WorldWideScience

Sample records for multispectral photoacoustic lymph

  1. Detection of Melanoma Metastases in Resected Human Lymph Nodes by Noninvasive Multispectral Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Gerrit Cornelis Langhout

    2014-01-01

    Full Text Available Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR© multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes.

  2. Photoacoustic imaging of human lymph nodes with endogenous lipid and hemoglobin contrast

    Science.gov (United States)

    Guggenheim, James A.; Allen, Thomas J.; Plumb, Andrew; Zhang, Edward Z.; Rodriguez-Justo, Manuel; Punwani, Shonit; Beard, Paul C.

    2015-05-01

    Lymph nodes play a central role in metastatic cancer spread and are a key clinical assessment target. Abnormal node vascularization, morphology, and size may be indicative of disease but can be difficult to visualize with sufficient accuracy using existing clinical imaging modalities. To explore the potential utility of photoacoustic imaging for the assessment of lymph nodes, images of ex vivo samples were obtained at multiple wavelengths using a high-resolution three-dimensional photoacoustic scanner. These images showed that hemoglobin based contrast reveals nodal vasculature and lipid-based contrast reveals the exterior node size, shape, and boundary integrity. These two sources of complementary contrast may allow indirect observation of cancer, suggesting a future role for photoacoustic imaging as a tool for the clinical assessment of lymph nodes.

  3. Multispectral photoacoustic characterization of ICG and porcine blood using an LED-based photoacoustic imaging system

    Science.gov (United States)

    Shigeta, Yusuke; Sato, Naoto; Kuniyil Ajith Singh, Mithun; Agano, Toshitaka

    2018-02-01

    Photoacoustic imaging is a hybrid biomedical imaging modality that has emerged over the last decade. In photoacoustic imaging, pulsed-light absorbed by the target emits ultrasound that can be detected using a conventional ultrasound array. This ultrasound data can be used to reconstruct the location and spatial details of the intrinsic/extrinsic light absorbers in the tissue. Recently we reported on the development of a multi-wavelength high frame-rate LED-based photoacoustic/ultrasound imaging system (AcousticX). In this work, we photoacoustically characterize the absorption spectrum of ICG and porcine blood using LED arrays with multiple wavelengths (405, 420, 470, 520, 620, 660, 690, 750, 810, 850, 925, 980 nm). Measurements were performed in a simple reflection mode configuration in which LED arrays where fixed on both sides of the linear array ultrasound probe. Phantom used consisted of micro-test tubes filled with ICG and porcine blood, which were placed in a tank filled with water. The photoacoustic spectrum obtained from our measurements matches well with the reference absorption spectrum. These results demonstrate the potential capability of our system in performing clinical/pre-clinical multispectral photoacoustic imaging.

  4. Near-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier

    Directory of Open Access Journals (Sweden)

    Takashi Buma

    2016-09-01

    Full Text Available We demonstrate optical resolution photoacoustic microscopy (OR-PAM of lipid-rich tissue using a multi-wavelength pulsed laser based on nonlinear fiber optics. 1047 nm laser pulses are converted to 1098, 1153, 1215, and 1270 nm pulses via stimulated Raman scattering in a graded-index multimode fiber. Multispectral PAM of a lipid phantom is demonstrated with our low-cost and simple technique.

  5. Ultrasound-guided photoacoustic imaging of lymph nodes with biocompatible gold nanoparticles as a novel contrast agent (Conference Presentation)

    Science.gov (United States)

    Sun, In-Cheol; Dumani, Diego; Emelianov, Stanislav Y.

    2017-02-01

    A key step in staging cancer is the diagnosis of metastasis that spreads through lymphatic system. For this reason, researchers develop various methods of sentinel lymph node mapping that often use a radioactive tracer. This study introduces a safe, cost-effective, high-resolution, high-sensitivity, and real-time method of visualizing the sentinel lymph node: ultrasound-guided photoacoustic (US/PA) imaging augmented by a contrast agent. In this work, we use clearable gold nanoparticles covered by a biocompatible polymer (glycol chitosan) to enhance cellular uptake by macrophages abundant in lymph nodes. We incubate macrophages with glycol-chitosan-coated gold nanoparticles (0.05 mg Au/ml), and then fix them with paraformaldehyde solution for an analysis of in vitro dark-field microscopy and cell phantom. The analysis shows enhanced cellular uptake of nanoparticles by macrophages and strong photoacoustic signal from labeled cells in tissue-mimicking cell phantoms consisting gelatin solution (6 %) with silica gel (25 μm, 0.3%) and fixed macrophages (13 X 105 cells). The in-vivo US/PA imaging of cervical lymph nodes in healthy mice (nu/nu, female, 5 weeks) indicates a strong photoacoustic signal from a lymph node 10 minutes post-injection (2.5 mg Au/ml, 80 μl). The signal intensity and the nanoparticle-labeled volume of tissue within the lymph node continues to increase until 4 h post-injection. Histological analysis further confirms the accumulation of gold nanoparticles within the lymph nodes. This work suggests the feasibility of molecular/cellular US/PA imaging with biocompatible gold nanoparticles as a photoacoustic contrast agent in the diagnosis of lymph-node-related diseases.

  6. Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes

    International Nuclear Information System (INIS)

    Song, Kwang Hyun; Kim, Chulhong; Maslov, Konstantin; Wang, Lihong V.

    2009-01-01

    Sentinel lymph node (SLN) biopsy has increasingly become important in axillary staging of breast cancer patients since SLN biopsy alleviates the postoperative complications of previously practiced axillary lymph node dissections. Nevertheless, the procedures of SLN biopsy using blue dye and radioactive substance are still intraoperative, and the latter methods are also ionizing. In this pilot study, we have proposed noninvasive in vivo spectroscopic photoacoustic (PA) SLN mapping using gold nanorods as lymph node tracers in a rat model. Gold nanorods have biocompatibility, high optical absorption, and easily tuned surface plasmon resonance peak wavelength.

  7. Theoretical and experimental investigation of multispectral photoacoustic osteoporosis detection method

    Science.gov (United States)

    Steinberg, Idan; Hershkovich, Hadas Sara; Gannot, Israel; Eyal, Avishay

    2014-03-01

    Osteoporosis is a widespread disorder, which has a catastrophic impact on patients lives and overwhelming related to healthcare costs. Recently, we proposed a multispectral photoacoustic technique for early detection of osteoporosis. Such technique has great advantages over pure ultrasonic or optical methods as it allows the deduction of both bone functionality from the bone absorption spectrum and bone resistance to fracture from the characteristics of the ultrasound propagation. We demonstrated the propagation of multiple acoustic modes in animal bones in-vitro. To further investigate the effects of multiple wavelength excitations and of induced osteoporosis on the PA signal a multispectral photoacoustic system is presented. The experimental investigation is based on measuring the interference of multiple acoustic modes. The performance of the system is evaluated and a simple two mode theoretical model is fitted to the measured phase signals. The results show that such PA technique is accurate and repeatable. Then a multiple wavelength excitation is tested. It is shown that the PA response due to different excitation wavelengths revels that absorption by the different bone constitutes has a profound effect on the mode generation. The PA response is measured in single wavelength before and after induced osteoporosis. Results show that induced osteoporosis alters the measured amplitude and phase in a consistent manner which allows the detection of the onset of osteoporosis. These results suggest that a complete characterization of the bone over a region of both acoustic and optical frequencies might be used as a powerful tool for in-vivo bone evaluation.

  8. On multi-spectral quantitative photoacoustic tomography in diffusive regime

    International Nuclear Information System (INIS)

    Bal, Guillaume; Ren, Kui

    2012-01-01

    The objective of quantitative photoacoustic tomography (qPAT) is to reconstruct the diffusion, absorption and Grüneisen thermodynamic coefficients of heterogeneous media from knowledge of the interior absorbed radiation. It has been shown in Bal and Ren (2011 Inverse Problems 27 075003), based on diffusion theory, that with data acquired at one given wavelength, all three coefficients cannot be reconstructed uniquely. In this work, we study the multi-spectral qPAT problem and show that when multiple wavelength data are available, all coefficients can be reconstructed simultaneously under minor prior assumptions. Moreover, the reconstructions are shown to be very stable. We present some numerical simulations that support the theoretical results. (paper)

  9. Multispectral photoacoustic method for the early detection and diagnosis of osteoporosis

    Science.gov (United States)

    Steinberg, Idan; Eyal, Avishay; Gannot, Israel

    2013-03-01

    Osteoporosis is a major health problem worldwide, with healthcare costs of billions of dollars annually. The risk of fracture depends on the bone mineral density (measured in clinical practice) as well as on the bone microstructure and functional status. Since pure ultrasonic methods can measure bone strength and spectroscopic optical methods can provide valuable functional information, a hybrid multispectral photoacoustic technique can be of great value. We have developed such a system based on a tunable Ti:Sapph laser at 750 - 950 nm, followed by an acousto-optic modulator to generate photoacoustic signals with frequencies of 0.5 - 2.5 MHz. Another system was based on two directly modulated 830nm laser diodes. The systems were used to photoacoustically excite the proximal end of a rat tibia. Spectrum analyzer with tracking generator was used for measuring both the amplitude and the phase at the distal end. Scanning along both the optical wavelength as well as the acoustic frequency enables full mapping of the bone transfer function. Analyzing this function along the wavelength axis allows deducing the gross biochemical composition related to the bone functional and pathological state. Analyzing the amplitude and phase along the acoustic frequency axis yields the speed of sound dispersion and the broadband ultrasonic attenuation - both have shown clinical relevance.

  10. Initial experiences in the photoacoustic detection of melanoma metastases in resected lymph nodes

    Science.gov (United States)

    Grootendorst, D.; Jose, J.; Van der Jagt, P.; Van der Weg, W.; Nagel, K.; Wouters, M.; Van Boven, H.; Van Leeuwen, T. G.; Steenbergen, W.; Ruers, T.; Manohar, S.

    2011-03-01

    Accurate lymph node analysis is essential to determine the prognosis and treatment of patients suffering from melanoma. The initial results of a tomographic photoacoustic modality to detect melanoma metastases in resected lymph nodes are presented based on phantom models and a human lymph node. The results show melanoma metastases detection is feasible and the setup is capable of distinguishing absorbing structures down to 1 mm. In addition, the use of longer laser wavelengths could result in an image containing a higher contrast ratio. Future research shall be focused on using the melanin characteristics to improve contrast and detection possibilities.

  11. Dual-Modality Imaging of the Human Finger Joint Systems by Using Combined Multispectral Photoacoustic Computed Tomography and Ultrasound Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yubin Liu

    2016-01-01

    Full Text Available We developed a homemade dual-modality imaging system that combines multispectral photoacoustic computed tomography and ultrasound computed tomography for reconstructing the structural and functional information of human finger joint systems. The fused multispectral photoacoustic-ultrasound computed tomography (MPAUCT system was examined by the phantom and in vivo experimental tests. The imaging results indicate that the hard tissues such as the bones and the soft tissues including the blood vessels, the tendon, the skins, and the subcutaneous tissues in the finger joints systems can be effectively recovered by using our multimodality MPAUCT system. The developed MPAUCT system is able to provide us with more comprehensive information of the human finger joints, which shows its potential for characterization and diagnosis of bone or joint diseases.

  12. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    DEFF Research Database (Denmark)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian

    2016-01-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150  nJ/10  nm150  nJ/10  nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper...... with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source....

  13. Whole-body and multispectral photoacoustic imaging of adult zebrafish

    Science.gov (United States)

    Huang, Na; Xi, Lei

    2016-10-01

    Zebrafish is a top vertebrate model to study developmental biology and genetics, and it is becoming increasingly popular for studying human diseases due to its high genome similarity to that of humans and the optical transparency in embryonic stages. However, it becomes difficult for pure optical imaging techniques to volumetric visualize the internal organs and structures of wild-type zebrafish in juvenile and adult stages with excellent resolution and penetration depth. Even with the establishment of mutant lines which remain transparent over the life cycle, it is still a challenge for pure optical imaging modalities to image the whole body of adult zebrafish with micro-scale resolution. However, the method called photoacoustic imaging that combines all the advantages of the optical imaging and ultrasonic imaging provides a new way to image the whole body of the zebrafish. In this work, we developed a non-invasive photoacoustic imaging system with optimized near-infrared illumination and cylindrical scanning to image the zebrafish. The lateral and axial resolution yield to 80 μm and 600 μm, respectively. Multispectral strategy with wavelengths from 690 nm to 930 nm was employed to image various organs inside the zebrafish. From the reconstructed images, most major organs and structures inside the body can be precisely imaged. Quantitative and statistical analysis of absorption for organs under illumination with different wavelengths were carried out.

  14. Assessing carotid atherosclerosis by fiber-optic multispectral photoacoustic tomography

    Science.gov (United States)

    Hui, Jie; Li, Rui; Wang, Pu; Phillips, Evan; Bruning, Rebecca; Liao, Chien-Sheng; Sturek, Michael; Goergen, Craig J.; Cheng, Ji-Xin

    2015-03-01

    Atherosclerotic plaque at the carotid bifurcation is the underlying cause of the majority of ischemic strokes. Noninvasive imaging and quantification of the compositional changes preceding gross anatomic changes within the arterial wall is essential for diagnosis of disease. Current imaging modalities such as duplex ultrasound, computed tomography, positron emission tomography are limited by the lack of compositional contrast and the detection of flow-limiting lesions. Although high-resolution magnetic resonance imaging has been developed to characterize atherosclerotic plaque composition, its accessibility for wide clinical use is limited. Here, we demonstrate a fiber-based multispectral photoacoustic tomography system for excitation of lipids and external acoustic detection of the generated ultrasound. Using sequential ultrasound imaging of ex vivo preparations we achieved ~2 cm imaging depth and chemical selectivity for assessment of human arterial plaques. A multivariate curve resolution alternating least squares analysis method was applied to resolve the major chemical components, including intravascular lipid, intramuscular fat, and blood. These results show the promise of detecting carotid plaque in vivo through esophageal fiber-optic excitation of lipids and external acoustic detection of the generated ultrasound. This imaging system has great potential for serving as a point-ofcare device for early diagnosis of carotid artery disease in the clinic.

  15. High-speed photoacoustic imaging using an LED-based photoacoustic imaging system

    Science.gov (United States)

    Sato, Naoto; Kuniyil Ajith Singh, Mithun; Shigeta, Yusuke; Hanaoka, Takamitsu; Agano, Toshitaka

    2018-02-01

    Recently we developed a multispectral LED-based photoacoustic/ultrasound imaging system (AcousticX) and have been continuously working on its technical/functional improvements. AcousticX is a linear array ultrasound transducer (128 elements, 10 MHz)-based system in which LED arrays (selectable wavelengths, pulse repetition frequency: 4 kHz, pulse width: tunable from 40 - 100 ns) are fixed on both sides of the transducer to illuminate the tissue for photoacoustic imaging. The ultrasound/photoacoustic data from all 128 elements can be simultaneously acquired, processed and displayed. We already demonstrated our system's capability to perform photoacoustic/ultrasound imaging for dynamic imaging of the tissue at a frame rate of 10 Hz (for example to visualize the pulsation of arteries in vivo in human subjects). In this work, we present the development of a new high-speed imaging mode in AcousticX. In this mode, instead of toggling between ultrasound and photoacoustic measurements, it is possible to continuously acquire only photoacoustic data for 1.5 seconds with a time interval of 1 ms. With this improvement, we can record photoacoustic signals from the whole aperture (38 mm) at fast rate and can be reviewed later at different speeds for analyzing dynamic changes in the photoacoustic signals. We believe that AcousticX with this new high-speed mode opens up a feasible technical path for multiple dynamic studies, for example one which focus on imaging the response of voltage sensitive dyes. We envisage to improve the acquisition speed further in future for exploring ultra-high-speed applications.

  16. Photoacoustic imaging of lymphatic pumping

    Science.gov (United States)

    Forbrich, Alex; Heinmiller, Andrew; Zemp, Roger J.

    2017-10-01

    The lymphatic system is responsible for fluid homeostasis and immune cell trafficking and has been implicated in several diseases, including obesity, diabetes, and cancer metastasis. Despite its importance, the lack of suitable in vivo imaging techniques has hampered our understanding of the lymphatic system. This is, in part, due to the limited contrast of lymphatic fluids and structures. Photoacoustic imaging, in combination with optically absorbing dyes or nanoparticles, has great potential for noninvasively visualizing the lymphatic vessels deep in tissues. Multispectral photoacoustic imaging is capable of separating the components; however, the slow wavelength switching speed of most laser systems is inadequate for imaging lymphatic pumping without motion artifacts being introduced into the processed images. We investigate two approaches for visualizing lymphatic processes in vivo. First, single-wavelength differential photoacoustic imaging is used to visualize lymphatic pumping in the hindlimb of a mouse in real time. Second, a fast-switching multiwavelength photoacoustic imaging system was used to assess the propulsion profile of dyes through the lymphatics in real time. These approaches may have profound impacts in noninvasively characterizing and investigating the lymphatic system.

  17. Multimodal imaging of lymph nodes and tumors using glycol-chitosan-coated gold nanoparticles (Conference Presentation)

    Science.gov (United States)

    Sun, In-Cheol; Dumani, Diego S.; Emelianov, Stanislav Y.

    2017-03-01

    A key step in staging cancer is the diagnosis of metastasis that spreads through lymphatic system. For this reason, researchers develop various methods of sentinel lymph node mapping that often use a radioactive tracer. This study introduces a safe, cost-effective, high-resolution, high-sensitivity, and real-time method of visualizing the sentinel lymph node: ultrasound-guided photoacoustic (US/PA) imaging augmented by a contrast agent. In this work, we use clearable gold nanoparticles covered by a biocompatible polymer (glycol chitosan) to enhance cellular uptake by macrophages abundant in lymph nodes. We incubate macrophages with glycol-chitosan-coated gold nanoparticles (0.05 mg Au/ml), and then fix them with paraformaldehyde solution for an analysis of in vitro dark-field microscopy and cell phantom. The analysis shows enhanced cellular uptake of nanoparticles by macrophages and strong photoacoustic signal from labeled cells in tissue-mimicking cell phantoms consisting gelatin solution (6 %) with silica gel (25 μm, 0.3%) and fixed macrophages. The in-vivo US/PA imaging of cervical lymph nodes in healthy mice (nu/nu, female, 5 weeks) indicates a strong photoacoustic signal from a lymph node 10 minutes post-injection (2.5 mg Au/ml, 80 μl). The signal intensity and the nanoparticle-labeled volume of tissue within the lymph node continues to increase until 4 h post-injection. Histological analysis further confirms the accumulation of gold nanoparticles within the lymph nodes. This work suggests the feasibility of molecular/cellular US/PA imaging with biocompatible gold nanoparticles as a photoacoustic contrast agent in the diagnosis of lymph-node-related diseases.

  18. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser.

    Science.gov (United States)

    Buma, Takashi; Conley, Nicole C; Choi, Sang Won

    2018-01-01

    We demonstrate optical resolution photoacoustic microscopy (OR-PAM) of lipid-rich tissue between 1050-1714 nm using a pulsed supercontinuum laser based on a large-mode-area photonic crystal fiber. OR-PAM experiments of lipid-rich samples show the expected optical absorption peaks near 1210 and 1720 nm. These results show that pulsed supercontinuum lasers are promising for OR-PAM applications such as label-free histology of lipid-rich tissue and imaging small animal models of disease.

  19. Oximetry using multispectral imaging: theory and application

    Science.gov (United States)

    MacKenzie, Lewis E.; Harvey, Andrew R.

    2018-06-01

    Multispectral imaging (MSI) is a technique for measurement of blood oxygen saturation in vivo that can be applied using various imaging modalities to provide new insights into physiology and disease development. This tutorial aims to provide a thorough introduction to the theory and application of MSI oximetry for researchers new to the field, whilst also providing detailed information for more experienced researchers. The optical theory underlying two-wavelength oximetry, three-wavelength oximetry, pulse oximetry, and multispectral oximetry algorithms are described in detail. The varied challenges of applying MSI oximetry to in vivo applications are outlined and discussed, covering: the optical properties of blood and tissue, optical paths in blood vessels, tissue auto-fluorescence, oxygen diffusion, and common oximetry artefacts. Essential image processing techniques for MSI are discussed, in particular, image acquisition, image registration strategies, and blood vessel line profile fitting. Calibration and validation strategies for MSI are discussed, including comparison techniques, physiological interventions, and phantoms. The optical principles and unique imaging capabilities of various cutting-edge MSI oximetry techniques are discussed, including photoacoustic imaging, spectroscopic optical coherence tomography, and snapshot MSI.

  20. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    Science.gov (United States)

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Investigation of a dual modal method for bone pathologies using quantitative ultrasound and photoacoustics

    Science.gov (United States)

    Steinberg, Idan; Gannot, Israel; Eyal, Avishay

    2015-03-01

    Osteoporosis is a widespread disease that has a catastrophic impact on patient's lives and overwhelming related healthcare costs. In recent works, we have developed a multi-spectral, frequency domain photoacoustic method for the evaluation of bone pathologies. This method has great advantages over pure ultrasonic or optical methods as it provides both molecular information from the bone absorption spectrum and bone mechanical status from the characteristics of the ultrasound propagation. These characteristics include both the Speed of Sound (SOS) and Broadband Ultrasonic Attenuation (BUA). To test the method's quantitative predictions, we have constructed a combined ultrasound and photoacoustic setup. Here, we experimentally present a dual modality system, and compares between the methods on bone samples in-vitro. The differences between the two modalities are shown to provide valuable insight into the bone structure and functional status.

  2. Validating tyrosinase homologue melA as a photoacoustic reporter gene for imaging Escherichia coli

    Science.gov (United States)

    Paproski, Robert J.; Li, Yan; Barber, Quinn; Lewis, John D.; Campbell, Robert E.; Zemp, Roger

    2015-10-01

    To understand the pathogenic processes for infectious bacteria, appropriate research tools are required for replicating and characterizing infections. Fluorescence and bioluminescence imaging have primarily been used to image infections in animal models, but optical scattering in tissue significantly limits imaging depth and resolution. Photoacoustic imaging, which has improved depth-to-resolution ratio compared to conventional optical imaging, could be useful for visualizing melA-expressing bacteria since melA is a bacterial tyrosinase homologue which produces melanin. Escherichia coli-expressing melA was visibly dark in liquid culture. When melA-expressing bacteria in tubes were imaged with a VisualSonics Vevo LAZR system, the signal-to-noise ratio of a 9× dilution sample was 55, suggesting that ˜20 bacteria cells could be detected with our system. Multispectral (680, 700, 750, 800, 850, and 900 nm) analysis of the photoacoustic signal allowed unmixing of melA-expressing bacteria from blood. To compare photoacoustic reporter gene melA (using Vevo system) with luminescent and fluorescent reporter gene Nano-lantern (using Bruker Xtreme In-Vivo system), tubes of bacteria expressing melA or Nano-lantern were submerged 10 mm in 1% Intralipid, spaced between melA-expressing bacteria even when the tubes were less than 1 mm from each other, while bioluminescence and fluorescence imaging could not resolve the two tubes of Nano-lantern-expressing bacteria even when the tubes were spaced 10 mm from each other. After injecting 100-μL of melA-expressing bacteria in the back flank of a chicken embryo, photoacoustic imaging allowed visualization of melA-expressing bacteria up to 10-mm deep into the embryo. Photoacoustic signal from melA could also be separated from deoxy- and oxy-hemoglobin signal observed within the embryo and chorioallantoic membrane. Our results suggest that melA is a useful photoacoustic reporter gene for visualizing bacteria, and further work

  3. Detection and capture of single circulating melanoma cells using photoacoustic flowmetry

    Science.gov (United States)

    O'Brien, Christine; Mosley, Jeffrey; Goldschmidt, Benjamin S.; Viator, John A.

    2010-02-01

    Photoacoustic flowmetry has been used to detect single circulating melanoma cells in vitro. Circulating melanoma cells are those cells that travel in the blood and lymph systems to create secondary tumors and are the hallmark of metastasis. This technique involves taking blood samples from patients, separating the white blood and melanoma cells from whole blood and irradiating them with a pulsed laser in a flowmetry set up. Rapid, visible wavelength laser pulses on the order of 5 ns can induce photoacoustic waves in melanoma cells due to their melanin content, while surrounding white blood cells remain acoustically passive. We have developed a system that identifies rare melanoma cells and captures them in 50 microliter volumes using suction applied near the photoacoustic detection chamber. The 50 microliter sample is then diluted and the experiment is repeated using the new sample until only a melanoma cell remains. We have tested this system on dyed microspheres ranging in size from 300 to 500 microns. Capture of circulating melanoma cells may provide the opportunity to study metastatic cells for basic understanding of the spread of cancer and to optimize patient specific therapies.

  4. Photoacoustic Tomography

    Science.gov (United States)

    Wang, Lihong V.

    Photoacoustic tomography (PAT) refers to imaging that is based on the photoacoustic effect. Although the photoacoustic effect as a physical phenomenon was first reported on by Alexander Graham Bell in 1880 [1], PAT as an imaging technology was developed only after the advent of ultrasonic transducers, computers, and lasers [2-31]. A review on biomedical photoacoustics is available [32]. The motivation for PAT is to combine optical-absorption contrast with ultrasonic spatial resolution for deep imaging in the optical quasi-diffusive or diffusive regime. In PAT, the tissue is irradiated by usually a short-pulsed laser beam to achieve a thermal and acoustic impulse response (Fig. 19.1). Locally absorbed light is converted into heat, which is further converted to a pressure rise via thermo-elastic expansion. The initial pressure rise - determined by the local optical absorption coefficient (μ â ), fluence (ψ) and other thermal and mechanical properties - propagates as an ultrasonic wave, which is referred to as a photoacoustic wave.

  5. Isolation of circulating tumor cells using photoacoustic flowmetry and two phase flow

    Science.gov (United States)

    O'Brien, Christine M.; Rood, Kyle D.; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Sengupta, Shramik; Viator, John A.

    2011-03-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are inadequately sensitive. Patients must wait until secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and flow through the blood or lymph system can provide data for diagnosing and monitoring cancer. Our group utilizes the photoacoustic effect to detect metastatic melanoma cells, which contain the pigmented granule melanin. As a rapid laser pulse irradiates melanoma, the melanin undergoes thermo-elastic expansion and ultimately creates a photoacoustic wave. Thus, melanoma patient's blood samples can be enriched, leaving the melanoma in a white blood cell (WBC) suspension. Irradiated melanoma cells produce photoacoustic waves, which are detected with a piezoelectric transducer, while the optically transparent WBCs create no signals. Here we report an isolation scheme utilizing two-phase flow to separate detected melanoma from the suspension. By introducing two immiscible fluids through a t-junction into one flow path, the analytes are compartmentalized. Therefore, the slug in which the melanoma cell is located can be identified and extracted from the system. Two-phase immiscible flow is a label free technique, and could be used for other types of pathological analytes.

  6. Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system

    Science.gov (United States)

    Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis

    2016-03-01

    The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.

  7. Photoacoustic Point Source

    International Nuclear Information System (INIS)

    Calasso, Irio G.; Craig, Walter; Diebold, Gerald J.

    2001-01-01

    We investigate the photoacoustic effect generated by heat deposition at a point in space in an inviscid fluid. Delta-function and long Gaussian optical pulses are used as sources in the wave equation for the displacement potential to determine the fluid motion. The linear sound-generation mechanism gives bipolar photoacoustic waves, whereas the nonlinear mechanism produces asymmetric tripolar waves. The salient features of the photoacoustic point source are that rapid heat deposition and nonlinear thermal expansion dominate the production of ultrasound

  8. Reflection-artifact-free photoacoustic imaging using PAFUSion (photoacoustic-guided focused ultrasound)

    Science.gov (United States)

    Kuniyil Ajith Singh, Mithun; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt

    2016-03-01

    Reflection artifacts caused by acoustic inhomogeneities are a main challenge to deep-tissue photoacoustic imaging. Photoacoustic transients generated by the skin surface and superficial vasculature will propagate into the tissue and reflect back from echogenic structures to generate reflection artifacts. These artifacts can cause problems in image interpretation and limit imaging depth. In its basic version, PAFUSion mimics the inward travelling wave-field from blood vessel-like PA sources by applying focused ultrasound pulses, and thus provides a way to identify reflection artifacts. In this work, we demonstrate reflection artifact correction in addition to identification, towards obtaining an artifact-free photoacoustic image. In view of clinical applications, we implemented an improved version of PAFUSion in which photoacoustic data is backpropagated to imitate the inward travelling wave-field and thus the reflection artifacts of a more arbitrary distribution of PA sources that also includes the skin melanin layer. The backpropagation is performed in a synthetic way based on the pulse-echo acquisitions after transmission on each single element of the transducer array. We present a phantom experiment and initial in vivo measurements on human volunteers where we demonstrate significant reflection artifact reduction using our technique. The results provide a direct confirmation that reflection artifacts are prominent in clinical epi-photoacoustic imaging, and that PAFUSion can reduce these artifacts significantly to improve the deep-tissue photoacoustic imaging.

  9. Performance evaluation of photoacoustic oximetry imaging systems using a dynamic blood flow phantom with tunable oxygen saturation

    Science.gov (United States)

    Vogt, William C.; Zhou, Xuewen; Andriani, Rudy; Wear, Keith A.; Garra, Brian S.; Pfefer, Joshua

    2018-02-01

    Photoacoustic Imaging (PAI) is an emerging technology with strong potential for broad clinical applications from breast cancer detection to cerebral monitoring due to its ability to compute maps of blood oxygen saturation (SO2) distribution in deep tissues using multispectral imaging. However, no well-validated consensus test methods currently exist for evaluating oximetry-specific performance characteristics of PAI devices. We have developed a phantombased flow system capable of rapid SO2 adjustment to serve as a test bed for elucidation of factors impacting SO2 measurement and quantitative characterization of device performance. The flow system is comprised of a peristaltic pump, membrane oxygenator, oxygen and nitrogen gas, and in-line oxygen, pH, and temperature sensors that enable real-time estimation of SO2 reference values. Bovine blood was delivered through breast-relevant tissue phantoms containing vessel-mimicking fluid channels, which were imaged using a custom multispectral PAI system. Blood was periodically drawn for SO2 measurement in a clinical-grade CO-oximeter. We used this flow phantom system to evaluate the impact of device parameters (e.g.,wavelength-dependent fluence corrections) and tissue parameters (e.g. fluid channel depth, blood SO2, spectral coloring artifacts) on oximetry measurement accuracy. Results elucidated key challenges in PAI oximetry and device design trade-offs, which subsequently allowed for optimization of system performance. This approach provides a robust benchtop test platform that can support PAI oximetry device optimization, performance validation, and clinical translation, and may inform future development of consensus test methods for performance assessment of photoacoustic oximetry imaging systems.

  10. Molecular photoacoustic imaging

    Directory of Open Access Journals (Sweden)

    Frogh Jafarian Dehkordi

    2015-04-01

    Full Text Available Background: Hybrid imaging modalities which simultaneously benefit from capabilities of combined modalities provides an opportunity to modify quality of the images which can be obtained by each of the combined imaging systems. One of the imaging modalities, emerged in medical research area as a hybrid of ultrasound imaging and optical imaging, is photoacoustic imaging which apply ultrasound wave generated by tissue, after receiving laser pulse, to produce medical images. Materials and Methods: In this review, using keywords such as photoacoustic, optoacoustic, laser-ultrasound, thermoacoustic at databases such as PubMed and ISI, studies performed in the field of photoacoustic and related findings were evaluated. Results: Photoacoustic imaging, acquiring images with high contrast and desired resolution, provides an opportunity to perform physiologic and anatomic studies. Because this technique does not use ionizing radiation, it is not restricted by the limitation of the ionizing-based imaging systems therefore it can be used noninvasively to make images from cell, vessels, whole body imaging of the animal and distinguish tumor from normal tissue. Conclusion: Photoacoustic imaging is a new method in preclinical researches which can be used in various physiologic and anatomic studies. This method, because of application of non-ionizing radiation, may resolve limitation of radiation based method in diagnostic assessments.

  11. Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles

    International Nuclear Information System (INIS)

    Gutrath, Benjamin S; Buchkremer, Anne; Timper, Jan; Leifert, Annika; Simon, Ulrich; Beckmann, Martin F; Schmitz, Georg; Eckert, Thomas; Richtering, Walter

    2012-01-01

    Photoacoustic (PA) imaging attracts a great deal of attention as an innovative modality for longitudinal, non-invasive, functional and molecular imaging in oncology. Gold nanoparticles (AuNPs) are identified as superior, NIR-absorbing PA contrast agents for biomedical applications. Until now, no systematic comparison of the optical extinction and PA efficiency of water-soluble AuNPs of various geometries and small sizes has been performed. Here spherical AuNPs with core diameters of 1.0, 1.4 and 11.2 nm, nanorods with longitudinal/transversal elongation of 38/9 and 44/12 nm and hollow nanospheres with outer/inner diameters of 33/19, 57/30, 68/45 and 85/56 nm were synthesized. The diode laser set-up with excitations at 650, 808, 850 and 905 nm allowed us to correlate the molar PA signal intensity with the molar extinction of the respective AuNPs. Deviations were explained by differences in heat transfer from the particle to the medium and, for larger particles, by the scattering of light. The molar PA intensity of 1.0 nm AuNPs was comparable to the commonly used organic dye methylene blue, and rapidly increased with the lateral size of AuNPs. (paper)

  12. Photoacoustic tomography and sensing in biomedicine

    International Nuclear Information System (INIS)

    Li Changhui; Wang, Lihong V

    2009-01-01

    Photoacoustics has been broadly studied in biomedicine, for both human and small animal tissues. Photoacoustics uniquely combines the absorption contrast of light or radio frequency waves with ultrasound resolution. Moreover, it is non-ionizing and non-invasive, and is the fastest growing new biomedical method, with clinical applications on the way. This review provides a brief recap of recent developments in photoacoustics in biomedicine, from basic principles to applications. The emphasized areas include the new imaging modalities, hybrid detection methods, photoacoustic contrast agents and the photoacoustic Doppler effect, as well as translational research topics. (topical review)

  13. Photoacoustic imaging and spectroscopy

    CERN Document Server

    Wang, Lihong

    2009-01-01

    Photoacoustics promises to revolutionize medical imaging and may well make as dramatic a contribution to modern medicine as the discovery of the x-ray itself once did. Combining electromagnetic and ultrasonic waves synergistically, photoacoustics can provide deep speckle-free imaging with high electromagnetic contrast at high ultrasonic resolution and without any health risk. While photoacoustic imaging is probably the fastest growing biomedical imaging technology, this book is the first comprehensive volume in this emerging field covering both the physics and the remarkable noninvasive applic

  14. Photoacoustic signal amplification through plasmonic nanoparticle aggregation

    OpenAIRE

    Bayer, Carolyn L.; Nam, Seung Yun; Chen, Yun-Sheng; Emelianov, Stanislav Y.

    2013-01-01

    Photoacoustic imaging, using targeted plasmonic metallic nanoparticles, is a promising noninvasive molecular imaging method. Analysis of the photoacoustic signal generated by plasmonic metallic nanoparticles is complex because of the dependence upon physical properties of both the nanoparticle and the surrounding environment. We studied the effect of the aggregation of gold nanoparticles on the photoacoustic signal amplitude. We found that the photoacoustic signal from aggregated silica-coate...

  15. Nonlinear photoacoustic spectroscopy of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V., E-mail: LHWANG@WUSTL.EDU [Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130 (United States)

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  16. Nonlinear photoacoustic spectroscopy of hemoglobin.

    Science.gov (United States)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P; Xia, Jun; Wang, Lihong V

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  17. Nonlinear photoacoustic spectroscopy of hemoglobin

    International Nuclear Information System (INIS)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-01-01

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography

  18. Photoacoustic spectroscopy of β-hematin

    International Nuclear Information System (INIS)

    Samson, Edward B; Goldschmidt, Benjamin S; Whiteside, Paul J D; Sudduth, Amanda S M; Custer, John R; Viator, John A; Beerntsen, Brenda

    2012-01-01

    Malaria affects over 200 million individuals annually, resulting in 800 000 fatalities. Current tests use blood smears and can only detect the disease when 0.1–1% of blood cells are infected. We are investigating the use of photoacoustic flowmetry to sense as few as one infected cell among 10 million or more normal blood cells, thus diagnosing infection before patients become symptomatic. Photoacoustic flowmetry is similar to conventional flow cytometry, except that rare cells are targeted by nanosecond laser pulses to induce ultrasonic responses. This system has been used to detect single melanoma cells in 10 ml of blood. Our objective is to apply photoacoustic flowmetry to detection of the malaria pigment hemozoin, which is a byproduct of parasite-digested hemoglobin in the blood. However, hemozoin is difficult to purify in quantities greater than a milligram, so a synthetic analog, known as β-hematin was derived from porcine hemin. The specific purpose of this study is to establish the efficacy of using β-hematin, rather than hemozoin, for photoacoustic measurements. We characterized β-hematin using UV–vis spectroscopy, TEM, and FTIR, then tested the effects of laser irradiation on the synthetic product. We finally determined its absorption spectrum using photoacoustic excitation. UV–vis spectroscopy verified that β-hematin was distinctly different from its precursor. TEM analysis confirmed its previously established nanorod shape, and comparison of the FTIR results with published spectroscopy data showed that our product had the distinctive absorbance peaks at 1661 and 1206 cm −1 . Also, our research indicated that prolonged irradiation dramatically alters the physical and optical properties of the β-hematin, resulting in increased absorption at shorter wavelengths. Nevertheless, the photoacoustic absorption spectrum mimicked that generated by UV–vis spectroscopy, which confirms the accuracy of the photoacoustic method and strongly suggests

  19. Evolution of a MEMS Photoacoustic Chemical Sensor

    National Research Council Canada - National Science Library

    Pellegrino, Paul M; Polcawich, Ronald G

    2003-01-01

    .... Initial MEMS work is centered on fabrication of a lead zirconate titanate (PZT) microphone subsystem to be incorporated in the full photoacoustic device. Preliminary results were very positive for the macro-photoacoustic cell, PZT membrane microphones design / fabrication and elementary monolithic MEMS photoacoustic cavity.

  20. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    OpenAIRE

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V.

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic...

  1. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  2. Clinical photoacoustic imaging of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Valluru, Keerthi S.; Willmann, Juergen K. [Dept. of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford (United States)

    2016-08-15

    Photoacoustic imaging is a hybrid technique that shines laser light on tissue and measures optically induced ultrasound signal. There is growing interest in the clinical community over this new technique and its possible clinical applications. One of the most prominent features of photoacoustic imaging is its ability to characterize tissue, leveraging differences in the optical absorption of underlying tissue components such as hemoglobin, lipids, melanin, collagen and water among many others. In this review, the state-of-the-art photoacoustic imaging techniques and some of the key outcomes pertaining to different cancer applications in the clinic are presented.

  3. Graphene-based ultrasonic detector for photoacoustic imaging

    Science.gov (United States)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  4. Photoacoustic Spectroscopy Analysis of Traditional Chinese Medicine

    Science.gov (United States)

    Chen, Lu; Zhao, Bin-xing; Xiao, Hong-tao; Tong, Rong-sheng; Gao, Chun-ming

    2013-09-01

    Chinese medicine is a historic cultural legacy of China. It has made a significant contribution to medicine and healthcare for generations. The development of Chinese herbal medicine analysis is emphasized by the Chinese pharmaceutical industry. This study has carried out the experimental analysis of ten kinds of Chinese herbal powder including Fritillaria powder, etc., based on the photoacoustic spectroscopy (PAS) method. First, a photoacoustic spectroscopy system was designed and constructed, especially a highly sensitive solid photoacoustic cell was established. Second, the experimental setup was verified through the characteristic emission spectrum of the light source, obtained by using carbon as a sample in the photoacoustic cell. Finally, as the photoacoustic spectroscopy analysis of Fritillaria, etc., was completed, the specificity of the Chinese herb medicine analysis was verified. This study shows that the PAS can provide a valid, highly sensitive analytical method for the specificity of Chinese herb medicine without preparing and damaging samples.

  5. Photoacoustic thermal flowmetry with a single light source

    Science.gov (United States)

    Liu, Wei; Lan, Bangxin; Hu, Leo; Chen, Ruimin; Zhou, Qifa; Yao, Junjie

    2017-09-01

    We report a photoacoustic thermal flowmetry based on optical-resolution photoacoustic microscopy (OR-PAM) using a single laser source for both thermal tagging and photoacoustic excitation. When an optically absorbing medium is flowing across the optical focal zone of OR-PAM, a small volume of the medium within the optical focus is repeatedly illuminated and heated by a train of laser pulses with a high repetition rate. The average temperature of the heated volume at each laser pulse is indicated by the photoacoustic signal excited by the same laser pulse due to the well-established linear relationship between the Grueneisen coefficient and the local temperature. The thermal dynamics of the heated medium volume, which are closely related to the flow speed, can therefore be measured from the time course of the detected photoacoustic signals. Here, we have developed a lumped mathematical model to describe the time course of the photoacoustic signals as a function of the medium's flow speed. We conclude that the rising time constant of the photoacoustic signals is linearly dependent on the flow speed. Thus, the flow speed can be quantified by fitting the measured photoacoustic signals using the derived mathematical model. We first performed proof-of-concept experiments using defibrinated bovine blood flowing in a plastic tube. The experiment results have demonstrated that the proposed method has high accuracy (˜±6%) and a wide range of measurable flow speeds. We further validated the method by measuring the blood flow speeds of the microvasculature in a mouse ear in vivo.

  6. Photoacoustic spectra of rare earth pentaphosphates

    International Nuclear Information System (INIS)

    Strek, W.; Lukowiak, E.; Marchewka, M.; Ratajczak, H.

    1987-01-01

    The photoacoustic (PA) spectra of raee earth pentaphosphates of the general formula REP 5 O 14 , where RE = Pr,Nd,Ho,Er,Tm, are reported. The photoacoustic bands were identified and compared with the absorption spectra. For quantitative analysis of PA bands of lanthanide (III) ions, the intensity ratio vector is introduced characterizing the intensity distribution of f-f transitions. It was found that the relative intensities of photoacoustic bands are comparable with the intensities of absorption bands. It is concluded that the nonradiative relaxation mechanism leading to the PA signal is independent of the manifold-to-manifold J-J' radiationless transitions

  7. Photoacoustic Imaging in Oxygen Detection

    Directory of Open Access Journals (Sweden)

    Fei Cao

    2017-12-01

    Full Text Available Oxygen level, including blood oxygen saturation (sO2 and tissue oxygen partial pressure (pO2, are crucial physiological parameters in life science. This paper reviews the importance of these two parameters and the detection methods for them, focusing on the application of photoacoustic imaging in this scenario. sO2 is traditionally detected with optical spectra-based methods, and has recently been proven uniquely efficient by using photoacoustic methods. pO2, on the other hand, is typically detected by PET, MRI, or pure optical approaches, yet with limited spatial resolution, imaging frame rate, or penetration depth. Great potential has also been demonstrated by employing photoacoustic imaging to overcome the existing limitations of the aforementioned techniques.

  8. Single-wavelength functional photoacoustic microscopy in biological tissue.

    Science.gov (United States)

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2011-03-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple-laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multiwavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy.

  9. Single-wavelength functional photoacoustic microscopy in biological tissue

    OpenAIRE

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2011-01-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required ima...

  10. Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging

    Science.gov (United States)

    Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.

    2010-02-01

    We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.

  11. Single-cell photoacoustic thermometry

    Science.gov (United States)

    Gao, Liang; Wang, Lidai; Li, Chiye; Liu, Yan; Ke, Haixin; Zhang, Chi

    2013-01-01

    Abstract. A novel photoacoustic thermometric method is presented for simultaneously imaging cells and sensing their temperature. With three-seconds-per-frame imaging speed, a temperature resolution of 0.2°C was achieved in a photo-thermal cell heating experiment. Compared to other approaches, the photoacoustic thermometric method has the advantage of not requiring custom-developed temperature-sensitive biosensors. This feature should facilitate the conversion of single-cell thermometry into a routine lab tool and make it accessible to a much broader biological research community. PMID:23377004

  12. Intrauterine photoacoustic and ultrasound imaging probe

    Science.gov (United States)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara S.

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm.

  13. PHOTOACOUSTIC SPECTROSCOPY USING A SYNCHROTRON LIGHT SOURCE

    International Nuclear Information System (INIS)

    JACKSON, R.S.; MICHAELIAN, K.H.; HOMES, C.C.

    2001-01-01

    We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths

  14. Towards optimized naphthalocyanines as sonochromes for photoacoustic imaging in vivo

    Directory of Open Access Journals (Sweden)

    Mitchell J. Duffy

    2018-03-01

    Full Text Available In this paper we establish a methodology to predict photoacoustic imaging capabilities from the structure of absorber molecules (sonochromes. The comparative in vitro and in vivo screening of naphthalocyanines and cyanine dyes has shown a substitution pattern dependent shift in photoacoustic excitation wavelength, with distal substitution producing the preferred maximum around 800 nm. Central ion change showed variable production of photoacoustic signals, as well as singlet oxygen photoproduction and fluorescence with the optimum for photoacoustic imaging being nickel(II. Our approach paves the way for the design, evaluation and realization of optimized sonochromes as photoacoustic contrast agents. Keywords: Naphthalocyanines, Spectroscopy

  15. Intrauterine photoacoustic and ultrasound imaging probe.

    Science.gov (United States)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Photoacoustic projection imaging using an all-optical detector array

    Science.gov (United States)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  17. Indocyanine green loaded graphene oxide for high-efficient photoacoustic tumor therapy

    Directory of Open Access Journals (Sweden)

    Baoyun Yan

    2016-07-01

    Full Text Available Photoacoustic therapy, using the photoacoustic effect of agents for selectively killing tumor cells, has shown promising for treating tumor. Utilization of high optical absorption probes can help to effectively improve the photoacoustic therapy efficiency. Herein, we report a novel high-absorption photoacoustic probe that is composed of indocyanine green (ICG and graphene oxide (GO, entitled GO-ICG, for photoacoustic therapy. The attached ICG with narrow absorption spectral profile has strong optical absorption in the infrared region. The absorption spectrum of the GO-ICG solution reveals that the GO-ICG particles exhibited a 10-fold higher absorbance at 780nm (its peak absorbance as compared with GO. Importantly, ICG’s fluorescence is quenched by GO via fluorescence resonance energy transfer. As a result, GO-ICG can high-efficiently convert the absorbed light energy to acoustic wave under pulsed laser irradiation. We further demonstrate that GO-ICG can produce stronger photoacoustic wave than the GO and ICG alone. Moreover, we conjugate this contrast agent with integrin αvβ3 mono-clonal antibody to molecularly target the U87-MG human glioblastoma cells for selective tumor cell killing. Finally, our results testify that the photoacoustic therapy efficiency of GO-ICG is higher than the existing photoacoustic therapy agent. Our work demonstrates that GO-ICG is a high-efficiency photoacoustic therapy agent. This novel photoacoustic probe is likely to be an available candidate for tumor therapy.

  18. Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound : comparison between plane-wave and element-by-element synthetic backpropagation approach

    NARCIS (Netherlands)

    Kuniyil Ajith Singh, M.; Jaeger, M.; Frenz, M.; Steenbergen, Wiendelt

    2017-01-01

    Reflection artifacts caused by acoustic inhomogeneities constitute a major problem in epi-mode biomedical photoacoustic imaging. Photoacoustic transients from the skin and superficial optical absorbers traverse into the tissue and reflect off echogenic structures to generate reflection artifacts.

  19. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus.

    Science.gov (United States)

    Yang, Joon Mo; Favazza, Christopher; Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2015-01-01

    We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy.

  20. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus.

    Directory of Open Access Journals (Sweden)

    Joon Mo Yang

    Full Text Available We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy.

  1. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  2. Thermoviscous analysis of open photoacoustic cells

    Science.gov (United States)

    Mannoor, Madhusoodanan; Kang, Sangmo

    2017-11-01

    Open photoacoustic cells, apart from the conventional spectroscopic applications, are increasingly useful in bio medical applications such as in vivo blood sugar measurement. Maximising the acoustic pressure amplitude and the quality factor are major design considerations associated with open cells.Conventionaly, resonant photoacoustic cells are analyzed by either transmission line analogy or Eigen mode expansion method. In this study, we conducted a more comprehensive thermo viscous analysis of open photoacoustic cells. A Helmholtz cell and a T-shaped cell, which are acoustically different, are considered for analysis. Effect of geometrical dimensions on the acoustic pressure, quality factor and the intrusion of noise are analyzed and compared between these cells. Specific attention is given to the sizing of the opening and fixtures on it to minimize the radiational losses and the intrusion of noise. Our results are useful for proper selection of the type of open photoacoustic cells for in vivo blood sugar measurement and the optimization of geometric variables of such cells. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future planning (2017R1A2B4005006).

  3. Polymer fiber detectors for photoacoustic imaging

    Science.gov (United States)

    Grün, Hubert; Berer, Thomas; Pühringer, Karoline; Nuster, Robert; Paltauf, Günther; Burgholzer, Peter

    2010-02-01

    Photoacoustic imaging is a novel imaging method for medical and biological applications, combining the advantages of Diffuse Optical Imaging (high contrast) and Ultrasonic Imaging (high spatial resolution). A short laser pulse hits the sample. The absorbed energy causes a thermoelastic expansion and thereby launches a broadband ultrasonic wave (photoacoustic signal). The distribution of absorbed energy density is reconstructed from measurements of the photoacoustic signals around the sample. For collecting photoacoustic signals either point like or extended, integrating detectors can be used. The latter integrate the pressure at least in one dimension, e.g. along a line. Thereby, the three dimensional imaging problem is reduced to a two dimensional problem. For a tomography device consisting of a scanning line detector and a rotating sample, fiber-based detectors made of polymer have been recently introduced. Fiber-based detectors are easy to use and possess a constant, high spatial resolution over their entire active length. Polymer fibers provide a better impedance matching and a better handling compared with glass fibers which were our first approach. First measurement results using polymer fiber detectors and some approaches for improving the performance are presented.

