National Oceanic and Atmospheric Administration, Department of Commerce — Thermographs are weekly circular charts recording temperature at a given station. Includes hygrothermographs, long rectangular charts which which also capture...
Nebatti Ech-Chergui, Abdelkader
2011-07-29
Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission
Thermographic Detection of separated Flow
Dollinger, C.; Balaresque, N.; Schaffarczyk, A. P.; Fischer, A.
2016-09-01
Thermographic wind tunnel measurements, both on a cylinder as well as on a 2D airfoil, were performed at various Reynolds numbers in order to evaluate the possibility of detecting and visualizing separated flow areas. A new approach by acquiring a series of thermographic images and applying a spatial-temporal statistical analysis allows improving both the resolution and the information content of the thermographic images. Separated flow regions become visible and laminar/turbulent transitions can be detected more accurately. The knowledge about possibly present stall cells can be used to confirm two-dimensional flow conditions and support the development of more effective and silent rotorblades.
2013-01-01
A few weeks ago, I had a vague notion of what TED was, and how it worked, but now I’m a confirmed fan. It was my privilege to host CERN’s first TEDx event last Friday, and I can honestly say that I can’t remember a time when I was exposed to so much brilliance in such a short time. TEDxCERN was designed to give a platform to science. That’s why we called it Multiplying Dimensions – a nod towards the work we do here, while pointing to the broader importance of science in society. We had talks ranging from the most subtle pondering on the nature of consciousness to an eighteen year old researcher urging us to be patient, and to learn from our mistakes. We had musical interludes that included encounters between the choirs of local schools and will.i.am, between an Israeli pianist and an Iranian percussionist, and between Grand Opera and high humour. And although I opened the event by announcing it as a day off from physics, we had a quite brill...
The zombie thermographer apocalypse preparedness 101: zombie thermographer pandemic
Colbert, Fred
2013-05-01
Fact: The U.S Government Centers for Disease Control and Prevention (CDC), Office of Public Health Preparedness and Response, rather remarkably has dedicated part of their web site to" Zombie Preparedness". See: http://www.cdc.gov/phpr/zombies.htm for more information. This is a tongue-incheek campaign with messages to engage audiences with the hazards of unpreparedness. The CDC director, U.S. Assistant Surgeon General Ali S. Khan (RET), MD, MPH notes, "If you are generally well equipped to deal with a zombie apocalypse you will be prepared for a hurricane, pandemic, earthquake, or terrorist attack. Make a plan, and be prepared!" (CDC Website, April 26th, 2013). Today we can make an easy comparison between the humor that the CDC is bringing to light, and what is actually happening in the Thermographic Industry. It must be acknowledge there are "Zombie Thermographers" out there. At times, it can be observed from the sidelines as a pandemic apocalypse attacking the credibility and legitimacy of the science and the industry that so many have been working to advance for over 30 years. This paper outlines and explores the trends currently taking place, the very real risks to facility plant, property, and human life as a result, and the strategies to overcome these problems.
Do infrared thermographers need a professional organization?
Peacock, G. Raymond
2008-03-01
In 2003 a group of interested Thermographers headed by Greg Stockton of Stockton Infrared Services and Lee Allen began an effort to develop a professional organization to serve the Thermography community. It was named ISPOT and resulted in a Constitution, committees, legal registration and a group of dues-paying members. However, it has waned and there appears little organization left and more than a few people disappointed. Clearly there was a need. There still seems to be a need and issues in the education, continuing education and certification of Thermographer skills as well as standards for development of procedures. Applications in the Non Destructive Testing (NDT) field seem to have grown beyond the scope of present certification recommendations and promise to expand even faster. Who speaks objectively for the minimal training and in-service experience required to make a Thermographers fully qualified in areas outside NDT? How does a Thermographer extend his skill set into the newer fields of Building Thermography, Pest Control, Mold Remediation and the Next New Thing? What of the needs for purchasers of thermographic services? How can they judge the capabilities of individuals or organizations hired to perform services? What requirements exist for trained Thermographers to maintain their skills? Perhaps we can start to define some guidelines for an organization to meet the needs of the individuals, the trainers, the equipment suppliers and the users and purchasers of thermographic services.
Advances in thermographic signal reconstruction
Shepard, Steven M.; Frendberg Beemer, Maria
2015-05-01
Since its introduction in 2001, the Thermographic Signal Reconstruction (TSR) method has emerged as one of the most widely used methods for enhancement and analysis of thermographic sequences, with applications extending beyond industrial NDT into biomedical research, art restoration and botany. The basic TSR process, in which a noise reduced replica of each pixel time history is created, yields improvement over unprocessed image data that is sufficient for many applications. However, examination of the resulting logarithmic time derivatives of each TSR pixel replica provides significant insight into the physical mechanisms underlying the active thermography process. The deterministic and invariant properties of the derivatives have enabled the successful implementation of automated defect recognition and measurement systems. Unlike most approaches to analysis of thermography data, TSR does not depend on flawbackground contrast, so that it can also be applied to characterization and measurement of thermal properties of flaw-free samples. We present a summary of recent advances in TSR, a review of the underlying theory and examples of its implementation.
Synthesis and characterization of flexible thermographic phosphor temperature sensors
Mitchell, Katherine E.; Gardner, Victor; Allison, Stephen W.; Sabri, Firouzeh
2016-10-01
The temperature dependence of the emission characteristics of thermographic phosphors has been used extensively for surface temperature measurements of systems where thermal management is critical for the safe operation of the system. The instantaneous, remote, and highly accurate nature of this form of temperature measurement makes it a very attractive measurement technique. However, the destructive nature of depositing phosphors directly onto the surface of interest and the complications of working with fine powders has limited the use of this technique in all areas. This work focuses on the design and characterization of polymer-encapsulated thermographic phosphor flexible sensors for surface temperature assessment. La2O2S:Eu powder was embedded in an elastomeric sleeve at concentrations of 10%, 25%, and 50% wt. and fully characterized. The effect of spin-coating on emission characteristics of La2O2S:Eu was tested and the decay times were compared to results obtained from bulk-doped samples previously created by the authors.
Methodology, models and algorithms in thermographic diagnostics
Živčák, Jozef; Madarász, Ladislav; Rudas, Imre J
2013-01-01
This book presents the methodology and techniques of thermographic applications with focus primarily on medical thermography implemented for parametrizing the diagnostics of the human body. The first part of the book describes the basics of infrared thermography, the possibilities of thermographic diagnostics and the physical nature of thermography. The second half includes tools of intelligent engineering applied for the solving of selected applications and projects. Thermographic diagnostics was applied to problematics of paraplegia and tetraplegia and carpal tunnel syndrome (CTS). The results of the research activities were created with the cooperation of the four projects within the Ministry of Education, Science, Research and Sport of the Slovak Republic entitled Digital control of complex systems with two degrees of freedom, Progressive methods of education in the area of control and modeling of complex object oriented systems on aircraft turbocompressor engines, Center for research of control of te...
Thermographic characterization of stress during crack growth
Cramer, K. E.; Dawicke, David S.; Welch, Christopher S.
1992-01-01
A full-field-thermographic technique for imaging stress patterns in dynamically loaded structures using general purpose IR imaging and image processing hardware is described. The inspection technique is based on the thermoelastic effect. A simple geometry is examined, and the experimentally determined values for the stress invariant are shown to be consistent with theoretical and numerical calculations. The application of full-field-thermographic measurement would ensure that the observed stress field has a common sampling period, thus allowing the observation of rapidly occurring stress anomalies such as the propagation of a fatigue crack. Fatigue crack propagation in two consecutive thermoelastic stress images from an aluminum sample is shown.
Sergeeva, Alina P.
Chemistry is the study of materials and the changes that materials undergo. One can tune the properties of the known materials and design the novel materials with desired properties knowing what is responsible for the chemical reactivity, structure, and stability of those materials. The unified chemical bonding theory could address all these questions, but we do not have one available yet. The most accepted general theory of chemical bonding was proposed by Lewis in 1916, though Lewis's theory fails to explain the bonding in materials with delocalized electron density such as sub-nano and nanoclusters, as well as aromatic organic and organometallic molecules. The dissertation presents a set of projects that can be considered the steps towards the development of the unified chemical bonding theory by extending the ideas of Lewis. The dissertation also presents the studies of the properties of multiply charged anions, which tend to undergo Coulomb explosion in the isolated state and release the excess energy stored in them. It is shown how the properties of multiply charged anions can be tuned upon changing the chemical identity of the species or interaction with solvent molecules. Our findings led to the discovery of a new long-lived triply charged anionic species, whose metastability was explained by the existence of a repulsive Coulomb barrier. We also proposed two ways to restore high symmetry of compounds by suppression of the pseudo Jahn-Teller effect, which could lead to the design of new materials with the restored symmetry and therefore the novel properties.
Guidelines to thermographic inspection of electrical installations
Perch-Nielsen, Thomas; Sorensen, Jens C.
1994-03-01
Under the leadership of Danish Technological Institute, Dept. of Energy Technology the initiative was taken in 1991 to coordinate a project to explain and produce documented material for the interpretation of thermograms and to develop practical guidelines for thermographic inspection in electrical plants. Representatives include insurance companies, electricity utility companies, thermography contractors, industrial companies, and suppliers of electrical components and materials from 20 different firms. The project report describes the causes for thermally related defects in electric plants, statistical adaption of already detected defects, defect sources of electric thermography and practical tests charting excess temperature as a function of the current at different typical defects. The guidelines describe how a thermographic examination of larger electrical plants should be carried out in practice. This includes the agreement between customer and thermography contractor, report elaboration, and how different defects are interpreted. This paper describes the project's main contents and its expected effect on industry and insurance companies.
Problems inherent to quantitative thermographic electrical inspections
Snell, John R., Jr.
1995-03-01
The primary value of using infrared thermography to inspect electrical systems is to find problems made apparent by their thermal differences. Thermographers have also begun collecting radiometric temperature data as quantitative imaging systems have become more reliable and portable. Throughout the industry the use of temperature data has become a primary means of prioritizing the severity of a problem. The validity of this premise is suspect for several reasons, including the lack of standard data collection methods; the often poor understanding of radiometric measurements by maintenance thermographers; field conditions that vary widely enough to defy standardization; and the almost total lack of scientific research on the relationship between heat and time with regard to the failure of the components being inspected. Several possible solutions to the problems raised, as well as other suggestions for improving the usefulness and reliability of qualitative inspections, are offered.
Implementation of thermographers' certification in Brazil
dos Santos, Laerte; Alves, Luiz M.; da Costa Bortoni, Edson
2011-05-01
In recent years Brazil has experienced extraordinary growth despite the recent economic global crisis. The demand for infrared thermography products and services has accompanied this growth. Like other non-destructive testing and inspection, the results obtained by thermography are highly dependent on the skills of thermographer. Therefore, it is very important to establish a serious and recognized process of certification to assess thermographers' qualifications and help services suppliers to establish credibility with their customers and increase the confidence of these costumers on the quality of these services. The Brazilian Society of Non-Destructive Testing and Inspection, ABENDI, a non-profitable, private technical-scientific entity, recognized nationally and internationally, has observed the necessity of starting a process for certification of thermographers in Brazil. With support of a work group composed by experts from oil and energy industries, transportation, universities and manufactures, the activities started in 2005. This paper describes the economic background required for installation of the certification process, its initial steps, the main characteristics of the Brazilian certification and the expectation for initiating the certification process.
Pierce, Paul E.
1986-01-01
A hardware processor is disclosed which in the described embodiment is a memory mapped multiplier processor that can operate in parallel with a 16 bit microcomputer. The multiplier processor decodes the address bus to receive specific instructions so that in one access it can write and automatically perform single or double precision multiplication involving a number written to it with or without addition or subtraction with a previously stored number. It can also, on a single read command automatically round and scale a previously stored number. The multiplier processor includes two concatenated 16 bit multiplier registers, two 16 bit concatenated 16 bit multipliers, and four 16 bit product registers connected to an internal 16 bit data bus. A high level address decoder determines when the multiplier processor is being addressed and first and second low level address decoders generate control signals. In addition, certain low order address lines are used to carry uncoded control signals. First and second control circuits coupled to the decoders generate further control signals and generate a plurality of clocking pulse trains in response to the decoded and address control signals.
Thermographic stress analysis in cortical bone.
Vanderby, R; Kohles, S S
1991-11-01
Under adiabatic (or near adiabatic) conditions a volumetric change in an elastic material will produce a corresponding change in temperature. Based upon this principle, thermographic stress analysis (TSA) measures changes in surface heat flux (which are related to changes in surface temperature) and relates them to a coupled form of strains or stresses. To demonstrate the feasibility of using this technique for biomechanical applications, we thermographically measured heat flux from loaded specimens of cortical bone and correlated the results with strain gage data. Regular parallelepipeds were cut from the cortex of bovine femora and loaded sinusoidally at 20 Hz. At this rate of loading, mechanically induced changes in surface temperature could be sampled (via heat flux) prior to a measureable attenuation of the thermoelastic effect. Correlation coefficients demonstrated a significant linear relationship between TSA and measured and computed mechanical parameters (stress, strain, first strain invariant, and strain energy density). TSA therefore appears to be a promising technology for experimental stress analysis in cortical bone.
Buckley, T. N.
2008-12-01
The application of optimisation theory to vegetation processes has rarely extended beyond the context of diurnal to intra-annual gas exchange of individual leaves and crowns. One reason is that the Lagrange multipliers in the leaf-scale solutions, which are marginal products for allocatable photosynthetic resource inputs (water and nitrogen), are mysterious in origin, and their numerical values are difficult to measure -- let alone to predict or interpret in concrete physiological or ecological terms. These difficulties disappear, however, when the optimisation paradigm itself is extended to encompass carbon allocation and growth at the lifespan scale. The trajectories of leaf (and canopy) level marginal products are then implicit in the trajectory of plant and stand structure predicted by optimal carbon allocation. Furthermore, because the input and product are the same resource -- carbon -- in the whole plant optimisation, the product in one time step defines the input constraint, and hence implicitly the marginal product for carbon, in the next time step. This effectively converts the problem from a constrained optimisation of a definite integral, in which the multipliers are undetermined, to an unconstrained maximisation of a state, in which the multipliers are all implicit. This talk will explore how the marginal products for photosynthetic inputs as well as the marginal product for carbon -- i.e., the 'final multiplier,' omega -- are predicted to vary over time and in relation to environmental change during tree growth.
Pilot Study on The Thermographic Change of Seven Acupoints by Digital Infrared Thermographic Imaging
Lee Yun-kyu
2005-12-01
Full Text Available Objective : This study was designed to find out the effect of seven acupoints of stroke in cerebrovascular hemiplegia patients. Methods : This study was performed on 6 patients with cerebrovascular hemiplegia (test group and 6 health persons(control group. We measured temperature of skin surface of test and control group using digital infrared thermographic imaging(D.I.T.I. after acupunture on seven acupoints of stroke. And we calculated difference of skin temperature between healthful and affected side for each groups. Results : There was significant difference in area 3 in both two groups between before and after acupuncture. But in general there was no significant difference between two groups on thermographic change. Conclusions : This is pilot study, so further studies are required to find out the effect of seven acupoints of stroke in cerebrovascular hemiplegia patients.
Contour classification in thermographic images for detection of breast cancer
Okuniewski, Rafał; Nowak, Robert M.; Cichosz, Paweł; Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz; Oleszkiewicz, Witold
2016-09-01
Thermographic images of breast taken by the Braster device are uploaded into web application which uses different classification algorithms to automatically decide whether a patient should be more thoroughly examined. This article presents the approach to the task of classifying contours visible on thermographic images of breast taken by the Braster device in order to make the decision about the existence of cancerous tumors in breast. It presents the results of the researches conducted on the different classification algorithms.
Nelson, Jane Bray
2012-01-01
As a new physics teacher, I was explaining how to find the weight of an object sitting on a table near the surface of the Earth. It bothered me when a student asked, "The object is not accelerating so why do you multiply the mass of the object by the acceleration due to gravity?" I answered something like, "That's true, but if the table were not…
Nelson, Jane Bray
2012-01-01
As a new physics teacher, I was explaining how to find the weight of an object sitting on a table near the surface of the Earth. It bothered me when a student asked, "The object is not accelerating so why do you multiply the mass of the object by the acceleration due to gravity?" I answered something like, "That's true, but if the table were not…
Graphics Processing Unit Assisted Thermographic Compositing
Ragasa, Scott; McDougal, Matthew; Russell, Sam
2013-01-01
Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques.
Computer vision syndrome (CVS) - Thermographic Analysis
Llamosa-Rincón, L. E.; Jaime-Díaz, J. M.; Ruiz-Cardona, D. F.
2017-01-01
The use of computers has reported an exponential growth in the last decades, the possibility of carrying out several tasks for both professional and leisure purposes has contributed to the great acceptance by the users. The consequences and impact of uninterrupted tasks with computers screens or displays on the visual health, have grabbed researcher’s attention. When spending long periods of time in front of a computer screen, human eyes are subjected to great efforts, which in turn triggers a set of symptoms known as Computer Vision Syndrome (CVS). Most common of them are: blurred vision, visual fatigue and Dry Eye Syndrome (DES) due to unappropriate lubrication of ocular surface when blinking decreases. An experimental protocol was de-signed and implemented to perform thermographic studies on healthy human eyes during exposure to dis-plays of computers, with the main purpose of comparing the existing differences in temperature variations of healthy ocular surfaces.
Thermographic Imaging of Defects in Anisotropic Composites
Plotnikov, Y. A.; Winfree, W. P.
2000-01-01
Composite materials are of increasing interest to the aerospace industry as a result of their weight versus performance characteristics. One of the disadvantages of composites is the high cost of fabrication and post inspection with conventional ultrasonic scanning systems. The high cost of inspection is driven by the need for scanning systems which can follow large curve surfaces. Additionally, either large water tanks or water squirters are required to couple the ultrasonics into the part. Thermographic techniques offer significant advantages over conventional ultrasonics by not requiring physical coupling between the part and sensor. The thermographic system can easily inspect large curved surface without requiring a surface following scanner. However, implementation of Thermal Nondestructive Evaluations (TNDE) for flaw detection in composite materials and structures requires determining its limit. Advanced algorithms have been developed to enable locating and sizing defects in carbon fiber reinforced plastic (CFRP). Thermal Tomography is a very promising method for visualizing the size and location of defects in materials such as CFRP. However, further investigations are required to determine its capabilities for inspection of thick composites. In present work we have studied influence of the anisotropy on the reconstructed image of a defect generated by an inversion technique. The composite material is considered as homogeneous with macro properties: thermal conductivity K, specific heat c, and density rho. The simulation process involves two sequential steps: solving the three dimensional transient heat diffusion equation for a sample with a defect, then estimating the defect location and size from the surface spatial and temporal thermal distributions (inverse problem), calculated from the simulations.
Overview of recent Japanese activities in thermographic NDT
Sakagami, Takahide; Ogura, Keiji
1997-04-01
In the past decade, nondestructive testing techniques using infrared thermography, i.e., thermographic NDT techniques, received a lot of attention in many engineering fields in Japan. The first national symposium that specialized in thermographic NDT techniques was held in Tokyo, Japan on November 28-29, 1995, organized by the Research and Technical Committee on Surface Method of the Japanese Society for Nondestructive Inspection (JSNDI). At this symposium, twenty eight presentations including two keynote addresses were given. Over three hundred thermography researchers and engineers (thermographers) attended the symposium. Further, an exhibition of newly developed equipment for infrared thermography featuring the equipment of eleven companies took place concurrently. This symposium played an important role as the first national symposium dedicated to sharing information, ideas and experiences about thermographic NDT among thermographers from both the user and supplier sides. Sessions within the symposium were as follows: Advances in Infrared Imaging Systems; Applications for Composite Materials and Coated Materials; Diagnosis of Equipment/Monitoring, Applications for Structural Materials; Backup Techniques for Thermographic NDT; Infrared Stress Measurement and Contact Problems. This paper briefly describes presentations given in the symposium.
Comparison of three thermal cameras with canine hip area thermographic images.
Vainionpää, Mari; Raekallio, Marja; Tuhkalainen, Elina; Hänninen, Hannele; Alhopuro, Noora; Savolainen, Maija; Junnila, Jouni; Hielm-Björkman, Anna; Snellman, Marjatta; Vainio, Outi
2012-12-01
The objective of this study was to compare the method of thermography by using three different resolution thermal cameras and basic software for thermographic images, separating the two persons taking the thermographic images (thermographers) from the three persons interpreting the thermographic images (interpreters). This was accomplished by studying the repeatability between thermographers and interpreters. Forty-nine client-owned dogs of 26 breeds were enrolled in the study. The thermal cameras used were of different resolutions-80 × 80, 180 × 180 and 320 × 240 pixels. Two trained thermographers took thermographic images of the hip area in all dogs using all three cameras. A total of six thermographic images per dog were taken. The thermographic images were analyzed using appropriate computer software, FLIR QuickReport 2.1. Three trained interpreters independently evaluated the mean temperatures of hip joint areas of the six thermographic images for each dog. The repeatability between thermographers was >0.975 with the two higher-resolution cameras and 0.927 with the lowest resolution camera. The repeatability between interpreters was >0.97 with each camera. Thus, the between-interpreter variation was small. The repeatability between thermographers and interpreters was considered high enough to encourage further studies with thermographic imaging in dogs.
Eldridge, Jeffrey I.; Bencic, Timothy J.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.; Allison, Stephen W.; Beshears, David L.; Jenkins, Thomas P.; Heeg, Bauke; Howard, Robert P.; Alexander, Andrew
2014-01-01
The overall goal of the Aeronautics Research Mission Directorate (ARMD) Seedling Phase II effort was to build on the promising temperature-sensing characteristics of the ultrabright thermographic phosphor Cr-doped gadolinium aluminum perovskite (Cr:GAP) demonstrated in Phase I by transitioning towards an engine environment implementation. The strategy adopted was to take advantage of the unprecedented retention of ultra-bright luminescence from Cr:GAP at temperatures over 1000 C to enable fast 2D temperature mapping of actual component surfaces as well as to utilize inexpensive low-power laser-diode excitation suitable for on-wing diagnostics. A special emphasis was placed on establishing Cr:GAP luminescence-based surface temperature mapping as a new tool for evaluating engine component surface cooling effectiveness.
Moisture detection through thermographic measurements of transpiration
Ludwig, Nicola; Rosina, Elisabetta
1997-04-01
Damage due to moisture and particularly to evaporation is one of the major causes of decay of wall surfaces in ancient buildings. The evaporative rate of water in building materials can be related to the alteration (chips, gallets) caused by salts crystallization when the water evaporates through the surface of the wall. Current and future usage of NDT heavily depends on the possibility to precisely measure physical variables which present large sensitivity to small variations of water content. A NDT thermography allows us to exactly determine the evaporation rate because of both the high value of water latent heat and the high sensibility of thermographic devices. The research has been carried out both in the laboratory and on the field measuring relative humidity and temperature in a frescoed wall of the castle of Malpaga (Northern Italy). In laboratory a climatic room has been set up using a thermovision system and a temperature & RH% probes, to analyze the evaporative phenomena. A mathematical model, although approximate, is proposed to describe the energy balance of the surface where evaporation is present. The model has been applied to the fresco to correlate the temperature to the evaporation rate. This method allows us to correlate the decay, due to the capillary raise of water in the masonry, to the transpiration phenomena.
Thorax thermographic simulator for breast pathologies
Itzel A. Avila-Castro
2017-04-01
Full Text Available New diagnostic techniques for breast cancer detection have been developed and improved, in order to increase patient life expectancy. These techniques were emphasized in early detection of tumors with smaller dimensions, providing a better prognosis. Along with these new methods, it is necessary to propose training devices or tools to support health professionals to use them and rely on them. Our purpose is to develop a device to support thermographic analyses for early breast pathology detection. A programmable thorax was developed with the aim of simulating hyperthermic characteristics of breast pathologies in a defined area. Temperature distributions of breast tissue with a cancerous lesion were mathematically modeled using Pennes's equation, and a thermo-visual control system was built within the physical model in order to simulate a local thermal pattern of a patient's thermal image with infiltrating ductal carcinoma. Our results showed a good approximation of simulated thermal patterns to real images from a patient. In consequence we archived to obtain a thorax simulator device as first step in training health professionals in thermography techniques and to impulse the use of this method for early detection of breast pathologies.
Multilayer material characterization using thermographic signal reconstruction
Shepard, Steven M.; Beemer, Maria Frendberg
2016-02-01
Active-thermography has become a well-established Nondestructive Testing (NDT) method for detection of subsurface flaws. In its simplest form, flaw detection is based on visual identification of contrast between a flaw and local intact regions in an IR image sequence of the surface temperature as the sample responds to thermal stimulation. However, additional information and insight can be obtained from the sequence, even in the absence of a flaw, through analysis of the logarithmic derivatives of individual pixel time histories using the Thermographic Signal Reconstruction (TSR) method. For example, the response of a flaw-free multilayer sample to thermal stimulation can be viewed as a simple transition between the responses of infinitely thick samples of the individual constituent layers over the lifetime of the thermal diffusion process. The transition is represented compactly and uniquely by the logarithmic derivatives, based on the ratio of thermal effusivities of the layers. A spectrum of derivative responses relative to thermal effusivity ratios allows prediction of the time scale and detectability of the interface, and measurement of the thermophysical properties of one layer if the properties of the other are known. A similar transition between steady diffusion states occurs for flat bottom holes, based on the hole aspect ratio.
Thermographic survey of two rural buildings in Spain
Martin Ocana, S.; Canas Guerrero, I. [Departamento de Construccion y Vias Rurales, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Madrid (Spain); Gonzalez Requena, I. [Departamento de Materiales y Produccion Aeroespacial, Escuela Tecnica Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Madrid (Spain)
2004-07-01
Two common housing prototypes of existing buildings in Spanish rural areas were surveyed by infrared inspection. The aim of the study is to assess the usefulness of infrared thermography as a technique for the detection of the thermal performance of rural buildings. For the traditional house the best results were obtained in the thermographic survey carried out in the evening. Contrarily, for the modern house the thermographic survey at daybreak provided more information. Infrared thermography allowed the comparison of the thermal performance of two buildings. (author)
A Radix-10 Combinational Multiplier
Lang, Tomas; Nannarelli, Alberto
2006-01-01
reduces the number of partial product precomputations and uses counters to eliminate the need of the decimal equivalent of a 4:2 adder. The results of the implementation show that the combinational decimal multiplier offers a good compromise between latency and area when compared to other decimal multiply...
Super-resolution thermographic imaging using blind structured illumination
Burgholzer, Peter; Berer, Thomas; Gruber, Jürgen; Mayr, Günther
2017-07-01
Using an infrared camera for thermographic imaging allows the contactless temperature measurement of many surface pixels simultaneously. From the measured surface data, the structure below the surface, embedded inside a sample or tissue, can be reconstructed and imaged, if heated by an excitation light pulse. The main drawback in active thermographic imaging is the degradation of the spatial resolution with the imaging depth, which results in blurred images for deeper lying structures. We circumvent this degradation by using blind structured illumination combined with a non-linear joint sparsity reconstruction algorithm. We demonstrate imaging of a line pattern and a star-shaped structure through a 3 mm thick steel sheet with a resolution four times better than the width of the thermal point-spread-function. The structured illumination is realized by parallel slits cut in an aluminum foil, where the excitation coming from a flashlight can penetrate. This realization of super-resolution thermographic imaging demonstrates that blind structured illumination allows thermographic imaging without high degradation of the spatial resolution for deeper lying structures. The groundbreaking concept of super-resolution can be transferred from optics to diffusive imaging by defining a thermal point-spread-function, which gives the principle resolution limit for a certain signal-to-noise ratio, similar to the Abbe limit for a certain optical wavelength. In future work, the unknown illumination pattern could be the speckle pattern generated by a short laser pulse inside a light scattering sample or tissue.
Standardized assessment of infrared thermographic fever screening system performance
Ghassemi, Pejhman; Pfefer, Joshua; Casamento, Jon; Wang, Quanzeng
2017-03-01
Thermal modalities represent the only currently viable mass fever screening approach for outbreaks of infectious disease pandemics such as Ebola and SARS. Non-contact infrared thermometers (NCITs) and infrared thermographs (IRTs) have been previously used for mass fever screening in transportation hubs such as airports to reduce the spread of disease. While NCITs remain a more popular choice for fever screening in the field and at fixed locations, there has been increasing evidence in the literature that IRTs can provide greater accuracy in estimating core body temperature if appropriate measurement practices are applied - including the use of technically suitable thermographs. Therefore, the purpose of this study was to develop a battery of evaluation test methods for standardized, objective and quantitative assessment of thermograph performance characteristics critical to assessing suitability for clinical use. These factors include stability, drift, uniformity, minimum resolvable temperature difference, and accuracy. Two commercial IRT models were characterized. An external temperature reference source with high temperature accuracy was utilized as part of the screening thermograph. Results showed that both IRTs are relatively accurate and stable (reading with stability of +/-0.05°C). Overall, results of this study may facilitate development of standardized consensus test methods to enable consistent and accurate use of IRTs for fever screening.
NULL Convention Floating Point Multiplier
Anitha Juliette Albert
2015-01-01
Full Text Available Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.
NULL convention floating point multiplier.
Albert, Anitha Juliette; Ramachandran, Seshasayanan
2015-01-01
Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.
NULL Convention Floating Point Multiplier
Anitha Juliette Albert; Seshasayanan Ramachandran
2015-01-01
Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to p...
Low Power CMOS Analog Multiplier
Shipra Sachan
2015-12-01
Full Text Available In this paper Low power low voltage CMOS analog multiplier circuit is proposed. It is based on flipped voltage follower. It consists of four voltage adders and a multiplier core. The circuit is analyzed and designed in 0.18um CMOS process model and simulation results have shown that, under single 0.9V supply voltage, and it consumes only 31.8µW quiescent power and 110MHZ bandwidth.
Microwave Frequency Multiplier
Velazco, J. E.
2017-02-01
High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing
Thermographic image reconstruction using ultrasound reconstruction from virtual waves
Burgholzer, Peter; Gruber, Jürgen; Mayr, Günther
2016-01-01
Reconstruction of subsurface features from ultrasound signals measured on the surface is widely used in medicine and non-destructive testing. In this work, we introduce a concept how to use image reconstruction methods known from ultrasonic imaging for thermographic signals, i.e. on the measured temperature evolution on a sample surface. Before using these imaging methods a virtual signal is calculated by applying a transformation to the measured temperature evolution. The virtual signal is calculated locally for every detection point and has the same initial temperature distribution as the measured signal, but is a solution of the wave equation. The introduced transformation can be used for every shape of the detection surface and in every dimension. It describes all the irreversibility of the heat diffusion, which is responsible that the spatial resolution gets worse with increasing depth. Up to now, for thermographic imaging mostly one-dimensional methods, e.g., for depth-profiling were used, which are sui...
Thermographic analysis of waveguide-irradiated insect pupae
Olsen, Richard G.; Hammer, Wayne C.
1982-01-01
Pupae of the insect Tenebrio molitor L. were thermographically imaged during waveguide irradiation through longitudinal slots. T. molitor pupae have been subjects of microwave-induced teratology for a number of years, but until now the smallness of the insect has prevented detailed dosimetry. High-resolution thermographic imaging equipment was used to obtain the magnitude and spatial distribution of absorbed microwave energy at three frequencies, 1.3, 5.95, and 10 GHz. The detail of the thermal images obtained is sufficient to show the differential heating of structures as small as a single insect leg. Results show that the electrical properties of the head, thorax, and abdomen are sufficiently different to seriously impair the usefulness of any theoretical dosimetric model of homogeneous composition. Some general features of correlation with a slab model in waveguide are given.
Thermographic assessment of sacroiliac syndrome: report of a case
1990-01-01
The thermographic appearance of a clinically diagnosed case of sacroiliac (SI) syndrome is presented. A diffuse area of increased thermal emission was imaged over the anatomical location of the joint. This pattern is similar to the thermal image seen in rheumatological patients with gross sacroilitis. The thermal image returned to normal (thermal symmetry between SI joints) after a course of manipulation to the dysfunctional joint. Suggestions for future study are given.
Thermographic assessment of sacroiliac syndrome: report of a case
Diakow, Peter RP
1990-01-01
The thermographic appearance of a clinically diagnosed case of sacroiliac (SI) syndrome is presented. A diffuse area of increased thermal emission was imaged over the anatomical location of the joint. This pattern is similar to the thermal image seen in rheumatological patients with gross sacroilitis. The thermal image returned to normal (thermal symmetry between SI joints) after a course of manipulation to the dysfunctional joint. Suggestions for future study are given. ImagesFigure 1Figure 2
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
Raplee, J.; Plotkowski, A.; Kirka, M. M.; Dinwiddie, R.; Okello, A.; Dehoff, R. R.; Babu, S. S.
2017-03-01
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
Raplee, J.; Plotkowski, A.; Kirka, M. M.; Dinwiddie, R.; Okello, A.; Dehoff, R. R.; Babu, S. S.
2017-01-01
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control. PMID:28256595
Thermographic measurement of thermal bridges in buildings under dynamic behavior
Ferrarini, G.; Bison, P.; Bortolin, A.; Cadelano, G.; De Carli, M.
2016-05-01
The accurate knowledge of the thermal performance could reduce significantly the impact of buildings on global energy consumption. Infrared thermography is widely recognized as one of the key technologies for building surveys, thanks to its ability to acquire at a glance thermal images of the building envelope. However, a spot measurement could be misleading when the building is under dynamic thermal conditions. In this case data should be acquired for hours or days, depending on the thermal properties of the walls. Long term thermographic monitoring are possible but imply strong challenges from a practical standpoint. This work investigates the possibilities and limitations of spot thermographic surveys coupled with contact probes, that are able to acquire continuously the thermal signal for days, to investigate the thermal bridges of a building. The goal is the estimation of the reliability and accuracy of the measurement under realistic environmental conditions. Firstly, numerical simulations are performed to determine the reference value of an experimental case. Then a long term thermographic survey is performed and integrated with the contact probe measurement, assessing the feasibility of the method.
Last Multipliers on Lie Algebroids
Mircea Crasmareanu; Cristina-Elena Hreţcanu
2009-06-01
In this paper we extend the theory of last multipliers as solutions of the Liouville’s transport equation to Lie algebroids with their top exterior power as trivial line bundle (previously developed for vector fields and multivectors). We define the notion of exact section and the Liouville equation on Lie algebroids. The aim of the present work is to develop the theory of this extension from the tangent bundle algebroid to a general Lie algebroid (e.g. the set of sections with a prescribed last multiplier is still a Gerstenhaber subalgebra). We present some characterizations of this extension in terms of Witten and Marsden differentials.
Money Multiplier under Reserve Option Mechanism
Halit AKTURK; Gocen, Hasan; Duran, Suleyman
2015-01-01
This paper introduces a generalized money (M2) multiplier formula to the literature for a monetary system with Reserve Option Mechanism (ROM). Various features of the proposed multiplier are then explored using monthly Turkish data during the decade 2005 to 2015. We report a step increase in the magnitude and a slight upward adjustment in the long-run trend of the multiplier with the adoption of ROM. We provide evidence for substantial change in the seasonal pattern of the multiplier, cash ra...
Normalization and sound zone determination in pulse thermographic NDE
Sripragash, Letchuman; Sundaresan, Mannur
2017-02-01
Thermographic nondestructive evaluation is quick and effective in detecting damage particularly for composite structures. Pulse thermographic nondestructive evaluation (TNDE) technique can potentially provide information on defect dimensions, such as the depth at which the defect is located. However, there are a number of extraneous variables that affect the signal obtained during these tests, such as non-uniformity in the heat pulse applied and differences in the emissivity of the surfaces from specimen to specimen. In addition, the identification of defect free areas in the image is a challenge. As in other NDE procedures calibration specimens would be of help, but calibration specimens corresponding to complex damage states in composite materials are difficult to fabricate. Results from validated numerical simulations can complement calibration specimens. However, the thermo-mechanical properties of the test object as well as the amount of heat energy absorbed in the field tests are not readily available for such models. This paper presents an extension of the thermographic signal reconstruction (TSR) procedure in which the temperature and the time scales are respectively normalized with equilibrium temperature and the break time. A benefit of such normalization is the ability to directly measure the defect depth as a fraction of plate thickness. In order to implement this normalization procedure, sound zone profile definition is required. A new approach for determining sound zone profile has been developed. Finally, determination of sound zone is affected by non-uniform heating, and a method of minimizing the effects of non-uniform heating is proposed. The performance of these new approaches on actual experimental results are presented.
A review of thermographic techniques for damage investigation in composites
Laura Vergani
2014-01-01
Full Text Available The aim of this work is a review of scientific results in the literature, related to the application of thermographic techniques to composite materials. Thermography is the analysis of the surface temperature of a body by infrared rays detection via a thermal-camera. The use of this technique is mainly based on the modification of the surface temperature of a material, when it is stimulated by means of a thermal or mechanical external source. The presence of defects, in fact, induces a localized variation in its temperature distribution and, then, the measured values of the surface temperature can be used to localize and evaluate the dimensions and the evolution of defects. In the past, many applications of thermography were proposed on homogeneous materials, but only recently this technique has also been extended to composites. In this work several applications of thermography to fibres reinforced plastics are presented. Thermographic measurements are performed on the surface of the specimens, while undergoing static and dynamic tensile loading. The joint analysis of thermal and mechanical data allows one to assess the damage evolution and to study the damage phenomenon from both mechanical and energetic viewpoints. In particular, one of the main issues is to obtain information about the fatigue behaviour of composite materials, by following an approach successfully applied to homogenous materials. This approach is based on the application of infrared thermography on specimens subjected to static or stepwise dynamic loadings and on the definition of a damage stress, D, that is correlated to the fatigue strength of the material. A wide series of experimental fatigue tests has been carried out to verify if the value of the damage stress, D, is correlated with the fatigue strength of the material. The agreement between the different values is good, showing the reliability of the presented thermographic techniques, to the study of composite
The multipliers of multiple trigonometric Fourier series
Ydyrys, Aizhan; Sarybekova, Lyazzat; Tleukhanova, Nazerke
2016-11-01
We study the multipliers of multiple Fourier series for a regular system on anisotropic Lorentz spaces. In particular, the sufficient conditions for a sequence of complex numbers {λk}k∈Zn in order to make it a multiplier of multiple trigonometric Fourier series from Lp[0; 1]n to Lq[0; 1]n , p > q. These conditions include conditions Lizorkin theorem on multipliers.
