experimental data thus obtained is huge. The current paper discusses three Regression analysis models developed wherein lift and drag coefficients can be found out using simple formula without having to deal with the bulk of the data. Drag coefficients and Lift coefficients were being successfully estimated by regression models with R2 values as high as 0.98.

  13. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol-lowering drugs.

    Science.gov (United States)

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin

    2013-10-15

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol lowering drugs

    Science.gov (United States)

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin

    2013-01-01

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436

  15. The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average options

    DEFF Research Database (Denmark)

    Rombouts, Jeroen V.K.; Stentoft, Lars; Violante, Francesco

    innovation for a Laplace innovation assumption improves the pricing in a smaller way. Apart from investigating directly the value of model sophistication in terms of dollar losses, we also use the model condence set approach to statistically infer the set of models that delivers the best pricing performance.......We assess the predictive accuracy of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set 248 multivariate models that differer...

  16. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  17. Conditional Monte Carlo randomization tests for regression models.

    Science.gov (United States)

    Parhat, Parwen; Rosenberger, William F; Diao, Guoqing

    2014-08-15

    We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Genomic breeding value estimation using nonparametric additive regression models

    Directory of Open Access Journals (Sweden)

    Solberg Trygve

    2009-01-01

    Full Text Available Abstract Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped was predicted using data from the next last generation (genotyped and phenotyped. The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy.

  19. Global Land Use Regression Model for Nitrogen Dioxide Air Pollution.

    Science.gov (United States)

    Larkin, Andrew; Geddes, Jeffrey A; Martin, Randall V; Xiao, Qingyang; Liu, Yang; Marshall, Julian D; Brauer, Michael; Hystad, Perry

    2017-06-20

    Nitrogen dioxide is a common air pollutant with growing evidence of health impacts independent of other common pollutants such as ozone and particulate matter. However, the worldwide distribution of NO 2 exposure and associated impacts on health is still largely uncertain. To advance global exposure estimates we created a global nitrogen dioxide (NO 2 ) land use regression model for 2011 using annual measurements from 5,220 air monitors in 58 countries. The model captured 54% of global NO 2 variation, with a mean absolute error of 3.7 ppb. Regional performance varied from R 2 = 0.42 (Africa) to 0.67 (South America). Repeated 10% cross-validation using bootstrap sampling (n = 10,000) demonstrated a robust performance with respect to air monitor sampling in North America, Europe, and Asia (adjusted R 2 within 2%) but not for Africa and Oceania (adjusted R 2 within 11%) where NO 2 monitoring data are sparse. The final model included 10 variables that captured both between and within-city spatial gradients in NO 2 concentrations. Variable contributions differed between continental regions, but major roads within 100 m and satellite-derived NO 2 were consistently the strongest predictors. The resulting model can be used for global risk assessments and health studies, particularly in countries without existing NO 2 monitoring data or models.

  20. Forecasting Multivariate Volatility using the VARFIMA Model on Realized Covariance Cholesky Factors

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    2011-01-01

    This paper analyzes the forecast accuracy of the multivariate realized volatility model introduced by Chiriac and Voev (2010), subject to different degrees of model parametrization and economic evaluation criteria. Bymodelling the Cholesky factors of the covariancematrices, the model generates......, regardless of the type of utility function or return distribution, would be better-off from using this model than from using some standard approaches....

  1. Data analysis and approximate models model choice, location-scale, analysis of variance, nonparametric regression and image analysis

    CERN Document Server

    Davies, Patrick Laurie

    2014-01-01

    Introduction IntroductionApproximate Models Notation Two Modes of Statistical AnalysisTowards One Mode of Analysis Approximation, Randomness, Chaos, Determinism ApproximationA Concept of Approximation Approximation Approximating a Data Set by a Model Approximation Regions Functionals and EquivarianceRegularization and Optimality Metrics and DiscrepanciesStrong and Weak Topologies On Being (almost) Honest Simulations and Tables Degree of Approximation and p-values ScalesStability of Analysis The Choice of En(α, P) Independence Procedures, Approximation and VaguenessDiscrete Models The Empirical Density Metrics and Discrepancies The Total Variation Metric The Kullback-Leibler and Chi-Squared Discrepancies The Po(λ) ModelThe b(k, p) and nb(k, p) Models The Flying Bomb Data The Student Study Times Data OutliersOutliers, Data Analysis and Models Breakdown Points and Equivariance Identifying Outliers and Breakdown Outliers in Multivariate Data Outliers in Linear Regression Outliers in Structured Data The Location...

  2. Modelling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    In this paper we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new Double Smooth Transition Conditional Correlation GARCH model extends the Smooth Transition Conditional Correlation GARCH model of Silvennoinen and Ter¨asvirta (2005) by including...... another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition......, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. The model is applied to a selection of world stock indices, and it is found that time is an important factor affecting...

  3. A Gompertz regression model for fern spores germination

    Directory of Open Access Journals (Sweden)

    Gabriel y Galán, Jose María

    2015-06-01

    Full Text Available Germination is one of the most important biological processes for both seed and spore plants, also for fungi. At present, mathematical models of germination have been developed in fungi, bryophytes and several plant species. However, ferns are the only group whose germination has never been modelled. In this work we develop a regression model of the germination of fern spores. We have found that for Blechnum serrulatum, Blechnum yungense, Cheilanthes pilosa, Niphidium macbridei and Polypodium feuillei species the Gompertz growth model describe satisfactorily cumulative germination. An important result is that regression parameters are independent of fern species and the model is not affected by intraspecific variation. Our results show that the Gompertz curve represents a general germination model for all the non-green spore leptosporangiate ferns, including in the paper a discussion about the physiological and ecological meaning of the model.La germinación es uno de los procesos biológicos más relevantes tanto para las plantas con esporas, como para las plantas con semillas y los hongos. Hasta el momento, se han desarrollado modelos de germinación para hongos, briofitos y diversas especies de espermatófitos. Los helechos son el único grupo de plantas cuya germinación nunca ha sido modelizada. En este trabajo se desarrolla un modelo de regresión para explicar la germinación de las esporas de helechos. Observamos que para las especies Blechnum serrulatum, Blechnum yungense, Cheilanthes pilosa, Niphidium macbridei y Polypodium feuillei el modelo de crecimiento de Gompertz describe satisfactoriamente la germinación acumulativa. Un importante resultado es que los parámetros de la regresión son independientes de la especie y que el modelo no está afectado por variación intraespecífica. Por lo tanto, los resultados del trabajo muestran que la curva de Gompertz puede representar un modelo general para todos los helechos leptosporangiados

  4. Tracking the business cycle of the Euro area: A multivariate model-based band-pass filter

    NARCIS (Netherlands)

    Azevedo, J.M.; Koopman, S.J.; Rua, A.

    2006-01-01

    This article proposes a multivariate bandpass filter based on the trend plus cycle decomposition model. The underlying multivariate dynamic factor model relies on specific formulations for trend and cycle components and produces smooth business cycle indicators with bandpass filter properties.