  4. Original Research. Photoacoustic Microscopy in Dental Medicine

    Directory of Open Access Journals (Sweden)

    Stan Adrian Tudor

    2017-03-01

    Full Text Available Introduction: Photoacoustic microscopy, also known as optoacoustic imaging, is a comparatively new method of investigation in dental medicine, which uses a laser-generated ultrasound (short laser pulses to achieve images for interpretation. Photoacoustic microscopy can be used in a broad spectrum, from detecting tooth decay at its earliest stages to dental anatomy analysis. Material and methods: The energy emitted by the photoacoustic pulse is moderately absorbed by the target and exchanged into heat, leading to a local transitory temperature upsurge. The tension propagates and grows as ultrasonic waves, distinguished by the ultrasonic transducers which are planted apart from the tissue. The photoacoustic microscope has a tunable dye laser which passes through a condensing lens, an objective and ultimately an ultrasonic transducer attached to an acoustic lens to capture and receive information about the scanned probe from a sample moved on the X, Y dimensions. Results: The precise anatomy of layered concentric structures can be clearly observed in photoacoustic microscopy. The image value of the inner layer can be higher, indicating strong optical absorption, while the image value of the outer layer is lower, indicating weaker optical absorption. Meanwhile, the inner layer has the exact same size as the dentin structure and the outer layer has the exact same size as the enamel structure in this cross-section. Conclusions: The photoacoustic microscope (all-optical comes out to be a future and promising tool for detecting early-stage caries and lesions on the surface of the teeth, where micro-leakage occurs at the interface of tooth restoration, and also the anatomy of dental tissues.

  5. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.

    Science.gov (United States)

    Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis

    2016-01-01

    Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photoacoustic absorption spectroscopy of single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul A.; Cremer, Johannes W.; Signorell, Ruth

    2017-08-01

    Photoacoustics have been widely used for the study of aerosol optical properties. To date, these studies have been performed on particle ensembles, with minimal ability to control for particle size. Here, we present our singleparticle photoacoustic spectrometer. The sensitivity and stability of the instrument is discussed, along with results from two experiments that illustrate the unique capabilities of this instrument. In the first experiment, we present a measurement of the particle size-dependence of the photoacoustic response. Our results confirm previous models of aerosol photoacoustics that had yet to be experimentally tested. The second set of results reveals a size-dependence of photochemical processes within aerosols that results from the nanofocusing of light within individual droplets.

  7. An optimized ultrasound detector for photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, Wenfeng; Piras, Daniele; van Hespen, Johan C. G.; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Photoacoustic imaging has proven to be able to detect vascularization-driven optical absorption contrast associated with tumors. In order to detect breast tumors located a few centimeter deep in tissue, a sensitive ultrasound detector is of crucial importance for photoacoustic mammography. Further,

  8. Multiple speckle illumination for optical-resolution photoacoustic imaging

    Science.gov (United States)

    Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2017-03-01

    Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2

  9. A photoacoustic technique to measure the properties of single cells

    Science.gov (United States)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  10. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles

    Science.gov (United States)

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong

    2012-01-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs). PMID:22808436

  11. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles.

    Science.gov (United States)

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D; Chang, Huan-Cheng; Ye, Jing Yong

    2012-07-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).

  12. Semiconducting polymer dot as a highly effective contrast agent for photoacoustic imaging

    Science.gov (United States)

    Yuan, Zhen; Zhang, Jian

    2018-02-01

    In this study, we developed a novel PIID-DTBT based semiconducting polymer dots (Pdots) that have broad and strong optical absorption in the visible-light region (500 nm - 700 nm). Gold nanoparticles (GNPs) and gold nanorods (GNRs) that have been verified as an excellent photoacoustic contrast agent were compared with Pdots based on photoacoustic imaging method. Both ex vivo and in vivo experiment demonstrated Pdots have a better photoacoustic conversion efficiency at 532 nm than GNPs and similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Our work demonstrates the great potential of Pdots as a highly effective contrast agent for precise localization of lesions relative to the blood vessels based on photoacoustic tomography imaging.

  13. Transurethral light delivery for prostate photoacoustic imaging

    OpenAIRE

    Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.

    2015-01-01

    Photoacoustic imaging has broad clinical potential to enhance prostate cancer detection and treatment, yet it is challenged by the lack of minimally invasive, deeply penetrating light delivery methods that provide sufficient visualization of targets (e.g., tumors, contrast agents, brachytherapy seeds). We constructed a side-firing fiber prototype for transurethral photoacoustic imaging of prostates with a dual-array (linear and curvilinear) transrectal ultrasound probe. A method to calculate ...

  14. Modeling skull's acoustic attenuation and dispersion on photoacoustic signal

    Science.gov (United States)

    Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.

    2017-03-01

    Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.

  15. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    Directory of Open Access Journals (Sweden)

    Akinori Miyata

    Full Text Available Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10 under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases, photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical

  16. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    Science.gov (United States)

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed

  17. Molecular photoacoustic imaging of follicular thyroid carcinoma

    DEFF Research Database (Denmark)

    Levi, Jelena; Kothapalli, Sri-Rajashekar; Bohndiek, Sarah

    2013-01-01

    in living mice optically, observing the increase in Alexa750 fluorescence, and photoacoustically, using a dual wavelength imaging method. Results Active forms of both MMP2 and MMP-9 enzymes were found in FTC133 tumor homogenates, with MMP-9 detected in greater amounts. The molecular imaging agent......Purpose To evaluate the potential of targeted photoacoustic imaging as a non-invasive method for detection of follicular thyroid carcinoma. Experimental Design We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers...... for malignant thyroid lesions, in FTC133 thyroid tumors subcutaneously implanted in nude mice. The imaging agent used to visualize tumors was MMP activatable photoacoustic probe, Alexa750-CXeeeeXPLGLAGrrrrrXK-BHQ3. Cleavage of the MMP activatable agent was imaged after intratumoral and intravenous injections...

  18. Label-free photoacoustic microscopy of peripheral nerves

    Science.gov (United States)

    Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies.

  19. DFB laser diodes for sensing applications using photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Koeth, J; Fischer, M; Legge, M; Seufert, J; Roessner, K; Groninga, H

    2010-01-01

    We present typical device characteristics of novel DFB laser diodes which are employed in various sensing applications including high resolution photoacoustic spectroscopy. The laser diodes discussed are based on a genuine fabrication technology which allows for the production of ultra stable devices within a broad spectral range from 760 nm up to 3000 nm wavelength. The devices exhibit narrow linewidths down to <1 MHz which makes them ideally suited for all photoacoustic sensing applications where a high spectral purity is required. As an example we will focus on a typical medical application where these diodes are used for breath analysis using photoacoustic spectroscopy.

  20. Photoacoustic CO2-Sensor for Automotive Applications

    OpenAIRE

    Huber, J.; Weber, C.; Eberhardt, A.; Wöllenstein, J.

    2016-01-01

    We present a field-tested miniaturized spectroscopic CO2 sensor which is based on the photoacoustic effect. The sensor is developed for automotive applications and considers the requirements for the usage in vehicles. The sensor measures two measurement ranges simultaneously: The monitoring of the indoor air quality and the detection of possible leakages of the coolant in CO2 air-conditioning systems. The sensor consists of a miniaturized innovative photoacoustic sensor unit with integrated e...

  1. Near infrared photoacoustic detection of heptane in synthetic air

    DEFF Research Database (Denmark)

    Duggen, Lars; Albu, Mihaela; Willatzen, Morten

    2013-01-01

    Trace contaminations of n-heptane in synthetic air is measured in the parts-per-billion (ppb) range using near infrared photoacoustic detection. We describe the fundamental theory used in the design of the photoacoustic cell for trace gas analysis and determine the detection limit of the cell...

  2. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo.

    Science.gov (United States)

    Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2012-08-01

    At present, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures that provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high-resolution images, but also is safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically relevant depths, ideal for imaging soft tissues. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, thereby enabling multimodality imaging with complementary contrast. Here we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and show its ability to image internal organs in vivo, thus illustrating its potential clinical application.

  3. Automation, development and performance of a photoacoustic spectrometer

    International Nuclear Information System (INIS)

    Cavalheiro, F.R.F.

    1985-01-01

    This work consists in the development of a circuit to interface a photoacoustic spectrometer with a microcomputer. The obtained spectra are identical to those obtained in commercial photoacoustic spectrometers. The system permits a great versatility and it has possibilities to automatize other types of experiments. The system can be duplicated from national components and at a relatively low coast. (author)

  4. Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms

    NARCIS (Netherlands)

    Manohar, Srirang; Kharine, Alexei; van Hespen, Johan C. G.; Steenbergen, Wiendelt; van Leeuwen, Ton G.

    2004-01-01

    We present a laboratory version of a photoacoustic mammoscope, based on a parallel plate geometry. The instrument is built around a flat high-density ultrasound detector matrix. The light source is a Q-switched Nd:YAG laser with a pulse duration of 5 ns. To test the instrument, a novel photoacoustic

  5. Photoacoustic imaging of hidden dental caries by using a fiber-based probing system

    Science.gov (United States)

    Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji

    2017-04-01

    Photoacoustic method to detect hidden dental caries is proposed. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating laser light to occlusal surface of model tooth. By making a map of intensity of these high frequency components, photoacoustic images of hidden caries were successfully obtained. A photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for using clinical application, and clear photoacoustic image of hidden caries was also obtained by this system.

  6. Photoacoustic Fourier Transform Infrared (FTIR) Spectroscopy Of Solids

    Science.gov (United States)

    Vidrine, D. Warren

    1981-10-01

    After discovering the photoacoustic effect, Alexander Graham Bell predicted its use in spectrometers, and that it would find its greatest utility "in the ultra-red." More than ninety years were required to fulfil his first prediction, and the second is still a prophecy. There is no record whether he ever imagined that an invention being developed that same winter by a young protege of his named Albert Michelson would ever be combined with his photoacoustic effect. A century later, the combination was made by Farrow Burnham, and Eyring, using a visible-range interferometer spectrometer of their own design. Soon afterwards, Rockley and myself, working independently, applied the technique to infrared measurements of solid samples. Photoacoustic cells are now commercially available as FT-IR accessories, and the technique is in use in the field.

  7. Cellulose nanoparticles: photoacoustic contrast agents that biodegrade to simple sugars

    Science.gov (United States)

    Jokerst, Jesse V.; Bohndiek, Sarah E.; Gambhir, Sanjiv S.

    2014-03-01

    In photoacoustic imaging, nanoparticle contrast agents offer strong signal intensity and long-term stability, but are limited by poor biodistribution and clearance profiles. Conversely, small molecules offer renal clearance, but relatively low photoacoustic signal. Here we describe a cellulose-based nanoparticle with photoacoustic signal superior to gold nanorods, but that undergoes enzymatic cleavage into constituent glucose molecules for renal clearance. Cellulose nanoparticles (CNPs) were synthesized through acidic cleavage of cellulose linters and purified with centrifugation. TEM indicated that the nanoparticles were 132 +/- 46 nm; the polydispersity index was 0.138. Ex vivo characterization showed a photoacoustic limit of detection of 0.02 mg/mL CNPs, and the photoacoustic signal of CNPs was 1.5- to 3.0-fold higher than gold nanorods (also at 700 nm resonance) on a particle-to-particle basis. Cell toxicity assays suggested that overnight doses below 0.31 mg/mL CNPs produced no significant (p>0.05) impact on cell metabolism. Intravenous doses up to 0.24 mg were tolerated well in nude mice. Subcutaneous and orthotopic tumor xenografts of the OV2008 ovarian cancer cell line were then created in nude mice. Data was collected with a Nexus128 scanner from Endra LifeSciences. Spectral data used a LAZR system from Visualsonics both at 700 nm excitation. We injected CNPs (0.024 mg, 0.048 mg, and 0.80 mg) via tail vein and showed that the tumor photoacoustic signal reached maximum increase between 10 and 20 minutes. All injected concentrations were statistically (p0.96 suggesting quantitative signal. CNP biodegradation was demonstrated ex vivo with a glucose assay. CNPs in the presence of cellulase were reduced to free glucose in under than four hours. The glucose concentration before addition of cellulase was not detectable, but increased to 92.1 μg/mL in four hours. CNPs in the absence of cellulase did not produce glucose. Small fragments of nanoparticle in the

  8. In vivo photoacoustic imaging of mouse embryos

    Science.gov (United States)

    Laufer, Jan; Norris, Francesca; Cleary, Jon; Zhang, Edward; Treeby, Bradley; Cox, Ben; Johnson, Peter; Scambler, Pete; Lythgoe, Mark; Beard, Paul

    2012-06-01

    The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.

  9. Intravascular photoacoustic imaging of human coronary atherosclerosis

    Science.gov (United States)

    Jansen, Krista; van der Steen, Antonius F. W.; Springeling, Geert; van Beusekom, Heleen M. M.; Oosterhuis, J. Wolter; van Soest, Gijs

    2011-03-01

    We demonstrate intravascular photoacoustic imaging of human coronary atherosclerotic plaque. We specifically imaged lipid content, a key factor in vulnerable plaques that may lead to myocardial infarction. An integrated intravascular photoacoustics (IVPA) and ultrasound (IVUS) catheter with an outer diameter of 1.25 mm was developed. The catheter comprises an angle-polished optical fiber adjacent to a 30 MHz single-element transducer. The ultrasonic transducer was optically isolated to eliminate artifacts in the PA image. We performed measurements on a cylindrical vessel phantom and isolated point targets to demonstrate its imaging performance. Axial and lateral point spread function widths were 110 μm and 550 μm, respectively, for PA and 89 μm and 420 μm for US. We imaged two fresh human coronary arteries, showing different stages of disease, ex vivo. Specific photoacoustic imaging of lipid content, is achieved by spectroscopic imaging at different wavelengths between 1180 and 1230 nm.

  10. Photoacoustic imaging of teeth for dentine imaging and enamel characterization

    Science.gov (United States)

    Periyasamy, Vijitha; Rangaraj, Mani; Pramanik, Manojit

    2018-02-01

    Early detection of dental caries, cracks and lesions is needed to prevent complicated root canal treatment and tooth extraction procedures. Resolution of clinically used x-ray imaging is low, hence optical imaging techniques such as optical coherence tomography, fluorescence imaging, and Raman imaging are widely experimented for imaging dental structures. Photoacoustic effect is used in photon induced photoacoustic streaming technique to debride the root canal. In this study, the extracted teeth were imaged using photoacoustic tomography system at 1064 nm. The degradation of enamel and dentine is an indicator of onset of dental caries. Photoacoustic microscopy (PAM) was used to study the tooth enamel. Images were acquired using acoustic resolution PAM system. This was done to identify microscopic cracks and dental lesion at different anatomical sites (crown and cementum). The PAM tooth profile is an indicator of calcium distribution which is essential for demineralization studies.

  11. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Cong Du

    2018-04-01

    Full Text Available This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.

  12. Photoacoustic Sounds from Meteors

    Czech Academy of Sciences Publication Activity Database

    Spalding, R.; Tencer, J.; Sweatt, W.; Conley, B.; Hogan, R.; Boslough, M.B.; Gonzales, G.; Spurný, Pavel

    2017-01-01

    Roč. 7, February (2017), 41251/1-41251/6 ISSN 2045-2322 Institutional support: RVO:67985815 Keywords : photoacoustic coupling * experimental results * numerical models Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.259, year: 2016

  13. Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo.

    Science.gov (United States)

    Cash, Kevin J; Li, Chiye; Xia, Jun; Wang, Lihong V; Clark, Heather A

    2015-02-24

    Personalized medicine could revolutionize how primary care physicians treat chronic disease and how researchers study fundamental biological questions. To realize this goal, we need to develop more robust, modular tools and imaging approaches for in vivo monitoring of analytes. In this report, we demonstrate that synthetic nanosensors can measure physiologic parameters with photoacoustic contrast, and we apply that platform to continuously track lithium levels in vivo. Photoacoustic imaging achieves imaging depths that are unattainable with fluorescence or multiphoton microscopy. We validated the photoacoustic results that illustrate the superior imaging depth and quality of photoacoustic imaging with optical measurements. This powerful combination of techniques will unlock the ability to measure analyte changes in deep tissue and will open up photoacoustic imaging as a diagnostic tool for continuous physiological tracking of a wide range of analytes.

  14. A novel fiber laser development for photoacoustic microscopy

    Science.gov (United States)

    Yavas, Seydi; Aytac-Kipergil, Esra; Arabul, Mustafa U.; Erkol, Hakan; Akcaalan, Onder; Eldeniz, Y. Burak; Ilday, F. Omer; Unlu, Mehmet B.

    2013-03-01

    Photoacoustic microscopy, as an imaging modality, has shown promising results in imaging angiogenesis and cutaneous malignancies like melanoma, revealing systemic diseases including diabetes, hypertension, tracing drug efficiency and assessment of therapy, monitoring healing processes such as wound cicatrization, brain imaging and mapping. Clinically, photoacoustic microscopy is emerging as a capable diagnostic tool. Parameters of lasers used in photoacoustic microscopy, particularly, pulse duration, energy, pulse repetition frequency, and pulse-to-pulse stability affect signal amplitude and quality, data acquisition speed and indirectly, spatial resolution. Lasers used in photoacoustic microscopy are typically Q-switched lasers, low-power laser diodes, and recently, fiber lasers. Significantly, the key parameters cannot be adjusted independently of each other, whereas microvasculature and cellular imaging, e.g., have different requirements. Here, we report an integrated fiber laser system producing nanosecond pulses, covering the spectrum from 600 nm to 1100 nm, developed specifically for photoacoustic excitation. The system comprises of Yb-doped fiber oscillator and amplifier, an acousto-optic modulator and a photonic-crystal fiber to generate supercontinuum. Complete control over the pulse train, including generation of non-uniform pulse trains, is achieved via the AOM through custom-developed field-programmable gate-array electronics. The system is unique in that all the important parameters are adjustable: pulse duration in the range of 1-3 ns, pulse energy up to 10 μJ, repetition rate from 50 kHz to 3 MHz. Different photocoustic imaging probes can be excited with the ultrabroad spectrum. The entire system is fiber-integrated; guided-beam-propagation rendersit misalignment free and largely immune to mechanical perturbations. The laser is robust, low-cost and built using readily available components.

  15. Realistic tissue visualization using photoacoustic image

    Science.gov (United States)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  16. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  17. Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms

    Science.gov (United States)

    Fonseca, Martina; An, Lu; Beard, Paul; Cox, Ben

    2017-12-01

    As multiwavelength photoacoustic imaging becomes increasingly widely used to obtain quantitative estimates, the need for validation studies conducted on well-characterized experimental phantoms becomes ever more pressing. One challenge that such studies face is the design of stable, well-characterized phantoms and absorbers with properties in a physiologically realistic range. This paper performs a full experimental characterization of aqueous solutions of copper and nickel sulfate, whose properties make them close to ideal as chromophores in multiwavelength photoacoustic imaging phantoms. Their absorption varies linearly with concentration, and they mix linearly. The concentrations needed to yield absorption values within the physiological range are below the saturation limit. The shape of their absorption spectra makes them useful analogs for oxy- and deoxyhemoglobin. They display long-term photostability (no indication of bleaching) as well as resistance to transient effects (no saturable absorption phenomena), and are therefore suitable for exposure to typical pulsed photoacoustic light sources, even when exposed to the high number of pulses required in scanning photoacoustic imaging systems. In addition, solutions with tissue-realistic, predictable, and stable scattering can be prepared by mixing sulfates and Intralipid, as long as an appropriate emulsifier is used. Finally, the Grüneisen parameter of the sulfates was found to be larger than that of water and increased linearly with concentration.

  18. CLASSIFICATION BY USING MULTISPECTRAL POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    C. T. Liao

    2012-07-01

    Full Text Available Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  19. Classification by Using Multispectral Point Cloud Data

    Science.gov (United States)

    Liao, C. T.; Huang, H. H.

    2012-07-01

    Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  20. Discrimination of the glucose and the white sugar based on the pulsed laser-induced photoacoustic technique

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong

    2017-08-01

    In this study, to discriminate the glucose and the white sugar gradient in the food, a noninvasive optical detection system based on pulsed laser-induced photoacoustic technique was developed. Meanwhile, the Nd: YAG 532nm pumped OPO pulsed laser was used as the excitation light source to generate of the photoacoustic signals of the glucose and white sugar. The focused ultrasonic transducer with central detection frequency of 1MHz was used to capture the photoacoustic signals. In experiments, the real-time photoacoustic signals of the glucose and the white sugar aqueous solutions were gotten and compared with each other. In addition, to discriminate the difference of the characteristic photoacoustic signals between both of them, the difference spectrum and the first order derivative technique between the peak-to-peak photoacoustic signals of the water and that of the glucose and white sugar were employed. The difference characteristic photoacoustic wavelengths between the glucose and the white sugar were found based on the established photoacoustic detection system. This study provides the potential possibility for the discrimination of the glucose and the white sugar by using the photoacoustic detection method.

  1. Numerical Study of Photoacoustic Pressure for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Thomas Grosges

    2016-11-01

    Full Text Available A commonly used therapy for cancer is based on the necrosis of cells induced by heating through the illumination of nanoparticles embedded in cells. Recently, the photoacoustic pressure shock induced by the illumination pulse was proved and this points to another means of cell destruction. The purpose of this study is to propose a model of the photoacoustic pressure in cells. The numerical resolution of the problem requires the accurate computation of the electromagnetism, the temperature and the pressure around the nanostructures embedded in a cell. Here, the problem of the interaction between an electromagnetic excitation and a gold nanoparticle embedded in a cell domain is solved. The variations of the thermal and photoacoustic pressures are studied in order to analyze the pressure shock wave inducing the collapse of the cell’s membrane in cancer therapy.

  2. Modification of a commercial spectrophotometer for photoacoustic measurement

    International Nuclear Information System (INIS)

    Bandyopadhyay, S.; Harris, J.M.; Eyring, E.M.

    1983-01-01

    This note describes how a commercial UV-VIS-NIR spectrophotometer may be adapted to function as a double beam photoacoustic spectrophotometer operating at visible wavelengths. Modification of a Varian Cary 17 spectrophotometer was carried out first by dismounting the photomultiplier tube detector module and the cell compartment of the spectrophotometer. The sample and the reference beams were focused through two externally mounted quartz lenses onto the sample and reference photoacoustic cells, respectively

  3. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging

    Science.gov (United States)

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L.; Leung, Ben Y. C.; Goertz, David E.; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F.; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  4. Sensitive Detection: Photoacoustics, Thermography, and Optical Radiation Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, Gerald J. [Brown Univ., Providence, RI (United States)

    2017-04-21

    Research during the granting period has been carried out in several areas concerned with sensitive detection. An infrared pyrometer based on the photoacoustic effect has been developed. The sensitivity of this instrument to temperature differentials has been shown to be 50 mK. An investigation of transients that accompany photoacoustic waves generated by pulsed lasers has been carried out. Experiments have shown the existence of the transients, and a theory based on rapid heat diffusion has been developed. The photoacoustic effect in one dimension is known to increase without bound (in the linear acoustics regime) when an optical beam moves in a fluid at the sound speed. A solution to the wave equation for pressure has been found that describes the photoacoustic effect in a cell where an infrared optical grating moves at the sound speed. It was shown that the amplification effect exists along with a cavity resonance that can be used to great advantage in trace gas detection. The theory of the photoacoustic effect in a structure where the acoustic properties periodically vary in a one-dimensional based has been formulated based on solutions to a Mathieu equation. It was found that it is possible to excite photoacoustic waves within the band gaps to produce large amplitude acoustic waves. The idea of self-oscillation in a photoacoustic cell using a continuous laser has been investigated. A theory has been completed showing that in a compressive wave, the absorption increases as a result of the density increase leading to further absorption and hence an increased amplitude photoacoustic effect with the result that in a resonator, self-oscillation can place. Experiments have been carried out where irradiation of a suspension of absorbing carbon particles with a high power laser has been shown to result in cavitation luminescence. That is, following generation of CO and H2 from the carbon particles through the carbon-steam reaction, an expanding gas bubble is

  5. Photoacoustic imaging for differential diagnosis of benign polyps versus malignant polyps of the gallbladder: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Hee Dong; Lee, Jae Young; Han, Joon Koo [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, Clinical Research Institute, Seoul National University Hospital, Seoul (Korea, Republic of); Jang, Jin Young; Kang, Mee Joo [Div. of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chang, Jin Ho; Kang, Jeeun [Sogang University, Seoul (Korea, Republic of)

    2017-09-15

    To investigate the feasibility of ex vivo multispectral photoacoustic (PA) imaging in differentiating cholesterol versus neoplastic polyps, and benign versus malignant polyps, of the gallbladder. A total of 38 surgically confirmed gallbladder polyps (24 cholesterol polyps, 4 adenomas, and 10 adenocarcinomas) from 38 patients were prospectively included in this study. The surgical specimens were set on a gel pad immersed in a saline-filled container. The PA intensities of polyps were then measured, using two separate wavelength intervals (421–647 nm and 692–917 nm). Mann-Whitney U test was performed for the comparison of normalized PA intensities between the cholesterol and neoplastic polyps, and between the benign and malignant polyps. Kruskal-Wallis test was conducted for the comparison of normalized PA intensities among the cholesterol polyps, adenomas, and adenocarcinomas. A significant difference was observed in the normalized PA intensities between the cholesterol and neoplastic polyps at 459 nm (median, 1.00 vs. 0.73; p = 0.032). Comparing the benign and malignant polyps, there were significant differences in the normalized PA intensities at 765 nm (median, 0.67 vs. 0.78; p = 0.013), 787 nm (median, 0.65 vs. 0.77; p = 0.034), and 853 nm (median, 0.59 vs. 0.85; p = 0.028). The comparison of the normalized PA intensities among cholesterol polyps, adenomas, and adenocarcinomas demonstrated marginally significant differences at 765 nm (median, 0.67 vs. 0.66 vs. 0.78, respectively; p = 0.049). These preliminary results indicate that benign versus malignant gallbladder polyps might exhibit different spectral patterns on multispectral PA imaging.

  6. Photoacoustic imaging for differential diagnosis of benign polyps versus malignant polyps of the gallbladder: A preliminary study

    International Nuclear Information System (INIS)

    Chae, Hee Dong; Lee, Jae Young; Han, Joon Koo; Jang, Jin Young; Kang, Mee Joo; Chang, Jin Ho; Kang, Jeeun

    2017-01-01

    To investigate the feasibility of ex vivo multispectral photoacoustic (PA) imaging in differentiating cholesterol versus neoplastic polyps, and benign versus malignant polyps, of the gallbladder. A total of 38 surgically confirmed gallbladder polyps (24 cholesterol polyps, 4 adenomas, and 10 adenocarcinomas) from 38 patients were prospectively included in this study. The surgical specimens were set on a gel pad immersed in a saline-filled container. The PA intensities of polyps were then measured, using two separate wavelength intervals (421–647 nm and 692–917 nm). Mann-Whitney U test was performed for the comparison of normalized PA intensities between the cholesterol and neoplastic polyps, and between the benign and malignant polyps. Kruskal-Wallis test was conducted for the comparison of normalized PA intensities among the cholesterol polyps, adenomas, and adenocarcinomas. A significant difference was observed in the normalized PA intensities between the cholesterol and neoplastic polyps at 459 nm (median, 1.00 vs. 0.73; p = 0.032). Comparing the benign and malignant polyps, there were significant differences in the normalized PA intensities at 765 nm (median, 0.67 vs. 0.78; p = 0.013), 787 nm (median, 0.65 vs. 0.77; p = 0.034), and 853 nm (median, 0.59 vs. 0.85; p = 0.028). The comparison of the normalized PA intensities among cholesterol polyps, adenomas, and adenocarcinomas demonstrated marginally significant differences at 765 nm (median, 0.67 vs. 0.66 vs. 0.78, respectively; p = 0.049). These preliminary results indicate that benign versus malignant gallbladder polyps might exhibit different spectral patterns on multispectral PA imaging

  7. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources

    Directory of Open Access Journals (Sweden)

    Vincenzo Spagnolo

    2009-12-01

    Full Text Available The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques.

  8. Multispectral recordings and analysis of psoriasis lesions

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Ersbøll, Bjarne Kjær

    2006-01-01

    An objective method to evaluate the severeness of psoriasis lesions is proposed. In order to obtain objectivity multi-spectral imaging is used. The multi-spectral images give rise to a large p, small n problem which is solved by use of elastic net model selection. The method is promising for furt......An objective method to evaluate the severeness of psoriasis lesions is proposed. In order to obtain objectivity multi-spectral imaging is used. The multi-spectral images give rise to a large p, small n problem which is solved by use of elastic net model selection. The method is promising...

  9. Photoacoustics: a historical review

    NARCIS (Netherlands)

    Manohar, Srirang; Razansky, D.

    2016-01-01

    We review the history of photoacoustics from the discovery in 1880 that modulated light produces acoustic waves to the current time, when the pulsed variant of the discovery is fast developing into a powerful biomedical imaging modality. We trace the meandering and fascinating passage of the effect

  10. Photoacoustic technique applied to the study of skin and leather

    International Nuclear Information System (INIS)

    Vargas, M.; Varela, J.; Hernandez, L.; Gonzalez, A.

    1998-01-01

    In this paper the photoacoustic technique is used in bull skin for the determination of thermal and optical properties as a function of the tanning process steps. Our results show that the photoacoustic technique is sensitive to the study of physical changes in this kind of material due to the tanning process

  11. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  12. In vivo virtual intraoperative surgical photoacoustic microscopy

    International Nuclear Information System (INIS)

    Han, Seunghoon; Kim, Sehui; Kim, Jeehyun; Lee, Changho; Jeon, Mansik; Kim, Chulhong

    2013-01-01

    We developed a virtual intraoperative surgical photoacoustic microscopy system by combining with a commercial surgical microscope and photoacoustic microscope (PAM). By sharing the common optical path in the microscope and PAM system, we could acquire the PAM and microscope images simultaneously. Moreover, by employing a beam projector to back-project 2D PAM images onto the microscope view plane as augmented reality, the conventional microscopic and 2D cross-sectional PAM images are concurrently mapped on the plane via an ocular lens of the microscope in real-time. Further, we guided needle insertion into phantom ex vivo and mice skins in vivo

  13. In vivo virtual intraoperative surgical photoacoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghoon, E-mail: hsh860504@gmail.com; Kim, Sehui, E-mail: sehui0916@nate.com; Kim, Jeehyun, E-mail: jeehk@knu.ac.kr, E-mail: chulhong@postech.edu [School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Changho, E-mail: ch31037@postech.edu; Jeon, Mansik, E-mail: msjeon@postech.edu [Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Kim, Chulhong, E-mail: jeehk@knu.ac.kr, E-mail: chulhong@postech.edu [Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, New York 14221 (United States)

    2013-11-11

    We developed a virtual intraoperative surgical photoacoustic microscopy system by combining with a commercial surgical microscope and photoacoustic microscope (PAM). By sharing the common optical path in the microscope and PAM system, we could acquire the PAM and microscope images simultaneously. Moreover, by employing a beam projector to back-project 2D PAM images onto the microscope view plane as augmented reality, the conventional microscopic and 2D cross-sectional PAM images are concurrently mapped on the plane via an ocular lens of the microscope in real-time. Further, we guided needle insertion into phantom ex vivo and mice skins in vivo.

  14. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  15. Photoacoustic Detection of Terahertz Radiation for Chemical Sensing and Imaging Applications

    Science.gov (United States)

    2013-03-01

    ISSN 2229-5518 [39] Jingle Liu, Benjamin Clough, and X. C. Zhang, “Enhancement of photoacoustic emission through terahertz-field driven electron...materials,” Journal of Electroceramics, vol. 2: p. 257-272, 2009. [47] Jingle Liu, Benjamin Clough, and X. C. Zhang, “Enhancement of photoacoustic

  16. Rationally encapsulated gold nanorods improving both linear and nonlinear photoacoustic imaging contrast in vivo.

    Science.gov (United States)

    Gao, Fei; Bai, Linyi; Liu, Siyu; Zhang, Ruochong; Zhang, Jingtao; Feng, Xiaohua; Zheng, Yuanjin; Zhao, Yanli

    2017-01-07

    Photoacoustic tomography has emerged as a promising non-invasive imaging technique that integrates the merits of high optical contrast with high ultrasound resolution in deep scattering medium. Unfortunately, the blood background in vivo seriously impedes the quality of imaging due to its comparable optical absorption with contrast agents, especially in conventional linear photoacoustic imaging modality. In this study, we demonstrated that two hybrids consisting of gold nanorods (Au NRs) and zinc tetra(4-pyridyl)porphyrin (ZnTPP) exhibited a synergetic effect in improving optical absorption, conversion efficiency from light to heat, and thermoelastic expansion, leading to a notable enhancement in both linear (four times greater) and nonlinear (more than six times) photoacoustic signals as compared with conventional Au NRs. Subsequently, we carefully investigated the interesting factors that may influence photoacoustic signal amplification, suggesting that the coating of ZnTPP on Au NRs could result in the reduction of gold interfacial thermal conductance with a solvent, so that the heat is more confined within the nanoparticle clusters for a significant enhancement of local temperature. Hence, both the linear and nonlinear photoacoustic signals are enhanced on account of better thermal confinement. The present work not only shows that ZnTPP coated Au NRs could serve as excellent photoacoustic nanoamplifiers, but also brings a perspective for photoacoustic image-guided therapy.

  17. Multispectral imaging for biometrics

    Science.gov (United States)

    Rowe, Robert K.; Corcoran, Stephen P.; Nixon, Kristin A.; Ostrom, Robert E.

    2005-03-01

    Automated identification systems based on fingerprint images are subject to two significant types of error: an incorrect decision about the identity of a person due to a poor quality fingerprint image and incorrectly accepting a fingerprint image generated from an artificial sample or altered finger. This paper discusses the use of multispectral sensing as a means to collect additional information about a finger that significantly augments the information collected using a conventional fingerprint imager based on total internal reflectance. In the context of this paper, "multispectral sensing" is used broadly to denote a collection of images taken under different polarization conditions and illumination configurations, as well as using multiple wavelengths. Background information is provided on conventional fingerprint imaging. A multispectral imager for fingerprint imaging is then described and a means to combine the two imaging systems into a single unit is discussed. Results from an early-stage prototype of such a system are shown.

  18. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    OpenAIRE

    Yao, Junjie; Xia, Jun; Maslov, Konstantin I.; Nasiriavanaki, Mohammadreza; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2012-01-01

    We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood–brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for ...

  19. Detection of Molecular Oxygen at Low Concentrations Using Quartz Enhanced Photoacoustic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Andreas Pohlkötter

    2010-09-01

    Full Text Available Molecular oxygen is detected at low concentrations using photoacoustic spectroscopy despite its unfavorable photoacoustic properties. The system consists of a seed laser diode, a tapered amplifier and a quartz tuning fork based spectrophone, thus employing quartz enhanced photoacoustic spectroscopy (QEPAS. With this system a detection limit of 13 ppm is reached with a compact and long term stable setup. Further improvement of the detection limit is possible by adding suitable gases to the sample gas that promote the radiationless de-excitation of the oxygen molecules.

  20. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography

    Directory of Open Access Journals (Sweden)

    Buj C.

    2015-09-01

    Full Text Available A very fast innovative holographic off-axis non-contact detection method for Photoacoustic Tomography (PAT is introduced. It overcomes the main problems of most state-of-the-art photoacoustic imaging approaches that are long acquisition times and the requirement of acoustic contact. In order to increase the acquisition speed significantly, the surface displacements of the object, caused by the photoacoustic pressure waves, are measured interferometrically in two dimensions. Phase alterations in the observed speckle field are used to identify changes in the object’s topography. A sampling rate of up to 80 MHz is feasible, which reduces the occurrence of motion artefacts.

  1. Photoacoustic and photothermal spectroscopies

    International Nuclear Information System (INIS)

    Sawada, Tsuguo; Kitamori, Takehiko; Nakamura, Masato

    1995-01-01

    Photoacoustic and photothermal spectroscopy methods can be effectively applied to the analysis of microparticles in condensed matter. A more violent photothermal conversion phenomenon of a particle, laser breakdown and accompanying plasma and acoustic emission, was applied to individual detection and analysis of ultrafine particles in ultrapure water. Laser-like nonlinear emission from the plasma was observed. (author)

  2. Multispectral Palmprint Recognition Using a Quaternion Matrix

    Directory of Open Access Journals (Sweden)

    Yafeng Li

    2012-04-01

    Full Text Available Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR illuminations were represented by a quaternion matrix, then principal component analysis (PCA and discrete wavelet transform (DWT were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.

  3. Photoacoustic spectroscopic differences between normal and malignant thyroid tissues

    Science.gov (United States)

    Li, Li; Xie, Wengming; Li, Hui

    2012-12-01

    The thyroid is one of the main endocrine glands of human body, which plays a crucial role in the body's metabolism. Thyroid cancer mortality ranks only second to ovarian cancer in endocrine cancer. Routine diagnostic methods of thyroid diseases in present clinic exist misdiagnosis and missed diagnosis to varying degrees. Those lead to miss the best period of cancer treatment--early. Photoacoustic spectroscopy technology is a new tool, which provides an effective and noninvasive way for biomedical materials research, being highly sensitive and without sample pretreatment. In this paper, we use photoacoustic spectroscopy technology (PAST) to detect the absorption spectrum between normal and malignant thyroid tissues. The result shows that the photoacoustic spectroscopy technology (PAST) could differentiate malignant thyroid tissue from normal thyroid tissue very well. This technique combined with routine diagnostic methods has the potential to increase the diagnostic accuracy in clinical thyroid cancer diagnosis.

  4. Feasibility evaluation of 3D photoacoustic imaging of blood vessel structure using multiple wavelengths with a handheld probe

    Science.gov (United States)

    Uchimoto, Yo; Namita, Takeshi; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2018-02-01

    Photoacoustic imaging is anticipated for use in portraying blood vessel structures (e.g. neovascularization in inflamed regions). To reduce invasiveness and enhance ease handling, we developed a handheld photoacoustic imaging system using multiple wavelengths. The usefulness of the proposed system was investigated in phantom experiments and in vivo measurements. A silicon tube was embedded into chicken breast meat to simulate the blood vessel. The tube was filled with ovine blood. Then laser light was guided to the phantom surface by an optical fiber bundle close to the linear ultrasound probe. Photoacoustic images were obtained at 750-950 nm wavelengths. Strong photoacoustic signals from the boundary between blood and silicon tube are observed in these images. The shape of photoacoustic spectrum at the boundary resembles that of the HbO2 absorption spectrum at 750-920 nm. In photoacoustic images, similarity between photoacoustic spectrum and HbO2 absorption spectrum was evaluated by calculating the normalized correlation coefficient. Results show high correlation in regions of strong photoacoustic signals in photoacoustic images. These analyses demonstrate the feasibility of portraying blood vessel structures under practical conditions. To evaluate the feasibility of three-dimensional vascular imaging, in vivo experiments were conducted using three wavelengths. A right hand and ultrasound probe were set in degassed water. By scanning a probe, cross-sectional ultrasound and photoacoustic images were obtained at each location. Then, all ultrasound or photoacoustic images were piled up respectively. Then three-dimensional images were constructed. Resultant images portrayed blood vessel-like structures three-dimensionally. Furthermore, to distinguish blood vessels from other tissues (e.g. skin), distinguishing images of them were constructed by comparing photoacoustic signal intensity among three wavelengths. The resultant image portrayed blood vessels as

  5. Multispectral imaging of wok fried vegetables

    DEFF Research Database (Denmark)

    Løje, Hanne; Dissing, Bjørn Skovlund; Clemmensen, Line Katrine Harder

    2011-01-01

    This paper shows how multispectral images can be used to assess color change over time in wok fried vegetables. We present results where feature selection was performed with sparse methods from the multispectral images to detect the color changes of wok fried carrots and celeriac stored at +5°C...

  6. Quantum cascade laser-based photoacoustic sulfuryl fluoride sensing

    Science.gov (United States)

    Minini, Kariza Mayra Silva; Bueno, Sâmylla Cristina Espécie; da Silva, Marcelo Gomes; Sthel, Marcelo Silva; Vargas, Helion; Angster, Judit; Miklós, András

    2017-02-01

    Although sulfuryl fluoride (SO2F2) is an efficient fumigant that does not react with the surface of indoor materials and does not reduce the stratospheric ozone shield, there are some concerns about its use. It is a toxic gas that attacks the central nervous system, and its global warming potential (GWP) value is 4780 for 100 years' time. Therefore, it is a clear necessity of implementing detection methods for tracing such a molecule. In this work a sensitive photoacoustic setup was built to detect SO2F2 at concentrations of parts per billion by volume (ppbv). The symmetric S-O stretching mode was excited by a continuous-wave quantum cascade laser with radiation wavenumber ranging from 1275.7 to 1269.3 cm-1. The photoacoustic signal was generated by modulating the laser wavenumber at the first longitudinal mode of the photoacoustic cell with amplitude depth of 5 × 10-3 cm-1. The detection of a minimum SO2F2 concentration of 20 ppbv was achieved.

  7. Novel applications of photoacoustic spectroscopy in life sciences

    Science.gov (United States)

    Stolik, S.

    2004-10-01

    The Photoacoustic Spectroscopy, based on the generation of acoustic waves following the absorption of the modulated light by an enclosed material, was discovered in 1880 by Alexander Graham Bell. There are a lot of remarkable achievements in this topic since those days. It has been intended to present a relatively new tool to the researchers in biological areas and, simultaneously, to propose new fields of investigation to those who have been attracted by physics. The application of Photoacoustic trace gas detection to the determination of ethylene content in mice exhalation is described as a biomarker of free radicals production. It has been demonstrated the feasibility of studying the lipid peroxidation in vivo by this technique. Specifically, the results of δ-aminolevulinic acid administration in mice are presented. This drug has been used to induce Protoporphyrin IX production and ultimately to apply the Photodynamic Therapy, a recent method in cancer treatment. A kinetic study of Protoporphyrin IX production in mice skin and blood after δ-aminolevulinic acid administration in different doses is also shown. This study was performed using Photoacoustic Spectroscopy in solids.

  8. In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus.

    Science.gov (United States)

    Favazza, Christopher P; Jassim, Omar; Cornelius, Lynn A; Wang, Lihong V

    2011-01-01

    In several human volunteers, photoacoustic microscopy (PAM) has been utilized for noninvasive cutaneous imaging of the skin microvasculature and a melanocytic nevus. Microvascular networks in both acral and nonacral skin were imaged, and multiple features within the skin have been identified, including the stratum corneum, epidermal-dermal junction, and subpapillary vascular plexus. Several vascular and structural differences between acral and nonacral skin were also observed in the photoacoustic images. In addition, a nevus was photoacoustically imaged, excised, and histologically analyzed. The photoacoustic images allowed for in vivo measurement of tumor thickness, depth, and microvasculature-values confirmed by histologic examination. The presented images demonstrate the potential of PAM to aid in the study and evaluation of cutaneous microcirculation and analysis of pigmented lesions. Through its ability to three-dimensionally image the structure and function of the microvasculature and pigmented lesions, PAM can have a clinical impact in diagnosis and assessment of systemic diseases that affect the microvasculature such as diabetes and cardiovascular disease, cutaneous malignancies such as melanoma, and potentially other skin disorders.

  9. Object Classification Using Airborne Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    PAN Suoyan

    2018-02-01

    Full Text Available Airborne multispectral LiDAR system,which obtains surface geometry and spectral data of objects,simultaneously,has become a fast effective,large-scale spatial data acquisition method.Multispectral LiDAR data are characteristics of completeness and consistency of spectrum and spatial geometric information.Support vector machine (SVM,a machine learning method,is capable of classifying objects based on small samples.Therefore,by means of SVM,this paper performs land cover classification using multispectral LiDAR data. First,all independent point cloud with different wavelengths are merged into a single point cloud,where each pixel contains the three-wavelength spectral information.Next,the merged point cloud is converted into range and intensity images.Finally,land-cover classification is performed by means of SVM.All experiments were conducted on the Optech Titan multispectral LiDAR data,containing three individual point cloud collected by 532 nm,1024 nm,and 1550 nm laser beams.Experimental results demonstrate that ①compared to traditional single-wavelength LiDAR data,multispectral LiDAR data provide a promising solution to land use and land cover applications;②SVM is a feasible method for land cover classification of multispectral LiDAR data.

  10. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency.

    Science.gov (United States)

    Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel

    2015-03-01

    In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.

  11. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay.

    Science.gov (United States)

    Chen, Qian; Liang, Chao; Sun, Xiaoqi; Chen, Jiawen; Yang, Zhijuan; Zhao, He; Feng, Liangzhu; Liu, Zhuang

    2017-05-23

    Abnormal H 2 O 2 levels are closely related to many diseases, including inflammation and cancers. Herein, we simultaneously load HRP and its substrate, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), into liposomal nanoparticles, obtaining a Lipo@HRP&ABTS optical nanoprobe for in vivo H 2 O 2 -responsive chromogenic assay with great specificity and sensitivity. In the presence of H 2 O 2 , colorless ABTS would be converted by HRP into the oxidized form with strong near-infrared (NIR) absorbance, enabling photoacoustic detection of H 2 O 2 down to submicromolar concentrations. Using Lipo@HRP&ABTS as an H 2 O 2 -responsive nanoprobe, we could accurately detect the inflammation processes induced by LPS or bacterial infection in which H 2 O 2 is generated. Meanwhile, upon systemic administration of this nanoprobe we realize in vivo photoacoustic imaging of small s.c. tumors (∼2 mm in size) as well as orthotopic brain gliomas, by detecting H 2 O 2 produced by tumor cells. Interestingly, local injection of Lipo@HRP&ABTS further enables differentiation of metastatic lymph nodes from those nonmetastatic ones, based on their difference in H 2 O 2 contents. Moreover, using the H 2 O 2 -dependent strong NIR absorbance of Lipo@HRP&ABTS, tumor-specific photothermal therapy is also achieved. This work thus develops a sensitive H 2 O 2 -responsive optical nanoprobe useful not only for in vivo detection of inflammation but also for tumor-specific theranostic applications.

  12. Computational multispectral video imaging [Invited].

    Science.gov (United States)

    Wang, Peng; Menon, Rajesh

    2018-01-01

    Multispectral imagers reveal information unperceivable to humans and conventional cameras. Here, we demonstrate a compact single-shot multispectral video-imaging camera by placing a micro-structured diffractive filter in close proximity to the image sensor. The diffractive filter converts spectral information to a spatial code on the sensor pixels. Following a calibration step, this code can be inverted via regularization-based linear algebra to compute the multispectral image. We experimentally demonstrated spectral resolution of 9.6 nm within the visible band (430-718 nm). We further show that the spatial resolution is enhanced by over 30% compared with the case without the diffractive filter. We also demonstrate Vis-IR imaging with the same sensor. Because no absorptive color filters are utilized, sensitivity is preserved as well. Finally, the diffractive filters can be easily manufactured using optical lithography and replication techniques.

  13. Photoacoustic imaging in scattering media by combining a correlation matrix filter with a time reversal operator.

    Science.gov (United States)

    Rui, Wei; Tao, Chao; Liu, Xiaojun

    2017-09-18

    Acoustic scattering medium is a fundamental challenge for photoacoustic imaging. In this study, we reveal the different coherent properties of the scattering photoacoustic waves and the direct photoacoustic waves in a matrix form. Direct waves show a particular coherence on the antidiagonals of the matrix, whereas scattering waves do not. Based on this property, a correlation matrix filter combining with a time reversal operator is proposed to preserve the direct waves and recover the image behind a scattering layer. Both numerical simulations and photoacoustic imaging experiments demonstrate that the proposed approach effectively increases the image contrast and decreases the background speckles in a scattering medium. This study might improve the quality of photoacoustic imaging in an acoustic scattering environment and extend its applications.

  14. An underwater ranging system based on photoacoustic effect occurring on target surface

    Science.gov (United States)

    Ni, Kai; Hu, Kai; Li, Xinghui; Wang, Lidai; Zhou, Qian; Wang, Xiaohao

    2016-11-01

    In this paper, an underwater ranging system based on photoacoustic effect occurring on target surface is proposed. In this proposal, laser pulse generated by blue-green laser is directly incident on target surface, where the photoacoustic effect occurs and a sound source is formed. And then the sound wave which is also called photoacoustic signal is received by the ultrasonic receiver after passing through water. According to the time delay between transmitting laser and receiving photoacoustic signal, and sound velocity in water, the distance between the target and the ultrasonic receiver can be calculated. Differing from underwater range finding by only laser, this approach can avoid backscattering of laser beam, so easier to implement. Experimental system according to this principle has been constructed to verify the feasibility of this technology. The experimental results showed that a ranging accuracy of 1 mm can be effectively achieved when the target is close to the ultrasonic receiver.