Multiplier theorems for special Hermite expansions on
张震球; 郑维行
2000-01-01
The weak type (1,1) estimate for special Hermite expansions on Cn is proved by using the Calderon-Zygmund decomposition. Then the multiplier theorem in Lp(1 < p < ω ) is obtained. The special Hermite expansions in twisted Hardy space are also considered. As an application, the multipli-ers for a certain kind of Laguerre expansions are given in Lp space.
Interregional multipliers : looking backward, looking forward
Dietzenbacher, Erik
2002-01-01
Backward linkages are usually measured using output multipliers as based on the input matrix. Similarly, value-added and import multipliers are derived by additionally using the corresponding primary input coefficients. For measuring forward linkages, input multipliers have been frequently used. Wit
Planar varactor frequency multiplier devices with blocking barrier
Lieneweg, Udo (Inventor); Frerking, Margaret A. (Inventor); Maserjian, Joseph (Inventor)
1994-01-01
The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BIN(sup +) type is overcome by a diode structure comprising an n(sup +) doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n(sup +) doped layer may be divided into two isolated back-to-back BNN(sup +) diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN(sup +) diodes stacked for greater output power with and connected back-to-back with the n(sup +) GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.
Pipelined Vedic-Array Multiplier Architecture
Vaijyanath Kunchigik
2014-05-01
Full Text Available In this paper, pipelined Vedic-Array multiplier architecture is proposed. The most significant aspect of the proposed multiplier architecture method is that, the developed multiplier architecture is designed based on the Vedic and Array methods of multiplier architecture. The multiplier architecture is optimized in terms of multiplication and addition to achieve efficiency in terms of area, delay and power. This also gives chances for modular design where smaller block can be used to design the bigger one. So the design complexity gets reduced for inputs of larger number of bits and modularity gets increased. The proposed Vedic-Array multiplier is coded in Verilog, synthesized and simulated using EDA (Electronic Design Automation tool - XilinxISE12.3, Spartan 3E, Speed Grade-4. Finally the results are compared with array and booth multiplier architectures. Proposed multiplier is better in terms of delay and area as compared to booth multiplier and array multiplier respectively. The proposed multiplier architecture can be used for high-speed requirements.
Eldridge, Jeffrey I.; Bencic, Timothy J.
2004-01-01
The insulating properties of thermal barrier coatings (TBCs) provide highly beneficial thermal protection to turbine engine components by reducing the temperature sustained by those components. Therefore, measuring the temperature beneath the TBC is critical for determining whether the TBC is performing its insulating function. Currently, noncontact temperature measurements are performed by infrared pyrometry, which unfortunately measures the TBC surface temperature rather than the temperature of the underlying component. To remedy this problem, the NASA Glenn Research Center, under the Information Rich Test Instrumentation Project, developed a technique to measure the temperature beneath the TBC by incorporating a thin phosphor layer beneath the TBC. By performing fluorescence decay-time measurements on light emission from this phosphor layer, Glenn successfully measured temperatures from the phosphor layer up to 1100 C. This is the first successful demonstration of temperature measurements that penetrate beneath the TBC. Thermographic phosphors have a history of providing noncontact surface temperature measurements. Conventionally, a thermographic phosphor is applied to the material surface and temperature measurements are performed by exciting the phosphor with ultraviolet light and then measuring the temperature-dependent decay time of the phosphor emission at a longer wavelength. The innovative feature of the new approach is to take advantage of the relative transparency of the TBC (composed of yttria-stabilized zirconia) in order to excite and measure the phosphor emission beneath the TBC. The primary obstacle to achieving depth-penetrating temperature measurements is that the TBCs are completely opaque to the ultraviolet light usually employed to excite the phosphor. The strategy that Glenn pursued was to select a thermographic phosphor that could be excited and emit at wavelengths that could be transmitted through the TBC. The phosphor that was selected was
Thermographic patterns of the upper and lower limbs: baseline data.
Gatt, Alfred; Formosa, Cynthia; Cassar, Kevin; Camilleri, Kenneth P; De Raffaele, Clifford; Mizzi, Anabelle; Azzopardi, Carl; Mizzi, Stephen; Falzon, Owen; Cristina, Stefania; Chockalingam, Nachiappan
2015-01-01
Objectives. To collect normative baseline data and identify any significant differences between hand and foot thermographic distribution patterns in a healthy adult population. Design. A single-centre, randomized, prospective study. Methods. Thermographic data was acquired using a FLIR camera for the data acquisition of both plantar and dorsal aspects of the feet, volar aspects of the hands, and anterior aspects of the lower limbs under controlled climate conditions. Results. There is general symmetry in skin temperature between the same regions in contralateral limbs, in terms of both magnitude and pattern. There was also minimal intersubject temperature variation with a consistent temperature pattern in toes and fingers. The thumb is the warmest digit with the temperature falling gradually between the 2nd and the 5th fingers. The big toe and the 5th toe are the warmest digits with the 2nd to the 4th toes being cooler. Conclusion. Measurement of skin temperature of the limbs using a thermal camera is feasible and reproducible. Temperature patterns in fingers and toes are consistent with similar temperatures in contralateral limbs in healthy subjects. This study provides the basis for further research to assess the clinical usefulness of thermography in the diagnosis of vascular insufficiency.
Thermographic Patterns of the Upper and Lower Limbs: Baseline Data
Alfred Gatt
2015-01-01
Full Text Available Objectives. To collect normative baseline data and identify any significant differences between hand and foot thermographic distribution patterns in a healthy adult population. Design. A single-centre, randomized, prospective study. Methods. Thermographic data was acquired using a FLIR camera for the data acquisition of both plantar and dorsal aspects of the feet, volar aspects of the hands, and anterior aspects of the lower limbs under controlled climate conditions. Results. There is general symmetry in skin temperature between the same regions in contralateral limbs, in terms of both magnitude and pattern. There was also minimal intersubject temperature variation with a consistent temperature pattern in toes and fingers. The thumb is the warmest digit with the temperature falling gradually between the 2nd and the 5th fingers. The big toe and the 5th toe are the warmest digits with the 2nd to the 4th toes being cooler. Conclusion. Measurement of skin temperature of the limbs using a thermal camera is feasible and reproducible. Temperature patterns in fingers and toes are consistent with similar temperatures in contralateral limbs in healthy subjects. This study provides the basis for further research to assess the clinical usefulness of thermography in the diagnosis of vascular insufficiency.
Thermographic Inspections And The Residential Conservation Service Program (RCS)
Ward, Ronald J.
1983-03-01
Rhode Islanders Saving Energy (RISE) is a non-profit corporation founded in 1977 to provide Rhode Island residents with a variety of energy conservation services. Since January of 1981, it has been performing energy audits in compliance with the Department of Energy's (DOE) Residential Conservation Service Program (RCS). One aspect of the RCS program is the performance of inspections on energy conservation activities completed according to RCS installation guidelines. This paper will describe both the use and results of thermographic inspections within the RISE program. The primary objective of these inspections has been to assure the quality of the building envelope after completion of retrofit measures. Thermal anamolies have been detected that vary in size, location and probable cause. Approximately 37% of all jobs performed through RISE in conjunction with the RCS program have required remedial work as a result of problems that were identi-fied during the thermographic inspection. This percentage was much higher when infra-red inspections were conducted on "Non-RCS" retrofits. Statistics will be presented that provide an interesting insight on the quality of retrofit work when performed in associa-tion with a constant inspection process.
Peng, Di; Yang, Lixia; Cai, Tao; Liu, Yingzheng; Zhao, Xiaofeng; Yao, Zhiqi
2016-09-28
Yttria-stabilized zirconia (YSZ)-based thermal barrier coating (TBC) has been integrated with thermographic phosphors through air plasma spray (APS) for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm) on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm); a photo-multiplier tube (PMT) and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor's performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature.
Di Peng
2016-09-01
Full Text Available Yttria-stabilized zirconia (YSZ-based thermal barrier coating (TBC has been integrated with thermographic phosphors through air plasma spray (APS for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm; a photo-multiplier tube (PMT and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor’s performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature.
Faster and Low Power Twin Precision Multiplier
Sreedeep, V; Kittur, Harish M
2011-01-01
In this work faster unsigned multiplication has been achieved by using a combination of High Performance Multiplication [HPM] column reduction technique and implementing a N-bit multiplier using 4 N/2-bit multipliers (recursive multiplication) and acceleration of the final addition using a hybrid adder. Low power has been achieved by using clock gating technique. Based on the proposed technique 16 and 32-bit multipliers are developed. The performance of the proposed multiplier is analyzed by evaluating the delay, area and power, with TCBNPHP 90 nm process technology on interconnect and layout using Cadence NC launch, RTL compiler and ENCOUNTER tools. The results show that the 32-bit proposed multiplier is as much as 22% faster, occupies only 3% more area and consumes 30% lesser power with respect to the recently reported twin precision multiplier.
Traditional and Truncation schemes for Different Multiplier
Yogesh M. Motey
2013-03-01
Full Text Available A rapid and proficient in power requirement multiplier is always vital in electronics industry like DSP, image processing and ALU in microprocessors. Multiplier is such an imperative block w ith respect to power consumption and area occupied in the system. In order to meet the demand for high speed, various parallel array multiplication algorithms have been proposed by a number of authors. The array multipliers use a large amount of hardware, consequently consuming a large amount of power. One of the methods for multiplication is based on Indian Vedic mathematics. The total Vedic mathematics is based on sixteen sutras (word formulae and manifests a merged structure of mathematics. The parallel multipliers for example radix 2 and radix 4 booth multiplier does the computations using less number of adders and less number of iterative steps that results in, they occupy less space to that of serial multiplier. Truncated multipliers offer noteworthy enhancements in area, delay, and power. Truncated multiplication provides different method for reducing the power dissipation and area of rounded parallel multipliers in DSP systems. Since in a truncated multiplier the x less significant bits of the full-width product are discarded thus partial products are removed and replaced by a suit- able compensation equations, match the accuracy with hardware cost. A pseudo-carry compensation truncation (PCT scheme, it is for the multiplexer based array multiplier, which yields less average error among existing truncation methods.After studying many research papers it’s found that some of the schemes for multiplier are suitable because their own uniqueness of multiplication. Such schemes are listed in this paper for example the different truncation schemes like constant-correction truncation (CCT, variable -correction truncation (VCT, pseudo-carry compensation truncation (PCT are most suitable for truncated multiplier.
Analysis of Gilbert Multiplier Using Pspice
Mayank Kumar,
2014-05-01
Full Text Available In this paper, the implementation of gilbert multiplier has been done using pspice. In this paper the three analysis of Gilbert Multiplier have been done i.e. DC Analysis, AC Analysis and TRANSIENT analysis with the help of SPICE software. So Spice is a general purpose circuit program that simulates electronic circuits and can perform various analysis of electronic circuits. So with the help of pspice, the analysis of gilbert multiplier has been proposed in this paper.
High speed multiplier design using Decomposition Logic
Ramanathan Palaniappan
2009-01-01
Full Text Available The multiplier forms the core of a Digital Signal Processor and is a major source of power dissipation. Often, the multiplier forms the limiting factor for the maximum speed of operation of a Digital Signal Processor. Due to continuing integrating intensity and the growing needs of portable devices, low-power, high-performance design is of prime importance. A new technique of implementing a multiplier circuit using Decomposition Logic is proposed here which improves speed with very little increase in power dissipation when compared to tree structured Dadda multipliers. Tanner EDA was used for simulation in the TSMC 180nm technology.
Multiplier phenomenology in random multiplicative cascade processes
Jouault, B; Greiner, M; Jouault, Bruno; Lipa, Peter; Greiner, Martin
1999-01-01
We demonstrate that the correlations observed in conditioned multiplier distributions of the energy dissipation in fully developed turbulence can be understood as an unavoidable artefact of the observation procedure. Taking the latter into account, all reported properties of both unconditioned and conditioned multiplier distributions can be reproduced by cascade models with uncorrelated random weights if their bivariate splitting function is non-energy conserving. For the alpha-model we show that the simulated multiplier distributions converge to a limiting form, which is very close to the experimentally observed one. If random translations of the observation window are accounted for, also the subtle effects found in conditioned multiplier distributions are precisely reproduced.
Characterization of Photovoltaic Panels by means of Thermograph Analysis
Noe Samano
2016-01-01
Full Text Available Solar panels have become attractive in order to generate and supply electricity in commercial and residential applications. Their increased module efficiencies have caused not only a massive production but also a sensible drop on sale prices. Methods of characterization, instrumentation for in situ measurements, defect monitoring, process control, and performance are required. A temperature characterization method by means of thermograph analysis is exposed in this paper. The method was applied to multicrystalline modules, and the characterization was made with respect to two different variables, first a thermal transient and second a characterization with respect to the current. The method is useful in order to detect hot spots caused by mismatch conditions in electrical parameters. The description, results, and limitations of the proposed method are discussed.
Two-dimensional thermographic phosphor thermometry in a cryogenic environment
Cai, Tao; Kim, Dong; Kim, Mirae; Liu, Ying Zheng; Kim, Kyung Chun
2017-01-01
In this study, lifetime-based thermographic phosphor thermometry was developed for 2D temperature measurements in a cryogenic temperature environment. A chamber was set up to provide such an environment with temperatures of 300-110 K and accuracy of ±3.5 K. Mg4FGeO6:Mn was used as a sensor material, which was excited by a pulsed UV LED. A high-speed camera with a frequency of 8000 Hz was used for the phosphor thermometry. Calibration was performed at temperatures ranging from 110 to 290 K. The calibration results clearly show variation in the lifetime at different temperatures, and the calibration error is within 1.7%. This measurement is demonstrated in a 2D temperature measurement of an aluminum plate with a heater for both steady and unsteady heat transfer conditions. The measurement results were compared with thermocouple measurements to validate the method.
Comparison of pulse phase and thermographic signal reconstruction processing methods
Oswald-Tranta, Beata; Shepard, Steven M.
2013-05-01
Active thermography data for nondestructive testing has traditionally been evaluated by either visual or numerical identification of anomalous surface temperature contrast in the IR image sequence obtained as the target sample cools in response to thermal stimulation. However, in recent years, it has been demonstrated that considerably more information about the subsurface condition of a sample can be obtained by evaluating the time history of each pixel independently. In this paper, we evaluate the capabilities of two such analysis techniques, Pulse Phase Thermography (PPT) and Thermographic Signal Reconstruction (TSR) using induction and optical flash excitation. Data sequences from optical pulse and scanned induction heating are analyzed with both methods. Results are evaluated in terms of signal-tobackground ratio for a given subsurface feature. In addition to the experimental data, we present finite element simulation models with varying flaw diameter and depth, and discuss size measurement accuracy and the effect of noise on detection limits and sensitivity for both methods.
Multiply Phased Traveling BPS Vortex
Kimm, Kyoungtae; Cho, Y M
2016-01-01
We present the multiply phased current carrying vortex solutions in the U(1) gauge theory coupled to an $(N+1)$-component SU(N+1) scalar multiplet in the Bogomolny limit. Our vortex solutions correspond to the static vortex dressed with traveling waves along the axis of symmetry. What is notable in our vortex solutions is that the frequencies of traveling waves in each component of the scalar field can have different values. The energy of the static vortex is proportional to the topological charge of $CP^N$ model in the BPS limit, and the multiple phase of the vortex supplies additional energy contribution which is proportional to the Noether charge associated to the remaining symmetry.
A CMOS floating point multiplier
Uya, M.; Kaneko, K.; Yasui, J.
1984-10-01
This paper describes a 32-bit CMOS floating point multiplier. The chip can perform 32-bit floating point multiplication (based on the proposed IEEE Standard format) and 24-bit fixed point multiplication (two's complement format) in less than 78.7 and 71.1 ns, respectively, and the typical power dissipation is 195 mW at 10 million operations per second. High-speed multiplication techniques - a modified Booth's allgorithm, a carry save adder scheme, a high-speed CMOS full adder, and a modified carry select adder - are used to achieve the above high performance. The chip is designed for compatibility with 16-bit microcomputer systems, and is fabricated in 2 micron n-well CMOS technology; it contains about 23000 transistors of 5.75 x 5.67 sq mm in size.
A 2016 update on standards and guidelines relevant to thermographers
McIntosh, Gregory B.; Huff, Roy
2017-05-01
This paper presents a synopsis and status of the various national and international standards relevant to thermal imaging and thermographers developed for the building, electrical, industrial, medical, and non-destructive testing industries. Particular detail will be given to newer and/or relevant to thermal imaging and thermographers within a wide variety of applications and disciplines. Common to most standards and guidelines are minimum performance requirements for the instrument, qualifications for the operator, and limitations of how thermal imaging should be applied. This paper will summarize by discussing those areas and applications where development is still required. re-written standards that have come to be in the past 7 years, or are currently in development. These documents cut across a wide variety of agencies and disciplines, and nations often without regard for or knowledge of other similar standards or requirements. Agencies include but are not limited to the American Society for Test methods; American society for Non-Destructive Testing; Canadian Standards Association; International Standards organization; National Master Specifications of Canada (NMS) National Institute of Standards (NIST); and National Fire Prevention Association. While standards, guidelines and protocols exist in many disciplines and industries, given the recent proliferation of low cost thermal imagers which are easily accessible to the public, it is important and appropriate that there be a widespread understanding of who, how , when, and where these imagers should properly be applied in order to obtain credible, scientific, and repeatable results. The best place to look for this understanding is through the knowledge and use of professional standards guidelines and protocols.
Design of optimized Interval Arithmetic Multiplier
Rajashekar B.Shettar
2011-07-01
Full Text Available Many DSP and Control applications that require the user to know how various numericalerrors(uncertainty affect the result. This uncertainty is eliminated by replacing non-interval values withintervals. Since most DSPs operate in real time environments, fast processors are required to implementinterval arithmetic. The goal is to develop a platform in which Interval Arithmetic operations areperformed at the same computational speed as present day signal processors. So we have proposed thedesign and implementation of Interval Arithmetic multiplier, which operates with IEEE 754 numbers. Theproposed unit consists of a floating point CSD multiplier, Interval operation selector. This architectureimplements an algorithm which is faster than conventional algorithm of Interval multiplier . The costoverhead of the proposed unit is 30% with respect to a conventional floating point multiplier. Theperformance of proposed architecture is better than that of a conventional CSD floating-point multiplier,as it can perform both interval multiplication and floating-point multiplication as well as Intervalcomparisons
PRE AND POSTPRANDIAL THERMOGRAPHIC PROFILE OF GREEN IGUANAS (IGUANA IGUANA
Simona Rusu
2016-11-01
Full Text Available Abstract The body temperature of 10 clinically healthy green iguanas (Iguana iguana was measured using a thermographic camera (FLIR E6, Flir Systems Sweden before and after the food was offered. For each animal there were performed a total of 6 measurements (3 before feeding and 3 after the food was offered. The purpose of this experiment was to observe the thermographic pattern of the body before and after the feeding, since herbivore reptiles tend to bask after the feeding to increase the body temperature that will help them afterwards digest the food. The animals were housed in individual vivariums with every animal having a basking spot available. The pictures were taken outside the vivarium in an adjacent room. The animals were handled with gloves and transported in a cardboard box in order to avoid heat transfer between the handler and the iguana that would have produced thermal artefacts. Each individual was placed on a table on a styrofoam slate, again, to avoid the heat transfer between the table and the animal`s body. For each animal a total of 4 pictures were taken (up, front, left and right. The pictures were analysed with the FLIR Tools program that is provided by the manufacturer and 3 temperatures were taken into consideration (the head temperature, body temperature on the right side and body temperature on the left side. The temperatures were compared between them and with the temperature of the vivariums that consisted of the average between the temperature in 3 different spots (basking spot, the feeding bowl site and the coldest spot measured with an infrared thermometer GM300 (Benetech, China. The temperature of the body was dependent on the vivarium temperature and it was a significant temperature difference between the measurements before the feeding and after the feeding. Also we discovered a significant difference between the head temperature and the body temperature on the left side before the feeding that disappeared
Higashino, Takuya; Nakagami, Gojiro; Kadono, Takafumi; Ogawa, Yuki; Iizaka, Shinji; Koyanagi, Hiroe; Sasaki, Sanae; Haga, Nobuhiko; Sanada, Hiromi
2014-10-01
Early detection and intervention of deep tissue injury are important to lead good outcome. Although the efficiency of ultrasonographic assessment of deep tissue injury has been reported previously, it requires a certain level of skill for accurate assessment. In this study, we present an investigation of the combination of thermographic and ultrasonographic assessments for early detection of deep tissue injury. We retrospectively reviewed 28 early-stage pressure ulcers (21 patients) presenting at the University of Tokyo Hospital between April 2009 and February 2010, surveying the associated thermographic and ultrasonographic findings. The wound temperature patterns were divided into low, even and high compared with the surrounding skin. Ultrasonographic findings were classified into unclear layer structure, hypoechoic lesion, discontinuous fascia and heterogeneous hypoechoic area. All 13 ulcers that were associated with low temperature showed good outcome; three ulcers had even temperatures and 12 ulcers showed high temperature on thermographic assessment. The two deep tissue injuries were rated high on thermographic assessment and showed heterogeneous hypoechoic area findings on ultrasonographic assessment. No non-deep tissue injury lesion was associated with these two findings simultaneously. The combination of thermographic and ultrasonographic assessments is expected to increase the accuracy of the early detection of deep tissue injuries.
Sherar, M D; Gladman, A S; Davidson, S R H; Easty, A C; Joy, M L
2004-08-01
Thermal conduction and convection were examined as sources of error in thermographically measured SAR patterns of an interstitial microwave hyperthermia applicator. Measurements were performed in a layered block of muscle-equivalent phantom material using an infrared thermographic technique with varying heating duration. There was a 52.7% reduction in maximum SAR and 75.5% increase in 50% iso-SAR contour area for a 60-s heating duration relative to a 10-s heating duration. A finite element model of heat transfer in an homogeneous medium was used to model conductive and convective heat transfer during the thermographic measurement. Thermal conduction artefacts were found to significantly distort thermographically measured SAR patterns. Convective cooling, which occurs when phantom layers are exposed for thermal image acquisition, was found to significantly affect the magnitude, but not the spatial distribution, of thermographically measured SAR patterns. Results from this investigation suggest that the thermal diffusion artefacts can be minimized if the duration of the applied power pulse is restricted to 10 s or less.
Bianco, A., E-mail: alessia.bianco@unirc.it [Mediterranea Univ., PAU Dept., Reggio Calabria (Italy); A and M Univ., Center for Heritage Conservation, Texas (United States)
2013-03-15
The paper explains some opportunities and limitations of thermographic investigations in terms of their capability to define the conservative conditions of architectural heritage and in terms of the historical recollection for a technical diagnosis. Different approaches are demonstrated in two case studies: the first integrates thermography with other investigative methods; the second combines thermographic monitoring with hygrothermal monitoring. (author)
A study of mammographic and thermographic findings in breast diseases
Cho, Won Sik; Jeon, Woo Ki; Kim, Jeong Sook; Han, Chang Yul [Inje University College of Medicine, Seoul (Korea, Republic of)
1989-12-15
The ideal diagnostic methods in breast diseases consist of the physical examination and complementary radiologic examination. In radiologic examination mammography is the most popular screening methods and the older simple complementary method is thermography which is efficient under the conditions of elevated skin temperature in inflammatory and malignant lesions. From Jan. 1st 1987 through Jan. 30th, 1988, 110 pts. with complaints of mammary problems were examined by mammography and thermography at Paik Hospital, Inje University. The authors selected and analyzed 97 cases had been pathologically proved through the operation and the fine needle aspiration biopsy. The results were as follows: 1. The most prevalent age group was 5th decade (40%) in cancer, 4th decade (47%) in mammary dysplasia and followed by fibroadenoma (63%) in 4th decade. 2. The mammographic and thermographic findings were compared between the mammary dysplasia and the infiltrating ductal cancer. In mammary dysplasia abnormal hot emissions were appeared in 9/44 (17%) correlated with atypical hyperchromatic cytoplasm relates to pre-malignant group. 3. We hope and expect the early detection of breast cancer through the follow-up study in pre-malignant group of mammary dysplasia.
Repair integrity monitoring of composite aerostructures using thermographic imaging
Grammatikos, S.; Kordatos, E.; Barkoula, N.-M.; Matikas, T.; Paipetis, A.
2010-04-01
Bonded repair offers significant advantages over mechanically fastened repair schemes as it eliminates local stress concentrations and seals the interface between the mother structure and the patch. However, it is particularly difficult to assess the efficiency of the bonded repair as well as its performance during service loads. Thermography is a particularly attractive technique for the particular application as it is a non-contact, wide field non destructive method. Phase thermography is also offering the advantage of depth discrimination in layered structures such as in typical patch repairs particularly in the case where composites are used. Lock-in thermography offers the additional advantage of on line monitoring of the loaded structure and subsequently the real time evolution of any progressive debonding which may lead to critical failure of the patched repair. In this study composite systems (CFRP plates) with artificially introduced defects (PTFE) were manufactured. The aforementioned methods were employed in order to assess the efficiency of the thermographic technique. The obtained results were compared with typical C-scans.
Application of cooled IR focal plane arrays in thermographic cameras
Vollheim, B.; Gaertner, M.; Dammass, G.; Krausz, M.
2016-05-01
The usage of cooled IR Focal Plane Array detectors in thermographic or radiometric thermal imaging cameras, respectively, leads to special demands on these detectors, which are discussed in this paper. For a radiometric calibration of wide temperature measuring ranges from -40 up to 2,000 °C, a linear and time-stable response of the photodiode array has to be ensured for low as well as high radiation intensities. The maximum detectable photon flux is limited by the allowed shift of the photodiode's bias that should remain in the linear part of the photodiode's I(V) curve even for the highest photocurrent. This limits the measurable highest object temperature in practice earlier than the minimum possible integration time. Higher temperature measuring ranges are realized by means of neutral or spectral filters. Defense and Security applications normally provide images at the given ambient temperature with small hot spots. The usage of radiometric thermal imagers for thermography often feature larger objects with a high temperature contrast to the background. This should not generate artifacts in the image, like pixel patterns or stripes. Further issues concern the clock regime or the sub-frame capabilities of the Read-Out-Circuit and the frame rate dependency of the signal. We will briefly describe the demands on the lens design for thermal imaging cameras when using cooled IR Focal Plane Array detectors with large apertures.
Induction motor inter turn fault detection using infrared thermographic analysis
Singh, Gurmeet; Anil Kumar, T. Ch.; Naikan, V. N. A.
2016-07-01
Induction motors are the most commonly used prime movers in industries. These are subjected to various environmental, thermal and load stresses that ultimately reduces the motor efficiency and later leads to failure. Inter turn fault is the second most commonly observed faults in the motors and is considered the most severe. It can lead to the failure of complete phase and can even cause accidents, if left undetected or untreated. This paper proposes an online and non invasive technique that uses infrared thermography, in order to detect the presence of inter turn fault in induction motor drive. Two methods have been proposed that detect the fault and estimate its severity. One method uses transient thermal monitoring during the start of motor and other applies pseudo coloring technique on infrared image of the motor, after it reaches a thermal steady state. The designed template for pseudo-coloring is in acquiescence with the InterNational Electrical Testing Association (NETA) thermographic standard. An index is proposed to assess the severity of the fault present in the motor.
Designing a Novel Ternary Multiplier Using CNTFET
Nooshin Azimi
2014-11-01
Full Text Available Today, multipliers are included as substantial keys of many systems with high efficiency such as FIR filters, microprocessors and processors of digital signals. The efficiency of the systems are mainly evaluated by their multipliers capability since multipliers are generally the slowest components of a system while occupying the most space. Multiple Valued Logic reduces the number of the required operations to implement a function and decreases the chip surface. Carbon Nanotube Field Effect Transistors (CNTFET are considered as good substitutes for Silicon Transistors (MOSFET. Combining the abilities of Carbon Nanotubes Transistors with the advantages of Multiple Valued can provide a unique design which has a higher speed and less complexity. In this paper, a new multiplier is presented by nanotechnology using a ternary logic that improves the consuming power, raises the speed and decreased the chip surface as well. The presented design is simulated using CNTFET of Stanford University and HSPICE software, and the results are compared with other instances.
IMPLEMENTATION OF VEDIC MULTIPLIER USING REVERSIBLE GATES
P. Koti Lakshmi
2015-07-01
Full Text Available With DSP applications evolving continuously, there is continuous need for improved multipliers which are faster and power efficient. Reversible logic is a new and promising field which addresses the problem of power dissipation. It has been shown to consume zero power theoretically. Vedic mathematics techniques have always proven to be fast and efficient for solving various problems. Therefore, in this paper we implement Urdhva Tiryagbhyam algorithm using reversible logic thereby addressing two important issues – speed and power consumption of implementation of multipliers. In this work, the design of 4x4 Vedic multiplier is optimized by reducing the number of logic gates, constant inputs, and garbage outputs. This multiplier can find its application in various fields like convolution, filter applications, cryptography, and communication.
Hyperbolicity of semigroups and Fourier multipliers
Latushkin, Yuri; Shvidkoy, Roman
2001-01-01
We present a characterization of hyperbolicity for strongly continuous semigroups on Banach spaces in terms of Fourier multiplier properties of the resolvent of the generator. Hyperbolicity with respect to classical solutions is also considered. Our approach unifies and simplifies the M. Kaashoek-- S. Verduyn Lunel theory and multiplier-type results previously obtained by S. Clark, M. Hieber, S. Montgomery-Smith, F. R\\"{a}biger, T. Randolph, and L. Weis.
Fiber optic temperature sensor using a Y{sub 2}O{sub 2}S:Eu thermographic phosphor
Smith, T.V. [Bethel Coll., St. Paul, MN (United States). Dept. of Physics; Smith, D.B. [Oak Ridge National Lab., TN (United States)
1993-09-01
This report details the development and testing of a thermographic-phosphor-based fiber-optic temperature sensor. The sensor is constructed by removing a region of the fiber jacket and cladding, then coating the exposed core with yttrium oxysulfide doped with a europium activator (Y{sub 2}O{sub 2}S:Eu). When photoexcited, the europium in the host lattice emits a sharp-line fluorescence spectrum that is characteristic of the temperature of the host crystal lattice. By measuring fluorescence lifetimes, we can deduce the temperature of an optical fiber that is in thermal contact with the fiber. Two different distributions of Y{sub 2}O{sub 2}S:Eu in the cladding region were evaluated with regard to light coupling efficiency. Theoretical waveguide calculations indicate that a thin core/cladding boundary distribution of Y{sub 2}O{sub 2}S:Eu couples light more efficiently into the cores guided modes than does a bulk distribution of phosphor in the cladding. The sensor tests showed reproducible response from 20 to 180 degrees Celsius. This technique has several advantages over other fiber optic temperature sensing techniques: the temperature measurement is independent of the strain applied to the fiber; the measurements are potentially accurate to within half a degree centigrade; the sensor allows temperature to be measured at precise locations; and the method doesn`t preclude the use of the fiber for the simultaneous measurement of other parameters.
Oleszkiewicz, Witold; Cichosz, Paweł; Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz; Nowak, Robert M.; Okuniewski, Rafał
2016-09-01
This article presents the application of machine learning algorithms for early detection of breast cancer on the basis of thermographic images. Supervised learning model: Support vector machine (SVM) and Sequential Minimal Optimization algorithm (SMO) for the training of SVM classifier were implemented. The SVM classifier was included in a client-server application which enables to create a training set of examinations and to apply classifiers (including SVM) for the diagnosis and early detection of the breast cancer. The sensitivity and specificity of SVM classifier were calculated based on the thermographic images from studies. Furthermore, the heuristic method for SVM's parameters tuning was proposed.
Zentgraf, Florian; Stephan, Michael; Berrocal, Edouard; Albert, Barbara; Böhm, Benjamin; Dreizler, Andreas
2017-07-01
Structured laser illumination planar imaging (SLIPI) is combined with gas phase thermometry measurements using thermographic phosphor (TGP) particles. The technique is applied to a heated jet surrounded by a coflow which is operated at ambient temperature. The respective air flows are seeded with a powder of BaMgAl10O17:Eu2+ (BAM) which is used as temperature-sensitive gas phase tracer. Upon pulsed excitation in the ultraviolet spectral range, the temperature is extracted based on the two-color ratio method combined with SLIPI. The main advantage of applying the SLIPI approach to phosphor thermometry is the reduction of particle-to-particle multiple light scattering and diffuse wall reflections, yielding a more robust calibration procedure as well as improving the measurement accuracy, precision, and sensitivity. For demonstration, this paper focuses on sample-averaged measurements of temperature fields in a jet-in-coflow configuration. Using the conventional approach, which in contrast to SLIPI is based on imaging with an unmodulated laser light sheet, we show that for the present setup typically 40% of the recorded signal is affected by the contribution of multiply scattered photons. At locations close to walls even up to 75% of the apparent signal is due to diffuse reflection and wall luminescence of BAM sticking at the surface. Those contributions lead to erroneous temperature fields. Using SLIPI, an unbiased two-color ratio field is recovered allowing for two-dimensional mean temperature reconstructions which exhibit a more realistic physical behavior. This is in contrast to results deduced by the conventional approach. Furthermore, using the SLIPI approach it is shown that the temperature sensitivity is enhanced by a factor of up to 2 at 270 °C. Finally, an outlook towards instantaneous SLIPI phosphorescence thermometry is provided.
Time required to stabilize thermographic images at rest
Marins, João Carlos Bouzas; Moreira, Danilo Gomes; Cano, Sergio Piñonosa; Quintana, Manuel Sillero; Soares, Danusa Dias; Fernandes, Alex de Andrade; Silva, Fabrício Sousa da; Costa, Carlos Magno Amaral; Amorim, Paulo Roberto dos Santos
2014-07-01
Thermography for scientific research and practical purposes requires a series of procedures to obtain images that should be standardized; one of the most important is the time required for acclimatization in the controlled environment. Thus, the objective of this study was to identify the appropriate acclimatization time in rest to reach a thermal balance on young people skin. Forty-four subjects participated in the study, 18 men (22.3 ± 3.1 years) and 26 women (21.7 ± 2.5 years). Thermographic images were collected using a thermal imager (Fluke®), totaling 44 images over a period of 20 min. The skin temperature (TSK) was measured at the point of examination which included the 0 min, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20. The body regions of interest (ROI) analyzed included the hands, forearms, arms, thighs, legs, chest and abdomen. We used the Friedman test with post hoc Dunn's in order to establish the time at rest required to obtain a TSK balance and the Mann-Whitney test was used to compare age, BMI, body fat percentage and temperature variations between men and women, considering always a significance level of p abdomen obtained a significant variance (p abdomen and thighs, and the posterior part of the hands, forearms and abdomen showed significant differences (p < 0.05). Based on our results, it can be concluded that the time in rest condition required reaching a TSK balance in young men and women is variable, but for whole body analysis it is recommended at least 10 min for both sexes.
Fast and automatic thermographic material identification for the recycling process
Haferkamp, Heinz; Burmester, Ingo
1998-03-01
Within the framework of the future closed loop recycling process the automatic and economical sorting of plastics is a decisive element. The at the present time available identification and sorting systems are not yet suitable for the sorting of technical plastics since essential demands, as the realization of high recognition reliability and identification rates considering the variety of technical plastics, can not be guaranteed. Therefore the Laser Zentrum Hannover e.V. in cooperation with the Hoerotron GmbH and the Preussag Noell GmbH has carried out investigations on a rapid thermographic and laser-supported material- identification-system for automatic material-sorting- systems. The automatic identification of different engineering plastics coming from electronic or automotive waste is possible. Identification rates up to 10 parts per second are allowed by the effort from fast IR line scanners. The procedure is based on the following principle: within a few milliseconds a spot on the relevant sample is heated by a CO2 laser. The samples different and specific chemical and physical material properties cause different temperature distributions on their surfaces that are measured by a fast IR-linescan system. This 'thermal impulse response' has to be analyzed by means of a computer system. Investigations have shown that it is possible to analyze more than 18 different sorts of plastics at a frequency of 10 Hz. Crucial for the development of such a system is the rapid processing of imaging data, the minimization of interferences caused by oscillating samples geometries, and a wide range of possible additives in plastics in question. One possible application area is sorting of plastics coming from car- and electronic waste recycling.
Efficient Realization of BCD Multipliers Using FPGAs
Shuli Gao
2017-01-01
Full Text Available In this paper, a novel BCD multiplier approach is proposed. The main highlight of the proposed architecture is the generation of the partial products and parallel binary operations based on 2-digit columns. 1 × 1-digit multipliers used for the partial product generation are implemented directly by 4-bit binary multipliers without any code conversion. The binary results of the 1 × 1-digit multiplications are organized according to their two-digit positions to generate the 2-digit column-based partial products. A binary-decimal compressor structure is developed and used for partial product reduction. These reduced partial products are added in optimized 6-LUT BCD adders. The parallel binary operations and the improved BCD addition result in improved performance and reduced resource usage. The proposed approach was implemented on Xilinx Virtex-5 and Virtex-6 FPGAs with emphasis on the critical path delay reduction. Pipelined BCD multipliers were implemented for 4 × 4, 8 × 8, and 16 × 16-digit multipliers. Our realizations achieve an increase in speed by up to 22% and a reduction of LUT count by up to 14% over previously reported results.