  5. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    Science.gov (United States)

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  6. Meta-Modeling by Symbolic Regression and Pareto Simulated Annealing

    NARCIS (Netherlands)

    Stinstra, E.; Rennen, G.; Teeuwen, G.J.A.

    2006-01-01

    The subject of this paper is a new approach to Symbolic Regression.Other publications on Symbolic Regression use Genetic Programming.This paper describes an alternative method based on Pareto Simulated Annealing.Our method is based on linear regression for the estimation of constants.Interval

  7. Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.

    Science.gov (United States)

    Ferrari, Alberto

    2017-01-01

    Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.

  8. Electricity prices forecasting by automatic dynamic harmonic regression models

    International Nuclear Information System (INIS)

    Pedregal, Diego J.; Trapero, Juan R.

    2007-01-01

    The changes experienced by electricity markets in recent years have created the necessity for more accurate forecast tools of electricity prices, both for producers and consumers. Many methodologies have been applied to this aim, but in the view of the authors, state space models are not yet fully exploited. The present paper proposes a univariate dynamic harmonic regression model set up in a state space framework for forecasting prices in these markets. The advantages of the approach are threefold. Firstly, a fast automatic identification and estimation procedure is proposed based on the frequency domain. Secondly, the recursive algorithms applied offer adaptive predictions that compare favourably with respect to other techniques. Finally, since the method is based on unobserved components models, explicit information about trend, seasonal and irregular behaviours of the series can be extracted. This information is of great value to the electricity companies' managers in order to improve their strategies, i.e. it provides management innovations. The good forecast performance and the rapid adaptability of the model to changes in the data are illustrated with actual prices taken from the PJM interconnection in the US and for the Spanish market for the year 2002. (author)

  9. Characteristics and Properties of a Simple Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Kowal Robert

    2016-12-01

    Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Despite the passage of time, it continues to raise interest both from the theoretical side as well as from the application side. One of the many fundamental questions in the model concerns determining derivative characteristics and studying the properties existing in their scope, referring to the first of these aspects. The literature of the subject provides several classic solutions in that regard. In the paper, a completely new design is proposed, based on the direct application of variance and its properties, resulting from the non-correlation of certain estimators with the mean, within the scope of which some fundamental dependencies of the model characteristics are obtained in a much more compact manner. The apparatus allows for a simple and uniform demonstration of multiple dependencies and fundamental properties in the model, and it does it in an intuitive manner. The results were obtained in a classic, traditional area, where everything, as it might seem, has already been thoroughly studied and discovered.

  10. Forecasting peak asthma admissions in London: an application of quantile regression models

    Science.gov (United States)

    Soyiri, Ireneous N.; Reidpath, Daniel D.; Sarran, Christophe

    2013-07-01

    Asthma is a chronic condition of great public health concern globally. The associated morbidity, mortality and healthcare utilisation place an enormous burden on healthcare infrastructure and services. This study demonstrates a multistage quantile regression approach to predicting excess demand for health care services in the form of asthma daily admissions in London, using retrospective data from the Hospital Episode Statistics, weather and air quality. Trivariate quantile regression models (QRM) of asthma daily admissions were fitted to a 14-day range of lags of environmental factors, accounting for seasonality in a hold-in sample of the data. Representative lags were pooled to form multivariate predictive models, selected through a systematic backward stepwise reduction approach. Models were cross-validated using a hold-out sample of the data, and their respective root mean square error measures, sensitivity, specificity and predictive values compared. Two of the predictive models were able to detect extreme number of daily asthma admissions at sensitivity levels of 76 % and 62 %, as well as specificities of 66 % and 76 %. Their positive predictive values were slightly higher for the hold-out sample (29 % and 28 %) than for the hold-in model development sample (16 % and 18 %). QRMs can be used in multistage to select suitable variables to forecast extreme asthma events. The associations between asthma and environmental factors, including temperature, ozone and carbon monoxide can be exploited in predicting future events using QRMs.

  11. Bayesian Regression of Thermodynamic Models of Redox Active Materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Finding a suitable functional redox material is a critical challenge to achieving scalable, economically viable technologies for storing concentrated solar energy in the form of a defected oxide. Demonstrating e ectiveness for thermal storage or solar fuel is largely accomplished by using a thermodynamic model derived from experimental data. The purpose of this project is to test the accuracy of our regression model on representative data sets. Determining the accuracy of the model includes parameter tting the model to the data, comparing the model using di erent numbers of param- eters, and analyzing the entropy and enthalpy calculated from the model. Three data sets were considered in this project: two demonstrating materials for solar fuels by wa- ter splitting and the other of a material for thermal storage. Using Bayesian Inference and Markov Chain Monte Carlo (MCMC), parameter estimation was preformed on the three data sets. Good results were achieved, except some there was some deviations on the edges of the data input ranges. The evidence values were then calculated in a variety of ways and used to compare models with di erent number of parameters. It was believed that at least one of the parameters was unnecessary and comparing evidence values demonstrated that the parameter was need on one data set and not signi cantly helpful on another. The entropy was calculated by taking the derivative in one variable and integrating over another. and its uncertainty was also calculated by evaluating the entropy over multiple MCMC samples. Afterwards, all the parts were written up as a tutorial for the Uncertainty Quanti cation Toolkit (UQTk).

  12. Convergence diagnostics for Eigenvalue problems with linear regression model

    International Nuclear Information System (INIS)

    Shi, Bo; Petrovic, Bojan

    2011-01-01

    Although the Monte Carlo method has been extensively used for criticality/Eigenvalue problems, a reliable, robust, and efficient convergence diagnostics method is still desired. Most methods are based on integral parameters (multiplication factor, entropy) and either condense the local distribution information into a single value (e.g., entropy) or even disregard it. We propose to employ the detailed cycle-by-cycle local flux evolution obtained by using mesh tally mechanism to assess the source and flux convergence. By applying a linear regression model to each individual mesh in a mesh tally for convergence diagnostics, a global convergence criterion can be obtained. We exemplify this method on two problems and obtain promising diagnostics results. (author)

  13. The R Package threg to Implement Threshold Regression Models

    Directory of Open Access Journals (Sweden)

    Tao Xiao

    2015-08-01

    This new package includes four functions: threg, and the methods hr, predict and plot for threg objects returned by threg. The threg function is the model-fitting function which is used to calculate regression coefficient estimates, asymptotic standard errors and p values. The hr method for threg objects is the hazard-ratio calculation function which provides the estimates of hazard ratios at selected time points for specified scenarios (based on given categories or value settings of covariates. The predict method for threg objects is used for prediction. And the plot method for threg objects provides plots for curves of estimated hazard functions, survival functions and probability density functions of the first-hitting-time; function curves corresponding to different scenarios can be overlaid in the same plot for comparison to give additional research insights.

  14. Modeling a multivariable reactor and on-line model predictive control.

    Science.gov (United States)

    Yu, D W; Yu, D L

    2005-10-01

    A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.

  15. Multiple linear regression and regression with time series error models in forecasting PM10 concentrations in Peninsular Malaysia.

    Science.gov (United States)

    Ng, Kar Yong; Awang, Norhashidah

    2018-01-06

    Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.

  16. A prediction model for spontaneous regression of cervical intraepithelial neoplasia grade 2, based on simple clinical parameters.