  15. In vivo photoacoustic monitoring of anti-obesity photothermal lipolysis

    Science.gov (United States)

    Lee, Donghyun; Lee, Jung Ho; Hahn, Sei Kwang; Kim, Chulhong

    2018-02-01

    Obesity with a body mass index is greater than 30 kg/m2 is one of the rapidly growing diseases in advanced societies and can lead to stroke, type 2 diabetes, and heart failure. Common methods of removing subcutaneous adipose tissues are liposuction and laser treatment. In this study, we used photoacoustic imaging to monitor the anti-obesity photothermal degradation process. To improve the photothermal lipid degradation efficiency without any invasive methods, we synthesized hyaluronic acid hollow hold nanosphere adipocyte targeting sequence peptide (HA-HAuNS-ATS) conjugates. The conjugate enhanced the skin penetration ability and biodegradability of the nanoparticles using hyaluronate and enhanced the targeting effect on adipose tissue with adipocyte targeting sequence peptide. Thus, the conjugate can be delivered to the adipose tissue by simply spreading the conjugate on the skin without any invasive method. Then, the photothermal lipolysis and delivery of the conjugate were photoacoustically monitored in vivo. These results demonstrate the potential for photoacoustic method to be applied for photothermal lipolysis monitoring.

  16. Laser Fluence Recognition Using Computationally Intelligent Pulsed Photoacoustics Within the Trace Gases Analysis

    Science.gov (United States)

    Lukić, M.; Ćojbašić, Ž.; Rabasović, M. D.; Markushev, D. D.; Todorović, D. M.

    2017-11-01

    In this paper, the possibilities of computational intelligence applications for trace gas monitoring are discussed. For this, pulsed infrared photoacoustics is used to investigate SF6-Ar mixtures in a multiphoton regime, assisted by artificial neural networks. Feedforward multilayer perceptron networks are applied in order to recognize both the spatial characteristics of the laser beam and the values of laser fluence Φ from the given photoacoustic signal and prevent changes. Neural networks are trained in an offline batch training regime to simultaneously estimate four parameters from theoretical or experimental photoacoustic signals: the laser beam spatial profile R(r), vibrational-to-translational relaxation time τ _{V-T} , distance from the laser beam to the absorption molecules in the photoacoustic cell r* and laser fluence Φ . The results presented in this paper show that neural networks can estimate an unknown laser beam spatial profile and the parameters of photoacoustic signals in real time and with high precision. Real-time operation, high accuracy and the possibility of application for higher intensities of radiation for a wide range of laser fluencies are factors that classify the computational intelligence approach as efficient and powerful for the in situ measurement of atmospheric pollutants.

  17. Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer.

    Science.gov (United States)

    Namura, Kyoko; Suzuki, Motofumi; Nakajima, Kaoru; Kimura, Kenji

    2013-04-08

    Efficient photoacoustic emission from Au nanoparticles on a porous SiO(2) layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO(2)/SiO(2)/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO(2) layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO(2) layer (0.93). The contribution of the porous SiO(2) layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature.

  18. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  19. Photoacoustical and pyroelectric dosimetry of X-ray radiation in diagnostic region

    International Nuclear Information System (INIS)

    Carvalho, A.A. de.

    1987-01-01

    Three new types of radiation dosimeters, designed to measure X rays in its diagnostic region are described: the pulsed photoacoustical radiation dosimeter, the pyroelectric radiation dosimeter and the pulsed pyroelectric radiation dosimeter. The photoacoustical radiation dosimeter with the scope of to compare its carachteristics with the carachteristics of the new developed dosimeters is also studied. A methodology for calibration of a photoacoustical dosimeter which doesn't require the calibration of its response in a known field of ionizing radiation is proposed. A theoretical model to explain the results produced by the pulsed pyroelectric radiation dosimeter is presented. The obtained results show that the developed dosimeters are of calorimetric type, being linear its response with the X ray energy fluence rate. (author) [pt

  20. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging.

    Science.gov (United States)

    Moon, Hyungwon; Kumar, Dinesh; Kim, Haemin; Sim, Changbeom; Chang, Jin-Ho; Kim, Jung-Mu; Kim, Hyuncheol; Lim, Dong-Kwon

    2015-03-24

    We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitro and in vivo systems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GO-AuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4-11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect.

  1. An integrated compact airborne multispectral imaging system using embedded computer

    Science.gov (United States)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  2. Multispectral histogram normalization contrast enhancement

    Science.gov (United States)

    Soha, J. M.; Schwartz, A. A.

    1979-01-01

    A multispectral histogram normalization or decorrelation enhancement which achieves effective color composites by removing interband correlation is described. The enhancement procedure employs either linear or nonlinear transformations to equalize principal component variances. An additional rotation to any set of orthogonal coordinates is thus possible, while full histogram utilization is maintained by avoiding the reintroduction of correlation. For the three-dimensional case, the enhancement procedure may be implemented with a lookup table. An application of the enhancement to Landsat multispectral scanning imagery is presented.

  3. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    Science.gov (United States)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  4. Photo-Acoustic Ultrasound Imaging to Distinguish Benign from Malignant Prostate Cancer

    Science.gov (United States)

    2016-09-01

    tissue phantoms and animal models of disease . 15. SUBJECT TERMS Photoacoustic, Ultrasound imaging, transurethral probe 16. SECURITY CLASSIFICATION...visible, ultrasound images are unable to discriminate between benign or malignant cancers. In photoacoustic imaging, laser energy is transmitted ...40 g/L concentration of sea plaque agarose into DI water heated to approximately 80°C. A 10 g/L concentration of silica powder was then added to

  5. An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells

    Directory of Open Access Journals (Sweden)

    Rafael Pérez Solano

    2012-03-01

    Full Text Available The distinctive spectral absorption characteristics of cancer cells make photoacoustic techniques useful for detection in vitro and in vivo. Here we report on our evaluation of the photoacoustic signal produced by a series of monolayers of different cell lines in vitro. Only the melanoma cell line HS936 produced a detectable photoacoustic signal in which amplitude was dependent on the number of cells. This finding appears to be related to the amount of melanin available in these cells. Other cell lines (i.e. HL60, SK-Mel-1, T47D, Hela, HT29 and PC12 exhibited values similar to a precursor of melanin (tyrosinase, but failed to produce sufficient melanin to generate a photoacoustic signal that could be distinguished from background noise. To better understand this phenomenon, we determined a formula for the time-domain photoacoustic wave equation for a monolayer of cells in a non-viscous fluid on the thermoelastic regime. The theoretical results showed that the amplitude and profile of the photoacoustic signal generated by a cell monolayer depended upon the number and distribution of the cells and the location of the point of detection. These findings help to provide a better understanding of the factors involved in the generation of a photoacoustic signal produced by different cells in vitro and in vivo.

  6. Toward in-vivo photoacoustic imaging of human ovarian tissue for cancer detection

    Science.gov (United States)

    Aguirre, Andres; Kumavor, Patrick; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2011-03-01

    Currently, most of the cancers in the ovary are detected when they have already metastasized to other parts of the body. As a result, ovarian cancer has the highest mortality of all gynecological cancers with a 5-year survival rate of 30% or less [1]. The reason is the lack of reliable symptoms as well as the lack of efficacious screening techniques [2,3]. Thus, there is an urgent need to improve the current diagnostic techniques. We have investigated the potential role of co-registered photoacoustic and ultrasound imaging in ovarian cancer detection. In an effort to bring this technique closer to clinical application, we have developed a co-registered ultrasound and photoacoustic transvaginal probe. A fiber coupling assembly has been developed to deliver the light from around the transducer for reflection geometry imaging. Co-registered ultrasound and photoacoustic images of swine ovaries through vagina wall muscle and human ovaries using the aforementioned probe, demonstrate the potential of photoacoustic imaging to non-invasively detect ovarian cancer in vivo.

  7. Quartz-Enhanced Photoacoustic Spectroscopy: A Review

    Science.gov (United States)

    Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo

    2014-01-01

    A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis. PMID:24686729

  8. Quartz-Enhanced Photoacoustic Spectroscopy: A Review

    Directory of Open Access Journals (Sweden)

    Pietro Patimisco

    2014-03-01

    Full Text Available A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis.

  9. Inverse transport theory of photoacoustics

    International Nuclear Information System (INIS)

    Bal, Guillaume; Jollivet, Alexandre; Jugnon, Vincent

    2010-01-01

    We consider the reconstruction of optical parameters in a domain of interest from photoacoustic data. Photoacoustic tomography (PAT) radiates high-frequency electromagnetic waves into the domain and measures acoustic signals emitted by the resulting thermal expansion. Acoustic signals are then used to construct the deposited thermal energy map. The latter depends on the constitutive optical parameters in a nontrivial manner. In this paper, we develop and use an inverse transport theory with internal measurements to extract information on the optical coefficients from knowledge of the deposited thermal energy map. We consider the multi-measurement setting in which many electromagnetic radiation patterns are used to probe the domain of interest. By developing an expansion of the measurement operator into singular components, we show that the spatial variations of the intrinsic attenuation and the scattering coefficients may be reconstructed. We also reconstruct coefficients describing anisotropic scattering of photons, such as the anisotropy coefficient g(x) in a Henyey–Greenstein phase function model. Finally, we derive stability estimates for the reconstructions

  10. In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent

    Science.gov (United States)

    2016-11-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0242 TITLE: In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent PRINCIPAL...TITLE AND SUBTITLE In vivo Photoacoustic Imaging of Prostate Cancer Using T argeted Contrast Agent 5a. CONTRACT NUMBER W81XWH-14-1-0242 5b. GRANT...diagnose prostate cancer based on the near-infrared optical absorption of either endogenous tissue constituents or exogenous contrast agents . Although

  11. Quantifying bone thickness, light transmission, and contrast interrelationships in transcranial photoacoustic imaging

    Science.gov (United States)

    Lediju Bell, Muyinatu A.; Ostrowski, Anastasia K.; Li, Ke; Kaanzides, Peter; Boctor, Emad

    2015-03-01

    We previously introduced photoacoustic imaging to detect blood vessels surrounded by bone and thereby eliminate the deadly risk of carotid artery injury during endonasal, transsphenoidal surgeries. Light would be transmitted through an optical fiber attached to the surgical drill, while a transcranial probe placed on the temporal region of the skull receives photoacoustic signals. This work quantifies changes in photoacoustic image contrast as the sphenoid bone is drilled. Frontal bone from a human adult cadaver skull was cut into seven 3 cm x 3 cm chips and sanded to thicknesses ranging 1-4 mm. For 700-940 nm wavelengths, the average optical transmission through these specimens increased from 19% to 44% as bone thickness decreased, with measurements agreeing with Monte Carlo simulations within 5%. These skull specimens were individually placed in the optical pathway of a 3.5 mm diameter, cylindrical, vessel-mimicking photoacoustic target, as the laser wavelength was varied between 700-940 nm. The mean optical insertion loss and photoacoustic image contrast loss due to the bone specimens were 56-80% and 46-79%, respectively, with the majority of change observed when the bone was <=2 mm thick. The decrease in contrast is directly proportional to insertion loss over this thickness range by factors of 0.8-1.1 when multiple wavelengths are considered. Results suggest that this proportional relationship may be used to determine the amount of bone that remains to be drilled when the thickness is 2 mm or less.

  12. Photoacoustic Imaging of Port-Wine Stains

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Mulder, M.J.; Mulder, Miranda J.; Glade, Conrad P.; Steenbergen, Wiendelt; van Leeuwen, Ton

    2008-01-01

    Background and Objective: To optimize laser therapy of port-wine stains (PWSs), information about the vasculature as well as lesion depth is valuable. In this study we investigated the use of photoacoustic imaging (PAI) to obtain this information. - Study Design/Materials and Methods: PAI uses

  13. Recording membrane potential changes through photoacoustic voltage sensitive dye

    Science.gov (United States)

    Zhang, Haichong K.; Kang, Jeeun; Yan, Ping; Abou, Diane S.; Le, Hanh N. D.; Thorek, Daniel L. J.; Kang, Jin U.; Gjedde, Albert; Rahmim, Arman; Wong, Dean F.; Loew, Leslie M.; Boctor, Emad M.

    2017-03-01

    Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. Based on this concept, we synthesized a novel near infrared photoacoustic VSD (PA-VSD) whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. With a 3-9 μM VSD concentration, we measured a PA signal increase in the range of 5.3 % to 18.1 %, and observed a corresponding signal reduction in fluorescence emission of 30.0 % to 48.7 %. A theoretical model successfully accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize the characteristics of improved photoacoustic probes. Together, our results demonstrate photoacoustic sensing as a potential new modality for sub-second recording and external imaging of electrophysiological and neurochemical events in the brain.

  14. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy.

    Science.gov (United States)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2012-08-15

    A method for noninvasively detecting hemoglobin oxygen saturation (SO2) and carboxyhemoglobin saturation (SCO) in subcutaneous microvasculature with multiwavelength photoacoustic microscopy is presented. Blood samples mixed with different concentrations of carboxyhemoglobin were used to test the feasibility and accuracy of photoacoustic microscopy compared with the blood-gas analyzer. Moreover, fixed-point detection of SO2 and SCO in mouse ear was obtained, and the changes from normoxia to carbon monoxide hypoxia were dynamically monitored in vivo. Experimental results demonstrate that multiwavelength photoacoustic microscopy can detect SO2 and SCO, which has future potential clinical applications.

  15. Superconducting microphone for photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Ribeiro, P.C.; Labrunie, M.; Weid, J.P. von der; Symko, O.G.

    1982-07-01

    A superconducting microphone has been developed for photoacoustic spectroscopy at low temperatures. The microphone consists of a thin mylar membrane coated with a film of lead whose motion is detected by a SQUID magnetometer. For the simple set-up presented here, the limiting pressure sensitivity is 7.5x10 -14 atmospheres/√Hz. (Author) [pt

  16. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  17. Multispectral analytical image fusion

    International Nuclear Information System (INIS)

    Stubbings, T.C.

    2000-04-01

    With new and advanced analytical imaging methods emerging, the limits of physical analysis capabilities and furthermore of data acquisition quantities are constantly pushed, claiming high demands to the field of scientific data processing and visualisation. Physical analysis methods like Secondary Ion Mass Spectrometry (SIMS) or Auger Electron Spectroscopy (AES) and others are capable of delivering high-resolution multispectral two-dimensional and three-dimensional image data; usually this multispectral data is available in form of n separate image files with each showing one element or other singular aspect of the sample. There is high need for digital image processing methods enabling the analytical scientist, confronted with such amounts of data routinely, to get rapid insight into the composition of the sample examined, to filter the relevant data and to integrate the information of numerous separate multispectral images to get the complete picture. Sophisticated image processing methods like classification and fusion provide possible solution approaches to this challenge. Classification is a treatment by multivariate statistical means in order to extract analytical information. Image fusion on the other hand denotes a process where images obtained from various sensors or at different moments of time are combined together to provide a more complete picture of a scene or object under investigation. Both techniques are important for the task of information extraction and integration and often one technique depends on the other. Therefore overall aim of this thesis is to evaluate the possibilities of both techniques regarding the task of analytical image processing and to find solutions for the integration and condensation of multispectral analytical image data in order to facilitate the interpretation of the enormous amounts of data routinely acquired by modern physical analysis instruments. (author)

  18. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    Science.gov (United States)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin I.; Nasiriavanaki, Mohammadreza; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2012-01-01

    We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively decoupled by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area had a clear vascular pattern and spread wider than the somatosensory region. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism. PMID:22940116

  19. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    Science.gov (United States)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  20. Online Multi-Spectral Meat Inspection

    DEFF Research Database (Denmark)

    Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo

    2013-01-01

    We perform an explorative study on multi-spectral image data from a prototype device developed for fast online quality inspection of meat products. Because the camera setup is built for speed, we sacrifice exact pixel correspondences between the different bands of the multi-spectral images. Our...... work is threefold as we 1) investigate the color distributions and construct a model to describe pork loins, 2) classify the different components in pork loins (meat, fat, membrane), and 3) detect foreign objects on the surface of pork loins. Our investigation shows that the color distributions can...

  1. Effects of optical attenuation, heat diffusion, and acoustic coherence in photoacoustic signals produced by nanoparticles

    Science.gov (United States)

    Alba-Rosales, J. E.; Ramos-Ortiz, G.; Escamilla-Herrera, L. F.; Reyes-Ramírez, B.; Polo-Parada, L.; Gutiérrez-Juárez, G.

    2018-04-01

    The behavior of the photoacoustic signal produced by nanoparticles as a function of their concentration was studied in detail. As the concentration of nanoparticles is increased in a sample, the peak-to-peak photoacoustic amplitude increases linearly up to a certain value, after which an asymptotic saturated behavior is observed. To elucidate the mechanisms responsible for these observations, we evaluate the effects of nanoparticles concentration, the optical attenuation, and the effects of heat propagation from nano-sources to their surroundings. We found that the saturation effect of the photoacoustic signal as a function of the concentration of nanoparticles is explained by a combination of two different mechanisms. As has been suggested previously, but not modeled correctly, the most important mechanism is attributed to optical attenuation. The second mechanism is due to an interference destructive process attributed to the superimposition of the photoacoustic amplitudes generated for each nanoparticle, and this explanation is reinforced through our experimental and simulations results; based on this, it is found that the linear behavior of the photoacoustic amplitude could be restricted to optical densities ≤0.5.

  2. An algorithm for total variation regularized photoacoustic imaging

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Görner, Torsten; Kunis, Stefan

    2014-01-01

    Recovery of image data from photoacoustic measurements asks for the inversion of the spherical mean value operator. In contrast to direct inversion methods for specific geometries, we consider a semismooth Newton scheme to solve a total variation regularized least squares problem. During the iter......Recovery of image data from photoacoustic measurements asks for the inversion of the spherical mean value operator. In contrast to direct inversion methods for specific geometries, we consider a semismooth Newton scheme to solve a total variation regularized least squares problem. During...... the iteration, each matrix vector multiplication is realized in an efficient way using a recently proposed spectral discretization of the spherical mean value operator. All theoretical results are illustrated by numerical experiments....

  3. Color enhancement in multispectral image of human skin

    Science.gov (United States)

    Mitsui, Masanori; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2003-07-01

    Multispectral imaging is receiving attention in medical color imaging, as high-fidelity color information can be acquired by the multispectral image capturing. On the other hand, as color enhancement in medical color image is effective for distinguishing lesion from normal part, we apply a new technique for color enhancement using multispectral image to enhance the features contained in a certain spectral band, without changing the average color distribution of original image. In this method, to keep the average color distribution, KL transform is applied to spectral data, and only high-order KL coefficients are amplified in the enhancement. Multispectral images of human skin of bruised arm are captured by 16-band multispectral camera, and the proposed color enhancement is applied. The resultant images are compared with the color images reproduced assuming CIE D65 illuminant (obtained by natural color reproduction technique). As a result, the proposed technique successfully visualizes unclear bruised lesions, which are almost invisible in natural color images. The proposed technique will provide support tool for the diagnosis in dermatology, visual examination in internal medicine, nursing care for preventing bedsore, and so on.

  4. Pattern of Colon Cancer Lymph Node Metastases in Patients Undergoing Central Mesocolic Lymph Node Excision

    DEFF Research Database (Denmark)

    Bertelsen, Claus A; Kirkegaard-Klitbo, Anders; Nielsen, Mingyuan

    2016-01-01

    BACKGROUND: Extended mesocolic lymph node dissection in colon cancer surgery seems to improve oncological outcome. A possible reason might be related to metastases in the central mesocolic lymph nodes. OBJECTIVE: The purpose of this study was to describe the pattern of mesocolic lymph node...... metastases, particularly in central lymph nodes, and the risk of skip, aberrant, and gastrocolic ligament metastases as the argument for performing extended lymph node dissection. DATA SOURCES: EMBASE and PubMed were searched using the terms colon or colorectal with sentinel node, lymph node mapping, or skip...... node; lymph node resection colon; and complete or total and mesocolic excision. STUDY SELECTION: Studies describing the risk of metastases in central, skip, aberrant, and gastrocolic ligament lymph node metastases from colon adenocarcinomas in 10 or more patients were included. No languages were...

  5. Quantitative ultrasound and photoacoustic imaging for the assessment of vascular parameters

    CERN Document Server

    Meiburger, Kristen M

    2017-01-01

    This book describes the development of quantitative techniques for ultrasound and photoacoustic imaging in the assessment of architectural and vascular parameters. It presents morphological vascular research based on the development of quantitative imaging techniques for the use of clinical B-mode ultrasound images, and preclinical architectural vascular investigations on quantitative imaging techniques for ultrasounds and photoacoustics. The book is divided into two main parts, the first of which focuses on the development and validation of quantitative techniques for the assessment of vascular morphological parameters that can be extracted from B-mode ultrasound longitudinal images of the common carotid artery. In turn, the second part highlights quantitative imaging techniques for assessing the architectural parameters of vasculature that can be extracted from 3D volumes, using both contrast-enhanced ultrasound (CEUS) imaging and photoacoustic imaging without the addition of any contrast agent. Sharing and...

  6. Photoacoustic spectroscopy of CO2 laser in the detection of gaseous molecules

    International Nuclear Information System (INIS)

    Lima, G R; Sthel, M S; Da Silva, M G; Schramm, D U S; De Castro, M P P; Vargas, H

    2011-01-01

    The detection of trace gases is very important for a variety of applications, including the monitoring of atmospheric pollutants, industrial process control, measuring air quality in workplaces, research into fruits physiological processes and medical diagnosis of diseases through the analysis of exhaled gases. The implementation of these and many other applications requiring gas sensors able to meet high sensitivity and selectivity. In this work, a photoacoustic laser spectrometer with CO 2 emission in the infrared range and a resonant photoacoustic cell was used. We obtain the resonance frequency of 2.4 kHz to photoacoustic cell, was estimated detection limit of the spectrometer for molecules of ethylene (C 2 H 4 ), 16 ppbV and ammonia (NH 3 ) 42 ppbV.

  7. Photoacoustic spectroscopy of CO2 laser in the detection of gaseous molecules

    Science.gov (United States)

    Lima, G. R.; Sthel, M. S.; da Silva, M. G.; Schramm, D. U. S.; de Castro, M. P. P.; Vargas, H.

    2011-01-01

    The detection of trace gases is very important for a variety of applications, including the monitoring of atmospheric pollutants, industrial process control, measuring air quality in workplaces, research into fruits physiological processes and medical diagnosis of diseases through the analysis of exhaled gases. The implementation of these and many other applications requiring gas sensors able to meet high sensitivity and selectivity. In this work, a photoacoustic laser spectrometer with CO2 emission in the infrared range and a resonant photoacoustic cell was used. We obtain the resonance frequency of 2.4 kHz to photoacoustic cell, was estimated detection limit of the spectrometer for molecules of ethylene (C2H4), 16 ppbV and ammonia (NH3) 42 ppbV.

  8. Photoacoustic imaging of port-wine stains

    NARCIS (Netherlands)

    Kolkman, Roy G. M.; Mulder, Miranda J.; Glade, Conrad P.; Steenbergen, Wiendelt; van Leeuwen, Ton G.

    2008-01-01

    BACKGROUND AND OBJECTIVE: To optimize laser therapy of port-wine stains (PWSs), information about the vasculature as well as lesion depth is valuable. In this study we investigated the use of photoacoustic imaging (PAI) to obtain this information. STUDY DESIGN/MATERIALS AND METHODS: PAI uses pulsed

  9. Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging

    Science.gov (United States)

    Arnal, Bastien; Yoon, Soon Joon; Li, Junwei; Gao, Xiaohu; O'Donnell, Matthew

    2018-05-01

    Photoacoustic imaging is a highly promising tool to visualize molecular events with deep tissue penetration. Like most other modalities, however, image contrast under in vivo conditions is far from optimal due to background signals from tissue. Using iron oxide-gold core-shell nanoparticles, we previously demonstrated that magnetomotive photoacoustic (mmPA) imaging can dramatically reduce the influence of background signals and produce high-contrast molecular images. Here we report two significant advances toward clinical translation of this technology. First, we introduce a new class of compact, uniform, magneto-optically coupled core-shell nanoparticle, prepared through localized copolymerization of polypyrrole (PPy) on an iron oxide nanoparticle surface. The resulting iron oxide-PPy nanoparticles solve the photo-instability and small-scale synthesis problems previously encountered by the gold coating approach, and extend the large optical absorption coefficient of the particles beyond 1000 nm in wavelength. In parallel, we have developed a new generation of mmPA imaging featuring cyclic magnetic motion and ultrasound speckle tracking, with an image capture frame rate several hundred times faster than the photoacoustic speckle tracking method demonstrated previously. These advances enable robust artifact elimination caused by physiologic motion and first application of the mmPA technology in vivo for sensitive tumor imaging.

  10. A strategy to measure electrophysiological changes with photoacoustic imaging (Conference Presentation)

    Science.gov (United States)

    Sepela, Rebecka J.; Sherlock, Benjamin E.; Tian, Lin; Marcu, Laura; Sack, Jon

    2017-03-01

    Photoacoustic imaging is an emerging technology capable of both functional and structural biological imaging. Absorption and scattering in tissue limit the penetration depth of conventional microscopy techniques to live cell imaging. This technology could permit photoacoustic imaging of electrophysiological dynamics in deep tissue, such as the brain. Further optimization of this technology could lead to concurrent imaging of neural activity and hemodynamic responses, a crucial step towards understanding neurovascular coupling in the brain.

  11. Photoacoustic Multicomponent Analyzer for Atmospheric Compounds, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a compact, rugged field-deployable laser photoacoustic spectrometric (LPAS) sensor for continuous, real-time measurements of multiple chemical...

  12. Dual-mode photoacoustic and ultrasound system for real-time in-vivo ovarian cancer imaging

    Science.gov (United States)

    Mostafa, Atahar; Nandy, Sreyankar; Amidi, Eghbal; Zhu, Quing

    2018-02-01

    More than 80% of the ovarian cancers are diagnosed at late stages and the survival rate is less than 50%. Currently, there is no effective screening technique available and transvaginal US can only tell if the ovaries are enlarged or not. We have developed a new real-time co-registered US and photoacoustic system for in vivo imaging and characterization of ovaries. US is used to localize ovaries and photoacoustic imaging provides functional information about ovarian tissue angiogenesis and oxygenation saturation. The system consists of a tunable laser and a commercial US system from Alpinion Inc. The Alpinion system is cable of providing channel data for both US pulse-echo and photoacoustic imaging and can be programmed as a computer terminal for display US and photoacoustic images side by side or in coregistered mode. A transvaginal ultrasound probe of 6-MHz center frequency and bandwidth of 3-10 MHz is coupled with four optical fibers surrounded the US probe to deliver the light to tissue. The light from optical fibers is homogenized to ensure the power delivered to the tissue surface is below the FDA required limit. Physicians can easily navigate the probe and use US to look for ovaries and then turn on photoacoustic mode to provide real-time tumor vasculature and So2 saturation maps. With the optimized system, we have successfully imaged first group of 7 patients of malignant, abnormal and benign ovaries. The results have shown that both photoacoustic signal strength and spatial distribution are different between malignant and abnormal and benign ovaries.

  13. Multispectral colormapping using penalized least square regression

    DEFF Research Database (Denmark)

    Dissing, Bjørn Skovlund; Carstensen, Jens Michael; Larsen, Rasmus

    2010-01-01

    The authors propose a novel method to map a multispectral image into the device independent color space CIE-XYZ. This method provides a way to visualize multispectral images by predicting colorvalues from spectral values while maintaining interpretability and is tested on a light emitting diode...... that the interpretability improves significantly but comes at the cost of slightly worse predictability....

  14. Photoacoustic imaging of breast tumor vascularization: a comparison with MRI and histopathology

    Science.gov (United States)

    Heijblom, Michelle; Piras, Daniele; van den Engh, Frank M.; Klaase, Joost M.; Brinkhuis, Mariël.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-06-01

    Breast cancer is the most common form of cancer and the leading cause of cancer death among females. Early diagnosis improves the survival chances for the disease and that is why there is an ongoing search for improved methods for visualizing breast cancer. One of the hallmarks of breast cancer is the increase in tumor vascularization that is associated with angiogenesis: a crucial factor for survival of malignancies. Photoacoustic imaging can visualize the malignancyassociated increased hemoglobin concentration with optical contrast and ultrasound resolution, without the use of ionizing radiation or contrast agents and is therefore theoretically an ideal method for breast imaging. Previous clinical studies using the Twente Photoacoustic Mammoscope (PAM), which works in forward mode using a single wavelength (1064 nm), showed that malignancies can indeed be identified in the photoacoustic imaging volume as high contrast areas. However, the specific appearance of the malignancies led to questions about the contrast mechanism in relation to tumor vascularization. In this study, the photoacoustic lesion appearance obtained with an updated version of PAM is compared with the lesion appearance on Magnetic Resonance Imaging (MRI), both in general (19 patients) and on an individual basis (7 patients). Further, in 3 patients an extended histopathology protocol is being performed in which malignancies are stained for vascularity using an endothelial antibody: CD31. The correspondence between PAM and MRI and between PAM and histopathology makes it likely that the high photoacoustic contrast at 1064 nm is indeed largely the consequence of the increased tumor vascularization.

  15. Photoacoustic detection of CO2 based on LABVIEW at 10.303 μm.

    Science.gov (United States)

    Zhao, Junjuan; Zhao, Zhan; Du, Lidong; Geng, Daoqu; Wu, Shaohua

    2011-04-01

    A detailed study on a photoacoustic carbon dioxide detection system, through sound card based on virtual instrument, is presented in this paper. In this system, the CO(2) concentration was measured with the non-resonant photoacoustic cell technique through measuring the photoacoustic signal caused by the CO(2). In order to obtain small photoacoustic signals buried in noise, a measurement software was designed with LABVIEW. It has functions of Lock-in Amplifier, digital filter, and signal generator; can also be used to achieve spectrum analysis and signal recovery; has been provided with powerful function for data processing and communication with other measuring instrument. The test results show that the entire system has an outstanding measuring performance with the sensitivity of 10 μv between 10-44 KHz. The non-resonance test of the trace gas analyte CO(2) conducted at 100 Hz demonstrated large signals (15.89 mV) for CO(2) concentrations at 600 ppm and high signal-to-noise values (∼85:1). © 2011 American Institute of Physics

  16. Compensation of shear waves in photoacoustic tomography with layered acoustic media.

    Science.gov (United States)

    Schoonover, Robert W; Anastasio, Mark A

    2011-10-01

    An image reconstruction formula is presented for photoacoustic computed tomography that accounts for conversion between longitudinal and shear waves in a planar-layered acoustic medium. We assume the optical absorber that produces the photoacoustic wave field is embedded in a single fluid layer and any elastic solid layers present are separated by one or more fluid layers. The measurement aperture is assumed to be planar. Computer simulation studies are conducted to demonstrate and investigate the proposed reconstruction formula.

  17. Adaptive photoacoustic imaging using the Mallart-Fink focusing factor

    Science.gov (United States)

    Li, Meng-Lin

    2008-02-01

    Focusing errors caused by sound velocity heterogeneities widen the mainlobe and elevate the sidelobes, thus degrading both spatial and contrast resolutions in photoacoustic imaging. We propose an adaptive array-based photoacoustic imaging technique that uses the Mallart-Fink (MF) focusing factor weighting to reduce the effect of such focusing errors. The definition of the MF focusing factor indicates that the MF focusing factor at the main lobe of the point-spread function is high (close to 1, without speckle noise being present, which is the case in photoacoustic imaging), whereas it is low at the sidelobes. Based on this property, the elevated sidelobes caused by sound velocity heterogeneities in the tissue can be suppressed after being multiplied by the corresponding map of the MF focusing factor on each imaging point; thus the focusing quality can be improved. This technique makes no assumption of sources of focusing errors and directly suppresses the unwanted sidelobe contributions. Numerical experiments with near field phase screen and displaced phase screen models were performed here to verify the proposed adaptive weighting technique. The effect of the signal-to-noise ratio on the MF focusing factor is also discussed.

  18. Multispectral Image Feature Points

    Directory of Open Access Journals (Sweden)

    Cristhian Aguilera

    2012-09-01

    Full Text Available This paper presents a novel feature point descriptor for the multispectral image case: Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art.

  19. Optimal wavelength band clustering for multispectral iris recognition.

    Science.gov (United States)

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  20. Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection

    Directory of Open Access Journals (Sweden)

    Gaetano Scamarcio

    2006-10-01

    Full Text Available Various applications, such as pollution monitoring, toxic-gas detection, noninvasive medical diagnostics and industrial process control, require sensitive and selectivedetection of gas traces with concentrations in the parts in 109 (ppb and sub-ppb range.The recent development of quantum-cascade lasers (QCLs has given a new aspect toinfrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLsare attractive spectroscopic sources because of their excellent properties in terms of narrowlinewidth, average power and room temperature operation. In combination with these lasersources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity,compact sensor platform, fast time-response and user friendly operation. This paper reportsrecent developments on quantum cascade laser-based photoacoustic spectroscopy for tracegas detection. In particular, different applications of a photoacoustic trace gas sensoremploying a longitudinal resonant cell with a detection limit on the order of hundred ppb ofozone and ammonia are discussed. We also report two QC laser-based photoacousticsensors for the detection of nitric oxide, for environmental pollution monitoring andmedical diagnostics, and hexamethyldisilazane, for applications in semiconductormanufacturing process.

  1. THEORY OF SIGNAL GENERATION IN A PHOTOACOUSTIC CELL

    OpenAIRE

    Bein , B.; Pelzl , J.

    1983-01-01

    Based on the fundamental physical equations governing the dynamical behaviour of a gas, the pressure signal is derived for a gas-filled photoacoustic cell in contact with a radiation-heated solid sample.

  2. Design and fabrication of multispectral optics using expanded glass map

    Science.gov (United States)

    Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George

    2015-06-01

    As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.

  3. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    Science.gov (United States)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  4. Lossless compression of multispectral images using spectral information

    Science.gov (United States)

    Ma, Long; Shi, Zelin; Tang, Xusheng

    2009-10-01

    Multispectral images are available for different purposes due to developments in spectral imaging systems. The sizes of multispectral images are enormous. Thus transmission and storage of these volumes of data require huge time and memory resources. That is why compression algorithms must be developed. A salient property of multispectral images is that strong spectral correlation exists throughout almost all bands. This fact is successfully used to predict each band based on the previous bands. We propose to use spectral linear prediction and entropy coding with context modeling for encoding multispectral images. Linear prediction predicts the value for the next sample and computes the difference between predicted value and the original value. This difference is usually small, so it can be encoded with less its than the original value. The technique implies prediction of each image band by involving number of bands along the image spectra. Each pixel is predicted using information provided by pixels in the previous bands in the same spatial position. As done in the JPEG-LS, the proposed coder also represents the mapped residuals by using an adaptive Golomb-Rice code with context modeling. This residual coding is context adaptive, where the context used for the current sample is identified by a context quantization function of the three gradients. Then, context-dependent Golomb-Rice code and bias parameters are estimated sample by sample. The proposed scheme was compared with three algorithms applied to the lossless compression of multispectral images, namely JPEG-LS, Rice coding, and JPEG2000. Simulation tests performed on AVIRIS images have demonstrated that the proposed compression scheme is suitable for multispectral images.

  5. Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Hondebrink, Erwin; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2004-01-01

    A photoacoustic double-ring sensor, featuring a narrow angular aperture, is developed for laser-induced photoacoustic imaging of blood vessels. An integrated optical fiber enables reflection-mode detection of ultrasonic waves. By using the cross-correlation between the signals detected by the two

  6. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  7. Dry coupling for whole-body small-animal photoacoustic computed tomography

    Science.gov (United States)

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-04-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using a whole-body small-animal ring-shaped photoacoustic computed tomography system. Dry coupling was found to provide image quality comparable to that of conventional water coupling.

  8. Improved photoacoustic dosimetry for retinal laser surgery

    Science.gov (United States)

    Dufour, Suzie; Brown, Robert B.; Gallant, Pascal; Mermut, Ozzy

    2018-02-01

    Lasers are employed for numerous medical interventions by exploiting ablative, disruptive or thermal effects. In ocular procedures, lasers have been used for decades to treat diseases such as diabetic retinopathy, macular edema and aged related macular degeneration via photocoagulation of retinal tissues. Although laser photocoagulation is well established in today's practice, efforts to improve clinical outcomes by reducing the collateral damage from thermal diffusion is leading to novel treatments using shorter (μs) laser pulses (e.g. selective retinal therapy) which result in physical rather than thermal damage. However, for these new techniques to be widely utilized, a method is required to ensure safe but sufficient dosage has been applied, since no visible effects can be seen by ophthalmoscopy directly post treatment. Photoacoustic feedback presents an attractive solution, as the signal is dependent directly on absorbed dosage. Here, we present a method that takes advantage of temporal pulse formatting technology to minimize variation in absorbed dose in ophthalmic laser treatment and provide intelligent dosimetry feedback based on photoacoustic (PA) response. This method tailors the pulse to match the frequency response of the sample and/or detection chain. Depending on the system, this may include the absorbing particle size, the laser beam diameter, the laser pulse duration, tissue acoustic properties and the acoustic detector frequency response. A significant improvement (<7x) of photoacoustic signal-to-noise ratio over equivalent traditional pulse formats have been achieved, while spectral analysis of the detected signal provides indications of cavitation events and other sample properties.

  9. Photoacoustic spectroscopy, FTIR spectra and thermal diffusivity investigation of emeraldine pellet

    International Nuclear Information System (INIS)

    Phing, T.E.; Fanny, C.Y.J.; Wan Mahmood Mat Yunus

    2001-01-01

    Photoacoustic spectra for both emeraldine base and emeraldine salt in bulk form were measured in the wavelength range of 350 nm to 700 nm. The Fourier transform Infrared spectroscopy (FTIR) have also been studied to determine the structure changes due to the protonation process. For the thermal diffusivity measurement, the open photoacoustic cell (OPC) technique has been used. It was found that the emeraldine salt exhibit higher thermal diffusivity compare to emeraldine base and this is similar to the higher conductivity characteristics of emeraldine salt. (Author)

  10. Vascular elastic photoacoustic tomography in humans

    Science.gov (United States)

    Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.

    2016-03-01

    Quantification of vascular elasticity can help detect thrombosis and prevent life-threatening conditions such as acute myocardial infarction or stroke. Here, we propose vascular elastic photoacoustic tomography (VE-PAT) to measure vascular elasticity in humans. VE-PAT was developed by incorporating a linear-array-based photoacoustic computed tomography system with a customized compression stage. By measuring the deformation of blood vessels under uniaxial loading, VE-PAT was able to quantify the vascular compliance. We first demonstrated the feasibility of VE-PAT in blood vessel phantoms. In large vessel phantoms, VE-PAT detected a decrease in vascular compliance due to simulated thrombosis, which was validated by a standard compression test. In small blood vessel phantoms embedded 3 mm deep in gelatin, VE-PAT detected elasticity changes at depths that are difficult to image using other elasticity imaging techniques. We then applied VE-PAT to assess vascular compliance in a human subject and detected a decrease in vascular compliance when an occlusion occurred downstream from the measurement point, demonstrating the potential of VE-PAT in clinical applications such as detection of deep venous thrombosis.

  11. Biomedical photoacoustics: fundamentals, instrumentation and perspectives on nanomedicine.

    Science.gov (United States)

    Zou, Chunpeng; Wu, Beibei; Dong, Yanyan; Song, Zhangwei; Zhao, Yaping; Ni, Xianwei; Yang, Yan; Liu, Zhe

    Photoacoustic imaging (PAI) is an integrated biomedical imaging modality which combines the advantages of acoustic deep penetration and optical high sensitivity. It can provide functional and structural images with satisfactory resolution and contrast which could provide abundant pathological information for disease-oriented diagnosis. Therefore, it has found vast applications so far and become a powerful tool of precision nanomedicine. However, the investigation of PAI-based imaging nanomaterials is still in its infancy. This perspective article aims to summarize the developments in photoacoustic technologies and instrumentations in the past years, and more importantly, present a bright outlook for advanced PAI-based imaging nanomaterials as well as their emerging biomedical applications in nanomedicine. Current challenges and bottleneck issues have also been discussed and elucidated in this article to bring them to the attention of the readership.

  12. Pulsed laser photoacoustic spectrometer for study of solid materials

    International Nuclear Information System (INIS)

    Patel, N.D.; Kartha, V.B.

    1991-01-01

    The technique of photoacoustic spectroscopy has wide applications bacause it is extremely sensitive, and can be used to obtain spectra in wide spectral range for solids, liquids, gases, solutions, crystals etc. which may be usually difficult by conventional methods. For studying a variety of materials, a pulsed laser photoacoustic spectrometer has been set up in the laboratory. The report discusses the design and performance of the instrument. Some of the spectra of materials like Nd 2 O 9 powder, Nd-YAG crystal, CoCl 2 6H 2 O etc. are shown. A detailed discussion on assignment of the spectra of Nd-YAG is also presented. (author). 4 refs., 5 figs., 1 tab

  13. Reproducible high-resolution multispectral image acquisition in dermatology

    Science.gov (United States)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  14. Multispectral Imaging for Determination of Astaxanthin Concentration in Salmonids

    DEFF Research Database (Denmark)

    Dissing, Bjørn Skovlund; Nielsen, Michael Engelbrecht; Ersbøll, Bjarne Kjær

    2011-01-01

    Multispectral imaging has been evaluated for characterization of the concentration of a specific cartenoid pigment; astaxanthin. 59 fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using a rapid multispectral imaging device for quantitative analysis. The multispectral imaging...... device captures reflection properties in 19 distinct wavelength bands, prior to determination of the true concentration of astaxanthin. The samples ranged from 0.20 to 4.34 mu g per g fish. A PLSR model was calibrated to predict astaxanthin concentration from novel images, and showed good results...... concentration in rainbow trout fillets....

  15. Accuracy of a novel photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot

    Science.gov (United States)

    Gandhi, Neeraj; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2017-03-01

    Minimally invasive surgery carries the deadly risk of rupturing major blood vessels, such as the internal carotid arteries hidden by bone in endonasal transsphenoidal surgery. We propose a novel approach to surgical guidance that relies on photoacoustic-based vessel separation measurements to assess the extent of safety zones during these type of surgical procedures. This approach can be implemented with or without a robot or navigation system. To determine the accuracy of this approach, a custom phantom was designed and manufactured for modular placement of two 3.18-mm diameter vessel-mimicking targets separated by 10-20 mm. Photoacoustic images were acquired as the optical fiber was swept across the vessels in the absence and presence of teleoperation with a research da Vinci Surgical System. When the da Vinci was used, vessel positions were recorded based on the fiber position (calculated from the robot kinematics) that corresponded to an observed photoacoustic signal. In all cases, compounded photoacoustic data from a single sweep displayed the four vessel boundaries in one image. Amplitude- and coherence-based photoacoustic images were used to estimate vessel separations, resulting in 0.52-0.56 mm mean absolute errors, 0.66-0.71 mm root mean square errors, and 65-68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Results indicate that with further development, photoacoustic image-based measurements of anatomical landmarks could be a viable method for real-time path planning in multiple interventional photoacoustic applications.

  16. Compact multispectral photodiode arrays using micropatterned dichroic filters

    Science.gov (United States)

    Chandler, Eric V.; Fish, David E.

    2014-05-01

    The next generation of multispectral instruments requires significant improvements in both spectral band customization and portability to support the widespread deployment of application-specific optical sensors. The benefits of spectroscopy are well established for numerous applications including biomedical instrumentation, industrial sorting and sensing, chemical detection, and environmental monitoring. In this paper, spectroscopic (and by extension hyperspectral) and multispectral measurements are considered. The technology, tradeoffs, and application fits of each are evaluated. In the majority of applications, monitoring 4-8 targeted spectral bands of optimized wavelength and bandwidth provides the necessary spectral contrast and correlation. An innovative approach integrates precision spectral filters at the photodetector level to enable smaller sensors, simplify optical designs, and reduce device integration costs. This method supports user-defined spectral bands to create application-specific sensors in a small footprint with scalable cost efficiencies. A range of design configurations, filter options and combinations are presented together with typical applications ranging from basic multi-band detection to stringent multi-channel fluorescence measurement. An example implementation packages 8 narrowband silicon photodiodes into a 9x9mm ceramic LCC (leadless chip carrier) footprint. This package is designed for multispectral applications ranging from portable color monitors to purpose- built OEM industrial and scientific instruments. Use of an eight-channel multispectral photodiode array typically eliminates 10-20 components from a device bill-of-materials (BOM), streamlining the optical path and shrinking the footprint by 50% or more. A stepwise design approach for multispectral sensors is discussed - including spectral band definition, optical design tradeoffs and constraints, and device integration from prototype through scalable volume production

  17. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le

    2010-01-01

    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  18. Semiconductor laser multi-spectral sensing and imaging.

    Science.gov (United States)

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  19. Photoacoustic and spectroscopic characterization of the ablation process in orthogonal double-pulse configuration

    International Nuclear Information System (INIS)

    Sobral, H; Sanchez-Ake, C; Sangines, R; Alvarez-Zauco, E; Jimenez-Duran, K

    2011-01-01

    A photoacoustic technique was used as an alternative method to monitor the crater volume and its role in the emission line intensification in double-pulse pre-ablation configuration. The crater volume was measured using confocal microscopy and correlated with the changes in the photoacoustic signal. Laser emission spectroscopy was used to characterize the emission enhancement as a function of the delay between lasers and the first pulse energy. Optimum delay was found to be in the microsecond timescale corresponding to the maximum of the crater volume and the largest change between the single- and the double-pulse photoacoustic signals. Only a slight intensification was detected with increasing first pulse energy above the first pulse ablation threshold; however, the crater volume did not significantly change and the possible involved mechanisms are discussed.

  20. Oxidative stress and pathogenic attack in plants, studied by laser based photoacoustic trace gas detection

    NARCIS (Netherlands)

    Santosa, Ignatius Edi

    2002-01-01

    Photoacoustic detection has proven to be a sensitive method, which is suitable for trace gas measurement. In this thesis, we improved the photoacoustic detection system to measure new biologically interesting gases, ethane (C2H6) and nitric oxide (NO). A new design of grating holder is incorporated

  1. BEE FORAGE MAPPING BASED ON MULTISPECTRAL IMAGES LANDSAT

    Directory of Open Access Journals (Sweden)

    A. Moskalenko

    2016-10-01

    Full Text Available Possibilities of bee forage identification and mapping based on multispectral images have been shown in the research. Spectral brightness of bee forage has been determined with the use of satellite images. The effectiveness of some methods of image classification for mapping of bee forage is shown. Keywords: bee forage, mapping, multispectral images, image classification.

  2. A UV-Vis photoacoustic spectrophotometer.

    Science.gov (United States)

    Wiegand, Joseph R; Mathews, L Dalila; Smith, Geoffrey D

    2014-06-17

    A novel photoacoustic spectrophotometer (PAS) for the measurement of gas-phase and aerosol absorption over the UV-visible region of the spectrum is described. Light from a broadband Hg arc lamp is filtered in eight separate bands from 300 to 700 nm using bandpass interference filters (centered at 301 nm, 314 nm, 364 nm, 405 nm, 436 nm, 546 nm, 578 and 687 nm) and modulated with an optical chopper before entering the photoacoustic cell. All wavelength bands feature a 20-s detection limit of better than 3.0 Mm(-1) with the exception of the lower-intensity 687 nm band for which it is 10.2 Mm(-1). Validation measurements of gas-phase acetone and nigrosin aerosol absorption cross sections at several wavelengths demonstrate agreement to within 10% with those measured previously (for acetone) and those predicted by Mie theory (for nigrosin). The PAS instrument is used to measure the UV-visible absorption spectrum of ambient aerosol demonstrating a dramatic increase in the UV region with absorption increasing by 300% from 405 to 301 nm. This type of measurement throughout the UV-visible region and free from artifacts associated with filter-based methods has not been possible previously, and we demonstrate its promise for classifying and quantifying different types of light-absorbing ambient particles.

  3. Validating tyrosinase homologue MelA as a photoacoustic reporter gene for imaging Escherichia coli

    Science.gov (United States)

    Paproski, Robert J.; Li, Yan; Barber, Quinn; Lewis, John D.; Campbell, Robert; Zemp, Roger

    2015-03-01

    Antibiotic drug resistance is a major worldwide issue. Development of new therapies against pathogenic bacteria requires appropriate research tools for replicating and characterizing infections. Previously fluorescence and bioluminescence modalities have been used to image infectious burden in animal models but scattering significantly limits imaging depth and resolution. We hypothesize that photoacoustic imaging, which has improved depth-toresolution ratio, could be useful for visualizing MelA-expressing bacteria since MelA is a bacterial tyrosinase homologue involved in melanin production. Using an inducible expression system, E. coli expressing MelA were visibly black in liquid culture. Phosphate buffered saline (PBS), MelA-expressing bacteria (at different dilutions in PBS), and chicken embryo blood were injected in plastic tubes which were imaged using a VisualSonics Vevo LAZR system. Photoacoustic imaging at 6 different wavelengths (680, 700, 750, 800, 850 and 900nm) enabled spectral de-mixing to distinguish melanin signals from blood. The signal to noise ratio of 9x diluted MelA bacteria was 55, suggesting that ~20 bacteria cells could be detected with our system. When MelA bacteria were injected as a 100 μL bolus into a chicken embryo, photoacoustic signals from deoxy- and oxy- hemoglobin as well as MelA-expressing bacteria could be separated and overlaid on an ultrasound image, allowing visualization of the bacterial location. Photoacoustic imaging may be a useful tool for visualizing bacterial infections and further work incorporating photoacoustic reporters into infectious bacterial strains is warranted.