Low Power Complex Multiplier based FFT Processor
V.Sarada
2015-08-01
Full Text Available High speed processing of signals has led to the requirement of very high speed conversion of signals from time domain to frequency domain. Recent years there has been increasing demand for low power designs in the field of Digital signal processing. Power consumption is the most important aspect while considering the system performance. In order to design high performance Fast Fourier Transform (FFT and realization, efficient internal structure is required. In this paper we present FFT Single Path Delay feedback (SDF pipeline architecture using radix -24 algorithm .The complex multiplier is realized by using Digit Slicing Concept multiplier less architecture. To reduce computation complexity radix 24 algorithms is used. The proposed design has been coded in Verilog HDL and synthesizes by Cadence tool. The result demonstrates that the power is reduced compared with complex multiplication used CSD (Canonic Signed Digit multiplier.
Lotka-Volterra system with Volterra multiplier.
Gürlebeck, Klaus; Ji, Xinhua
2011-01-01
With the aid of Volterra multiplier, we study ecological equations for both tree system and cycle system. We obtain a set of sufficient conditions for the ultimate boundedness to nonautonomous n-dimensional Lotka-Volterra tree systems with continuous time delay. The criteria are applicable to cooperative model, competition model, and predator-prey model. As to cycle system, we consider a three-dimensional predator-prey Lotka-Volterra system. In order to get a condition under which the system is globally asymptotic stable, we obtain a Volterra multiplier, so that in a parameter region the system is with the Volterra multiplier it is globally stable. We have also proved that in regions in which the condition is not satisfied, the system is unstable or at least it is not globally stable. Therefore, we say that the three-dimensional cycle system is with global bifurcation.
Infrared Thermographic Quality Control For Newly Constructed Office Buildings Prior To Closing
Allen, Sharon
1987-05-01
The use of infrared thermographic building diagnostics, prior to final closing, is an effective method of quality control. Thermal envelope studies using infrared technology, made prior to contractual release, are a cost effective means of insuring the buyer and builder that the thermal envelope performs to the specifications of the construction contract. Building owners and builders can both benefit. Builders are able to close jobs and avoid costly call backs after occupancy. Building owners gain knowledge as to how the building envelope can be expected to perform in coming seasons. A majority of problems can be avoided during construction when infrared thermographic building diagnostics are introduced at the beginning of a project. Problems may be dealt with during construction, not afterwards. Contractors are alerted to how their job affects the performance of other trades and materials in the structure. To gain the most from infrared thermography during the construction phase, the contractors and thermographer must have an understanding of each other's function. On-site visits during construction can provide contractors with a basic background of thermal imaging and familiarize the thermographer with various construction techniques and materials used.
Thermographic Diagnosis for Curative Effect of Acupuncture and Qi-gong
JI Hong-wei; LI Ying; CHEN Jin-long; QIN Yu-wen
2005-01-01
Thermographic technique can be used to measure temperature distribution of body surface in real-time, non-contact and full-field, which has been successfully used in medical diagnosis, remote sensing, and NDT, etc. The authors have developed a thermographic experiment that can be applied to inspect the effect of action of acupuncture and qi-gong (a system of deep breathing exercises) by measuring the temperature of hand and arm. The observation is performed respectively by thermography for the dynamic changes of temperature of the arm and hand after acupuncture treatment and qi-gong treatment. Thermographic results show that the temperature on the collateral channels increases significantly. In the meantime, it can be seen that the above therapies of traditional Chinese medicine can stimulate the channel collateral system. This also contributes a new basis to the effect of action of the therapies of traditional Chinese medicine. The work shows that thermographic technique is a powerful tool for research in traditional Chinese medicine. In this paper, some thermal images are obtained from the persons treated with acupuncture and qi-gong.
Thermographic inspection of solid-fuel rocket booster field joint components
Thompson, Karen G.; Crisman, Elton M.
1990-01-01
Thermographic nondestructive evaluation techniques were investigated for possible application on Space Shuttle solid rocket booster field joint hardware. This investigation included evaluation of the clevis and tang mating surfaces for scratches and measurement of grease film thickness. The field joint insulation system was inspected for voids and disbonds.
Problem of Electromagnetoviscoelasticity for Multiply Connected Plates
Kaloerov, S. A.; Samodurov, A. A.
2015-11-01
A method for solving the problem of electromagnetoviscoelasticity for multiply connected plates is proposed. The small-parameter method is used to reduce this problem to a recursive sequence of problems of electromagnetoelasticity, which are solved by using complex potentials. A procedure is developed to determine, using complex potentials, approximations of the basic characteristics (stresses, electromagnetic-field strength, electromagnetic-flux density) of the electromagnetoelastic state at any time after application of a load. A plate with an elliptic hole is considered as an example. The variation in the electromagnetoelastic state of the multiply connected plate with time is studied
Thermographic process monitoring in powderbed based additive manufacturing
Krauss, Harald; Zeugner, Thomas; Zaeh, Michael F.
2015-03-01
on the other hand. These issues and proper key figures for thermographic monitoring of the Selective Laser Melting process are discussed in the paper. Even though microbolometric temperature measurement is limited to repetition rates in the Hz-regime and sub megapixel resolution, current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.
Thermographic process monitoring in powderbed based additive manufacturing
Krauss, Harald, E-mail: harald.krauss@iwb.tum.de; Zaeh, Michael F. [AMLab, iwb Application Center Augsburg, Technische Universität München (Germany); Zeugner, Thomas [Augsburg University (Germany)
2015-03-31
on the other hand. These issues and proper key figures for thermographic monitoring of the Selective Laser Melting process are discussed in the paper. Even though microbolometric temperature measurement is limited to repetition rates in the Hz-regime and sub megapixel resolution, current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.
Scott, Paul
2009-01-01
These days, multiplying two numbers together is a breeze. One just enters the two numbers into one's calculator, press a button, and there is the answer! It never used to be this easy. Generations of students struggled with tables of logarithms, and thought it was a miracle when the slide rule first appeared. In this article, the author discusses…
Delay Reduction in Optimized Reversible Multiplier Circuit
Mohammad Assarian
2012-01-01
Full Text Available In this study a novel reversible multiplier is presented. Reversible logic can play a significant role in computer domain. This logic can be applied in quantum computing, optical computing processing, DNA computing, and nanotechnology. One condition for reversibility of a computable model is that the number of input equate with the output. Reversible multiplier circuits are the circuits used frequently in computer system. For this reason, optimization in one reversible multiplier circuit can reduce its volume of hardware on one hand and increases the speed in a reversible system on the other hand. One of the important parameters that optimize a reversible circuit is reduction of delays in performance of the circuit. This paper investigates the performance characteristics of the gates, the circuits and methods of optimizing the performance of reversible multiplier circuits. Results showed that reduction of the reversible circuit layers has lead to improved performance due to the reduction of the propagation delay between input and output period. All the designs are in the nanometric scales.
Proximity effects in cold gases of multiply charged atoms (Review)
Chikina, I.; Shikin, V.
2016-07-01
Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) interaction in gases. For the noble gases argon, krypton, and xenon Eproxi>0 and for the alkali and alkaline-earth elements Eproxi neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic
Pipelined C2 Mos Register High Speed Modified Booth Multiplier
N.Ravi
2011-07-01
Full Text Available This paper presents C2 Mos register Pipelined Modified Booth Multiplier (PMBM to improve the speed of the multiplier by allowing the data parallel. The pipeline registers are designed with two p-mos and two n-mos transistors in series which is C2 Mos. Wallace multiplier also used to improve the speed of the multiplier with Carry Save Addition. 16-Transitor Full adders are used for better performance of the multiplier. The PMBM is 28.51% more speed than the Modified Booth Multiplier (MBM. This is calculated with TSMC 0.18um technology using Hspice.
Stanislav SEITL
2013-12-01
Full Text Available The traditional methods for fatigue characterization of metallic materials are expensive and extremely time consuming. In order to overcome these shortcomings, the Thermographic Method (TM, based on thermographic analysis, is applied to estimate the fatigue limit of Al 2024. The temperature increase due to localized microplasticity is considered as the fatigue damage indicator. An experimental program is carried out to assess the fatigue limit both as resulting from the S–N field and, directly, from thermographic measurement. For the latter, three different methods are applied for the estimation of the AL 2024 fatigue limit and the out-coming results discussed. The values of fatigue limit predicted from the thermographic method according to the three methods are in good agreement to that derived from the traditional S-N procedure.
Design of a High Speed Multiplier (Ancient Vedic Mathematics Approach)
2013-01-01
In this paper, an area efficient multiplier architecture is presented. The architecture is based on Ancient algorithms of the Vedas, propounded in the Vedic Mathematics scripture of Sri Bharati Krishna Tirthaji Maharaja. The multiplication algorithm used here is called Nikhilam Navatascaramam Dasatah. The multiplier based on the ancient technique is compared with the modern multiplier to highlight the speed and power superiority of the Vedic Multipliers.
Noncommutative Figa-Talamanca-Herz algebras for Schur multipliers
Arhancet, Cédric
2009-01-01
We introduce a noncommutative analogue of the Fig\\'a-Talamanca-Herz algebra $A_p(G)$ on the natural predual of the operator space $\\frak{M}_{p,cb}$ of completely bounded Schur multipliers on Schatten space $S_p$. We determine the isometric Schur multipliers and prove that the space $\\frak{M}_{p}$ of bounded Schur multipliers on Schatten space $S_p$ is the closure in the weak operator topology of the span of the isometric multipliers.
Design of a High Speed Multiplier (Ancient Vedic Mathematics Approach
R. Sridevi, Anirudh Palakurthi, Akhila Sadhula, Hafsa Mahreen
2013-07-01
Full Text Available In this paper, an area efficient multiplier architecture is presented. The architecture is based on Ancient algorithms of the Vedas, propounded in the Vedic Mathematics scripture of Sri Bharati Krishna Tirthaji Maharaja. The multiplication algorithm used here is called Nikhilam Navatascaramam Dasatah. The multiplier based on the ancient technique is compared with the modern multiplier to highlight the speed and power superiority of the Vedic Multipliers.
Design of a High Performance Reversible Multiplier
Md.Belayet Ali
2011-11-01
Full Text Available Reversible logic circuits are increasingly used in power minimization having applications such as low power CMOS design, optical information processing, DNA computing, bioinformatics, quantum computing and nanotechnology. The problem of minimizing the number of garbage outputs is an important issue in reversible logic design. In this paper we propose a new 44 universal reversible logic gate. The proposed reversible gate can be used to synthesize any given Boolean functions. The proposed reversible gate also can be used as a full adder circuit. In this paper we have used Peres gate and the proposed Modified HNG (MHNG gate to construct the reversible fault tolerant multiplier circuit. We show that the proposed 44 reversible multiplier circuit has lower hardware complexity and it is much better and optimized in terms of number of reversible gates and number of garbage outputs with compared to the existing counterparts.
ALU Using Area Optimized Vedic Multiplier
Anshul Khare
2014-07-01
Full Text Available —The load on general processor is increasing. For Fast Operations it is an extreme importance in Arithmetic Unit. The performance of Arithmetic Unit depends greatly on it multipliers. So, researchers are continuous searching for new approaches and hardware to implement arithmetic operation in huge efficient way in the terms of speed and area. Vedic Mathematics is the old system of mathematics which has a different technique of calculations based on total 16 Sutras. Proposed work has discussion of the quality of Urdhva Triyakbhyam Vedic approach for multiplication which uses different way than actual process of multiplication itself. It allows parallel generation of elements of products also eliminates undesired multiplication steps with zeros and mapped to higher level of bit using Karatsuba technique with processors, the compatibility to various data types. It is been observed that lot of delay is required by the conventional adders which are needed to have the partial products so in the work it is further optimized the Vedic multiplier type Urdhva Triyakbhyam by replacing the traditional adder with Carry save Adder to have more Delay Optimization. The proposed work shows improvement of speed as compare with the traditional designs. After the proposal discussion of the Vedic multiplier in the paper, It is been used for the implementation of Arithmetic unit using proposed efficient Vedic Multiplier it is not only useful for the improve efficiency the arithmetic module of ALU but also it is useful in the area of digital signal processing. The RTL entry of proposed Arithmetic unit done in VHDL it is synthesized and simulated with Xilinx ISE EDA tool. At the last the proposed Arithmetic Unit is validated on a FPGA device Vertex-IV.
Multiply manifolded molten carbonate fuel cells
Krumpelt, M.; Roche, M.F.; Geyer, H.K.; Johnson, S.A.
1994-08-01
This study consists of research and development activities related to the concept of a molten carbonate fuel cell (MCFC) with multiple manifolds. Objective is to develop an MCFC having a higher power density and a longer life than other MCFC designs. The higher power density will result from thinner gas flow channels; the extended life will result from reduced temperature gradients. Simplification of the gas flow channels and current collectors may also significantly reduce cost for the multiply manifolded MCFC.
Multiplier-free filters for wideband SAR
Dall, Jørgen; Christensen, Erik Lintz
2001-01-01
This paper derives a set of parameters to be optimized when designing filters for digital demodulation and range prefiltering in SAR systems. Aiming at an implementation in field programmable gate arrays (FPGAs), an approach for the design of multiplier-free filters is outlined. Design results ar...... are presented in terms of filter complexity and performance. One filter has been coded in VHDL and preliminary results indicate that the filter can meet a 2 GHz input sample rate....
Automobile Industry Retail Price Equivalent and Indirect Cost Multipliers
This report develops a modified multiplier, referred to as an indirect cost (IC) multiplier, which specifically evaluates the components of indirect costs that are likely to be affected by vehicle modifications associated with environmental regulation. A range of IC multipliers a...
Thermographic Mobile Mapping of Urban Environment for Lighting and Energy Studies
Susana Lagüela López
2014-12-01
Full Text Available The generation of 3D models of buildings has been proved as a useful procedure for multiple applications related to energy, from energy rehabilitation management to design of heating systems, analysis of solar contribution to both heating and lighting of buildings. In a greater scale, 3D models of buildings can be used for the evaluation of heat islands, and the global thermal inertia of neighborhoods, which are essential knowledge for urban planning. This paper presents a complete methodology for the generation of 3D models of buildings at big-scale: neighborhoods, villages; including thermographic information as provider of information of the thermal behavior of the building elements and ensemble. The methodology involves sensor integration in a mobile unit for data acquisition, and data processing for the generation of the final thermographic 3D models of urban environment.
Errors in Thermographic Camera Measurement Caused by Known Heat Sources and Depth Based Correction
Mark Christian E. Manuel
2016-03-01
Full Text Available Thermal imaging has shown to be a better tool for the quantitative measurement of temperature than single spot infrared thermometers. However, thermographic cameras can encounter errors in acquiring accurate temperature measurements in the presence of other environmental heat sources. Some of these errors arise due to the inability of the thermal camera to detect objects and features in the infrared domain. In this paper, the thermal image is registered as a stereo image from a Kinect system prior to depth-based correction. Experiments demonstrating the error are presented together with the determination of the measurement errors under prior knowledge of the thermographed scene. The proposed correction scheme improves the accuracy of the thermal image through augmentation using the Kinect system.
Hodge, Andrew J.; Walker, James L., II
2008-01-01
A probability of detection study was performed for the detection of impact damage using flash heating infrared thermography on a full scale honeycomb composite structure. The honeycomb structure was an intertank structure from a previous NASA technology demonstration program. The intertank was fabricated from IM7/8552 carbon fiber/epoxy facesheets and aluminum honeycomb core. The intertank was impacted in multiple locations with a range of impact energies utilizing a spherical indenter. In a single blind study, the intertank was inspected with thermography before and after impact damage was incurred. Following thermographic inspection several impact sites were sectioned from the intertank and cross-sectioned for microscopic comparisons of NDE detection and actual damage incurred. The study concluded that thermographic inspection was a good method of detecting delamination damage incurred by impact. The 90/95 confidence level on the probability of detection was close to the impact energy that delaminations were first observed through cross-sectional analysis.
Thermographic image analysis as a pre-screening tool for the detection of canine bone cancer
Subedi, Samrat; Umbaugh, Scott E.; Fu, Jiyuan; Marino, Dominic J.; Loughin, Catherine A.; Sackman, Joseph
2014-09-01
Canine bone cancer is a common type of cancer that grows fast and may be fatal. It usually appears in the limbs which is called "appendicular bone cancer." Diagnostic imaging methods such as X-rays, computed tomography (CT scan), and magnetic resonance imaging (MRI) are more common methods in bone cancer detection than invasive physical examination such as biopsy. These imaging methods have some disadvantages; including high expense, high dose of radiation, and keeping the patient (canine) motionless during the imaging procedures. This project study identifies the possibility of using thermographic images as a pre-screening tool for diagnosis of bone cancer in dogs. Experiments were performed with thermographic images from 40 dogs exhibiting the disease bone cancer. Experiments were performed with color normalization using temperature data provided by the Long Island Veterinary Specialists. The images were first divided into four groups according to body parts (Elbow/Knee, Full Limb, Shoulder/Hip and Wrist). Each of the groups was then further divided into three sub-groups according to views (Anterior, Lateral and Posterior). Thermographic pattern of normal and abnormal dogs were analyzed using feature extraction and pattern classification tools. Texture features, spectral feature and histogram features were extracted from the thermograms and were used for pattern classification. The best classification success rate in canine bone cancer detection is 90% with sensitivity of 100% and specificity of 80% produced by anterior view of full-limb region with nearest neighbor classification method and normRGB-lum color normalization method. Our results show that it is possible to use thermographic imaging as a pre-screening tool for detection of canine bone cancer.
Thermographic analyses of the growth of Cd1-xZnxTe single crystals
Kopach, O.V.; Bolotnikov, A.; Shcherbak, Larysa P.; Fochuk, Petro M.; and James, Ralph B.
2010-08-01
Bulk Cd1-xZnxTe (0
Thermographic registration of thermal effects in plants exposed to cold stress
Kovchavtcev A.P.
2011-12-01
Full Text Available In present paper the possibility of continuous measurement of thermal effects of plants by thermography was investigated. The problems of measurement precision decreasing and thermograph calibration to cold-restraint stress process temperature region was discussed. The possibility of fast temperature measurement of plants in cold-restraint stress process was investigated. The dead temperature region of winter wheat was find out.
Automatic recognition of thermographic examinations for early detection of breast cancer
Matysiewicz, Mateusz; Neumann, Łukasz; Nowak, Robert M.; Okuniewski, Rafał; Oleszkiewicz, Witold; Cichosz, Paweł; Jagodziński, Dariusz
2016-09-01
This article describes the processing and classification of thermographic examinations taken with device developed by Braster SA. The device records the surface temperature of the breast skin using the liquid crystal matrices. Images are analyzed with the use of machine learning algorithms. The result of classification is available after a few minutes and when it detects suspicious changes patient may be referred for detailed examinations.
Zhao, Hanxue; Zhou, Zhenggan; Fan, Jin; Li, Gen; Sun, Guangkai
2017-02-01
This paper reports the application of the least-squares regression method in the step-heating thermographic inspection of steel structures. The surface temperature variation of a slab with finite thickness during both the step-heating phase and the cooling-down phase is presented. A mild steel slab with holes of various depths and diameters is chosen as the specimen. The step-heating thermographic inspection experiments are carried out on the specimen with different heating times. The heating as well as the cooling-down phases are recorded with an infrared camera and are analyzed separately by linear regression of the double logarithmic temperature increase versus time plots. Three statistics of the linear regression, the slope, the coefficient of determination, and the F-test value, are used to create image maps according to the processing results. The signal-to-noise ratio of each map is calculated to evaluate the performance of the three imaging methods with different durations of heating time and cooling time. The results prove that the F-test value maps present a good performance for the sequences of the step-heating phase, while the slope maps present a good performance for the sequences of the cooling-down phase. The optimal heating time and cooling time for a steel structure are also concluded. The comparison with the results of the thermographic signal reconstruction (TSR) method proves that the least-squares regression method has better detectability and a higher inspection efficiency.
Thermographic imaging for high-temperature composite materials: A defect detection study
Roth, Don J.; Bodis, James R.; Bishop, Chip
1995-01-01
The ability of a thermographic imaging technique for detecting flat-bottom hole defects of various diameters and depths was evaluated in four composite systems (two types of ceramic matrix composites, one metal matrix composite, and one polymer matrix composite) of interest as high-temperature structural materials. The holes ranged from 1 to 13 mm in diameter and 0.1 to 2.5 mm in depth in samples approximately 2-3 mm thick. The thermographic imaging system utilized a scanning mirror optical system and infrared (IR) focusing lens in conjunction with a mercury cadmium telluride infrared detector element to obtain high resolution infrared images. High intensity flash lamps located on the same side as the infrared camera were used to heat the samples. After heating, up to 30 images were sequentially acquired at 70-150 msec intervals. Limits of detectability based on depth and diameter of the flat-bottom holes were defined for each composite material. Ultrasonic and radiographic images of the samples were obtained and compared with the thermographic images.
Systolic multipliers for finite fields GF(2 exp m)
Yeh, C.-S.; Reed, I. S.; Truong, T. K.
1984-01-01
Two systolic architectures are developed for performing the product-sum computation AB + C in the finite field GF(2 exp m) of 2 exp m elements, where A, B, and C are arbitrary elements of GF(2 exp m). The first multiplier is a serial-in, serial-out one-dimensional systolic array, while the second multiplier is a parallel-in, parallel-out two-dimensional systolic array. The first multiplier requires a smaller number of basic cells than the second multiplier. The second multiplier needs less average time per computation than the first multiplier, if a number of computations are performed consecutively. To perform single computations both multipliers require the same computational time. In both cases the architectures are simple and regular and possess the properties of concurrency and modularity. As a consequence, they are well suited for use in VLSI systems.
A study of gas electron multiplier
AN Shao-Hui; LI Cheng; ZHOU Yi; XU Zi-Zong
2004-01-01
A new kind of gas detector based on gas electron multiplier (GEM) is studied for X-ray imaging of high luminosity. A single-GEM device is designed to test the property of GEM foil .The effective gain and counting capability of a double-GEM detector are measured by an X-ray tube with Cu target. An initial X-ray imaging experiment is carried out using a triple-GEM detector and the position resolution of less than 0.1mm is achieved. The 3D distribution of electrostatic field of GEM mesh is also presented.
VLSI binary multiplier using residue number systems
Barsi, F.; Di Cola, A.
1982-01-01
The idea of performing multiplication of n-bit binary numbers using a hardware based on residue number systems is considered. This paper develops the design of a VLSI chip deriving area and time upper bounds of a n-bit multiplier. To perform multiplication using residue arithmetic, numbers are converted from binary to residue representation and, after residue multiplication, the result is reconverted to the original notation. It is shown that the proposed design requires an area a=o(n/sup 2/ log n) and an execution time t=o(log/sup 2/n). 7 references.
Rhinoplasty for the multiply revised nose.
Foda, Hossam M T
2005-01-01
To evaluate the problems encountered on revising a multiply operated nose and the methods used in correcting such problems. The study included 50 cases presenting for revision rhinoplasty after having had 2 or more previous rhinoplasties. An external rhinoplasty approach was used in all cases. Simultaneous septal surgery was done whenever indicated. All cases were followed for a mean period of 32 months (range, 1.5-8 years). Evaluation of the surgical result depended on clinical examination, comparison of pre- and postoperative photographs, and degree of patients' satisfaction with their aesthetic and functional outcome. Functionally, 68% suffered nasal obstruction that was mainly caused by septal deviations and nasal valve problems. Aesthetically, the most common deformities of the upper two thirds of the nose included pollybeak (64%), dorsal irregularities (54%), dorsal saddle (44%), and open roof deformity (42%), whereas the deformities of lower third included depressed tip (68%), tip contour irregularities (60%), and overrotated tip (42%). Nasal grafting was necessary in all cases; usually more than 1 type of graft was used in each case. Postoperatively, 79% of the patients, with preoperative nasal obstruction, reported improved breathing; 84% were satisfied with their aesthetic result; and only 8 cases (16%) requested further revision to correct minor deformities. Revision of a multiply operated nose is a complex and technically demanding task, yet, in a good percentage of cases, aesthetic as well as functional improvement are still possible.
A Comparative Performance Analysis of Low Power Bypassing Array Multipliers
Nirlakalla Ravi
2013-07-01
Full Text Available Low power design of VLSI circuits has been identified as vital technology in battery powered portable electronic devices and signal processing applications such as Digital Signal Processors (DSP. Multiplier has an important role in the DSPs. Without degrading the performance of the processor, low power parallel multipliers are needed to be design. Bypassing is the widely used technique in the DSPs when the input operand of the multiplier is zero. A Row based Bypassing Multiplier with compressor at the final addition of the ripple carry adder (RCA is designed to focus on low power and high speed. The proposed bypassing multiplier with compressor shows high performance and energy efficiency than Kuo multiplier with Carry Save Adder (CSA at the final RCA.
On multipliers of Fourier series in the Lorentz space
Ydyrys, Aizhan Zh.; Tleukhanova, Nazerke T.
2016-08-01
We study the multipliers of Fourier series on the Lorentz spaces, in particular, the sufficient conditions for a sequence of complex numbers {λk}k∈Z in order to make it a multiplier of trigonometric Fourier series of space Lp,r [0; 1] in the Lq,r [0; 1]. In the paper there is a new multipliers theorem which is supplement of the well-known theorems, and given a counterexample.
Implementation of MAC by using Modified Vedic Multiplier
2013-01-01
Multiplier Accumulator Unit (MAC) is a part of Digital Signal Processors. The speed of MAC depends on the speed of multiplier. So by using an efficient Vedic multiplier which excels in terms of speed, power and area, the performance of MAC can be increased. For this fast method of multiplication based on ancient Indian Vedic mathematics is proposed in this paper. Among various method of multiplication in Vedic mathematics, Urdhva Tiryagbhyam is used and the multiplication is for 32 X 32 bits....
Multiplier Accounting of Indian Mining Industry--The Concept
Hussain, A.; Karmakar, N. C.
2015-04-01
Input-output multipliers are indicators used for predicting the total impact on an economy due to the changes in its industrial demand and output. Also, input-output tables provide detailed dissection of the intermediate transactions in an economy. The aim of the paper is to put forward a basic framework of input-output economics as well as the multiplier concept. The outline of the methodology for calculating the multiplier associated with Indian mining industry is also presented.
Optimized Modulo Multiplier Based On R.N.S
Manjula.S.Doddamane
2013-07-01
Full Text Available To implement long and repetitive multiplications of cryptographic and signal processing algorithmwe often adopt residue number system. In this paper a new low power and low modulo multiplier foe well established {2n-1,2n,2n+1} based is proposed .Radix-8 Booth encoding technique is used in the proposed modulo 2n-1 and modulo 2n+1 multipliers. In the proposed modulo 2n-1 multiplier, the number of partial products is lowered to [n/3]+1. For modulo 2n+1 multiplication ,the aggregate bias due to the hard multiple and the modulo reduced partial product generation is composed of multiplier dependent dynamic bias and multiplier-independent static bias .In the proposed modulo 2n+1 multiplier , the number of partial products is lowered to n/3+6 .For different modulo 2n-1 and modulo 2n+1 multiplier our proposed modulo multiplier consumes less area and has minimum power dissipation over radix-4 Booth encoded and non-encoded modulo multiplier
Fission of Multiply Charged Alkali Clusters
Barnett, Robert N.; Yannouleas, Constantine; Landman, Uzi
2001-03-01
We use ab-initio molecular dynamics simulations to investigate the fission of multiply charged pure and mixed alkali clusters. Positive (+2 to +4) clusters of up to 30 atoms are considered. The clusters are initially equilibrated with a charge of +1 or +2 (depending on size) and at temperatures of 150 to 800 K. subsequently the clusters are further ionized and their evolution is followed. For doubly charged clusters binary fission occurs, while higher charged clusters fission through ternary or quaternary channels. The most common occurrence is the emission of a singly charged 3-atom cluster, which may occur repeatedly until the remaining cluster is stable. The dynamics of the fission process is discussed, and the results are compared with experiments and with the predictions of the liquid-drop and shell-corrected jellium models.
Gas Electron multipliers for low energy beams
Arnold, F; Ropelewski, L; Spanggaard, J; Tranquille, G
2010-01-01
Gas Electron Multipliers (GEM) find their way to more and more applications in beam instrumentation. Gas Electron Multiplication uses a very similar physical phenomenon to that of Multi Wire Proportional Chambers (MWPC) but for small profile monitors they are much more cost efficient both to produce and to maintain. This paper presents the new GEM profile monitors intended to replace the MWPCs currently used at CERN’s low energy Antiproton Decelerator (AD). It will be shown how GEMs overcome the documented problems of profile measurements with MWPCs for low energy beams, where the interaction of the beam with the detector has a large influence on the measured profile. Results will be shown of profile measurements performed at 5 MeV using four different GEM prototypes, with discussion on the possible use of GEMs at even lower energies needed at the AD in 2013.
Four-gate transistor analog multiplier circuit
Mojarradi, Mohammad M. (Inventor); Blalock, Benjamin (Inventor); Cristoloveanu, Sorin (Inventor); Chen, Suheng (Inventor); Akarvardar, Kerem (Inventor)
2011-01-01
A differential output analog multiplier circuit utilizing four G.sup.4-FETs, each source connected to a current source. The four G.sup.4-FETs may be grouped into two pairs of two G.sup.4-FETs each, where one pair has its drains connected to a load, and the other par has its drains connected to another load. The differential output voltage is taken at the two loads. In one embodiment, for each G.sup.4-FET, the first and second junction gates are each connected together, where a first input voltage is applied to the front gates of each pair, and a second input voltage is applied to the first junction gates of each pair. Other embodiments are described and claimed.
Singh, Jaspreet; Arora, Ajat Shatru
2017-09-01
Accurate and fast thermographic evaluation on characteristic areas of thermograms is highly dependent on segmentation approach. For this purpose, an automatic approach to segment the anatomical regions for paranasal sinusitis detection is presented in this study. Paranasal sinusitis is an inflammatory disease which influences the people of every age, with poor medication may lead to sinus cancer. The role of infrared thermography for identification of sinusitis has been remarked in many studies. However, no single study presented a method for automatic segmentation of anatomical regions of paranasal sinuses. This paper proposes a framework for automatic localization of characteristic areas to enhance the thermographic evaluation for sinusitis detection. Initially, the iterative method of optimal temperature threshold is used for thermogram binarization which eliminates the background interference and helps to extract the facial contour. This algorithm is flexible to normalize the face orientation. The face geometry and characteristic temperature distribution in conjunction with facial anthropometric relationships are used for automatic segmentation of characteristic areas. Using thermal camera, the dataset of 100 thermograms in total with 1 thermogram per subject has been created for this study. To validate the automatic segmentation of proposed methodology, the segmented regions are compared with manually marked regions using parametric quantitative and qualitative approach. With decision thresholds at SW ⩾ 0.85 , JW ⩾ 0.85 and ΔTW sinuses and 96% for frontal sinuses were obtained. The key conclusion is that the proposed methodology for automatic segmentation is effective, time saving and can enhance the thermographic evaluation over the manual approach.
Effect of evaporative surface cooling on thermographic assessment of burn depth
Anselmo, V. J.; Zawacki, B. E.
1977-01-01
Differences in surface temperature between evaporating and nonevaporating, partial- and full-thickness burn injuries were studied in 20 male, white guinea pigs. Evaporative cooling can disguise the temperature differential of the partial-thickness injury and lead to a false full-thickness diagnosis. A full-thickness burn with blister intact may retain enough heat to result in a false partial-thickness diagnosis. By the fourth postburn day, formation of a dry eschar may allow a surface temperature measurement without the complication of differential evaporation. For earlier use of thermographic information, evaporation effects must be accounted for or eliminated.
Satish S Bhairannawar
2014-06-01
Full Text Available The Digital Image processing applications like medi cal imaging, satellite imaging, Biometric trait ima ges etc., rely on multipliers to improve the quality of image. However, existing multiplication techniques introduce errors in the output with consumption of more time, hence error free high speed multipliers has to be designed. In this paper we propose FPGA based Recursive Error Free Mitchell Log Multiplier (REFMLM for image Filters. The 2x2 error free Mitc hell log multiplier is designed with zero error by introducing error correction term is used in higher order Karastuba-Ofman Multiplier (KOM Architectures. The higher order KOM multipliers is decomposed into number of lower order multipliers using radix 2 till basic multiplier block of order 2x2 which is designed by error free Mitchell log mu ltiplier. The 8x8 REFMLM is tested for Gaussian filter to rem ove noise in fingerprint image. The Multiplier is synthesized using Spartan 3 FPGA family device XC3S 1500-5fg320. It is observed that the performance parameters such as area utilization, speed, error a nd PSNR are better in the case of proposed architec ture compared to existing architectures
Multipliers for Floating-Point Double Precision and Beyond on FPGAs
Banescu, Sebastian; De Dinechin, Florent; Pasca, Bogdan; Tudoran, Radu
2010-01-01
International audience; The implementation of high-precision floating-point applications on reconfigurable hardware requires a variety of large multipliers: Standard multipliers are the core of floating-point multipliers; Truncated multipliers, trading resources for a well-controlled accuracy degradation, are useful building blocks in situations where a full multiplier is not needed. This work studies the automated generation of such multipliers using the embedded multipliers and adders prese...
A new proof of the Lagrange multiplier rule
J. Brinkhuis (Jan); V. Protassov (Vladimir)
2015-01-01
textabstractWe present an elementary self-contained proof for the Lagrange multiplier rule. It does not refer to any substantial preparations and it is only based on the observation that a certain limit is positive. At the end of this note, the power of the Lagrange multiplier rule is analyzed.
Dimension of the $c$-nilpotent multiplier of Lie algebras
MEHDI ARASKHAN; MOHAMMAD REZA RISMANCHIAN
2016-08-01
The purpose of this paper is to derive some inequalities for dimension of the $c$-nilpotent multiplier of finite dimensional Lie algebras and their factor Lie algebras. We further obtain an inequality between dimensions of $c$-nilpotent multiplier of Lie algebra $L$ and tensor product of a central ideal by its abelianized factor Lie algebra
OPERATOR-VALUED FOURIER MULTIPLIER THEOREMS ON TRIEBEL SPACES
Bu Shangquan; Kim Jin-Myong
2005-01-01
The authors establish operator-valued Fourier multiplier theorems on Triebel spaces on RN, where the required smoothness of the multiplier functions depends on the dimension N and the indices of the Triebel spaces. This is used to give a sufficient condition of the maximal regularity in the sense of Triebel spaces for vector-valued Cauchy problems with Dirichlet boundary conditions.
Operator-valued Fourier Multipliers on Periodic Triebel Spaces
Shang Quan BU; Jin Myong KIM
2005-01-01
We establish operator-valued Fourier multiplier theorems on periodic Triebel spaces, where the required smoothness of the multipliers depends on the indices of the Triebel spaces. This is used to give a characterization of the maximal regularity in the sense of Triebel spaces for Cauchy problems with periodic boundary conditions.
Multiplier theorems for special Hermite expansions on Cn
无
2000-01-01
The weak type (1,1) estimate for special Hermite expansions on Cn is proved by using the Calderón-Zygmund decomposition. Then the multiplier theorem in Lp(1
multipliers for a certain kind of Laguerre expansions are given in Lp space.
Design of Reversible Multipliers for Linear Filtering Applications in DSP
Rakshith Saligram
2012-12-01
Full Text Available Multipliers in DSP computations are crucial. Thus modern DSP systems need to develop low power multipliers to reduce the power dissipation. One of the efficient ways to reduce power dissipation is by the use of bypassing technique. If a bit in the multiplier and/or multiplicand is zero the whole array of rowand/or diagonal will be bypassed and hence the name bypass multipliers. This paper presents the column Bypass multiplier and 2-D bypass multiplier using reversible logic; Reversible logic is a more prominent technology, having its applications in Low Power CMOS and quantum computations. The switching activity of any component in the bypass multiplier depends only on the input bit coefficients. The semultipliers find application in linear filtering FFT computational units, particularly during zero padding where there will be umpteen numbers of zeros. A bypass multiplier reduces the number of switching activities as well as the power consumption, above which reversible logic design acts to further almost nullify the dissipations
Multipliers for the Absolute Euler Summability of Fourier Series
Prem Chandra
2001-05-01
In this paper, the author has investigated necessary and sufficient conditions for the absolute Euler summability of the Fourier series with multipliers. These conditions are weaker than those obtained earlier by some workers. It is further shown that the multipliers are best possible in certain sense.
An Efficient 16-Bit Multiplier based on Booth Algorithm
Khan, M. Zamin Ali; Saleem, Hussain; Afzal, Shiraz; Naseem, Jawed
2012-11-01
Multipliers are key components of many high performance systems such as microprocessors, digital signal processors, etc. Optimizing the speed and area of the multiplier is major design issue which is usually conflicting constraint so that improving speed results mostly in bigger areas. A VHDL designed architecture based on booth multiplication algorithm is proposed which not only optimize speed but also efficient on energy use.
L-R smash products for multiplier Hopf algebras
ZHAO Li-hui; LU Di-ming; FANG Xiao-li
2008-01-01
The theory of L-R smash product is extended to multiplier Hopf algebras and a sufficient condition for L-R smash product to be regular multiplier Hopf algebras is given. In particular the result of the paper implies Delvaux's main theorem in the case of smash products.
Glitch Reduction in Low- Power Low- Frequency Multiplier
Bhethala Rajasekhar
2014-01-01
Full Text Available Multiplication is an essential arithmetic operation for common DSP applications, such as filtering and fast Fourier transform (FFT. To achieve high execution speed, parallel array multipliers are widely used. These multipliers tend to consume most of the power in DSP computations, and thus power-efficient multipliers are very important for the design of low-power DSP systems. A straightforward approach is to design a full adder (FA that consumes less power. Power reduction can also be achieved through structural modification. For example, rows of partial products can be ignored. In this project a 10 transistor full adder is designed for low power which is used in the implementation of different types of multipliers. All these multipliers are compared for different technologies. A power gating technique is used by placing an MTCMOS cell is used at fine grain level so as to minimize the leakage power.