    Science.gov (United States)

    Koeneman, Margot M; van Lint, Freyja H M; van Kuijk, Sander M J; Smits, Luc J M; Kooreman, Loes F S; Kruitwagen, Roy F P M; Kruse, Arnold J

    2017-01-01

    This study aims to develop a prediction model for spontaneous regression of cervical intraepithelial neoplasia grade 2 (CIN 2) lesions based on simple clinicopathological parameters. The study was conducted at Maastricht University Medical Center, the Netherlands. The prediction model was developed in a retrospective cohort of 129 women with a histologic diagnosis of CIN 2 who were managed by watchful waiting for 6 to 24months. Five potential predictors for spontaneous regression were selected based on the literature and expert opinion and were analyzed in a multivariable logistic regression model, followed by backward stepwise deletion based on the Wald test. The prediction model was internally validated by the bootstrapping method. Discriminative capacity and accuracy were tested by assessing the area under the receiver operating characteristic curve (AUC) and a calibration plot. Disease regression within 24months was seen in 91 (71%) of 129 patients. A prediction model was developed including the following variables: smoking, Papanicolaou test outcome before the CIN 2 diagnosis, concomitant CIN 1 diagnosis in the same biopsy, and more than 1 biopsy containing CIN 2. Not smoking, Papanicolaou class predictive of disease regression. The AUC was 69.2% (95% confidence interval, 58.5%-79.9%), indicating a moderate discriminative ability of the model. The calibration plot indicated good calibration of the predicted probabilities. This prediction model for spontaneous regression of CIN 2 may aid physicians in the personalized management of these lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    Science.gov (United States)

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  18. Evaluation of the efficiency of continuous wavelet transform as processing and preprocessing algorithm for resolution of overlapped signals in univariate and multivariate regression analyses; an application to ternary and quaternary mixtures

    Science.gov (United States)

    Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-07-01

    Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.

  19. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression

    Science.gov (United States)

    Almedeij, Jaber

    2012-01-01

    Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984

  20. Multivariate Self-Exciting Threshold Autoregressive Models with eXogenous Input

    OpenAIRE

    Addo, Peter Martey

    2014-01-01

    This study defines a multivariate Self--Exciting Threshold Autoregressive with eXogenous input (MSETARX) models and present an estimation procedure for the parameters. The conditions for stationarity of the nonlinear MSETARX models is provided. In particular, the efficiency of an adaptive parameter estimation algorithm and LSE (least squares estimate) algorithm for this class of models is then provided via simulations.

  1. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    Science.gov (United States)

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  2. Can multivariate models based on MOAKS predict OA knee pain? Data from the Osteoarthritis Initiative

    Science.gov (United States)

    Luna-Gómez, Carlos D.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Galván-Tejada, Carlos E.; Celaya-Padilla, José M.

    2017-03-01

    Osteoarthritis is the most common rheumatic disease in the world. Knee pain is the most disabling symptom in the disease, the prediction of pain is one of the targets in preventive medicine, this can be applied to new therapies or treatments. Using the magnetic resonance imaging and the grading scales, a multivariate model based on genetic algorithms is presented. Using a predictive model can be useful to associate minor structure changes in the joint with the future knee pain. Results suggest that multivariate models can be predictive with future knee chronic pain. All models; T0, T1 and T2, were statistically significant, all p values were 0.60.

  3. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  4. Nitrogen dioxide concentrations in neighborhoods adjacent to a commercial airport: a land use regression modeling study.

    Science.gov (United States)

    Adamkiewicz, Gary; Hsu, Hsiao-Hsien; Vallarino, Jose; Melly, Steven J; Spengler, John D; Levy, Jonathan I

    2010-11-17

    There is growing concern in communities surrounding airports regarding the contribution of various emission sources (such as aircraft and ground support equipment) to nearby ambient concentrations. We used extensive monitoring of nitrogen dioxide (NO2) in neighborhoods surrounding T.F. Green Airport in Warwick, RI, and land-use regression (LUR) modeling techniques to determine the impact of proximity to the airport and local traffic on these concentrations. Palmes diffusion tube samplers were deployed along the airport's fence line and within surrounding neighborhoods for one to two weeks. In total, 644 measurements were collected over three sampling campaigns (October 2007, March 2008 and June 2008) and each sampling location was geocoded. GIS-based variables were created as proxies for local traffic and airport activity. A forward stepwise regression methodology was employed to create general linear models (GLMs) of NO2 variability near the airport. The effect of local meteorology on associations with GIS-based variables was also explored. Higher concentrations of NO2 were seen near the airport terminal, entrance roads to the terminal, and near major roads, with qualitatively consistent spatial patterns between seasons. In our final multivariate model (R2 = 0.32), the local influences of highways and arterial/collector roads were statistically significant, as were local traffic density and distance to the airport terminal (all p GIS variables, and the regression model structure was robust to various model-building approaches. Our study has shown that there are clear local variations in NO2 in the neighborhoods that surround an urban airport, which are spatially consistent across seasons. LUR modeling demonstrated a strong influence of local traffic, except the smallest roads that predominate in residential areas, as well as proximity to the airport terminal.

  5. Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling

    International Nuclear Information System (INIS)

    Che Jinxing; Wang Jianzhou

    2010-01-01

    In this paper, we present the use of different mathematical models to forecast electricity price under deregulated power. A successful prediction tool of electricity price can help both power producers and consumers plan their bidding strategies. Inspired by that the support vector regression (SVR) model, with the ε-insensitive loss function, admits of the residual within the boundary values of ε-tube, we propose a hybrid model that combines both SVR and Auto-regressive integrated moving average (ARIMA) models to take advantage of the unique strength of SVR and ARIMA models in nonlinear and linear modeling, which is called SVRARIMA. A nonlinear analysis of the time-series indicates the convenience of nonlinear modeling, the SVR is applied to capture the nonlinear patterns. ARIMA models have been successfully applied in solving the residuals regression estimation problems. The experimental results demonstrate that the model proposed outperforms the existing neural-network approaches, the traditional ARIMA models and other hybrid models based on the root mean square error and mean absolute percentage error.

  6. A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods.

    Science.gov (United States)

    Wang, Yiyi; Kockelman, Kara M

    2013-11-01

    This work examines the relationship between 3-year pedestrian crash counts across Census tracts in Austin, Texas, and various land use, network, and demographic attributes, such as land use balance, residents' access to commercial land uses, sidewalk density, lane-mile densities (by roadway class), and population and employment densities (by type). The model specification allows for region-specific heterogeneity, correlation across response types, and spatial autocorrelation via a Poisson-based multivariate conditional auto-regressive (CAR) framework and is estimated using Bayesian Markov chain Monte Carlo methods. Least-squares regression estimates of walk-miles traveled per zone serve as the exposure measure. Here, the Poisson-lognormal multivariate CAR model outperforms an aspatial Poisson-lognormal multivariate model and a spatial model (without cross-severity correlation), both in terms of fit and inference. Positive spatial autocorrelation emerges across neighborhoods, as expected (due to latent heterogeneity or missing variables that trend in space, resulting in spatial clustering of crash counts). In comparison, the positive aspatial, bivariate cross correlation of severe (fatal or incapacitating) and non-severe crash rates reflects latent covariates that have impacts across severity levels but are more local in nature (such as lighting conditions and local sight obstructions), along with spatially lagged cross correlation. Results also suggest greater mixing of residences and commercial land uses is associated with higher pedestrian crash risk across different severity levels, ceteris paribus, presumably since such access produces more potential conflicts between pedestrian and vehicle movements. Interestingly, network densities show variable effects, and sidewalk provision is associated with lower severe-crash rates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. An Ordered Regression Model to Predict Transit Passengers’ Behavioural Intentions

    Energy Technology Data Exchange (ETDEWEB)

    Oña, J. de; Oña, R. de; Eboli, L.; Forciniti, C.; Mazzulla, G.