  4. A Longitudinal Comparison of Arm Morbidity in Stage I-II Breast Cancer Patients Treated with Sentinel Lymph Node Biopsy, Sentinel Lymph Node Biopsy Followed by Completion Lymph Node Dissection, or Axillary Lymph Node Dissection

    NARCIS (Netherlands)

    Kootstra, Jan J.; Hoekstra-Weebers, Josette E. H. M.; Rietman, Johan S.; de Vries, Jakob; Baas, Peter C.; Geertzen, Jan H. B.; Hoekstra, Harald J.

    Background. Long-term shoulder and arm function following sentinel lymph node biopsy (SLNB) may surpass that following complete axillary lymph node dissection (CLND) or axillary lymph node dissection (ALND). We objectively examined the morbidity and compared outcomes after SLNB, SLNB + CLND, and

  5. A longitudinal comparison of arm morbidity in stage I-II breast cancer patients treated with sentinel lymph node biopsy, sentinel lymph node biopsy followed by completion lymph node dissection, or axillary lymph node dissection

    NARCIS (Netherlands)

    Kootstra, Jan J.; Hoekstra-Weebers, Josette E.; Rietman, Johan Swanik; de Vries, Jakob; Baas, Peter C.; Geertzen, Jan H.B.; Hoekstra, Harald J.

    2010-01-01

    Background: Long-term shoulder and arm function following sentinel lymph node biopsy (SLNB) may surpass that following complete axillary lymph node dissection (CLND) or axillary lymph node dissection (ALND). We objectively examined the morbidity and compared outcomes after SLNB, SLNB + CLND, and

  6. Lymph flux rates from various lymph sacs in the cane toad Rhinella marina: an experimental evaluation of the roles of compliance, skeletal muscles and the lungs in the movement of lymph.

    Science.gov (United States)

    Hillman, Stanley S; Hedrick, Michael S; Drewes, Robert C; Withers, Philip C

    2010-09-15

    A new method for quantitatively determining lymph flux from various lymphatic sacs of an anuran, the cane toad, was developed. This method used the dye dilution principle of C(i)V(i)=C(f)V(f) following injection of Evans Blue into specific lymph sacs and measuring its appearance in the venous circulation. The apparent lymph volume was 57 ml kg(-1). The greatest rate of lymph return (0.5-0.8 ml kg(-1) min(-1)) and best linear fit of Evans Blue appearance in the circulation with time followed injections into the subvertebral lymph sac, which has direct connections to both the anterior and posterior pairs of lymphatic hearts. Rate of lymph flux from the pair of posterior lymph hearts was three times greater than the anterior pair. Rates of lymph flux were only influenced by injection volume in the crural lymph sacs, implicating lymph sac compliance as the source of the pressure for lymph movement from these sacs. Femoral lymph sac fluxes were decreased by 60% following ablation of the tendons of the sphincter ani cloacalis, abdominal crenators and piriformis. This supports a role for these muscles in generating the pressure for vertical lymph movement. Femoral lymph sac fluxes were also decreased by 70% by the insertion of a coil in the subvertebral lymph sac, preventing normal compression and expansion of this sac by the lungs. This supports a role for lung ventilation in generating the pressure for vertical movement of lymph. Contrary to previous hypotheses, fluxes from the brachial sac were not influenced by insertion of the coil into the subvertebral sac. A haemorrhage equivalent to 50% of the blood volume did not change lymph flux rates from the femoral lymph sacs. These data provide the first experimental evidence that actual lymph fluxes in the cane toad Rhinella marina depend on lymph sac compliance, contraction of specific skeletal muscles and lung ventilation to move lymph laterally and vertically to the dorsally located lymphatic hearts.

  7. A novel drill design for photoacoustic guided surgeries

    Science.gov (United States)

    Shubert, Joshua; Lediju Bell, Muyinatu A.

    2018-02-01

    Fluoroscopy is currently the standard approach for image guidance of surgical drilling procedures. In addition to the harmful radiation dose to the patient and surgeon, fluoroscopy fails to visualize critical structures such as blood vessels and nerves within the drill path. Photoacoustic imaging is a well-suited imaging method to visualize these structures and it does not require harmful ionizing radiation. However, there is currently no clinical system available to deliver light to occluded drill bit tips. To address this challenge, a prototype drill was designed, built, and tested using an internal light delivery system that allows laser energy to be transferred from a stationary laser source to the tip of a spinning drill bit. Photoacoustic images were successfully obtained with the drill bit submerged in water and with the drill tip inserted into a thoracic vertebra from a human cadaver.

  8. Lattice algebra approach to multispectral analysis of ancient documents.

    Science.gov (United States)

    Valdiviezo-N, Juan C; Urcid, Gonzalo

    2013-02-01

    This paper introduces a lattice algebra procedure that can be used for the multispectral analysis of historical documents and artworks. Assuming the presence of linearly mixed spectral pixels captured in a multispectral scene, the proposed method computes the scaled min- and max-lattice associative memories to determine the purest pixels that best represent the spectra of single pigments. The estimation of fractional proportions of pure spectra at each image pixel is used to build pigment abundance maps that can be used for subsequent restoration of damaged parts. Application examples include multispectral images acquired from the Archimedes Palimpsest and a Mexican pre-Hispanic codex.

  9. Photoacoustic imaging in both soft and hard biological tissue

    International Nuclear Information System (INIS)

    Li, T; Dewhurst, R J

    2010-01-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  10. Simultaneous ultrasound and photoacoustics based flow cytometry

    Science.gov (United States)

    Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2018-04-01

    We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.

  11. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    Science.gov (United States)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  12. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy.

    Science.gov (United States)

    Wang, Yu-Hsin; Liao, Ai-Ho; Chen, Jui-Hao; Wang, Churng-Ren Chris; Li, Pai-Chi

    2012-04-01

    This study investigates a photoacoustic/ultrasound dual-modality contrast agent, including extending its applications from image-contrast enhancement to combined diagnosis and therapy with site-specific targeting. The contrast agent comprises albumin-shelled microbubbles with encapsulated gold nanorods (AuMBs). The gas-filled microbubbles, whose diameters range from submicrometer to several micrometers, are not only echogenic but also can serve as drug-delivery vehicles. The gold nanorods are used to enhance the generation of both photoacoustic and photothermal signals. The optical absorption peak of the gold nanorods is tuned to 760 nm and is invariant after microbubble encapsulation. Dual-modality contrast enhancement is first described here, and the applications to cellular targeting and laser-induced thermotherapy in a phantom are demonstrated. Photoacoustic imaging can be used to monitor temperature increases during the treatment. The targeting capability of AuMBs was verified, and the temperature increased by 26°C for a laser power of 980 mW, demonstrating the potential of combined diagnosis and therapy with the dual-modality agent. Targeted photo- or acoustic-mediated delivery is also possible.

  13. Utilization of Multispectral Images for Meat Color Measurements

    DEFF Research Database (Denmark)

    Trinderup, Camilla Himmelstrup; Dahl, Anders Lindbjerg; Carstensen, Jens Michael

    2013-01-01

    This short paper describes how the use of multispectral imaging for color measurement can be utilized in an efficient and descriptive way for meat scientists. The basis of the study is meat color measurements performed with a multispectral imaging system as well as with a standard colorimeter...... of color and color variance than what is obtained by the standard colorimeter....

  14. Ultrasound to video registration using a bi-plane transrectal probe with photoacoustic markers

    Science.gov (United States)

    Cheng, Alexis; Kang, Hyun Jae; Zhang, Haichong K.; Taylor, Russell H.; Boctor, Emad M.

    2016-03-01

    Modern surgical scenarios typically provide surgeons with additional information through fusion of video and other imaging modalities. To provide this information, the tools and devices used in surgery must be registered together with interventional guidance equipment and surgical navigation systems. In this work, we focus explicitly on registering ultrasound with a stereo camera system using photoacoustic markers. Previous work has shown that photoacoustic markers can be used in this registration task to achieve target registration errors lower than the current available systems. Photoacoustic markers are defined as a set of non-collinear laser spots projected onto some surface. They can be simultaneously visualized by a stereo camera system and an ultrasound transducer because of the photoacoustic effect. In more recent work, the three-dimensional ultrasound volume was replaced by images from a single ultrasound image pose from a convex array transducer. The feasibility of this approach was demonstrated, but the accuracy was lacking due to the physical limitations of the convex array transducer. In this work, we propose the use of a bi-plane transrectal ultrasound transducer. The main advantage of using this type of transducer is that the ultrasound elements are no longer restricted to a single plane. While this development would be limited to prostate applications, liver and kidney applications are also feasible if a suitable transducer is built. This work is demonstrated in two experiments, one without photoacoustic sources and one with. The resulting target registration error for these experiments were 1.07mm±0.35mm and 1.27mm+/-0.47mm respectively, both of which are better than current available navigation systems.

  15. Ingestible roasted barley for contrast-enhanced photoacoustic imaging in animal and human subjects.

    Science.gov (United States)

    Wang, Depeng; Lee, Dong Hyeun; Huang, Haoyuan; Vu, Tri; Lim, Rachel Su Ann; Nyayapathi, Nikhila; Chitgupi, Upendra; Liu, Maggie; Geng, Jumin; Xia, Jun; Lovell, Jonathan F

    2018-08-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality. While many contrast agents have been developed for PACT, these typically cannot immediately be used in humans due to the lengthy regulatory process. We screened two hundred types of ingestible foodstuff samples for photoacoustic contrast with 1064 nm pulse laser excitation, and identified roasted barley as a promising candidate. Twenty brands of roasted barley were further screened to identify the one with the strongest contrast, presumably based on complex chemical modifications incurred during the roasting process. Individual roasted barley particles could be detected through 3.5 cm of chicken-breast tissue and through the whole hand of healthy human volunteers. With PACT, but not ultrasound imaging, a single grain of roasted barley was detected in a field of hundreds of non-roasted particles. Upon oral administration, roasted barley enabled imaging of the gut and peristalsis in mice. Prepared roasted barley tea could be detected through 2.5 cm chicken breast tissue. When barley tea was administered to humans, photoacoustic imaging visualized swallowing dynamics in healthy volunteers. Thus, roasted barley represents an edible foodstuff that should be considered for photoacoustic contrast imaging of swallowing and gut processes, with immediate potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Evolution of multispectral aerosol optical properties in a biogenically-influenced urban environment during the CARES campaign

    Science.gov (United States)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Pekour, M.; Flowers, B.; Dubey, M. K.; Setyan, A.; Zhang, Q.; Harworth, J. W.; Radney, J. G.; Atkinson, D. B.; China, S.; Mazzoleni, C.; Gorkowski, K.; Subramanian, R.; Jobson, B. T.; Moosmüller, H.

    2013-03-01

    Ground-based aerosol measurements made in June 2010 within Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area are used to investigate the evolution of multispectral optical properties as the urban aerosols aged and interacted with biogenic emissions. Along with black carbon and non-refractory aerosol mass and composition observations, spectral absorptio (βabs), scattering (βsca), and extinction (βext) coefficients for wavelengths ranging from 355 to 1064 nm were measured at both sites using photoacoustic (PA) instruments with integrating nephelometers and using cavity ring-down (CRD) instruments. The daytime average Ångström exponent of absorption (AEA) was ~1.6 for the wavelength pair 405 and 870 nm at T0, while it was ~1.8 for the wavelength pair 355 and 870 nm at T1, indicating a modest wavelength-dependent enhancement of absorption at both sites throughout the study. The measured and Mie theory calculations of multispectral βsca showed good correlation (R2=0.85-0.94). The average contribution of supermicron aerosol (mainly composed of sea salt particles advected in from the Pacific Ocean) to the total scattering coefficient ranged from less than 20% at 405 nm to greater than 80% at 1064 nm. From 22 to 28 June, secondary organic aerosol mass increased significantly at both sites due to increased biogenic emissions coupled with intense photochemical activity and air mass recirculation in the area. During this period, the short wavelength scattering coefficients at both sites gradually increased due to increase in the size of submicron aerosols. At the same time, BC mass-normalized absorption cross-section (MAC) values for ultraviolet wavelengths at T1 increased by ~60% compared to the relatively less aged urban emissions at the T0 site. In contrast, the average MAC values for 870 nm wavelength were identical at both sites. These results suggest formation of moderately brown secondary

  17. Multispectral Imaging of Wok-Fried Vegetables

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Dissing, Bjørn Skovlund; Hyldig, Grethe

    2012-01-01

    Quality control in the food industry is often performed by measuring various chemical compounds in the food involved. The authors propose an imaging concept for acquiring high-quality multispectral images to evaluate optical reflection changes in carrots and celeriac over a period of 14 days....... For comparison, sensory analysis was performed on the same samples. Prior to multispectral image recording, the vegetables were prefried and frozen at -30 °C for 4 months. During the 14 days of image recording, the vegetables were kept at +5 °C. In this period, surface changes and thereby reflectance properties...

  18. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications.

    Science.gov (United States)

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in release and therapeutic applications. We explore near-infrared light-sensitive liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.

  19. Photoacoustic detection of NH3 in power plant emissions

    International Nuclear Information System (INIS)

    Rassmussen, O.

    1991-01-01

    The paper describes a photoacoustic spectrometer initially designed for detection of NH 3 in power plant emission with a detection limit below 1 ppm. The radiation source is a high tunable CO 2 waveguide laser emitting its own frequency standard in one of 90 laserlines. The detection is performed at reduced pressure where the vibration-rotation transitions give an unambiguous fingerprint for each trace gas. Immunity against interference is ensured by recording this characteristic spectral fingerprint over the tuning range of the laser, and problems associated with the high concentration of CO 2 or other interfering molecules are further eliminated by utilizing the effect of kinetic cooling in the photoacoustic phase. The use of a CO 2 laser as radiation source combined with the highly sensitive photoacoustic detection provides a great possibility of measuring a wide range of air pollutants in the range down to ppt concentrations. Experimental measurements have been carried out on gases like sulfur dioxide, ethylene, sulfur hexafluoride, vinylchloride, ozone, etc., and many others have been theoretically examined to give a high response in the CO 2 laser frequency range. A computerized NH 3 spectrometer has been constructed and tested under realistic conditions at a Danish power plant operating a test facility for selective non-catalytic reduction of NO x . Results of this test will be presented

  20. Multispectral biometrics systems and applications

    CERN Document Server

    Zhang, David; Gong, Yazhuo

    2016-01-01

    Describing several new biometric technologies, such as high-resolution fingerprint, finger-knuckle-print, multi-spectral backhand, 3D fingerprint, tongueprint, 3D ear, and multi-spectral iris recognition technologies, this book analyzes a number of efficient feature extraction, matching and fusion algorithms and how potential systems have been developed. Focusing on how to develop new biometric technologies based on the requirements of applications, and how to design efficient algorithms to deliver better performance, the work is based on the author’s research with experimental results under different challenging conditions described in the text. The book offers a valuable resource for researchers, professionals and postgraduate students working in the fields of computer vision, pattern recognition, biometrics, and security applications, amongst others.

  1. In vivo imaging of cell nuclei by photoacoustic microscopy without staining

    Science.gov (United States)

    Yao, Da-Kang; Chen, Ruimin; Maslov, Konstantin; Zhou, Qifa; Wang, Lihong V.

    2012-02-01

    Ultraviolet photoacoustic microscopy (UVPAM) can image cell nuclei in vivo with high contrast and resolution noninvasively without staining. Here, we used UV light at wavelengths of 210-310 nm for excitation of DNA and RNA to produce photoacoustic waves. We applied the UVPAM to in vivo imaging of cell nuclei in mouse skin, and obtained UVPAM images of the unstained cell nuclei at wavelengths of 245-282 nm as ultrasound gel was used for acoustic coupling. The largest ratio of contrast to noise was found for the images of cell nuclei at a 250 nm wavelength.

  2. Functional photoacoustic microscopy of diabetic vasculature

    Science.gov (United States)

    Krumholz, Arie; Wang, Lidai; Yao, Junjie; Wang, Lihong V.

    2012-06-01

    We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (~400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change.

  3. Penile Cancer: Contemporary Lymph Node Management.

    Science.gov (United States)

    O'Brien, Jonathan S; Perera, Marlon; Manning, Todd; Bozin, Mike; Cabarkapa, Sonja; Chen, Emily; Lawrentschuk, Nathan

    2017-06-01

    In penile cancer, the optimal diagnostics and management of metastatic lymph nodes are not clear. Advances in minimally invasive staging, including dynamic sentinel lymph node biopsy, have widened the diagnostic repertoire of the urologist. We aimed to provide an objective update of the recent trends in the management of penile squamous cell carcinoma, and inguinal and pelvic lymph node metastases. We systematically reviewed several medical databases, including the Web of Science® (with MEDLINE®), Embase® and Cochrane databases, according to PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) guidelines. The search terms used were penile cancer, lymph node, sentinel node, minimally invasive, surgery and outcomes, alone and in combination. Articles pertaining to the management of lymph nodes in penile cancer were reviewed, including original research, reviews and clinical guidelines published between 1980 and 2016. Accurate and minimally invasive lymph node staging is of the utmost importance in the surgical management of penile squamous cell carcinoma. In patients with clinically node negative disease, a growing body of evidence supports the use of sentinel lymph node biopsies. Dynamic sentinel lymph node biopsy exposes the patient to minimal risk, and results in superior sensitivity and specificity profiles compared to alternate nodal staging techniques. In the presence of locoregional disease, improvements in inguinal or pelvic lymphadenectomy have reduced morbidity and improved oncologic outcomes. A multimodal approach of chemotherapy and surgery has demonstrated a survival benefit for patients with advanced disease. Recent developments in lymph node management have occurred in penile cancer, such as minimally invasive lymph node diagnosis and intervention strategies. These advances have been met with a degree of controversy in the contemporary literature. Current data suggest that dynamic sentinel lymph node biopsy provides excellent

  4. Some actinide speciation using laser induced photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Pollard, P.M.; McMillan, J.W.; Phillips, G.; Thomason, H.P.; Ewart, F.T.

    1988-01-01

    Laser induced photoacoustic spectroscopy is an attractive method for the speciation of actinides in solutions from nuclear disposal studies because it is essentially non-invasive and has a reasonably high sensitivity, down to ca 10 -8 M. A novel true dual beam system has been constructed and commissioned at Harwell with a performance at least equal to any others in existence. It is based on a XeCl excimer laser and a dye laser, beam splitter, two laser power monitors and photoacoustic cells. The wavelength scanning, data collection, and spectra processing and display are controlled by an Apricot computer. The sample and reference cells are housed in an inert atmosphere glove box. Early applications of the equipment described include measurements of Am and Np species under varying conditions of pH, Eh and carbonate concentration. The observations show some correlation with predictions made using the geochemical modelling code PHREEQE. (orig.)

  5. Low SWaP multispectral sensors using dichroic filter arrays

    Science.gov (United States)

    Dougherty, John; Varghese, Ron

    2015-06-01

    The benefits of multispectral imaging are well established in a variety of applications including remote sensing, authentication, satellite and aerial surveillance, machine vision, biomedical, and other scientific and industrial uses. However, many of the potential solutions require more compact, robust, and cost-effective cameras to realize these benefits. The next generation of multispectral sensors and cameras needs to deliver improvements in size, weight, power, portability, and spectral band customization to support widespread deployment for a variety of purpose-built aerial, unmanned, and scientific applications. A novel implementation uses micro-patterning of dichroic filters1 into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. This approach can be implemented across a variety of wavelength ranges and on a variety of detector types including linear, area, silicon, and InGaAs. This dichroic filter array approach can also reduce payloads and increase range for unmanned systems, with the capability to support both handheld and autonomous systems. Recent examples and results of 4 band RGB + NIR dichroic filter arrays in multispectral cameras are discussed. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and scalable production.

  6. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas; Fokong, Stanley; Brand, Christian; Andreou, Chrysafis; Krä utler, Bernhard; Rueping, Magnus; Kiessling, Fabian

    2017-01-01

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents

  7. Transversely Excited Multipass Photoacoustic Cell Using Electromechanical Film as Microphone

    Directory of Open Access Journals (Sweden)

    Jaakko Saarela

    2010-05-01

    Full Text Available A novel multipass photoacoustic cell with five stacked electromechanical films as a microphone has been constructed, tested and characterized. The photoacoustic cell is an open rectangular structure with two steel plates facing each other. The longitudinal acoustic resonances are excited transversely in an optical multipass configuration. A detection limit of 22 ppb (10−9 was achieved for flowing NO2 in N2 at normal pressure by using the maximum of 70 laser beams between the resonator plates. The corresponding minimum detectable absorption and the normalized noise-equivalent absorption coefficients were 2:2 × 10−7 cm−1 and 3:2 × 10−9 cm−1WHz−1/2, respectively.

  8. Photoacoustic imaging of hidden dental caries by using a bundle of hollow optical fibers

    Science.gov (United States)

    Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji

    2018-02-01

    Photoacoustic imaging system using a bundle of hollow-optical fibers to detect hidden dental caries is proposed. Firstly, we fabricated a hidden caries model with a brown pigment simulating a common color of caries lesion. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating Nd:YAG laser light with a 532 nm wavelength to occlusal surface of model tooth. We calculated by Fourier transform and found that the waveform from the carious part provides frequency components of approximately from 0.5 to 1.2 MHz. Then a photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for clinical applications. From intensity map of frequency components in 0.5-1.2 MHz, photoacoustic images of hidden caries in the simulated samples were successfully obtained.

  9. Model-Based Photoacoustic Image Reconstruction using Compressed Sensing and Smoothed L0 Norm

    OpenAIRE

    Mozaffarzadeh, Moein; Mahloojifar, Ali; Nasiriavanaki, Mohammadreza; Orooji, Mahdi

    2018-01-01

    Photoacoustic imaging (PAI) is a novel medical imaging modality that uses the advantages of the spatial resolution of ultrasound imaging and the high contrast of pure optical imaging. Analytical algorithms are usually employed to reconstruct the photoacoustic (PA) images as a result of their simple implementation. However, they provide a low accurate image. Model-based (MB) algorithms are used to improve the image quality and accuracy while a large number of transducers and data acquisition a...

  10. Thermal diffusivity measurement for p-Si and Ag/p-Si by photoacoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Mohammed Jabbar; Yunus, W. Mahmood Mat; Kamari, Halimah Mohamed; Zakaria, Azmi, E-mail: mohammed55865@yahoo.com [Department of Physics, Faculty of Science, Universiti PutraMalaysia (UPM), Serdang (Malaysia)

    2015-10-15

    Thermal diffusivity (TD) of p-Si and Ag/p-Si samples were measured by photoacoustic technique using open photoacoustic cell (OPC). The samples were annealed by heating them at 960, 1050, 1200, and 1300 °C for 3 h in air. The thermal diffusivity of Ag-coated samples was obtained by fitting the photoacoustic experimental data to the thermally thick equation for Rosencwaig and Gersho (RG) theory. For the single layer samples, the thermal diffusivity can be obtained by fitting as well as by obtaining the critical frequency f{sub c.} In this study, the thermal diffusivity of the p-Si samples increased with increasing the annealing temperature. The thermal diffusivity of the Ag/p-Si samples, after reaching the maximum value of about 2.73 cm{sup 2}/s at a temperature of 1200 °C, decreased due to the silver complete melt in the surface of the silicon. (author)

  11. Thermal Diffusivity Measurement for p-Si and Ag/p-Si by Photoacoustic Technique

    Science.gov (United States)

    Hussein, Mohammed Jabbar; Yunus, W. Mahmood Mat; Kamari, Halimah Mohamed; Zakaria, Azmi

    2015-10-01

    Thermal diffusivity (TD) of p-Si and Ag/p-Si samples were measured by photoacoustic technique using open photoacoustic cell (OPC). The samples were annealed by heating them at 960, 1050, 1200, and 1300 °C for 3 h in air. The thermal diffusivity of Ag-coated samples was obtained by fitting the photoacoustic experimental data to the thermally thick equation for Rosencwaig and Gersho (RG) theory. For the single layer samples, the thermal diffusivity can be obtained by fitting as well as by obtaining the critical frequency f c . In this study, the thermal diffusivity of the p-Si samples increased with increasing the annealing temperature. The thermal diffusivity of the Ag/p-Si samples, after reaching the maximum value of about 2.73 cm2/s at a temperature of 1200 °C, decreased due to the silver complete melt in the surface of the silicon.

  12. CT perfusion study of neck lymph nodes

    International Nuclear Information System (INIS)

    Zhong Jin; Liu Jun; Hua Rui; Qiao Hui; Gong Yi

    2011-01-01

    Objective: To study the CT perfusion features of various lymph nodes in the neck. Methods: Dynamic perfusion CT scanning was performed in 83 neck lymph nodes proved by pathology, including tuberculosis lymph nodes, lymphoma and metastatic lymph nodes. The shapes, blood flow modes, and perfusion parameters of these lymph nodes were compared among 3 groups. Statistical analysis of L/T and CT perfusion parameters was performed by one-way ANOVA and LSD test. Results: The values of MTT of tuberculosis lymph nodes, lymphoma and metastatic lymph nodes were (28.13±5.08), (31.08±5.82), and (11.24±5.31) s, respectively. The MTT of metastatic lymph nodes was statistically lower than that of tuberculosis lymph nodes and lymphoma (P -1 · 100 g -1 , respectively. The values of BV were (24.68±2.84), (25.30±3.16), and (25.15± 8.81) ml·100 g -1 respectively. The values of TTP were (40.90±8.85), (40.67±6.45), and (40.98±6.62) s, respectively. There were no significant differences in L/T, BF, BV and TTP among tuberculosis lymph nodes, lymphoma and metastatic lymph nodes (P>0.05). Conclusion: CT perfusion, especially combination functional imaging with perfusion images may be helpful in judging the nature of neck lymph nodes. (authors)

  13. Clinical evaluation of esophageal lymph flow system based on the RI uptake of removed regional lymph nodes following lymphoscintigraphy

    International Nuclear Information System (INIS)

    Tanabe, Gen; Baba, Masamichi; Kuroshima, Kazunao; Natugoe, Shouji; Yoshinaka, Heiji; Aikou, Takashi; Kajisa, Takashi

    1986-01-01

    For surgical treatment of esophageal cancer, the importance of evaluating lymph node metastasis and the lymph flow of the esophagus can not be overemphasized. In order to investigate the lymph flow of the esophagus, we preoperatively performed lymphoscintigraphy by endoscopic local injection of 99m Tc Renium Colloid into the esophageal wall in 42 esophageal cancer cases and 4 gastric cancer cases. Postoperatively, the RI uptake of each dissected regional lymph nodes was examined by a Scintillation Counter. The findings were as follows. 1. From the upper third of the thoracic esophagus, the main lymph flow was ascending to the neck and upper mediastinum. 2. From the middle third, the lymph flow was ascending to the neck and upper mediastinum and descending into the abdomen. 3. From the lower third, the main lymph flow was descending to the abdomen. In some cases, the lymph flow to the tracheal bifurcation nodes or to the lymph nodes around the left renal vein was observed. 4. In 61 % of the esophageal cancer cases with a partial bilateral neck dissection, the lymph flow to the bilateral supraclavicular lymph nodes was predominant compared to the upper mediastinum nodes. (author)

  14. Wide-field two-dimensional multifocal optical-resolution photoacoustic computed microscopy

    Science.gov (United States)

    Xia, Jun; Li, Guo; Wang, Lidai; Nasiriavanaki, Mohammadreza; Maslov, Konstantin; Engelbach, John A.; Garbow, Joel R.; Wang, Lihong V.

    2014-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique that directly images optical absorption in tissue at high spatial resolution. To date, the majority of OR-PAM systems are based on single focused optical excitation and ultrasonic detection, limiting the wide-field imaging speed. While one-dimensional multifocal OR-PAM (1D-MFOR-PAM) has been developed, the potential of microlens and transducer arrays has not been fully realized. Here, we present the development of two-dimensional multifocal optical-resolution photoacoustic computed microscopy (2D-MFOR-PACM), using a 2D microlens array and a full-ring ultrasonic transducer array. The 10 × 10 mm2 microlens array generates 1800 optical foci within the focal plane of the 512-element transducer array, and raster scanning the microlens array yields optical-resolution photoacoustic images. The system has improved the in-plane resolution of a full-ring transducer array from ≥100 µm to 29 µm and achieved an imaging time of 36 seconds over a 10 × 10 mm2 field of view. In comparison, the 1D-MFOR-PAM would take more than 4 minutes to image over the same field of view. The imaging capability of the system was demonstrated on phantoms and animals both ex vivo and in vivo. PMID:24322226

  15. Characterization of seeds with different moisture content by photoacoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Pacheco, Arturo; Hernandez Aguilar, Claudia; Marinez Ortiz, Efrain [Instituto Politecnico Nacional, Sepi-Esime, Zacatenco. Unidad Profesional ' Adolfo Lopez Mateos' . Col. Lindavista. Mexico D.F., CP 07738 (Mexico); Cruz-Orea, Alfredo; Ayala-Maycotte, Esther, E-mail: fartur@hotmail.co [Departamento de Fisica, CINVESTAV - IPN, A. P. 14-740, Mexico D.F., C.P. 07360 (Mexico)

    2010-03-01

    Photoacoustic (PA) technique has important applications for material characterization and nondestructive evaluation of opaque solid materials. PA microscopy allows the acquisition of information of samples with inhomogeneous structures as agricultural seeds. A determining factor for seed safe storage is their moisture content. Seeds stored at high moisture content exhibit increased respiration, heating, and fungal invasion resulting in poor seed vigor and viability. Low moisture content, in the seed to be stored, is the best prevention for these problems. In this study, Photoacoustic Microscopy (PAM) was used to characterize seeds with different moisture content. In the PAM experimental setup the photoacoustic cell and its sensor, an electret microphone, are mounted on an x-y stage of mobile axes, with spatial resolution of 70 {mu}m. The excitation light source is a fiber coupled laser diode, at 650 nm wavelength, modulated in intensity at 1 Hz of frequency, by the reference oscillator of a lock-in amplifier. By using a microscope objective the laser beam was focused on the seed surface. The resolution was enough to obtain differences in the obtained images, which are dependent on the moisture content. This method, to study differences in the seed moisture content, is nondestructive and could be useful for a sustainable Agriculture.

  16. Integrated photoacoustic/ultrasound imaging: applications and new techniques

    NARCIS (Netherlands)

    van den Berg, P.J.

    2017-01-01

    Photoacoustic imaging (PAI) is a unique combination of optical sensitivity to tissue chromophores like hemoglobin, and ultrasonic resolution. Research in this PhD thesis is made possible by the development of a probe that combines PAI with regular ultrasound imaging. This probe is handheld and

  17. Imaging the distribution of photoswitchable probes with temporally-unmixed multispectral optoacoustic tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; Stiel, Andre C.; Jiang, Yuanyuan; Ntziachristos, Vasilis; Westmeyer, Gil G.; Razansky, Daniel

    2016-03-01

    Synthetic and genetically encoded chromo- and fluorophores have become indispensable tools for biomedical research enabling a myriad of applications in imaging modalities based on biomedical optics. The versatility offered by the optoacoustic (photoacoustic) contrast mechanism enables to detect signals from any substance absorbing light, and hence these probes can be used as optoacoustic contrast agents. While contrast versatility generally represents an advantage of optoacoustics, the strong background signal generated by light absorption in endogeneous chromophores hampers the optoacoustic capacity to detect a photo-absorbing agent of interest. Increasing the optoacoustic sensitivity is then determined by the capability to differentiate specific features of such agent. For example, multispectral optoacoustic tomography (MSOT) exploits illuminating the tissue at multiple optical wavelengths to spectrally resolve (unmix) the contribution of different chromophores. Herein, we present an alternative approach to enhance the sensitivity and specificity in the detection of optoacoustic contrast agents. This is achieved with photoswitchable probes that change optical absorption upon illumination with specific optical wavelengths. Thereby, temporally unmixed MSOT (tuMSOT) is based on photoswitching the compounds according to defined schedules to elicit specific time-varying optoacoustic signals, and then use temporal unmixing algorithms to locate the contrast agent based on their particular temporal profile. The photoswitching kinetics is further affected by light intensity, so that tuMSOT can be employed to estimate the light fluence distribution in a biological sample. The performance of the method is demonstrated herein with the reversibly switchable fluorescent protein Dronpa and its fast-switching fatigue resistant variant Dronpa-M159T.

  18. Contrast-enhanced photoacoustic imaging with an optical wavelength of 1064 nm

    Science.gov (United States)

    Kim, Jeesu; Park, Sara; Park, Gyeong Bae; Choi, Wonseok; Jeong, Unyong; Kim, Chulhong

    2018-02-01

    Photoacoustic (PA) imaging is a biomedical imaging method that can provide both structural and functional information of living tissues beyond the optical diffusion limit by combining the concepts of conventional optical and ultrasound imaging methods. Although endogenous chromophores can be utilized to acquire PA images of biological tissues, exogenous contrast agents that absorb near-infrared (NIR) lights have been extensively explored to improve the contrast and penetration depth of PA images. Here, we demonstrate Bi2Se3 nanoplates, that strongly absorbs NIR lights, as a contrast agent for PA imaging. In particularly, the Bi2Se3 nanoplates produce relatively strong PA signals with an optical wavelength of 1064 nm, which has several advantages for deep tissue imaging including: (1) relatively low absorption by other intrinsic chromophores, (2) cost-effective light source using Nd:YAG laser, and (3) higher available energy than other NIR lights according to American National Standards Institute (ANSI) safety limit. We have investigated deep tissue imaging capability of the Bi2Se3 nanoplates by acquiring in vitro PA images of microtubes under chicken breast tissues. We have also acquired in vivo PA images of bladders, gastrointestinal tracts, and sentinel lymph nodes in mice after injection of the Bi2Se3 nanoplates to verify their applicability to a variety of biomedical research. The results show the promising potential of the Bi2Se3 nanoplates as a PA contrast agent for deep tissue imaging with an optical wavelength of 1064 nm.

  19. A Novel Perceptual Hash Algorithm for Multispectral Image Authentication

    Directory of Open Access Journals (Sweden)

    Kaimeng Ding

    2018-01-01

    Full Text Available The perceptual hash algorithm is a technique to authenticate the integrity of images. While a few scholars have worked on mono-spectral image perceptual hashing, there is limited research on multispectral image perceptual hashing. In this paper, we propose a perceptual hash algorithm for the content authentication of a multispectral remote sensing image based on the synthetic characteristics of each band: firstly, the multispectral remote sensing image is preprocessed with band clustering and grid partition; secondly, the edge feature of the band subsets is extracted by band fusion-based edge feature extraction; thirdly, the perceptual feature of the same region of the band subsets is compressed and normalized to generate the perceptual hash value. The authentication procedure is achieved via the normalized Hamming distance between the perceptual hash value of the recomputed perceptual hash value and the original hash value. The experiments indicated that our proposed algorithm is robust compared to content-preserved operations and it efficiently authenticates the integrity of multispectral remote sensing images.

  20. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  1. Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring

    International Nuclear Information System (INIS)

    Talbert, Robert J; Holan, Scott H; Viator, John A

    2007-01-01

    Discriminating viable from thermally coagulated blood in a burn wound can be used to profile burn depth, thus aiding the removal of necrotic tissue. In this study, we used a two-wavelength photoacoustic imaging method to discriminate coagulated and non-coagulated blood in a dermal burn phantom. Differences in the optical absorption spectra of coagulated and non-coagulated blood produce different values of the ratio of peak photoacoustic amplitude at 543 and 633 nm. The absorption values obtained from spectroscopic measurements indicate that the ratio of photoacoustic pressure for 543 and 633 nm for non-coagulated blood was 15.7:1 and 1.6:1 for coagulated blood. Using planar blood layers, we found the photoacoustic ratios to be 13.5:1 and 1.6:1, respectively. Using the differences in the ratios of coagulated and non-coagulated blood, we propose a scheme using statistical classification analysis to identify the different blood samples. Based upon these distinctly different ratios, we identified the planar blood samples with an error rate of 0%. Using a burn phantom with cylindrical vessels containing coagulated and non-coagulated blood, we achieved an error rate of 11.4%. These results have shown that photoacoustic imaging could prove to be a valuable tool in the diagnosis of burns

  2. Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines

    Science.gov (United States)

    Rocha, M. V.; Sthel, M. S.; Silva, M. G.; Paiva, L. B.; Pinheiro, F. W.; Miklòs, A.; Vargas, H.

    2012-03-01

    In this work we present a laser photoacoustic arrangement for the detection of the important greenhouse gas methane. A quantum-cascade laser and a differential photoacoustic cell were employed. A detection limit of 45 ppbv in nitrogen was achieved as well as a great selectivity. The same methodology was also tested in the detection of methane issued from natural gas powered vehicles (VNG) in Brazil, which demonstrates the excellent potential of this arrangement for greenhouse gas detection emitted from real sources.

  3. Self-Normalized Photoacoustic Technique for the Quantitative Analysis of Paper Pigments

    Science.gov (United States)

    Balderas-López, J. A.; Gómez y Gómez, Y. M.; Bautista-Ramírez, M. E.; Pescador-Rojas, J. A.; Martínez-Pérez, L.; Lomelí-Mejía, P. A.

    2018-03-01

    A self-normalized photoacoustic technique was applied for quantitative analysis of pigments embedded in solids. Paper samples (filter paper, Whatman No. 1), attached with the pigment: Direct Fast Turquoise Blue GL, were used for this study. This pigment is a blue dye commonly used in industry to dye paper and other fabrics. The optical absorption coefficient, at a wavelength of 660 nm, was measured for this pigment at various concentrations in the paper substrate. It was shown that Beer-Lambert model for light absorption applies well for pigments in solid substrates and optical absorption coefficients as large as 220 cm^{-1} can be measured with this photoacoustic technique.

  4. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods

    Science.gov (United States)

    Jokerst, Jesse V.; Thangaraj, Mridhula; Gambhir, Sanjiv S.

    2014-03-01

    Imaging is crucial for stem cell therapy to monitor the location(s), numbers, and state of the implanted cells. Real-time imaging in particular can ensure proper cell delivery for best engraftment. However, established imaging tools such as MRI are limited by their temporal resolution for guidance during delivery. In contrast, photoacoustic imaging is ideally suited for real time, image-guided therapy. Here, we use silica-coated gold nanorods as photoacoustic contrast agents and deploy them to image and quantitate mesenchymal stem cells during implant into the muscle tissue of live mice. Silica-coated gold nanorods (SiGNRs) were created with standard methods and loaded into mesenchymal stem cells (MSCs) without transfection agents. There was no significant (pmuscle tissue to simulate a muscular dystrophy patient. Mice (N=5) treated with these SiGNRlabeled MSCs exhibited no adverse events and implants up to 5 mm deep were easily visualized. The in vivo detection limit was 90,000 cells in a 100 uL bolus in mouse thigh muscle. Here, the B-mode signal is useful for orienting the treatment area and visualizing the delivery catheter while the photoacoustic mode offers cell-specific content. The photoacoustic signal was validated with histology a long-term fluorescent tracking dye after MSC transplant.

  5. Photoacoustic imaging of vascular networks in transgenic mice

    Science.gov (United States)

    Laufer, J. G.; Cleary, J. O.; Zhang, E. Z.; Lythgoe, M. F.; Beard, P. C.

    2010-02-01

    The preferential absorption of near infrared light by blood makes photoacoustic imaging well suited to visualising vascular structures in soft tissue. In addition, the spectroscopic specificity of tissue chromophores can be exploited by acquiring images at multiple excitation wavelengths. This allows the quantification of endogenous chromophores, such as oxy- and deoxyhaemoglobin, and hence blood oxygenation, and the detection of exogenous chromophores, such as functionalised contrast agents. More importantly, this approach has the potential to visualise the spatial distribution of low concentrations of functionalised contrast agents against the strong background absorption of the endogenous chromophores. This has a large number of applications in the life sciences. One example is the structural and functional phenotyping of transgenic mice for the study of the genetic origins of vascular malformations, such as heart defects. In this study, photoacoustic images of mouse embryos have been acquired to study the development of the vasculature following specific genetic knockouts.

  6. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    Science.gov (United States)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  7. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy

    Directory of Open Access Journals (Sweden)

    Johannes Bauer-Marschallinger

    2017-03-01

    Full Text Available We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.

  8. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy.

    Science.gov (United States)

    Bauer-Marschallinger, Johannes; Höllinger, Astrid; Jakoby, Bernhard; Burgholzer, Peter; Berer, Thomas

    2017-03-01

    We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.

  9. Inverse analysis of non-uniform temperature distributions using multispectral pyrometry

    Science.gov (United States)

    Fu, Tairan; Duan, Minghao; Tian, Jibin; Shi, Congling

    2016-05-01

    Optical diagnostics can be used to obtain sub-pixel temperature information in remote sensing. A multispectral pyrometry method was developed using multiple spectral radiation intensities to deduce the temperature area distribution in the measurement region. The method transforms a spot multispectral pyrometer with a fixed field of view into a pyrometer with enhanced spatial resolution that can give sub-pixel temperature information from a "one pixel" measurement region. A temperature area fraction function was defined to represent the spatial temperature distribution in the measurement region. The method is illustrated by simulations of a multispectral pyrometer with a spectral range of 8.0-13.0 μm measuring a non-isothermal region with a temperature range of 500-800 K in the spot pyrometer field of view. The inverse algorithm for the sub-pixel temperature distribution (temperature area fractions) in the "one pixel" verifies this multispectral pyrometry method. The results show that an improved Levenberg-Marquardt algorithm is effective for this ill-posed inverse problem with relative errors in the temperature area fractions of (-3%, 3%) for most of the temperatures. The analysis provides a valuable reference for the use of spot multispectral pyrometers for sub-pixel temperature distributions in remote sensing measurements.

  10. Photoacoustic imaging of early gastric cancer diagnosis based on long focal area ultrasound transducer

    Science.gov (United States)

    Wu, Huaqin; Li, Zuoran; Liu, Lantian; Li, Zhifang; Wu, Shulian; Li, Hui

    2017-06-01

    We illustrated a novel imaging method to diagnose gastric neoplasms via photoacoustic tomography (PAT). Depending on the structural characteristics of gastric cavity, we used column diffusion fiber to irradiate the stomach tissue through the esophagus, and the externally placed telecentric focus ultrasonic transducer detected photoacoustic signals from the gastric tissue. We reconstructed the distribution of light energy deposition of the simulated gastric tumor, and obtained the location and size information of gastric tumor.

  11. A photoacoustic tomography system for imaging of biological tissues

    International Nuclear Information System (INIS)

    Su Yixiong; Zhang Fan; Xu Kexin; Yao Jianquan; Wang, Ruikang K

    2005-01-01

    Non-invasive laser-induced photoacoustic tomography (PAT) is a promising imaging modality in the biomedical optical imaging field. This technology, based on the intrinsic optical properties of tissue and ultrasonic detection, overcomes the resolution disadvantage of pure-optical imaging caused by strong light scattering and the contrast and speckle disadvantages of pure ultrasonic imaging. Here, we report a PAT experimental system constructed in our laboratory. In our system, a Q-switched Nd : YAG pulse laser operated at 532 nm with a 8 ns pulse width is used to generate a photoacoustic signal. By using this system, the two-dimensional distribution of optical absorption in the tissue-mimicking phantom is reconstructed and has an excellent agreement with the original ones. The spatial resolution of the imaging system approaches 100 μm through about 4 cm of highly scattering medium

  12. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    Science.gov (United States)

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  13. Multispectral Panoramic Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — International Electronic Machines Corporation, a leader in the design of precision imaging systems, will develop an innovative multispectral, panoramic imaging...

  14. NH4HCO3 gas-generating liposomal nanoparticle for photoacoustic imaging in breast cancer

    Directory of Open Access Journals (Sweden)

    Xia J

    2017-03-01

    Full Text Available Jizhu Xia, Gang Feng, Xiaorong Xia, Lan Hao, Zhigang Wang Chongqing Key Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Abstract: In this study, we have developed a biodegradable nanomaterial for photoacoustic imaging (PAI. Its biodegradation products can be fully eliminated from a living organism. It is a gas-generating nanoparticle of liposome-encapsulating ammonium bicarbonate (NH4HCO3 solution, which is safe, effective, inexpensive, and free of side effects. When lasers irradiate these nanoparticles, NH4HCO3 decomposes to produce CO2, which can absorb much of the light energy under laser irradiation with a specific wavelength, and then expand under heat to generate a thermal acoustic wave. An acoustic detector can detect this wave and show it as a photoacoustic signal on a display screen. The intensity of the photoacoustic signal is enhanced corresponding to an increase in time, concentration, and temperature. During in vivo testing, nanoparticles were injected into tumor-bearing nude mice through the caudal vein, and photoacoustic signals were detected from the tumor, reaching a peak in 4 h, and then gradually disappearing. There was no damage to the skin or subcutaneous tissue from laser radiation. Our developed gas-generating nanomaterial, NH4HCO3 nanomaterial, is feasible, effective, safe, and inexpensive. Therefore, it is a promising material to be used in clinical PAI. Keywords: Photoacoustic tomography, CO2, NH4HCO3, contrast agent, cancer

  15. Multispectral data compression through transform coding and block quantization

    Science.gov (United States)

    Ready, P. J.; Wintz, P. A.

    1972-01-01

    Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.

  16. Photoacoustic point spectroscopy

    Science.gov (United States)

    Van Neste, Charles W [Kingston, TN; Senesac, Lawrence R [Knoxville, TN; Thundat, Thomas G [Knoxville, TN

    2011-06-14

    A system and method are disclosed for generating a photoacoustic spectrum in an open or closed environment with reduced noise. A source may emit a beam to a target substance coated on a detector that measures acoustic waves generated as a result of a light beam being absorbed by the target substance. By emitting a chopped/pulsed light beam to the target substance on the detector, it may be possible to determine the target's optical absorbance as the wavelength of light is changed. Rejection may decrease the intensity of the acoustic waves on the detector while absorption may increase the intensity. Accordingly, an identifying spectrum of the target may be made with the intensity variation of the detector as a function of illuminating wavelength.

  17. Wetland Vegetation Integrity Assessment with Low Altitude Multispectral Uav Imagery

    Science.gov (United States)

    Boon, M. A.; Tesfamichael, S.

    2017-08-01

    The use of multispectral sensors on Unmanned Aerial Vehicles (UAVs) was until recently too heavy and bulky although this changed in recent times and they are now commercially available. The focus on the usage of these sensors is mostly directed towards the agricultural sector where the focus is on precision farming. Applications of these sensors for mapping of wetland ecosystems are rare. Here, we evaluate the performance of low altitude multispectral UAV imagery to determine the state of wetland vegetation in a localised spatial area. Specifically, NDVI derived from multispectral UAV imagery was used to inform the determination of the integrity of the wetland vegetation. Furthermore, we tested different software applications for the processing of the imagery. The advantages and disadvantages we experienced of these applications are also shortly presented in this paper. A JAG-M fixed-wing imaging system equipped with a MicaScene RedEdge multispectral camera were utilised for the survey. A single surveying campaign was undertaken in early autumn of a 17 ha study area at the Kameelzynkraal farm, Gauteng Province, South Africa. Structure-from-motion photogrammetry software was used to reconstruct the camera position's and terrain features to derive a high resolution orthoretified mosaic. MicaSense Atlas cloud-based data platform, Pix4D and PhotoScan were utilised for the processing. The WET-Health level one methodology was followed for the vegetation assessment, where wetland health is a measure of the deviation of a wetland's structure and function from its natural reference condition. An on-site evaluation of the vegetation integrity was first completed. Disturbance classes were then mapped using the high resolution multispectral orthoimages and NDVI. The WET-Health vegetation module completed with the aid of the multispectral UAV products indicated that the vegetation of the wetland is largely modified ("D" PES Category) and that the condition is expected to

  18. Study on Dihydrated Praseodymium Acetylacetonate by Photoacoustic Spectra with Broad Wavelength Range

    Institute of Scientific and Technical Information of China (English)

    于锡娟; 伍荣护; 宋慧宇; 苏庆德

    2003-01-01

    The UV-Vis, NIR and MIR photoacoustic spectra of Pr(aa)3*2H2O were measured and most f-f transition peaks of Pr3+ are detected. The peak split and peak shift are studied also. The covalency parameter is calculated and it turns out that the covalent bonds between Pr(Ⅲ) ions and ligands exist. The results conclude that photoacoustic spectroscopy offers a unique and complementary method in analysis of solid rare earth complexes. Compared with conventional FT-IR transmission and absorption approaches, PAS has the advantages of fast, nondestructive analysis and high resolution.