COMPARATIVE DESIGN OF REGULAR STRUCTURED MODIFIED BOOTH MULTIPLIER
Ram RackshaTripathi
2016-04-01
Full Text Available Multiplication is a crucial function and plays a vital role for practically any DSP system. Several DSP algorithms require different types of multiplications, specifically modified booth multiplication algorithm. In this paper, a simple approach is proposed for generating last partial product row for reducing extra sign (negative bit bit to achieve more regular structure. As compared to the conventional multipliers these proposed modified Booth’s multipliers can achieve improved reduction in area 5.9%, power 3.2%, and delay 0.5% for 8 x 8 multipliers. We can also observe that achievable improvement for 16 x 16 multiplier in area, power, delay are 4.0%, 2.3%, 0.3% respectively. These multipliers are implemented using verilog HDL and synthesized by using synopsis design compiler with an Artisan TSMC 90nm Technology
Thermographic Imaging of the Superficial Temperature in Racing Greyhounds before and after the Race
Mari Vainionpää
2012-01-01
Full Text Available A total of 47 racing greyhounds were enrolled in this study on two race days (in July and September, resp. at a racetrack. Twelve of the dogs participated in the study on both days. Thermographic images were taken before and after each race. From the images, superficial temperature points of selected sites (tendo calcaneus, musculus gastrocnemius, musculus gracilis, and musculus biceps femoris portio caudalis were taken and used to investigate the differences in superficial temperatures before and after the race. The thermographic images were compared between the right and left legs of a dog, between the raced distances, and between the two race days. The theoretical heat capacity of a racing greyhound was calculated. With regard to all distances raced, the superficial temperatures measured from the musculus gastrocnemius were significantly higher after the race than at baseline. No significant differences were found between the left and right legs of a dog after completing any of the distances. Significant difference was found between the two race days. The heat loss mechanisms of racing greyhounds during the race through forced conduction, radiation, evaporation, and panting can be considered adequate when observing the calculated heat capacity of the dogs.
Colantonio, A. [Public Works and Government Services Canada, Gatineau, PQ (Canada); McIntosh, G. [Snell Infrared Canada, Richmond Hill, ON (Canada)
2007-07-01
This paper described key differences in infrared thermographic inspection procedures, analysis and reporting requirements that come into play for building envelopes of low-rise residential and large buildings. Newly developed low-resolution infrared Focal Plane Array (FPA) imagers and radiometers are widely used in the commercial marketplace to monitor electrical or mechanical systems as well as roofing applications. These low cost infrared systems detect the heat-related signature of moisture within buildings by means of phase change, capacitive, or conductive mechanisms. Inspection distances can range between 0.5 and 5 metres. As such, the use of these new imagers is appropriate for low-rise residential buildings, but their use is limited in envelopes of large buildings over 5 or 6 stories. This paper emphasized that in order to create a level playing field for providers of infrared thermographic service inspections, specific standards must be identified for the types of equipment suitable for inspection activities, qualifications of service providers, type of information to be be provided by the inspection report, and the procedures needed to obtain suitable results. The paper also described the requirements for equipment specifications, inspection methodologies and knowledge base of both the equipment operator and image analysis professional required to accurately conduct inspections of large buildings by means of non-destructive testing. 17 refs., 3 tabs., 8 figs.
Optimizing strassen matrix multiply on GPUs
ul Hasan Khan, Ayaz
2015-06-01
© 2015 IEEE. Many core systems are basically designed for applications having large data parallelism. Strassen Matrix Multiply (MM) can be formulated as a depth first (DFS) traversal of a recursion tree where all cores work in parallel on computing each of the NxN sub-matrices that reduces storage at the detriment of large data motion to gather and aggregate the results. We propose Strassen and Winograd algorithms (S-MM and W-MM) based on three optimizations: a set of basic algebra functions to reduce overhead, invoking efficient library (CUBLAS 5.5), and parameter-tuning of parametric kernel to improve resource occupancy. On GPUs, W-MM and S-MM with one recursion level outperform CUBLAS 5.5 Library with up to twice as faster for large arrays satisfying N>=2048 and N>=3072, respectively. Compared to NVIDIA SDK library, S-MM and W-MM achieved a speedup between 20x to 80x for the above arrays. The proposed approach can be used to enhance the performance of CUBLAS and MKL libraries.
Beyond Linear Delay Multipliers in Air Transport
Seddik Belkoura
2017-01-01
Full Text Available Delays are considered one of the most important burdens of air transport, both for their social and environmental consequences and for the cost they cause for airlines and passengers. It is therefore not surprising that a large effort has been devoted to study how they propagate through the system. One of the most important indicators to assess such propagation is the delay multiplier, a ratio between outbound and inbound average delays; in spite of its widespread utilisation, its simplicity precludes capturing all details about the dynamics behind the diffusion process. Here we present a methodology that extracts a more complete relationship between the in- and outbound delays, distinguishing a linear and a nonlinear phase and thus yielding a richer description of the system’s response as a function of the delay magnitude. We validate the methodology through the study of a historical data set of flights crossing the European airspace and show how its most important airports have heterogeneous ways of reacting to extreme delays and that this reaction strongly depends on some of their global properties.
An Optimized Sparse Approximate Matrix Multiply
Bock, Nicolas
2012-01-01
We present an optimized single-precision implementation of the Sparse Approximate Matrix Multiply (\\SpAMM{}) [M. Challacombe and N. Bock, arXiv {\\bf 1011.3534} (2010)], a fast algorithm for matrix-matrix multiplication for matrices with decay that achieves an $\\mathcal{O} (n \\ln n)$ computational complexity with respect to matrix dimension $n$. We find that the max norm of the error matrix achieved with a \\SpAMM{} tolerance of below $2 \\times 10^{-8}$ is lower than that of the single-precision {\\tt SGEMM} for quantum chemical test matrices, while outperforming {\\tt SGEMM} with a cross-over already for small matrices ($n \\sim 1000$). Relative to naive implementations of \\SpAMM{} using optimized versions of {\\tt SGEMM}, such as those found in Intel's Math Kernel Library ({\\tt MKL}) or AMD's Core Math Library ({\\tt ACML}), our optimized version is found to be significantly faster. Detailed performance comparisons are made with for quantum chemical matrices of RHF/STO-2G and RHF/6-31G${}^{**}$ water clusters.
Vacancy rearrangement processes in multiply ionized atoms
Czarnota, M [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Pajek, M [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Banas, D [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Dousse, J-Cl [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Maillard, Y-P [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Mauron, O [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Raboud, P A [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Berset, M [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Hoszowska, J [European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble (France); Slabkowska, K [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Torun (Poland); Polasik, M [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Torun (Poland); Chmielewska, D [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Rzadkiewicz, J [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Sujkowski, Z [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland)
2007-03-01
We demonstrate that in order to interpret the x-ray satellite structure of Pd L{alpha}{sub 1,2}(L{sub 3}M{sub 4,5}) transitions excited by fast O ions, which was measured using a high-resolution von Hamos crystal spectrometer, the vacancy rearrangement processes, taking place prior to the x-ray emission, have to be taken into account. The measured spectra were compared with the predictions of the multi-con.guration Dirac-Fock (MCDF) calculations using the fluorescence and Coster-Kronig yields which were modiffed due to a reduced number of electrons available for relaxation processes and the effect of closing the Coster-Kronig transitions. We demonstrate that the vacancy rearrangement processes can be described in terms of the rearrangement factor, which can be calculated by solving the system of rate equations modelling the flow of vacancies in the multiply ionized atom. By using this factor, the ionization probability at the moment of collision can be extracted from the measured intensity distribution of x-ray satellites. The present results support the independent electron picture of multiple ionization and indicate the importance of use of Dirac-Hartree-Fock wave functions to calculate the ionization probabilities.
Dyadic Bivariate Wavelet Multipliers in L2(R2)
Zhong Yan LI; Xian Liang SHI
2011-01-01
The single 2 dilation wavelet multipliers in one-dimensional case and single A-dilation (where A is any expansive matrix with integer entries and |detA|＝2)wavelet multipliers in twodimensional case were completely characterized by Wutam Consortium(1998)and Li Z.,et al.(2010).But there exist no results on multivariate wavelet multipliers corresponding to integer expansive dilation.matrix with the absolute value of determinant not 2 in L2(R2).In this paper,we choose 2I2＝(0202)as the dilation matrix and consider the 2I2-dilation multivariate wavelet Ψ＝{ψ1,ψ2,ψ3}(which is called a dyadic bivariate wavelet)multipliers.Here we call a measurable function family f＝{f1,f2,f3}a dyadic bivariate wavelet multiplier if Ψ1＝{F-1(f1ψ1),F-1(f2ψ2),F-1(f3ψ3)} is a dyadic bivariate wavelet for any dyadic bivariate wavelet Ψ={ψ1,ψ2,ψ3},where(f)and,F-1 denote the Fourier transform and the inverse transform of function f respectively.We study dyadic bivariate wavelet multipliers,and give some conditions for dyadic bivariate wavelet multipliers.We also give concrete forms of linear phases of dyadic MRA bivariate wavelets.
Fix-point Multiplier Distributions in Discrete Turbulent Cascade Models
Jouault, B; Lipa, P
1998-01-01
One-point time-series measurements limit the observation of three-dimensional fully developed turbulence to one dimension. For one-dimensional models, like multiplicative branching processes, this implies that the energy flux from large to small scales is not conserved locally. This then renders the random weights used in the cascade curdling to be different from the multipliers obtained from a backward averaging procedure. The resulting multiplier distributions become solutions of a fix-point problem. With a further restoration of homogeneity, all observed correlations between multipliers in the energy dissipation field can be understood in terms of simple scale-invariant multiplicative branching processes.
NOVEL REVERSIBLE VARIABLE PRECISION MULTIPLIER USING REVERSIBLE LOGIC GATES
M. Saravanan; K. Suresh Manic
2014-01-01
.... In this study a reversible logic gate based design of variable precision multiplier is proposed which have the greater efficiency in power consumption and speed since the partial products received...
Design of Low Power Vedic Multiplier Based on Reversible Logic
Sagar
2017-03-01
Full Text Available Reversible logic is a new technique to reduce the power dissipation. There is no loss of information in reversible logic and produces unique output for specified inputs and vice-versa. There is no loss of bits so the power dissipation is reduced. In this paper new design for high speed, low power and area efficient 8-bit Vedic multiplier using Urdhva Tiryakbhyam Sutra (ancient methodology of Indian mathematics is introduced and implemented using Reversible logic to generate products with low power dissipation. UT Sutra generates partial product and sum in single step with less number of adders unit when compare to conventional booth and array multipliers which will reduce the delay and area utilized, Reversible logic will reduce the power dissipation. An 8-bit Vedic multiplier is realized using a 4-bit Vedic multiplier and modified ripple carry adders. The proposed logic blocks are implemented using Verilog HDL programming language, simulation using Xilinx ISE software.
A LOW-PHASE NOISE FREQUENCY MULTIPLIER CHAIN ...
Consequently, the driving crystal oscillators and the first multiplier .... the upper cut off frequency of the system and its asymptotic slope. ..... (SMHz}, the order of multipliction of the. "difference" ... upto 300GHz. To go higher in frequency it is.
Multipliers of Marcinkiewicz type for spherical harmonic expansions
陆善镇; 马柏林
1996-01-01
A sufficient condition for multipliers on the unit sphere to be bounded in is given. The condition is analogous to those of Marcinkiewicz criterions, which is an extension of A. Bonami and J. L. Clerc’s.
Gauss-Bonnet dark energy by Lagrange multipliers
Capozziello, Salvatore; Odintsov, Sergei D
2013-01-01
A string-inspired effective theory of gravity, containing Gauss-Bonnet invariant interacting with a scalar field, is considered in view of obtaining cosmological dark energy solutions. A Lagrange multiplier is inserted into the action in order to achieve the cosmological reconstruction by selecting suitable forms of couplings and potentials. Several cosmological exact solutions (including dark energy of quintessence, phantom or Little Rip type) are derived in presence and in absence of the Lagrange multiplier showing the difference in the two dynamical approaches. In the models that we consider, the Lagrange multiplier behaves as a sort of dust fluid that realizes the transitions between matter dominated and dark energy epochs. The relation between Lagrange multipliers and Noether symmetries is discussed.
Single electron based binary multipliers with overflow detection
ATHARVA
Multipliers with overflow detection based on serial and parallel ... current following through a tunnel junction is a series of events in which only one electron ..... Processing delay based on SED and analyzed SED for parallel prefix circuit.
Efek Multiplier Zakat Terhadap Pendapatan di Propinsi DKI Jakarta
M. Nur Rianto Al Arif
2015-10-01
Full Text Available The aim of this research is to analyze the multiplier effect of zakah revenue in DKI Jakarta, a study case at Badan Amil Zakat, Infak, and Shadaqah (BAZIS DKI Jakarta. Least square methods is used to analyze the data. The coefficient will be used to calculate the multiplier effect of zakah revenue and it will be compared with the economy without zakah revenue. The result showed 2,522 multiplier effects of zakah revenue and 3,561 multiplier effect of economic income without zakah revenue. This suggest that the management of zakah in BAZIS DKI Jakarta still can have a significant influence on the economyDOI: 10.15408/aiq.v4i1.2079
Sociophysics of sexism: normal and anomalous petrie multipliers
Eliazar, Iddo
2015-07-01
A recent mathematical model by Karen Petrie explains how sexism towards women can arise in organizations where male and female are equally sexist. Indeed, the Petrie model predicts that such sexism will emerge whenever there is a male majority, and quantifies this majority bias by the ‘Petrie multiplier’: the square of the male/female ratio. In this paper—emulating the shift from ‘normal’ to ‘anomalous’ diffusion—we generalize the Petrie model to a stochastic Poisson model that accommodates heterogeneously sexist men and woman, and that extends the ‘normal’ quadratic Petrie multiplier to ‘anomalous’ non-quadratic multipliers. The Petrie multipliers span a full spectrum of behaviors which we classify into four universal types. A variation of the stochastic Poisson model and its Petrie multipliers is further applied to the context of cyber warfare.
THERMOGRAPHIC APPLICATIONS OF TEMPERATURE SENSITIVE FLUORESCENCE OF SrS:Cu PHOSPHORS
R. PUROHIT
2010-12-01
Full Text Available The present work aims at investigating the temperature sensitive fluoro-optic behaviour of Cu-activated strontium sulphide (SrS phosphors and its possible application in thermography. Accordingly, SrS (Cu phosphors have been synthesized and painted with the help of adhesive on silica substrate. The excitation and emission spectra of such phosphor coatings have been recorded at room temperature (25C. The temperature dependence of fluorescence intensity and the lifetime of phosphorescence have also been studied. From the systematic variation of these two parameters with temperature, it appears that these phosphors are good candidates for thermographic application, at least, in the temperature range of investigation (25-150C.
Ir Thermographic Measurements of Temperatures and Heat Fluxes in Hypersonic Plasma Flow
Cardone, G.; Tortora, G.; del Vecchio, A.
2005-02-01
The technological development achieved in instruments and methodology concerning both flights and ground hypersonic experiment (employed in space plane planning) goes towards an updating and a standardization of the heat flux technical measurements. In fact, the possibility to simulate high enthalpy flow relative to reentry condition by hypersonic arc-jet facility needs devoted methods to measure heat fluxes. Aim of this work is to develop an experimental numerical technique for the evaluation of heat fluxes over Thermal Protection System (TPS) by means of InfraRed (IR) thermographic temperature measurements and a new heat flux sensor (IR-HFS). We tackle the numerical validation of IR-HFS, apply the same one to the Hyflex nose cap model and compare the obtained results with others ones obtained by others methodology.
Application of an IR Thermographic Device for the Detection of a Simulated Defect in a Pipe
Young Han Kim
2006-10-01
Full Text Available An infrared (IR temperature sensor module developed for the detection ofdefects in a metal plate is modified for defect detection in a pipe. A module giving closesensor arrangement and maintaining a constant distance between sensor and measuredobject is developed and utilized in the present modification of the IR thermographic device.The defect detection performance is experimentally investigated, and the measuredtemperature is compared with the computed temperature distribution and with a previousexperimental result. The outcome of this experiment indicates that detection of a simulateddefect is readily obtainable, and the measured temperature distribution is better for defectdetection than with the previously utilized device. The comparison of standard deviations ofdifferent sensors clearly indicates an improvement in the location of defects in this study.Also, the measured temperature distribution is comparable to the one calculated using a heatconduction equation. The device developed for defect detection here is suitable forimplementation in chemical processes, where most vessels and piping systems arecylindrical in shape.
NOVEL REVERSIBLE VARIABLE PRECISION MULTIPLIER USING REVERSIBLE LOGIC GATES
M. Saravanan; K. Suresh Manic
2014-01-01
Multipliers play a vital role in digital systems especially in digital processors. There are many algorithms and designs were proposed in the earlier works, but still there is a need and a greater interest in designing a less complex, low power consuming, fastest multipliers. Reversible logic design became the promising technologies gaining greater interest due to less dissipation of heat and low power consumption. In this study a reversible logic gate based design of variable precision multi...
The Mortar Element Method with Lagrange Multipliers for Stokes Problem
Yaqin Jiang
2007-01-01
In this paper, we propose a mortar element method with Lagrange multiplier for incompressible Stokes problem, i.e., the matching constraints of velocity on mortar edges are expressed in terms of Lagrange multipliers. We also present P1 nonconforming element attached to the subdomains. By proving inf-sup condition, we derive optimal error estimates for velocity and pressure. Moreover, we obtain satisfactory approximation for normal derivatives of the velocity across the interfaces.
High Speed Area Efficient 8-point FFT using Vedic Multiplier
Avneesh Kumar Mishra
2014-12-01
Full Text Available A high speed fast fourier transform (FFT design by using three algorithm is presented in this paper. In algorithm 3, 4-bit Vedic multiplier based technique are used in FFT. In this technique used in three 4-bit ripple carry adder and four 2*2 Vedic multiplier. The main parameter of this paper is number of slice, 4-input LUTS and maximum combinational path delay were calculate.
Use of thermographic imaging in clinical diagnosis of small animal: preliminary notes
Veronica Redaelli
2014-06-01
Full Text Available INTRODUCTION. The authors, after a description of the physics of infrared thermographic technique (IRT, analyze the reading of images and the main applications in the veterinary field, compared to the existing literature on the subject and to their experimental researches. IRT lends itself to countless applications in biology, thanks to its characteristics of versatility, lack of invasiveness and high sensitivity. Probably the major limitation to its application in the animal lies in the ease of use and in its extreme sensitivity. MATERIALS AND METHODS. From September 2009 to October 2010, the experimental investigation with the thermo camera took into consideration 110 animals (92 dogs and 18 cats, without any selection criteria. All patients were brought to the Faculty of Veterinary Medicine in Milan University by the owner, to be examined by a specialist, or to undergo one of the following diagnostic procedures: X-rays, computed tomography, or ultrasound examinations; finally some patients were brought in for surgical procedures. With the consent of the owner, 1 to 10 thermographic images were recorded from each clinical case. Results. In this first experimental investigation, thermography has shown a high sensitivity (100%, but a low specificity (44%. This figure excludes the use of thermal imaging technology to replace other imaging techniques such as radiography, computed tomography and magnetic resonance imaging. Furthermore, it does not show any ability to recognize the etiology of the disease, but only the thermal alteration, and this is restricting its use. However, this experimental study has demonstrated that thermography can be used in veterinary medicine, and specifically in dogs and cats. It is hoped that in the field of targeted diseases this technique will become an important tool for diagnostic purposes by using working protocols validated and repeatable.
Thermographic testing used on the X-33 space launch vehicle program by BFGoodrich Aerospace
Burleigh, Douglas D.
1999-03-01
The X-33 program is a team effort sponsored by NASA under Cooperative Agreement NCC8-115, and led by the Lockheed Martin Corporation. Team member BFGoodrich Aerospace Aerostructures Group (formerly Rohr) is responsible for design, manufacture, and integration of the Thermal Protection System (TPS) of the X-33 launch vehicle. The X-33 is a half-scale, experimental prototype of a vehicle called RLV (Reusable Launch Vehicle) or VentureStarTM, an SSTO (single stage to orbit) vehicle, which is a proposed successor to the aging Space Shuttle. Thermographic testing has been employed by BFGoodrich Aerospace Aerostructures Group for a wide variety of uses in the testing of components of the X-33. Thermographic NDT (TNDT) has been used for inspecting large graphite- epoxy/aluminum honeycomb sandwich panels used on the Leeward Aeroshell structure of the X-33. And TNDT is being evaluated for use in inspecting carbon-carbon composite parts such as the nosecap and wing leading edge components. Pulsed Infrared Testing (PIRT), a special form of TNDT, is used for the routine inspection of sandwich panels made of brazed inconel honeycomb and facesheets. In the developmental and qualification testing of sub-elements of the X-33, thermography has been used to monitor (1) Arc Jet tests at NASA Ames Research Center in Mountain view, CA and NASA Johnson Space Center in Houston, TX, (2) High Temperature (wind) Tunnel Tests (HTT) at Nasa Langley Research Center in Langley, VA, and (3) Hot Gas Tests at NASA Marshall Space Flight Center in Huntsville, AL.
Verilog Implementation of an Efficient Multiplier Using Vedic Mathematics
Harsh Yadav
2015-07-01
Full Text Available In this paper, the design of a 16x16 Vedic multiplier has been proposed using the 16 bit Modified Carry Select Adder and 16 bit Kogge Stone Adder. The Modified Carry Select Adder incorporates the Binary to Excess -1 Converter (BEC and is known to be the fastest adder as compared to all the conventional adders. The design is implemented using the Verilog Hardware Description Language and tested using the Modelsim simulator. The code is synthesized using the Virtex-7 family with the XC7VX330T device. The Vedic multiplier has applications in Digital Signal Processing, Microprocessors, FIR filters and communication systems. This paper presents a comparison of the results of 16x16 Vedic multiplier using Modified Carry Select Adder and 16x16 Vedic Multiplier using Kogge Stone Adder. The results show that 16x16 Vedic Multiplier using Modified Carry Select Adder is more efficient and has less time delay as compared to the 16x16 Vedic Multiplier using Kogge Stone Adder.
High speed multiplier using Nikhilam Sutra algorithm of Vedic mathematics
Pradhan, Manoranjan; Panda, Rutuparna
2014-03-01
This article presents the design of a new high-speed multiplier architecture using Nikhilam Sutra of Vedic mathematics. The proposed multiplier architecture finds out the compliment of the large operand from its nearest base to perform the multiplication. The multiplication of two large operands is reduced to the multiplication of their compliments and addition. It is more efficient when the magnitudes of both operands are more than half of their maximum values. The carry save adder in the multiplier architecture increases the speed of addition of partial products. The multiplier circuit is synthesised and simulated using Xilinx ISE 10.1 software and implemented on Spartan 2 FPGA device XC2S30-5pq208. The output parameters such as propagation delay and device utilisation are calculated from synthesis results. The performance evaluation results in terms of speed and device utilisation are compared with earlier multiplier architecture. The proposed design has speed improvements compared to multiplier architecture presented in the literature.
Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck
2017-09-01
The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.
Implementation of Different Low Power Multipliers Using Verilog
Koteswara Rao Ponnuru
2014-06-01
Full Text Available Low power consumption and smaller area are some of the most important criteria for the fabrication of DSP systems and high performance systems. Optimizing the speed and area of the multiplier is a major design issue. Multiplication represents a fundamental building block in all DSP tasks. The objective of a good multiplier is to provide a physically compact, good speed and low power consumption. To save significant power consumption of a VLSI design it is a good direction to reduce its dynamic power that is the major part of total power consumption. Two methods are common in current implementations: regular arrays and Wallace trees. The gate-level analyses have suggested that not only are Wallace trees faster than array schemes, they also consume much less power. However these analyses did not take wiring into account, resulting in optimistic timing and power estimates. Continuous advances of microelectronic technologies make better use of energy, encode data more effectively, reduce power consumption, etc. Particularly, many of these technologies address low-power consumption to meet the requirements of various portable applications. In these application systems, a multiplier is a fundamental arithmetic unit and widely used in circuits. I compare results for 8bit-width the working of different multipliers by comparing the power consumption by each of them. The result of my paper helps us to choose a better option between serial and parallel multiplier in fabricating different systems. Multipliers form one of the most important components of many systems. So, by analyzing the working of different multipliers helps to frame a better system with less power consumption and lesser area.
Underwater implosions of large format photo-multiplier tubes
Diwan, Milind; Dolph, Jeffrey [Brookhaven National Laboratory, P.O. Box 5000, Bldg 510E, Upton, NY 11973 (United States); Ling, Jiajie, E-mail: jjling@bnl.gov [Brookhaven National Laboratory, P.O. Box 5000, Bldg 510E, Upton, NY 11973 (United States); Russo, Thomas; Sharma, Rahul; Sexton, Kenneth; Simos, Nikolaos; Stewart, James; Tanaka, Hidekazu [Brookhaven National Laboratory, P.O. Box 5000, Bldg 510E, Upton, NY 11973 (United States); Arnold, Douglas; Tabor, Philip; Turner, Stephen [Naval Underwater Warfare Center, Newport, RI 02841 (United States)
2012-04-01
Large, deep, well shielded liquid detectors have become an important technology for the detection of neutrinos over a wide dynamic range from few MeV to TeV. The critical component of this technology is the large format semi-hemispherical photo-multiplier tube with diameters in the range of 25-50 cm. The survival of an assembled array of these photo-multiplier tubes under high hydrostatic pressure is the subject of this study. These are the results from an R and D program which is intended to understand the modes of failure when a photo-multiplier tube implodes under hydrostatic pressure. Our tests include detailed measurements of the shock wave which results from the implosion of a photo-multiplier tube and a comparison of the test data to modern hydrodynamic simulation codes. Using these results we can extrapolate to other tube geometries and make recommendation on deployment of the photo-multiplier tubes in deep water detectors with a focus on risk mitigation from a tube implosion shock wave causing a chain reaction loss of multiple tubes.
Four-quadrant analogue multiplier using operational amplifier
Riewruja, Vanchai; Rerkratn, Apinai
2011-04-01
A method to realise a four-quadrant analogue multiplier using general-purpose operational amplifiers (opamps) as only the active elements is described in this article. The realisation method is based on the quarter-square technique, which utilises the inherent square-law characteristic of class AB output stage of the opamp. The multiplier can be achieved from the proposed structure with using either bipolar or complementary metal-oxide-semiconductor (CMOS) opamps. The operation principle of the proposed multiplier has been confirmed by PSPICE analogue simulation program. Simulation results reveal that the principle of proposed scheme provides an adequate performance for a four-quadrant analogue multiplier. Experimental implementations of the proposed multiplier using bipolar and CMOS opamps are performed to verify the circuit performances. Measured results of the experimental proposed schemes based on the use of bipolar and CMOS opamps with supply voltage ±2.4 V show the worst-case relative errors of 0.32% and 0.47%, and the total harmonic distortions of 0.47% and 0.98%, respectively.
OPTIMIZATION OF HYBRID FINAL ADDER FOR THE HIGH PERFORMANCE MULTIPLIER
RAMKUMAR B.
2013-04-01
Full Text Available In this work we evaluated arrival profile of the HPM based multiplier partial products reduction tree in two ways: 1.manual delay, area calculation through logical effort, 2.ASIC implementation. Based on the arrival profile, we worked with some recently proposed optimal adders and finally we proposed an optimal hybrid adder for the final addition in HPM based parallel multiplier. This work derives some mathematical expressions to find the size of different regions in the partial product arrival profile which helps to design optimal adder for each region. This work evaluates the performance of proposed hybrid adder in terms of area, power and delay using 90nm technology. This work deals with manual calculation for 8-b and ASIC simulation of different adder designs for 8-b, 16-b, 32-b and 64-b multiplier bit sizes.
Performance evaluation of high speed compressors for high speed multipliers
Nirlakalla Ravi
2011-01-01
Full Text Available This paper describes high speed compressors for high speed parallel multipliers like Booth Multiplier, Wallace Tree Multiplier in Digital Signal Processing (DSP. This paper presents 4-3, 5-3, 6-3 and 7-3 compressors for high speed multiplication. These compressors reduce vertical critical path more rapidly than conventional compressors. A 5-3 conventional compressor can take four steps to reduce bits from 5 to 3, but the proposed 5-3 takes only 2 steps. These compressors are simulated with H-Spice at a temperature of 25°C at a supply voltage 2.0V using 90nm MOSIS technology. The Power, Delay, Power Delay Product (PDP and Energy Delay Product (EDP of the compressors are calculated to analyze the total propagation delay and energy consumption. All the compressors are designed with half adder and full Adders only.
Multiplier Accounting of Indian Mining Industry: The Application
Hussain, Azhar; Karmakar, Netai Chandra
2017-10-01
In the previous paper (Hussain and Karmakar in Inst Eng India Ser, 2014. doi: 10.1007/s40033-014-0058-0), the concepts of input-output transaction matrix and multiplier were explained in detail. Input-output multipliers are indicators used for predicting the total impact on an economy due to changes in its industrial demand and output which is calculated using transaction matrix. The aim of this paper is to present an application of the concepts with respect to the mining industry, showing progress in different sectors of mining with time and explaining different outcomes from the results obtained. The analysis shows that a few mineral industries saw a significant growth in their multiplier values over the years.
Dark energy from modified gravity with Lagrange multipliers
Capozziello, Salvatore [Dipartimento di Scienze Fisiche, Universita ' Federico II' di Napoli (Italy)] [INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Ed. N, via Cintia, I-80126 Napoli (Italy); Matsumoto, Jiro [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.j [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)] [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Institucio Catalana de Recerca i Estudis Avancats (ICREA) and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra, Barcelona (Spain)
2010-09-27
We study scalar-tensor theory, k-essence and modified gravity with Lagrange multiplier constraint which role is to reduce the number of degrees of freedom. Dark Energy cosmology of different types ({Lambda}CDM, unified inflation with DE, smooth non-phantom/phantom transition epoch) is reconstructed in such models. It is demonstrated that presence of Lagrange multiplier simplifies the reconstruction scenario. It is shown that mathematical equivalence between scalar theory and F(R) gravity is broken due to presence of constraint. The cosmological evolution is defined by the second F{sub 2}(R) function dictated by the constraint. The convenient F(R) gravity sector is relevant for local tests. This opens the possibility to make originally non-realistic theory to be viable by adding the corresponding constraint. A general discussion on the role of Lagrange multipliers to make higher-derivative gravity canonical is developed.
Performance Evaluation of Complex Multiplier Using Advance Algorithm
Gopichand D. Khandale
2013-06-01
Full Text Available In this paper VHDL implementation of complex number multiplier using ancient Vedic mathematics and conventional modified Booth algorithm is presented and compared. The idea for designing the multiplier unit is adopted from ancient Indian mathematics "Vedas". The Urdhva Tiryakbhyam sutra (method was selected for implementation since it is applicable to all cases of multiplication. Multiplication using Urdhva Tiryakbhyam sutra is performed by vertically and crosswise. The feature of this method is any multi-bit multiplication can be reduced down to single bit multiplication and addition. On account of these formulas, the partial products and sums are generated in one step which reduces the carry propagation from LSB to MSB. The implementation of the Vedic mathematics and their application to the complex multiplier ensure substantial reduction of propagation delay. The simulation results for 4 bit multiplication using Booth’s algorithm and using Vedic sutra are illustrated.
Multiplier Accounting of Indian Mining Industry: The Application
Hussain, Azhar; Karmakar, Netai Chandra
2016-10-01
In the previous paper (Hussain and Karmakar in Inst Eng India Ser, 2014. doi: 10.1007/s40033-014-0058-0), the concepts of input-output transaction matrix and multiplier were explained in detail. Input-output multipliers are indicators used for predicting the total impact on an economy due to changes in its industrial demand and output which is calculated using transaction matrix. The aim of this paper is to present an application of the concepts with respect to the mining industry, showing progress in different sectors of mining with time and explaining different outcomes from the results obtained. The analysis shows that a few mineral industries saw a significant growth in their multiplier values over the years.
Implementation of MAC by using Modified Vedic Multiplier
Sreelekshmi M. S.
2013-09-01
Full Text Available Multiplier Accumulator Unit (MAC is a part of Digital Signal Processors. The speed of MAC depends on the speed of multiplier. So by using an efficient Vedic multiplier which excels in terms of speed, power and area, the performance of MAC can be increased. For this fast method of multiplication based on ancient Indian Vedic mathematics is proposed in this paper. Among various method of multiplication in Vedic mathematics, Urdhva Tiryagbhyam is used and the multiplication is for 32 X 32 bits. Urdhva Tiryagbhyam is a general multiplication formula applicable to all cases of multiplication. Adder used is Carry Look Ahead adder. The proposed design shows improvement over carry save adder.
VLSI IMPLEMENTATION OF AN ANALOG MULTIPLIER FOR MODEM
SRIVIDYA .P,
2011-02-01
Full Text Available A modem (modulator-demodulator is a device that modulates an analog carrier signal to encode digital information, and also demodulates such a carrier signal to decode the transmitted information. The goalis to produce a signal that can be transmitted easily and decoded to reproduce the original digital data. Here there is a need to mix the signals of different frequencies or signals of different types, whichemphasizes the use of mixers or multipliers for different RF applications. In this paper, A CMOS analog multiplier, with less number of transistors which can operate at high frequencies with low power and high linearity is proposed. The multiplier works on the basis of parallel connected MOS operation circuit.
Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures
Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.
2012-04-01
Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both
Isometric Multipliers of $L^p(G, X)$
U B Tewari; P K Chaurasia
2005-02-01
Let be a locally compact group with a fixed right Haar measure and a separable Banach space. Let $L^p(G, X)$ be the space of -valued measurable functions whose norm-functions are in the usual $L^p$. A left multiplier of $L^p(G, X)$ is a bounded linear operator on $L^p(G, X)$ which commutes with all left translations. We use the characterization of isometries of $L^p(G, X)$ onto itself to characterize the isometric, invertible, left multipliers of $L^p(G, X)$ for 1 ≤ < ∞, ≠ 2, under the assumption that is not the $l^p$-direct sum of two non-zero subspaces. In fact we prove that if is an isometric left multiplier of $L^p(G, X)$ onto itself then there exists $a y \\in G$ and an isometry of onto itself such that $Tf(x) = U(R_y f)(x)$. As an application, we determine the isometric left multipliers of $L^1 \\cap L^p(G, X)$ and $L^1 \\cap C_0(G, X)$ where is non-compact and is not the $l^p$-direct sum of two non-zero subspaces. If is a locally compact abelian group and is a separable Hilbert space, we define $A^p(G, H)=\\{f\\in l^1(G, H):\\hat{f}\\in L^p(, H)\\}$ where is the dual group of . We characterize the isometric, invertible, left multipliers of $A^p(G, H)$, provided is non-compact. Finally, we use the characterization of isometries of (,) for compact to determine the isometric left multipliers of (,) provided * is strictly convex.
Energy and area efficient hierarchy multiplier architecture based on Vedic mathematics and GDI logic
Mohan Shoba
2017-02-01
Full Text Available Hierarchy multiplier is attractive because of its ability to carry the multiplication operation within one clock cycle. The existing hierarchical multipliers occupy more area and also results in more delay. Therefore, in this paper, a method to reduce the computation delay of hierarchy multiplier by employing CslA and Binary to Excess 1 Converter (BEC is proposed. The use of BEC eliminates the n/4 number of adders, existing in the conventional addition scheme, where n denotes the multiplier input width. As the area of the hierarchy multiplier is determined by its base multiplier, the base multiplier is realized with the proposed Vedic multiplier, which has small area and operates with less delay than the conventional multipliers. In addition, the reduction of power consumption in the hierarchy multiplier can be ensured by implementing the designed multiplier with full swing Gate Diffusion Input (GDI logic. The performances of the proposed and the existing multipliers are evaluated by Cadence SPICE simulator using 45 nm technology model. From the simulation results, the performance parameters namely, delay and power consumption are calculated. Further, the area is measured from the corresponding layout for the same technology model. It is examined from the results that the proposed multiplier operates with 17% lesser power delay product than the recently reported hierarchy multiplier. The Monte Carlo simulation is performed to understand the robustness of the proposed hierarchy multiplier.
High performance dc-dc conversion with voltage multipliers
Harrigill, W. T.; Myers, I. T.
1974-01-01
The voltage multipliers using capacitors and diodes first developed by Cockcroft and Walton in 1932 were reexamined in terms of state of the art fast switching transistors and diodes, and high energy density capacitors. Because of component improvements, the voltage multiplier, used without a transformer, now appears superior in weight to systems now in use for dc-dc conversion. An experimental 100-watt 1000-volt dc-dc converter operating at 100 kHz was built, with a component weight of about 1 kg/kW. Calculated and measured values of output voltage and efficiency agreed within experimental error.
Optimal Final Carry Propagate Adder Design for Parallel Multipliers
B., Ramkumar
2011-01-01
Based on the ASIC layout level simulation of 7 types of adder structures each of four different sizes, i.e. a total of 28 adders, we propose expressions for the width of each of the three regions of the final Carry Propagate Adder (CPA) to be used in parallel multipliers. We also propose the types of adders to be used in each region that would lead to the optimal performance of the hybrid final adders in parallel multipliers. This work evaluates the complete performance of the analyzed designs in terms of delay, area, power through custom design and layout in 0.18 um CMOS process technology.