    2016-07-01

    Passengers’ behavioural intentions after experiencing transit services can be viewed as signals that show if a customer continues to utilise a company’s service. Users’ behavioural intentions can depend on a series of aspects that are difficult to measure directly. More recently, transit passengers’ behavioural intentions have been just considered together with the concepts of service quality and customer satisfaction. Due to the characteristics of the ways for evaluating passengers’ behavioural intentions, service quality and customer satisfaction, we retain that this kind of issue could be analysed also by applying ordered regression models. This work aims to propose just an ordered probit model for analysing service quality factors that can influence passengers’ behavioural intentions towards the use of transit services. The case study is the LRT of Seville (Spain), where a survey was conducted in order to collect the opinions of the passengers about the existing transit service, and to have a measure of the aspects that can influence the intentions of the users to continue using the transit service in the future. (Author)

  8. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Directory of Open Access Journals (Sweden)

    Camerin Hahn

    2012-01-01

    Full Text Available As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007. However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed.

  9. Personal, social, and game-related correlates of active and non-active gaming among dutch gaming adolescents: survey-based multivariable, multilevel logistic regression analyses.

    Science.gov (United States)

    Simons, Monique; de Vet, Emely; Chinapaw, Mai Jm; de Boer, Michiel; Seidell, Jacob C; Brug, Johannes

    2014-04-04

    Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games-active games-seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of active and non-active gaming among adolescents. The objective of this study was to examine potential personal, social, and game-related correlates of both active and non-active gaming in adolescents. A survey assessing game behavior and potential personal, social, and game-related correlates was conducted among adolescents (12-16 years, N=353) recruited via schools. Multivariable, multilevel logistic regression analyses, adjusted for demographics (age, sex and educational level of adolescents), were conducted to examine personal, social, and game-related correlates of active gaming ≥1 hour per week (h/wk) and non-active gaming >7 h/wk. Active gaming ≥1 h/wk was significantly associated with a more positive attitude toward active gaming (OR 5.3, CI 2.4-11.8; Pgames (OR 0.30, CI 0.1-0.6; P=.002), a higher score on habit strength regarding gaming (OR 1.9, CI 1.2-3.2; P=.008) and having brothers/sisters (OR 6.7, CI 2.6-17.1; Pgame engagement (OR 0.95, CI 0.91-0.997; P=.04). Non-active gaming >7 h/wk was significantly associated with a more positive attitude toward non-active gaming (OR 2.6, CI 1.1-6.3; P=.035), a stronger habit regarding gaming (OR 3.0, CI 1.7-5.3; P7 h/wk. Active gaming is most strongly (negatively) associated with attitude with respect to non-active games, followed by observed active game behavior of brothers and sisters and attitude with respect to active gaming (positive associations). On the other hand, non-active gaming is most strongly associated with observed non-active game behavior of friends, habit strength regarding gaming and attitude toward non-active gaming (positive associations). Habit strength was a correlate of both active and non-active gaming

  10. Personal, Social, and Game-Related Correlates of Active and Non-Active Gaming Among Dutch Gaming Adolescents: Survey-Based Multivariable, Multilevel Logistic Regression Analyses

    Science.gov (United States)

    de Vet, Emely; Chinapaw, Mai JM; de Boer, Michiel; Seidell, Jacob C; Brug, Johannes

    2014-01-01

    Background Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games—active games—seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of active and non-active gaming among adolescents. Objective The objective of this study was to examine potential personal, social, and game-related correlates of both active and non-active gaming in adolescents. Methods A survey assessing game behavior and potential personal, social, and game-related correlates was conducted among adolescents (12-16 years, N=353) recruited via schools. Multivariable, multilevel logistic regression analyses, adjusted for demographics (age, sex and educational level of adolescents), were conducted to examine personal, social, and game-related correlates of active gaming ≥1 hour per week (h/wk) and non-active gaming >7 h/wk. Results Active gaming ≥1 h/wk was significantly associated with a more positive attitude toward active gaming (OR 5.3, CI 2.4-11.8; Pgames (OR 0.30, CI 0.1-0.6; P=.002), a higher score on habit strength regarding gaming (OR 1.9, CI 1.2-3.2; P=.008) and having brothers/sisters (OR 6.7, CI 2.6-17.1; Pgame engagement (OR 0.95, CI 0.91-0.997; P=.04). Non-active gaming >7 h/wk was significantly associated with a more positive attitude toward non-active gaming (OR 2.6, CI 1.1-6.3; P=.035), a stronger habit regarding gaming (OR 3.0, CI 1.7-5.3; P7 h/wk. Active gaming is most strongly (negatively) associated with attitude with respect to non-active games, followed by observed active game behavior of brothers and sisters and attitude with respect to active gaming (positive associations). On the other hand, non-active gaming is most strongly associated with observed non-active game behavior of friends, habit strength regarding gaming and attitude toward non-active gaming (positive associations). Habit strength was a

  11. Uni- and multi-variable modelling of flood losses: experiences gained from the Secchia river inundation event.

    Science.gov (United States)

    Carisi, Francesca; Domeneghetti, Alessio; Kreibich, Heidi; Schröter, Kai; Castellarin, Attilio

    2017-04-01

    Flood risk is function of flood hazard and vulnerability, therefore its accurate assessment depends on a reliable quantification of both factors. The scientific literature proposes a number of objective and reliable methods for assessing flood hazard, yet it highlights a limited understanding of the fundamental damage processes. Loss modelling is associated with large uncertainty which is, among other factors, due to a lack of standard procedures; for instance, flood losses are often estimated based on damage models derived in completely different contexts (i.e. different countries or geographical regions) without checking its applicability, or by considering only one explanatory variable (i.e. typically water depth). We consider the Secchia river flood event of January 2014, when a sudden levee-breach caused the inundation of nearly 200 km2 in Northern Italy. In the aftermath of this event, local authorities collected flood loss data, together with additional information on affected private households and industrial activities (e.g. buildings surface and economic value, number of company's employees and others). Based on these data we implemented and compared a quadratic-regression damage function, with water depth as the only explanatory variable, and a multi-variable model that combines multiple regression trees and considers several explanatory variables (i.e. bagging decision trees). Our results show the importance of data collection revealing that (1) a simple quadratic regression damage function based on empirical data from the study area can be significantly more accurate than literature damage-models derived for a different context and (2) multi-variable modelling may outperform the uni-variable approach, yet it is more difficult to develop and apply due to a much higher demand of detailed data.