  19. Study of the diffusion of some emulsions in the human skin by pulsed photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Lahjomri, F; Benamar, N; Chatri, E; Leblanc, R M

    2003-01-01

    We previously used pulsed photoacoustic spectroscopy (PPAS) to quantify sunscreen diffusion into human skin, and suggested a methodology to evaluate the time and the depth diffusion profile. These results were obtained by the analysis of the photoacoustic maximum response signal P max decrease, the time delay t max and the Fourier transform representation of the photoacoustic signal. In this study we present the results obtained for diffusion of four typical emulsions used in sunscreen compositions that show, for the first time, a particular behaviour for one of these emulsions due to a chemical reaction inside the skin during the diffusion process. This result provides a particularly interesting technique through the PPAS, to evaluate in situ the eventual chemical reactions that can occur during drug diffusion into human skin

  20. Skin condition measurement by using multispectral imaging system (Conference Presentation)

    Science.gov (United States)

    Jung, Geunho; Kim, Sungchul; Kim, Jae Gwan

    2017-02-01

    There are a number of commercially available low level light therapy (LLLT) devices in a market, and face whitening or wrinkle reduction is one of targets in LLLT. The facial improvement could be known simply by visual observation of face, but it cannot provide either quantitative data or recognize a subtle change. Clinical diagnostic instruments such as mexameter can provide a quantitative data, but it costs too high for home users. Therefore, we designed a low cost multi-spectral imaging device by adding additional LEDs (470nm, 640nm, white LED, 905nm) to a commercial USB microscope which has two LEDs (395nm, 940nm) as light sources. Among various LLLT skin treatments, we focused on getting melanin and wrinkle information. For melanin index measurements, multi-spectral images of nevus were acquired and melanin index values from color image (conventional method) and from multi-spectral images were compared. The results showed that multi-spectral analysis of melanin index can visualize nevus with a different depth and concentration. A cross section of wrinkle on skin resembles a wedge which can be a source of high frequency components when the skin image is Fourier transformed into a spatial frequency domain map. In that case, the entropy value of the spatial frequency map can represent the frequency distribution which is related with the amount and thickness of wrinkle. Entropy values from multi-spectral images can potentially separate the percentage of thin and shallow wrinkle from thick and deep wrinkle. From the results, we found that this low cost multi-spectral imaging system could be beneficial for home users of LLLT by providing the treatment efficacy in a quantitative way.

  1. A simple photoacoustic detector for highly corrosive gases

    Czech Academy of Sciences Publication Activity Database

    Rakovský, Jozef; Votava, Ondřej

    2017-01-01

    Roč. 88, č. 1 (2017), č. článku 013103. ISSN 0034-6748 R&D Projects: GA ČR GA13-11635S Institutional support: RVO:61388955 Keywords : photoacoustic spectroscopy * biosensors * laser sensors Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.515, year: 2016

  2. Comparison of photoacoustic spectroscopy, conventional absorption spectroscopy, and potentiometry as probes of lanthanide speciation

    International Nuclear Information System (INIS)

    Torres, R.A.; Palmer, C.E.A.; Baisden, P.A.; Russo, R.E.; Silva, R.J.

    1990-01-01

    The authors measured the stability constants of praseodymium acetate and oxydiacetate complexes by laser-induced photoacoustic spectroscopy, conventional UV-visible absorption spectroscopy, and pH titration. For the spectroscopic studies, changes in the free Pr absorption peaks at 468 and 481 nm were monitored at varying ligand concentrations. The total Pr concentration was 1 x 10 -4 M in solutions used for the photoacoustic studies and 0.02 M for conventional spectroscopy. For the pH titrations, we used solutions whose Pr concentrations varied from 5 x 10 -3 to 5 x 10 -2 M, with total ligand-to-metal ratios ranging from 1 to 10. A comparison of the results obtained by the three techniques demonstrates that photoacoustic spectroscopy can give the same information about metal-ligand speciation as more conventional methods. It is particularly suited to those situations where the other techniques are insensitive because of limited metal concentrations

  3. Statistical Quality Assessment of Pre-fried Carrots Using Multispectral Imaging

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara; Clemmensen, Line Katrine Harder; Løje, Hanne

    2013-01-01

    Multispectral imaging is increasingly being used for quality assessment of food items due to its non-invasive benefits. In this paper, we investigate the use of multispectral images of pre-fried carrots, to detect changes over a period of 14 days. The idea is to distinguish changes in quality from...

  4. Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging.

    Science.gov (United States)

    Xiao, Wei; Li, Yuan; Hu, Chuan; Huang, Yuan; He, Qin; Gao, Huile

    2017-07-01

    Carbonaceous dots exhibit increasing applications in diagnosis and drug delivery due to excellent photostability and biocompatibility properties. However, relative short excitation and emission of melanin carbonaceous dots (MCDs) limit the applicability in fluorescence bioimaging. Furthermore, the generally poor spatial resolution of fluorescence imaging limits potential in vivo applications. Due to a variety of beneficial properties, in this study, MCDs were prepared exhibiting great potential in fluorescence and photoacoustic dual-mode bioimaging. The MCDs exhibited a long excitation peak at 615nm and emission peak at 650nm, further highlighting the applicability in fluorescence imaging, while the absorbance peak at 633nm renders MCDs suitable for photoacoustic imaging. In vivo, the photoacoustic signal of MCDs was linearly correlated with the concentration of MCDs. Moreover, the MCDs were shown to be taken up into triple negative breast cancer cell line 4T1 in both a time- and concentration-dependent manner. In vivo fluorescence and photoacoustic imaging of subcutaneous 4T1 tumor demonstrated that MCDs could passively target triple negative breast cancer tissue by enhanced permeability and retention effects and may therefore be used for tumor dual-mode imaging. Furthermore, fluorescence distribution in tissue slices suggested that MCDs may distribute in 4T1 tumor with high efficacy. In conclusion, the MCDs studied offer potential application in fluorescence and photoacoustic dual-mode imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. New Capabilities in the Astrophysics Multispectral Archive Search Engine

    Science.gov (United States)

    Cheung, C. Y.; Kelley, S.; Roussopoulos, N.

    The Astrophysics Multispectral Archive Search Engine (AMASE) uses object-oriented database techniques to provide a uniform multi-mission and multi-spectral interface to search for data in the distributed archives. We describe our experience of porting AMASE from Illustra object-relational DBMS to the Informix Universal Data Server. New capabilities and utilities have been developed, including a spatial datablade that supports Nearest Neighbor queries.

  6. Wide field-of-view dual-band multispectral muzzle flash detection

    Science.gov (United States)

    Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.

    2013-06-01

    Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.

  7. Dual-modal photoacoustic and ultrasound imaging of dental implants

    Science.gov (United States)

    Lee, Donghyun; Park, Sungjo; Kim, Chulhong

    2018-02-01

    Dental implants are common method to replace decayed or broken tooth. As the implant treatment procedures varies according to the patients' jawbone, bone ridge, and sinus structure, appropriate examinations are necessary for successful treatment. Currently, radiographic examinations including periapical radiology, panoramic X-ray, and computed tomography are commonly used for diagnosing and monitoring. However, these radiographic examinations have limitations in that patients and operators are exposed to radioactivity and multiple examinations are performed during the treatment. In this study, we demonstrated photoacoustic (PA) and ultrasound (US) combined imaging of dental implant that can lower the total amount of absorbed radiation dose in dental implant treatment. An acoustic resolution PA macroscopy and a clinical PA/US system was used for dental implant imaging. The acquired dual modal PA/US imaging results support that the proposed photoacoustic imaging strategy can reduce the radiation dose rate during dental implant treatment.

  8. Sentinel lymph node biopsy in oral cancer

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Sørensen, Jens Ahm; Grupe, Peter

    2005-01-01

    PURPOSE: To validate lymphatic mapping combined with sentinel lymph node biopsy as a staging procedure, and to evaluate the possible clinical implications of added oblique lymphoscintigraphy and/or tomography and test the intra- and interobserver reproducibility of lymphoscintigraphy. MATERIAL......: Eleven (28%) patients were upstaged. The sentinel lymph node identification rate was 97.5%. Sentinel lymph node biopsy significantly differentiated between patients with or without lymph node metastasis (P = 0.001). Lymphatic mapping revealed 124 hotspots and 144 hot lymph nodes were removed by sentinel...

  9. Breast imaging using the Twente photoacoustic mammoscope (PAM): new clinical measurements

    Science.gov (United States)

    Heijblom, Michelle; Piras, Daniele; Ten Tije, Ellen; Xia, Wenfeng; van Hespen, Johan; Klaase, Joost; van den Engh, Frank; van Leeuwen, Ton; Steenbergen, Wiendelt; Manohar, Srirang

    2011-07-01

    Worldwide, yearly about 450,000 women die from the consequences of breast cancer. Current imaging modalities are not optimal in discriminating benign from malignant tissue. Visualizing the malignancy-associated increased hemoglobin concentration might significantly improve early diagnosis of breast cancer. Since photoacoustic imaging can visualize hemoglobin in tissue with optical contrast and ultrasound-like resolution, it is potentially an ideal method for early breast cancer imaging. The Twente Photoacoustic Mammoscope (PAM) has been developed specifically for breast imaging. Recently, a large clinical study has been started in the Medisch Spectrum Twente in Oldenzaal using PAM. In PAM, the breast is slightly compressed between a window for laser light illumination and a flat array ultrasound detector. The measurements are performed using a Q-switched Nd:YAG laser, pulsed at 1064 nm and a 1 MHz unfocused ultrasound detector array. Three-dimensional data are reconstructed using a delay and sum reconstruction algorithm. Those reconstructed images are compared with conventional imaging and histopathology. In the first phase of the study 12 patients with a malignant lesion and 2 patients with a benign cyst have been measured. The results are used to guide developments in photoacoustic mammography in order to pave the way towards an optimal technique for early diagnosis of breast cancer.

  10. Photoacoustic microscopy imaging for microneedle drug delivery

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2018-02-01

    The recent development of novel transdermal drug delivery systems (TDDS) using microneedle technology allows micron-sized conduits to be formed within the outermost skin layers attracting keen interest in skin as an interface for localized and systemic delivery of therapeutics. In light of this, researchers are using microneedles as tools to deliver nanoparticle formulations to targeted sites for effective therapy. However, in such studies the use of traditional histological methods are employed for characterization and do not allow for the in vivo visualization of drug delivery mechanism. Hence, this study presents a novel imaging technology to characterize microneedle based nanoparticle delivery systems using optical resolution-photoacoustic microscopy (OR-PAM). In this study in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and the spatial distribution of the nanoparticles in the tissue was successfully illustrated. Characterization of parameters that are relevant in drug delivery studies such as penetration depth, efficiency of delivered gold nanoparticles were monitored using the system. Photoacoustic microscopy proves an ideal tool for the characterization studies of microneedle properties and the studies shows microneedles as an ideal tool for precise and controlled drug delivery.

  11. SU-E-J-44: Design a Platform and Phantom Model for Photoacoustic Imaging in Combination with CT

    Energy Technology Data Exchange (ETDEWEB)

    Sick, J; Alsanea, F; Rancilio, N; Stantz, K [Purdue University, West Lafayette, IN (United States)

    2014-06-01

    Purpose: Our (long-term) objective is to develop a US manipulator that will provide in situ radiation response and image-guided therapy for bladder cancer based on photoacoustic molecular imaging. Methods: A platform was devised to provide a reproducible positional frame of reference for targeting anatomic structure between MDCT and US scans, in lieu of CBCT, and to fuse photoacoustic molecular imaging. US and photoacoustic scans are taken of a patient while in the CT scanner and IRMT. Through co-registration, based on anatomical positions, we identified a common coordinate system to be used in Eclipse. A bladder phantom was constructed to validate anatomical tracking via US and photoacoustic imaging. We tested the platform using phantom model to demonstrate validity once moved from the CT couch to the linear accelerator couch. Results: This platform interlocks with Varian exact couch index points for reproducibility of positioning. Construction from low Z material and sized appropriately to fit in CT/IMRT gantry. Error in conversion from cylindrical coordinates of the manipulator to X, Y, Z coordinates of the treatment couch was less than 1mm. We measured the bladder size in 3 different directions in both Eclipse from the CT and Acuson from US. The error was less than 2mm in all directions. CT and US images were co-registered in MATLAB. Co-registration of photoacoustic images is still being developed. Conclusion: For Linear Accelerators without on board imaging, MV portal images are not a viable option for the localization of soft tissue anatomy. We believe our manipulator provides an alternative using US imaging, which will be examined in an upcoming clinical trial. We plan to examine the value of hypoxia guided treatment through photoacoustic imaging during this trial.

  12. SU-E-J-44: Design a Platform and Phantom Model for Photoacoustic Imaging in Combination with CT

    International Nuclear Information System (INIS)

    Sick, J; Alsanea, F; Rancilio, N; Stantz, K

    2014-01-01

    Purpose: Our (long-term) objective is to develop a US manipulator that will provide in situ radiation response and image-guided therapy for bladder cancer based on photoacoustic molecular imaging. Methods: A platform was devised to provide a reproducible positional frame of reference for targeting anatomic structure between MDCT and US scans, in lieu of CBCT, and to fuse photoacoustic molecular imaging. US and photoacoustic scans are taken of a patient while in the CT scanner and IRMT. Through co-registration, based on anatomical positions, we identified a common coordinate system to be used in Eclipse. A bladder phantom was constructed to validate anatomical tracking via US and photoacoustic imaging. We tested the platform using phantom model to demonstrate validity once moved from the CT couch to the linear accelerator couch. Results: This platform interlocks with Varian exact couch index points for reproducibility of positioning. Construction from low Z material and sized appropriately to fit in CT/IMRT gantry. Error in conversion from cylindrical coordinates of the manipulator to X, Y, Z coordinates of the treatment couch was less than 1mm. We measured the bladder size in 3 different directions in both Eclipse from the CT and Acuson from US. The error was less than 2mm in all directions. CT and US images were co-registered in MATLAB. Co-registration of photoacoustic images is still being developed. Conclusion: For Linear Accelerators without on board imaging, MV portal images are not a viable option for the localization of soft tissue anatomy. We believe our manipulator provides an alternative using US imaging, which will be examined in an upcoming clinical trial. We plan to examine the value of hypoxia guided treatment through photoacoustic imaging during this trial

  13. Dominant lymph drainage patterns in the occipital and parietal regions: evaluation of lymph nodes in patients with skin cancer of the head.

    Science.gov (United States)

    Maeda, Taku; Yamamoto, Yuhei; Furukawa, Hiroshi; Oyama, Akihiko; Funayama, Emi; Murao, Naoki; Hayashi, Toshihiko

    2017-08-01

    The purpose of this study was to evaluate the superficial lymph drainage patterns of primary skin cancers of the head arising from the occipital or parietal region. The dominant patterns of lymph drainage were retrospectively reviewed in eight patients aged 36-85 years with skin cancers in the occipital or parietal region in whom sentinel lymph node biopsy or lymph node dissection had been performed at Hokkaido University Hospital between January 1981 and December 2015. Lymph drainage was mainly to the occipital (6/8, 75%), level II (5/8, 63%), and level V lymph nodes (5/8, 63%). Of the six patients with drainage to the occipital lymph nodes, four (67%) also had drainage to level V nodes. The dominant lymph drainage pattern in patients with skin cancer arising from the occipital or parietal region was to the occipital, level II, and level V lymph nodes. Further, lymph tended to drain directly from the occipital region to the level V lymph nodes.

  14. Photoacoustic discrimination of vascular and pigmented lesions using classical and Bayesian methods

    Science.gov (United States)

    Swearingen, Jennifer A.; Holan, Scott H.; Feldman, Mary M.; Viator, John A.

    2010-01-01

    Discrimination of pigmented and vascular lesions in skin can be difficult due to factors such as size, subungual location, and the nature of lesions containing both melanin and vascularity. Misdiagnosis may lead to precancerous or cancerous lesions not receiving proper medical care. To aid in the rapid and accurate diagnosis of such pathologies, we develop a photoacoustic system to determine the nature of skin lesions in vivo. By irradiating skin with two laser wavelengths, 422 and 530 nm, we induce photoacoustic responses, and the relative response at these two wavelengths indicates whether the lesion is pigmented or vascular. This response is due to the distinct absorption spectrum of melanin and hemoglobin. In particular, pigmented lesions have ratios of photoacoustic amplitudes of approximately 1.4 to 1 at the two wavelengths, while vascular lesions have ratios of about 4.0 to 1. Furthermore, we consider two statistical methods for conducting classification of lesions: standard multivariate analysis classification techniques and a Bayesian-model-based approach. We study 15 human subjects with eight vascular and seven pigmented lesions. Using the classical method, we achieve a perfect classification rate, while the Bayesian approach has an error rate of 20%.

  15. Structural phototransformation of WO{sub 3} thin films detected by photoacoustic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Argelia Perez, E-mail: ekargy@hotmail.com [Universidad Nacional Autonoma de Mexico, Laboratorio de Fotofisica y Peliculas Delgadas-CCADET, Ciudad Universitaria, Coyoacan, A.P. 70-186, C.P. 04510, Mexico, D.F. (Mexico); Montes de Oca, C. Oliva; Castaneda-Guzman, R.; Garcia, A. Esparza [Universidad Nacional Autonoma de Mexico, Laboratorio de Fotofisica y Peliculas Delgadas-CCADET, Ciudad Universitaria, Coyoacan, A.P. 70-186, C.P. 04510, Mexico, D.F. (Mexico)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The phototransformation of WO{sub 3} thin films were studied by photoacoustic technique. Black-Right-Pointing-Pointer The phase transition in WO{sub 3} thin films was induced by laser irradiation fluence. Black-Right-Pointing-Pointer The onset and end of the phototransformation in the thin films was identified. Black-Right-Pointing-Pointer The ablation threshold for each sample was identified. - Abstract: The photoacoustic technique (PA) was used to detect the phase transformation from amorphous to crystalline state of tungsten oxide (WO{sub 3}) thin films induced by UV pulsed laser radiation at low energy (<1.5 mJ). The evolution of photoacoustic signal was studied by a correlation analysis, comparing successive signals at fluences ranging from 0 to 20 mJ/cm{sup 2}. In this interval, it was possible to observe structural changes and the ablation threshold in films due to incident laser fluence effect. Thin films of WO{sub 3} were deposited by DC reactive magnetron sputtering over glass substrates at different deposition times. The results obtained by correlation analysis were compared with Raman spectroscopy data.

  16. Micro-optical-mechanical system photoacoustic spectrometer

    Science.gov (United States)

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  17. Mathematics of Photoacoustic and Thermoacoustic Tomography

    KAUST Repository

    Kuchment, Peter; Kunyansky, Leonid

    2011-01-01

    The chapter surveys the mathematical models, problems, and algorithms of the thermoacoustic tomography (TAT) and photoacoustic tomography (PAT). TAT and PAT represent probably the most developed of the several novel “hybrid” methods of medical imaging. These new modalities combine different physical types of waves (electromagnetic and acoustic in case of TAT and PAT) in such a way that the resolution and contrast of the resulting method are much higher than those achievable using only acoustic or electromagnetic measurements.

  18. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    NARCIS (Netherlands)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G.; Manohar, Srirang

    2011-01-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where

  19. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; Heijblom, M.; Steenbergen, Wiendelt; van Leeuwen, Ton; Manohar, Srirang

    2011-01-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F–T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where

  20. Intracavity Laser Photoacoustic Spectrometer with High Sensitivity

    International Nuclear Information System (INIS)

    Mitrayana; Muslim; Wasono, M.A.J.

    2002-01-01

    A photo acoustic spectrometer set-up has been upgraded from an extra cavity into an intracavity configuration using a sealed-off CO 2 laser as the spectrometer's radiation source. The detection level of the upgrade Intracavity Photoacoustic Spectrometer (IPS) reached (200 ± 50) ppt for C 2 H 4 and (20 ± 5) ppt for SF 6 with response time (6.6 ± 0.2) s. (author)

  1. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy

    Science.gov (United States)

    Du, Changwen; Zhou, Jianmin; Liu, Jianfeng

    2017-02-01

    With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30 cm s- 1. The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis.

  2. Quantum Cascade Laser-Based Photoacoustic Sensor for Trace Detection of Formaldehyde Gas

    Directory of Open Access Journals (Sweden)

    Pietro Mario Lugarà

    2009-04-01

    Full Text Available We report on the development of a photoacoustic sensor for the detection of formaldehyde (CH2O using a thermoelectrically cooled distributed-feedback quantum cascade laser operating in pulsed mode at 5.6 mm. A resonant photoacoustic cell, equipped with four electret microphones, is excited in its first longitudinal mode at 1,380 Hz. The absorption line at 1,778.9 cm-1 is selected for CH2O detection. A detection limit of 150 parts per billion in volume in nitrogen is achieved using a 10 seconds time constant and 4 mW laser power. Measurements in ambient air will require water vapour filters.

  3. Monitoring temporal microstructural variations of skeletal muscle tissues by multispectral Mueller matrix polarimetry

    Science.gov (United States)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2017-02-01

    Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.

  4. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging

    Directory of Open Access Journals (Sweden)

    Ali Hariri

    2018-03-01

    Full Text Available Photoacoustic imaging (PAI is a non-invasive, high-resolution hybrid imaging modality that combines optical excitation and ultrasound detection. PAI can image endogenous chromophores (melanin, hemoglobin, etc. and exogenous contrast agents in different medical applications. However, most current equipment uses sophisticated and complicated OPO lasers with tuning and stability features inconsistent with broad clinical deployment. As the number of applications of PAI in medicine increases, there is an urgent need to make the imaging equipment more compact, portable, and affordable. Here, portable light emitting diode – based photoacoustic imaging (PLED-PAI was introduced and characterized in terms of system specifications, light source characterizations, photoacoustic spatial/temporal resolution, and penetration. The system uses two LED arrays attached to the sides of a conventional ultrasound transducer. The LED pulse repetition rate is tunable between 1 K Hz, 2 K Hz, 3 K Hz, and 4 K Hz. The axial resolution was 0.268 mm, and the lateral resolution was between 0.55 and 0.59 mm. The system could detect optical absorber (pencil lead at a depth of 3.2 cm and the detection limits of indocyanine green (ICG and methylene blue (MB were 9 μM and 0.78 mM. In vivo imaging of labeled human mesenchymal stem cells was achieved to confirm compatibility with small animal imaging. The characterization we report here may have value to other groups evaluating commercially available photoacoustic imaging equipment. Keywords: Portable photoacoustic imaging, LED, Optoacoustic imaging, Molecular imaging

  5. A Bayesian approach to spectral quantitative photoacoustic tomography

    International Nuclear Information System (INIS)

    Pulkkinen, A; Kaipio, J P; Tarvainen, T; Cox, B T; Arridge, S R

    2014-01-01

    A Bayesian approach to the optical reconstruction problem associated with spectral quantitative photoacoustic tomography is presented. The approach is derived for commonly used spectral tissue models of optical absorption and scattering: the absorption is described as a weighted sum of absorption spectra of known chromophores (spatially dependent chromophore concentrations), while the scattering is described using Mie scattering theory, with the proportionality constant and spectral power law parameter both spatially-dependent. It is validated using two-dimensional test problems composed of three biologically relevant chromophores: fat, oxygenated blood and deoxygenated blood. Using this approach it is possible to estimate the Grüneisen parameter, the absolute chromophore concentrations, and the Mie scattering parameters associated with spectral photoacoustic tomography problems. In addition, the direct estimation of the spectral parameters is compared to estimates obtained by fitting the spectral parameters to estimates of absorption, scattering and Grüneisen parameter at the investigated wavelengths. It is shown with numerical examples that the direct estimation results in better accuracy of the estimated parameters. (papers)

  6. Multispectral Video-Microscope Modified for Skin Diagnostics

    Directory of Open Access Journals (Sweden)

    Rubins U.

    2014-12-01

    Full Text Available Commercial DinoLite AD413 digital microscope was modified for skin diagnostics purposes. The original LED ring (4 white and 4 ultraviolet light emitters of microscope was replaced by a custom-designed 16-LED ring module consisting of four LED groups (450, 545, 660 and 940 nm, and an onboard LED controller with USB hub was added. The video acquisition and LED switching are performed using custom-designed Matlab software which provides real-time spectral analysis of multi-spectral images and calculation of skin chromophore optical density. The developed multispectral video-microscope is mainly meant for diagnostics of skin malformations, e.g. skin cancerous lesions.

  7. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  8. Targeted Delivery of Immunomodulators to Lymph Nodes

    Directory of Open Access Journals (Sweden)

    Jamil Azzi

    2016-05-01

    Full Text Available Active-targeted delivery to lymph nodes represents a major advance toward more effective treatment of immune-mediated disease. The MECA79 antibody recognizes peripheral node addressin molecules expressed by high endothelial venules of lymph nodes. By mimicking lymphocyte trafficking to the lymph nodes, we have engineered MECA79-coated microparticles containing an immunosuppressive medication, tacrolimus. Following intravenous administration, MECA79-bearing particles showed marked accumulation in the draining lymph nodes of transplanted animals. Using an allograft heart transplant model, we show that targeted lymph node delivery of microparticles containing tacrolimus can prolong heart allograft survival with negligible changes in tacrolimus serum level. Using MECA79 conjugation, we have demonstrated targeted delivery of tacrolimus to the lymph nodes following systemic administration, with the capacity for immune modulation in vivo.

  9. Bone assessment via thermal photoacoustic measurements

    Science.gov (United States)

    Feng, Ting; Kozloff, Kenneth M.; Hsiao, Yi-Sing; Tian, Chao; Perosky, Joseph; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-03-01

    The feasibility of an innovative biomedical diagnostic technique, thermal photoacoustic (TPA) measurement, for nonionizing and non-invasive assessment of bone health is investigated. Unlike conventional photoacoustic PA methods which are mostly focused on the measurement of absolute signal intensity, TPA targets the change in PA signal intensity as a function of the sample temperature, i.e. the temperature dependent Grueneisen parameter which is closely relevant to the chemical and molecular properties in the sample. Based on the differentiation measurement, the results from TPA technique is less susceptible to the variations associated with sample and system, and could be quantified with improved accurately. Due to the fact that the PA signal intensity from organic components such as blood changes faster than that from non-organic mineral under the same modulation of temperature, TPA measurement is able to objectively evaluate bone mineral density (BMD) and its loss as a result of osteoporosis. In an experiment on well established rat models of bone loss and preservation, PA measurements of rat tibia bones were conducted over a temperature range from 370 C to 440 C. The slope of PA signal intensity verses temperature was quantified for each specimen. The comparison among three groups of specimens with different BMD shows that bones with lower BMD have higher slopes, demonstrating the potential of the proposed TPA technique in future clinical management of osteoporosis.

  10. Review of photoacoustic flow imaging: its current state and its promises.

    Science.gov (United States)

    van den Berg, P J; Daoudi, K; Steenbergen, W

    2015-09-01

    Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages.

  11. Color and textural quality of packaged wild rocket measured by multispectral imaging

    DEFF Research Database (Denmark)

    Løkke, Mette Marie; Seefeldt, Helene Fast; Skov, Thomas

    2013-01-01

    Green color and texture are important attributes for the perception of freshness of wild rocket. Packaging of green leafy vegetables can postpone senescence and yellowing, but a drawback is the risk of anaerobic respiration leading to loss of tissue integrity and development of an olive-brown color....... The hypothesis underlying this paper is that color and textural quality of packaged wild rocket leaves can be predicted by multispectral imaging for faster evaluation of visual quality of leafy green vegetables in scientific experiments. Multispectral imaging was correlated to sensory evaluation of packaged wild...... rocket quality. CIELAB values derived from the multispectral images and from a spectrophotometer changed during storage, but the data were insufficient to describe variation in sensory perceived color and texture. CIELAB values from the multispectral images allowed for a more detailed determination...

  12. Miniature fibre optic probe for minimally invasive photoacoustic sensing

    Science.gov (United States)

    Mathews, Sunish J.; Zhang, Edward Z.; Desjardins, Adrien E.; Beard, Paul C.

    2016-03-01

    A miniature (175 μm) all-optical photoacoustic probe has been developed for minimally invasive sensing and imaging applications. The probe comprises a single optical fibre which delivers the excitation light and a broadband 50 MHz Fabry-Pérot (F-P) ultrasound sensor at the distal end for detecting the photoacoustic waves. A graded index lens proximal to the F-P sensor is used to reduce beam walk-off and thus increase sensitivity as well as confine the excitation beam in order to increase lateral spatial resolution. The probe was evaluated in non-scattering media and found to provide lateral and axial resolutions of < 100 μm and < 150 μm respectively for distances up to 1 cm from the tip of the probe. The ability of the probe to detect a blood vessel mimicking phantom at distances up to 7 mm from the tip was demonstrated in order to illustrate its potential suitability for needle guidance applications.

  13. Real-time Near-infrared Virtual Intraoperative Surgical Photoacoustic Microscopy

    Directory of Open Access Journals (Sweden)

    Changho Lee

    2015-09-01

    Full Text Available We developed a near infrared (NIR virtual intraoperative surgical photoacoustic microscopy (NIR-VISPAM system that combines a conventional surgical microscope and an NIR light photoacoustic microscopy (PAM system. NIR-VISPAM can simultaneously visualize PA B-scan images at a maximum display rate of 45 Hz and display enlarged microscopic images on a surgeon's view plane through the ocular lenses of the surgical microscope as augmented reality. The use of the invisible NIR light eliminated the disturbance to the surgeon's vision caused by the visible PAM excitation laser in a previous report. Further, the maximum permissible laser pulse energy at this wavelength is approximately 5 times more than that at the visible spectral range. The use of a needle-type ultrasound transducer without any water bath for acoustic coupling can enhance convenience in an intraoperative environment. We successfully guided needle and injected carbon particles in biological tissues ex vivo and in melanoma-bearing mice in vivo.

  14. Quantification of photoacoustic microscopy images for ovarian cancer detection

    Science.gov (United States)

    Wang, Tianheng; Yang, Yi; Alqasemi, Umar; Kumavor, Patrick D.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2014-03-01

    In this paper, human ovarian tissues with malignant and benign features were imaged ex vivo by using an opticalresolution photoacoustic microscopy (OR-PAM) system. Several features were quantitatively extracted from PAM images to describe photoacoustic signal distributions and fluctuations. 106 PAM images from 18 human ovaries were classified by applying those extracted features to a logistic prediction model. 57 images from 9 ovaries were used as a training set to train the logistic model, and 49 images from another 9 ovaries were used to test our prediction model. We assumed that if one image from one malignant ovary was classified as malignant, it is sufficient to classify this ovary as malignant. For the training set, we achieved 100% sensitivity and 83.3% specificity; for testing set, we achieved 100% sensitivity and 66.7% specificity. These preliminary results demonstrate that PAM could be extremely valuable in assisting and guiding surgeons for in vivo evaluation of ovarian tissue.

  15. Iterative methods for photoacoustic tomography in attenuating acoustic media

    Science.gov (United States)

    Haltmeier, Markus; Kowar, Richard; Nguyen, Linh V.

    2017-11-01

    The development of efficient and accurate reconstruction methods is an important aspect of tomographic imaging. In this article, we address this issue for photoacoustic tomography. To this aim, we use models for acoustic wave propagation accounting for frequency dependent attenuation according to a wide class of attenuation laws that may include memory. We formulate the inverse problem of photoacoustic tomography in attenuating medium as an ill-posed operator equation in a Hilbert space framework that is tackled by iterative regularization methods. Our approach comes with a clear convergence analysis. For that purpose we derive explicit expressions for the adjoint problem that can efficiently be implemented. In contrast to time reversal, the employed adjoint wave equation is again damping and, thus has a stable solution. This stability property can be clearly seen in our numerical results. Moreover, the presented numerical results clearly demonstrate the efficiency and accuracy of the derived iterative reconstruction algorithms in various situations including the limited view case.

  16. Photoacoustic-Based Multimodal Nanoprobes: from Constructing to Biological Applications.

    Science.gov (United States)

    Gao, Duyang; Yuan, Zhen

    2017-01-01

    Multimodal nanoprobes have attracted intensive attentions since they can integrate various imaging modalities to obtain complementary merits of single modality. Meanwhile, recent interest in laser-induced photoacoustic imaging is rapidly growing due to its unique advantages in visualizing tissue structure and function with high spatial resolution and satisfactory imaging depth. In this review, we summarize multimodal nanoprobes involving photoacoustic imaging. In particular, we focus on the method to construct multimodal nanoprobes. We have divided the synthetic methods into two types. First, we call it "one for all" concept, which involves intrinsic properties of the element in a single particle. Second, "all in one" concept, which means integrating different functional blocks in one particle. Then, we simply introduce the applications of the multifunctional nanoprobes for in vivo imaging and imaging-guided tumor therapy. At last, we discuss the advantages and disadvantages of the present methods to construct the multimodal nanoprobes and share our viewpoints in this area.

  17. Multi-source quantitative photoacoustic tomography in a diffusive regime

    International Nuclear Information System (INIS)

    Bal, Guillaume; Ren, Kui

    2011-01-01

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that aims to combine the large contrast of optical coefficients with the high-resolution capabilities of ultrasound. We assume that the first step of PAT, namely the reconstruction of a map of absorbed radiation from ultrasound boundary measurement, has been done. We focus on quantitative photoacoustic tomography, which aims at quantitatively reconstructing the optical coefficients from knowledge of the absorbed radiation map. We present a non-iterative procedure to reconstruct such optical coefficients, namely the diffusion and absorption coefficients, and the Grüneisen coefficient when the propagation of radiation is modeled by a second-order elliptic equation. We show that PAT measurements allow us to uniquely reconstruct only two out of the above three coefficients, even when data are collected using an arbitrary number of radiation illuminations. We present uniqueness and stability results for the reconstructions of two such parameters and demonstrate the accuracy of the reconstruction algorithm with numerical reconstructions from two-dimensional synthetic data

  18. Functional photoacoustic microscopy of pH.

    Science.gov (United States)

    Chatni, Muhammad Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin I; Wang, Lihong V

    2011-10-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy.

  19. Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode

    Science.gov (United States)

    Zhao, Zuomin; Myllylae, Risto A.

    2001-06-01

    The near-infrared photoacoustic technique is recognized as a potential method for the non-invasive determination of human glucose, because near-infrared light can incident a few millimeters into human tissue, where it produces an acoustic wave capable of carrying information about the composition of the tissue. This paper demonstrates a photoacoustic glucose measurement in a blood sample as a step toward a non-invasive measurement. The experimental apparatus consists of a near-infrared laser diode operating with 4 micro joules pulse energy at 905 nm, a roller pump connected to a silicon plastic tube and a cuvette for circulating the blood sample. In addition, the apparatus comprises a PZT piezoelectric transducer integrated with a battery-powered preamplifier to receive the photoacoustic signal. During the experiment, a glucose solution is mixed into a human blood sample to change its concentration. Although the absorption coefficient of glucose is much smaller than that of blood in the near-infrared region, the osmotic and hydrophilic properties of glucose decrease the reduced scattering coefficient of blood caused by the dissolved glucose surrounding the blood cells. This changes the distribution of the absorbed optical energy in blood, which, in turn, produces a change in the photoacoustic signal. Our experiment demonstrates that signal amplitudes in fresh and stored blood samples in crease about 7% and 10%, respectively, when the glucose concentration reaches the upper limit of the physiological region (500 mg/dl).

  20. Quantitative imaging of bilirubin by photoacoustic microscopy

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  1. Investigation of an energy-gap model for photoacoustic O2A-band spectra: H2O calibration near 7180 cm−1

    International Nuclear Information System (INIS)

    Vess, E.M.; Anderson, C.N.; Awadalla, V.E.; Estes, E.J.; Jeon, C.; Wallace, C.J.; Hu, X.F.; Havey, D.K.

    2012-01-01

    Highlights: ► We investigate an energy transfer model for photoacoustic measurements of the O 2 A-band. ► We measure the response of a photoacoustic spectrometer for known quantities of H 2 O and O 2 . ► We fit multiple theoretical spectral line profiles to the data. ► We bind the relative uncertainty of the energy transfer model to less than 1%. ► We demonstrate that speed-dependence is an important line shape effect for these experiments. - Abstract: A photoacoustic spectrometer is used to evaluate the accuracy of an energy-gap model for collisional energy transfer. For photoacoustic measurements involving the b 1 Σ g + ←X 3 Σ g - transition of molecular oxygen the conversion of photon energy to thermal energy is inefficient and proceeds through the a 1 Δ g state. This results in attenuation of the photoacoustic signal. The magnitude of the attenuation can be predicted with an energy-gap model whose accuracy has been previously confirmed to within 3 ± 5%. However, this prior result does not rule out incomplete rotational relaxation of O 2 in the a 1 Δ g state. In this study, high-resolution spectra of H 2 O in air are used to calibrate the photoacoustic spectrometer. This work binds the relative uncertainty in the energy-gap relaxation factor for O 2 A-band photoacoustic signals to be approximately 1%. During one acoustic cycle, this result implies negligible collisional relaxation to the X 3 Σ g - state of O 2 and nearly complete collisional relaxation to the a 1 Δ g state.

  2. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Science.gov (United States)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO2) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO2 and HHb, total haemoglobin concentration and SO2. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l-1 (±58 µM) and ±4

  3. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, London WC1E 6BT (United Kingdom)

    2007-01-07

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO{sub 2}) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO{sub 2}) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO{sub 2} and HHb, total haemoglobin concentration and SO{sub 2}. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of {+-}3

  4. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    International Nuclear Information System (INIS)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO 2 ) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO 2 ) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO 2 and HHb, total haemoglobin concentration and SO 2 . The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l -1 (±58

  5. Development of MEMS photoacoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex Lockwood; Eichenfield, Matthew S.; Griffin, Benjamin; Harvey, Heidi Alyssa; Nielson, Gregory N.; Okandan, Murat; Langlois, Eric; Resnick, Paul James; Shaw, Michael J.; Young, Ian; Givler, Richard C.; Reinke, Charles M.

    2014-01-01

    After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.

  6. Utility of multispectral imaging for nuclear classification of routine clinical histopathology imagery

    Directory of Open Access Journals (Sweden)

    Harvey Neal R

    2007-07-01

    Full Text Available Abstract Background We present an analysis of the utility of multispectral versus standard RGB imagery for routine H&E stained histopathology images, in particular for pixel-level classification of nuclei. Our multispectral imagery has 29 spectral bands, spaced 10 nm within the visual range of 420–700 nm. It has been hypothesized that the additional spectral bands contain further information useful for classification as compared to the 3 standard bands of RGB imagery. We present analyses of our data designed to test this hypothesis. Results For classification using all available image bands, we find the best performance (equal tradeoff between detection rate and false alarm rate is obtained from either the multispectral or our "ccd" RGB imagery, with an overall increase in performance of 0.79% compared to the next best performing image type. For classification using single image bands, the single best multispectral band (in the red portion of the spectrum gave a performance increase of 0.57%, compared to performance of the single best RGB band (red. Additionally, red bands had the highest coefficients/preference in our classifiers. Principal components analysis of the multispectral imagery indicates only two significant image bands, which is not surprising given the presence of two stains. Conclusion Our results indicate that multispectral imagery for routine H&E stained histopathology provides minimal additional spectral information for a pixel-level nuclear classification task than would standard RGB imagery.

  7. Multispectral image analysis for object recognition and classification

    Science.gov (United States)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  8. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC combined with image data compression (IDC approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE. Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS-based algorithm has better compression performance than the traditional compression approaches.

  9. Multispectral image compression based on DSC combined with CCSDS-IDC.

    Science.gov (United States)

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  10. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  11. Listening to light scattering in turbid media: quantitative optical scattering imaging using photoacoustic measurements with one-wavelength illumination

    International Nuclear Information System (INIS)

    Yuan, Zhen; Li, Xiaoqi; Xi, Lei

    2014-01-01

    Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging. (papers)

  12. A Feasibility Study of Photoacoustic Detection of Hidden Dental Caries Using a Fiber-Based Imaging System

    Directory of Open Access Journals (Sweden)

    Takuya Koyama

    2018-04-01

    Full Text Available In this paper, the feasibility of an optical fiber-based photoacoustic imaging system for detecting caries lesions inside a tooth is examined. Models of hidden caries were prepared using a pigment with an absorption spectrum similar to that of real caries lesions, and the occlusal surface of the model teeth containing the pigment was irradiated with laser pulses with a wavelength of 532 nm. An examination of the frequency spectra of the emitted photoacoustic waves revealed that the spectra from simulated caries lesions included frequency components in the range of 0.5–1.2 MHz that were not seen in the spectra from healthy parts of the teeth. This indicates that hidden caries can be detected via a photoacoustic imaging technique. Accordingly, an imaging system for clinical applications was fabricated. It consists of a bundle of hollow-optical fibers for laser radiation and an acoustic probe that is attached to the tooth surface. Results of ex vivo imaging experiments using model teeth and an extracted tooth with hidden caries lesions show that relatively large caries lesions inside teeth that are not seen in visual inspections can be detected by focusing on the above frequency components of the photoacoustic waves.

  13. Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols

    International Nuclear Information System (INIS)

    Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.

    2000-01-01

    A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorption of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively

  14. SOME ASPECTS OF THE ANATOMY OF AXILLARY LYMPH NODES

    Directory of Open Access Journals (Sweden)

    A. I. Shvedavchenko

    2009-01-01

    Full Text Available The paper concisely reviews the classifications of axillary lymph nodes (LN and considers various approaches to their formation. The authors identify the axillary lymph chain consisting of lateral, central, and apical groups of nodes through which lymph outflows into the overlying lymph collectors, as well as of subscapular and medial groups of nodes from where lymph makes its way into the auxil- lary lymph chain.

  15. Evolution of Multispectral Aerosol Absorption Properties in a Biogenically-Influenced Urban Environment during the CARES Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gyawali, Madhu; Arnott, W.; Zaveri, Rahul; Song, Chen; Flowers, Bradley; Dubey, Manvendra; Setyan, Ari; Zhang, Qi; China, Swarup; Mazzoleni, Claudio; Gorkowski, Kyle; Subramanian, R.; Moosmüller, Hans

    2017-11-01

    We present the evolution of multispectral optical properties as urban aerosols aged and interacted with biogenic emissions resulting in stronger short wavelength absorption and formation of moderately brown secondary organic aerosols. Ground-based aerosol measurements were made during June 2010 within the Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area. Data on black carbon and non-refractory aerosol mass and composition were collected at both sites. In addition, photoacoustic (PA) instruments with integrating nephelometers were used to measure spectral absorption and scattering coefficients for wavelengths ranging from 355 to 870 nm. The daytime absorption Ångström exponent (AAE) indicated a modest wavelength-dependent enhancement of absorption at both sites throughout the study. From the 22nd to the 28th of June, secondary organic aerosol mass increased significantly at both sites due to increased biogenic emissions coupled with intense photochemical activity and air mass recirculation in the area. During this period, the median BC mass-normalized absorption cross-section (MAC) values for 405 nm and 532 nm at T1 increased by ~23% and ~35%, respectively, compared to the relatively less aged urban emissions at the T0 site. In contrast, the average MAC values for the 870 nm wavelength were similar for both sites. These results suggest formation of moderately brown secondary organic aerosols in biogenically-influenced urban air.

  16. Pulsed near-infrared photoacoustic spectroscopy of blood

    Science.gov (United States)

    Laufer, Jan G.; Elwell, Clare E.; Delpy, Dave T.; Beard, Paul C.

    2004-07-01

    The aim of this study was to use pulsed near infrared photoacoustic spectroscopy to determine the oxygen saturation (SO2) of a saline suspension of red blood cells in vitro. The photoacoustic measurements were made in a cuvette which formed part of a larger circuit through which the red blood cell suspension was circulated. Oxygen saturation of the red blood cell suspension was altered between 2-3% to 100% in step increments using a membrane oxygenator and at each increment an independent measurement of oxygen saturation was made using a co-oximeter. An optical parametric oscillator laser system provided nanosecond excitation pulses at a number of wavelengths in the near-infrared spectrum (740-1040nm) which were incident on the cuvette. The resulting acoustic signals were detected using a broadband (15MHz) Fabry-Perot polymer film transducer. The optical transport coefficient and amplitude were determined from the acoustic signals as a function of wavelength. These data were then used to calculate the relative concentrations of oxy- and deoxyhaemoglobin, using their known specific absorption coefficients and an empirically determined wavelength dependence of optical scattering over the wavelength range investigated. From this, the oxygen saturation of the suspension was derived with an accuracy of +/-5% compared to the co-oximeter SO2 measurements.

  17. Applications of infrared photo-acoustic spectroscopy for wood samples

    Science.gov (United States)

    Mon-Lin Kuo; John F. McClelland; Siquan Luo; Po-Liang Chien; R.D. Walker; Chung-Yun Hse

    1988-01-01

    Various infrared (IR) spectroscopic techniques for the analysis of wood samples are briefly discussed. Theories and instrumentation of the newly developed photoacoustic spectroscopic (PAS) technique for measuring absorbance spectra of solids are presented. Some important applications of the PAS technique in wood science research are discussed. The application of the...

  18. Contrast enhanced ultrasound of sentinel lymph nodes

    Directory of Open Access Journals (Sweden)

    XinWu Cui

    2013-03-01

    Full Text Available Sentinel lymph nodes are the first lymph nodes in the region that receive lymphatic drainage from a primary tumor. The detection or exclusion of sentinel lymph node micrometastases is critical in the staging of cancer, especially breast cancer and melanoma because it directly affects patient’s prognosis and surgical management. Currently, intraoperative sentinel lymph node biopsies using blue dye and radioisotopes are the method of choice for the detection of sentinel lymph node with high identification rate. In contrast, conventional ultrasound is not capable of detecting sentinel lymph nodes in most cases. Contrast enhanced ultrasound with contrast specific imaging modes has been used for the evaluation and diagnostic work-up of peripherally located suspected lymphadenopathy. The method allows for real-time analysis of all vascular phases and the visualization of intranodal focal “avascular” areas that represent necrosis or deposits of neoplastic cells. In recent years, a number of animal and human studies showed that contrast enhanced ultrasound can be also used for the detection of sentinel lymph node, and may become a potential application in clinical routine. Several contrast agents have been used in those studies, including albumin solution, hydroxyethylated starch, SonoVue®, Sonazoid® and Definity®. This review summarizes the current knowledge about the use of ultrasound techniques in detection and evaluation of sentinel lymph node.

  19. Singular value decomposition analysis of a photoacoustic imaging system and 3D imaging at 0.7 FPS.

    Science.gov (United States)

    Roumeliotis, Michael B; Stodilka, Robert Z; Anastasio, Mark A; Ng, Eldon; Carson, Jeffrey J L

    2011-07-04

    Photoacoustic imaging is a non-ionizing imaging modality that provides contrast consistent with optical imaging techniques while the resolution and penetration depth is similar to ultrasound techniques. In a previous publication [Opt. Express 18, 11406 (2010)], a technique was introduced to experimentally acquire the imaging operator for a photoacoustic imaging system. While this was an important foundation for future work, we have recently improved the experimental procedure allowing for a more densely populated imaging operator to be acquired. Subsets of the imaging operator were produced by varying the transducer count as well as the measurement space temporal sampling rate. Examination of the matrix rank and the effect of contributing object space singular vectors to image reconstruction were performed. For a PAI system collecting only limited data projections, matrix rank increased linearly with transducer count and measurement space temporal sampling rate. Image reconstruction using a regularized pseudoinverse of the imaging operator was performed on photoacoustic signals from a point source, line source, and an array of point sources derived from the imaging operator. As expected, image quality increased for each object with increasing transducer count and measurement space temporal sampling rate. Using the same approach, but on experimentally sampled photoacoustic signals from a moving point-like source, acquisition, data transfer, reconstruction and image display took 1.4 s using one laser pulse per 3D frame. With relatively simple hardware improvements to data transfer and computation speed, our current imaging results imply that acquisition and display of 3D photoacoustic images at laser repetition rates of 10Hz is easily achieved.

  20. Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium

    NARCIS (Netherlands)

    S. Iskander-Rizk (Sophinese); P. Kruizinga (Pieter); A.F.W. van der Steen (Ton); G. van Soest (Gijs)

    2018-01-01

    textabstractCatheter-based radiofrequency ablation for atrial fibrillation has long-term success in 60-70% of cases. A better assessment of lesion quality, depth, and continuity could improve the procedure’s outcome. We investigate here photoacoustic contrast between ablated and healthy atrial-wall

  1. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    Science.gov (United States)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  2. Multi-spectral band selection for satellite-based systems

    International Nuclear Information System (INIS)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-01-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed

  3. Multispectral image pansharpening based on the contourlet transform

    Energy Technology Data Exchange (ETDEWEB)

    Amro, Israa; Mateos, Javier, E-mail: iamro@correo.ugr.e, E-mail: jmd@decsai.ugr.e [Departamento de Ciencias de la Computacion e I.A., Universidad de Granada, 18071 Granada (Spain)

    2010-02-01

    Pansharpening is a technique that fuses the information of a low resolution multispectral image (MS) and a high resolution panchromatic image (PAN), usually remote sensing images, to provide a high resolution multispectral image. In the literature, this task has been addressed from different points of view being one of the most popular the wavelets based algorithms. Recently, the contourlet transform has been proposed. This transform combines the advantages of the wavelets transform with a more efficient directional information representation. In this paper we propose a new pansharpening method based on contourlets, compare with its wavelet counterpart and assess its performance numerically and visually.

  4. Converting sunlight into audible sound by means of the photoacoustic effect: The Heliophone.

    Science.gov (United States)

    Roozen, N B; Glorieux, C; Liu, L; Rychtáriková, M; Van der Donck, T; Jacobs, A

    2016-09-01

    One hundred and thirty-five years after Alexander Graham Bell and his assistant Charles Sumner Tainter explored the photoacoustic effect, and about 40 years after Rosencwaig and Gersho modeled the effect in a photoacoustic cell configuration, the phenomenon is revisited in a "Heliophone" device that converts sunlight into sound. The light is focused on a carbon blackened copper coated Kapton foil in an acoustic cell by means of a compound parabolic collimator, and its intensity is modulated by a mechanical chopper. A horn is employed to make the sound audible without electronic amplification. The description of the photoacoustic effect that was introduced by Rosencwaig and Gersho is extended to a cell-horn configuration, in which the periodically heated air above the foil acts as an oscillating piston, driving acoustic waves in the horn. The pressure in the cavity-horn assembly is calculated by considering the air layer piston as an equivalent volume velocity source. The importance of the carbon black (soot) layer to enhance light absorption, but above all to enhance the photothermal excitation efficiency, is elucidated by means of an experimentally supported physical model.