Comparative study of Braun’s Multiplier Using FPGA Devices
Anitha R,
2011-06-01
Full Text Available The development cost for ASIC are high, algorithms should be verified and optimized before implementation. To decrease computational delay and improve resource utilization, bypassing techniques are beapplied and braun-arhitectured multiplier is compared with its architectural modification i.e. Column-bypassing and Row-bypassing architectures and the full adder structure has been replaced by the fast adder. The architectures have been implemented on Spartan 3E, Virtex 5 and Virtex 6 LowerPower. Virtex 5 showed the best performance whereas column-bypassed multiplier has the best performance among the three architectures using Xilinx ISE and Verilog HDL.
Radial multipliers on amalgamated free products of II-factors
Möller, Sören
2014-01-01
Let ℳi be a family of II1-factors, containing a common II1-subfactor 풩, such that [ℳi : 풩] ∈ ℕ0 for all i. Furthermore, let ϕ: ℕ0 → ℂ. We show that if a Hankel matrix related to ϕ is trace-class, then there exists a unique completely bounded map Mϕ on the amalgamated free product of the ℳi...... with amalgamation over 풩, which acts as a radial multiplier. Hereby, we extend a result of Haagerup and the author for radial multipliers on reduced free products of unital C*- and von Neumann algebras....
Optimized Multiplier Using Reversible Multicontrol Input Toffoli Gates
H R Bhagyalakshmi
2013-01-01
Full Text Available Reversible logic is an important area to carry the computation into the world of quantum computing. In thispaper a 4-bit multiplier using a new reversible logic gate called BVPPG gate is presented. BVPPG gate isa 5 x 5 reversible gate which is designed to generate partial products required to perform multiplicationand also duplication of operand bits is obtained. This reduces the total cost of the circuit. Toffoli gate isthe universal and also most flexible reversible logic gate. So we have used the Toffoli gates to construct thedesigned multiplier.
Auger neutralization rates of multiply charged ions near metal surfaces
Nedeljkovic, N.N.; Janev, R.K.; Lazur, V.Y.
1988-08-15
Transition rates for the Auger neutralization processes of multiply charged ions on metal surfaces are calculated in closed analytical form. The core potential of a multiply charged ion is represented by a pseudopotential, which accounts for the electron screening effects and allows transition to the pure Coulomb case (fully stripped ions). The relative importance of various neutralization channels in slow-ion--surface collisions is discussed for the examples of He/sup 2+/+Mo(100) and C/sup 3+/+Mo(100) collisional systems.
Spot Pricing When Lagrange Multipliers Are Not Unique
Feng, Donghan; Xu, Zhao; Zhong, Jin
2012-01-01
Classical spot pricing theory is based on multipliers of the primal problem of an optimal market dispatch, i.e., the solution of the dual problem. However, the dual problem of market dispatch may yield multiple solutions. In these circumstances, spot pricing or any standard pricing practice based...... on multipliers cannot generate a unique clearing price. Although such situations are rare, they can cause significant uncertainties and complexities in market dispatch. In practice, this situation is solved through simple empirical methods, which may cause additional operations or biased allocation. Based...... the results of the theoretical analysis, and further demonstrate that the method performs effectively in both uniform-pricing and nodalpricing markets....
AN IMPROVED DESIGN OF A MULTIPLIER USING REVERSIBLE LOGIC GATES
H.R.BHAGYALAKSHMI
2010-08-01
Full Text Available Reversible logic gates are very much in demand for the future computing technologies as they are known to produce zero power dissipation under ideal conditions. This paper proposes an improved design of a multiplier using reversible logic gates. Multipliers are very essential for the construction of various computational units of a quantum computer. The quantum cost of a reversible logic circuit can be minimized by reducing the number of reversible logic gates. For this two 4*4 reversible logic gates called a DPG gate and a BVF gate are used.
Mišković Žarko Z.
2016-01-01
Full Text Available One of the most important factors influencing ball bearings service life is its internal radial clearance. However, this parameter is also very complex because it depends on applied radial load and ball bearings dimensions, surface finish and manufacturing materials. Thermal condition of ball bearings also significantly affects internal radial clearance. Despite many researches performed in order to find out relevant facts about different aspects of ball bearings thermal behaviour, only few of them are dealing with the real working conditions, where high concentration of solid contaminant particles is present. That’s why the main goal of research presented in this paper was to establish statistically significant correlation between ball bearings temperatures, their working time and concentration of contaminant particles in their grease. Because of especially difficult working conditions, the typical conveyor idlers bearings were selected as representative test samples and appropriate solid particles from open pit coal mines were used as artificial contaminants. Applied experimental methodology included thermographic inspection, as well as usage of custom designed test rig for ball bearings service life testing. Finally, by obtained experimental data processing in advanced software, statistically significant mathematical correlation between mentioned bearings characteristics was determined and applied in commonly used internal radial clearance equation. That is the most important contribution of performed research - the new equation and methodology for ball bearings internal clearance determination which could be used for eventual improvement of existing bearings service life equations. [Projekat Ministarstva nauke Republike Srbije, br. TR35029 i br. TR14033
Marco Antonio Garduño-Ramón
2017-03-01
Full Text Available Breast cancer is the leading disease in incidence and mortality among women in developing countries. The opportune diagnosis of this disease strengthens the survival index. Mammography application is limited by age and periodicity. Temperature is a physical magnitude that can be measured by using multiple sensing techniques. IR (infrared thermography using commercial cameras is gaining relevance in industrial and medical applications because it is a non-invasive and non-intrusive technology. Asymmetrical temperature in certain human body zones is associated with cancer. In this paper, an IR thermographic sensor is applied for breast cancer detection. This work includes an automatic breast segmentation methodology, to spot the hottest regions in thermograms using the morphological watershed operator to help the experts locate the tumor. A protocol for thermogram acquisition considering the required time to achieve a thermal stabilization is also proposed. Breast thermograms are evaluated as thermal matrices, instead of gray scale or false color images, increasing the certainty of the provided diagnosis. The proposed tool was validated using the Database for Mastology Research and tested in a voluntary group of 454 women of different ages and cancer stages with good results, leading to the possibility of being used as a supportive tool to detect breast cancer and angiogenesis cases.
Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data
Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.
2006-01-01
The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.
Zhao, Yifan; Mehnen, Jörn; Sirikham, Adisorn; Roy, Rajkumar
2017-02-01
This paper introduces a new method to improve the reliability and confidence level of defect depth measurement based on pulsed thermographic inspection by addressing the over-fitting problem. Different with existing methods using a fixed model structure for all pixels, the proposed method adaptively detects the optimal model structure for each pixel thus targeting to achieve better model fitting while using less model terms. Results from numerical simulations and real experiments suggest that (a) the new method is able to measure defect depth more accurately without a pre-set model structure (error is usually within 1 % when SNR>32 dB) in comparison with existing methods, (b) the number of model terms should be 8 for signals with SNR∈ [ 30 dB , 40 dB ] , 8-10 for SNR>40 dB and 5-8 for SNR<30 dB, and (c) a data length with at least 100 data points and 2-3 times of the characteristic time usually produces the best results.
Automatic thermographic scanning with the creation of 3D panoramic views of buildings
Ferrarini, G.; Cadelano, G.; Bortolin, A.
2016-05-01
Infrared thermography is widely applied to the inspection of building, enabling the identification of thermal anomalies due to the presence of hidden structures, air leakages, and moisture. One of the main advantages of this technique is the possibility to acquire rapidly a temperature map of a surface. However, due to the actual low-resolution of thermal camera and the necessity of scanning surfaces with different orientation, during a building survey it is necessary to take multiple images. In this work a device based on quantitative infrared thermography, called aIRview, has been applied during building surveys to automatically acquire thermograms with a camera mounted on a robotized pan tilt unit. The goal is to perform a first rapid survey of the building that could give useful information for the successive quantitative thermal investigations. For each data acquisition, the instrument covers a rotational field of view of 360° around the vertical axis and up to 180° around the horizontal one. The obtained images have been processed in order to create a full equirectangular projection of the ambient. For this reason the images have been integrated into a web visualization tool, working with web panorama viewers such as Google Street View, creating a webpage where it is possible to have a three dimensional virtual visit of the building. The thermographic data are embedded with the visual imaging and with other sensor data, facilitating the understanding of the physical phenomena underlying the temperature distribution.
Heat Tolerance in Curraleiro Pe-Duro, Pantaneiro and Nelore Cattle Using Thermographic Images.
Cardoso, Caio Cesar; Lima, Flávia Gontijo; Fioravanti, Maria Clorinda Soares; Egito, Andrea Alves do; Silva, Flávia Cristina de Paula E; Tanure, Candice Bergmann; Peripolli, Vanessa; McManus, Concepta
2016-01-29
The objective of this study was to compare physiological and thermographic responses to heat stress in three breeds of cattle. Fifteen animals of each of the Nelore, Pantaneiro and Curraleiro Pe-Duro breeds, of approximately two years of age, were evaluated. Heart and respiratory rates, rectal and surface temperature of animals as well as soil temperature were recorded at 8:30 and 15:30 on six days. Variance, correlation, principal factors and canonical analyses were carried out. There were significant differences in the rectal temperature, heart and respiratory rate between breeds (p < 0.001). Nelore and Pantaneiro breeds had the highest rectal temperatures and the lowest respiratory rate (p < 0.001). Breed was also significant for surface temperatures (p < 0.05) showing that this factor significantly affected the response of the animal to heat tolerance in different ways. The Curraleiro Pe-Duro breed had the lowest surface temperatures independent of the period evaluated, with fewer animals that suffered with the climatic conditions, so this may be considered the best adapted when heat challenged under the experimental conditions. Thermography data showed a good correlation with the physiological indexes, and body area, neck and rump were the main points.
Pulsed thermographic inspection of CFRP structures: experimental results and image analysis tools
Theodorakeas, P.; Avdelidis, N. P.; Ibarra-Castanedo, C.; Koui, M.; Maldague, X.
2014-03-01
In this study, three different CFRP specimens with internal artificial delaminations of various sizes and located at different depths were investigated by means of Pulsed Thermography (PT) under laboratory conditions. The three CFRP panels, having the same thickness and defects characteristics but with a different shape (planar, trapezoid and curved), were assessed after applying various signal processing tools on the acquired thermal data (i.e. Thermographic Signal Reconstruction, Pulsed Phase Thermography and Principal Component Thermography). The effectiveness of the above processing tools was initially evaluated in a qualitative manner, comparing the imaging outputs and the information retrieval in terms of defect detectability enhancement and noise reduction. Simultaneously, the produced defect detectability was evaluated through Signal-to-Noise Ratio (SNR) computations, quantifying the image quality and the intensity contrast produced between the defected area and the adjacent background area of the test panel. From the results of this study, it can be concluded that the implementation of PT along with the application of advanced signal processing algorithms can be a useful technique for NDT assessment, providing enhanced qualitative information. Nevertheless, SNR analysis showed that despite the enhanced visibility resulting from these algorithms, these can be properly applied in order to retrieve the best possible information according to the user's demands.
Simulation of Thermographic Responses of Delaminations in Composites with Quadrupole Method
Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.; Cramer, K. Elliott
2016-01-01
The application of the quadrupole method for simulating thermal responses of delaminations in carbon fiber reinforced epoxy composites materials is presented. The method solves for the flux at the interface containing the delamination. From the interface flux, the temperature at the surface is calculated. While the results presented are for single sided measurements, with ash heating, expansion of the technique to arbitrary temporal flux heating or through transmission measurements is simple. The quadrupole method is shown to have two distinct advantages relative to finite element or finite difference techniques. First, it is straight forward to incorporate arbitrary shaped delaminations into the simulation. Second, the quadrupole method enables calculation of the thermal response at only the times of interest. This, combined with a significant reduction in the number of degrees of freedom for the same simulation quality, results in a reduction of the computation time by at least an order of magnitude. Therefore, it is a more viable technique for model based inversion of thermographic data. Results for simulations of delaminations in composites are presented and compared to measurements and finite element method results.
Araújo, Marcus C; Souza, Renata M C R; Lima, Rita C F; Filho, Telmo M Silva
2016-09-15
Breast cancer is one of the leading causes of death in women. Because of this, thermographic images have received a refocus for diagnosing this cancer type. This work proposes an innovative approach to classify breast abnormalities (malignant, benignant and cyst), employing interval temperature data in order to detect breast cancer. The learning step takes into account the internal variation of the intervals when describing breast abnormalities and uses a way to map these intervals into a space where they can be more easily separated. The method builds class prototypes, and the allocation step is based on a parameterized Mahalanobis distance for interval-valued data. The proposed classifier is applied to a breast thermography dataset from Brazil with 50 patients. We investigate two different scenarios for parameter configuration. The first scenario focuses on the overall misclassification rate and achieves 16 % misclassification rate and 93 % sensitivity to the malignant class. The second scenario maximizes the sensitivity to the malignant class, achieving 100 % sensitivity to this specific class, along with 20 % overall misclassification rate. We compare the performances of our approach and of many methods taken from the literature of interval data classification for the breast thermography task. Results show that our method outperforms competing algorithms.
Hybrid Voltage-Multipliers Based Switching Power Converters
Rosas-Caro, Julio C.; Mayo-Maldonado, Jonathan C.; Vazquez-Bautista, Rene Fabian; Valderrabano-Gonzalez, Antonio; Salas-Cabrera, Ruben; Valdez-Resendiz, Jesus Elias
2011-08-01
This work presents a derivation of PWM DC-DC hybrid converters by combining traditional converters with the Cockcroft-Walton voltage multiplier, the voltage multiplier of each converter is driven with the same transistor of the basic topology; this fact makes the structure of the new converters very simple and provides high-voltage gain. The traditional topologies discussed are the boost, buck-boost, Cuk and SEPIC. They main features of the discussed family are: (i) high-voltage gain without using extreme duty cycles or transformers, which allow high switching frequency and (ii) low voltage stress in switching devices, along with modular structures, and more output levels can be added without modifying the main circuit, which is highly desirable in some applications such as renewable energy generation systems. It is shown how a multiplier converter can become a generalized topology and how some of the traditional converters and several state-of-the-art converters can be derived from the generalized topologies and vice-versa. All the discussed converters were simulated, additionally experimental results are provided with an interleaved multiplier converter.
Multiply-Constrained Semantic Search in the Remote Associates Test
Smith, Kevin A.; Huber, David E.; Vul, Edward
2013-01-01
Many important problems require consideration of multiple constraints, such as choosing a job based on salary, location, and responsibilities. We used the Remote Associates Test to study how people solve such multiply-constrained problems by asking participants to make guesses as they came to mind. We evaluated how people generated these guesses…
Garbage-free reversible constant multipliers for arbitrary integers
Mogensen, Torben Ægidius
2013-01-01
We present a method for constructing reversible circuitry for multiplying integers by arbitrary integer constants. The method is based on Mealy machines and gives circuits whose size are (in the worst case) linear in the size of the constant. This makes the method unsuitable for large constants......, but gives quite compact circuits for small constants. The circuits use no garbage or ancillary lines....
Radial multipliers on reduced free products of operator algebras
Haagerup, Uffe; Möller, Sören
2012-01-01
Let Ai be a family of unital C*-algebras, respectively, of von Neumann algebras and \\phi: N0 \\to C. We show that if a Hankel matrix related to \\phi is trace-class, then there exists a unique completely bounded map M\\phi on the reduced free product of the Ai, which acts as a radial multiplier...
Design and Implementation of Analog Multiplier with Improved Linearity
Nandini A.S
2012-11-01
Full Text Available Analog multipliers are used for frequency conversion and are critical components in modern radio frequency (RF systems. RF systems must process analog signals with a wide dynamic range at high frequencies. A mixer converts RF power at one frequency into power at another frequency to make signalprocessing easier and also inexpensive. A fundamental reason for frequency conversion is to allow amplification of the received signal at a frequency other than the RF, or the audio, frequency. This paper deals with two such multipliers using MOSFETs which can be used in communication systems. They were designed and implemented using 0.5 micron CMOS process. The two multipliers were characterized for power consumption, linearity, noise and harmonic distortion. The initial circuit simulated is a basic Gilbert cell whose gain is fairly high but shows more power consumption and high total harmonic distortion. Our paper aims in reducing both power consumption and total harmonic distortion. The second multiplier is a new architecture that consumes 43.07 percent less power and shows 22.69 percent less total harmonic distortion when compared to the basic Gilbert cell. The common centroid layouts of both the circuits have also been developed.
The Gas Electron Multiplier Chamber Exhibition LEPFest 2000
2000-01-01
The Gas Electron Multiplier (GEM) is a novel device introduced in 1996.Large area detectors based on this technology are in construction for high energy physics detectors.This technology can also be used for high-rate X-ray imaging in medical diagnostics and for monitoring irradiation during cancer treatment
Multiplier methods for optimization problems with Lipschitzian derivatives
Izmailov, A. F.; Kurennoy, A. S.
2012-12-01
Optimization problems for which the objective function and the constraints have locally Lipschitzian derivatives but are not assumed to be twice differentiable are examined. For such problems, analyses of the local convergence and the convergence rate of the multiplier (or the augmented Lagrangian) method and the linearly constraint Lagrangian method are given.
A Method for Deriving Transverse Masses Using Lagrange Multipliers
Gross, Eilam; Vitells, Ofer
2008-01-01
We use Lagrange multipliers to extend the traditional definition of Transverse Mass used in experimental high energy physics. We demonstrate the method by implementing it to derive a new Transverse Mass that can be used as a discriminator to distinguish between top decays via a charged W or a charged Higgs Boson.
New method for high performance multiply-accumulator design
Bing-jie XIA; Peng LIU; Qing-dong YAO
2009-01-01
This study presents a new method of 4-pipelined high-performance split multiply-accumulator (MAC) architecture,which is capable of supporting multiple precisions developed for media processors. To speed up the design further, a novel partial product compression circuit based on interleaved adders and a modified hybrid partial product reduction tree (PPRT) scheme are proposed. The MAC can perform 1-way 32-bit, 4-way 16-bit signed/unsigned multiply or multiply-accumulate operations and 2-way parallel multiply add (PMADD) operations at a high frequency of 1.25 GHz under worst-case conditions and 1.67 GHz under typical-case conditions, respectively. Compared with the MAC in 32-bit microprocessor without interlocked piped stages (MIPS), the proposed design shows a great advantage in speed. Moreover, an improvement of up to 32% in throughput is achieved.The MAC design has been fabricated with Taiwan Semiconductor Manufacturing Company (TSMC) 90-nm CMOS standard cell technology and has passed a functional test.
New approach to streaming semigroups with multiplying boundary conditions
Mohamed Boulanouar
2008-11-01
Full Text Available This paper concerns the generation of a C_0-semigroup by the streaming operator with general multiplying boundary conditions. A first approach, presented in [2], is based on the Hille-Yosida's Theorem. Here, we present a second approach based on the construction of the generated semigroup, without using the Hille-Yosida's Theorem.
Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions
Trabert, E
2009-02-19
A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.
Design and Implementation of Analog Multiplier with Improved Linearity
Nandini A.S
2012-10-01
Full Text Available Analog multipliers are used for frequency conversion and are critical components in modern radio frequency (RF systems. RF systems must process analog signals with a wide dynamic range at high frequencies. A mixer converts RF power at one frequency into power at another frequency to make signal processing easier and also inexpensive. A fundamental reason for frequency conversion is to allow amplification of the received signal at a frequency other than the RF, or the audio, frequency. This paper deals with two such multipliers using MOSFETs which can be used in communication systems. They were designed and implemented using 0.5 micron CMOS process. The two multipliers were characterized for power consumption, linearity, noise and harmonic distortion. The initial circuit simulated is a basic Gilbert cell whose gain is fairly high but shows more power consumption and high total harmonic distortion. Our paper aims in reducing both power consumption and total harmonic distortion. The second multiplier is a new architecture that consumes 43.07 percent less power and shows 22.69 percent less total harmonic distortion when compared to the basic Gilbert cell. The common centroid layouts of both the circuits have also been developed.
Treatment of multiply controlled destructive behavior with food reinforcement.
Adelinis, J D; Piazza, C C; Goh, H L
2001-01-01
We evaluated the extent to which the positive reinforcement of communication would reduce multiply controlled destructive behavior in the absence of relevant extinction components. When edible reinforcement for appropriate communication and nonfood reinforcers for problem behavior were available simultaneously, responding was allocated almost exclusively toward the behavior that produced edible reinforcement.
Quantum noise frequency correlations of multiply scattered light
Lodahl, Peter
2006-01-01
Frequency correlations in multiply scattered light that are present in quantum fluctuations are investigated. The speckle correlations for quantum and classical noise are compared and are found to depend markedly differently on optical frequency, which was confirmed in a recent experiment....... Furthermore, novel mesoscopic correlations are predicted that depend on the photon statistics of the incoming light....
Analysis of Random Jitter in a Clock Multiplying DLL Architecture
Beek, van de R.C.H; Klumperink, E.A.M.; Vaucher, C.S.; Nauta, B.
2001-01-01
In this paper, a thorough analysis of the jitter behavior of a Delay Locked Loop (DLL) based clock multiplying architecture is presented. The noise sources that are included in the analysis are the noise of the delay elements, the reference jitter and the noise of the Phase Frequency Detector and Ch
Radial multipliers on reduced free products of operator algebras
Haagerup, Uffe; Möller, Sören
2012-01-01
Let Ai be a family of unital C*-algebras, respectively, of von Neumann algebras and \\phi: N0 \\to C. We show that if a Hankel matrix related to \\phi is trace-class, then there exists a unique completely bounded map M\\phi on the reduced free product of the Ai, which acts as a radial multiplier...
Gas Electron Multiplier detectors with high reliability and stability
Ovchinnikov, B M; Ovchinnikov, Yu B
2010-01-01
The Gas Electron Multiplier detectors with wire and metallic electrodes, with a gas filling in the gap between them were proposed and tested. The main advantage of these Gas Electron Multipliers compared to standard ones consists in their increased stability and reliability. The experimental results on testing of such detectors with gaps between the electrodes of 1 and 3 mm are reported. It is demonstrated, that the best gas filling for the gas electron multipliers is neon with small admixture of quenching gases (for example, (N2+H2O) at ~100ppm). This filling offers the greatest coefficient of proportional multiplication as compared with other gases, at small electric potential difference between the GEM electrodes, in absence of streamer discharges in the proportional region. The results on operation of the multi-channel gas electron multiplier with wire cathode and continuous anode filled with Ne, Ar, Ar+CH4 and Ar+1%Xe are presented also. Based on the experimental observations, the explanation of the mech...
Lagrangian multiplier and massive Yang-Mills fields
Li, Z.P.
1982-09-01
If we give appropriate constraint to the gauge invariant Lagrangian, the variation principle of the action convert to the variational problems with subsidiary condition. The effective Lagrangian which contains Lagrangian multiplier may have the mass term of the mesons. In that case we obtain naturally the massive Yang-Mills fields which was discussed by Nakanishi.
A cascaded three-phase symmetrical multistage voltage multiplier
Iqbal, Shahid [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Singh, G K [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Besar, R [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Muhammad, G [Faculty of Information Science and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)
2006-10-15
A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM.
Colbert, Fred
2013-05-01
There has been a significant increase in the number of in-house Infrared Thermographic Predictive Maintenance programs for Electrical/Mechanical inspections as compared to out-sourced programs using hired consultants. In addition, the number of infrared consulting services companies offering out-sourced programs has also has grown exponentially. These market segments include: Building Envelope (commercial and residential), Refractory, Boiler Evaluations, etc... These surges are driven by two main factors: 1. The low cost of investment in the equipment (the cost of cameras and peripherals continues to decline). 2. Novel marketing campaigns by the camera manufacturers who are looking to sell more cameras into an otherwise saturated market. The key characteristics of these campaigns are to over simplify the applications and understate the significances of technical training, specific skills and experience that's needed to obtain the risk-lowering information that a facility manager needs. These camera selling campaigns focuses on the simplicity of taking a thermogram, but ignores the critical factors of what it takes to actually perform and manage a creditable, valid IR program, which in-turn expose everyone to tremendous liability. As the In-house vs. Out-sourced consulting services compete for market share head to head with each other in a constricted market space, the price for out-sourced/consulting services drops to try to compete on price for more market share. The consequences of this approach are, something must be compromised to be able to stay competitive from a price point, and that compromise is the knowledge, technical skills and experience of the thermographer. This also ends up being reflected back into the skill sets of the in-house thermographer as well. This over simplification of the skill and experience is producing the "Perfect Storm" for Infrared Thermography, for both in-house and out-sourced programs.
Daniel L. Balageas
2013-01-01
Full Text Available Active thermography gives the possibility to characterize thermophysical properties and defects in complex structures presenting heterogeneities. The produced thermal fields can be rapidly 3D. On the other hand, due to the size of modern thermographic images, pixel-wise data processing based on 1D models is the only reasonable approach for a rapid image processing. The only way to conciliate these two constraints when dealing with time-resolved experiments lies in the earlier possible detection/characterization. This approach is illustrated by several different applications and compared to more classical methods, demonstrating that simplicity of models and calculations is compatible with efficient and accurate identifications.
Silvestri, Cinzia; Riccio, Michele; Poelma, René H.; Morana, Bruno; Vollebregt, Sten; Santagata, Fabio; Irace, Andrea; Zhang, Guo Qi; Sarro, Pasqualina M.
2016-04-01
Thermal material properties play a fundamental role in the thermal management of microelectronic systems. The porous nature of carbon nanotube (CNT) arrays results in a very high surface area to volume ratio, which makes the material attractive for surface driven heat transfer mechanisms. Here, we report on the heat transfer performance of lithographically defined micropins made of carbon nanotube (CNT) nanofoam, directly grown on microhotplates (MHPs). The MHP is used as an in situ characterization platform with controllable hot-spot and integrated temperature sensor. Under natural convection, and equivalent power supplied, we measured a significant reduction in hot-spot temperature when augmenting the MHP surface with CNT micropins. In particular, a strong enhancement of convective and radiative heat transfer towards the surrounding environment is recorded, due to the high aspect ratio and the foam-like morphology of the patterned CNTs. By combining electrical characterizations with high-resolution thermographic microscopy analysis, we quantified the heat losses induced by the integrated CNT nanofoams and we found a unique temperature dependency of the equivalent convective heat transfer coefficient, Hc. The obtained results with the proposed non-destructive characterization method demonstrate that significant improvements can be achieved in microelectronic thermal management and hierarchical structured porous material characterization.Thermal material properties play a fundamental role in the thermal management of microelectronic systems. The porous nature of carbon nanotube (CNT) arrays results in a very high surface area to volume ratio, which makes the material attractive for surface driven heat transfer mechanisms. Here, we report on the heat transfer performance of lithographically defined micropins made of carbon nanotube (CNT) nanofoam, directly grown on microhotplates (MHPs). The MHP is used as an in situ characterization platform with controllable hot
Definition of the thermographic regions of interest in cycling by using a factor analysis
Priego Quesada, Jose Ignacio; Lucas-Cuevas, Angel Gabriel; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M.a.
2016-03-01
Research in exercise physiology using infrared thermography has increased in the last years. However, the definition of the Regions of Interest (ROIs) varies strongly between studies. Therefore, the aim of this study was to use a factor analysis approach to define highly correlated groups of thermographic ROIs during a cycling test. Factor analyses were performed based on the moment of measurement and on the variation of skin temperatures as a result of the cycling exercise. 19 male participants cycled during 45 min at 50% of their individual peak power output with a cadence of 90 rpm. Infrared thermography was used to measure skin temperatures in sixteen ROIs of the trunk and lower limbs at three moments: before, immediately after and 10 min after the cycling test. Factor analyses were used to identify groups of ROIs based on the skin absolute temperatures at each moment of measurement as well as on skin temperature variations between moments. All the factor analyses performed for each moment and skin temperature variation explained more than the 80% of the variance. Different groups of ROIs were obtained when the analysis was based on the moment of measurement or on the effect of exercise on the skin temperature. Furthermore, some ROIs were grouped in the same way in both analyses (e.g. the ROIs of the trunk), whereas other regions (legs and their joints) were grouped differently in each analysis. Differences between groups of ROIs are related to their tissue composition, muscular activity and capacity of sweating. In conclusion, the resultant groups of ROIs were coherent and could help researchers to define the ROIs in future thermal studies.
Huda, A S N; Taib, S; Ghazali, K H; Jadin, M S
2014-05-01
Infrared thermography technology is one of the most effective non-destructive testing techniques for predictive faults diagnosis of electrical components. Faults in electrical system show overheating of components which is a common indicator of poor connection, overloading, load imbalance or any defect. Thermographic inspection is employed for finding such heat related problems before eventual failure of the system. However, an automatic diagnostic system based on artificial neural network reduces operating time, human efforts and also increases the reliability of system. In the present study, statistical features and artificial neural network (ANN) with confidence level analysis are utilized for inspection of electrical components and their thermal conditions are classified into two classes namely normal and overheated. All the features extracted from images do not produce good performance. Features having low performance reduce the diagnostic performance. The study reveals the performance of each feature individually for selecting the suitable feature set. In order to find the individual feature performance, each feature of thermal image was used as input for neural network and the classification of condition types were used as output target. The multilayered perceptron network using Levenberg-Marquardt training algorithm was used as classifier. The performances were determined in terms of percentage of accuracy, specificity, sensitivity, false positive and false negative. After selecting the suitable features, the study introduces the intelligent diagnosis system using suitable features as inputs of neural network. Finally, confidence percentage and confidence level were used to find out the strength of the network outputs for condition monitoring. The experimental result shows that multilayered perceptron network produced 79.4% of testing accuracy with 43.60%, 12.60%, 21.40, 9.20% and 13.40% highest, high, moderate, low and lowest confidence level respectively.
A New Design for Array Multiplier with Trade off in Power and Area
Ravi, Nirlakalla; Prasad, T Jayachandra; Rao, T Subba
2011-01-01
In this paper a low power and low area array multiplier with carry save adder is proposed. The proposed adder eliminates the final addition stage of the multiplier than the conventional parallel array multiplier. The conventional and proposed multiplier both are synthesized with 16-T full adder. Among Transmission Gate, Transmission Function Adder, 14-T, 16-T full adder shows energy efficiency. In the proposed 4x4 multiplier to add carry bits with out using Ripple Carry Adder (RCA) in the final stage, the carries given to the input of the next left column input. Due to this the proposed multiplier shows 56 less transistor count, then cause trade off in power and area. The proposed multiplier has shown 13.91% less power, 34.09% more speed and 59.91% less energy consumption for TSMC 0.18nm technology at a supply voltage 2.0V than the conventional multiplier.
Liquid Hole Multipliers: bubble-assisted electroluminescence in liquid xenon
Arazi, L; Coimbra, A E C; Rappaport, M L; Vartsky, D; Chepel, V; Breskin, A
2015-01-01
In this work we discuss the mechanism behind the large electroluminescence signals observed at relatively low electric fields in the holes of a Thick Gas Electron Multiplier (THGEM) electrode immersed in liquid xenon. We present strong evidence that the scintillation light is generated in xenon bubbles trapped below the THGEM holes. The process is shown to be remarkably stable over months of operation, providing - under specific thermodynamic conditions - energy resolution similar to that of present dual-phase liquid xenon experiments. The observed mechanism may serve as the basis for the development of Liquid Hole Multipliers (LHMs), capable of producing local charge-induced electroluminescence signals in large-volume single-phase noble-liquid detectors for dark matter and neutrino physics experiments.
Dynamic effects of fiscal policy and fiscal multipliers in Croatia
Milan Deskar-Škrbić
2013-06-01
Full Text Available The aim of this paper is to analyze the effects of discretionary measures of fiscal policy on the economic activity and to estimate the size of fiscal multipliers in Croatia. Econometric framework is based on the structural VAR model (SVAR, with Blanchard-Perotti identification method that uses information on institutional characteristics of fiscal system. The analysis is conducted on quarterly data for total expenditures and indirect taxes of central, central consolidated and general consolidated government and aggregate demand for the period from 2004-2012. The results show that our initial assumptions about the difference in the size of the multiplier of government expenditures and indirect tax revenues between three levels of government consolidation have been confirmed.
Dark energy from modified gravity with Lagrange multipliers
Capozziello, Salvatore; Nojiri, Shin'ichi; Odintsov, Sergei D
2010-01-01
We study scalar-tensor theory, k-essence and modified gravity with Lagrange multiplier constraint which role is to reduce the number of degrees of freedom. Dark Energy cosmology of different types ($\\Lambda$CDM, unified inflation with DE, smooth non-phantom/phantom transition epoch) is reconstructed in such models. It is shown that mathematical equivalence between scalar theory and $F(R)$ gravity is broken due to presence of constraint. The cosmological dynamics of $F(R)$ gravity is modified by the second $F_2(R)$ function dictated by the constraint. Dark Energy cosmology is defined by this function while standard $F_1(R)$ function is relevant for local tests (modification of newton regime). A general discussion on the role of Lagrange multipliers to make higher-derivative gravity canonical is developed.
Elmnefi, Mohamed Salem
2010-11-24
In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high
Multipliers of $A_p((0, ∞))$ with Order Convolution
Savita Bhatnagar
2005-08-01
The aim of this paper is to study the multipliers from $A_r(I)$ to $A_p(I), r≠ p$, where =(0, ∞) is the locally compact topological semigroup with multiplication max and usual topology and $A_r(I)=\\{f\\in L_1(I):\\hat{f}\\in L_r(\\hat{I})\\}$ with norm $|||f|||_r=||f||_1+||hat{f}||_r$.
Radial multipliers on reduced free products of operator algebras
Haagerup, Uffe; Møller, Søren
2012-01-01
Let AiAi be a family of unital C¿C¿-algebras, respectively, of von Neumann algebras and ¿:N0¿C¿:N0¿C. We show that if a Hankel matrix related to ¿ is trace-class, then there exists a unique completely bounded map M¿M¿ on the reduced free product of the AiAi, which acts as a radial multiplier...
Lagrange Multipliers and Third Order Scalar-Tensor Field Theories
Horndeski, Gregory W.
2016-01-01
In a space of 4-dimensions, I will examine constrained variational problems in which the Lagrangian, and constraint scalar density, are concomitants of a (pseudo-Riemannian) metric tensor and its first two derivatives. The Lagrange multiplier for these constrained extremal problems will be a scalar field. For suitable choices of the Lagrangian, and constraint, we can obtain Euler-Lagrange equations which are second order in the scalar field and third order in the metric tensor. The effect of ...
High performance pipelined multiplier with fast carry-save adder
Wu, Angus
1990-01-01
A high-performance pipelined multiplier is described. Its high performance results from the fast carry-save adder basic cell which has a simple structure and is suitable for the Gate Forest semi-custom environment. The carry-save adder computes the sum and carry within two gate delay. Results show that the proposed adder can operate at 200 MHz for a 2-micron CMOS process; better performance is expected in a Gate Forest realization.
Multiply-negatively charged aluminium clusters and fullerenes
Walsh, Noelle
2008-07-15
Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)
Performance of a multianode photo multiplier cluster equipped with lenses
Gibson, V; Wotton, S A; Albrecht, E; Eklund, L; Eisenhardt, S; Muheim, F; Playfer, S; Petrolini, A; Easo, S; Halley, A; Barber, G; Duane, A; Price, D; Websdale, D M; Calvi, M; Paganoni, M; Bibby, J; Charles, M J; Harnew, N; Libby, J; Rademacker, J; Smale, N J; Topp-Jørgensen, S; Wilkinson, G; Baker, J; French, M
2001-01-01
Studies of Multi{anode Photo Multiplier Tubes (MaPMTs), which are a possible photo{detector for the LHCb RICHes, are presented. These studies include those of a cluster of MaPMTs equipped with lenses at the SPS beam during the Summer of 1999. The read{out electronics used were capable of capturing the data at 40 MHz. Results on the effect of charged particles and magnetic fields on MaPMTs are also presented.
Multiplier ideal sheaves in complex and algebraic geometry
Yum-Tong; Siu
2005-01-01
The application of the method of multiplier ideal sheaves to effective problems in algebraic geometry is briefly discussed. Then its application to the deformational invariance of plurigenera for general compact algebraic manifolds is presented and discussed.Finally its application to the conjecture of the finite generation of the canonical ring is explored, and the use of complex algebraic geometry in complex Neumann estimates is discussed.
Three states of fiscal multipliers in a small open economy
Simon Naitram; Justin Carter; Shane Lowe
2015-01-01
This research reviews the effects of fiscal expenditures on economic output in a non-linear fashion for the Barbados economy. Using the Markov-Switching methodology, fiscal expenditure multipliers are estimated for each stage of the business cycle. The data indicates that a three-regime model is the best fit â€“ capturing recession, normal growth and boom periods. Our findings suggest that increasing capital expenditure is positively correlated with economic growth at all stages of the busine...
The gas electron multiplier (GEM): Operating principles and applications
Sauli, Fabio
2016-01-01
Introduced by the author in 1997, The Gas Electron Multiplier (GEM) constitutes a powerful addition to the family of fast radiation detectors; originally developed for particle physics experiments, the device and has spawned a large number of developments and applications; a web search yields more than 400 articles on the subject. This note is an attempt to summarize the status of the design, developments and applications of the new detector.
The role of the Jacobi last multiplier and isochronous systems
Partha Guha; Anindya Ghose Choudhury
2011-11-01
We employ Jacobi’s last multiplier (JLM) to study planar differential systems. In particular, we examine its role in the transformation of the temporal variable for a system of ODEs originally analysed by Calogero–Leyvraz in course of their identiﬁcation of isochronous systems. We also show that JLM simpliﬁes to a great extent the proofs of isochronicity for the Liénard-type equations.
Almost everywhere convergence of sequences of multiplier operators on local fields
郑世骏; 郑维行
1997-01-01
Let Kn be the n -dimensional vector space over a local field K . Two maximal multiplier theorems on Lp(Kn) are proved for certain multiplier operator sequences associated with regularization and dilation respectively Consequently the a. e. convergence of such multiplier operator sequences is obtained This sharpens Taibleson’s main result and applies to several important singular integral operators on Kn.