  12. The impact of covariance misspecification in multivariate Gaussian mixtures on estimation and inference: an application to longitudinal modeling.

    Science.gov (United States)

    Heggeseth, Brianna C; Jewell, Nicholas P

    2013-07-20

    Multivariate Gaussian mixtures are a class of models that provide a flexible parametric approach for the representation of heterogeneous multivariate outcomes. When the outcome is a vector of repeated measurements taken on the same subject, there is often inherent dependence between observations. However, a common covariance assumption is conditional independence-that is, given the mixture component label, the outcomes for subjects are independent. In this paper, we study, through asymptotic bias calculations and simulation, the impact of covariance misspecification in multivariate Gaussian mixtures. Although maximum likelihood estimators of regression and mixing probability parameters are not consistent under misspecification, they have little asymptotic bias when mixture components are well separated or if the assumed correlation is close to the truth even when the covariance is misspecified. We also present a robust standard error estimator and show that it outperforms conventional estimators in simulations and can indicate that the model is misspecified. Body mass index data from a national longitudinal study are used to demonstrate the effects of misspecification on potential inferences made in practice. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Comparing near-infrared conventional diffuse reflectance spectroscopy and hyperspectral imaging for determination of the bulk properties of solid samples by multivariate regression: determination of Mooney viscosity and plasticity indices of natural rubber.

    Science.gov (United States)

    Juliano da Silva, Carlos; Pasquini, Celio

    2015-01-21

    Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample

  14. Near infrared spectrometric technique for testing fruit quality: optimisation of regression models using genetic algorithms

    Science.gov (United States)

    Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.

    2016-02-01

    Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.

  15. Modeling inflation rates and exchange rates in Ghana: application of multivariate GARCH models.

    Science.gov (United States)

    Nortey, Ezekiel Nn; Ngoh, Delali D; Doku-Amponsah, Kwabena; Ofori-Boateng, Kenneth

    2015-01-01

    This paper was aimed at investigating the volatility and conditional relationship among inflation rates, exchange rates and interest rates as well as to construct a model using multivariate GARCH DCC and BEKK models using Ghana data from January 1990 to December 2013. The study revealed that the cumulative depreciation of the cedi to the US dollar from 1990 to 2013 is 7,010.2% and the yearly weighted depreciation of the cedi to the US dollar for the period is 20.4%. There was evidence that, the fact that inflation rate was stable, does not mean that exchange rates and interest rates are expected to be stable. Rather, when the cedi performs well on the forex, inflation rates and interest rates react positively and become stable in the long run. The BEKK model is robust to modelling and forecasting volatility of inflation rates, exchange rates and interest rates. The DCC model is robust to model the conditional and unconditional correlation among inflation rates, exchange rates and interest rates. The BEKK model, which forecasted high exchange rate volatility for the year 2014, is very robust for modelling the exchange rates in Ghana. The mean equation of the DCC model is also robust to forecast inflation rates in Ghana.

  16. [Logistic regression model of noninvasive prediction for portal hypertensive gastropathy in patients with hepatitis B associated cirrhosis].

    Science.gov (United States)

    Wang, Qingliang; Li, Xiaojie; Hu, Kunpeng; Zhao, Kun; Yang, Peisheng; Liu, Bo

    2015-05-12

    To explore the risk factors of portal hypertensive gastropathy (PHG) in patients with hepatitis B associated cirrhosis and establish a Logistic regression model of noninvasive prediction. The clinical data of 234 hospitalized patients with hepatitis B associated cirrhosis from March 2012 to March 2014 were analyzed retrospectively. The dependent variable was the occurrence of PHG while the independent variables were screened by binary Logistic analysis. Multivariate Logistic regression was used for further analysis of significant noninvasive independent variables. Logistic regression model was established and odds ratio was calculated for each factor. The accuracy, sensitivity and specificity of model were evaluated by the curve of receiver operating characteristic (ROC). According to univariate Logistic regression, the risk factors included hepatic dysfunction, albumin (ALB), bilirubin (TB), prothrombin time (PT), platelet (PLT), white blood cell (WBC), portal vein diameter, spleen index, splenic vein diameter, diameter ratio, PLT to spleen volume ratio, esophageal varices (EV) and gastric varices (GV). Multivariate analysis showed that hepatic dysfunction (X1), TB (X2), PLT (X3) and splenic vein diameter (X4) were the major occurring factors for PHG. The established regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4. The accuracy of model for PHG was 79.1% with a sensitivity of 77.2% and a specificity of 80.8%. Hepatic dysfunction, TB, PLT and splenic vein diameter are risk factors for PHG and the noninvasive predicted Logistic regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4.

  17. Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger; Voev, Valeri

    We introduce a multivariate GARCH model that utilizes and models realized measures of volatility and covolatility. The realized measures extract information contained in high-frequency data that is particularly beneficial during periods with variation in volatility and covolatility. Applying the ...

  18. Multivariate modelling of endophenotypes associated with the metabolic syndrome in Chinese twins

    DEFF Research Database (Denmark)

    Pang, Z; Zhang, D; Li, S

    2010-01-01

    AIMS/HYPOTHESIS: The common genetic and environmental effects on endophenotypes related to the metabolic syndrome have been investigated using bivariate and multivariate twin models. This paper extends the pairwise analysis approach by introducing independent and common pathway models to Chinese...

  19. Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method

    Science.gov (United States)

    Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome. Chave

    2014-01-01

    We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...

  20. Introducing a multivariate model for predicting driving performance: the role of driving anger and personal characteristics.

    Science.gov (United States)

    Roidl, Ernst; Siebert, Felix Wilhelm; Oehl, Michael; Höger, Rainer

    2013-12-01

    Maladaptive driving is an important source of self-inflicted accidents and this driving style could include high speeds, speeding violations, and poor lateral control of the vehicle. The literature suggests that certain groups of drivers, such as novice drivers, males, highly motivated drivers, and those who frequently experience anger in traffic, tend to exhibit more maladaptive driving patterns compared to other drivers. Remarkably, no coherent framework is currently available to describe the relationships and distinct influences of these factors. We conducted two studies with the aim of creating a multivariate model that combines the aforementioned factors, describes their relationships, and predicts driving performance more precisely. The studies employed different techniques to elicit emotion and different tracks designed to explore the driving behaviors of participants in potentially anger-provoking situations. Study 1 induced emotions with short film clips. Study 2 confronted the participants with potentially anger-inducing traffic situations during the simulated drive. In both studies, participants who experienced high levels of anger drove faster and exhibited greater longitudinal and lateral acceleration. Furthermore, multiple linear regressions and path-models revealed that highly motivated male drivers displayed the same behavior independent of their emotional state. The results indicate that anger and specific risk characteristics lead to maladaptive changes in important driving parameters and that drivers with these specific risk factors are prone to experience more anger while driving, which further worsens their driving performance. Driver trainings and anger management courses will profit from these findings because they help to improve the validity of assessments of anger related driving behavior. © 2013.

  1. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.