  5. In vivo study of rat cortical hemodynamics using a stereotaxic-apparatus-compatible photoacoustic microscope.

    Science.gov (United States)

    Guo, Heng; Chen, Qian; Qi, Weizhi; Chen, Xingxing; Xi, Lei

    2018-04-19

    Brain imaging is an important technique in cognitive neuroscience. In this article, we designed a stereotaxic-apparatus-compatible photoacoustic microscope for the studies of rat cortical hemodynamics. Compared with existing optical resolution photoacoustic microscopy (ORPAM) systems, the probe owns feature of fast, light and miniature. In this microscope, we integrated a miniaturized ultrasound transducer with a center frequency of 10 MHz to detect photoacoustic signals and a 2-dimensional (2D) microelectromechanical system (MEMS) scanner to achieve raster scanning of the optical focus. Based on phantom evaluation, this imaging probe has a high lateral resolution of 3.8 μm and an effective imaging domain of 2 × 2 mm 2 . Different from conventional ORPAMs, combining with standard stereotaxic apparatus enables broad studies of rodent brains without any motion artifact. To show its capability, we successfully captured red blood cell flow in the capillary, monitored the vascular changes during bleeding and blood infusion and visualized cortical hemodynamics induced by middle cerebral artery occlusion. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Time Reversal Reconstruction Algorithm Based on PSO Optimized SVM Interpolation for Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Mingjian Sun

    2015-01-01

    Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.

  7. Measurement of the Auger lifetime in GaInAsSb/GaSb heterostructures using the photoacoustic technique

    International Nuclear Information System (INIS)

    Riech, I.; Gomez-Herrera, M. L.; Diaz, P.; Mendoza-Alvarez, J. G.; Herrera-Perez, J. L.; Marin, E.

    2001-01-01

    We have studied Ga x In 1-x As y Sb 1-y /GaSb heterostructures for x=0.84 and y=0.14 using the photoacoustic technique with the heat transmission configuration. A theoretical model, which includes all the possible nonradiative recombination mechanisms that contribute to heat generation, was developed to calculate the photoacoustic signal for this type of heterostructure. The Auger recombination lifetime τ Auger was determined by fitting our experimental results to the calculated frequency dependence of the theoretical photoacoustic signal. The obtained value for τ Auger is compatible with those reported in the literature for semiconductors with band-gap energies below and above 0.5 eV, the energy region where there is a lack of experimental τ Auger values. Copyright 2001 American Institute of Physics

  8. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    Science.gov (United States)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  9. Use of Multispectral Imaging in Varietal Identification of Tomato

    DEFF Research Database (Denmark)

    Shrestha, Santosh; Deleuran, Lise Christina; Olesen, Merete Halkjær

    2015-01-01

    Abstract: Multispectral imaging is an emerging non-destructive technology. In this work its potential for varietal discrimination and identification of tomato cultivars of Nepal was investigated. Two sample sets were used for the study, one with two parents and their crosses and other with eleven...... obtained provide an opportunity of using multispectral imaging technology as a primary tool in a scientific community for identification/discrimination of plant varieties in regard to genetic purity and plant variety protection/registration.......Abstract: Multispectral imaging is an emerging non-destructive technology. In this work its potential for varietal discrimination and identification of tomato cultivars of Nepal was investigated. Two sample sets were used for the study, one with two parents and their crosses and other with eleven...... cultivars to study parents and offspring relationship and varietal identification respectively. Normalized canonical discriminant analysis (nCDA) and principal component analysis (PCA) were used to analyze and compare the results for parents and offspring study. Both the results showed clear discrimination...

  10. A multilevel multispectral data set analysis in the visible and infrared wavelength regions. [for land use remote sensing

    Science.gov (United States)

    Biehl, L. L.; Silva, L. F.

    1975-01-01

    Skylab multispectral scanner data, digitized Skylab color infrared (IR) photography, digitized Skylab black and white multiband photography, and Earth Resources Technology Satellite (ERTS) multispectral scanner data collected within a 24-hr time period over an area in south-central Indiana near Bloomington on June 9 and 10, 1973, were compared in a machine-aided land use analysis of the area. The overall classification performance results, obtained with nine land use classes, were 87% correct classification using the 'best' 4 channels of the Skylab multispectral scanner, 80% for the channels on the Skylab multispectral scanner which are spectrally comparable to the ERTS multispectral scanner, 88% for the ERTS multispectral scanner, 83% for the digitized color IR photography, and 76% for the digitized black and white multiband photography. The results indicate that the Skylab multispectral scanner may yield even higher classification accuracies when a noise-filtered multispectral scanner data set becomes available in the near future.

  11. Lymph node metastasis of carcinomas of transverse colon including flexures. Consideration of the extramesocolic lymph node stations.

    Science.gov (United States)

    Perrakis, Aristotelis; Weber, Klaus; Merkel, Susanne; Matzel, Klaus; Agaimy, Abbas; Gebbert, Carol; Hohenberger, Werner

    2014-10-01

    Complete mesocolic excision (CME) is nowadays state of the art in the treatment of colon cancer. In cases of carcinoma of transverse colon and of both flexures an extramesocolic lymph node metastasis can be found in the infrapancreatic lymph node region (ILR) and across the gastroepiploic arcade (GLR). These direct metastatic routes were not previously systematically considered. In order to validate our hypothesis of these direct metastatic pathways and to obtain evidence of our approach of including dissection of these areas as part of CME, we initiated a prospective study evaluating these lymph node regions during surgery. Forty-five consecutive patients with primary tumour manifestation in transverse colon and both flexures between May 2010 and January 2013 were prospectively analyzed. Patients were followed up for at least 6 months. Mode of surgery, histopathology, morbidity and mortality were evaluated. Twenty-six patients had a carcinoma of transverse colon, 16 patients one of hepatic flexure and four patients one of splenic flexure. The median lymph node yield was 40. Occurrence of lymph node metastasis in ILR was registered in five patients and in GLR in four patients. The mean lymph node ratio was 0.085. Postoperative complications occurred in nine patients, and postoperative mortality was 2 %. We were able to demonstrate this novel metastatic route of carcinomas of the transverse colon and of both flexures in ILR and GLR. These could be considered as regional lymph node regions and have to be included into surgery for cancer of the transverse colon including both flexures.

  12. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, M [Los Alamos National Laboratory; Springston, S [Brookhaven National Laboratory; Koontz, A [Pacific Northwest National Laboratory; Aiken, A [Los Alamos National Laboratory

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instrument’s manufacturer.

  13. In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2017-01-01

    Microneedle technology allows micron-sized conduits to be formed within the outermost skin layers for both localized and systemic delivery of therapeutics including nanoparticles. Histological methods are often employed for characterization, and unfortunately do not allow for the in vivo visualization of the delivery process. This study presents the utilization of optical resolution-photoacoustic microscopy to characterize the transdermal delivery of nanoparticles using microneedles. Specifically, we observe the in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and study the penetration, diffusion, and spatial distribution of the nanoparticles in the tissue. The promising results reveal that photoacoustic microscopy can be used as a potential imaging modality for the in vivo characterization of microneedles based drug delivery. PMID:29296482

  14. Photoacoustic imaging for assessing ischemic kidney damage in vivo

    Science.gov (United States)

    Berndl, Elizabeth S. L.; He, Xiaolin; Yuen, Darren A.; Kolios, Michael C.

    2018-02-01

    Ischemic reperfusion injuries (IRIs) occur after blood returns to a tissue or organ after a period without oxygen or nutrients, which causes an inflammatory response leading to heterogeneous scarring of the nearby tissue and vasculature. This is associated with long-term decreases blood flow, and necrosis. Although most commonly associated with heart attacks and strokes, IRIs are also a side effect of organ transplants, when the organ is reperfused in the recipient's body after being transported from the donor to the transplant hospital. Currently, the optimal method of monitoring for IRI is limited to biopsies, which are invasive and poorly monitor the spatial heterogeneity of the damage. To non-invasively identify changes in kidneys, the left renal artery in mice (n=3) was clamped for 45 minutes to create an IRI event. Both kidneys of each animal were monitored using photoacoustics (PA) with the VevoLAZR system (Fujifilm-VisualSonics, Toronto) three, four and eight weeks after surgery. IRI-treated kidneys show increased picosirius red staining, indicative of collagen (0.601 vs 0.042, p < 0.0001), decreased size as assessed by cross-sectional area (7.8 mm2 vs 35.9 mm2 , p < 0.0001), and decreased oxygen saturation (sO2; 62% vs 77%, p = 0.02). Analysis of the photoacoustic data shows that a two-point metric, the 715:930 nm ratio of the whole kidney (1.05 vs 0.57, p = 0.049) and the optical spectral slope (OSS) (0.8 * 10-3 vs 3.0 * 10-3, p = 0.013) are both able to differentiate between IRI-treated and healthy kidneys. These data suggest that photoacoustics can be used as a non-invasive method to observe in vivo changes in the kidney due to IRI.

  15. Photoacoustic trace gas sensing : application to fruit and insects

    NARCIS (Netherlands)

    Persijn, Stefan Timotheüs

    2001-01-01

    A novel photoacoustic spectrometer has been applied to study trace gas emissions by fruit and insects. The spectrometer is based on a newly designed CO laser that can operate on 400 laser lines between 5.1-8.0 and 2.8-4.1 micrometer (delta v=1 and 2 mode, respectively). The spectrometer is equipped

  16. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    OpenAIRE

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-01-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, b...

  17. Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera

    Science.gov (United States)

    Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.

    2017-10-01

    Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.

  18. All-optical photoacoustic microscopy using a MEMS scanning mirror

    Science.gov (United States)

    Chen, Sung-Liang; Xie, Zhixing; Ling, Tao; Wei, Xunbin; Guo, L. Jay; Wang, Xueding

    2013-03-01

    It has been studied that a potential marker to obtain prognostic information about bladder cancer is tumor neoangiogenesis, which can be quantified by morphometric characteristics such as microvascular density. Photoacoustic microscopy (PAM) can render sensitive three-dimensional (3D) mapping of microvasculature, providing promise to evaluate the neoangiogenesis that is closely related to the diagnosis of bladder cancer. To ensure good image quality, it is desired to acquire bladder PAM images from its inside via the urethra, like conventional cystoscope. Previously, we demonstrated all-optical PAM systems using polymer microring resonators to detect photoacoustic signals and galvanometer mirrors for laser scanning. In this work, we build a miniature PAM system using a microelectromechanical systems (MEMS) scanning mirror, demonstrating a prototype of an endoscopic PAM head capable of high imaging quality of the bladder. The system has high resolutions of 17.5 μm in lateral direction and 19 μm in the axial direction at a distance of 5.4 mm. Images of printed grids and the 3D structure of microvasculature in animal bladders ex vivo by the system are demonstrated.

  19. Predictive Factors for Nonsentinel Lymph Node Metastasis in Patients With Positive Sentinel Lymph Nodes After Neoadjuvant Chemotherapy: Nomogram for Predicting Nonsentinel Lymph Node Metastasis.

    Science.gov (United States)

    Ryu, Jai Min; Lee, Se Kyung; Kim, Ji Young; Yu, Jonghan; Kim, Seok Won; Lee, Jeong Eon; Han, Se Hwan; Jung, Yong Sik; Nam, Seok Jin

    2017-11-01

    Axillary lymph node (ALN) status is an important prognostic factor for breast cancer patients. With increasing numbers of patients undergoing neoadjuvant chemotherapy (NAC), issues concerning sentinel lymph node biopsy (SLNB) after NAC have emerged. We analyzed the clinicopathologic features and developed a nomogram to predict the possibility of nonsentinel lymph node (NSLN) metastases in patients with positive SLNs after NAC. A retrospective medical record review was performed of 140 patients who had had clinically positive ALNs at presentation, had a positive SLN after NAC on subsequent SLNB, and undergone axillary lymph node dissection (ALND) from 2008 to 2014. On multivariate stepwise logistic regression analysis, pathologic T stage, lymphovascular invasion, SLN metastasis size, and number of positive SLN metastases were independent predictors for NSLN metastases (P Samsung Medical Center NAC nomogram was developed to predict the likelihood of additional positive NSLNs. The Samsung Medical Center NAC nomogram could provide information to surgeons regarding whether to perform additional ALND when the permanent biopsy revealed positive findings, although the intraoperative SLNB findings were negative. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars

    DEFF Research Database (Denmark)

    Bekiaris, Georgios; Peltre, Clément; Jensen, Lars Stoumann

    2016-01-01

    In the last decade, numerous studies have evaluated the benefits of biochar for improving soil quality. The purposes of the current study were to use Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to analyse P species in biochar and to determine the effect of pyrolysis temperatu...

  1. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qizhi; Carney, Paul R; Yuan Zhen; Jiang Huabei [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu Zhao [Department of Pediatrics, Division of Pediatric Neurology, University of Florida, Gainesville, FL 32610 (United States); Chen Huanxin; Roper, Steven N [Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265 (United States)], E-mail: hjiang@bme.ufl.edu

    2008-04-07

    Non-invasive laser-induced photoacoustic tomography (PAT) is an emerging imaging modality that has the potential to image the dynamic function of the brain due to its unique ability of imaging biological tissues with high optical contrast and ultrasound resolution. Here we report the first application of our finite-element-based PAT for imaging of epileptic seizures in an animal model. In vivo photoacoustic images were obtained in rats with focal seizures induced by microinjection of bicuculline, a GABA{sub A} antagonist, into the neocortex. The seizure focus was accurately localized by PAT as confirmed with gold-standard electroencephalogram (EEG). Compared to the existing neuroimaging modalities, PAT not only has the unprecedented advantage of high spatial and temporal resolution in a single imaging modality, but also is portable and low in cost, making it possible to bring brain imaging to the bedside.

  2. Landsat 1-5 Multispectral Scanner V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: The Landsat Multispectral Scanner (MSS) was a sensor onboard Landsats 1 through 5 and acquired images of the Earth nearly continuously from July 1972 to...

  3. Combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis reveal the cognitive characteristics of honey bee chemosensory protein to plant semiochemical.

    Science.gov (United States)

    Tan, Jing; Song, Xinmi; Fu, Xiaobin; Wu, Fan; Hu, Fuliang; Li, Hongliang

    2018-05-09

    In the chemoreceptive system of insects, there are always some soluble binding proteins, such as some antennal-specific chemosensory proteins (CSPs), which are abundantly distributed in the chemosensory sensillar lymph. The antennal-specific CSPs usually have strong capability to bind diverse semiochemicals, while the detailed interaction between CSPs and the semiochemicals remain unclear. Here, by means of the combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis, we detailedly interpreted a binding interaction between a plant semiochemical β-ionone and antennal-specific CSP1 from the worker honey bee. Thermodynamic parameters (ΔH  0) indicate that the interaction is mainly driven by hydrophobic forces and electrostatic interactions. Docking prediction results showed that there are two key amino acids, Phe44 and Gln63, may be involved in the interacting process of CSP1 to β-ionone. In order to confirm the two key amino acids, site-directed mutagenesis were performed and the binding constant (K A ) for two CSP1 mutant proteins was reduced by 60.82% and 46.80% compared to wild-type CSP1. The thermodynamic analysis of mutant proteins furtherly verified that Phe44 maintained an electrostatic interaction and Gln63 contributes hydrophobic and electrostatic forces. Our investigation initially elucidates the physicochemical mechanism of the interaction between antennal-special CSPs in insects including bees to plant semiochemicals, as well as the development of twice thermodynamic analysis (wild type and mutant proteins) combined with multispectral and site-directed mutagenesis methods. Copyright © 2018. Published by Elsevier B.V.

  4. Multispectral Imaging in Cultural Heritage Conservation

    Science.gov (United States)

    Del Pozo, S.; Rodríguez-Gonzálvez, P.; Sánchez-Aparicio, L. J.; Muñoz-Nieto, A.; Hernández-López, D.; Felipe-García, B.; González-Aguilera, D.

    2017-08-01

    This paper sums up the main contribution derived from the thesis entitled "Multispectral imaging for the analysis of materials and pathologies in civil engineering, constructions and natural spaces" awarded by CIPA-ICOMOS for its connection with the preservation of Cultural Heritage. This thesis is framed within close-range remote sensing approaches by the fusion of sensors operating in the optical domain (visible to shortwave infrared spectrum). In the field of heritage preservation, multispectral imaging is a suitable technique due to its non-destructive nature and its versatility. It combines imaging and spectroscopy to analyse materials and land covers and enables the use of a variety of different geomatic sensors for this purpose. These sensors collect both spatial and spectral information for a given scenario and a specific spectral range, so that, their smaller storage units save the spectral properties of the radiation reflected by the surface of interest. The main goal of this research work is to characterise different construction materials as well as the main pathologies of Cultural Heritage elements by combining active and passive sensors recording data in different ranges. Conclusions about the suitability of each type of sensor and spectral range are drawn in relation to each particular case study and damage. It should be emphasised that results are not limited to images, since 3D intensity data from laser scanners can be integrated with 2D data from passive sensors obtaining high quality products due to the added value that metric brings to multispectral images.

  5. MULTISPECTRAL IMAGING IN CULTURAL HERITAGE CONSERVATION

    Directory of Open Access Journals (Sweden)

    S. Del Pozo

    2017-08-01

    Full Text Available This paper sums up the main contribution derived from the thesis entitled "Multispectral imaging for the analysis of materials and pathologies in civil engineering, constructions and natural spaces" awarded by CIPA-ICOMOS for its connection with the preservation of Cultural Heritage. This thesis is framed within close-range remote sensing approaches by the fusion of sensors operating in the optical domain (visible to shortwave infrared spectrum. In the field of heritage preservation, multispectral imaging is a suitable technique due to its non-destructive nature and its versatility. It combines imaging and spectroscopy to analyse materials and land covers and enables the use of a variety of different geomatic sensors for this purpose. These sensors collect both spatial and spectral information for a given scenario and a specific spectral range, so that, their smaller storage units save the spectral properties of the radiation reflected by the surface of interest. The main goal of this research work is to characterise different construction materials as well as the main pathologies of Cultural Heritage elements by combining active and passive sensors recording data in different ranges. Conclusions about the suitability of each type of sensor and spectral range are drawn in relation to each particular case study and damage. It should be emphasised that results are not limited to images, since 3D intensity data from laser scanners can be integrated with 2D data from passive sensors obtaining high quality products due to the added value that metric brings to multispectral images.

  6. Fingerprint enhancement using a multispectral sensor

    Science.gov (United States)

    Rowe, Robert K.; Nixon, Kristin A.

    2005-03-01

    The level of performance of a biometric fingerprint sensor is critically dependent on the quality of the fingerprint images. One of the most common types of optical fingerprint sensors relies on the phenomenon of total internal reflectance (TIR) to generate an image. Under ideal conditions, a TIR fingerprint sensor can produce high-contrast fingerprint images with excellent feature definition. However, images produced by the same sensor under conditions that include dry skin, dirt on the skin, and marginal contact between the finger and the sensor, are likely to be severely degraded. This paper discusses the use of multispectral sensing as a means to collect additional images with new information about the fingerprint that can significantly augment the system performance under both normal and adverse sample conditions. In the context of this paper, "multispectral sensing" is used to broadly denote a collection of images taken under different illumination conditions: different polarizations, different illumination/detection configurations, as well as different wavelength illumination. Results from three small studies using an early-stage prototype of the multispectral-TIR (MTIR) sensor are presented along with results from the corresponding TIR data. The first experiment produced data from 9 people, 4 fingers from each person and 3 measurements per finger under "normal" conditions. The second experiment provided results from a study performed to test the relative performance of TIR and MTIR images when taken under extreme dry and dirty conditions. The third experiment examined the case where the area of contact between the finger and sensor is greatly reduced.

  7. Number of evaluated lymph nodes and positive lymph nodes, lymph node ratio, and log odds evaluation in early-stage pancreatic ductal adenocarcinoma: numerology or valid indicators of patient outcome?

    Science.gov (United States)

    Lahat, G; Lubezky, N; Gerstenhaber, F; Nizri, E; Gysi, M; Rozenek, M; Goichman, Y; Nachmany, I; Nakache, R; Wolf, I; Klausner, J M

    2016-09-29

    We evaluated the prognostic significance and universal validity of the total number of evaluated lymph nodes (ELN), number of positive lymph nodes (PLN), lymph node ratio (LNR), and log odds of positive lymph nodes (LODDS) in a relatively large and homogenous cohort of surgically treated pancreatic ductal adenocarcinoma (PDAC) patients. Prospectively accrued data were retrospectively analyzed for 282 PDAC patients who had pancreaticoduodenectomy (PD) at our institution. Long-term survival was analyzed according to the ELN, PLN, LNR, and LODDS. Of these patients, 168 patients (59.5 %) had LN metastasis (N1). Mean ELN and PLN were 13.5 and 1.6, respectively. LN positivity correlated with a greater number of evaluated lymph nodes; positive lymph nodes were identified in 61.4 % of the patients with ELN ≥ 13 compared with 44.9 % of the patients with ELN < 13 (p = 0.014). Median overall survival (OS) and 5-year OS rate were higher in N0 than in N1 patients, 22.4 vs. 18.7 months and 35 vs. 11 %, respectively (p = 0.008). Mean LNR was 0.12; 91 patients (54.1 %) had LNR < 0.3. Among the N1 patients, median OS was comparable in those with LNR ≥ 0.3 vs. LNR < 0.3 (16.7 vs. 14.1 months, p = 0.950). Neither LODDS nor various ELN and PLN cutoff values provided more discriminative information within the group of N1 patients. Our data confirms that lymph node positivity strongly reflects PDAC biology and thus patient outcome. While a higher number of evaluated lymph nodes may provide a more accurate nodal staging, it does not have any prognostic value among N1 patients. Similarly, PLN, LNR, and LODDS had limited prognostic relevance.

  8. Detecting early stage pressure ulcer on dark skin using multispectral imager

    Science.gov (United States)

    Yi, Dingrong; Kong, Linghua; Sprigle, Stephen; Wang, Fengtao; Wang, Chao; Liu, Fuhan; Adibi, Ali; Tummala, Rao

    2010-02-01

    We are developing a handheld multispectral imaging device to non-invasively inspect stage I pressure ulcers in dark pigmented skins without the need of touching the patient's skin. This paper reports some preliminary test results of using a proof-of-concept prototype. It also talks about the innovation's impact to traditional multispectral imaging technologies and the fields that will potentially benefit from it.

  9. Selective sentinel lymph node biopsy in papillary thyroid carcinoma in patients with no preoperative evidence of lymph node metastasis.

    Science.gov (United States)

    González, Óscar; Zafon, Carles; Caubet, Enric; García-Burillo, Amparo; Serres, Xavier; Fort, José Manuel; Mesa, Jordi; Castell, Joan; Roca, Isabel; Ramón Y Cajal, Santiago; Iglesias, Carmela

    2017-10-01

    Lymphadenectomy is recommended during surgery for papillary thyroid carcinoma when there is evidence of cervical lymph node metastasis (therapeutic) or in high-risk patients (prophylactic) such as those with T3 and T4 tumors of the TNM classification. Selective sentinel lymph node biopsy may improve preoperative diagnosis of nodal metastases. To analyze the results of selective sentinel lymph node biopsy in a group of patients with papillary thyroid carcinoma and no evidence of nodal involvement before surgery. A retrospective, single-center study in patients with papillary thyroid carcinoma and no clinical evidence of lymph node involvement who underwent surgery between 2011 and 2013. The sentinel node was identified by scintigraphy. When the sentinel node was positive, the affected compartment was removed, and when sentinel node was negative, central lymph node dissection was performed. Forty-three patients, 34 females, with a mean age of 52.3 (±17) years, were enrolled. Forty-six (27%) of the 170 SNs resected from 24 (55.8%) patients were positive for metastasis. In addition, 94 (15.6%) out of the 612 lymph nodes removed in the lymphadenectomies were positive for metastases. Twelve of the 30 (40%) low risk patients (cT1N0 and cT2N0) changed their stage to pN1, whereas 12 of 13 (92%) high risk patients (cT3N0 and cT4N0) changed to pN1 stage. Selective sentinel lymph node biopsy changes the stage of more than 50% of patients from cN0 to pN1. This confirms the need for lymph node resection in T3 and T4 tumors, but reveals the presence of lymph node metastases in 40% of T1-T2 tumors. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Using high-power light emitting diodes for photoacoustic imaging

    DEFF Research Database (Denmark)

    Hansen, R. S.

    2011-01-01

    for the experiment consists of a 3mm high x 5mm wide slice of green colored gelatine overlaid by a 3cm layer of colorless gelatine. The light pulses from the LED is focused on the green gelatine. The photoacoustic response from the green gelatine is detected by a single transducer on the opposite (top) surface...

  11. Isotropic-resolution linear-array-based photoacoustic computed tomography through inverse Radon transform

    Science.gov (United States)

    Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.

    2015-03-01

    Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.

  12. Characterization of a photoacoustic system through neural networks to determine multicomponent samples

    Science.gov (United States)

    Zajarevich, N. M.; Peuriot, A. L.; Slezak, V. B.

    2016-07-01

    Photoacoustic spectroscopy for trace gases detection, based on a CO2 laser, can be used in a wide range of applications. The tunability of this laser in the mid-infrared (9.4-10.6 μm) allows the quantitative determination of different substances in multicomponent samples. In general, at traces level, the total photoacoustic amplitude at a certain wavelength may be approximated by a linear superposition of the amplitudes given by each of the species absorbing at that wavelength. However, in some cases, the sum of the individual signals is no longer valid. In particular, it is known the presence of CO2 delays the acoustic signal in relation to the laser excitation due to the exchange of vibrational energy between CO2 and N2. This phenomenon generates a slow V-T energy relaxation from a metastable N2 vibrational level and the sum of individual contributions may no longer be valid. Moreover, the resolution of a linear equation system has limitations, so the possibility to determine concentrations in photoacoustics based on neural network is proposed in this work. This procedure is tried in a particular case of a volatile organic compound, such as C2H4, and CO2 in air. The results are compared with the ones obtained with a model based on rate equations.

  13. Experimental studies of metastases of esophageal carcinoma to lymph nodes

    International Nuclear Information System (INIS)

    Inoue, Kazumasa

    1977-01-01

    Marked progress has been made in surgery for esophageal carcinoma, however, when compared to results of surgery for other carcinomas of the digestive tract, much research remains to be done. The author transplanted VX2 carcinoma, a transplantable tumor of the rabbit, to the esophagus in attempt to determine the mode of metastases of esophageal carcinoma to lymph nodes and also to observe the effect of chemotherapy (Bleomycin) and radiotherapy (Betatron). Carcinoma of the cervical esophagus metastasized to the cervical lymph nodes and then to the paratracheal lymph nodes. Carcinoma of the upper thoracic esophagus metastasized to the paratracheal lymph nodes and then to the cervical lymph nodes. Carcinoma of the mid-thoracic esophagus metastasized to the intrathoracic lymph nodes and then to the intraperitoneal lymph nodes. Carcinoma of the abdominal esophagus metastasized to the intraperitoneal lymph nodes and then to the intrathoracic lymph nodes. Skipping metastasis was rarely observed. Carcinoma of the thoracic esophagus with metastases of lymph nodes in the cervical or abdominal portion was considerably advanced, therefore it is considered that cleaning of the intrathoracic lymph nodes and simultaneous chemotherapy are required when such cases are encountered clinically. Irradiation resulted in regression in the size of the tumor and metastases to lymph nodes and there was a decrease in metastases to the distant lymph nodes. Effects of irradiation were similar on tumors and lymph nodes with positive metastases located within the field of irradiation. Bleomycin medication resulted in regression in the size of tumor and metastases to lymph nodes. Effects of Bleomycin medication were similar on tumors and lymph nodes with positive metastases. (auth.)

  14. Evaluation of an optical fiber probe for in vivo measurement of the photoacoustic response of tissues

    Science.gov (United States)

    Beard, Paul C.; Mills, Timothy N.

    1995-05-01

    A miniature (1 mm diameter) all-optical photoacoustic probe for generating and detecting ultrasonic thermoelastic waves in biological media at the tip of an optical fiber has been developed. The probe provides a compact and convenient means of performing pulsed photoacoustic spectroscopy for the characterization of biological tissue. The device is based upon a transparent Fabry Perot polymer film ultrasound sensor mounted directly over the end of a multimode optical fiber. The optical fiber is used to deliver nanosecond laser pulses to the tissue producing thermoelastic waves which are then detected by the sensor. Detection sensitivities of 53 mv/MPa and a 10 kPa acoustic noise floor have been demonstrated giving excellent signal to noise ratios in a strong liquid absorber. Lower, but clearly detectable, signals in post mortem human aorta have also been observed. The performance and small physical size of the device suggest that it has the potential to perform remote in situ photoacoustic measurements in tissue.

  15. A multispectral scanner survey of the Idaho National Engineering Laboratory and the Hanford Reservation

    International Nuclear Information System (INIS)

    Brewster, S.B. Jr.; Howard, M.E.; Shines, J.E.

    1994-09-01

    An airborne multispectral scanner survey of selected sites on the Idaho National Engineering Laboratory and the Hanford Reservation was performed in mid-November 1993. Aerial multispectral scanner and photography data were acquired coincidentally with the Big O experiment at both locations. To illustrate two potential applications, the multispectral scanner data were digitally enhanced to facilitate the detection of soil disturbance and evidence of surface water transport. The main conclusion of this study was that multispectral data acquired under these conditions can be useful for soil disturbance detection. The imagery did not prove as useful, however, for direct indications of surface water transport. It was possible to infer some water transport patterns from dry water beds, but only if surface indications were present

  16. Tunable Semiconducting Polymer Nanoparticles with INDT-Based Conjugated Polymers for Photoacoustic Molecular Imaging.

    Science.gov (United States)

    Stahl, Thomas; Bofinger, Robin; Lam, Ivan; Fallon, Kealan J; Johnson, Peter; Ogunlade, Olumide; Vassileva, Vessela; Pedley, R Barbara; Beard, Paul C; Hailes, Helen C; Bronstein, Hugo; Tabor, Alethea B

    2017-06-21

    Photoacoustic imaging combines both excellent spatial resolution with high contrast and specificity, without the need for patients to be exposed to ionizing radiation. This makes it ideal for the study of physiological changes occurring during tumorigenesis and cardiovascular disease. In order to fully exploit the potential of this technique, new exogenous contrast agents with strong absorbance in the near-infrared range, good stability and biocompatibility, are required. In this paper, we report the formulation and characterization of a novel series of endogenous contrast agents for photoacoustic imaging in vivo. These contrast agents are based on a recently reported series of indigoid π-conjugated organic semiconductors, coformulated with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, to give semiconducting polymer nanoparticles of about 150 nm diameter. These nanoparticles exhibited excellent absorption in the near-infrared region, with good photoacoustic signal generation efficiencies, high photostability, and extinction coefficients of up to three times higher than those previously reported. The absorption maximum is conveniently located in the spectral region of low absorption of chromophores within human tissue. Using the most promising semiconducting polymer nanoparticle, we have demonstrated wavelength-dependent differential contrast between vasculature and the nanoparticles, which can be used to unambiguously discriminate the presence of the contrast agent in vivo.

  17. Feasibility study and quality assessment of unmanned aircraft system-derived multispectral images

    Science.gov (United States)

    Chang, Kuo-Jen

    2017-04-01

    The purpose of study is to explore the precision and the applicability of UAS-derived multispectral images. In this study, the Micro-MCA6 multispectral camera was mounted on quadcopter. The Micro-MCA6 shoot images synchronized of each single band. By means of geotagged images and control points, the orthomosaic images of each single band generated firstly by 14cm resolution. The multispectral image was merged complete with 6 bands. In order to improve the spatial resolution, the 6 band image fused with 9cm resolution image taken from RGB camera. Quality evaluation of the image is verified of the each single band by using control points and check points. The standard deviations of errors are within 1 to 2 pixel resolution of each band. The quality of the multispectral image is compared with 3 cm resolution orthomosaic RGB image gathered from UAV in the same mission, as well. The standard deviations of errors are within 2 to 3 pixel resolution. The result shows that the errors resulting from the blurry and the band dislocation of the objects edge identification. To the end, the normalized difference vegetation index (NDVI) extracted from the image to explore the condition of vegetation and the nature of the environment. This study demonstrates the feasibility and the capability of the high resolution multispectral images.

  18. Sentinel lymph node biopsy is indicated for patients with thick clinically lymph node-negative melanoma.

    Science.gov (United States)

    Yamamoto, Maki; Fisher, Kate J; Wong, Joyce Y; Koscso, Jonathan M; Konstantinovic, Monique A; Govsyeyev, Nicholas; Messina, Jane L; Sarnaik, Amod A; Cruse, C Wayne; Gonzalez, Ricardo J; Sondak, Vernon K; Zager, Jonathan S

    2015-05-15

    Sentinel lymph node biopsy (SLNB) is indicated for the staging of clinically lymph node-negative melanoma of intermediate thickness, but its use is controversial in patients with thick melanoma. From 2002 to 2012, patients with melanoma measuring ≥4 mm in thickness were evaluated at a single institution. Associations between survival and clinicopathologic characteristics were explored. Of 571 patients with melanomas measuring ≥4 mm in thickness and no distant metastases, the median age was 66 years and 401 patients (70.2%) were male. The median Breslow thickness was 6.2 mm; the predominant subtype was nodular (45.4%). SLNB was performed in 412 patients (72%) whereas 46 patients (8.1%) presented with clinically lymph node-positive disease and 113 patients (20%) did not undergo SLNB. A positive SLN was found in 161 of 412 patients (39.1%). For SLNB performed at the study institution, 14 patients with a negative SLNB developed disease recurrence in the mapped lymph node basin (false-negative rate, 12.3%). The median disease-specific survival (DSS), overall survival (OS), and recurrence-free survival (RFS) for the entire cohort were 62.1 months, 42.5 months, and 21.2 months, respectively. The DSS and OS for patients with a negative SLNB were 82.4 months and 53.4 months, respectively; 41.2 months and 34.7 months, respectively, for patients with positive SLNB; and 26.8 months and 22 months, respectively, for patients with clinically lymph node-positive disease (Pthick melanoma and a negative SLNB appear to have significantly prolonged RFS, DSS, and OS compared with those with a positive SLNB. Therefore, SLNB should be considered as indicated for patients with thick, clinically lymph node-negative melanoma. © 2015 American Cancer Society.

  19. Reverse photoacoustic standoff spectroscopy

    Science.gov (United States)

    Van Neste, Charles W [Kingston, TN; Senesac, Lawrence R [Knoxville, TN; Thundat, Thomas G [Knoxville, TN

    2011-04-12

    A system and method are disclosed for generating a reversed photoacoustic spectrum at a greater distance. A source may emit a beam to a target and a detector measures signals generated as a result of the beam being emitted on the target. By emitting a chopped/pulsed light beam to the target, it may be possible to determine the target's optical absorbance by monitoring the intensity of light collected at the detector at different wavelengths. As the wavelength of light is changed, the target may absorb or reject each optical frequency. Rejection may increase the intensity at the sensing element and absorption may decrease the intensity. Accordingly, an identifying spectrum of the target may be made with the intensity variation of the detector as a function of illuminating wavelength.

  20. Coagulation of sheep intestinal and prefemoral lymph.

    Science.gov (United States)

    Hanley, C A; Johnston, M G; Nelson, W

    1988-06-01

    We have determined the most suitable method for the automated analysis of the clotting parameters in sheep intestinal and prefemoral lymph as defined by the Activated Partial Thromboplastin Times (APTT; measure of intrinsic coagulation pathway) and the Prothrombin Times (PT; measure of extrinsic coagulation pathway). As opposed to optical density systems, the use of a Fibro-System Fibrometer was found to provide the most consistent assessment of coagulation with the endpoint being the time to fibrin strand formation. We measured APTT in sheep intestinal and prefemoral lymph of 59.78 +/- 7.69 seconds and 51.03 +/- 10.49 seconds respectively. These values were more prolonged than those obtained from sheep blood plasma but only in the case of intestinal lymph were the differences significant (p less than 0.025). Human blood APTT values were significantly less than both sheep blood (p less than 0.05) and sheep intestinal (p less than 0.001) and prefemoral lymph (p less than 0.01). PT values were found to be 21.56 +/- 1.14 seconds in intestinal and 22.00 +/- 1.88 seconds in prefemoral lymph. These values were also significantly greater than those obtained from sheep blood (both p less than 0.001). Human blood PTs were significantly less than both sheep blood (p less than 0.001) and intestinal and prefemoral lymph (both p less than 0.001). Measurement of APTT and PT values in intestinal lymph and PT determinations in prefemoral lymph were not affected by storage in the refrigerator or freezer. There was some indication that APTT values in prefemoral samples were susceptible to storage artifacts; however, the differences in coagulation times were not significant.

  1. Multispectral Landsat images of Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Lucchitta, B.K.; Bowell, J.A.; Edwards, K.L.; Eliason, E.M.; Fergurson, H.M.

    1988-01-01

    The U.S. Geological Survey has a program to map Antarctica by using colored, digitally enhanced Landsat multispectral scanner images to increase existing map coverage and to improve upon previously published Landsat maps. This report is a compilation of images and image mosaic that covers four complete and two partial 1:250,000-scale quadrangles of the McMurdo Sound region.

  2. Photoacoustic investigation of doped InP using open cell configuration

    NARCIS (Netherlands)

    George, S.D.; Vallabhan, C.P.G.; Heck, M.J.R.; Radhakrishnan, P.; Nampoori, V.P.N.

    2002-01-01

    An open cell photoacoustic (PA) configuration was employed to evaluate the thermal diffusivity of intrinsic InP as well as InP doped with tin and iron. Thermal diffusivity data were evaluated from variation of phase of PA signal as a function of modulation frequency. In doped samples, we observe a

  3. X-ray diffraction, Raman and photoacoustic studies of InSb nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ersching, K., E-mail: kleb85@hotmail.com [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, 88040-900 Florianopolis, Santa Catarina (Brazil); Campos, C.E.M.; Lima, J.C. de; Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, 88040-900 Florianopolis, Santa Catarina (Brazil); Souza, S.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, 88040-900 Florianopolis, Santa Catarina (Brazil); Pizani, P.S. [Departamento de Fisica, Universidade Federal de Sao Carlos, 13 565-905 Sao Carlos, SP (Brazil)

    2010-08-01

    Zinc blend InSb nanocrystals were generated by mechanical alloying and X-ray diffraction, Raman spectroscopy and photoacoustic absorption spectroscopy techniques were used to study its structural, optical and thermal properties. Annealed nanocrystals were also studied. Residual amorphous and minority crystalline (Sb and In{sub 2}O{sub 3}) phases were also observed for mechanical alloyed and thermal annealed samples, respectively. The structural parameters, phase fractions, average crystallite sizes and microstrains of all crystalline phases found in the samples were obtained from Rietveld analyses of their X-ray diffraction patterns. Raman results for both as-milled and annealed samples show the Raman active LO and TO modes of the zinc blend InSb phase and Sb-rich regions. The photoacoustic results of both samples were satisfactorily explained by thermal bending heat transfer mechanism and an increase on effective thermal diffusivity coefficient was observed after annealing.

  4. Importance of Metastatic Lymph Node Ratio in Non-Metastatic, Lymph Node-Invaded Colon Cancer: A Clinical Trial

    Science.gov (United States)

    Isik, Arda; Peker, Kemal; Firat, Deniz; Yilmaz, Bahri; Sayar, Ilyas; Idiz, Oguz; Cakir, Coskun; Demiryilmaz, Ismail; Yilmaz, Ismayil

    2014-01-01

    Background The aim of this study was to evaluate the prognostic importance of the metastatic lymph node ratio for stage III colon cancer patients and to find a cut-off value at which the overall survival and disease-free survival change. Material/Methods Patients with pathological stage III colon cancer were retrospectively evaluated for: age; preoperative values of Crp, Cea, Ca 19-9, and Afp; pathologic situation of vascular, perineural, lymphatic, and serosal involvement; and metastatic lymph node ratio values were calculated. Results The study included 58 stage III colon cancer patients: 20 (34.5%) females and 38 (65.5%) males were involved in the study. Multivariate analysis was applied to the following variables to evaluate significance for overall survival and disease-free survival: age, Crp, Cea, perineural invasion, and metastatic lymph node ratio. The metastatic lymph node ratio (<0.25 or ≥0.25) is the only independent variable significant for overall and disease-free survival. Conclusions Metastatic lymph node ratio is an ideal prognostic marker for stage III colon cancer patients, and 0.25 is the cut-off value for prognosis. PMID:25087904

  5. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.b [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Souza, S.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Biasi, R.S. de [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2011-04-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 {sup o}C the heat transfer is controlled by crystalline component.

  6. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    International Nuclear Information System (INIS)

    Poffo, C.M.; Lima, J.C. de; Souza, S.M.; Triches, D.M.; Grandi, T.A.; Biasi, R.S. de

    2011-01-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 o C the heat transfer is controlled by crystalline component.

  7. Computed tomography (CT) of cervical lymph nodes in patients with oral cancer. Comparison of low-attenuation areas in lymph nodes on CT images with pathological findings

    International Nuclear Information System (INIS)

    Fukunari, Fumiko; Okamura, Kazuhiko; Yuasa, Kenji; Kagawa, Toyohiro; Zeze, Ryousuke

    2008-01-01

    The objective of this study was to clarify the histopathological features of low-attenuation areas in computed tomography (CT) images of cervical metastatic and benign lymph nodes in patients with oral squamous cell carcinoma (SCC). CT images of 230 lymph nodes from 37 patients with oral SCC were classified into four categories and compared with histopathological findings. Metastatic lymph nodes were evaluated in terms of focal necrosis, keratinization, fibrous tissue, and the proportion of the lymph node showing focal necrosis. Benign lymph nodes were evaluated in terms of adipose tissue, follicular hyperplasia, sinus histiocytosis, hyperemia, focal hemorrhaging, and the amount of adipose tissue. Histopathologically, all 13 metastatic lymph nodes with rim enhancement on CT images included focal necrosis. However, most of the lymph nodes showed no focal necrosis. In addition, tumor cells, keratinization, and fibrous tissue were observed in the lymph nodes. Of the 26 metastatic lymph nodes with a heterogeneous appearance on CT images, four did not show focal necrosis. These lymph nodes showed keratinization or accumulation of lymph fluid. Histopathologically, 20 of 24 benign lymph nodes with a heterogeneous appearance on CT images (83.3%) had accompanying adipose tissue. Focal necrosis was the most important factor contributing to low attenuation in metastatic lymph nodes. However, other factors, such as tumor cells, keratinization, fibrous tissue, and accumulation of lymph fluid, also contributed. In benign lymph nodes, the presence of adipose tissue was a contributing factor in low-attenuation areas, as was focal hemorrhaging. (author)

  8. Quartz-enhanced photo-acoustic spectroscopy for breath analyses

    Science.gov (United States)

    Petersen, Jan C.; Lamard, Laurent; Feng, Yuyang; Focant, Jeff-F.; Peremans, Andre; Lassen, Mikael

    2017-03-01

    An innovative and novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for highly sensitive and selective breath gas analysis is introduced. The QEPAS sensor consists of two acoustically coupled micro- resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF). The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. Due to the very low fabrication costs the QEPAS sensor presents a clear breakthrough in the field of photoacoustic spectroscopy by introducing novel disposable gas chambers in order to avoid cleaning after each test. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). Spectroscopic measurements of methane and methanol in the 3.1 μm to 3.7 μm wavelength region is conducted. Demonstrating a resolution bandwidth of 1 cm-1. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s for methane and that the background noise is solely due to the thermal noise of the QTF. Spectra of both individual molecules as well as mixtures of molecules were measured and analyzed. The molecules are representative of exhaled breath gasses that are bio-markers for medical diagnostics.

  9. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging.

    Science.gov (United States)

    Hariri, Ali; Lemaster, Jeanne; Wang, Junxin; Jeevarathinam, AnanthaKrishnan S; Chao, Daniel L; Jokerst, Jesse V

    2018-03-01

    Photoacoustic imaging (PAI) is a non-invasive, high-resolution hybrid imaging modality that combines optical excitation and ultrasound detection. PAI can image endogenous chromophores (melanin, hemoglobin, etc.) and exogenous contrast agents in different medical applications. However, most current equipment uses sophisticated and complicated OPO lasers with tuning and stability features inconsistent with broad clinical deployment. As the number of applications of PAI in medicine increases, there is an urgent need to make the imaging equipment more compact, portable, and affordable. Here, portable light emitting diode - based photoacoustic imaging (PLED-PAI) was introduced and characterized in terms of system specifications, light source characterizations, photoacoustic spatial/temporal resolution, and penetration. The system uses two LED arrays attached to the sides of a conventional ultrasound transducer. The LED pulse repetition rate is tunable between 1 K Hz, 2 K Hz, 3 K Hz, and 4 K Hz. The axial resolution was 0.268 mm, and the lateral resolution was between 0.55 and 0.59 mm. The system could detect optical absorber (pencil lead) at a depth of 3.2 cm and the detection limits of indocyanine green (ICG) and methylene blue (MB) were 9 μM and 0.78 mM. In vivo imaging of labeled human mesenchymal stem cells was achieved to confirm compatibility with small animal imaging. The characterization we report here may have value to other groups evaluating commercially available photoacoustic imaging equipment.

  10. FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2012-07-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.

  11. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data

    Directory of Open Access Journals (Sweden)

    Salman Qadri

    2016-01-01

    Full Text Available The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI. Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class. By implementing a cross validation method (80-20, we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively.

  12. Photoacoustic cystography using handheld dual modal clinical ultrasound photoacoustic imaging system

    Science.gov (United States)

    Sivasubramanian, Kathyayini; Periyasamy, Vijitha; Austria, Dienzo Rhonnie; Pramanik, Manojit

    2018-02-01

    Vesicoureteral reflux is the abnormal flow of urine from your bladder back up the tubes (ureters) that connect your kidneys to your bladder. Normally, urine flows only down from your kidneys to your bladder. Vesicoureteral reflux is usually diagnosed in infants and children. The disorder increases the risk of urinary tract infections, which, if left untreated, can lead to kidney damage. X-Ray cystography is used currently to diagnose this condition which uses ionising radiation, making it harmful for patients. In this work we demonstrate the feasibility of imaging the urinary bladder using a handheld clinical ultrasound and photoacoustic dual modal imaging system in small animals (rats). Additionally, we demonstrate imaging vesicoureteral reflux using bladder mimicking phantoms. Urinary bladder imaging is done with the help of contrast agents like black ink and gold nanoparticles which have high optical absorption at 1064 nm. Imaging up to 2 cm was demonstrated with this system. Imaging was done at a framerate of 5 frames per second.

  13. Clinical experiences with photoacoustic breast imaging: the appearance of suspicious lesions

    NARCIS (Netherlands)

    Heijblom, M.

    2014-01-01

    This thesis describes photoacoustic (PA) imaging of suspicious breast lesions. In PA imaging, the tissue of interest is illuminated by short pulses of laser light, usually in the near infrared (NIR) regime. Upon absorption by primarily the tumor vasculature, the light causes a small temperature

  14. Water Mapping Using Multispectral Airborne LIDAR Data

    Science.gov (United States)

    Yan, W. Y.; Shaker, A.; LaRocque, P. E.

    2018-04-01

    This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.

  15. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    Science.gov (United States)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  16. Preoperative diagnosis of lymph node metastasis in thoracic esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Reiki; Yamada, Akiyoshi; Ueno, Keiko; Murata, Yoko [Tokyo Women`s Medical Coll. (Japan)

    1996-10-01

    From 1994 to 1995, to evaluate the utility of preoperative CT, EUS (endoscopic ultrasonography) and US in the diagnosis of lymph node metastasis in thoracic esophageal cancer, 94 patients with thoracic esophageal cancer who underwent esophagectomy were studied clinicopathologically. The sensitivity of EUS diagnosis of upper mediastinal lymph node metastasis (85%), left-sided paragastrin lymph node metastasis (73-77%), and especially lower paraesophageal lymph node metastasis (100%) were good. But due to their low-grade specificity in EUS diagnosis, their overall accuracy was not very good. On the other hand, the overall accuracy of the CT diagnosis of lymph node metastasis was fine. However, sensitivity, the most important clinical factor in the CT diagnosis of lymph node metastasis was considerably inferior to EUS. The assessment of the diagnosis of lymph node metastasis around the tracheal bifurcation and the pulmonary hilum and the left para-cardial lesion by CT or EUS was poor. It was concluded that lymph node metastasis of these area must be the pitfall in preoperative diagnosis. The average diameter of the lymph nodes and the proportion of cancerous tissue in the lymph nodes diagnosed as metastatic lymph nodes by CT was larger than that of the false negative lymph nodes. However, the lymph nodes diagnosed as true positives by EUS showed no such tendency. This must be the reason the sensitivity of the EUS diagnosis and specificity of the CT diagnosis were favorable, but the specificity of the EUS diagnosis and especially the sensitivity of the CT diagnosis were not as good. (author)

  17. Preoperative diagnosis of lymph node metastasis in thoracic esophageal cancer

    International Nuclear Information System (INIS)

    Eguchi, Reiki; Yamada, Akiyoshi; Ueno, Keiko; Murata, Yoko

    1996-01-01

    From 1994 to 1995, to evaluate the utility of preoperative CT, EUS (endoscopic ultrasonography) and US in the diagnosis of lymph node metastasis in thoracic esophageal cancer, 94 patients with thoracic esophageal cancer who underwent esophagectomy were studied clinicopathologically. The sensitivity of EUS diagnosis of upper mediastinal lymph node metastasis (85%), left-sided paragastrin lymph node metastasis (73-77%), and especially lower paraesophageal lymph node metastasis (100%) were good. But due to their low-grade specificity in EUS diagnosis, their overall accuracy was not very good. On the other hand, the overall accuracy of the CT diagnosis of lymph node metastasis was fine. However, sensitivity, the most important clinical factor in the CT diagnosis of lymph node metastasis was considerably inferior to EUS. The assessment of the diagnosis of lymph node metastasis around the tracheal bifurcation and the pulmonary hilum and the left para-cardial lesion by CT or EUS was poor. It was concluded that lymph node metastasis of these area must be the pitfall in preoperative diagnosis. The average diameter of the lymph nodes and the proportion of cancerous tissue in the lymph nodes diagnosed as metastatic lymph nodes by CT was larger than that of the false negative lymph nodes. However, the lymph nodes diagnosed as true positives by EUS showed no such tendency. This must be the reason the sensitivity of the EUS diagnosis and specificity of the CT diagnosis were favorable, but the specificity of the EUS diagnosis and especially the sensitivity of the CT diagnosis were not as good. (author)

  18. Functional photoacoustic microscopy of pH

    Science.gov (United States)

    Chatni, Muhammad Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2011-01-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy. PMID:22029342

  19. Airborne Multi-Spectral Minefield Survey

    Science.gov (United States)

    2005-05-01

    Swedish Defence Research Agency), GEOSPACE (Austria), GTD ( Ingenieria de Sistemas y Software Industrial, Spain), IMEC (Ineruniversity MicroElectronic...RTO-MP-SET-092 18 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Airborne Multi-Spectral Minefield Survey Dirk-Jan de Lange, Eric den...actions is the severe lack of baseline information. To respond to this in a rapid way, cost-efficient data acquisition methods are a key issue. de

  20. Listening to membrane potential: photoacoustic voltage-sensitive dye recording

    Science.gov (United States)

    Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.