On Nilpotent Multipliers of Some Verbal Products of Groups
Hokmabadi, Azam
2010-01-01
The paper is devoted to finding a homomorphic image for the $c$-nilpotent multiplier of the verbal product of a family of groups with respect to a variety ${\\mathcal V}$ when ${\\mathcal V} \\subseteq {\\mathcal N}_{c}$ or ${\\mathcal N}_{c}\\subseteq {\\mathcal V}$. Also a structure of the $c$-nilpotent multiplier of a special case of the verbal product, the nilpotent product, of cyclic groups is given. In fact, we present an explicit formula for the $c$-nilpotent multiplier of the $n$th nilpotent product of the group $G= {\\bf {Z}}\\stackrel{n}{*}...\\stackrel{n}{*}{\\bf {Z}}\\stackrel{n}{*} {\\bf {Z}}_{r_1}\\stackrel{n}{*}...\\stackrel{n}{*}{\\bf{Z}}_{r_t}$, where $r_{i+1}$ divides $r_i$ for all $i$, $1 \\leq i \\leq t-1$, and $(p,r_1)=1$ for any prime $p$ less than or equal to $n+c$, for all positive integers $n$, $c$.
Inferring polyploid phylogenies from multiply-labeled gene trees
Petri Anna
2009-08-01
Full Text Available Abstract Background Gene trees that arise in the context of reconstructing the evolutionary history of polyploid species are often multiply-labeled, that is, the same leaf label can occur several times in a single tree. This property considerably complicates the task of forming a consensus of a collection of such trees compared to usual phylogenetic trees. Results We present a method for computing a consensus tree of multiply-labeled trees. As with the well-known greedy consensus tree approach for phylogenetic trees, our method first breaks the given collection of gene trees into a set of clusters. It then aims to insert these clusters one at a time into a tree, starting with the clusters that are supported by most of the gene trees. As the problem to decide whether a cluster can be inserted into a multiply-labeled tree is computationally hard, we have developed a heuristic method for solving this problem. Conclusion We illustrate the applicability of our method using two collections of trees for plants of the genus Silene, that involve several allopolyploids at different levels.
Alvandipour, Mehrdad; Umbaugh, Scott E.; Mishra, Deependra K.; Dahal, Rohini; Lama, Norsang; Marino, Dominic J.; Sackman, Joseph
2017-05-01
Thermography and pattern classification techniques are used to classify three different pathologies in veterinary images. Thermographic images of both normal and diseased animals were provided by the Long Island Veterinary Specialists (LIVS). The three pathologies are ACL rupture disease, bone cancer, and feline hyperthyroid. The diagnosis of these diseases usually involves radiology and laboratory tests while the method that we propose uses thermographic images and image analysis techniques and is intended for use as a prescreening tool. Images in each category of pathologies are first filtered by Gabor filters and then various features are extracted and used for classification into normal and abnormal classes. Gabor filters are linear filters that can be characterized by the two parameters wavelength λ and orientation θ. With two different wavelength and five different orientations, a total of ten different filters were studied. Different combinations of camera views, filters, feature vectors, normalization methods, and classification methods, produce different tests that were examined and the sensitivity, specificity and success rate for each test were produced. Using the Gabor features alone, sensitivity, specificity, and overall success rates of 85% for each of the pathologies was achieved.
A Design of Modified 64 bit Wallace Multiplier using 45 nm Technology
S.Sunilkumar
2013-04-01
Full Text Available Multipliers plays a vital role in the field of digital processing of information especially signal and image. The key benefit of 64 bit multiplier is high precision computation but it has to be faster aswell. In this paper, we have designed a modified 64 bit Wallace multiplier. The designed multiplier reduces the number of half adders which are mainly used in the reduction phase of multiplier and alsothey do not contribute in the reduction of partial products. For the entire multiplication process we have used only 38 half adders. The multiplier is designed using Verilog-HDL and implemented using TSMC45nm technology. It is found that the designed multiplier has reduced number of half adder in each stage and it consumes 15.22 mW at 166 MHz.
Determination of Ultimate Torque for Multiply Connected Cross Section Rod
V. L. Danilov
2015-01-01
Full Text Available The aim of this work is to determine load-carrying capability of the multiply cross-section rod. This calculation is based on the model of the ideal plasticity of the material, so that the desired ultimate torque is a torque at which the entire cross section goes into a plastic state.The article discusses the cylindrical multiply cross-section rod. To satisfy the equilibrium equation and the condition of plasticity simultaneously, two stress function Ф and φ are introduced. By mathematical transformations it has been proved that Ф is constant along the path, and a formula to find its values on the contours has been obtained. The paper also presents the rationale of the line of stress discontinuity and obtained relationships, which allow us to derive the equations break lines for simple interaction of neighboring circuits, such as two lines, straight lines and circles, circles and a different sign of the curvature.After substitution into the boundary condition at the end of the stress function Ф and mathematical transformations a formula is obtained to determine the ultimate torque for the multiply cross-section rod.Using the doubly connected cross-section and three-connected cross-section rods as an example the application of the formula of ultimate torque is studied.For doubly connected cross-section rod, the paper offers a formula of the torque versus the radius of the rod, the aperture radius and the distance between their centers. It also clearly demonstrates the torque dependence both on the ratio of the radii and on the displacement of hole. It is shown that the value of the torque is more influenced by the displacement of hole, rather than by the ratio of the radii.For the three-connected cross-section rod the paper shows the integration feature that consists in selection of a coordinate system. As an example, the ultimate torque is found by two methods: analytical one and 3D modeling. The method of 3D modeling is based on the Nadai
Making a graph crossing-critical by multiplying its edges
Beaudou, Laurent; Salazar, Gelasio
2011-01-01
A graph is crossing-critical if the removal of any of its edges decreases its crossing number. This work is motivated by the following question: to what extent is crossing- criticality a property that is inherent to the structure of a graph, and to what extent can it be induced on a noncritical graph by multiplying (all or some of) its edges? It is shown that if a nonplanar graph G is obtained by adding an edge to a cubic polyhedral graph, and G is sufficiently connected, then G can be made crossing-critical by a suitable multiplication of edges.
Verilog Implementation of an Efficient Multiplier Using Vedic Mathematics
2015-01-01
In this paper, the design of a 16x16 Vedic multiplier has been proposed using the 16 bit Modified Carry Select Adder and 16 bit Kogge Stone Adder. The Modified Carry Select Adder incorporates the Binary to Excess -1 Converter (BEC) and is known to be the fastest adder as compared to all the conventional adders. The design is implemented using the Verilog Hardware Description Language and tested using the Modelsim simulator. The code is synthesized using the Virtex-7 family with th...
Electron capture dissociation of singly and multiply phosphorylated peptides
Stensballe, A; Jensen, Ole Nørregaard; Olsen, J V
2000-01-01
Analysis of phosphotyrosine and phosphoserine containing peptides by nano-electrospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry established electron capture dissociation (ECD) as a viable method for phosphopeptide sequencing. In general, ECD spectra of synthetic...... and native phosphopeptides appeared less complex than conventional collision activated dissociation (CAD) mass spectra of these species. ECD of multiply protonated phosphopeptide ions generated mainly c- and z(.)-type peptide fragment ion series. No loss of water, phosphate groups or phosphoric acid from......(III)-affinity chromatography combined with nano-electrospray FTMS/ECD facilitated phosphopeptide analysis and amino acid sequencing from crude proteolytic peptide mixtures....
Robust formation control of marine surface craft using Lagrange multipliers
Ihle, Ivar-Andre F.; Jouffroy, Jerome; Fossen, Thor I.
2006-01-01
framework we develop robust control laws for marine surface vessels to counteract unknown, slowly varying, environmental disturbances and measurement noise. Robustness with respect to time-delays in the communication channels are addressed by linearizing the system. Simulations of tugboats subject......This paper presents a formation modelling scheme based on a set of inter-body constraint functions and Lagrangian multipliers. Formation control for a °eet of marine craft is achieved by stabilizing the auxiliary constraints such that the desired formation con¯guration appears. In the proposed...
A First Mass Production of Gas Electron Multipliers
Barbeau, P S; Geissinger, J D; Miyamoto, J; Shipsey, I; Yang, R
2003-01-01
We report on the manufacture of a first batch of approximately 2,000 Gas Electron Multipliers (GEMs) using 3M's fully automated roll to roll flexible circuit production line. This process allows low-cost, reproducible fabrication of a high volume of GEMs of dimensions up to 30$\\times$30 cm$^{2}$. First tests indicate that the resulting GEMs have optimal properties as radiation detectors. Production techniques and preliminary measurements of GEM performance are described. This now demonstrated industrial capability should help further establish the prominence of micropattern gas detectors in accelerator based and non-accelerator particle physics, imaging and photodetection.
Parity nonconservation in dielectronic recombination of multiply charged ions
Kozlov, M G; Currell, F J
2007-01-01
We discuss a parity nonconserving (PNC) asymmetry in the cross section of dielectronic recombination of polarized electrons on multiply charged ions with Z>40. This effect is strongly enhanced for close doubly-excited states of opposite parity in the intermediate compound ion. Such states are known for He-like ions. However, these levels have large energy and large radiative widths which hampers observation of the PNC asymmetry. We argue that accidentally degenerate states of the more complex ions may be more suitable for the corresponding experiment.
Helical channel multiplier package design for space instrumentation
Hoshiko, H. H.
1975-01-01
The package considered is intended for the channel electron multiplier (CEM) detectors which are to be used for the extreme ultraviolet telescope and helium glow detector instruments of the Apollo-Soyuz test project. In the package design selected, the cone of the CEM is supported at the front end by a silicone rubber ring which is molded in place and self-bonded to both the cone and the housing wall. The helix is supported and insulated from the housing by a fiber glass sleeve which is bonded to the inside of the housing.
Second cohomology of Lie rings and the Schur multiplier
Max Horn
2014-06-01
Full Text Available We exhibit an explicit construction for the second cohomology group$H^2(L, A$ for a Lie ring $L$ and a trivial $L$-module $A$.We show how the elements of $H^2(L, A$ correspond one-to-one to theequivalence classes of central extensions of $L$ by $A$, where $A$now is considered as an abelian Lie ring. For a finite Liering $L$ we also show that $H^2(L, C^* cong M(L$, where $M(L$ denotes theSchur multiplier of $L$. These results match precisely the analoguesituation in group theory.
The Administration's Crisis Multiplied by the Crisis of the Administrated
Alina Livia NICU
2014-11-01
Full Text Available The starting point of this work is the idea that the concept of “crisis” should be approached with no fear. It is necessary to understand it as the signal which attracts attention upon the fact that some changes are appropriate and that some rationally thought actions ought to be taken in order to soften the social phenomena occurring within a crisis period. We may say that in the core of the crisis lies impregnated the basic substance of progress and that the moment when a crisis is declared is as well the moment of a new start. It is necessary to anticipate the crisis, in order to prepare the adequate means able to soften up the shocks created by its incipit and to bring forward the progress through its action itself. One of the most necessary and useful instruments able to smooth down the crisis' effects is the early education provided to the citizens concerning the frame of the behavior to be adopted in case of crisis. The officials and the public servants are the social actors who constitute the interface between the citizen who is going to suffer the crisis and this latter's exerted pressure. The personnel from the public administration has to assume the hardest role in reducing the most possible the crisis' effects. Some possibilities are analysed that could reduce the effects of the economical, social and political crises, among which the most important is the quality of juridical norms. The Romanian legislation concerning the public charge is studied, in respect to its capacity to motivate the public servant to perform at his up most level, during crisis periods but not only then. The idea is emphasized that panic and uncontrolled social movements in case of a crisis might lead to the multiplying of the negative effects. The personnel from the public administration comes to a direct confrontation with the pressure of the negative effect of the crisis, as it is received by the public administration - understood as a structure
Modified approximate 8-point multiplier less DCT like transform
Siddharth Pande
2015-05-01
Full Text Available Discrete Cosine Transform (DCT is widely usedtransformation for compression in image and video standardslike H.264 or MPEGv4, JPEG etc. Currently the new standarddeveloped Codec is Highly Efficient Video Coding (HEVC orH.265. With the help of the transformation matrix the computational cost can be dynamically reduce. This paper proposesa novel approach of multiplier-less modified approximate DCT like transformalgorithm and also comparison with exact DCT algorithm and theapproximate DCT like transform. This proposed algorithm willhave lower computational complexity. Furthermore, the proposedalgorithm will be modular in approach, and suitable for pipelinedVLSI implementation.
Calente, Aderaldo [Companhia Siderurgica de Tubarao ArcelorMittal, Serra, ES (Brazil)
2010-07-01
In order to enlarge the operational safety and the reliability of its electrical installations, ArcelorMittal Tubarao has implemented the thermography technique on inspections of the tower type lightning rods of the 138000 V system. In this work, the used methods will be shown, as well as the adopted values of temperature with their respective diagnoses, the variables that must be considered, and the conditions that must be prevented during the thermographic inspection. Besides some examples with thermo grams characterizing the defect and or normal operating conditions of the lightning rods, also, some conclusions that could have been drawn during the period of inspections will be shown. Among the main conclusions, it can be highlighted that the thermography has been considered as an efficient technique. The thermography, when carried out separately, does not approach all types of defect of a lightning rod. Also, the qualitative analysis is a main reason for the diagnosis of the operative condition of the lightning rod. (author)
Efficient Reversible Montgomery Multiplier and Its Application to Hardware Cryptography
Noor M. Nayeem
2009-01-01
Full Text Available Problem Statement: Arithmetic Logic Unit (ALU of a crypto-processor and microchips leak information through power consumption. Although the cryptographic protocols are secured against mathematical attacks, the attackers can break the encryption by measuring the energy consumption. Approach: To thwart attacks, this study proposed the use of reversible logic for designing the ALU of a crypto-processor. Ideally, reversible circuits do not dissipate any energy. If reversible circuits are used, then the attacker would not be able to analyze the power consumption. In order to design the reversible ALU of a crypto-processor, reversible Carry Save Adder (CSA using Modified TSG (MTSG gates and architecture of Montgomery multiplier were proposed. For reversible implementation of Montgomery multiplier, efficient reversible multiplexers and sequential circuits such as reversible registers and shift registers were presented. Results: This study showed that modified designs perform better than the existing ones in terms of number of gates, number of garbage outputs and quantum cost. Lower bounds of the proposed designs were established by providing relevant theorems and lemmas. Conclusion: The application of reversible circuit is suitable to the field of hardware cryptography.
Low voltage electron multiplying CCD in a CMOS process
Dunford, Alice; Stefanov, Konstantin; Holland, Andrew
2016-07-01
Low light level and high-speed image sensors as required for space applications can suffer from a decrease in the signal to noise ratio (SNR) due to the photon-starved environment and limitations of the sensor's readout noise. The SNR can be increased by the implementation of Time Delay Integration (TDI) as it allows photoelectrons from multiple exposures to be summed in the charge domain with no added noise. Electron Multiplication (EM) can further improve the SNR and lead to an increase in device performance. However, both techniques have traditionally been confined to Charge Coupled Devices (CCD) due to the efficient charge transfer required. With the increase in demand for CMOS sensors with equivalent or superior functionality and performance, this paper presents findings from the characterisation of a low voltage EMCCD in a CMOS process using advanced design features to increase the electron multiplying gain. By using the CMOS process, it is possible to increase chip integration and functionality and achieve higher readout speeds and reduced pixel size. The presented characterisation results include analysis of the photon transfer curve, the dark current, the electron multiplying gain and analysis of the parameters' dependence on temperature and operating voltage.
Multiplying optical tweezers force using a micro-lever.
Lin, Chih-Lang; Lee, Yi-Hsiung; Lin, Chin-Te; Liu, Yi-Jui; Hwang, Jiann-Lih; Chung, Tien-Tung; Baldeck, Patrice L
2011-10-10
This study presents a photo-driven micro-lever fabricated to multiply optical forces using the two-photon polymerization 3D-microfabrication technique. The micro-lever is a second class lever comprising an optical trapping sphere, a beam, and a pivot. A micro-spring is placed between the short and long arms to characterize the induced force. This design enables precise manipulation of the micro-lever by optical tweezers at the micron scale. Under optical dragging, the sphere placed on the lever beam moves, resulting in torque that induces related force on the spring. The optical force applied at the sphere is approximately 100 to 300 pN, with a laser power of 100 to 300 mW. In this study, the optical tweezers drives the micro-lever successfully. The relationship between the optical force and the spring constant can be determined by using the principle of leverage. The arm ratio design developed in this study multiplies the applied optical force by 9. The experimental results are in good agreement with the simulation of spring property.
MULTIPLIERS AND TENSOR PRODUCTS OF WEIGHTED LP-SPACES
无
2001-01-01
Let G be a locally compact uninmodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space APωq,q (G) and prove that Aωp,q (G) is a translation invariant Banach space. Furthermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then Aωp,q (G) admits an approximate identity bounded in L1ω. (G). It is also proved that the space Lpωp (G) L1ω lPω(G) is isometrically isomorphic to the space Apω.q (G) and the space of multipliers from Lωp (G) to Lqωq-1 (G) is isometrically isomorphic to the dual of the space Aωp,q (G) iff G satisfies a property Ppq. At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from L1ω (G) to Aωp,q (G) is the space Aωp,q (G).
Elbe, Anne-Marie; Barkoukis, Vassilis
2017-08-01
Doping is increasingly becoming a problem in both elite and recreational sports. It is therefore important to understand the psychological factors which can explain doping behavior in order to prevent it. The present paper briefly presents evidence on the prevalence of doping use in competitive sports and the measurement approaches to assess doping behavior and doping-related variables. Furthermore, the integrative theoretical approaches used to describe the psychological processes underlying doping use are discussed. Finally, the paper provides suggestions for appropriate measurement of doping behavior and doping-related variables, key preventive efforts against doping as well as avenues for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers
Lin, Robert H.; Schlecht, Erich T.; Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Siegel, Peter H.; Ward, John S.; Lee, Choonsup; Thomas, Bertrand C.; Maestrini, Alain
2010-01-01
The planar GaAs Shottky diode frequency multiplier is a critical technology for the local oscillator (LO) for submillimeter- wave heterodyne receivers due to low mass, tenability, long lifetime, and room-temperature operation. The use of a W-band (75-100 GHz) power amplifier followed by a frequency multiplier is the most common for submillimeter-wave sources. Its greatest challenge is to provide enough input power to the LO for instruments onboard future planetary missions. Recently, JPL produced 800 mW at 92.5 GHz by combining four MMICs in parallel in a balanced configuration. As more power at W-band is available to the multipliers, their power-handling capability be comes more important. High operating temperatures can lead to degradation of conversion efficiency or catastrophic failure. The goal of this innovation is to reduce the thermal resistance by attaching diamond film as a heat-spreader on the backside of multipliers to improve their power-handling capability. Polycrystalline diamond is deposited by hot-filament chemical vapor deposition (CVD). This diamond film acts as a heat-spreader to both the existing 250- and 300-GHz triplers, and has a high thermal conductivity (1,000-1,200 W/mK). It is approximately 2.5 times greater than copper (401 W/mK) and 20 times greater than GaAs (46 W/mK). It is an electrical insulator (resistivity approx. equals 10(exp 15) Ohms-cm), and has a low relative dielectric constant of 5.7. Diamond heat-spreaders reduce by at least 200 C at 250 mW of input power, compared to the tripler without diamond, according to thermal simulation. This superior thermal management provides a 100-percent increase in power-handling capability. For example, with this innovation, 40-mW output power has been achieved from a 250-GHz tripler at 350-mW input power, while the previous triplers, without diamond, suffered catastrophic failures. This breakthrough provides a stepping-stone for frequency multipliers-based LO up to 3 THz. The future work
Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Asai, Kaori; Matsumoto, Keiji; Shinoto, Makoto; Shioyama, Yoshiyuki; Nishie, Akihoro; Honda, Hiroshi
2014-11-01
There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer's arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.
Gavrilov, Dmitry J.
Quality control of modern materials is of the utmost importance in science and industry. Methods for nondestructive evaluation of material properties and the presence of defects are numerous. They differ in terms of their sensitivity and applicability in various conditions, and they provide different kinds of data such as the speed of sound in the material, its hardness, radiation absorption, etc. Based on measured characteristics an analyst makes a decision on the material studied. This work addresses a class of methods known as active thermographic analysis. Thermography analyzes the temperature of the surface of the sample under different external conditions. By keeping track of temperature changes at the surface caused by a deposition of heat on the sample one can determine its material properties such as theand processing the data captured it is possible to make decisions on parameters of this sample. Among the data which can be acquired are such important information as the location of internal defects (e.g., detachments, hollows, inclusions), thickness of the material layers, thermal parameters of the material and the location of internal defects (e.g., detachments, hollows, inclusions). The first part of this research investigates a method for analysis of layered composite materials using the approach based on interference of so called temperature waves. As demonstrated using the expressions derived, one can determine the thermal properties of the layers of the sample by applying a harmonically modulated heat flux to the surfaces and measuring the phase of the periodically changing surface temperature. This approach can be of use in the field of designing and analysis of composite thermal insulation coatings. In the second part of this work a method of analyzing objects of fine art was investigated, particularly - detection of subsurface defects. In the process of preserving art it is of primary importance to determine whether restoration is necessary
Quantitative thermographic analysis of viscoelastic substances in an experimental study in rabbits.
Jurowski, Piotr; Goś, Roman; Kuśmierczyk, Jarosław; Owczarek, Grzegorz; Gralewicz, Grzegorz
2006-01-01
To measure the temperature parameters on the corneal surface during the delivery of standardized ultrasound energy assisted with ophthalmic viscosurgical devices (OVDs) or different temperatures of irrigating solutions in an experimental animal model. Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, and Central Institute for Labor Protection, National Research Institute, Warsaw, Poland. Thirty rabbits (60 eyes) were randomly divided into 6 groups in which different OVD or balanced salt solutions (BSS) were used: group 1: Viscoat (sodium hyaluronate 3%-chondroitin sulfate); group 2: Provisc (sodium hyaluronate 1%); group 3: soft-shell technique; group 4: Celoftal (hydroxypropyl methylcellulose 2%); group 5: BSS 22 degrees C; and group 6: BSS 4 degrees C. After the nucleus and lens cortex were removed, the anterior chamber was filled with OVD or BSS and a phaco tip was introduced into the pupillary plane and switched on. The same phaco tip parameters were used in all groups. For thermographic measurements (ie, maximal temperature [MT], dynamic rise in temperature [DRT], and time when the maximal level of temperature [TMLT] was achieved), a thermocamera was used. Mean preoperative temperature on the rabbit corneal surface was 22.76 degrees C +/- 1.48 degrees C (SD). Working with a phaco tip increased the temperature in each group. A significantly higher MT was observed in group 5 (27.85 degrees C +/- 0.52 degrees C), followed by group 2 (27.75 degrees C +/- 0.54 degrees C), group 3 (27.74 degrees C +/- 0.46 degrees C), and group 4 (27.25 degrees C +/- 0.60 degrees C), than in group 6 (26.81 degrees C +/- 0.34 degrees C) and group 1 (26.52 degrees C +/- 0.48 degrees C) (P<.05). Significantly higher values of DRT and shorter TMLT values were observed in group 5 (1.16 degrees C/s +/- 0.42 degrees C/s, 4 seconds) and group 6 (0.91 degrees C/s +/- 0.13 degrees C/s, 5 seconds) than in groups 2, 3, 1, and 4 (0.09 degrees C/s +/- 0.07 degrees
Low Power Floating Point Computation Sharing Multiplier for Signal Processing Applications
Sivanantham S
2013-04-01
Full Text Available Design of low power, higher performance digital signal processing elements are the major requirements in ultra deep sub-micron technology. This paper presents an IEEE-754 standard compatible single precision Floating-point Computation SHaring Multiplier (FCSHM scheme suitable for low-power and high-speed signal processing applications. The floating-point multiplier used at thefilter taps effectively uses the computation re-use concept. Experimental results on a 10-tap programmable FIR filter show that the proposed multiplier scheme can provide a power reduction of 39.7% and significant improvements in the performance compared to conventional floating-point carry save array multiplier implementations.
Fpga Implementation of 8-Bit Vedic Multiplier by Using Complex Numbers
Gundlapalle Nandakishore,
2014-06-01
Full Text Available The paper describes the implementation of 8-bit vedic multiplier using complex numbers previous technique describes that 8-bit vedic multiplier using barrel shifter by FPGA implementation comparing the both technique in this paper propagation delay is reduced so that processing of speed will be high 8-bit vedic multiplier using barrel shifter propagation delay nearly 22nsec but present technique 8-bit vedic multiplier using complex numbers where propagation delay is 19nsec. The design is implemented and verified by FPGA and ISE simulator. The core was implemented on the Spartan 3E starts board the preferred language is used in verilog.
T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras
Jianming Zhan; Zhisong Tan
2003-01-01
The concept of fuzzy multiply positive BCC-ideals of BCC-algebras is introduced, and then some related results are obtained. Moreover, we introduce the concept of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras and investigate T-product of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras, examining its properties. Using a t-norm T, the direct product and T-product of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras are discussed and their...
Improved 64-bit Radix-16 Booth Multiplier Based on Partial Product Array Height Reduction
Antelo, Elisardo; Montuschi, Paolo; Nannarelli, Alberto
2016-01-01
In this paper, we describe an optimization for binary radix-16 (modified) Booth recoded multipliers to reduce the maximum height of the partial product columns to ï£®n/4ï£¹ for [Formula: see text] unsigned operands. This is in contrast to the conventional maximum height of ï£®(n+1)/4ï£¹. Therefor...... to be included in the partial product array without increasing the delay. The method can be extended to Booth recoded radix-8 multipliers, signed multipliers, combined signed/unsigned multipliers, and other values of n....
Module homomorphisms and multipliers on locally compact quantum groups
Ramezanpour, M
2009-01-01
For a Banach algebra $A$ with a bounded approximate identity, we investigate the $A$-module homomorphisms of certain introverted subspaces of $A^*$, and show that all $A$-module homomorphisms of $A^*$ are normal if and only if $A$ is an ideal of $A^{**}$. We obtain some characterizations of compactness and discreteness for a locally compact quantum group $\\G$. Furthermore, in the co-amenable case we prove that the multiplier algebra of $\\LL$ can be identified with $\\MG.$ As a consequence, we prove that $\\G$ is compact if and only if $\\LUC={\\rm WAP}(\\G)$ and $\\MG\\cong\\mathcal{Z}({\\rm LUC}(\\G)^*)$; which partially answer a problem raised by Volker Runde.
Antiproton beam profile measurements using Gas Electron Multipliers
Pinto, Serge Duarte; Spanggaard, Jens; Tranquille, Gerard
2011-01-01
The new beam profile measurement for the Antiproton Decelerator (AD) at CERN is based on a single Gas Electron Multiplier (GEM) with a 2D readout structure. This detector is very light, ~0.4% X_0, as required by the low energy of the antiprotons, 5.3 MeV. This overcomes the problems previously encountered with multi-wire proportional chambers (MWPC) for the same purpose, where beam interactions with the detector severely affect the obtained profiles. A prototype was installed and successfully tested in late 2010, with another five detectors now installed in the ASACUSA and AEgIS beam lines. We will provide a detailed description of the detector and discuss the results obtained. The success of these detectors in the AD makes GEM-based detectors likely candidates for upgrade of the beam profile monitors in all experimental areas at CERN. The various types of MWPC currently in use are aging and becoming increasingly difficult to maintain.
Lagrange multiplier for perishable inventory model considering warehouse capacity planning
Amran, Tiena Gustina; Fatima, Zenny
2017-06-01
This paper presented Lagrange Muktiplier approach for solving perishable raw material inventory planning considering warehouse capacity. A food company faced an issue of managing perishable raw materials and marinades which have limited shelf life. Another constraint to be considered was the capacity of the warehouse. Therefore, an inventory model considering shelf life and raw material warehouse capacity are needed in order to minimize the company's inventory cost. The inventory model implemented in this study was the adapted economic order quantity (EOQ) model which is optimized using Lagrange multiplier. The model and solution approach were applied to solve a case industry in a food manufacturer. The result showed that the total inventory cost decreased 2.42% after applying the proposed approach.
Domingues M. O.
2013-12-01
Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.
Electromagnetic Radiation in Multiply Connected Robertson-Walker Cosmologies
Tomaschitz, R
1993-01-01
Maxwell's equations on a topologically nontrivial cosmological background are studied. The cosmology is locally determined by a Robertson-Walker line element, but the spacelike slices are open hyperbolic manifolds, whose topology and geometry may vary in time. In this context the spectral resolution of Maxwell's equations in terms of horospherical elementary waves generated at infinity of hyperbolic space is given. The wave fronts are orthogonal to bundles of unstable geodesic rays, and the eikonal of geometric optics appears just as the phase of the horospherical waves. This fact is used to attach to the unstable geodesic rays a quantum mechanical momentum. In doing so the quantized energy-momentum tensor of the radiation field is constructed in a geometrically and dynamically transparent way, without appealing to the intricacies of the second quantization. In particular Planck's radiation formula, and the bearing of the multiply connected topology on the fluctuations in the temperature of the background rad...
Scaled AAN for Fixed-Point Multiplier-Free IDCT
P. P. Zhu
2009-01-01
Full Text Available An efficient algorithm derived from AAN algorithm (proposed by Arai, Agui, and Nakajima in 1988 for computing the Inverse Discrete Cosine Transform (IDCT is presented. We replace the multiplications in conventional AAN algorithm with additions and shifts to realize the fixed-point and multiplier-free computation of IDCT and adopt coefficient and compensation matrices to improve the precision of the algorithm. Our 1D IDCT can be implemented by 46 additions and 20 shifts. Due to the absence of the multiplications, this modified algorithm takes less time than the conventional AAN algorithm. The algorithm has low drift in decoding due to the higher computational precision, which fully complies with IEEE 1180 and ISO/IEC 23002-1 specifications. The implementation of the novel fast algorithm for 32-bit hardware is discussed, and the implementations for 24-bit and 16-bit hardware are also introduced, which are more suitable for mobile communication devices.
Lagrange Multipliers and Third Order Scalar-Tensor Field Theories
Horndeski, Gregory W
2016-01-01
In a space of 4-dimensions, I will examine constrained variational problems in which the Lagrangian, and constraint scalar density, are concomitants of a (pseudo-Riemannian) metric tensor and its first two derivatives. The Lagrange multiplier for these constrained extremal problems will be a scalar field. For suitable choices of the Lagrangian, and constraint, we can obtain Euler-Lagrange equations which are second order in the scalar field and third order in the metric tensor. The effect of disformal transformations on the constraint Lagrangians, and their generalizations, is examined. This will yield other second order scalar-tensor Lagrangians which yield field equations which are at most of third order. No attempt is made to construct all possible third order scalar-tensor Euler-Lagrange equations in a 4-space, although nine classes of such field equations are presented. Two of these classes admit subclasses which yield conformally invariant field equations. A few remarks on scalar-tensor-connection theor...
L’ESPACE MULTIPLIE CHEZ SARTRE : HUIS-CLOS
Corina-Amelia GEORGESCU
2013-05-01
Full Text Available Du point de vue historique, le XXe siècle est le siècle le plus bouleversé de l’histoire connue de l’humanité, se caractérisant par plusieurs événements majeurs. C’est dans ce contexte que Jean-Paul Sartre se fraie un chemin dans la vie littéraire française en y apportant un souffle nouveau. Notre travail se propose d’analyser la pièce Huis clos dans le but de démontrer que lorque l’on parle de l’espace de l’emprisonnement, on doit prendre en considération qu’il ne s’agit pas d’un seul type d’espace et que celui-ci se multiplie justement pour rendre l’impossibilité d’y échapper.
Vortex generated fluid flows in multiply connected domains
Zemlyanova, Anna; Handley, Demond
2016-01-01
A fluid flow in a multiply connected domain generated by an arbitrary number of point vortices is considered. A stream function for this flow is constructed as a limit of a certain functional sequence using the method of images. The convergence of this sequence is discussed, and the speed of convergence is determined explicitly. The presented formulas allow for the easy computation of the values of the stream function with arbitrary precision in the case of well-separated cylinders. The considered problem is important for applications such as eddy flows in the oceans. Moreover, since finding the stream function of the flow is essentially identical to finding the modified Green's function for Laplace's equation, the presented method can be applied to a more general class of applied problems which involve solving the Dirichlet problem for Laplace's equation.
Fixed Width Booth Multiplier Based on PEB Circuit [
V.Vidya Devi
2012-04-01
Full Text Available In this brief, a probabilistic estimation bias (PEB circuit for a fixed-width two’s complement Boothmultiplier is proposed. The proposed PEB circuit is derived from theoretical computation, instead ofexhaustive simulations and heuristic compensation strategies that tend to introduce curve-fitting errors andexponential-grown simulation time. Consequently, the proposed PEB circuit provides a smaller area and alower truncation error compared with existing works. Implemented in an 8 × 8 2-D discrete cosinetransform (DCT core, the DCT core using the proposed PEB Booth multiplier improves the peak signalto-noise ratio by 17 dB with only a 2% area penalty compared with the direct-truncated method.
Simultaneous least squares fitter based on the Langrange multiplier method
Guan, Yinghui; Zheng, Yangheng; Zhu, Yong-Sheng
2013-01-01
We developed a least squares fitter used for extracting expected physics parameters from the correlated experimental data in high energy physics. This fitter considers the correlations among the observables and handles the nonlinearity using linearization during the $\\chi^2$ minimization. This method can naturally be extended to the analysis with external inputs. By incorporating with Langrange multipliers, the fitter includes constraints among the measured observables and the parameters of interest. We applied this fitter to the study of the $D^{0}-\\bar{D}^{0}$ mixing parameters as the test-bed based on MC simulation. The test results show that the fitter gives unbiased estimators with correct uncertainties and the approach is credible.
A Lagrange multiplier based divide and conquer finite element algorithm
Farhat, C.
1991-01-01
A novel domain decomposition method based on a hybrid variational principle is presented. Prior to any computation, a given finite element mesh is torn into a set of totally disconnected submeshes. First, an incomplete solution is computed in each subdomain. Next, the compatibility of the displacement field at the interface nodes is enforced via discrete, polynomial and/or piecewise polynomial Lagrange multipliers. In the static case, each floating subdomain induces a local singularity that is resolved very efficiently. The interface problem associated with this domain decomposition method is, in general, indefinite and of variable size. A dedicated conjugate projected gradient algorithm is developed for solving the latter problem when it is not feasible to explicitly assemble the interface operator. When implemented on local memory multiprocessors, the proposed methodology requires less interprocessor communication than the classical method of substructuring. It is also suitable for parallel/vector computers with shared memory and compares favorably with factorization based parallel direct methods.
Aging measurements with the gas electron multiplier (GEM)
Altunbas, M C; Kappler, S; Ketzer, B; Ropelewski, Leszek; Sauli, Fabio; Simon, F
2003-01-01
Continuing previous aging measurements with detectors based on the Gas Electron Multiplier (GEM), a $31\\times 31$cm$^2$ triple-GEM detector, as used in the small area tracking of the COMPASS experiment at CERN, was investigated. With a detector identical to those installed in the experiment, long-term, high-rate exposures to $8.9$keV X-ray radiation were performed to study its aging properties. In standard operation conditions, with Ar:CO$_2$ (70:30) filling and operated at an effective gain of $8.5\\cdot 10^3$, no change in gain and energy resolution is observed after collecting a total charge of 7mC/mm$^2$, corresponding to seven years of normal operation. This observation confirms previous results demonstrating the relative insensitivity of GEM detectors to aging, even when manufactured with common materials.
Multiplying steady-state culture in multi-reactor system.
Erm, Sten; Adamberg, Kaarel; Vilu, Raivo
2014-11-01
Cultivation of microorganisms in batch experiments is fast and economical but the conditions therein change constantly, rendering quantitative data interpretation difficult. By using chemostat with controlled environmental conditions the physiological state of microorganisms is fixed; however, the unavoidable stabilization phase makes continuous methods resource consuming. Material can be spared by using micro scale devices, which however have limited analysis and process control capabilities. Described herein are a method and a system combining the high throughput of batch with the controlled environment of continuous cultivations. Microorganisms were prepared in one bioreactor followed by culture distribution into a network of bioreactors and continuation of independent steady state experiments therein. Accelerostat cultivation with statistical analysis of growth parameters demonstrated non-compromised physiological state following distribution, thus the method effectively multiplied steady state culture of microorganisms. The theoretical efficiency of the system was evaluated in inhibitory compound analysis using repeated chemostat to chemostat transfers.
Audiovisual narratives : creative processes of SIdade and MultipliSIdade
2011-01-01
Resumo: Nesta dissertação faço uma reflexão sobre os processos criativos de dois audiovisuais narrativos de minha autoria, SIdade* e MultipliSIdade**. Como linha de pensamento, adoto a questão da relação entre o fragmento e o todo, em relação à poética e às técnicas de construção das obras. A poética do trabalho refere-se ao desenvolvimento de um olhar perceptivo sobre o ambiente urbano contemporâneo, tanto em relação aos fragmentos significantes que remetem a uma identidade do todo urbano, q...
Multiply-warped product metrics and reduction of Einstein equations
Gholami, F; Haji-Badali, A
2016-01-01
It is shown that for every multidimensional metric in the multiply warped product form $\\bar{M} = K\\times_{f_1} M_1\\times_{f_2}M_2$ with warp functions $f_1$, $f_2$, associated to the submanifolds $M_1$, $M_2$ of dimensions $n_1$, $n_2$ respectively, one can find the corresponding Einstein equations $\\bar{G}_{AB}=-\\bar{\\Lambda}\\bar{g}_{AB}$, with cosmological constant $\\bar{\\Lambda}$, which are reducible to the Einstein equations $G_{\\alpha\\beta} = -\\Lambda_1 g_{\\alpha\\beta}$ and $G_{ij} =-\\Lambda_2 h_{ij}$ on the submanifolds $M_1$, $M_2$, with cosmological constants ${\\Lambda_1}$ and ${\\Lambda_2}$, respectively, where $\\bar{\\Lambda}$, ${\\Lambda_1}$ and ${\\Lambda_2}$ are functions of ${f_1}$, ${f_2}$ and $n_1$, $n_2$.