    Science.gov (United States)

    Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E

    2017-07-01

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.

  2. Bayesian Modeling of Air Pollution Extremes Using Nested Multivariate Max-Stable Processes

    KAUST Repository

    Vettori, Sabrina; Huser, Raphaë l; Genton, Marc G.

    2018-01-01

    Capturing the potentially strong dependence among the peak concentrations of multiple air pollutants across a spatial region is crucial for assessing the related public health risks. In order to investigate the multivariate spatial dependence properties of air pollution extremes, we introduce a new class of multivariate max-stable processes. Our proposed model admits a hierarchical tree-based formulation, in which the data are conditionally independent given some latent nested $\\alpha$-stable random factors. The hierarchical structure facilitates Bayesian inference and offers a convenient and interpretable characterization. We fit this nested multivariate max-stable model to the maxima of air pollution concentrations and temperatures recorded at a number of sites in the Los Angeles area, showing that the proposed model succeeds in capturing their complex tail dependence structure.

  3. Bayesian Modeling of Air Pollution Extremes Using Nested Multivariate Max-Stable Processes

    KAUST Repository

    Vettori, Sabrina

    2018-03-18

    Capturing the potentially strong dependence among the peak concentrations of multiple air pollutants across a spatial region is crucial for assessing the related public health risks. In order to investigate the multivariate spatial dependence properties of air pollution extremes, we introduce a new class of multivariate max-stable processes. Our proposed model admits a hierarchical tree-based formulation, in which the data are conditionally independent given some latent nested $\\\\alpha$-stable random factors. The hierarchical structure facilitates Bayesian inference and offers a convenient and interpretable characterization. We fit this nested multivariate max-stable model to the maxima of air pollution concentrations and temperatures recorded at a number of sites in the Los Angeles area, showing that the proposed model succeeds in capturing their complex tail dependence structure.

  4. Wheat flour dough Alveograph characteristics predicted by Mixolab regression models.

    Science.gov (United States)

    Codină, Georgiana Gabriela; Mironeasa, Silvia; Mironeasa, Costel; Popa, Ciprian N; Tamba-Berehoiu, Radiana

    2012-02-01

    In Romania, the Alveograph is the most used device to evaluate the rheological properties of wheat flour dough, but lately the Mixolab device has begun to play an important role in the breadmaking industry. These two instruments are based on different principles but there are some correlations that can be found between the parameters determined by the Mixolab and the rheological properties of wheat dough measured with the Alveograph. Statistical analysis on 80 wheat flour samples using the backward stepwise multiple regression method showed that Mixolab values using the ‘Chopin S’ protocol (40 samples) and ‘Chopin + ’ protocol (40 samples) can be used to elaborate predictive models for estimating the value of the rheological properties of wheat dough: baking strength (W), dough tenacity (P) and extensibility (L). The correlation analysis confirmed significant findings (P 0.70 for P, R²(adjusted) > 0.70 for W and R²(adjusted) > 0.38 for L, at a 95% confidence interval. Copyright © 2011 Society of Chemical Industry.

  5. Application of regression model on stream water quality parameters

    International Nuclear Information System (INIS)

    Suleman, M.; Maqbool, F.; Malik, A.H.; Bhatti, Z.A.

    2012-01-01

    Statistical analysis was conducted to evaluate the effect of solid waste leachate from the open solid waste dumping site of Salhad on the stream water quality. Five sites were selected along the stream. Two sites were selected prior to mixing of leachate with the surface water. One was of leachate and other two sites were affected with leachate. Samples were analyzed for pH, water temperature, electrical conductivity (EC), total dissolved solids (TDS), Biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO) and total bacterial load (TBL). In this study correlation coefficient r among different water quality parameters of various sites were calculated by using Pearson model and then average of each correlation between two parameters were also calculated, which shows TDS and EC and pH and BOD have significantly increasing r value, while temperature and TDS, temp and EC, DO and BL, DO and COD have decreasing r value. Single factor ANOVA at 5% level of significance was used which shows EC, TDS, TCL and COD were significantly differ among various sites. By the application of these two statistical approaches TDS and EC shows strongly positive correlation because the ions from the dissolved solids in water influence the ability of that water to conduct an electrical current. These two parameters significantly vary among 5 sites which are further confirmed by using linear regression. (author)

  6. Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

    Science.gov (United States)

    Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo

    2013-01-01

    Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593

  7. The microcomputer scientific software series 2: general linear model--regression.

    Science.gov (United States)

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  8. Estimation and model selection of semiparametric multivariate survival functions under general censorship.

    Science.gov (United States)

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2010-07-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.

  9. Methods of Detecting Outliers in A Regression Analysis Model ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-06-01

    Jun 1, 2013 ... especially true in observational studies .... Simple linear regression and multiple ... The simple linear ..... Grubbs,F.E (1950): Sample Criteria for Testing Outlying observations: Annals of ... In experimental design, the Relative.

  10. 231 Using Multiple Regression Analysis in Modelling the Role of ...

    African Journals Online (AJOL)

    User

    of Internal Revenue, Tourism Bureau and hotel records. The multiple regression .... additional guest facilities such as restaurant, a swimming pool or child care and social function ... and provide good quality service to the public. Conclusion.

  11. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression.

    Science.gov (United States)

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-04-08

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.

  12. Direct modeling of regression effects for transition probabilities in the progressive illness-death model

    DEFF Research Database (Denmark)

    Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo

    2017-01-01

    In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness–death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score...

  13. A Multivariate Model for Prediction of Obstructive Coronary Disease in Patients with Acute Chest Pain: Development and Validation

    Directory of Open Access Journals (Sweden)

    Luis Cláudio Lemos Correia

    Full Text Available Abstract Background: Currently, there is no validated multivariate model to predict probability of obstructive coronary disease in patients with acute chest pain. Objective: To develop and validate a multivariate model to predict coronary artery disease (CAD based on variables assessed at admission to the coronary care unit (CCU due to acute chest pain. Methods: A total of 470 patients were studied, 370 utilized as the derivation sample and the subsequent 100 patients as the validation sample. As the reference standard, angiography was required to rule in CAD (stenosis ≥ 70%, while either angiography or a negative noninvasive test could be used to rule it out. As predictors, 13 baseline variables related to medical history, 14 characteristics of chest discomfort, and eight variables from physical examination or laboratory tests were tested. Results: The prevalence of CAD was 48%. By logistic regression, six variables remained independent predictors of CAD: age, male gender, relief with nitrate, signs of heart failure, positive electrocardiogram, and troponin. The area under the curve (AUC of this final model was 0.80 (95% confidence interval [95%CI] = 0.75 - 0.84 in the derivation sample and 0.86 (95%CI = 0.79 - 0.93 in the validation sample. Hosmer-Lemeshow's test indicated good calibration in both samples (p = 0.98 and p = 0.23, respectively. Compared with a basic model containing electrocardiogram and troponin, the full model provided an AUC increment of 0.07 in both derivation (p = 0.0002 and validation (p = 0.039 samples. Integrated discrimination improvement was 0.09 in both derivation (p < 0.001 and validation (p < 0.0015 samples. Conclusion: A multivariate model was derived and validated as an accurate tool for estimating the pretest probability of CAD in patients with acute chest pain.