    2017-04-01

    Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.

  1. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas

    2017-06-27

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the \\'quinone-fusing\\' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.

  2. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  3. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    International Nuclear Information System (INIS)

    Cho, Y; Chang, C-C; Zou, J; Wang, L V

    2016-01-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT. (paper)

  4. Using multi-spectral sensors for vegetation mapping

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2016-07-01

    Full Text Available Wetland and estuarine vegetation is often difficult to detect and separate from adjacent land covers with multispectral sensors for a number of reasons. The spatial resolution of space-borne sensors is often insufficient for these features which...

  5. Speed of sound and photoacoustic imaging with an optical camera based ultrasound detection system

    Science.gov (United States)

    Nuster, Robert; Paltauf, Guenther

    2017-07-01

    CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.

  6. High-speed multispectral videography with a periscope array in a spectral shaper.

    Science.gov (United States)

    Hashimoto, Kazuki; Mizuno, Hikaru; Nakagawa, Keiichi; Horisaki, Ryoichi; Iwasaki, Atsushi; Kannari, Fumihiko; Sakuma, Ichiro; Goda, Keisuke

    2014-12-15

    We present a simple method for continuous snapshot multispectral imaging or multispectral videography that achieves high-speed spectral video recording without the need for mechanical scanning and much computation for datacube construction. The enabling component of this method is an array of periscopes placed in a prism-based spectral shaper that spectrally separates the image without image deformation. As a proof-of-principle demonstration, we show five-color multispectral video recording in the visible range (200×200 pixels per spectral image frame) at a record high frame rate of at least 2800 frames per second. Our experimental results indicate that this method holds promise for various industrial and biomedical applications such as remote sensing, food inspection, and endoscopy.

  7. Optimizing the optical wavelength for the photoacoustic imaging of inflammatory arthritis

    Science.gov (United States)

    Jo, Janggun; Xu, Guan; Hu, Jack; Francis, Sheeja; Marquardt, April; Yuan, Jie; Girish, Gandikota; Wang, Xueding

    2015-03-01

    With the capability of assessing high resolution optical information in soft tissues at imaging depth up to several centimeters, innovative biomedical photoacoustic imaging (PAI) offers benefits to diagnosis and treatment monitoring of inflammatory arthritis, particularly in combination with more established ultrasonography (US). In this work, a PAI and US dual-modality system facilitating both imaging functions in a real-time fashion was developed and initially tested for its clinical performance on patients with active inflammatory arthritis. Photoacoustic (PA) images of metacarpophalangeal (MCP) joints were acquired at 580-nm wavelength that provides a desired balance between optical absorption of blood and attenuation in background tissue. The results from six patients and six normal volunteers used as a control demonstrated the satisfactory sensitivity of PAI in assessing the physiological changes in the joints, specifically enhanced blood flow as a result of active synovitis. This preliminary study suggests that PAI, by revealing vascular features suggestive of joint inflammation, could be a valuable supplement to musculoskeletal US for rheumatology clinic.

  8. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.

    Science.gov (United States)

    Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei

    2017-06-01

    We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68  kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.

  9. Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms.

    Science.gov (United States)

    Jin, Tian; Guo, Heng; Yao, Lei; Xie, Huikai; Jiang, Huabei; Xi, Lei

    2018-04-01

    Photoacoustic microscopy (PAM) provides a fundamentally new tool for a broad range of studies of biological structures and functions. However, the use of PAM has been largely limited to small vertebrates due to the large size/weight and the inconvenience of the equipment. Here, we describe a portable optical-resolution photoacoustic microscopy (pORPAM) system for 3-dimensional (3D) imaging of small-to-large rodents and humans with a high spatiotemporal resolution and a large field of view. We show extensive applications of pORPAM to multiscale animals including mice and rabbits. In addition, we image the 3D vascular networks of human lips, and demonstrate the feasibility of pORPAM to observe the recovery process of oral ulcer and cancer-associated capillary loops in human oral cavities. This technology is promising for broad biomedical studies from fundamental biology to clinical diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multispectral code excited linear prediction coding and its application in magnetic resonance images.

    Science.gov (United States)

    Hu, J H; Wang, Y; Cahill, P T

    1997-01-01

    This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.

  11. Spectroscopic and thermal characterization of bovine enamel and dentine using the photoacoustic effect

    International Nuclear Information System (INIS)

    Stolf, Sandro Fernando

    2003-01-01

    The optical and thermal properties of dental tissues determine the nature and extent of the tissue response through the processes of absorption, transmission, reflection and scattering of the laser light and the heat produced by the absorption of that light. The spectroscopic characterization of bovine dentine and enamel, and the determination of the thermal diffusivity were the aim of this study. The photoacoustic spectra from these tissues were obtained in the Near-Infrared range 900 - 2500 nm, which is the clinical range for odontological application of most lasers. Photoacoustic spectra were taken from block, slices and powder of enamel and dentine. Also photoacoustic spectra were registered before and after 2, 5 and 10 h of topical fluoride (2.26%) application. Using the same technique spectra were taken from dentine and enamel after irradiation with Nd:YAG, Er:YAG, Ho:YLF and CO 2 . It is evident from the results that the presence of O-H in the composition of hydroxyapatite and the water present in the teeth tissue make the obtention of spectrum from components other than O-H bond a very difficult task. In this way, only bands assigned to overtones and combinations of O-H stretch were observed. The thermal diffusivity of the bovine dentine was also measured using the photoacoustic technique. The thermal diffusivity is the physical quantity which measures the rate of heat diffusion throughout the sample. For higher values of the thermal diffusivity the heat diffusion and temperature rise will be faster. As there is many studies devoted to the processes of heat transfer throughout dental tissues using bovine teeth, it is important the determination of its thermal diffusivity. The measured value was found to be a = 2.0 (±0.1).1O -3 cm 2 /s for the both direction, perpendicular and parallel to the dentinal tubules. These a lues indicate that there is no difference between the thermal diffusivities for the both directions. (author)

  12. Simple Model of a Photoacoustic System as a CR Circuit

    Science.gov (United States)

    Fukuhara, Akiko; Kaneko, Fumitoshi; Ogawa, Naohisa

    2012-01-01

    We introduce the photoacoustic educational system (PAES), by which we can identify which gas causes the greenhouse effect in a classroom (Kaneko "et al" 2010 "J. Chem. Educ." 87 202-4). PAES is an experimental system in which a pulse of infrared (IR) is absorbed into gas as internal energy, an oscillation of pressure (sound) appears, and then we…

  13. Music-of-Light Stethoscope: A Demonstration of the Photoacoustic Effect

    Science.gov (United States)

    Nikitichev, D. I.; Xia, W.; Hill, E.; Mosse, C. A.; Perkins, T.; Konyn, K.; Ourselin, S.; Desjardins, A. E.; Vercauteren, T.

    2016-01-01

    In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on…

  14. CO 2 laser photoacoustic spectra and vibrational modes of heroin ...

    Indian Academy of Sciences (India)

    Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 m and 10.6 m regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with conventional low ...

  15. Localized Lymph Node Light Chain Amyloidosis

    Directory of Open Access Journals (Sweden)

    Binod Dhakal

    2015-01-01

    Full Text Available Immunoglobulin-derived light chain amyloidosis can occasionally be associated with localized disease. We present a patient with localized lymph node light chain amyloidosis without an underlying monoclonal protein or lymphoproliferative disorder and review the literature of lymph node amyloidosis discussing work-up and risk factors for systemic progression.

  16. Multispectral thermal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W. [Los Alamos National Lab., NM (United States). Space and Remote Sensing Sciences Group; Garrett, A.; Pendergast, M.M. [Westinghouse Savannah River Corp., Aiken, SC (United States). Savannah River Technology Center; Kay, R.R. [Sandia National Lab., Albuquerque, NM (United States). Monitoring Systems and Technology Center

    1998-12-01

    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  17. Sentinel Lymph Node Biopsy in Breast Cancer: Predictors of Axillary and Non-Sentinel Lymph Node Involvement

    Directory of Open Access Journals (Sweden)

    Hakan Postacı

    2013-12-01

    Full Text Available Background: Sentinel lymph node biopsy is a standard method for the evaluation of axillary status in patients with T1-2N0M0 breast cancers. Aims: To determine the prognostic significance of primary tumour-related clinico-histopathological factors on axillary and non-sentinel lymph node involvement of patients who underwent sentinel lymph node biopsy. Study design: Retrospective clinical study. Methods: In the present study, 157 sentinel lymph node biopsies were performed in 151 consecutive patients with early stage breast cancer between June 2008 and December 2011. Results: Successful lymphatic mapping was obtained in 157 of 158 procedures (99.4%. The incidence of larger tumour size (2.543±1.21 vs. 1.974±1.04, lymphatic vessel invasion (70.6% vs. 29.4%, blood vessel invasion (84.2% vs. 15.8%, and invasive lobular carcinoma subtype (72.7% vs. 27.3% were statistically significantly higher in patients with positive SLNs. Logistic stepwise regression analysis disclosed tumour size (odds ratio: 1.51, p=0.0021 and lymphatic vessel invasion (odds ratio: 4.68, p=0.001 as significant primary tumour-related prognostic determinants of SLN metastasis. Conclusion: A close relationship was identified between tumour size and lymphatic vessel invasion of the primary tumour and axillary lymph node involvement. However, the positive predictive value of these two independent variables is low and there is no compelling evidence to recommend their use in routine clinical practice.

  18. Effect of venous and lymphatic congestion on lymph capillary pressure of the skin in healthy volunteers and patients with lymph edema.

    Science.gov (United States)

    Gretener, S B; Läuchli, S; Leu, A J; Koppensteiner, R; Franzeck, U K

    2000-01-01

    The aim of the present study was to assess the influence of venous and lymphatic congestion on lymph capillary pressure (LCP) in the skin of the foot dorsum of healthy volunteers and of patients with lymph edema. LCP was measured at the foot dorsum of 12 patients with lymph edema and 18 healthy volunteers using the servo-nulling technique. Glass micropipettes (7-9 microm) were inserted under microscopic control into lymphatic microvessels visualized by fluorescence microlymphography before and during venous congestion. Venous and lymphatic congestion was attained by cuff compression (50 mm Hg) at the thigh level. Simultaneously, the capillary filtration rate was measured using strain gauge plethysmography. The mean LCP in patients with lymph edema increased significantly (p < 0.05) during congestion (15.7 +/- 8.8 mm Hg) compared to the control value (12.2 +/- 8.9 mm Hg). The corresponding values of LCP in healthy volunteers were 4.3 +/- 2.6 mm Hg during congestion and 2.6 +/- 2.8 mm Hg during control conditions (p < 0.01). The mean increase in LCP in patients with lymph edema was 3.4 +/- 4.1 mm Hg, and 1.7 +/- 2.0 mm Hg in healthy volunteers (NS). The maximum spread of the lymph capillary network in patients increased from 13.9 +/- 6.8 mm before congestion to 18.8 +/- 8.2 mm during thigh compression (p < 0.05). No increase could be observed in healthy subjects. In summary, venous and lymphatic congestion by cuff compression at the thigh level results in a significant increase in LCP in healthy volunteers as well as in patients with lymph edema. The increased spread of the contrast medium in the superficial microlymphatics in lymph edema patients indicates a compensatory mechanism for lymphatic drainage during congestion of the veins and lymph collectors of the leg. Copyright 2000 S. Karger AG, Basel

  19. Clinical significance of lymph node metastasis in gastric cancer

    Science.gov (United States)

    Deng, Jing-Yu; Liang, Han

    2014-01-01

    Gastric cancer, one of the most common malignancies in the world, frequently reveals lymph node, peritoneum, and liver metastases. Most of gastric cancer patients present with lymph node metastasis when they were initially diagnosed or underwent surgical resection, which results in poor prognosis. Both the depth of tumor invasion and lymph node involvement are considered as the most important prognostic predictors of gastric cancer. Although extended lymphadenectomy was not considered a survival benefit procedure and was reported to be associated with high mortality and morbidity in two randomized controlled European trials, it showed significant superiority in terms of lower locoregional recurrence and disease related deaths compared to limited lymphadenectomy in a 15-year follow-up study. Almost all clinical investigators have reached a consensus that the predictive efficiency of the number of metastatic lymph nodes is far better than the extent of lymph node metastasis for the prognosis of gastric cancer worldwide, but other nodal metastatic classifications of gastric cancer have been proposed as alternatives to the number of metastatic lymph nodes for improving the predictive efficiency for patient prognosis. It is still controversial over whether the ratio between metastatic and examined lymph nodes is superior to the number of metastatic lymph nodes in prognostic evaluation of gastric cancer. Besides, the negative lymph node count has been increasingly recognized to be an important factor significantly associated with prognosis of gastric cancer. PMID:24744586

  20. In Vivo Photoacoustic and Fluorescence Cystography Using Clinically Relevant Dual Modal Indocyanine Green

    Directory of Open Access Journals (Sweden)

    Sungjo Park

    2014-10-01

    Full Text Available Conventional X-ray-based cystography uses radio-opaque materials, but this method uses harmful ionizing radiation and is not sensitive. In this study, we demonstrate nonionizing and noninvasive photoacoustic (PA and fluorescence (FL cystography using clinically relevant indocyanine green (ICG in vivo. After transurethral injection of ICG into rats through a catheter, their bladders were photoacoustically and fluorescently visualized. A deeply positioned bladder below the skin surface (i.e., ~1.5–5 mm was clearly visible in the PA and FL image using a laser pulse energy of less than 2 mJ/cm2 (1/15 of the safety limit. Then, the in vivo imaging results were validated through in situ studies. Our results suggest that dual modal cystography can provide a nonionizing and noninvasive imaging tool for bladder mapping.

  1. Mitigating the effect of optical back-scatter in multispectral underwater imaging

    International Nuclear Information System (INIS)

    Mortazavi, Halleh; Oakley, John P; Barkat, Braham

    2013-01-01

    Multispectral imaging is a very useful technique for extracting information from the underwater world. However, optical back-scatter changes the intensity value in each spectral band and this distorts the estimated spectrum. In this work, a filter is used to detect the level of optical back-scatter in each spectral band from a set of multispectral images. Extraction of underwater object spectra can be done by subtracting the estimated level of optical back-scatter and scaling the remainder in each spectral band from the captured image in the corresponding band. An experiment has been designed to show the performance of the proposed filter for correcting the set of multispectral underwater images and recovering the pixel spectra. The multispectral images are captured by a B/W CCD digital camera with a fast tunable liquid-crystal filter in 33 narrow spectral bands in clear and different levels of turbid water. Reference estimates for the optical back-scatter spectra are found by comparing a clear and a degraded set of multispectral images. The accuracy and consistency of the proposed method, the extended Oakley–Bu cost function, is examined by comparing the estimated values with the reference level of an optical back-scatter spectrum. The same comparison is made for the simple estimation approach. The results show that the simple method is not reliable and fail to estimate the level of optical back-scatter spectrum accurately. The results from processing experimental images in turbid water show that the effect of optical back-scatter can be mitigated in the image of each spectral band and, as a result, the spectra of the object can be recovered. However, for a very high level of turbid water the recovery is limited because of the effect of extinction. (paper)

  2. PAN-SHARPENING APPROACHES BASED ON UNMIXING OF MULTISPECTRAL REMOTE SENSING IMAGERY

    Directory of Open Access Journals (Sweden)

    G. Palubinskas

    2016-06-01

    Full Text Available Model based analysis or explicit definition/listing of all models/assumptions used in the derivation of a pan-sharpening method allows us to understand the rationale or properties of existing methods and shows a way for a proper usage or proposal/selection of new methods ‘better’ satisfying the needs of a particular application. Most existing pan-sharpening methods are based mainly on the two models/assumptions: spectral consistency for high resolution multispectral data (physical relationship between multispectral and panchromatic data in a high resolution scale and spatial consistency for multispectral data (so-called Wald’s protocol first property or relationship between multispectral data in different resolution scales. Two methods, one based on a linear unmixing model and another one based on spatial unmixing, are described/proposed/modified which respect models assumed and thus can produce correct or physically justified fusion results. Earlier mentioned property ‘better’ should be measurable quantitatively, e.g. by means of so-called quality measures. The difficulty of a quality assessment task in multi-resolution image fusion or pan-sharpening is that a reference image is missing. Existing measures or so-called protocols are still not satisfactory because quite often the rationale or assumptions used are not valid or not fulfilled. From a model based view it follows naturally that a quality assessment measure can be defined as a combination of error model residuals using common or general models assumed in all fusion methods. Thus in this paper a comparison of the two earlier proposed/modified pan-sharpening methods is performed. Preliminary experiments based on visual analysis are carried out in the urban area of Munich city for optical remote sensing multispectral data and panchromatic imagery of the WorldView-2 satellite sensor.

  3. Quality assessment of butter cookies applying multispectral imaging

    Science.gov (United States)

    Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne

    2013-01-01

    A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4–16 min and 160–200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400–700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center. PMID:24804036

  4. Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging

    Science.gov (United States)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2016-10-01

    Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.

  5. On image quality enhancement in photoacoustic image reconstruction by motion compensation

    NARCIS (Netherlands)

    Willemink, Rene; Slump, Cornelis H.; van der Heijden, Ferdinand

    2006-01-01

    Photoacoustic (PA) imaging is a relatively new noninvasive medical imaging modality. It is a tech- nique which is harmless for the human body and uses pulsed optical energy. The process is based on the ab- sorption of the pulse of optical energy by an object leading to local temperature increases.

  6. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles

    OpenAIRE

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong

    2012-01-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photo...

  7. Lymph node culture

    Science.gov (United States)

    Culture - lymph node ... or viruses grow. This process is called a culture. Sometimes, special stains are also used to identify specific cells or microorganisms before culture results are available. If needle aspiration does not ...

  8. Sentinel lymph node detection in canine oncological patients

    International Nuclear Information System (INIS)

    Balogh, L.; Andocs, G.; Mathe, D.

    2002-01-01

    Sentinel lymph node detection was investigated in dogs with spontaneously occurring tumours. In this pilot study, 24 client-owned spontaneously tumorous dogs presented for sentinel lymph node detection. A multiple method was used with a nuclear medicine technique (injection of 99mT c human serum albumin colloid) with scintigraphy and intraoperative guidance, and blue dye injection. Of the 35 lymph nodes histologically demonstrated to contain metastases, 34 (97%) were found by radioguided surgery, which means that one would have been missed in the intraoperative localisation process; 31 nodes (89%) were clearly visualised in the gamma camera images; only 27 (77%) were blue-stained by vital dye; a mere 8 lymph nodes (23%) were enlarged and therefore easily detectable by palpation. Data obtained from the harmless application of the sentinel node concept are useful for the radiopharmaceutist. The sentinel lymph node concept is well applicable in the veterinary clinic. (author)

  9. Putative photoacoustic damage in skin induced by pulsed ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Flotte, T.J.; McAuliffe, D.J.; Jacques, S.L.

    1988-05-01

    Argon-fluoride excimer laser ablation of guinea pig stratum corneum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting that photoacoustic waves have a role in tissue damage. Laser irradiation (193 nm, 14-ns pulse) at two different radiant exposures, 62 and 156 mJ/cm2 per pulse, was used to ablate the 15-microns-thick stratum corneum of the skin. Light and electron microscopy of immediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 microns, respectively, below the ablation site. These depths are far in excess of the optical penetration depth of 193-nm light (1/e depth = 1.5 micron). The damage is unlikely to be due to a photochemical mechanism because (a) the photons will not penetrate to these depths, (b) it is a long distance for toxic photoproducts to diffuse, and (c) damage is proportional to laser pulse intensity and not the total dose that accumulates in the residual tissue; therefore, reciprocity does not hold. Damage due to a thermal mechanism is not expected because there is not sufficient energy deposited in the tissue to cause significant heating at such depths. The damage is most likely due to a photoacoustic mechanism because (a) photoacoustic waves can propagate deep into tissue, (b) the depth of damage increases with increasing laser pulse intensity rather than with increasing total residual energy, and (c) the effects are immediate. These effects should be considered in the evaluation of short pulse, high peak power laser-tissue interactions.

  10. Intraoperative Sentinel Lymph Node Evaluation

    DEFF Research Database (Denmark)

    Shaw, Richard; Christensen, Anders; Java, Kapil

    2016-01-01

    BACKGROUND: Intraoperative analysis of sentinel lymph nodes would enhance the care of early-stage oral squamous cell carcinoma (OSCC). We determined the frequency and extent of cytokeratin 19 (CK19) expression in OSCC primary tumours and surrounding tissues to explore the feasibility of a "clinic......-ready" intraoperative diagnostic test (one step nucleic acid amplification-OSNA, sysmex). METHODS: Two cohorts were assembled: cohort 1, OSCC with stage and site that closely match cases suitable for sentinel lymph node biopsy (SLNB); cohort 2, HNSCC with sufficient fresh tumour tissue available for the OSNA assay (>50......% of tumours. Discordance between different techniques indicated that OSNA was more sensitive than qRT-PCR or RNA-ISH, which in turn were more sensitive than IHC. OSNA results showed CK19 expression in 80% of primary cases, so if used for diagnosis of lymph node metastasis would lead to a false-negative result...

  11. Active Multispectral Band Selection and Reflectance Measurement System

    National Research Council Canada - National Science Library

    Rennich, Bradley

    1999-01-01

    .... To aid in the selection of these bands, a novel multispectral band selection technique is presented based on the cross-correlation of the material class reflectance spectra over a wavelength range of 1 - 5 microns...

  12. A multispectral scanner survey of the Rocky Flats Environmental Technology Site and surrounding area, Golden, Colorado

    International Nuclear Information System (INIS)

    Brewster, S.B. Jr.; Brickey, D.W.; Ross, S.L.; Shines, J.E.

    1997-04-01

    Aerial multispectral scanner imagery was collected of the Rocky Flats Environmental Technology Site in Golden, Colorado, on June 3, 5, 6, and 7, 1994, using a Daedalus AADS1268 multispectral scanner and coincident aerial color and color infrared photography. Flight altitudes were 4,500 feet (1372 meters) above ground level to match prior 1989 survey data; 2,000 feet (609 meters) above ground level for sitewide vegetation mapping; and 1,000 feet (304 meters) above ground level for selected areas of special interest. A multispectral survey was initiated to improve the existing vegetation classification map, to identify seeps and springs, and to generate ARC/INFO Geographic Information System compatible coverages of the vegetation and wetlands for the entire site including the buffer zone. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of vegetation and wetlands. The multispectral scanner data were processed digitally while the color and color infrared photography were manually photo-interpreted to define vegetation and wetlands. Several standard image enhancement techniques were applied to the multispectral scanner data to assist image interpretation. A seep enhancement was applied and a color composite consisting of multispectral scanner channels 11, 7, and 5 (thermal infrared, mid-infrared, and red bands, respectively) proved most useful for detecting seeps, seep zones, and springs. The predawn thermal infrared data were also useful in identifying and locating seeps. The remote sensing data, mapped wetlands, and ancillary Geographic Information System compatible data sets were spatially analyzed for seeps

  13. Distinct Ezrin Truncations Differentiate Metastases in Sentinel Lymph Nodes from Unaffected Lymph Node Tissues, from Primary Breast Tumors, and from Healthy Glandular Breast Tissues

    Directory of Open Access Journals (Sweden)

    Claudia Röwer

    2018-02-01

    Full Text Available BACKGROUND: Lymph node metastasis status is a prognostic factor for further lymph node involvement and for patient survival in breast cancer patients. Frozen section analysis of lymph nodes is a reliable method for detection of macro-metastases. However, this method is far less effective in detecting micro-metastases, requesting improved diagnostic procedures. METHODS: We investigated expression and truncation of ezrin in (i sentinel lymph node metastases, (ii unaffected axillary lymph nodes, (iii primary breast tumors, and (iv healthy glandular breast tissues using 2D gel electrophoresis, SDS-PAGE, and mass spectrometry in addition to Western blotting. RESULTS: Full-length ezrin (E1; amino acids 1–586 is present in all four investigated tissues. Two truncated ezrin forms, one missing about the first hundred amino acids (E2a and the other lacking about 150 C-terminal amino acids (E2b were detectable in primary tumor tissues and in sentinel lymph node metastases but not in glandular tissues. Strikingly, an ezrin truncation (E3 which consists approximately of amino acids 238–586 was found strongly expressed in all sentinel lymph node metastases. Moreover, an N-terminal ezrin fragment (E4 that consists approximately of amino acids 1–273 was identified in sentinel lymph node metastases as well. CONCLUSIONS: We show for the first time the existence of tissue-dependent specific ezrin truncations. The distinguished strong Western blot staining of ezrin E3 in sentinel lymph node metastases underlines its capability to substantiate the occurrence of lymph node (micrometastases in breast cancer patients.

  14. First application of multilayer graphene cantilever for laser photoacoustic detection

    Czech Academy of Sciences Publication Activity Database

    Suchánek, Jan; Dostál, Michal; Vlasáková, T.; Janda, Pavel; Klusáčková, Monika; Kubát, Pavel; Nevrlý, V.; Bitala, P.; Civiš, Svatopluk; Zelinger, Zdeněk

    2017-01-01

    Roč. 101, APR 2017 (2017), s. 9-14 ISSN 0263-2241 R&D Projects: GA ČR(CZ) GA14-14696S; GA MŠk(CZ) LD14022 Grant - others:COST(XE) TD1105 Institutional support: RVO:61388955 Keywords : Cantilever * Multilayer graphene * Photoacoustic detection * Methanol detection Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.359, year: 2016

  15. Multispectral colour analysis for quantitative evaluation of pseudoisochromatic color deficiency tests

    Science.gov (United States)

    Ozolinsh, Maris; Fomins, Sergejs

    2010-11-01

    Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.

  16. Multispectral imaging reveals biblical-period inscription unnoticed for half a century.

    Directory of Open Access Journals (Sweden)

    Shira Faigenbaum-Golovin

    Full Text Available Most surviving biblical period Hebrew inscriptions are ostraca-ink-on-clay texts. They are poorly preserved and once unearthed, fade rapidly. Therefore, proper and timely documentation of ostraca is essential. Here we show a striking example of a hitherto invisible text on the back side of an ostracon revealed via multispectral imaging. This ostracon, found at the desert fortress of Arad and dated to ca. 600 BCE (the eve of Judah's destruction by Nebuchadnezzar, has been on display for half a century. Its front side has been thoroughly studied, while its back side was considered blank. Our research revealed three lines of text on the supposedly blank side and four "new" lines on the front side. Our results demonstrate the need for multispectral image acquisition for both sides of all ancient ink ostraca. Moreover, in certain cases we recommend employing multispectral techniques for screening newly unearthed ceramic potsherds prior to disposal.

  17. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    Science.gov (United States)

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  18. The Prognostic Value of Lymph Nodes Dissection Number on Survival of Patients with Lymph Node-Negative Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wu Song

    2014-01-01

    Full Text Available Objective. The study was designed to explore the prognostic value of examined lymph node (LN number on survival of gastric cancer patients without LN metastasis. Methods. Between August 1995 and January 2011, 300 patients who underwent gastrectomy with D2 lymphadenectomy for LN-negative gastric cancer were reviewed. Patients were assigned to various groups according to LN dissection number or tumor invasion depth. Some clinical outcomes, such as overall survival, operation time, length of stay, and postoperative complications, were compared among all groups. Results. The overall survival time of LN-negative GC patients was 50.2±30.5 months. Multivariate analysis indicated that LN dissection number (P30. Besides, it was not correlated with operation time, transfusion volume, length of postoperative stay, or postoperative complication incidence (P>0.05. Conclusions. The number of examined lymph nodes is an independent prognostic factor of survival for patients with lymph node-negative gastric cancer. Sufficient dissection of lymph nodes is recommended during surgery for such population.

  19. Inflammatory myofibroblastic tumor of inguinal lymph nodes, simulating lymphoma

    Directory of Open Access Journals (Sweden)

    Akansha Gandhi

    2015-01-01

    Full Text Available Multiple enlarged lymph nodes in an elderly female patient can have varied etiologies as well as histologic pictures. We are presenting the case of a 53-year-old female who presented with inguinal lymphadenopathy with fever, which was clinically misconstrued as lymphoma. Cytology could not exclude a lymphoma. Histology led to the unusual diagnosis of inflammatory myofibroblastic tumor of lymph node in this case. Inflammatory myofibroblastic tumor of the lymph node is a rare, distinctive reactive proliferative pattern in the lymph node which involves proliferation of the connective tissue elements of the lymph node, admixed with lymphocytes, plasma cells, eosinophils, and histiocytes. Multiple etiologic agents have been suggested in existing literature. Despite extensive search, no definite attributable cause could be sought. It is now widely accepted that inflammatory pseudotumor of the lymph node is a non-neoplastic proliferation which has a benign clinical course and excellent prognosis after surgical resection.

  20. Skull's acoustic attenuation and dispersion modeling on photoacoustic signal

    Science.gov (United States)

    Mohammadi, Leila; Behnam, Hamid; Tavakkoli, Jahan; Nasiriavanaki, Mohammadreza

    2018-02-01

    Despite the promising results of the recent novel transcranial photoacoustic (PA) brain imaging technology, it has been demonstrated that the presence of the skull severely affects the performance of this imaging modality. We theoretically investigate the effects of acoustic heterogeneity induced by skull on the PA signals generated from single particles, with firstly developing a mathematical model for this phenomenon and then explore experimental validation of the results. The model takes into account the frequency dependent attenuation and dispersion effects occur with wave reflection, refraction and mode conversion at the skull surfaces. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. The results show a strong agreement between simulation and ex-vivo study. The findings are as follow: The thickness of the skull is the most PA signal deteriorating factor that affects both its amplitude (attenuation) and phase (distortion). Also we demonstrated that, when the depth of target region is low and it is comparable to the skull thickness, however, the skull-induced distortion becomes increasingly severe and the reconstructed image would be strongly distorted without correcting these effects. It is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for aberration correction in transcranial PA brain imaging.

  1. UAV MULTISPECTRAL SURVEY TO MAP SOIL AND CROP FOR PRECISION FARMING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Sona

    2016-06-01

    Full Text Available New sensors mounted on UAV and optimal procedures for survey, data acquisition and analysis are continuously developed and tested for applications in precision farming. Procedures to integrate multispectral aerial data about soil and crop and ground-based proximal geophysical data are a recent research topic aimed to delineate homogeneous zones for the management of agricultural inputs (i.e., water, nutrients. Multispectral and multitemporal orthomosaics were produced over a test field (a 100 m x 200 m plot within a maize field, to map vegetation and soil indices, as well as crop heights, with suitable ground resolution. UAV flights were performed in two moments during the crop season, before sowing on bare soil, and just before flowering when maize was nearly at the maximum height. Two cameras, for color (RGB and false color (NIR-RG images, were used. The images were processed in Agisoft Photoscan to produce Digital Surface Model (DSM of bare soil and crop, and multispectral orthophotos. To overcome some difficulties in the automatic searching of matching points for the block adjustment of the crop image, also the scientific software developed by Politecnico of Milan was used to enhance images orientation. Surveys and image processing are described, as well as results about classification of multispectral-multitemporal orthophotos and soil indices.

  2. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region.

    Science.gov (United States)

    Dasa, Manoj Kumar; Markos, Christos; Maria, Michael; Petersen, Christian R; Moselund, Peter M; Bang, Ole

    2018-04-01

    We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ~25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC source ever used in this wavelength range). We demonstrate how such an SC source combined with a tunable filter allows high-resolution spectroscopic photoacoustic imaging and the spectroscopy of lipids in the first overtone transition band of C-H bonds (1650-1850 nm). We show the successful discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source for spectroscopic photoacoustic imaging.

  3. Exploiting physical constraints for multi-spectral exo-planet detection

    Science.gov (United States)

    Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth

    2016-07-01

    We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation

  4. Fine-needle aspiration biopsy of lymph nodes

    African Journals Online (AJOL)

    2012-02-02

    Feb 2, 2012 ... This is dependent on factors related to the patient, the lymph ... risk for infections or a lymphoma associated with HIV. .... Lung carcinoma – small cell and non- small cell .... It is rare that pyogenic abscesses arising in a lymph ...

  5. Multi-spectral lifetime imaging: methods and applications

    NARCIS (Netherlands)

    Fereidouni, F.

    2013-01-01

    The aim of this PhD project is to further develop multispectral life time imaging hardware and analyses methods. The hardware system, Lambda-Tau, generates a considerable amount of data at high speed. To fully exploit the power of this new hardware, fast and reliable data analyses methods are

  6. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products.

    Science.gov (United States)

    Sim, Joo Yong; Ahn, Chang-Geun; Jeong, Eun-Ju; Kim, Bong Kyu

    2018-01-18

    Photoacoustic spectroscopy has been shown to be a promising tool for non-invasive blood glucose monitoring. However, the repeatability of such a method is susceptible to changes in skin condition, which is dependent on hand washing and drying due to the high absorption of infrared excitation light to the skin secretion products or water. In this paper, we present a method to meet the challenges of mid-infrared photoacoustic spectroscopy for non-invasive glucose monitoring. By obtaining the microscopic spatial information of skin during the spectroscopy measurement, the skin region where the infrared spectra is insensitive to skin condition can be locally selected, which enables reliable prediction of the blood glucose level from the photoacoustic spectroscopy signals. Our raster-scan imaging showed that the skin condition for in vivo spectroscopic glucose monitoring had significant inhomogeneities and large variability in the probing area where the signal was acquired. However, the selective localization of the probing led to a reduction in the effects of variability due to the skin secretion product. Looking forward, this technology has broader applications not only in continuous glucose monitoring for diabetic patient care, but in forensic science, the diagnosis of malfunctioning sweat pores, and the discrimination of tumors extracted via biopsy.

  7. Photoacoustic investigation of the effective diffusivity of two-layer semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Medina, J; Gurevich, Yu. G; Logvinov G, N; Rodriguez, P; Gonzalez de la Cruz, G. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2001-08-01

    In this work, the problem of the effective thermal diffusivity of two-layer systems is investigated using the photoacoustic spectroscopy. The experimental results are examined in terms of the effective thermal parameters of the composite system determined from an homogeneous material which produces the same physical response under an external perturbation in the detector device. It is shown, that the effective thermal conductivity is not symmetric under exchange of the two layers of the composite; i.e., the effective thermal parameters depend upon which layer is illuminated in the photoacoustic experiments. Particular emphasis is given to the characterization of the interface thermal conductivity between the layer-system. [Spanish] En el presente trabajo se utiliza la espectroscopia fotoacustica para medir la difusividad termica de un sistema de dos capas. Los resultados experimentales son analizados en terminos de los parametros termicos efectivos determinados a partir de un material homogeneo, el cual produce la misma respuesta fisica bajo una perturbacion externa. Se puso particular enfasis en la caracterizacion de los efectos de interfase en el flujo de calor en el sistema de dos capas. Los resultados experimentales se comparan con el modelo teorico propuesto en este trabajo.

  8. Music-of-light stethoscope: a demonstration of the photoacoustic effect

    Science.gov (United States)

    Nikitichev, D. I.; Xia, W.; Hill, E.; Mosse, C. A.; Perkins, T.; Konyn, K.; Ourselin, S.; Desjardins, A. E.; Vercauteren, T.

    2016-07-01

    In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased.

  9. The histogenesis of lymph nodes in rat and rabbit

    NARCIS (Netherlands)

    Eikelenboom, P.; Nassy, J. J.; Post, J.; Versteeg, J. C.; Langevoort, H. L.

    1978-01-01

    The histogenesis of the popliteal lymph node in the rat and the popliteal and inguinal lymph nodes in the rabbit was examined by light microscopy. Special emphasis has been laid on the initial lymphocyte population in the lymph node anlage. In the rat on the seventeenth day of gestation lymphoid

  10. Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997)

    Science.gov (United States)

    Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.

    1998-11-01

    A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.

  11. Sentinel lymph node biopsy: clinical relevance

    International Nuclear Information System (INIS)

    Howman-Giles, R.

    2002-01-01

    Sentinel lymph node biopsy (SLNB) has become an important technique in the management of patients with intermediate level melanoma, clinical operable breast cancer and some other cancers. The technique relies on lymphatic mapping to define the lymph drainage from a primary tumour with the premise that the lymph nodes, which directly drain from that area, will reflect the tumour status of the remainder of the node field. Current techniques use lymphoscintigraphy where a radioactive labelled particle and / or blue dye are injected intradermally or intraparenchymally to map the lymph drainage, often in conjunction with a radioactive gamma probe at surgery. In patients with melanoma the SLNB has improved the staging and prognostic information by more accurate determination of whether regional lymph nodes have metastatic spread. This has a major impact on patient management as those patients with negative nodes do not require regional lymph node dissection and have a significantly better prognosis. In our experience of over 3000 patients the combined sentinel node biopsy technique localised accurately 98% of sentinel lymph nodes. Lymphoscintigraphy in patients with melanoma to locate the sentinel lymph nodes involves the intradermal injection of a radiocolloid around the melanoma site or the excision biopsy site. Injections of 5 -10 MBq in 0.05-0.1ml/inj are used and typically 4 injections are usually required. Following tracer injection dynamic imaging is performed to follow the lymphatic collecting vessels until they reach the draining sentinel nodes. An image should be acquired as the vessels reach the node field so that the sentinel nodes directly receiving the channels can be identified and distinguished from any second tier nodes which may sometimes be seen. Delayed scans are performed 2 hours later at which time all regions which can possible drain the primary melanoma site are examined with 5-10 minute static images. The surface location of all sentinel nodes is

  12. Prediction of lateral lymph node metastasis by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hatano, Satoshi; Kumamoto, Kensuke; Ishibashi, Keiichiro

    2010-01-01

    Considering the advantages and disadvantages of lateral lymph node dissection in patients with advanced lower rectal cancer, it would be ideal to select candidates for lateral lymph node dissection by preoperative imaging study including magnetic resonance imaging (MRI). We have reported that the cut-off value of minimal diameter of lateral lymph node could be set at 6 mm for indication of lateral lymph node dissection. In the present study, we evaluated whether it would be appropriate to apply the cut-off value of minimal diameter of lateral lymph node in MRI. Forty-four patients with advanced lower rectal cancer underwent a curative surgery with lateral lymph node dissection or sampling from 1997 to 2009 in our institute. Among them, 25 patients received MRI preoperatively and analyzed. The images were obtained by a sagittal method that was diagonal along sacro-iliac joint with 5 mm thick sections. Lateral lymph node metastasis was detected in 5 cases, one side in 4 cases and both sides in 1 case. The sensitivity, specificity, positive predict value, and accuracy for predicting metastasis was 50%, 90%, 42.9% and 84.8% respectively, when the cut-off value of the minimal diameter was set at 6 mm in MRI. Our results indicated that a 6 mm set as the cut-off value of minimal diameter of lateral lymph node was suitable for the prediction of lateral lymph node metastasis since the accuracy was relatively high (84.8%), though it was hardly to detect metastatic lymph node less than 6 mm. (author)

  13. [Prediction of lateral lymph node metastasis by magnetic resonance imaging].

    Science.gov (United States)

    Hatano, Satoshi; Kumamoto, Kensuke; Ishibashi, Keiichiro; Ishiguro, Toru; Ohsawa, Tomonori; Okada, Norimichi; Nakata, Hiroshi; Yokoyama, Masaru; Haga, Norihiro; Ishida, Hideyuki

    2010-11-01

    Considering the advantages and disadvantages of lateral lymph node dissection in patients with advanced lower rectal cancer, it would be ideal to select candidates for lateral lymph node dissection by preoperative imaging study including magnetic resonance imaging(MRI). We have reported that the cut-off value of minimal diameter of lateral lymph node could be set at 6 mm for indication of lateral lymph node dissection. In the present study, we evaluated whether it would be appropriate to apply the cut-off value of minimal diameter of lateral lymph node in MRI. Forty-four patients with advanced lower rectal cancer underwent a curative surgery with lateral lymph node dissection or sampling from 1997 to 2009 in our institute. Among them, 25 patients received MRI preoperatively and analyzed. The images were obtained by a sagittal method that was diagonal along sacro-iliac joint with 5 mm thick sections. Lateral lymph node metastasis was detected in 5 cases, one side in 4 cases and both sides in 1 case. The sensitivity, specificity, positive predict value, and accuracy for predicting metastasis was 50%, 90%, 42.9% and 84.8% respectively, when the cut-off value of the minimal diameter was set at 6 mm in MRI. Our results indicated that a 6 mm set as the cut-off value of minimal diameter of lateral lymph node was suitable for the prediction of lateral lymph node metastasis since the accuracy was relatively high (84.8%), though it was hardly to detect metastatic lymph node less than 6 mm.

  14. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    International Nuclear Information System (INIS)

    Li, T.; Dewhurst, R. J.

    2010-01-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  15. Sentinel lymph node identification with magnetic nanoparticles

    NARCIS (Netherlands)

    Pouw, Joost Jacob

    2016-01-01

    Most solid malignancies have a tendency to spread through the lymphatic system to locoregional lymph nodes. Presence of metastasis is an important prognostic factor, and is used to determine the optimal treatment of the patient. The sentinel lymph nodes (SLNs) receive direct lymphatic drainage from

  16. A new acoustic lens material for large area detectors in photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; van Hespen, Johannes C.G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Objectives We introduce a new acoustic lens material for photoacoustic tomography (PAT) to improve lateral resolution while possessing excellent acoustic acoustic impedance matching with tissue to minimize lens induced image artifacts. Background A large surface area detector due to its high

  17. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating

    Science.gov (United States)

    Matikainen, Leena; Karila, Kirsi; Hyyppä, Juha; Litkey, Paula; Puttonen, Eetu; Ahokas, Eero

    2017-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with passive multispectral information from aerial images, has shown its high feasibility for automated mapping processes. The main benefits have been achieved in the mapping of elevated objects such as buildings and trees. Recently, the first multispectral airborne laser scanners have been launched, and active multispectral information is for the first time available for 3D ALS point clouds from a single sensor. This article discusses the potential of this new technology in map updating, especially in automated object-based land cover classification and change detection in a suburban area. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from an object-based random forests analysis suggest that the multispectral ALS data are very useful for land cover classification, considering both elevated classes and ground-level classes. The overall accuracy of the land cover classification results with six classes was 96% compared with validation points. The classes under study included building, tree, asphalt, gravel, rocky area and low vegetation. Compared to classification of single-channel data, the main improvements were achieved for ground-level classes. According to feature importance analyses, multispectral intensity features based on several channels were more useful than those based on one channel. Automatic change detection for buildings and roads was also demonstrated by utilising the new multispectral ALS data in combination with old map vectors. In change detection of buildings, an old digital surface model (DSM) based on single-channel ALS data was also used. Overall, our analyses suggest that the new data have high potential for further increasing the automation level in mapping. Unlike passive aerial imaging commonly used in mapping, the multispectral ALS technology is independent of external illumination conditions, and there are

  18. [Anatomy and histology characteristics of lymph node in nude mice].

    Science.gov (United States)

    Sun, R; Gao, B; Guo, C B

    2017-10-18

    To compare the differences of anatomical and histological characteristics of lymph nodes between BALB/c nude mice and BALB/c mice. Firstly, twenty BALB/c nude mice and twenty BALB/c mice were dissected by using a surgical microscope. Secondly, the differences of T cells and B cells at the lymph node were compared by the expressions of CD 3 and CD 20 immunohistochemistry dyes. There were, on average, 23 nodes per mouse contained within the large lymph node assembly in the BALB/c nude mouse. The anatomical features of the lymph node distribution in the nude mice were mainly found in the neck with relatively higher density. There were two lymph nodes both in the submandible lymph nodes group and in the superficial cervical lymph nodes group (the constituent ratios were 95% and 90%, respectively) in the BALB/c nude mice, but there were four lymph nodes (the constituent ratios were 95% and 90%, respectively) in the BALB/c mice. There were significant difference between the BALB/c nude mice and the BALB/c mice. Mostly there were two lymph nodes of deep cervical lymph nodes both in the BALB/c nude mice and the BALB/c mice (the constituent ratios were 95% and 100%, respectively). There were no significant difference between the BALB/c nude mice and the BALB/c mice. We confirmed that the number of CD 3 -positive T lymphocytes in lymph nodes of the nude mice decreased greatly as compared with the BALB/c mice. Expressions of CD3 in T cells were 95% and 100% in the BALB/c nude mice and in the BALB/c mice, respectively. There were significant differences between the BALB/c nude mice and the BALB/c mice. Expressions of CD20 in B cells were 95% and 100% in the BALB/c nude mice and in the BALB/c mice, respectively. There was no significant difference between the BALB/c nude mice and BALB/c mice. The anatomical pictures of lymph node distribution in the nude mouse will be benefit to those who are interested. The anatomical features of the lymph node local higher density in neck of

  19. Multispectral Microimager for Astrobiology

    Science.gov (United States)

    Sellar, R. Glenn; Farmer, Jack D.; Kieta, Andrew; Huang, Julie

    2006-01-01

    A primary goal of the astrobiology program is the search for fossil records. The astrobiology exploration strategy calls for the location and return of samples indicative of environments conducive to life, and that best capture and preserve biomarkers. Successfully returning samples from environments conducive to life requires two primary capabilities: (1) in situ mapping of the mineralogy in order to determine whether the desired minerals are present; and (2) nondestructive screening of samples for additional in-situ testing and/or selection for return to laboratories for more in-depth examination. Two of the most powerful identification techniques are micro-imaging and visible/infrared spectroscopy. The design and test results are presented from a compact rugged instrument that combines micro-imaging and spectroscopic capability to provide in-situ analysis, mapping, and sample screening capabilities. Accurate reflectance spectra should be a measure of reflectance as a function of wavelength only. Other compact multispectral microimagers use separate LEDs (light-emitting diodes) for each wavelength and therefore vary the angles of illumination when changing wavelengths. When observing a specularly-reflecting sample, this produces grossly inaccurate spectra due to the variation in the angle of illumination. An advanced design and test results are presented for a multispectral microimager which demonstrates two key advances relative to previous LED-based microimagers: (i) acquisition of actual reflectance spectra in which the flux is a function of wavelength only, rather than a function of both wavelength and illumination geometry; and (ii) increase in the number of spectral bands to eight bands covering a spectral range of 468 to 975 nm.

  20. Multispectral open-air intraoperative fluorescence imaging.

    Science.gov (United States)

    Behrooz, Ali; Waterman, Peter; Vasquez, Kristine O; Meganck, Jeff; Peterson, Jeffrey D; Faqir, Ilias; Kempner, Joshua

    2017-08-01

    Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.

  1. Effects of transuranics on pulmonary lymph nodes of rodents

    International Nuclear Information System (INIS)

    Sanders, C.L.

    1976-01-01

    Pulmonary lymph nodes have been suggested as the ''critical'' tissue for insoluble, inhaled transuranic compounds owing to the high concentration of transuranics in these lymph nodes. About 800 rats were given from 0.2 to 3600 nCi of 238 PuO 2 or 239 PuO 2 by inhalation, intratracheal instillation, intrapleural injection, or intraperitoneal injection. From about 1 to 10 percent of deposited plutonium was translocated to pulmonary lymph nodes, the amount depending on the time after deposition and the route of administration; 238 PuO 2 was cleared from pulmonary lymph nodes faster than 239 PuO 2 owing to the greater in vivo solubility of 238 PuO 2 . No primary tumors of pulmonary lymph nodes were observed, indicating that this tissue was not the critical tissue for carcinogenic induction

  2. Primo vessel inside a lymph vessel emerging from a cancer tissue.

    Science.gov (United States)

    Lee, Sungwoo; Ryu, Yeonhee; Cha, Jinmyung; Lee, Jin-Kyu; Soh, Kwang-Sup; Kim, Sungchul; Lim, Jaekwan

    2012-10-01

    Primo vessels were observed inside the lymph vessels near the caudal vena cava of a rabbit and a rat and in the thoracic lymph duct of a mouse. In the current work we found a primo vessel inside the lymph vessel that came out from the tumor tissue of a mouse. A cancer model of a nude mouse was made with human lung cancer cell line NCI-H460. We injected fluorescent nanoparticles into the xenografted tumor tissue and studied their flow in blood, lymph, and primo vessels. Fluorescent nanoparticles flowed through the blood vessels quickly in few minutes, and but slowly in the lymph vessels. The bright fluorescent signals of nanoparticles disappeared within one hour in the blood vessels but remained much longer up to several hours in the case of lymph vessels. We found an exceptional case of lymph vessels that remained bright with fluorescence up to 24 hours. After detailed examination we found that the bright fluorescence was due to a putative primo vessel inside the lymph vessel. This rare observation is consistent with Bong-Han Kim's claim on the presence of a primo vascular system in lymph vessels. It provides a significant suggestion on the cancer metastasis through primo vessels and lymph vessels. Copyright © 2012. Published by Elsevier B.V.