On Lagrange Multipliers in Work with Quality and Reliability Assurance
Vidal, Rene Victor Valqui; Becker, P.
1986-01-01
In optimizing some property of a system, reliability say, a designer usually has to accept certain constraints regarding cost, completion time, volume, weight, etc. The solution of optimization problems with boundary constraints can be helped substantially by the use of Lagrange multipliers techn...... in the areas of sales promotion and teaching. These maps illuminate the logic structure of solution sequences. One such map is shown, illustrating the application of LMT in one of the examples....... techniques (LMT). With representative examples of increasing complexity, the wide applicability of LMT is illustrated. Two particular features are put in focus. First, an easy to follow yet powerful new graphical approach is presented, Second, the concept of Fuller-Polya maps is shown to be helpful...
Scaled AAN for Fixed-Point Multiplier-Free IDCT
Zhu, P. P.; Liu, J. G.; Dai, S. K.; Wang, G. Y.
2009-12-01
An efficient algorithm derived from AAN algorithm (proposed by Arai, Agui, and Nakajima in 1988) for computing the Inverse Discrete Cosine Transform (IDCT) is presented. We replace the multiplications in conventional AAN algorithm with additions and shifts to realize the fixed-point and multiplier-free computation of IDCT and adopt coefficient and compensation matrices to improve the precision of the algorithm. Our 1D IDCT can be implemented by 46 additions and 20 shifts. Due to the absence of the multiplications, this modified algorithm takes less time than the conventional AAN algorithm. The algorithm has low drift in decoding due to the higher computational precision, which fully complies with IEEE 1180 and ISO/IEC 23002-1 specifications. The implementation of the novel fast algorithm for 32-bit hardware is discussed, and the implementations for 24-bit and 16-bit hardware are also introduced, which are more suitable for mobile communication devices.
Multipliers of Weighted Semigroups and Associated Beurling Banach Algebras
S J Bhatt; P A Dabhi; H V Dedania
2011-11-01
Given a weighted discrete abelian semigroup $(S,)$, the semigroup $M_(S)$ of -bounded multipliers as well as the Rees quotient $M_(S)/S$ together with their respective weights $\\overline{}$ and $\\overline{}_q$ induced by are studied; for a large class of weights , the quotient $\\ell^1(M_(S),\\overline{})/\\ell^1(S,)$ is realized as a Beurling algebra on the quotient semigroup $M_(S)/S$; the Gel’fand spaces of these algebras are determined; and Banach algebra properties like semisimplicity, uniqueness of uniform norm and regularity of associated Beurling algebras on these semigroups are investigated. The involutive analogues of these are also considered. The results are exhibited in the context of several examples.
Coulomb fission in multiply charged molecular clusters: Experiment and theory
Harris, Christopher; Baptiste, Joshua; Lindgren, Eric B.; Besley, Elena; Stace, Anthony J.
2017-04-01
A series of three multiply charged molecular clusters, (C6H6)nz+ (benzene), (CH3CNnz) + (acetonitrile), and (C4H8O)nz+ (tetrahydrofuran), where the charge z is either 3 or 4, have been studied for the purpose of identifying the patterns of behaviour close to the charge instability limit. Experiments show that on a time scale of ˜10-4 s, ions close to the limit undergo Coulomb fission where the observed pathways exhibit considerable asymmetry in the sizes of the charged fragments and are all associated with kinetic (ejection) energies of between 1.4 and 2.2 eV. Accurate kinetic energies have been determined through a computer simulation of peak profiles recorded in the experiments and the results modelled using a theory formulated to describe how charged particles of dielectric materials interact with one another [E. Bichoutskaia et al., J. Chem. Phys. 133, 024105 (2010)]. The calculated electrostatic interaction energy between separating fragments gives an accurate account for the measured kinetic energies and also supports the conclusion that +4 ions fragment into +3 and +1 products as opposed to the alternative of two +2 fragments. This close match between the theory and experiment reinforces the assumption that a significant fraction of excess charge resides on the surfaces of the fragment ions. It is proposed that the high degree of asymmetry seen in the fragmentation patterns of the multiply charged clusters is due, in part, to limits imposed by the time window during which observations are made.
Eldridge, J. I.; Walker, D. G.; Gollub, S. L.; Jenkins, T. P.; Allison, S. W.
2015-01-01
Luminescence-based surface temperature measurements were obtained from a YAG:Tm-coated stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing was to demonstrate that reliable surface temperatures based on luminescence decay of a thermographic phosphor producing short-wavelength emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative afterburner flame environment. YAG:Tm was selected as the thermographic phosphor for its blue emission at 456 nm (1D23F4 transition) and UV emission at 365 nm (1D23H6 transition) because background thermal radiation is lower at these wavelengths, which are shorter than those of many previously used thermographic phosphors. Luminescence decay measurements were acquired using a probe designed to operate in the afterburner flame environment. The probe was mounted on the sidewall of a high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick YAG:Tm thermographic phosphor layer was deposited by solution precursor plasma spray (SPPS). Spot temperature measurements were obtained by measuring luminescence decay times at different afterburner power settings and then converting decay time to temperature via calibration curves. Temperature measurements using the decays of the 456 and 365 nm emissions are compared. While successful afterburner environment measurements were obtained to about 1300C with the 456 nm emission, successful temperature measurements using the 365 nm emission were limited to about 1100C due to interference by autofluorescence of probe optics at short decay times.
The long-run relationship between the Japanese credit and money multipliers
Mototsugu Fukushige
2013-01-01
The standard argument is that while money creation and credit creation have different channels, they provide the same theoretical size of multipliers. However, there is usually some difference in practice. Consequently, in this paper we investigate the long-run relationship between the credit and money multipliers in Japan.
A Floating Point Multiplier based FPGA Synthesis for Neural Networks Enhancement
F. BENREKIA,
2010-05-01
Full Text Available FPGA (Field Programmable Gate Array implementation of Artificial Neural Networks (ANNs calls for multipliers of various word lengths. In this paper, a new approach for designing a FloatingPoint Multiplier(FPM is developed and tested using VHDL. With VHDL (Very High Description Language analyzer and logic synthesis software, hardware prototypes could be implemented in FPGA.
THE REALIZATION OF MULTIPLIER HILBERT BIMODULE ON BIDUAL SPACE AND TIETZE EXTENSION THEOREM
无
2000-01-01
The multiplier bimodule of Hilbert bimodule is introduced in a way similar to [1],and its realization on a quotient of bidual space and Tietze extension theorem are obtained similar to that in C*-algebra case. As a result,the multiplier bimodule here is also a Hilbert bimodule.
Singular Lagrangian, Hamiltonization and Jacobi last multiplier for certain biological systems
Guha, Partha; Ghose Choudhury, Anindya
2013-07-01
We study the construction of singular Lagrangians using Jacobi's last multiplier (JLM). We also demonstrate the significance of the last multiplier in Hamiltonian theory by explicitly constructing the Hamiltonian of the Host-Parasite model and a Lotka-Volterra mutualistic system, both of which are well known first-order systems of differential equations arising in biology.
Implementation gap between the theory and practice of biodiversity offset multipliers
Bull, Joseph William; Lloyd, Samuel; Strange, Niels
2016-01-01
when considering, for example, ecological uncertainties. We propose even larger multipliers required to satisfy previously ignored considerations – including prospect theory, taboo trades, and power relationships. Conversely, our data analyses show that multipliers are smaller in practice, regularly...... used. Further research is necessary to determine reasons...
Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems
CHEN Xiang-Wei; MEI Feng-Xiang
2011-01-01
@@ The Jacobi last multiplier method for holonomic and nonholonomic mechanical systems is studied and some examples are given to attempt applications of the method.%The Jacobi last multiplier method for holonomic and nonholonomic mechanical systems is studied and some examples are given to attempt applications of the method.
Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces
XIE LinSen; LAN JiaCheng; LAN SenHua; YAN DunYan
2009-01-01
We establish Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces.These inequalities can be applied to some important operators in Fourier analysis,such as the Bochner-Riesz multiplier over the critical index,the generalized Bochner-Riesz mean and the generalized Able-Poisson operator.
Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces
无
2009-01-01
We establish Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces. These inequalities can be applied to some important operators in Fourier analysis, such as the Bochner-Riesz multiplier over the critical index, the generalized Bochner-Riesz mean and the generalized Able-Poisson operator.
WERKMAN, HA; JANSEN, C; KLEIN, JP; TENDUIS, HJ
1991-01-01
In a retrospective study involving 866 multiply-injured patients we demonstrated urinary tract injuries in 72 patients (8.3 per cent), 17 (2 per cent) of which were serious. Haematuria was a frequent finding in multiply-injured patients. In patients with serious lesions of the urinary tract, more th
On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers
Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)
2015-01-01
A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.
Worzewski, Tamara; Krankenhagen, Rainer; Doroshtnasir, Manoucher
2016-05-01
The present study continues the work described in part I of this paper in evaluating a long-term-experiment, where a rotor blade segment of a wind turbine is exposed to the elements and thereby monitored with passive thermography. First, it is investigated whether subsurface features in rotor blades - mainly made of GFRP - can generally be detected with thermography from greater distances under favorable conditions. The suitability of the sun for acting as a heat source in applying active thermography has been tested in the previous study. In this study, the climatic influence on thermographic measurement is evaluated. It is demonstrated that there are favorable and unfavorable circumstances for imaging thermal contrasts which reflect inner structures and other subsurface features like potential defects. It turns out that solar radiation serves as a very effective heat source, but not at all times of day. Other environmental influences such as diurnal temperature variations also create temperature contrasts that permit conclusions on subsurface features. Particular scenarios are reconstructed with FEM-simulations in order to gain deeper insight into the driving mechanisms that produce the observed thermal contrasts. These investigations may help planning useful outdoor operations for inspecting rotor blades with thermography.
Partial spectral multipliers and partial Riesz transforms for degenerate operators
ter Elst, A F M
2012-01-01
We consider degenerate differential operators $A = \\displaystyle{\\sum_{k,j=1}^d \\partial_k (a_{kj} \\partial_j)}$ on $L^2(\\mathbb{R}^d)$ with real symmetric bounded measurable coefficients. Given a function $\\chi \\in C_b^\\infty(\\mathbb{R}^d)$ (respectively, $\\Omega$ a bounded Lipschitz domain) and suppose that $(a_{kj}) \\ge \\mu > 0$ a.e.\\ on $ \\supp \\chi$ (resp., a.e.\\ on $\\Omega$). We prove a spectral multiplier type result: if $F\\colon [0, \\infty) \\to \\mathbb{C}$ is such that $\\sup_{t > 0} \\| \\varphi(.) F(t .) \\|_{C^s} d/2$ then $M_\\chi F(I+A) M_\\chi$ is weak type $(1,1)$ (resp.\\ $P_\\Omega F(I+A) P_\\Omega$ is weak type $(1,1)$). We also prove boundedness on $L^p$ for all $p \\in (1,2]$ of the partial Riesz transforms $M_\\chi \
Suborbital Soft X-Ray Spectroscopy with Gaseous Electron Multipliers
Rogers, Thomas D.
This thesis consists of the design, fabrication, and launch of a sounding rocket payload to observe the spectrum of the soft X-ray emission (0.1-1 keV) from the Cygnus Loop supernova remnant. This instrument, designated the Off-plane Grating Rocket for Extended Source Spectroscopy (OGRESS), was launched from White Sands Missile Range on May 2nd, 2015. The X-ray spectrograph incorporated a wire-grid focuser feeding an array of gratings in the extreme off-plane mount which dispersed the spectrum onto Gaseous Electron Multiplier (GEM) detectors. The gain characteristics of OGRESS's GEM detectors were fully characterized with respect to applied voltage and internal gas pressure, allowing operational settings to be optimized. The GEMs were optimized to operate below laboratory atmospheric pressure, allowing lower applied voltages, thus reducing the risk of both electrical arcing and tearing of the thin detector windows. The instrument recorded 388 seconds of data and found highly uniform count distributions over both detector faces, in sharp contrast to the expected thermal line spectrum. This signal is attributed to X-ray fluorescence lines generated inside the spectrograph. The radiation is produced when thermal ionospheric particles are accelerated into the interior walls of the spectrograph by the high voltages of the detector windows. A fluorescence model was found to fit the flight data better than modeled supernova spectra. Post-flight testing and analysis revealed that electrons produce distinct signal on the detectors which can also be successfully modeled as fluorescence emission.
Ojo, Anthony O; Fond, Benoit; Abram, Christopher; Van Wachem, Berend G M; Heyes, Andrew L; Beyrau, Frank
2017-05-15
Simultaneous point measurements of gas velocity and temperature were recently demonstrated using thermographic phosphors as tracer particles. There, continuous wave (CW) excitation was used and the spectral shift of the luminescence was detected with a two-colour intensity ratio method to determine the gas temperature. The conventional laser Doppler velocimetry (LDV) technique was employed for velocimetry. In this paper, an alternative approach to the gas temperature measurements is presented, which is instead based on the temperature-dependence of the luminescence lifetime. The phase-shift between the luminescence signal and time-modulated excitation light is evaluated for single BaMgAl10O17:Eu(2+) phosphor particles as they cross the probe volume. Luminescence lifetimes evaluated in the time domain and frequency domain indicate that in these experiments, interferences from in-phase signals such as stray excitation laser light are negligible. The dependence of the phase-shift on flow temperature is characterised. In the temperature sensitive range above 700 K, precise gas temperature measurements can be obtained (8.6 K at 840 K) with this approach.
Mishra, Deependra K.; Umbaugh, Scott E.; Lama, Norsang; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph
2016-09-01
CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants - a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.
Design and Performance Analysis of Reversible Logic Four Quadrant Multiplier Using CSLA and CLAA
Mr. P. Dileep Kumar Reddy
2014-03-01
Full Text Available Multiplication is a fundamental operation in most signal processing algorithms. Multipliers have large area, long latency and consume considerable power. Therefore low-power multiplier design has been an important part in low- power VLSI system design. There has been extensive work on low-power multipliers at technology, physical, circuit and logic levels. A system’s performance is generally determined by the performance of the multiplier because the multiplier is generally the slowest element in the system. Furthermore, it is generally the most area consuming. Hence, optimizing the speed and area of the multiplier is a major design issue. However, area and speed are usually conflicting constraints so that improving speed results mostly in larger areas. As a result, a whole spectrum of multipliers with different area- speed constraints has been designed with reversible logic gates. The reversible logic has the promising applications in emerging computing paradigm such as quantum computing, quantum dot cellular automata, optical computing, etc. In reversible logic gates there is a unique one-to-one mapping between the inputs and outputs.
Dyadic Bivariate Fourier Multipliers for Multi-Wavelets in L2(R2)
Zhongyan Li∗; Xiaodi Xu
2015-01-01
The single 2 dilation orthogonal wavelet multipliers in one dimensional case and single A-dilation (where A is any expansive matrix with integer entries and|detA|=2) wavelet multipliers in high dimensional case were completely characterized by the Wutam Consortium (1998) and Z. Y. Li, et al. (2010). But there exist no more results on orthogonal multivariate wavelet matrix multipliers corresponding integer expansive dilation matrix with the absolute value of determinant not 2 in L2(R2). In this paper, we choose as the dilation matrix and consider the 2I2-dilation orthogonal multivariate wavelet Y={y1,y2,y3}, (which is called a dyadic bivariate wavelet) multipliers. We call the 3×3 matrix-valued function A(s)=[ fi,j(s)]3×3, where fi,j are measurable functions, a dyadic bivariate matrix Fourier wavelet multiplier if the inverse Fourier transform of A(s)(cy1(s),cy2(s),cy3(s))⊤ = ( b g1(s), b g2(s), b g3(s))⊤ is a dyadic bivariate wavelet whenever (y1,y2,y3) is any dyadic bivariate wavelet. We give some conditions for dyadic matrix bivariate wavelet multipliers. The results extended that of Z. Y. Li and X. L. Shi (2011). As an application, we construct some useful dyadic bivariate wavelets by using dyadic Fourier matrix wavelet multipliers and use them to image denoising.
Configurable multiplier modules for an adaptive computing system
O. A. Pfänder
2006-01-01
Full Text Available The importance of reconfigurable hardware is increasing steadily. For example, the primary approach of using adaptive systems based on programmable gate arrays and configurable routing resources has gone mainstream and high-performance programmable logic devices are rivaling traditional application-specific hardwired integrated circuits. Also, the idea of moving from the 2-D domain into a 3-D design which stacks several active layers above each other is gaining momentum in research and industry, to cope with the demand for smaller devices with a higher scale of integration. However, optimized arithmetic blocks in course-grain reconfigurable arrays as well as field-programmable architectures still play an important role. In countless digital systems and signal processing applications, the multiplication is one of the critical challenges, where in many cases a trade-off between area usage and data throughput has to be made. But the a priori choice of word-length and number representation can also be replaced by a dynamic choice at run-time, in order to improve flexibility, area efficiency and the level of parallelism in computation. In this contribution, we look at an adaptive computing system called 3-D-SoftChip to point out what parameters are crucial to implement flexible multiplier blocks into optimized elements for accelerated processing. The 3-D-SoftChip architecture uses a novel approach to 3-dimensional integration based on flip-chip bonding with indium bumps. The modular construction, the introduction of interfaces to realize the exchange of intermediate data, and the reconfigurable sign handling approach will be explained, as well as a beneficial way to handle and distribute the numerous required control signals.
Computation of Floquet Multipliers Using an Iterative Method for Variational Equations
Nureki, Yu; Murashige, Sunao
This paper proposes a new method to numerically obtain Floquet multipliers which characterize stability of periodic orbits of ordinary differential equations. For sufficiently smooth periodic orbits, we can compute Floquet multipliers using some standard numerical methods with enough accuracy. However, it has been reported that these methods may produce incorrect results under some conditions. In this work, we propose a new iterative method to compute Floquet multipliers using eigenvectors of matrix solutions of the variational equations. Numerical examples show effectiveness of the proposed method.
Parametric Model for the Response of a Photo-multiplier Tube
Aguilar, M.; Alcaraz, J.; Berdugo, J.; Casaus, J.; Delgado, C.; Diaz, C.; Lanciotti, E.; Mana, C.; Marin, J.; Martinez, G.; Molla, M.; Palomares, C.; Rodriguez, J.; Sanchez, E.; Sevilla, A.; Torrento, A.
2005-07-01
When a photon impinges upon a photon-multiplier tube, an electron is emitted with certain probability and, after several amplification stages, an electron shower is collected at the anode. However, when the first electron is emitted from one of the amplification dynodes or the photon-multiplier is operated under untoward conditions (external magnetic fields...) smaller showers are collected. In this paper, we present a bi-parametric model which describers the response of a photo-multiplier tube over a wide range of circumstances. (Author)
Improved Faddeev-Jackiw quantization of the electromagnetic field and Lagrange multiplier fields
YANG Jin-Long; HUANG Yong-Chang
2008-01-01
We use the improved Faddeev-Jackiw quantization method to quantize the electromagnetic field and its Lagrange multiplier fields.The method's comparison with the usual Faddeev-Jackiw method and the Dirac method is given.We show that this method is equivalent to the Dirac method and also retains all the merits of the usual Faddeev-Jackiw method.Moreover,it is simpler than the usual one if one needs to obtain new secondary constraints.Therefore,the improved Faddeev-Jackiw method is essential.Meanwhile,we find the new meaning of the Lagrange multipliers and explain the Faddeev-Jackiw generalized brackets concerning the Lagrange multipliers.
Design of Pipeline Multiplier Based on Modified Booth's Algorithm and Wallace Tree
Yao, Aihong; Li, Ling; Sun, Mengzhe
A design of 32*32 bit pipelined multiplier is presented in this paper. The proposed multiplier is based on the modified booth algorithm and Wallace tree structure. In order to improve the throughput rate of the multiplier, pipeline architecture is introduced to the Wallace tree. Carry Select Adder is deployed to reduce the propagation delay of carry signal for the final level 64-bit adder. The multiplier is fully implemented with Verilog HDL and synthesized successfully with Quartus II. The experiment result shows that the resource consumption and power consumption is reduced to 2560LE and 120mW, the operating frequency is improved from 136.21MHz to 165.07MHz.
Chen, Shaobo; Chen, Pingxiuqi; Shao, Qiliang; Basha Shaik, Nazeem; Xie, Jiafeng
2017-05-01
The elliptic curve cryptography (ECC) provides much stronger security per bits compared to the traditional cryptosystem, and hence it is an ideal role in secure communication in smart grid. On the other side, secure implementation of finite field multiplication over GF(2 m ) is considered as the bottle neck of ECC. In this paper, we present a novel obfuscation strategy for secure implementation of systolic field multiplier for ECC in smart grid. First, for the first time, we propose a novel obfuscation technique to derive a novel obfuscated systolic finite field multiplier for ECC implementation. Then, we employ the DNA cryptography coding strategy to obfuscate the field multiplier further. Finally, we obtain the area-time-power complexity of the proposed field multiplier to confirm the efficiency of the proposed design. The proposed design is highly obfuscated with low overhead, suitable for secure cryptosystem in smart grid.
VHDL IMPLEMENTATION AND COMPARISON OF COMPLEX MUL-TIPLIER USING BOOTH’S AND VEDIC ALGORITHM
Rajashri K. Bhongade
2015-11-01
Full Text Available For designing of complex number multiplier basic idea is adopted from designing of multiplier. An ancient Indian mathematics "Vedas" is used for designing the multiplier unit. There are 16 sutra in Vedas, from that the Urdhva Tiryakb-hyam sutra (method was selected for implementation complex multiplication and basically Urdhva Tiryakbhyam sutra appli-cable to all cases of multiplication. Any multi-bit multiplication can be reduced down to single bit multiplication and addition by using Urdhva Tiryakbhyam sutra is performed by vertically and crosswise. The partial products and sums are generated in single step which reduces the carry propagation from LSB to MSB by using these formulas. In this paper simulation result for 4bit complex no. multiplication using Booth‟s algorithm and using Vedic sutra are illustrated. The implementation of the Vedic mathematics and their application to the complex multiplier was checked parameter like propagation delay.
Karatsuba-Ofman Multiplier with Integrated Modular Reduction for GF(2m
CUEVAS-FARFAN, E.
2013-05-01
Full Text Available In this paper a novel GF(2m multiplier based on Karatsuba-Ofman Algorithm is presented. A binary field multiplication in polynomial basis is typically viewed as a two steps process, a polynomial multiplication followed by a modular reduction step. This research proposes a modification to the original Karatsuba-Ofman Algorithm in order to integrate the modular reduction inside the polynomial multiplication step. Modular reduction is achieved by using parallel linear feedback registers. The new algorithm is described in detail and results from a hardware implementation on FPGA technology are discussed. The hardware architecture is described in VHDL and synthesized for a Virtex-6 device. Although the proposed field multiplier can be implemented for arbitrary finite fields, the targeted finite fields are recommended for Elliptic Curve Cryptography. Comparing other KOA multipliers, our proposed multiplier uses 36% less area resources and improves the maximum delay in 10%.
Design of High speed Low Power Reversible Vedic multiplier and Reversible Divider
Srikanth G Department of Electronics & Communication Engineerig, Indur Institute of Engineering & Technology, Siddipet, Medak, JNTUH University, Telangana, India.
2014-09-01
Full Text Available This paper bring out a 32X32 bit reversible Vedic multiplier using "Urdhva Tiryakabhayam" sutra meaning vertical and crosswise, is designed using reversible logic gates, which is the first of its kind. Also in this paper we propose a new reversible unsigned division circuit. This circuit is designed using reversible components like reversible parallel adder, reversible left-shift register, reversible multiplexer, reversible n-bit register with parallel load line. The reversible vedic multiplier and reversible divider modules have been written in Verilog HDL and then synthesized and simulated using Xilinx ISE 9.2i. This reversible vedic multiplier results shows less delay and less power consumption by comparing with array multiplier.
Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage
Pfeifer, Peter [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Gillespie, Andrew [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Stalla, David [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Dohnke, Elmar [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics
2017-02-20
The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H_{2}) by adsorption in quantities and at conditions that outperform current compressed-gas H_{2} storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H_{2} tanks operate at pressures between 350 and 700 bar at ambient temperature and store 3-4 percent of H_{2} by weight (wt%) and less than 25 grams of H_{2} per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H_{2} at pressures less than 350 bar. Adsorption holds H_{2} molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank
Low Power Floating Point Computation Sharing Multiplier for Signal Processing Applications
Sivanantham S; Jagannadha Naidu K; Balamurugan S; Bhuvana Phaneendra D
2013-01-01
Design of low power, higher performance digital signal processing elements are the major requirements in ultra deep sub-micron technology. This paper presents an IEEE-754 standard compatible single precision Floating-point Computation SHaring Multiplier (FCSHM) scheme suitable for low-power and high-speed signal processing applications. The floating-point multiplier used at thefilter taps effectively uses the computation re-use concept. Experimental results on a 10-tap programmable FIR filter...
A 260-340 GHz Dual Chip Frequency Tripler for THz Frequency Multiplier Chains
Maestrini, Alain; Tripon-Canseliet, Charlotte; Ward, John S.; Gill, John J.; Mehdi, Imran
2006-01-01
We designed and fabricated a fix-tuned balanced frequency tripler working in the 260-340 GHz band to be the first stage of a x3x3x3 multiplier chain to 2.7 THz. The design of a dual-chip version of this multiplier featuring an input splitter / output combiner as part of the input / output matching networks of both chips - with no degradation of the expected bandwidth and efficiency- will be presented.
Thingholm, Tine E; Jensen, Ole N; Robinson, Phillip J
2008-01-01
spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy - SIMAC - for sequential separation of mono-phosphorylated peptides and multiply phosphorylated peptides from...... and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a three-fold increase in recovery of multiply phosphorylated peptides....
Investigation of the Decelerating Field of an Electron Multiplier under Negative Ion Impact
Larsen, Elfinn; Kjeldgaard, K.
1973-01-01
The effect of the decelerating field of an electron multiplier towards negative ions was investigated under standard mass spectrometric conditions. Diminishing of this decelerating field by changing of the potential of the electron multiplier increased the overall sensitivity to negative ions...... by a factor of 100. The secondary electron emission coefficient for the negative halogen ions relative to I− were measured on CuBe at the kinetic energies 1.0 and 1.5 keV....
A Revive on 32×32 Bit Multiprecision Dynamic Voltage Scaling Multiplier with Operands Scheduler
Mrs.S.N.Rawat
2016-02-01
Full Text Available In this paper, we present a Multiprecision (MP reconfigurable multiplier that incorporates variable precision, parallel processing (PP, razor-based dynamic voltage scaling (DVS, and dedicated MP operands scheduling to provide optimum performance for a variety of operating conditions. All of the building blocks of the proposed reconfigurable multiplier can either work as independent smaller-precision multipliers or work in parallel to perform higher-precision multiplications. Given the user’s requirements (e.g., throughput, a dynamic voltage/ frequency scaling management unit configures the multiplier to operate at the proper precision and frequency. Adapting to the run-time workload of the targeted application, razor flip-flops together with a dithering voltage unit then configure the multiplier to achieve the lowest power consumption. The single-switch dithering voltage unit and razor flip-flops help to reduce the voltage safety margins and overhead typically associated to DVS to the lowest level. The large silicon area and power overhead typically associated to reconfigurability features are removed. Finally, the proposed novel MP multiplier can further benefit from an operands scheduler that rearranges the input data, hence to determine the optimum voltage and frequency operating conditions for minimum power consumption. This low-power MP multiplier is fabricated in AMIS 0.35-μm technology. Experimental results show that the proposed MP design features a 28.2% and 15.8% reduction in circuit area and power consumption compared with conventional fixed-width multiplier. When combining this MP design with error-tolerant razor-based DVS, PP, and the proposed novel operands scheduler, 77.7%–86.3% total power reduction is achieved with a total silicon area overhead as low as 11.1%. This paper successfully demonstrates that a MP architecture can allow more aggressive frequency/supply voltage scaling for improved power efficiency
Solution of second order linear fuzzy difference equation by Lagrange's multiplier method
Sankar Prasad Mondal
2016-06-01
Full Text Available In this paper we execute the solution procedure for second order linear fuzzy difference equation by Lagrange's multiplier method. In crisp sense the difference equation are easy to solve, but when we take in fuzzy sense it forms a system of difference equation which is not so easy to solve. By the help of Lagrange's multiplier we can solved it easily. The results are illustrated by two different numerical examples and followed by two applications.
GATE REPLACEMENT TECHNIQUE FOR REDUCING LEAKAGE CURRENT IN WALLACE TREE MULTIPLIER
Naveen Raman
2013-01-01
Full Text Available Leakage power has become more significant in the power dissipation of todayâs CMOS circuits. This affects the portable battery operated devices directly. The multipliers are the main key for designing an energy efficient processor, where the multiplier design decides the digital signal processors efficiency. In this study gate replacement technique is used to reduce the leakage power in 4Ã4 Wallace tree multiplier architecture which has been designed by using one bit full adders. This technique replaces the gate which is at worst leakage state by a library gate .In this technique the actual output logic state is maintained in active mode. The main objective of our study is to calculate leakage power in 4Ã4 Wallace tree multiplier by applied gate replacement technique and it is compared with 4Ã4 Wallace tree full adder multiplier. The proposed method reduces 43% of leakage power in 4Ã4 Wallace tree multiplier.
VLSI Implementation of Fault Tolerance Multiplier based on Reversible Logic Gate
Ahmad, Nabihah; Hakimi Mokhtar, Ahmad; Othman, Nurmiza binti; Fhong Soon, Chin; Rahman, Ab Al Hadi Ab
2017-08-01
Multiplier is one of the essential component in the digital world such as in digital signal processing, microprocessor, quantum computing and widely used in arithmetic unit. Due to the complexity of the multiplier, tendency of errors are very high. This paper aimed to design a 2×2 bit Fault Tolerance Multiplier based on Reversible logic gate with low power consumption and high performance. This design have been implemented using 90nm Complemetary Metal Oxide Semiconductor (CMOS) technology in Synopsys Electronic Design Automation (EDA) Tools. Implementation of the multiplier architecture is by using the reversible logic gates. The fault tolerance multiplier used the combination of three reversible logic gate which are Double Feynman gate (F2G), New Fault Tolerance (NFT) gate and Islam Gate (IG) with the area of 160μm x 420.3μm (67.25 mm2). This design achieved a low power consumption of 122.85μW and propagation delay of 16.99ns. The fault tolerance multiplier proposed achieved a low power consumption and high performance which suitable for application of modern computing as it has a fault tolerance capabilities.
FPGA Implementation of 16-bit Multipliers based upon Vedic Mathematic Approach
Zulhelmi .
2014-03-01
Full Text Available This paper proposes design and implementation of a 16-bit multiplier based upon Vedic mathematicapproach, where the design has been targeted to the Xilinx Field Programmable Gate Arrays (FPGAs board, deviceXC5VLX30. The approach is different from a number of approaches that have been used to realize multipliers. Ithas been reported that previous algorithms such as Booth, Modified Booth, and Carry Save Multipliers only suitablefor improving speed or decreasing area utilization; therefore, those algorithms are not appropriate for designingmultipliers that are used for digital signal processing (DSP applications. Moreover, they are not flexible to beimplemented on FPGAs or on a single chip using application specific integration circuits (ASICs. Vedic approach,on the other hand, can be used to design multipliers with optimum speed and less area utilization. In addition, it isreliable to be implemented on FPGAs or on a single chip. Behavioral and post-route simulation results prove that theproposed multiplier shows better performance in terms of speed compared to the other reported multipliers whenbeing implemented on the FPGA. In terms of area utilization, better results are also obtained.
Overbye, Marie Birch
2016-01-01
Doping testing is a key component enforced by anti-doping authorities to detect and deter doping in sport. Policy is developed to protect athletes' right to participate in doping-free sport; and testing is a key tool to secure this right. Accordingly, athletes' responses to anti-doping efforts...... a web-based questionnaire (N = 645; response rate 43%) and uses qualitative findings to elaborate on and explain quantitative results. Results showed that two-thirds of the athletes reported the national testing programme in their sport to be appropriate. A majority of the athletes who had an opinion...
周蓓蓓; 陈钱; 何伟基
2011-01-01
In order to study the characteristics of the charge multiplication and charge transfer in the charge carrier multiplier (CCM) of the electron multiplying charge-coupled device (EMCCD), a distributed equivalent circuit model was proposed for the charge delivery in CCM.The potential distribution in the CCM element of uniform doping was carried out by solving the Possion equation.The maximum potential expression in the CCM element was obtained by the Kirchhoff’s voltage law (KVL), and the distributed equivalent circuit of the CCM element was shown.Combined with the potential distribution in the CCM element, the distributed equivalent circuit model of the CCM was also gained.The analysis of this model shows that if the interelectrode gap length in the CCM elements decreases, the rate of the charge multiplication increases.The charge delivery mainly depends on the self-induced field and the thermal diffusion field.Most of the stored charges transfer to the next CCM element in the beginning of the clock cycle due to the electron mobility generated by the self-induced field.%为了研究电子倍增电荷耦合器件(EMCCD)中电荷载流子倍增寄存器(CCM)内部电荷的倍增及转移特性,提出了一种适用于CCM的电荷传输机制仿真的分布式等效电路模型.利用泊松方程求解了均匀掺杂条件下CCM单元的电势分布,通过基尔霍夫电压定律(KVL)得到了该单元的最大电势表达式,从而得到了其分布式等效电路.同时,结合该单元内的电势分布求解,最终得到了分布式等效电路模型.通过对该模型的分析表明:CCM单元内电极间的间隙越小,电荷倍增率越大.CCM电荷传输主要受到自感生电场和热扩散电场作用,由于自感生电场的电荷迁移率作用,大部分电荷在时钟周期的初始阶段完成转移.
Purav M. Badani
2011-12-01
Full Text Available Present work reports significantly high levels of ionization, eventually leading to Coulomb explosion of Tetramethyl silane (TMS clusters, on interaction with laser pulses of intensity ∼109 W/cm2. Tetramethyl silane clusters, prepared by supersonic expansion were photoionized at 266, 355 or 532 nm and the resultant ions were detected using time-of-flight mass spectrometer. It is observed that wavelength of irradiation and the size of the cluster are crucial parameters which drastically affect the nature of charge species generated upon photoionization of cluster. The results show that clusters absorb significantly higher energy from the laser field at longer wavelengths (532 nm and generate multiply charged silicon and carbon ions which have large kinetic energies. Further, laser-cluster interaction at different wavelengths has been quantified and charge densities at 266, 355 and 532 nm are found to be 4x 1010, 5x 1010 and 5x 1011 charges/cm3 respectively. These unusual results have been rationalized based on dominance of secondary ionization processes at 532 nm ultimately leading to Coulomb explosion of clusters. In another set of experiments, multiply charged ions of Ar (up to +5 state and Kr (up to +6 state were observed when TMS doped inert gas clusters were photoionized at 532 and 355 nm. The extent of energy absorption at these two wavelengths is clearly manifested from the charge state of the atomic ions generated upon Coulomb disintegration of the doped cluster. These experiments thus demonstrate a novel method for generation of multiply charged atomic ions of inert gases at laser intensity of ∼ 109 W/cm2. The average size of the cluster exhibiting Coulomb explosion phenomena under giga watt intensity conditions has been estimated to be ∼ 6 nm. Experimental results obtained in the present work agree qualitatively with the model proposed earlier [D. Niu, H. Li, F. Liang, L. Wen, X. Luo, B. Wang, and H. Qu, J. Chem. Phys. 122, 151103
Francesco Salamone
2017-04-01
Full Text Available nEMoS (nano Environmental Monitoring System is a 3D-printed device built following the Do-It-Yourself (DIY approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ. It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.
Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina
2017-04-11
nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.
Implementation of High Performance Fir Filter Using Low Power Multiplier and Adder
Sweety Kashyap,
2014-01-01
Full Text Available The ever increasing growth in laptop and portable systems in cellular networks has intensified the research efforts in low power microelectronics. Now a day, there are many portable applications requiring low power and high throughput than ever before. Thus, low power system design has become a significant performance goal. So this paper is face with more constraints: high speed, high throughput, and at the same time, consumes as minimal power as possible. The Finite Impulse Response (FIR Filter is the important component for designing an efficient digital signal processing system. So, in this paper author trying, a FIR filter is constructing, which is efficient not only in terms of power and speed but also in terms of delay. When consider the elementary structure of an FIR filter, it is found that it is a combination of multipliers and delays, which in turn are the combination of adders. . This paper presents an efficient implementation and analysis for performance evaluation of multiplier and adder to minimize the consumption of energy during multiplication and addition methodology to improve the performance by compares different type of Multipliers and adder, respectively. By using, power comparison result of adders and multiplier, choice low power adder and multiplier to implementation of high performance FIR filter.
Laserspray ionization imaging of multiply charged ions using a commercial vacuum MALDI ion source.