  14. A logistic regression model for Ghana National Health Insurance claims

    Directory of Open Access Journals (Sweden)

    Samuel Antwi

    2013-07-01

    Full Text Available In August 2003, the Ghanaian Government made history by implementing the first National Health Insurance System (NHIS in Sub-Saharan Africa. Within three years, over half of the country’s population had voluntarily enrolled into the National Health Insurance Scheme. This study had three objectives: 1 To estimate the risk factors that influences the Ghana national health insurance claims. 2 To estimate the magnitude of each of the risk factors in relation to the Ghana national health insurance claims. In this work, data was collected from the policyholders of the Ghana National Health Insurance Scheme with the help of the National Health Insurance database and the patients’ attendance register of the Koforidua Regional Hospital, from 1st January to 31st December 2011. Quantitative analysis was done using the generalized linear regression (GLR models. The results indicate that risk factors such as sex, age, marital status, distance and length of stay at the hospital were important predictors of health insurance claims. However, it was found that the risk factors; health status, billed charges and income level are not good predictors of national health insurance claim. The outcome of the study shows that sex, age, marital status, distance and length of stay at the hospital are statistically significant in the determination of the Ghana National health insurance premiums since they considerably influence claims. We recommended, among other things that, the National Health Insurance Authority should facilitate the institutionalization of the collection of appropriate data on a continuous basis to help in the determination of future premiums.

  15. Simulation research on multivariable fuzzy model predictive control of nuclear power plant

    International Nuclear Information System (INIS)

    Su Jie

    2012-01-01

    To improve the dynamic control capabilities of the nuclear power plant, the algorithm of the multivariable nonlinear predictive control based on the fuzzy model was applied in the main parameters control of the nuclear power plant, including control structure and the design of controller in the base of expounding the math model of the turbine and the once-through steam generator. The simulation results show that the respond of the change of the gas turbine speed and the steam pressure under the algorithm of multivariable fuzzy model predictive control is faster than that under the PID control algorithm, and the output value of the gas turbine speed and the steam pressure under the PID control algorithm is 3%-5% more than that under the algorithm of multi-variable fuzzy model predictive control. So it shows that the algorithm of multi-variable fuzzy model predictive control can control the output of the main parameters of the nuclear power plant well and get better control effect. (author)

  16. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  17. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    CERN Document Server

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  18. Locating the Seventh Cervical Spinous Process: Development and Validation of a Multivariate Model Using Palpation and Personal Information.

    Science.gov (United States)

    Ferreira, Ana Paula A; Póvoa, Luciana C; Zanier, José F C; Ferreira, Arthur S

    2017-02-01

    The aim of this study was to develop and validate a multivariate prediction model, guided by palpation and personal information, for locating the seventh cervical spinous process (C7SP). A single-blinded, cross-sectional study at a primary to tertiary health care center was conducted for model development and temporal validation. One-hundred sixty participants were prospectively included for model development (n = 80) and time-split validation stages (n = 80). The C7SP was located using the thorax-rib static method (TRSM). Participants underwent chest radiography for assessment of the inner body structure located with TRSM and using radio-opaque markers placed over the skin. Age, sex, height, body mass, body mass index, and vertex-marker distance (D V-M ) were used to predict the distance from the C7SP to the vertex (D V-C7 ). Multivariate linear regression modeling, limits of agreement plot, histogram of residues, receiver operating characteristic curves, and confusion tables were analyzed. The multivariate linear prediction model for D V-C7 (in centimeters) was D V-C7 = 0.986D V-M + 0.018(mass) + 0.014(age) - 1.008. Receiver operating characteristic curves had better discrimination of D V-C7 (area under the curve = 0.661; 95% confidence interval = 0.541-0.782; P = .015) than D V-M (area under the curve = 0.480; 95% confidence interval = 0.345-0.614; P = .761), with respective cutoff points at 23.40 cm (sensitivity = 41%, specificity = 63%) and 24.75 cm (sensitivity = 69%, specificity = 52%). The C7SP was correctly located more often when using predicted D V-C7 in the validation sample than when using the TRSM in the development sample: n = 53 (66%) vs n = 32 (40%), P information. Copyright © 2016. Published by Elsevier Inc.

  19. Analyzing multivariate survival data using composite likelihood and flexible parametric modeling of the hazard functions

    DEFF Research Database (Denmark)

    Nielsen, Jan; Parner, Erik

    2010-01-01

    In this paper, we model multivariate time-to-event data by composite likelihood of pairwise frailty likelihoods and marginal hazards using natural cubic splines. Both right- and interval-censored data are considered. The suggested approach is applied on two types of family studies using the gamma...

  20. Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity

    Science.gov (United States)

    Dinov, Ivo D.; Christou, Nicolas

    2011-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…

  1. The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples

    Science.gov (United States)

    Avetisyan, Marianna; Fox, Jean-Paul

    2012-01-01

    In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…

  2. Rotation in the Dynamic Factor Modeling of Multivariate Stationary Time Series.

    Science.gov (United States)

    Molenaar, Peter C. M.; Nesselroade, John R.

    2001-01-01

    Proposes a special rotation procedure for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white noise, into a univariate moving-average.…

  3. Dynamic factor analysis in the frequency domain: causal modeling of multivariate psychophysiological time series

    NARCIS (Netherlands)

    Molenaar, P.C.M.

    1987-01-01

    Outlines a frequency domain analysis of the dynamic factor model and proposes a solution to the problem of constructing a causal filter of lagged factor loadings. The method is illustrated with applications to simulated and real multivariate time series. The latter applications involve topographic

  4. Rotation in the dynamic factor modeling of multivariate stationary time series.

    NARCIS (Netherlands)

    Molenaar, P.C.M.; Nesselroade, J.R.

    2001-01-01

    A special rotation procedure is proposed for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white

  5. A simplified parsimonious higher order multivariate Markov chain model with new convergence condition

    Science.gov (United States)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.

  6. Probabilistic, Multivariable Flood Loss Modeling on the Mesoscale with BT-FLEMO.

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Merz, Bruno; Schröter, Kai

    2017-04-01

    Flood loss modeling is an important component for risk analyses and decision support in flood risk management. Commonly, flood loss models describe complex damaging processes by simple, deterministic approaches like depth-damage functions and are associated with large uncertainty. To improve flood loss estimation and to provide quantitative information about the uncertainty associated with loss modeling, a probabilistic, multivariable Bagging decision Tree Flood Loss Estimation MOdel (BT-FLEMO) for residential buildings was developed. The application of BT-FLEMO provides a probability distribution of estimated losses to residential buildings per municipality. BT-FLEMO was applied and validated at the mesoscale in 19 municipalities that were affected during the 2002 flood by the River Mulde in Saxony, Germany. Validation was undertaken on the one hand via a comparison with six deterministic loss models, including both depth-damage functions and multivariable models. On the other hand, the results were compared with official loss data. BT-FLEMO outperforms deterministic, univariable, and multivariable models with regard to model accuracy, although the prediction uncertainty remains high. An important advantage of BT-FLEMO is the quantification of prediction uncertainty. The probability distribution of loss estimates by BT-FLEMO well represents the variation range of loss estimates of the other models in the case study. © 2016 Society for Risk Analysis.