  3. Time reversal in photoacoustic tomography and levitation in a cavity

    International Nuclear Information System (INIS)

    Palamodov, V P

    2014-01-01

    A class of photoacoustic acquisition geometries in R n is considered such that the spherical mean transform admits an exact filtered back projection reconstruction formula. The reconstruction is interpreted as a time reversion mirror that reproduces exactly an arbitrary source distribution in the cavity. A series of examples of non-uniqueness of the inverse potential problem is constructed based on the same geometrical technique. (paper)

  4. Photoacoustic Sounds from Meteors.

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Richard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tencer, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweatt, William C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hogan, Roy E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spurny, Pavel [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic)

    2015-03-01

    High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appear to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.

  5. Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production

    Science.gov (United States)

    Couto, F. M.; Sthel, M. S.; Castro, M. P. P.; da Silva, M. G.; Rocha, M. V.; Tavares, J. R.; Veiga, C. F. M.; Vargas, H.

    2014-12-01

    In order to investigate the generation of greenhouse gases in sugarcane ethanol production chain, a comparative study of N2O emission in artificially fertilized soils and soils free from fertilizers was carried out. Photoacoustic spectroscopy using quantum cascade laser with an emission ranging from 7.71 to 7.88 µm and differential photoacoustic cell were applied to detect nitrous oxide (N2O), an important greenhouse gas emitted from soils cultivated with sugar cane. Owing to calibrate the experimental setup, an initial N2O concentration was diluted with pure nitrogen and detection limit of 50 ppbv was achieved. The proposed methodology was selective and sensitive enough to detect N2O from no fertilized and artificially fertilized soils. The measured N2O concentration ranged from ppmv to ppbv.

  6. Ultrasound elastography for evaluation of cervical lymph nodes

    Directory of Open Access Journals (Sweden)

    Young Jun Choi

    2015-07-01

    Full Text Available Ultrasound (US elastography has been introduced as a noninvasive imaging technique for evaluating cervical lymph nodes. US elastography techniques include strain elastography and shear wave-based elastography. The application of this technique is based on the fact that stiff tissues tend to deform less and show less strain than compliant tissues when the same force is applied. In general, metastatic lymph nodes demonstrate higher stiffness than benign lymph nodes. Overall, preliminary studies suggest that US elastography may be useful in differentiating benign and malignant cervical lymph nodes, thereby informing decisions to perform a biopsy and facilitating follow-up. For US elastography to be accepted into clinical practice, however, its techniques, associated diagnostic criteria, and reliability need to be further refined.

  7. Photoacoustic study of heated binary mixtures containing whey and skimmed-milk powders

    NARCIS (Netherlands)

    Doka, O.; Bicanic, D.; Frankhuizen, R.

    1999-01-01

    A novel methodology is proposed to determine the amount of whey powder in a binary mixture containing whey and skimmed-milk powders. This new approach is based on measurement of the amplitude of the photoacoustic (PA) signal obtained when the mixture is exposed to a controlled thermal treatment; the

  8. Laser Remote Sensing and Photoacoustic Spectrometry Applied in Air Pollution Investigation

    Czech Academy of Sciences Publication Activity Database

    Zelinger, Zdeněk; Střižík, M.; Kubát, Pavel; Jaňour, Zbyněk; Berger, P.; Černý, A.; Engst, P.

    2004-01-01

    Roč. 42, - (2004), s. 403-412 ISSN 0143-8166 R&D Projects: GA AV ČR IAA3040101; GA ČR GA205/02/0898; GA MŠk OC 723.002 Institutional research plan: CEZ:AV0Z4040901 Keywords : DIAL * air pollution * laser photoacoustic spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.935, year: 2004

  9. Fusion of multispectral and panchromatic images using multirate filter banks

    Institute of Scientific and Technical Information of China (English)

    Wang Hong; Jing Zhongliang; Li Jianxun

    2005-01-01

    In this paper, an image fusion method based on the filter banks is proposed for merging a high-resolution panchromatic image and a low-resolution multispectral image. Firstly, the filter banks are designed to merge different signals with minimum distortion by using cosine modulation. Then, the filter banks-based image fusion is adopted to obtain a high-resolution multispectral image that combines the spectral characteristic of low-resolution data with the spatial resolution of the panchromatic image. Finally, two different experiments and corresponding performance analysis are presented. Experimental results indicate that the proposed approach outperforms the HIS transform, discrete wavelet transform and discrete wavelet frame.

  10. MRO CRISM MULTISPECTRAL REDUCED DATA RECORD V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains CRISM Multispectral Reduced Data Records (MRDRs). MRDRs are organized into 30 subdirectories named by the Mars Chart containing the MRDR, e.g....

  11. Direct estimate of cocoa powder content in cakes by colorimetry and photoacoustic spectroscopy

    NARCIS (Netherlands)

    Doka, O.; Bicanic, D.D.; Kulcsar, R.

    2014-01-01

    Cocoa is a very important ingredient in the food industry and largely consumed worldwide. In this investigation, colorimetry and photoacoustic spectroscopy were used to directly assess the content of cocoa powder in cakes; both methods provided satisfactory results. The calibration curve was

  12. CO2-laser photoacoustic detection of gaseous n-pentylacetate

    Czech Academy of Sciences Publication Activity Database

    Herecová, L.; Hejzlar, T.; Pavlovský, J.; Míček, D.; Zelinger, Zdeněk; Kubát, Pavel; Janečková, B.; Nevrlý, Václav; Bitala, P.; Střižík, Michal; Klouda, E.; Civiš, Svatopluk

    2009-01-01

    Roč. 256, č. 1 (2009), s. 109-110 ISSN 0022-2852 R&D Projects: GA MŠk OC 111; GA MŠk LC06071; GA ČR GA202/06/0216; GA MŽP SPII1A0/45/07 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z20760514 Keywords : n-pentylacetate * CO2 laser photoacoustic spectroscopy * FTIR spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.542, year: 2009

  13. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain

    Science.gov (United States)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Quentin; Culver, Joseph P.; Wang, Lihong V.

    2014-01-01

    The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bulb, limbic, parietal, somatosensory, retrosplenial, visual, motor, and temporal regions, as well as in several subregions. The borders and locations of these regions agreed well with the Paxinos mouse brain atlas. By subjecting the mouse to alternating hyperoxic and hypoxic conditions, strong and weak functional connectivities were observed, respectively. In addition to connectivity images, vascular images were simultaneously acquired. These studies show that functional connectivity photoacoustic tomography is a promising, noninvasive technique for functional imaging of the mouse brain. PMID:24367107

  14. Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo

    Science.gov (United States)

    Zhao, Huangxuan; Wang, Guangsong; Lin, Riqiang; Gong, Xiaojing; Song, Liang; Li, Tan; Wang, Wenjia; Zhang, Kunya; Qian, Xiuqing; Zhang, Haixia; Li, Lin; Liu, Zhicheng; Liu, Chengbo

    2018-04-01

    For the diagnosis and evaluation of ophthalmic diseases, imaging and quantitative characterization of vasculature in the iris are very important. The recently developed photoacoustic imaging, which is ultrasensitive in imaging endogenous hemoglobin molecules, provides a highly efficient label-free method for imaging blood vasculature in the iris. However, the development of advanced vascular quantification algorithms is still needed to enable accurate characterization of the underlying vasculature. We have developed a vascular information quantification algorithm by adopting a three-dimensional (3-D) Hessian matrix and applied for processing iris vasculature images obtained with a custom-built optical-resolution photoacoustic imaging system (OR-PAM). For the first time, we demonstrate in vivo 3-D vascular structures of a rat iris with a the label-free imaging method and also accurately extract quantitative vascular information, such as vessel diameter, vascular density, and vascular tortuosity. Our results indicate that the developed algorithm is capable of quantifying the vasculature in the 3-D photoacoustic images of the iris in-vivo, thus enhancing the diagnostic capability of the OR-PAM system for vascular-related ophthalmic diseases in vivo.

  15. Multispectral and polarimetric photodetection using a plasmonic metasurface

    Science.gov (United States)

    Pelzman, Charles; Cho, Sang-Yeon

    2018-01-01

    We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.

  16. LANDSAT 8 MULTISPECTRAL AND PANSHARPENED IMAGERY PROCESSING ON THE STUDY OF CIVIL ENGINEERING ISSUES

    Directory of Open Access Journals (Sweden)

    M. A. Lazaridou

    2016-06-01

    Full Text Available Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM – Landsat 8 is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion – pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  17. Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues

    Science.gov (United States)

    Lazaridou, M. A.; Karagianni, A. Ch.

    2016-06-01

    Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  18. Inverse diffusion theory of photoacoustics

    International Nuclear Information System (INIS)

    Bal, Guillaume; Uhlmann, Gunther

    2010-01-01

    This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photoacoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schrödinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when 2n internal data for well-chosen boundary conditions are available, where n is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics solutions

  19. Dual multispectral and 3D structured light laparoscope

    Science.gov (United States)

    Clancy, Neil T.; Lin, Jianyu; Arya, Shobhit; Hanna, George B.; Elson, Daniel S.

    2015-03-01

    Intraoperative feedback on tissue function, such as blood volume and oxygenation would be useful to the surgeon in cases where current clinical practice relies on subjective measures, such as identification of ischaemic bowel or tissue viability during anastomosis formation. Also, tissue surface profiling may be used to detect and identify certain pathologies, as well as diagnosing aspects of tissue health such as gut motility. In this paper a dual modality laparoscopic system is presented that combines multispectral reflectance and 3D surface imaging. White light illumination from a xenon source is detected by a laparoscope-mounted fast filter wheel camera to assemble a multispectral image (MSI) cube. Surface shape is then calculated using a spectrally-encoded structured light (SL) pattern detected by the same camera and triangulated using an active stereo technique. Images of porcine small bowel were acquired during open surgery. Tissue reflectance spectra were acquired and blood volume was calculated at each spatial pixel across the bowel wall and mesentery. SL features were segmented and identified using a `normalised cut' algoritm and the colour vector of each spot. Using the 3D geometry defined by the camera coordinate system the multispectral data could be overlaid onto the surface mesh. Dual MSI and SL imaging has the potential to provide augmented views to the surgeon supplying diagnostic information related to blood supply health and organ function. Future work on this system will include filter optimisation to reduce noise in tissue optical property measurement, and minimise spot identification errors in the SL pattern.

  20. Dry coupling for whole-body small-animal photoacoustic computed tomography

    OpenAIRE

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-01-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using ...

  1. UTILIZING SAR AND MULTISPECTRAL INTEGRATED DATA FOR EMERGENCY RESPONSE

    Directory of Open Access Journals (Sweden)

    S. Havivi

    2016-06-01

    Full Text Available Satellite images are used widely in the risk cycle to understand the exposure, refine hazard maps and quickly provide an assessment after a natural or man-made disaster. Though there are different types of satellite images (e.g. optical, radar these have not been combined for risk assessments. The characteristics of different remote sensing data type may be extremely valuable for monitoring and evaluating the impacts of disaster events, to extract additional information thus making it available for emergency situations. To base this approach, two different change detection methods, for two different sensor's data were used: Coherence Change Detection (CCD for SAR data and Covariance Equalization (CE for multispectral imagery. The CCD provides an identification of the stability of an area, and shows where changes have occurred. CCD shows subtle changes with an accuracy of several millimetres to centimetres. The CE method overcomes the atmospheric effects differences between two multispectral images, taken at different times. Therefore, areas that had undergone a major change can be detected. To achieve our goals, we focused on the urban areas affected by the tsunami event in Sendai, Japan that occurred on March 11, 2011 which affected the surrounding area, coastline and inland. High resolution TerraSAR-X (TSX and Landsat 7 images, covering the research area, were acquired for the period before and after the event. All pre-processed and processed according to each sensor. Both results, of the optical and SAR algorithms, were combined by resampling the spatial resolution of the Multispectral data to the SAR resolution. This was applied by spatial linear interpolation. A score representing the damage level in both products was assigned. The results of both algorithms, high level of damage is shown in the areas closer to the sea and shoreline. Our approach, combining SAR and multispectral images, leads to more reliable information and provides a

  2. Elastography in the assessment of sentinel lymph nodes prior to dissection

    Energy Technology Data Exchange (ETDEWEB)

    Tourasse, Christophe, E-mail: christophe.tourasse@radiologie-lyon.com [Radiology Department, Hopital Prive Jean Mermoz, 55 avenue Jean Mermoz, 69008 Lyon (France); Denier, Jean Francois [Anatomopathology Department, Technipath, 41 allee des Cypres, 69760 Limonest (France); Awada, Azzam; Gratadour, Anne-Christel; Nessah-Bousquet, Karima [Gynaecological and Breast Surgery Department, Hopital Prive Jean Mermoz, 69008 Lyon (France); Gay, Joeel [SuperSonic Imagine, Les Jardins de la Duranne - Bat. F, 510, rue Rene Descartes, 13857 Aix-en-Provence Cedex (France)

    2012-11-15

    Objective: Breast cancer starts as a local tumor but can become metastatic and spread via the lymph nodes. When the pre-operative assessment of the axillary lymph nodes is negative patients generally undergo sentinel node biopsy (SNB), followed by a secondary surgical axillary lymph node dissection (ALND) if the SNB is positive. The extemporaneous anatomo-pathological analysis of the sentinel lymph node enables metastases to be detected and an ALND at the same time of the SNB. The goal of this study was to evaluate the added value of ShearWave Elastography (SWE), compared with the conventional pre-operative assessment, in the screening of sentinel lymph nodes with a high metastatic risk, which could then benefit from an extemporaneous anatomo-pathological analysis. Patients and methods: Women undergoing breast surgery with SNB were prospectively enrolled. Before surgery, they underwent ultrasound and elastography imaging of axillary lymph nodes using the SuperSonic Imagine device and its ShearWave Trade-Mark-Sign elastography mode (SWE Trade-Mark-Sign ). The results obtained were compared to the immunohistochemical results for the removed lymph nodes. Results: 65 patients were enrolled. From the 103 lymph nodes examined by elastography and the 185 lymph nodes removed we were able to pair 81; 70 were healthy and 11 were malignant. The stiffness measurements (mean and maximal values) were significantly different between the healthy and metastatic lymph nodes, (p < 0.05). The areas under the ROC curves were 0.76 (95% confidence interval (CI): 0.58-0.94) and 0.75 (95%CI: 0.55-0.95) for the mean and the maximal stiffness, respectively. Conclusion: These encouraging results show a correlation between the metastatic risk of lymph nodes and their increased mean stiffness. Elasticity variables and potential thresholds that seem to predict the metastatic status of axillary lymph nodes were identified. If confirmed by further larger studies, these results could be useful in

  3. Signal-Characteristic analysis with respect to backing material of PVDF-based high-frequency ultrasound for photoacoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Su; Chang, Jin Ho [Dept. of Electronic Engineering, Sogang University, Seoul (Korea, Republic of)

    2015-04-15

    Photoacoustic microscopy is capable of providing high-resolution molecular images, and its spatial resolution is typically determined by ultrasonic transducers used to receive the photoacoustic signals. Therefore, ultrasonic transducers for photoacoustic microscopy (PAM) should have a high operating frequency, broad bandwidth, and high signal-reception efficiency. Polyvinylidene fluoride (PVDF) is a suitable material. To take full advantage of this material, the selection of the backing material is crucial, as it influences the center frequency and bandwidth of the transducer. Therefore, we experimentally determined the most suitable backing material among EPO-TEK 301, E-Solder 3022, and RTV. For this, three PVDF high-frequency single-element transducers were fabricated with each backing material. The center frequency and -6 dB bandwidth of each transducer were ascertained by a pulse-echo test. The spatial resolution of each transducer was examined using wire-target images. The experimental results indicated that EPO-TEK 301 is the most suitable backing material for a PAM transducer. This material provides the highest signal magnitude and a reasonable bandwidth because a large portion of the energy propagates toward the front medium, and the PVDF resonates in the half-wave mode.

  4. Modeling the photoacoustic signal during the porous silicon formation

    Science.gov (United States)

    Ramirez-Gutierrez, C. F.; Castaño-Yepes, J. D.; Rodriguez-García, M. E.

    2017-01-01

    Within this work, the kinetics of the growing stage of porous silicon (PS) during the etching process was studied using the photoacoustic technique. A p-type Si with low resistivity was used as a substrate. An extension of the Rosencwaig and Gersho model is proposed in order to analyze the temporary changes that take place in the amplitude of the photoacoustic signal during the PS growth. The solution of the heat equation takes into account the modulated laser beam, the changes in the reflectance of the PS-backing heterostructure, the electrochemical reaction, and the Joule effect as thermal sources. The model includes the time-dependence of the sample thickness during the electrochemical etching of PS. The changes in the reflectance are identified as the laser reflections in the internal layers of the system. The reflectance is modeled by an additional sinusoidal-monochromatic light source and its modulated frequency is related to the velocity of the PS growth. The chemical reaction and the DC components of the heat sources are taken as an average value from the experimental data. The theoretical results are in agreement with the experimental data and hence provided a method to determine variables of the PS growth, such as the etching velocity and the thickness of the porous layer during the growing process.

  5. Lymph node segmentation by dynamic programming and active contours.

    Science.gov (United States)

    Tan, Yongqiang; Lu, Lin; Bonde, Apurva; Wang, Deling; Qi, Jing; Schwartz, Lawrence H; Zhao, Binsheng

    2018-03-03

    Enlarged lymph nodes are indicators of cancer staging, and the change in their size is a reflection of treatment response. Automatic lymph node segmentation is challenging, as the boundary can be unclear and the surrounding structures complex. This work communicates a new three-dimensional algorithm for the segmentation of enlarged lymph nodes. The algorithm requires a user to draw a region of interest (ROI) enclosing the lymph node. Rays are cast from the center of the ROI, and the intersections of the rays and the boundary of the lymph node form a triangle mesh. The intersection points are determined by dynamic programming. The triangle mesh initializes an active contour which evolves to low-energy boundary. Three radiologists independently delineated the contours of 54 lesions from 48 patients. Dice coefficient was used to evaluate the algorithm's performance. The mean Dice coefficient between computer and the majority vote results was 83.2%. The mean Dice coefficients between the three radiologists' manual segmentations were 84.6%, 86.2%, and 88.3%. The performance of this segmentation algorithm suggests its potential clinical value for quantifying enlarged lymph nodes. © 2018 American Association of Physicists in Medicine.

  6. Detection of melanoma cells suspended in mononuclear cells and blood plasma using photoacoustic generation

    Science.gov (United States)

    Spradling, Emily M.; Viator, John A.

    2009-02-01

    Melanoma is the deadliest form of skin cancer. Although the initial malignant cells are removed, it is impossible to determine whether or not the cancer has metastasized until a secondary tumor forms that is large enough to detect with conventional imaging. Photoacoustic detection of circulating melanoma cells in the bloodstream has shown promise for early detection of metastasis that may aid in treatment of this aggressive cancer. When blood is irradiated with energy from an Nd:YAG laser at 532 nm, photoacoustic signals are created and melanoma cells can be differentiated from the surrounding cells based on waveforms produced by an oscilloscope. Before this can be used as a diagnostic technique, however, we needed to investigate several parameters. Specifically, the current technique involves the in vitro separation of blood through centrifugation to isolate and test only the white blood cell layer. Using this method, we have detected a single cultured melanoma cell among a suspension of white blood cells. However, the process could be made simpler if the plasma layer were used for detection instead of the white blood cell layer. This layer is easier to obtain after blood separation, the optical difference between plasma and melanoma cells is more pronounced in this layer than in the white blood cell layer, and the possibility that any stray red blood cells could distort the results is eliminated. Using the photoacoustic apparatus, we detected no melanoma cells within the plasma of whole blood samples spiked with cultured melanoma cells.

  7. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    Directory of Open Access Journals (Sweden)

    Faliu Yi

    2014-05-01

    Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  8. A multispectral photon-counting double random phase encoding scheme for image authentication.

    Science.gov (United States)

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H

    2014-05-20

    In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  9. Arm morbidity following sentinel lymph node biopsy or axillary lymph node dissection: a study from the Danish Breast Cancer Cooperative Group

    DEFF Research Database (Denmark)

    Husted, Madsen A.; Haugaard, K.; Soerensen, J.

    2008-01-01

    BACKGROUND: Sentinel lymph node biopsy was implemented in the treatment of early breast cancer with the aim of reducing shoulder and arm morbidity. Relatively few prospective studies have been published where the morbidity was assessed by clinical examination. Very few studies have examined...... lymph node biopsy with node negative patients having a lymph node dissection of levels I and II of the axilla, we found significant increase in arm volume among the patients who had an axillary dissection. Only minor, but significant, differences in shoulder mobility were observed comparing the two...... groups of node negative patients. Highly significant difference was found comparing sensibility. Comparing the morbidity in node positive patients who had a one-step axillary dissection with patients having a two-step procedure (sentinel lymph node biopsy followed by delayed axillary dissection) revealed...

  10. Lymph-scintigraphic identification of sentinel lymph nodes in breast carcinoma and malignant melanoma patients

    International Nuclear Information System (INIS)

    Sergieva, S; Bajchev, G.; Aleksandrova, E.

    1999-01-01

    It is the purpose of the study to assay the possibilities of lymphoscintigraphy (LS) in evaluating local lymphatic drainage and sentinel lymph nodes (SLNs) location in patients presenting breast carcinoma and malignant melanoma. Twenty-nine women with breast carcinoma (TI-IIa clinical stage, age range 31 to 74 y) and 7 patients with malignant melanoma (Clark III-V) are scanned in the period 1997 through 1998. 99m Tc-sulphur colloid (Solco Lymphoscint, SORIN) with mean size of particles 50 nm is used. Planar images are obtained at 20 and 120-180 min after sc injection in the region of primary tumor, at mean radioactivity 20 MBq per injection site in a volume 0.2-0.3 ml. In the breast cancer patients Patent Blue V or Mitoxantrone is injected around the tumor twice - 20 and 3 to 1/2 hours prior to surgery. In malignant melanoma patients immunoscintigraphy using 740 MBq 99m Tc-anti-melanoma monoclonal antibodies (Technemab-K-1) is carried out before lymph node dissection. SLNs are visualized in 25 patients (86.2%) with breast cancer. In 21 (72%) patients to 4 SLNs are scanned in level I of the local axillary region, in 4 cases (14%) - in the region of axillary level II, in one female patient (3%) - at axillary level III, and in 3 patients (10%) i psilateral internal mammary lymph nodes are scanned. Two patients are suspected for the so-called s kip t ype of tumor lymphatic dissemination. In 4 patients no SLN images are visible. In breast carcinoma patients SLN are additionally stained blue and following intraoperative revision, evidence of metastatic involvement is established in 12 instances (41.3%). In 3 patients with melanoma in the abdomen and back SLNs are located in the region of inguinal and axillary lymph node groups, while in 3 patients presenting lesions to the surface of extremities only local lymph nodes draining the melanoma are visualized. Immunoscintigraphy shows enhanced uptake in the region of SLNs in 3 cases with the metastatic changes in them

  11. Observation of martensitic structure evolution in Cu-Al-Ni single crystals with shape memory effect under external load using photoacoustic microscopy

    International Nuclear Information System (INIS)

    Muratikov, K.L.; Glazov, A.L.; Nikolaev, V.I.; Pul'nev, S.A.

    2006-01-01

    Photoacoustic microscopy is applied to observe the surface structure of Cu-Al-Ni shape-memory single crystals in both the loaded and unloaded states. Visualizing the early stages of the loading-induced martensitic transformation in Cu-Al-Ni single crystals is demonstrated to be feasible. The photoacoustic images are distinguished to advantage from the corresponding optical images by a higher contrast between different phases of the Cu-Al-Ni shape-memory alloy [ru

  12. Generating Multispectral VIIRS Imagery in Near Real-Time for Use by the National Weather Service in Alaska

    Science.gov (United States)

    Broderson, D.; Dierking, C.; Stevens, E.; Heinrichs, T. A.; Cherry, J. E.

    2016-12-01

    The Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks (UAF) uses two direct broadcast antennas to receive data from a number of polar-orbiting weather satellites, including the Suomi National Polar Partnership (S-NPP) satellite. GINA uses data from S-NPP's Visible Infrared Imaging Radiometer Suite (VIIRS) to generate a variety of multispectral imagery products developed with the needs of the National Weather Service operational meteorologist in mind. Multispectral products have two primary advantages over single-channel products. First, they can more clearly highlight some terrain and meteorological features which are less evident in the component single channels. Second, multispectral present the information from several bands through just one image, thereby sparing the meteorologist unnecessary time interrogating the component single bands individually. With 22 channels available from the VIIRS instrument, the number of possible multispectral products is theoretically huge. A small number of products will be emphasized in this presentation, with the products chosen based on their proven utility in the forecasting environment. Multispectral products can be generated upstream of the end user or by the end user at their own workstation. The advantage and disadvantages of both approaches will be outlined. Lastly, the technique of improving the appearance of multispectral imagery by correcting for atmospheric reflectance at the shorter wavelengths will be described.

  13. Automated segmentation of pigmented skin lesions in multispectral imaging

    International Nuclear Information System (INIS)

    Carrara, Mauro; Tomatis, Stefano; Bono, Aldo; Bartoli, Cesare; Moglia, Daniele; Lualdi, Manuela; Colombo, Ambrogio; Santinami, Mario; Marchesini, Renato

    2005-01-01

    The aim of this study was to develop an algorithm for the automatic segmentation of multispectral images of pigmented skin lesions. The study involved 1700 patients with 1856 cutaneous pigmented lesions, which were analysed in vivo by a novel spectrophotometric system, before excision. The system is able to acquire a set of 15 different multispectral images at equally spaced wavelengths between 483 and 951 nm. An original segmentation algorithm was developed and applied to the whole set of lesions and was able to automatically contour them all. The obtained lesion boundaries were shown to two expert clinicians, who, independently, rejected 54 of them. The 97.1% contour accuracy indicates that the developed algorithm could be a helpful and effective instrument for the automatic segmentation of skin pigmented lesions. (note)

  14. The effect of ageing on YBa2Cu3O7-x obtained by the photoacoustic method

    Directory of Open Access Journals (Sweden)

    Nikolić Pantelija M.

    2003-01-01

    Full Text Available Thermal diffusivity and electric transport properties of fourteen years old superconducting YBa2Cu3O7-x pellets were obtained using the photoacoustic transmission technique and then compared with freshly made superconducting samples. The theoretical model for photoacoustic (PA detection configuration is given. The measured amplitude and phase PA signals, as a function of the modulation frequency, were numerically analyzed. The thermal diffusivity, the coefficient of the carrier diffusion, optical absorption coefficient and the excess carrier lifetime were calculated. The thermal diffusivity of freshly produced samples decreased, after ageing, from about 1.3·10-6 to about 6.1·10-7 m2/s.

  15. Interlaced photoacoustic and ultrasound imaging system with real-time coregistration for ovarian tissue characterization

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing

    2014-07-01

    Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated.

  16. Nano-imaging of the lymph network structure with quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hikage, Makoto; Gonda, Kohsuke; Takeda, Motohiro; Ohuchi, Noriaki [Department of Nano-Medical Science, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kamei, Takashi; Satomi, Susumu [Department of Advanced Surgical Science and Technology, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan); Kobayashi, Masaki; Kumasaka, Masutaka [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Yagiyama Kasumicho, Taihaku-ku, Sendai 982-8577 (Japan); Watanabe, Mika, E-mail: gonda@m.tains.tohoku.ac.jp [Department of Pathology, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan)

    2010-05-07

    Sentinel lymph node diagnosis contributes to operative strategy in cancer surgery. During lymph node metastasis, cancer cells first reach the sentinel lymph node (SLN) via lymph flow. To perform SLN biopsy effectively, it is important that cancer cells are detected with high sensitivity in SLN connected to the tumor site. Here we present a method to visualize a high-risk area in the SLN for lymph node metastasis with a high degree of accuracy. Quantum dots (QDs), bright fluorescent nanoparticles, were endoscopically injected into the gastrointestinal wall of pigs, and their signal was specifically detected in the SLN with a laparoscopic device. Single-particle imaging under a confocal microscope showed that the QDs were distributed heterogeneously in the SLN and that their distribution marked the inflow locus of afferent lymphatic vessels where lymph node metastasis begins. Moreover, we developed a method using cellular marker conjugated QDs that visualizes specific cells in SLNs, suggesting that this method can be applied for the detection of cancer cells in sentinel lymph nodes using tumor-specific-molecular conjugated QDs. These results show that our method might significantly increase the detection rate of cancer metastasis in SLNs.

  17. Photoacoustic investigation of QCL modulation techniques

    International Nuclear Information System (INIS)

    Germer, M; Wolff, M

    2010-01-01

    High detection sensitivity and spectral selectivity is important for gas analysers to identify the measured compound and to detect low concentrations. We investigated three different modulation methods - pulse gate modulation, pulse frequency modulation and chopper modulation - for a new pulsed quantum cascade laser based photoacoustic sensor. The spectral selectivity and the detection limit for the three modulation methods are compared by measuring nitric oxide absorption lines and different concentrations. The highest detection sensitivity of 70 ppb was achieved with pulse gate modulation but at the lowest spectral resolution. The highest spectral resolution was achieved with chopper modulation but at the lowest detection sensitivity. It is demonstrated that for the three modulation methods a compromise has to be made between selectivity and sensitivity for each measuring task.

  18. Mulig forbedret behandling af kolorektal cancer med sentinel lymph node-diagnostik

    DEFF Research Database (Denmark)

    Burgdorf, Stefan Kobbelgaard; Eriksen, Jens Ravn; Gögenur, Ismail

    2014-01-01

    Possibly improved treatment of colorectal cancer by sentinel lymph node mapping Prognosis for colorectal cancer is dependent on radical surgical intervention. Chemotherapy in patients with advanced disease has improved the survival. A considerable proportion of the patients going through radical...... surgery will subsequently relapse. Adjuvant chemotherapy is reserved for patients with lymph node metastases, why undetected malignant lymph nodes will result in understaging and exclusion from the possible benefit of adjuvant chemotherapy. With sentinel lymph node mapping it may be possible to detect...... and resect more malignant lymph node and maybe even avoid extensive resections....

  19. Double Minimum Variance Beamforming Method to Enhance Photoacoustic Imaging

    OpenAIRE

    Paridar, Roya; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza; Orooji, Mahdi

    2018-01-01

    One of the common algorithms used to reconstruct photoacoustic (PA) images is the non-adaptive Delay-and-Sum (DAS) beamformer. However, the quality of the reconstructed PA images obtained by DAS is not satisfying due to its high level of sidelobes and wide mainlobe. In contrast, adaptive beamformers, such as minimum variance (MV), result in an improved image compared to DAS. In this paper, a novel beamforming method, called Double MV (D-MV) is proposed to enhance the image quality compared to...

  20. A mathematical prediction model incorporating molecular subtype for risk of non-sentinel lymph node metastasis in sentinel lymph node-positive breast cancer patients: a retrospective analysis and nomogram development.

    Science.gov (United States)

    Wang, Na-Na; Yang, Zheng-Jun; Wang, Xue; Chen, Li-Xuan; Zhao, Hong-Meng; Cao, Wen-Feng; Zhang, Bin

    2018-04-25

    Molecular subtype of breast cancer is associated with sentinel lymph node status. We sought to establish a mathematical prediction model that included breast cancer molecular subtype for risk of positive non-sentinel lymph nodes in breast cancer patients with sentinel lymph node metastasis and further validate the model in a separate validation cohort. We reviewed the clinicopathologic data of breast cancer patients with sentinel lymph node metastasis who underwent axillary lymph node dissection between June 16, 2014 and November 16, 2017 at our hospital. Sentinel lymph node biopsy was performed and patients with pathologically proven sentinel lymph node metastasis underwent axillary lymph node dissection. Independent risks for non-sentinel lymph node metastasis were assessed in a training cohort by multivariate analysis and incorporated into a mathematical prediction model. The model was further validated in a separate validation cohort, and a nomogram was developed and evaluated for diagnostic performance in predicting the risk of non-sentinel lymph node metastasis. Moreover, we assessed the performance of five different models in predicting non-sentinel lymph node metastasis in training cohort. Totally, 495 cases were eligible for the study, including 291 patients in the training cohort and 204 in the validation cohort. Non-sentinel lymph node metastasis was observed in 33.3% (97/291) patients in the training cohort. The AUC of MSKCC, Tenon, MDA, Ljubljana, and Louisville models in training cohort were 0.7613, 0.7142, 0.7076, 0.7483, and 0.671, respectively. Multivariate regression analysis indicated that tumor size (OR = 1.439; 95% CI 1.025-2.021; P = 0.036), sentinel lymph node macro-metastasis versus micro-metastasis (OR = 5.063; 95% CI 1.111-23.074; P = 0.036), the number of positive sentinel lymph nodes (OR = 2.583, 95% CI 1.714-3.892; P model based on the results of multivariate analysis was established to predict the risk of non

  1. Concentric circular ring and nanodisk optical antenna enhanced multispectral quantum dot infrared photodetector with spectral localization

    International Nuclear Information System (INIS)

    Zhang, Yingjie; Kemsri, Thitikorn; Li, Lin; Lu, Xuejun; Gu, Guiru

    2017-01-01

    In this paper, we report a concentric circular ring and nanodisk plasmonic optical antenna (POA) enhanced multispectral quantum dot infrared photodetector (QDIP). The circular ring and the nanodisk POA structures are designed to have plasmonic resonant wavelengths in the longwave infrared (LWIR) and the midwave infrared (MWIR) spectral regimes, respectively. The electric field ( E -field) distributions are simulated and show spectral localization due to the distinct plasmonic resonant wavelengths of the POA structures. The circular ring is found to enhance the E -fields in the nanodisk regions due to the mutual coupling. A concentric circular ring and nanodisk POA enhanced multispectral QDIP was fabricated and tested. Multispectral enhancement was observed. The enhancement is compared to that of a QDIP with only the circular ring POA structure. The experiment data agree with the simulation. The concentric circular ring and nanodisk POA provides a compact planar structure for multispectral QDIP enhancement. (paper)

  2. Discrimination of organic coffee via Fourier transform infrared-photoacoustic spectroscopy.

    Science.gov (United States)

    Gordillo-Delgado, Fernando; Marín, Ernesto; Cortés-Hernández, Diego Mauricio; Mejía-Morales, Claudia; García-Salcedo, Angela Janet

    2012-08-30

    Procedures for the evaluation of the origin and quality of ground and roasted coffee are constantly needed for the associated industry due to complexity of the related market. Conventional Fourier transform infrared (FTIR) spectroscopy can be used for detecting changes in functional groups of compounds, such as coffee. However, dispersion, reflection and non-homogeneity of the sample matrix can cause problems resulting in low spectral quality. On the other hand, sample preparation frequently takes place in a destructive way. To overcome these difficulties, in this work a photoacoustic cell has been adapted as a detector in a FTIR spectrophotometer to perform a study of roasted and ground coffee from three varieties of Coffea arabica grown by organic and conventional methods. Comparison between spectra of coffee recorded by FTIR-photoacoustic spectrometry (PAS) and by FTIR spectrophotometry showed a better resolution of the former method, which, aided by principal components analysis, allowed the identification of some absorption bands that allow the discrimination between organic and conventional coffee. The results obtained provide information about the spectral behavior of coffee powder which can be useful for establishing discrimination criteria. It has been demonstrated that FTIR-PAS can be a useful experimental tool for the characterization of coffee. Copyright © 2012 Society of Chemical Industry.

  3. COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.

    Science.gov (United States)

    Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R

    2018-03-16

    To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.

  4. Multi-spectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2011-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. In this study multi-spectral image analysis of pellets was performed using LDA, QDA, SNV and PCA on pixel level and mean value of pixels...

  5. Assessment of the added value of the Twente Photoacoustic Mammoscope in breast cancer diagnosis

    NARCIS (Netherlands)

    Hilgerink, Marjolein P.; Hummel, J. Marjan; Manohar, Srirang; Vaartjes, Simon R.; IJzerman, Maarten Joost

    2011-01-01

    Purpose: Photoacoustic (PA) imaging is a recently developed breast cancer imaging technique. In order to enhance successful clinical implementation, we quantified the potential clinical value of different scenarios incorporating PA imaging by means of multi-criteria analysis. From this analysis, the

  6. Laser induced photoacoustic spectroscopy applied to a study on coagulation processes of Tc(IV) colloid

    International Nuclear Information System (INIS)

    Sekine, T.; Kino, S.; Kino, Y.; Kudo, H.

    2001-01-01

    Quantitative determination of size and concentration of colloid particles in aqueous solutions was performed by laser induced photoacoustic spectroscopy (LPAS), and this technique was applied to a study on coagulation processes of Tc(IV) colloids. The intensity of photoacoustic signals from colloid particles (polystyrene, gold sols) was successfully calculated as a product of the number of particles and the absorption cross section per particle based on the Mie's light scattering theory. With this technique, the coagulation of Tc(IV) colloids prepared by the reduction of TcO 4 with Sn(II) was observed. The observed growth rate of colloid particles was successfully analyzed by a newly developed collision model, in which both the distribution of the kinetic energy of particles and the potential barrier between the two particles played significant roles. (author)

  7. Characterization of Maize Grains with Different Pigmentation Investigated by Photoacoustic Spectroscopy

    Science.gov (United States)

    Rico Molina, R.; Hernández Aguilar, C.; Dominguez Pacheco, A.; Cruz-Orea, A.; López Bonilla, J. L.

    2014-10-01

    A knowledge of grains' optical parameters is of great relevance in the maize grain technology practice. Such parameters provide information about its absorption and reflectance, which in turn is related to its color. In the dough and tortilla industries, it is important to characterize this attribute of the corn kernel, as it is one of the attributes that directly affects the quality of the food product. Thus, it is important to have techniques that contribute to the characterization of this raw material. It is traditionally characterized by conventional methods, which usually destroy the grain and involve a laborious preparation of material plus they are expensive. The objective of this study was to determine the optical absorption coefficient for maize grains ( Zea mays L.) with different pigmentations by means of photoacoustic spectroscopy (PAS). The genotype A had bluish coloration and genotype B had yellowish coloration. In addition, the photoacoustic signal obtained by two methods was analyzed mathematically: the standard deviation and the first derivative; both results were compared (Fig. 1). In combination with mathematical analysis, PAS may be considered as a potential diagnostic tool for the characterization of the grains. [Figure not available: see fulltext.

  8. Processing methods for photoacoustic Doppler flowmetry with a clinical ultrasound scanner

    Science.gov (United States)

    Bücking, Thore M.; van den Berg, Pim J.; Balabani, Stavroula; Steenbergen, Wiendelt; Beard, Paul C.; Brunker, Joanna

    2018-02-01

    Photoacoustic flowmetry (PAF) based on time-domain cross correlation of photoacoustic signals is a promising technique for deep tissue measurement of blood flow velocity. Signal processing has previously been developed for single element transducers. Here, the processing methods for acoustic resolution PAF using a clinical ultrasound transducer array are developed and validated using a 64-element transducer array with a -6 dB detection band of 11 to 17 MHz. Measurements were performed on a flow phantom consisting of a tube (580 μm inner diameter) perfused with human blood flowing at physiological speeds ranging from 3 to 25 mm / s. The processing pipeline comprised: image reconstruction, filtering, displacement detection, and masking. High-pass filtering and background subtraction were found to be key preprocessing steps to enable accurate flow velocity estimates, which were calculated using a cross-correlation based method. In addition, the regions of interest in the calculated velocity maps were defined using a masking approach based on the amplitude of the cross-correlation functions. These developments enabled blood flow measurements using a transducer array, bringing PAF one step closer to clinical applicability.

  9. CO2 laser photoacoustic detection of ammonia emitted by ceramic industries.

    Science.gov (United States)

    Sthel, M S; Schramm, D U; Lima, G R; Carneiro, L; Faria, R T; Castro, M P P; Alexandre, J; Toledo, R; Silva, M G; Vargas, H

    2011-01-01

    A homemade photoacoustic spectrometer has been constructed for monitoring gas emission from several sources. Numerous air pollutant gases are emitted exhaust of industries, vehicles and power plants. The photoacoustic technique is extremely sensitive and selective in detecting various gases. This work focuses on the gas emitted by the ceramic industry in northern Rio de Janeiro State in Brazil, the ceramic industry plays a remarkable role in the economy activity of this region, in recent years, this region developed into a significant red ceramic complex. The potential impact on the atmospheric environment of the region due to gaseous pollutant emissions from these anthropogenic sources needs to be evaluated. In this work we identified NH3 present in the samples collected in the kiln of a ceramic plant, in the concentration range of 33-52 ppmV. The ammonia gas present in our collected samples might come from the excess nitrogen in the manure soil from where the ceramic material was extracted. This soil was used for the sugarcane culture which is another important economic activity of this region. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals

    Science.gov (United States)

    Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.

    2009-06-01

    Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.

  11. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy

    Science.gov (United States)

    Laufer, Jan; Johnson, Peter; Zhang, Edward; Treeby, Bradley; Cox, Ben; Pedley, Barbara; Beard, Paul

    2012-05-01

    The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.

  12. Free‑floating cancer cells in lymph node sinuses of hilar lymph node‑positive patients with non‑small cell lung cancer.

    Science.gov (United States)

    Nakamura, Yusuke; Mukai, Masaya; Hiraiwa, Shinichiro; Kishima, Kyoko; Sugiyama, Tomoko; Tajiri, Takuma; Yamada, Shunsuke; Iwazaki, Masayuki

    2018-05-14

    Previous studies demonstrated that free‑floating cancer cells (FFCCs) in the lymph node sinuses were of prognostic significance for colorectal and gastric cancer. The present study investigated the clinical significance of detecting FFCCs using Fast Red staining for cytokeratin in stage I/II non‑small cell lung cancer (NSCLC) patients and hilar lymph node positive NSCLC patients who underwent curative resection. Between 2002 and 2011, a total of 164 patients (including 22 hilar lymph node positive patients) were investigated. Resected lymph nodes were stained for cytokeratin using an anti‑cytokeratin antibody. In order to achieve a clear distinction from coal dust, an anti‑cytokeratin antibody was labeled with a secondary antibody conjugated with alkaline phosphatase, which was detected by a reaction with Fast Red/naphthol that produced a red color. Patients were considered to be positive for FFCCs (FFCCs+) if one or more than one free‑floating cytokeratin‑positive cell was detected in the lymph node sinuses, which could not be detected by hematoxylin and eosin staining. Among all 164 patients, a significant difference was observed in 5‑year relapse‑free survival (5Y‑RFS) rates, with 76.9 and 33.3% being achieved by FFCCs‑ and FFCCs+ patients, respectively (Philar lymph node‑positive patients, a significant difference was also observed in 5Y‑RFS, with 53.8 and 0.0% being achieved by FFCCs‑ and FFCCs+ patients, respectively (P=0.006). The 5Y‑OS tended to be lower in FFCCs+ patients, with 69.2 and 53.3% being achieved by FFCCs‑ and FFCCs+ patients, respectively (P=0.463). The findings of the present study suggested the presence of FFCCs in stage I/II NSCLC patients was associated with a poor prognosis. In addition, FFCCs in hilar lymph node‑positive patients may potential be a useful marker in foreseeing the recurrence of cancer.

  13. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.

    Science.gov (United States)

    Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F

    2015-01-01

    Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.

  14. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    International Nuclear Information System (INIS)

    Zhang, E Z; Laufer, J G; Beard, P C; Pedley, R B

    2009-01-01

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  15. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, E Z; Laufer, J G; Beard, P C [Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Pedley, R B [UCL Cancer Institute, Paul O' Gorman Building, University College London, 72 Huntley St, London WC1E 6BT (United Kingdom)

    2009-02-21

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  16. Lymph edema of the lower extremities after lymphadenectomy and radiotherapy for cervical cancer

    International Nuclear Information System (INIS)

    Fueller, J.; Wendt, T.G.; Guderian, D.; Koehler, C.; Schneider, A.

    2008-01-01

    Purpose: To assess the incidence of clinical lymph edema after lymphadenectomy and postoperative radiotherapy (RT). Patients and Methods: From 1994-2002 192 patients with risk factors for recurrence received radiotherapy with FIGO I (58.8%), II (35.4%), III (4.2%) or IV (1.6%). RT consisted of teletherapy (10.4%), brachytherapy of the vaginal vault (20.8%) or a combination of both (68.8%). Additional chemotherapy was given in 69 patients (35.9%). Surgery comprised laparoscopically assisted radical vaginal hysterectomy (LARVH) (35.4%), radical abdominal hysterectomy (RAH) (48.4%), simple hysterectomy (HE) (11.5%) or exenteration (4.7%). Results: 73 patients had lymph node metastases, 119 had negative lymph nodes. In patients with LARVH 6-74 (median 30) lymph nodes were removed, with RAH 3-70 (median 21 lymph nodes), and after HE or exenteration 5-50 (median 13 lymph nodes). 90 patients had 25 or less lymph nodes removed, 83 patients more than 25 lymph nodes removed. Prognostic factors, such as age, FIGO stages, histologic grading and type of histology were well balanced in these cohorts. 45 (23.4%) of all patients developed clinically relevant lymph edema of the lower limb with a median latency of 11 (1-121) months. When 25 or less lymph nodes were removed 17.8% of patients developed leg edema, when more than 25 lymph nodes were removed 32.5% of patients were diagnosed with lymph edema (p = 0.025). Radiotherapy and chemotherapy had no influence on the incidence of leg edema. Overall survival at 5 (10) years was independent of number of lymph nodes removed. Conclusion: The data suggest increasing rates of leg edema with increasing number of lymph nodes dissected independent of the type of radiotherapy and chemotherapy performed. The lymph node sampling policy should be planned carefully in respect to minimize the risk of leg lymph edema. (orig.)

  17. High resolution functional photoacoustic tomography of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoqi; Yao, Lei; Xi, Lei; Jiang, Huabei, E-mail: hjiang@bme.ufl.edu [Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Heldermon, Coy D. [Department of Medicine, University of Florida, Gainesville, Florida 32611 (United States)

    2015-09-15

    Purpose: To evaluate the feasibility of functional photoacoustic tomography (fPAT) for high resolution detection and characterization of breast cancer and to demonstrate for the first time quantitative hemoglobin concentration and oxygen saturation images of breasts that were formed with model-based reconstruction of tomographic photoacoustic data. Methods: The study was HIPAA compliant and was approved by the university institutional review board. Written informed consents were obtained from all the participants. Ten cases, including six cancer and four healthy (mean age = 50 yr; age range = 41–66 yr), were examined. Functional images of breast tissue including absolute total hemoglobin concentration (Hb{sub T}) and oxygen saturation (StO{sub 2}%) were obtained by fPAT and cross validated with magnetic resonance imaging (MRI) readings and/or histopathology. Results: Hb{sub T} and StO{sub 2}% maps from all six pathology-confirmed cancer cases (60%) show clear detection of tumor, while MR images indicate clear detection of tumor for five of six cancer cases; one small tumor was read as near-complete-resolution by MRI. The average Hb{sub T} and StO{sub 2}% value of suspicious lesion area for the cancer cases was 61.6 ± 18.9 μM/l and 67.5% ± 5.2% compared to 25.6 ± 7.4 μM/l and 65.2% ± 3.8% for background normal tissue. Conclusions: fPAT has the potential to be a significant add-on in breast cancer detection and characterization as it provides submillimeter resolution functional images of breast lesions.

  18. Supervised Classification Performance of Multispectral Images

    OpenAIRE

    Perumal, K.; Bhaskaran, R.

    2010-01-01

    Nowadays government and private agencies use remote sensing imagery for a wide range of applications from military applications to farm development. The images may be a panchromatic, multispectral, hyperspectral or even ultraspectral of terra bytes. Remote sensing image classification is one amongst the most significant application worlds for remote sensing. A few number of image classification algorithms have proved good precision in classifying remote sensing data. But, of late, due to the ...

  19. An image compression method for space multispectral time delay and integration charge coupled device camera

    International Nuclear Information System (INIS)

    Li Jin; Jin Long-Xu; Zhang Ran-Feng

    2013-01-01

    Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low-complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in multispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian—Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band

  20. Precise Multi-Spectral Dermatological Imaging

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2004-01-01

    In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral dermatological images is proposed. The system is made up of an integrating sphere, light emitting diodes and a generic monochromatic camera. The system can collect up to 10 different spectral bands....... These spectral bands vary from ultraviolet to near infrared. The welldefined and diffuse illumination of the optically closed scene aims to avoid shadows and specular reflections. Furthermore, the system has been developed to guarantee the reproducibility of the collected images. This allows for comparative...