  7. Functional inverted Wishart for Bayesian multivariate spatial modeling with application to regional climatology model data.

    Science.gov (United States)

    Duan, L L; Szczesniak, R D; Wang, X

    2017-11-01

    Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization.

  8. Functional inverted Wishart for Bayesian multivariate spatial modeling with application to regional climatology model data

    Science.gov (United States)

    Duan, L. L.; Szczesniak, R. D.; Wang, X.

    2018-01-01

    Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization. PMID:29576735

  9. A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs

    Science.gov (United States)

    Karabatsos, George; Walker, Stephen G.

    2013-01-01

    The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…

  10. Parametric vs. Nonparametric Regression Modelling within Clinical Decision Support

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan; Zvárová, Jana

    2017-01-01

    Roč. 5, č. 1 (2017), s. 21-27 ISSN 1805-8698 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : decision support systems * decision rules * statistical analysis * nonparametric regression Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability

  11. Logistic regression modelling: procedures and pitfalls in developing and interpreting prediction models

    Directory of Open Access Journals (Sweden)

    Nataša Šarlija

    2017-01-01

    Full Text Available This study sheds light on the most common issues related to applying logistic regression in prediction models for company growth. The purpose of the paper is 1 to provide a detailed demonstration of the steps in developing a growth prediction model based on logistic regression analysis, 2 to discuss common pitfalls and methodological errors in developing a model, and 3 to provide solutions and possible ways of overcoming these issues. Special attention is devoted to the question of satisfying logistic regression assumptions, selecting and defining dependent and independent variables, using classification tables and ROC curves, for reporting model strength, interpreting odds ratios as effect measures and evaluating performance of the prediction model. Development of a logistic regression model in this paper focuses on a prediction model of company growth. The analysis is based on predominantly financial data from a sample of 1471 small and medium-sized Croatian companies active between 2009 and 2014. The financial data is presented in the form of financial ratios divided into nine main groups depicting following areas of business: liquidity, leverage, activity, profitability, research and development, investing and export. The growth prediction model indicates aspects of a business critical for achieving high growth. In that respect, the contribution of this paper is twofold. First, methodological, in terms of pointing out pitfalls and potential solutions in logistic regression modelling, and secondly, theoretical, in terms of identifying factors responsible for high growth of small and medium-sized companies.

  12. Polynomial regression analysis and significance test of the regression function

    International Nuclear Information System (INIS)

    Gao Zhengming; Zhao Juan; He Shengping

    2012-01-01

    In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)

  13. Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

    Science.gov (United States)

    Wahid, A.; Putra, I. G. E. P.

    2018-03-01

    Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.

  14. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    Science.gov (United States)

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19

  15. Nitrogen dioxide concentrations in neighborhoods adjacent to a commercial airport: a land use regression modeling study

    Directory of Open Access Journals (Sweden)

    Spengler John D

    2010-11-01

    Full Text Available Abstract Background There is growing concern in communities surrounding airports regarding the contribution of various emission sources (such as aircraft and ground support equipment to nearby ambient concentrations. We used extensive monitoring of nitrogen dioxide (NO2 in neighborhoods surrounding T.F. Green Airport in Warwick, RI, and land-use regression (LUR modeling techniques to determine the impact of proximity to the airport and local traffic on these concentrations. Methods Palmes diffusion tube samplers were deployed along the airport's fence line and within surrounding neighborhoods for one to two weeks. In total, 644 measurements were collected over three sampling campaigns (October 2007, March 2008 and June 2008 and each sampling location was geocoded. GIS-based variables were created as proxies for local traffic and airport activity. A forward stepwise regression methodology was employed to create general linear models (GLMs of NO2 variability near the airport. The effect of local meteorology on associations with GIS-based variables was also explored. Results Higher concentrations of NO2 were seen near the airport terminal, entrance roads to the terminal, and near major roads, with qualitatively consistent spatial patterns between seasons. In our final multivariate model (R2 = 0.32, the local influences of highways and arterial/collector roads were statistically significant, as were local traffic density and distance to the airport terminal (all p Conclusion Our study has shown that there are clear local variations in NO2 in the neighborhoods that surround an urban airport, which are spatially consistent across seasons. LUR modeling demonstrated a strong influence of local traffic, except the smallest roads that predominate in residential areas, as well as proximity to the airport terminal.

  16. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  17. Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2017-01-01

    In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...

  18. Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price

    Directory of Open Access Journals (Sweden)

    Kaijian He

    2016-04-01

    Full Text Available Recent empirical studies reveal evidence of the co-existence of heterogeneous data characteristics distinguishable by time scale in the movement crude oil prices. In this paper we propose a new multivariate Empirical Mode Decomposition (EMD-based model to take advantage of these heterogeneous characteristics of the price movement and model them in the crude oil markets. Empirical studies in benchmark crude oil markets confirm that more diverse heterogeneous data characteristics can be revealed and modeled in the projected time delayed domain. The proposed model demonstrates the superior performance compared to the benchmark models.

  19. Semiparametric nonlinear quantile regression model for financial returns

    Czech Academy of Sciences Publication Activity Database

    Avdulaj, Krenar; Baruník, Jozef

    2017-01-01

    Roč. 21, č. 1 (2017), s. 81-97 ISSN 1081-1826 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : copula quantile regression * realized volatility * value-at-risk Subject RIV: AH - Economic s OBOR OECD: Applied Economic s, Econometrics Impact factor: 0.649, year: 2016 http://library.utia.cas.cz/separaty/2017/E/avdulaj-0472346.pdf

  20. Use of multiple linear regression and logistic regression models to investigate changes in birthweight for term singleton infants in Scotland.

    Science.gov (United States)

    Bonellie, Sandra R

    2012-10-01

    To illustrate the use of regression and logistic regression models to investigate changes over time in size of babies particularly in relation to social deprivation, age of the mother and smoking. Mean birthweight has been found to be increasing in many countries in recent years, but there are still a group of babies who are born with low birthweights. Population-based retrospective cohort study. Multiple linear regression and logistic regression models are used to analyse data on term 'singleton births' from Scottish hospitals between 1994-2003. Mothers who smoke are shown to give birth to lighter babies on average, a difference of approximately 0.57 Standard deviations lower (95% confidence interval. 0.55-0.58) when adjusted for sex and parity. These mothers are also more likely to have babies that are low birthweight (odds ratio 3.46, 95% confidence interval 3.30-3.63) compared with non-smokers. Low birthweight is 30% more likely where the mother lives in the most deprived areas compared with the least deprived, (odds ratio 1.30, 95% confidence interval 1.21-1.40). Smoking during pregnancy is shown to have a detrimental effect on the size of infants at birth. This effect explains some, though not all, of the observed socioeconomic birthweight. It also explains much of the observed birthweight differences by the age of the mother.   Identifying mothers at greater risk of having a low birthweight baby as important implications for the care and advice this group receives. © 2012 Blackwell Publishing Ltd.