Inutan, Ellen D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah
2012-11-06
This is the first report of imaging mass spectrometry (MS) from multiply charged ions at vacuum. Laserspray ionization (LSI) was recently extended to applications at vacuum producing electrospray ionization-like multiply charged ions directly from surfaces using a commercial intermediate pressure matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) MS instrument. Here, we developed a strategy to image multiply charged peptide ions. This is achieved by the use of 2-nitrophloroglucinol as matrix for spray deposition onto the tissue section and implementation of "soft" acquisition conditions including lower laser power and ion accelerating voltages similar to electrospray ionization-like conditions. Sufficient ion abundance is generated by the vacuum LSI method to employ IMS separation in imaging multiply charged ions obtained on a commercial mass spectrometer ion source without physical instrument modifications using the laser in the commercially available reflection geometry alignment. IMS gas-phase separation reduces the complexity of the ion signal from the tissue, especially for multiply charged relative to abundant singly charged ions from tissue lipids. We show examples of LSI tissue imaging from charge state +2 of three endogenous peptides consisting of between 1 and 16 amino acid residues from the acetylated N-terminal end of myelin basic protein: mass-to-charge (m/z) 795.81 (+2) molecular weight (MW) 1589.6, m/z 831.35 (+2) MW 1660.7, and m/z 917.40 (+2) MW 1832.8.
FPGA Implementation of Complex Multiplier Using Urdhva Tiryakbham Sutra of Vedic Mathematics
Rupa A. Tomaskar
2014-05-01
Full Text Available In this work VHDL implementation of complex number multiplier using ancient Vedic mathematics is presented, also the FPGA implementation of 4-bit complex multiplier using Vedic sutra is done on SPARTAN 3 FPGA kit. The idea for designing the multiplier unit is adopted from ancient Indian mathematics "Vedas". The Urdhva Tiryakbhyam sutra (method was selected for implementation since it is applicable to all cases of multiplication. The feature of this method is any multi-bit multiplication can be reduced down to single bit multiplication and addition. On account of these formulas, the partial products and sums are generated in one step which reduces the carry propagation from LSB to MSB. The implementation of the Vedic mathematics and their application to the complex multiplier ensure substantial reduction of propagation delay. The simulation results for 4-bit, 8-bit, 16-bit and 32 bit complex number multiplication using Vedic sutra are illustrated. The results show that Urdhva Tiryakbhyam sutra with less number of bits may be used to implement multiplier efficiently in signal processing algorithms.
Cardinale, Tiziana; Balestra, Alessandro; Cardinale, Nicola
2015-04-01
appropriate cognitive apparatus has been set up for the entire technical process, first of all making use of infrared thermography. It is an affordable, fast and hence widespread method to detect temperature distributions on the surfaces of buildings. In the investigation of historical structures, where a restoration or conservation treatment can cause irreversible damage to the structure, it is considered to be of most importance. So we have made a thermographic mapping and we have analyzed the thermal conditions of approximately 15 caves, with the presence of rising moisture and condensation moisture. The ability to investigate a so complex reality offers an important opportunity for the knowledge, valorization and fruition of the cultural landscape of Matera, where you can disassemble the constituents of full and empty spaces with the consideration that the whole is not merely the sum of the parts.
Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.; Nakagawa, T. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Tzoganis, V. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Cockcroft Institute, Daresbury, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool, Merseyside L69 3BX (United Kingdom)
2016-02-15
Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.
Nagatomo, T.; Tzoganis, V.; Kase, M.; Kamigaito, O.; Nakagawa, T.
2016-02-01
Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO2 (quartz), KBr, Eu-doped CaF2, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy 12C4+, 16O4+, and 40Ar11+ ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.
Low Voltage Floating Gate MOS Transistor Based Four-Quadrant Multiplier
R. Srivastava
2014-12-01
Full Text Available This paper presents a four-quadrant multiplier based on square-law characteristic of floating gate MOSFET (FGMOS in saturation region. The proposed circuit uses square-difference identity and the differential voltage squarer proposed by Gupta et al. to implement the multiplication function. The proposed multiplier employs eight FGMOS transistors and two resistors only. The FGMOS implementation of the multiplier allows low voltage operation, reduced power consumption and minimum transistor count. The second order effects caused due to mobility degradation, component mismatch and temperature variations are discussed. Performance of the proposed circuit is verified at ±0.75 V in TSMC 0.18 µm CMOS, BSIM3 and Level 49 technology by using Cadence Spectre simulator.
FPGA Implementation of Double Precision Floating Point Multiplier using Xilinx Coregen Tool
Sukhvir Kaur
2013-06-01
Full Text Available Floating point arithmetic is widely used in many areas, especially scientific computation and signal processing. The main applications of floating points today are in the field of medical imaging, biometrics, motion capture and audio applications. The IEEE floating point standard defines both single precision and double precision formats. Multiplication is a core operation in many signal processing computations, and as such efficient implementation of floating point multipliers is an important concern. Until now there is the implementation of the low precision floating point formats, but this piece of work considers the implementation of 64-bit double precision multiplier. This paper presents the FPGA implementation of double precision floating point multiplier using Xilinx Coregen Tool.
Shuli Gao
2009-01-01
Full Text Available Modern FPGAs contain embedded DSP blocks, which can be configured as multipliers with more than one possible size. FPGA-based designs using these multigranular embedded blocks become more challenging when high speed and reduced area utilization are required. This paper proposes an efficient design methodology for implementing large size signed multipliers using multigranular small embedded blocks. The proposed approach has been implemented and tested targeting Altera's Stratix II FPGAs with the aid of the Quartus II software tool. The implementations of the multipliers have been carried out for operands with sizes ranging from 40 to 256 bits. Experimental results demonstrated that our design approach has outperformed the standard scheme used by Quartus II tool in terms of speed and area. On average, the delay reduction is about 20.7% and the area saving, in terms of ALUTs, is about 67.6%.
A HIGHLY TIME-EFFICIENT DIGITAL MULTIPLIER BASED ON THE A2 BINARY REPRESENTATION
Hatem BOUKADIDA,
2011-05-01
Full Text Available A comparative study of different types of digital multipliers based on the A2 redundant binary representation is investigated in this paper. Some techniques have been proposed and implemented using different ALTERA Stratix FPGA platforms. The principle is to try to reduce the number of partial products terms to be summed with addition trees. These techniques are based on exploiting the associative and commutative properties of the addition operation. The multiplication was achieved using four schemes which are respectively the trivial scheme, the BRAUN scheme, the BOOTH scheme and finally the Carry-Save Wallace scheme. Two input A2- Natural transcoders and one output Natural-A2 transcoder are deployed to translate between the classical and the new A2 redundant binary representation. Synthesis results show that the A2-BRAUN multiplier requires lessarea than the conventional one. It was also noticed that the A2-Wallace multiplier offers better speed performance with respect to others schemes.
Design of Low Power Multiplier with Energy Efficient Full Adder Using DPTAAL
A. Kishore Kumar
2013-01-01
Full Text Available Asynchronous adiabatic logic (AAL is a novel lowpower design technique which combines the energy saving benefits of asynchronous systems with adiabatic benefits. In this paper, energy efficient full adder using double pass transistor with asynchronous adiabatic logic (DPTAAL is used to design a low power multiplier. Asynchronous adiabatic circuits are very low power circuits to preserve energy for reuse, which reduces the amount of energy drawn directly from the power supply. In this work, an 8×8 multiplier using DPTAAL is designed and simulated, which exhibits low power and reliable logical operations. To improve the circuit performance at reduced voltage level, double pass transistor logic (DPL is introduced. The power results of the proposed multiplier design are compared with the conventional CMOS implementation. Simulation results show significant improvement in power for clock rates ranging from 100 MHz to 300 MHz.
Novel Design of a Nano-metric Fast 4*4 Reversible unsigned Wallace Multiplier Circuit
Ehsan PourAliAkbar
2015-12-01
Full Text Available One of the most promising technologies in designing low-power circuits is reversible computing. It is used in nanotechnology, quantum computing, quantum dot cellular automata (QCA, DNA computing, optical computing and in CMOS low-power designs. Since reversible logic is subject to certain restrictions (e.g. fan-out and feedback are not allowed, traditional synthesis methods are not applicable and specific methods have been developed. In this paper, we offer a Wallace 4*4 reversible multiplier circuits which have faster speed and lower complexity in comparison with the other multiplier circuits. This circuit performs better, regarding to the number of gates, garbage outputs and constant inputs work better than the same circuits. In this paper, Peres gate is used as HA and HNG gate is used as FA. We offer the best method to multiply two 4 bit numbers. These Nano-metric circuits can be used in very complex systems.
Design of a High Linearity Four-Quadrant Analog Multiplier in Wideband Frequency Range
Abdul kareem Mokif Obais
2017-05-01
Full Text Available In this paper, a voltage mode four quadrant analog multiplier in the wideband frequency rangeis designed using a wideband operational amplifier (OPAMP and squaring circuits. The wideband OPAMP is designed using 10 identical NMOS transistorsand operated with supply voltages of ±12V. Two NMOS transistors and two wideband OPAMP are utilized in the design of the proposed squaring circuit. All the NMOS transistors are based on 0.35µm NMOStechnology. The multiplier has input and output voltage ranges of ±10 V, high range of linearity from -10 V to +10 V, and cutoff frequency of about 5 GHz. The proposed multiplier is designed on PSpice in Orcad 16.6
G-Frame Representation and Invertibility of G-Bessel Multipliers
A.ABDOLLAHI; E.RAHIMI
2013-01-01
In this paper we show that every g-frame for an infinite dimensional Hilbert space H can be written as a sum of three g-orthonormal bases for H.Also,we prove that every gframe can be represented as a linear combination of two g-orthonormal bases if and only if it is a g-Riesz basis.Further,we show each g-Bessel multiplier is a Bessel multiplier and investigate the inversion of g-frame multipliers.Finally,we introduce the concept of controlled g-frames and weighted g-frames and show that the sequence induced by each controlled g-frame (resp.,weighted g-frame) is a controlled frame (resp.,weighted frame).
Gao, Zhe; Dong, Mei; Wang, Guizhen; Sheng, Pei; Wu, Zhiwei; Yang, Huimin; Zhang, Bin; Wang, Guofu; Wang, Jianguo; Qin, Yong
2015-07-27
To design highly efficient catalysts, new concepts for optimizing the metal-support interactions are desirable. Here we introduce a facile and general template approach assisted by atomic layer deposition (ALD), to fabricate a multiply confined Ni-based nanocatalyst. The Ni nanoparticles are not only confined in Al2 O3 nanotubes, but also embedded in the cavities of Al2 O3 interior wall. The cavities create more Ni-Al2 O3 interfacial sites, which facilitate hydrogenation reactions. The nanotubes inhibit the leaching and detachment of Ni nanoparticles. Compared with the Ni-based catalyst supported on the outer surface of Al2 O3 nanotubes, the multiply confined catalyst shows a striking improvement of catalytic activity and stability in hydrogenation reactions. Our ALD-assisted template method is general and can be extended for other multiply confined nanoreactors, which may have potential applications in many heterogeneous reactions.
R. P. Meenaakshi Sundari
2014-01-01
Full Text Available In this study by using the modified Wallace tree multiplier, an error compensated adder tree is constructed in order to round off truncation errors and to obtain high through put discrete cosine transform design. Peak Signal to Noise Ratio (PSNR is met efficiently since modified Wallace Tree method is an efficient, hardware implementable digital circuit that multiplies two integers resulting an output with reduced delays and errors. Nearly 6% of delays and around 1% of gate counts are reduced. The number of look up tables consumed is 2% lesser than that of the previous multipliers. Thus an area efficient discrete cosine transform is built to achieve high throughput with minimum gate counts and delays for the required Peak Signal to Noise Ratio when compared to the existing DCT’s.
Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel
2016-03-01
Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes.
Polarization induced doped transistor
Xing, Huili (Grace); Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang
2016-06-07
A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.
High frequency capacitor-diode voltage multiplier dc-dc converter development
Kisch, J. J.; Martinelli, R. M.
1977-01-01
A power conditioner was developed which used a capacitor diode voltage multiplier to provide a high voltage without the use of a step-up transformer. The power conditioner delivered 1200 Vdc at 100 watts and was operated from a 120 Vdc line. The efficiency was in excess of 90 percent. The component weight was 197 grams. A modified boost-add circuit was used for the regulation. A short circuit protection circuit was used which turns off the drive circuit upon a fault condition, and recovers within 5 ms after removal of the short. High energy density polysulfone capacitors and high speed diodes were used in the multiplier circuit.
A Low Power High Bandwidth Four Quadrant Analog Multiplier in 32 NM CNFET Technology
Vitrag Sheth
2012-05-01
Full Text Available Carbon Nanotube Field Effect Transistor (CNFET is a promising new technology that overcomes several limitations of traditional silicon integrated circuit technology. In recent years, the potential of CNFET for analog circuit applications has been explored. This paper proposes a novel four quadrant analog multiplier design using CNFETs. The simulation based on 32nm CNFET technology shows that the proposed multiplier has very low harmonic distortion (<0.45%, large input range (±400mV, large bandwidth (~50GHz and low power consumption (~247µW, while operating at a supply voltage of ±0.9V.
Coefficient multipliers of H~p spaces over bounded symmetric domains in C
肖建斌
1995-01-01
One way to give information about the Taylor coefficients of Hp functions is to describe the multipliers of Hp into various spaces. In the case of one complex variable, Duren and Shields described the multipliers of Hp into lq (0
MULTIPLIERS AND TENSOR PRODUCTS OF L(p, q) LORENTZ SPACES
无
2007-01-01
Let G be a locally compact abelian group. The main purpose of this article is to find the space of multipliers from the Lorentz space L(p1, q1)(G) to L(p'2, q'2)(G). For this reason, the authors define the spaceAp2,q2p1,q1(G), discuss its properties and prove that the space of multipliers from L(p1, q1)(G) to L(p'2, q'2)(G) is isometrically isomorphic to the dual of Ap2,q2p1,q1(G).
Limitations in THz Power Generation with Schottky Diode Varactor Frequency Multipliers
Krozer, Viktor; Loata, G.; Grajal, J.
2002-01-01
We discuss the limitations in power generation with Schottky diode and HBV (heterostructure barrier varactor) diode frequency multipliers. It is shown that at lower frequencies the experimental results achieved so far approach the theoretical limit of operation for the employed devices. However......, at increasing frequencies the power drops with f-3 instead of the f-2 predicted by theory. In this contribution we provide an overview of state-of-the-art results. A comparison with theoretically achievable multiplier performance reveals that the devices employed at higher frequencies are operating...
CMOS DESIGN OF A MULTI_INPUT ANALOG MULTIPLIER AND DIVIDER CIRCUIT
2014-01-01
This paper proposes a CMOS current-mode multi_input analog multiplier and divider circuit based on a new method. Exponential and logarithmic functions are employed to realize the circuit which is used in neural network and fuzzy integrated systems. The major advantages of this multiplier are ability of having multi_input signals, and low Total Harmonic Distortion (THD). The circuit is designed and simulated using MATLAB software and HSPICE simulator by level 49 parameters (BSIM3v3) in 0.35μm ...
Theory of a stationary microwave discharge with multiply charged ions in an expanding gas jet
Shalashov, A. G.; Abramov, I. S.; Golubev, S. V.; Gospodchikov, E. D.
2016-08-01
The formation of a jet of a nonequilibrium multiply charged ion plasma is studied in the inhomogeneous gas jet. It is shown that the geometrical divergence of the jet restricts the maximum ion charge state and results in the spatial localization of the discharge. Stationary solutions corresponding to such regimes are constructed. The model proposed can be used to optimize modern experiments on generation of hard UV radiation due to the line emission of multiply ionized atoms in a gas jet heated by high-power millimeter and submillimeter radiation.
MULTIPLIER OPERATORS AND EXTREMAL FUNCTIONS RELATED TO THE DUAL DUNKL-SONINE OPERATOR
Fethi SOLTANI
2013-01-01
We study the dual Dunkl-Sonine operator tSk,e on Rd,and give expression of tSk,e,using Dunkl multiplier operators on Rd.Next,we study the extremal functions f*λ,λ ＞ 0 related to the Dunkl multiplier operators,and more precisely show that {f*λ}λ＞0 converges uniformly to tSk,e(f) as λ → 0+.Certain examples based on Dunkl-heat and Dunkl-Poisson kernels are provided to illustrate the results.
V. V. Agashe
1960-07-01
Full Text Available Most of the semi-conductors are formed by addition of foreign substances in an insulator. This is called 'Doping'. These doped semi-conductors today are widely used in many electrical devices. Some of them are rectifiers, transistors, thermistors, oxides cathodes and photo-sensitive elements. This paper reviews the fundamental concept of impurity in semi-conductors and recent work on doping of the latter. Purification methods are described in the case of group IV elements and semi-conducting intermetallic compounds. Results of different physical measurements have been discussed in order to understand the role of 'doping'.
2007-01-01
Beijing has been making preparations to present a dope-free Olympics next yearThe China Anti-Doping Agency,set up to replace the 17-year-old China Doping Control Center,was offi- cially unveiled in Beijing on November 12.Between July 27 next year,when the Olympic Village is opened to athletes,and August 24,the last day of the Olympic Games,a total of 4,500 doping tests will be conducted in the build- ing.This number is 25 percent higher than that of the Athens Olympic Games in 2004 and 63 percent higher than at the Sydney Olympics in 2000.
Overbye, Marie Birch; Knudsen, Mette Lykke; Pfister, Gertrud Ursula
2013-01-01
tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43%) represe......tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43......%) representing 40 sports completed aweb-based questionnaire. Participants were asked to imagine themselves in a situation in which theyhad to decide whether to dope or not to dope and then evaluate how different circumstances would affecttheir decisions.Results: Multiple circumstances had an effect on athletes......’ hypothetical decisions. The most effective deter-rents were related to legal and social sanctions, side-effects and moral considerations. Female athletesand younger athletes evaluated more reasons as deterrents than older, male athletes. When confrontedwith incentives to dope, the type of sport was often...
Ultra-low-power, class-AB, CMOS four-quadrant current multiplier
Sawigun, C.; Serdijn, W.A.
2009-01-01
A class-AB four-quadrant current multiplier constituted by a class-AB current amplifier and a current splitter which can handle input signals in excess of ten times the bias current is presented. The proposed circuit operation is based on the exponential characteristic of BJTs or subthreshold
On the Method of Multiplier-enlargement and Approximation of Unbounded Continuous Functions
ZHENG Cheng-De; WANG Ren-Hong
2001-01-01
By combining the classical appropriate functions “1, x, x2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite-Fejéinterpolation polynomial operators are analysed and studied, and a general conclusion is obtained.
Modeling of Schottky Barrier Diode Millimeter-Wave Multipliers at Cryogenic Temperatures
Johansen, Tom K.; Rybalko, Oleksandr; Zhurbenko, Vitaliy
2015-01-01
We report on the evaluation of Schottky barrier diode GaAs multipliers at cryogenic temperatures. A GaAs Schottky barrier diode model is developed for theoretical estimation of doubler performance. The model is used to predict efficiency of doublers from room to cryogenic temperatures...
Weakly repelling fixed points and multiply-connected wandering domains of meromorphic functions
无
2006-01-01
We consider the dynamics of a transcendental meromorphic function f(z) with only finitely many poles and prove that if f has only finitely many weakly repelling fixed points,then there is no multiply-connected wandering domain in its Fatou set.
Production of multiply charge-state ions in a multicusp ion source
Williams, M. D.; deVries, G. J.; Gough, R. A.; Leung, K. N.; Monroy, M.
1996-03-01
High charge state ion beams are commonly used in atomic and nuclear physics experiments. Multiply charged ions are normally produced in an ECR or in an EBIS. Multicusp generators can confine primary electrons very efficiently. Therefore, the electrical and gas efficiencies of these devices are high. Since the magnetic cusp fields are localized near the chamber wall, large volumes of uniform and high density plasmas can be obtained at low pressure, conditions favorable for the formation of multiply charged state ions. Attempts have been made at LBNL to generate multiply charged ion beams by employing a 25-cm diam by 25-cm long multicusp source. Experimental results demonstrated that charge states as high as 7+ can be obtained with argon or xenon plasmas. Multiply charged metallic ions such as tungsten and titanium have also been successfully formed in the multicusp source by evaporation and sputtering processes. In order to extend the charge state to higher values, a novel technique of injecting high energy electrons into the source plasma is proposed. If this is successful, the multicusp source will become very useful for radioactive beam accelerators, ion implantation, and nuclear physics applications.
Production of multiply charge-state ions in a multicusp ion source
Williams, M.D.; deVries, G.J.; Gough, R.A.; Leung, K.N.; Monroy, M. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
1996-03-01
High charge state ion beams are commonly used in atomic and nuclear physics experiments. Multiply charged ions are normally produced in an ECR or in an EBIS. Multicusp generators can confine primary electrons very efficiently. Therefore, the electrical and gas efficiencies of these devices are high. Since the magnetic cusp fields are localized near the chamber wall, large volumes of uniform and high density plasmas can be obtained at low pressure, conditions favorable for the formation of multiply charged state ions. Attempts have been made at LBNL to generate multiply charged ion beams by employing a 25-cm diam by 25-cm long multicusp source. Experimental results demonstrated that charge states as high as 7+ can be obtained with argon or xenon plasmas. Multiply charged metallic ions such as tungsten and titanium have also been successfully formed in the multicusp source by evaporation and sputtering processes. In order to extend the charge state to higher values, a novel technique of injecting high energy electrons into the source plasma is proposed. If this is successful, the multicusp source will become very useful for radioactive beam accelerators, ion implantation, and nuclear physics applications. {copyright} {ital 1996 American Institute of Physics.}
Testing of money multiplier model for Pakistan: does monetary base carry any information?
Muhammad Arshad Khan
2010-02-01
Full Text Available This paper tests the constancy and stationarity of mechanic version of the money multiplier model for Pakistan using monthly data over the period 1972M1-2009M2. We split the data into pre-liberalization (1972M1-1990M12 and post-liberalization (1991M1-2009M2 periods to examine the impact of financial sector reforms. We first examine the constancy and stationarity of the money multiplier and the results suggest the money multiplier remains non-stationary for the entire sample period and sub-periods. We then tested cointegration between money supply and monetary base and find the evidence of cointegration between two variables for the entire period and two sub-periods. The coefficient restrictions are satisfied only for the post-liberalization period. Two-way long-run causality between money supply and monetary base is found for the entire period and post-liberalization. For the post-liberalization period the evidence of short-run causality running from monetary base to money supply is also identified. On the whole, the results suggest that money multiplier model can serve as framework for conducting short-run monetary policy in Pakistan. However, the monetary authority may consider the co-movements between money supply and reserve money at the time of conducting monetary policy.
Time-area efficient multiplier-free filter architectures for FPGA implementation
Shajaan, Mohammad; Nielsen, Karsten; Sørensen, John Aasted
1995-01-01
Simultaneous design of multiplier-free filters and their hardware implementation in Xilinx field programmable gate array (XC4000) is presented. The filter synthesis method is a new approach based on cascade coupling of low order sections. The complexity of the design algorithm is 𝒪 (filter o...
Time-area efficient multiplier-free recursive filter architectures for FPGA implementation
Shajaan, Mohammad; Sørensen, John Aasted
1996-01-01
Simultaneous design of multiplier-free recursive filters (IIR filters) and their hardware implementation in Xilinx field programmable gate array (XC4000) is presented. The hardware design methodology leads to high performance recursive filters with sampling frequencies in the interval 15-21 MHz (...
Composite Field Multiplier based on Look-Up Table for Elliptic Curve Cryptography Implementation
Marisa W. Paryasto
2013-09-01
Full Text Available Implementing a secure cryptosystem requires operations involving hundreds of bits. One of the most recommended algorithm is Elliptic Curve Cryptography (ECC. The complexity of elliptic curve algorithms and parameters with hundreds of bits requires specific design and implementation strategy. The design architecture must be customized according to security requirement, available resources and parameter choices. In this work we propose the use of composite field to implement finite field multiplication for ECC implementation. We use 299-bit keylength represented in GF((21323 instead of in GF(2299. Composite field multiplier can be implemented using different multiplier for ground-field and for extension field. In this paper, LUT is used for multiplication in the ground-field and classic multiplieris used for the extension field multiplication. A generic architecture for the multiplier is presented. Implementation is done with VHDL with the target device Altera DE2. The work in this paper uses the simplest algorithm to confirm the idea that by dividing field into composite, use different multiplier for base and extension field would give better trade-off for time and area. This work will be the beginning of our more advanced further research that implements composite-field using Mastrovito Hybrid, KOA and LUT.
Air-Puff Conditioning Audiometry: Extending Its Applicability with Multiply Handicapped Individuals.
Lancioni, G. E.; And Others
1990-01-01
This study examined the use of air-puff conditioning audiometry in the hearing assessment of 12 multiply handicapped (including severe/profound mental retardation) subjects, ages 9-32. Ten subjects reached criterion conditioning and then completed the hearing assessment with the air-puff procedure while one reached criterion with a modified…
The (Lp,(F)pβ,∞)-Boundedness of Commutators of Multipliers
Pu ZHANG; Jie Cheng CHEN
2005-01-01
In this paper, we study the commutator generalized by a multiplier and a Lipschitz function.Under some assumptions, we establish the boundedness properties of it from Lp(Rn) intoFβ,∞p(Rn):the Triebel-Lizorkin spaces.
Electron loss from multiply protonated lysozyme ions in high energy collisions with molecular oxygen
Hvelplund, P; Nielsen, SB; Sørensen, M
2001-01-01
We report on the electron loss from multiply protonated lysozyme ions Lys-Hn(n)+ (n = 7 - 17) and the concomitant formation of Lys-Hn(n+1)+. in high-energy collisions with molecular oxygen (laboratory kinetic energy = 50 x n keV). The cross section for electron loss increases with the charge stat...
Structural brain network analysis in families multiply affected with bipolar I disorder
Forde, Natalie J.; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J.; Cannon, Dara M.; Murray, Robin M.; McDonald, Colm
2015-01-01
Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its
A Classical Conditioning Procedure for the Hearing Assessment of Multiply Handicapped Persons.
Lancioni, Giulio E.; And Others
1989-01-01
Hearing assessments of multiply handicapped children/adolescents were conducted using classical conditioning (with an air puff as unconditioned stimulus) and operant conditioning (with a modified visual reinforcement audiometry procedure or edible reinforcement). Findings indicate that classical conditioning was successful with 21 of the 23…
Faster multiplier and squaring units for evaluation of powers and monomials: a hardware approach
Srinivasan, Aparna
2013-03-01
In processors, especially DSPs, the most recurring operations are those that involve exponents and monomials. In this paper, the use of a multiplier and squaring technique based on Vedic mathematics is suggested. Algorithms for calculation of monomials and exponents that make use of the described hardware are also stated.
Implementation and design of multifunction filter using multiply-output CCII
Gu Jixing; Zheng Shibao; Liu Haiwen
2005-01-01
A novel filter built by multiply-output current conveyor II (MOCCII) is presented and analyzed which implements the low-pass, high-pass, band-reject and all-pass second order transfer functions simultaneously. With the passive elements grounded, the filter also displays low incremental parameter sensitivities.Spice simulation results are presented and support the theory.
Evans, C. J.; Johnson, C. J.
1988-01-01
A blind multiply handicapped preschooler was taught to respond appropriately to two adjacency pair types ("where question-answer" and "comment-acknowledgement"). The two alternative language acquisition strategies available to blind children were encouraged: echolalia to maintain communicative interactions and manual searching…
Neidert, Pamela L.; Iwata, Brian A.; Dozier, Claudia L.
2005-01-01
We describe the assessment and treatment of 2 children with autism spectrum disorder whose problem behaviors (self-injury, aggression, and disruption) were multiply controlled. Results of functional analyses indicated that the children's problem behaviors were maintained by both positive reinforcement (attention) and negative reinforcement (escape…
Catani, Paul; Teräsvirta, Timo; Yin, Meiqun
A Lagrange multiplier test for testing the parametric structure of a constant conditional correlation generalized autoregressive conditional heteroskedasticity (CCC-GARCH) model is proposed. The test is based on decomposing the CCC-GARCH model multiplicatively into two components, one of which...
Discovery of a faint, star-forming, multiply lensed, Lyman-α blob
Caminha, G. B.; Karman, W.; Rosati, P.; Caputi, K. I.; Arrigoni Battaia, F.; Balestra, I.; Grillo, C.; Mercurio, A.; Nonino, M.; Vanzella, E.
2016-01-01
We report the discovery of a multiply lensed Lyman-α blob (LAB) behind the galaxy cluster AS1063 using the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT). The background source is at z = 3.117 and is intrinsically faint compared to almost all previously reported LABs. We
Nak Eun Cho
2012-01-01
Full Text Available We obtain some subordination- and superordination-preserving properties for a class of multiplier transformations associated with Noor integral operators defined on the space of normalized analytic functions in the open unit disk. The sandwich-type theorems for these transformations are also considered.
Schweinzer, J; Brandenburg, R; Bray, [No Value; Hoekstra, R; Aumayr, F; Janev, RK; Winter, HP
1999-01-01
New experimental and theoretical cross-section data for inelastic collision processes of Li atoms in the ground state and excited states (up to n = 4) with electrons, protons, and multiply charged ions have been reported since the database assembled by Wutte et al. [ATOMIC DATA AND NUCLEAR DATA TABL
Loendersloot, R.; Lomov, S.V.; Akkerman, R.; Verpoest, I.
2006-01-01
The geometry of multiaxial multiply carbon reinforcement under shear deformation is studied. A description based on the distortions of the fibres bundles, induced by the stitch yarn is proposed. These distortions are recognised to be dominant for the impregnation behaviour and the damage initiation,
T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras
Jianming Zhan
2003-01-01
of BCC-algebras, examining its properties. Using a t-norm T, the direct product and T-product of T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras are discussed and their properties are investigated.
Best approximation of the Dunkl Multiplier Operators Tk,ℓ,m
Fethi Soltani
2015-03-01
Full Text Available We study some class of Dunkl multiplier operators Tk,ℓ,m; and we give for them an application of the theory of reproducing kernels to the Tikhonov regularization,which gives the best approximation of the operators Tk,ℓ,m on a Hilbert spaces Hskℓ.
POINTWISE MULTIPLIERS FOR LOCALIZED MORREY-CAMPANATO SPACES ON RD-SPACES
林海波; 杨大春
2014-01-01
In this article, the authors characterize pointwise multipliers for localized Morrey-Campanato spaces, associated with some admissible functions on RD-spaces, which include localized BMO spaces as a special case. The results obtained are applied to Schr¨odinger operators and some Laguerre operators.
An Exploration of Social Media Use among Multiply Minoritized LGBTQ Youth
Lucero, Alfie Leanna
2013-01-01
This study responds to a need for research in a fast-growing and significant area of study, that of exploring, understanding, and documenting the numerous ways that multiply marginalized LGBTQ youth between the ages of 14 and 17 use social media. The primary research question examined whether social media provide safe spaces for multiply…
梁立孚
1999-01-01
By using the involutory transformations, the classical variational principle——Hamiltonian principle of two kinds of variables in general mechanics is advanced and by using undetermined Lagrangian multiplier method, the generalized variational principles and generalized variational principles with subsidiary conditions are established. The stationary conditions of various kinds of variational principles are derived and the relational problems discussed.
Ultra-low-power, class-AB, CMOS four-quadrant current multiplier
Sawigun, C.; Serdijn, W.A.
2009-01-01
A class-AB four-quadrant current multiplier constituted by a class-AB current amplifier and a current splitter which can handle input signals in excess of ten times the bias current is presented. The proposed circuit operation is based on the exponential characteristic of BJTs or subthreshold MOSFET
A Comparison of C++ Sockets and Corba in a Distributed Matrix Multiply Application
Schnaidt, Matt; Duman, Alpay; Lewis, Ted
1998-01-01
This project has two primary purposes. The first, is to implement a distributed matrix multiply algorithm using C++ sockets, and Corba objects with the objective of discovering what additional overhead, if any, exists in a Corba implementation. Secondly, attempt to improve the speedup through the use of stateful servers in the C++ implementation.
The northern corn rootworm (NCR, Diabrotica barberi) in eastern and central North America exhibits at least three distinct populations with respect to Wolbachia infection: uninfected; singly infected; multiply infected. The infected states are associated with different mtDNA haplotypes and reduced m...
Regulation of a lightweight high efficiency capacitator diode voltage multiplier dc-dc converter
Harrigill, W. T., Jr.; Myers, I. T.
1976-01-01
A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.
Regulation of a lightweight high efficiency capacitor diode voltage multiplier dc-dc converter
Harrigill, W. T., Jr.; Myers, I. T.
1976-01-01
A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.
Temperature Sensing Above 1000 C Using Cr-Doped GdAlO3 Spin-Allowed Broadband Luminescence
Eldridge, Jeffrey I.; Chambers, Matthew D.
2012-01-01
Cr-doped GdAlO3 (Cr:GdAlO3) is shown to produce remarkably high-intensity spin-allowed broadband luminescence with sufficiently long decay times to make effective luminescence-decay-time based temperature measurements above 1000 C. This phosphor is therefore an attractive alternative to the much lower luminescence intensity rare-earth-doped thermographic phosphors that are typically utilized at these elevated temperatures. In particular, Cr:GdAlO3 will be preferred over rare-earth-doped phosphors, such as Dy:YAG, at temperatures up to 1200 C for intensity-starved situations when the much lower emission intensity from rare-earth-doped phosphors is insufficient for accurate temperature measurements in the presence of significant radiation background. While transition-metal-doped phosphors such as Cr:Al2O3 (ruby) are known to exhibit high luminescence intensity at low dopant concentrations, quenching due to nonradiative decay pathways competing with the (sup 2)E to (sup 4)A(sub 2) radiative transition (R line) has typically restricted their use for temperature sensing to below 600 C. Thermal quenching of the broadband (sup 4)T(sub 2) to (sup 4)A(sub 2) radiative transition from Cr:GdAlO3, however, is delayed until much higher temperatures (above 1000 C). This spin-allowed broadband emission persists to high temperatures because the lower-lying (sup 2)E energy level acts as a reservoir to thermally populate the higher shorter-lived (sup 4)T(sub 2) energy level and because the activation energy for nonradiative crossover relaxation from the (sup 4)T(sub 2) level to the (sup 4)A(sub 2) ground state is high. The strong crystal field associated with the tight bonding of the AlO6 octahedra in the GdAlO3 perovskite structure is responsible for this behavior.
KAJIAN EFEK MULTIPLIER PRODUK UNGGULAN BERBASIS KLUSTER UKM PENGOLAHAN IKAN ASAP
Yusmar Ardhi Hidayat
2015-05-01
Full Text Available The purpose of this research are to analyze scale of production of leading commodities and multiplier effect of cultivation and smoked fish in Wonosari, Bonang Demak. This research applies census method in collecting data from all business unit which identified as leading commodities in Wirosari Village, Bonang, Demak Regency. Regarding survey conducted, there are 18 catfish breeders and 49 smoked fish small business used as respondent. Primary data used in this research are rate of production in basis goods, land area, capital, raw materials, manpower, and income multiplier. To support empirical discussion, tools of analysis used in this research are descriptive statistics and income multiplier. Results of this research are primary commodities in Wonosari Village are smoked fish and fresh cat fish. Total production of smoked fish reaches 6.4 Ton each day for with type of smoked fish such as river cat fish, tongkol, sting-ray, cat fish, and other river fish. Meanwhile total production of catfish breeding reaches 105 Ton in first harvest after 2-3 months. Based on that number, smoked fish business promise higher profit than profits catfish breeding. Tujuan penelitian ini adalah menganalisis tingkat produksi dan efek multiplier produk unggulan budidaya dan pengasapan ikan di Desa Wonosari, Bonang Kabupaten Demak. Penelitian mengunakan metode sensus dengan mencari data dari semua unit usaha yang merupakan produk unggulan di Desa Wirosari, Bonang Kecamatan Demak. Responden yang diperoleh sejumlah 18 pembudidaya ikan dan 49 usaha pengasapan ikan. Data primer yang akan digunakan yaitu data jumlah produksi komoditas unggulan, luas lahan, jumlah modal, bahan baku, tenaga kerja, dan multiplier pendapatan. Alat analisis yang digunakan dalam penelitian ini adalah statistik deskriptif, dan indeks multiplier pendapatan. Hasil penelitian menunjukkan bahwa komoditas unggulan Desa Wonosari Kecamatan Bonang Kabupaten Demak adalah Ikan Asap dan Budidaya Ikan Lele
Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.
2016-01-01
It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.
Elaboration and research of planetary precessional multiplier type K-H-V
Bostan, I.; Dulgheru, V.; Ciobanu, R.
2016-08-01
The multiplier is an indispensable part of the micro hydropower plant and high power wind turbine. It helps to increase rotor low speeds limited by the water flow small velocity and by the relative big placement diameter of the blades that participate in the energy conversion. For example, the microhydrostation rotor's speed is (2 - 3) min'1 for water flow velocity V= (1...1,6) m/s and for blade placement diameter D = 4 m. Diversity of requirements forwarded by the beneficiaries of mechanical transmissions consists, in particular, in increasing reliability, efficiency and lifting capacity, and in reducing the mass and dimensions. It becomes more and more difficult to satisfy the mentioned demands by partial updating of traditional transmissions. The target problem can be solved with special effects by developing new types of multipliers based on precessional planetary transmissions with multiple gear, that were developed by the authors. Absolute multiplicity of precessional gear (up to 100% pairs of teeth simultaneously involved in gearing, compared to 5%-7% - in classical gearings) provides increased lifting capacity and small mass and dimensions. To mention that until now precessional planetary transmissions have been researched and applied mainly in reducers. Therefore it was necessary to carry out theoretical research to determine the geometrical parameters of the precessional gear that operates in multiplier mode. Also, it was necessary to develop new conceptual diagrams of precessional transmissions that function under multiplier regime. The majority of precessional planetary transmissions diagrams developed previously operate efficiently in reducer's regime. Depending on the structural diagram, precessional transmissions fall into two main types - K-H-V and 2K-H, from which a wide range of constructive solutions with wide kinematical and functional options that operate in multiplier regime.
Shepard, Steven M.
2003-09-01
Active thermography has gained broad acceptance as a Nondestructive Test (NDT) method for numerous in-service and manufacturing applications in the aerospace, power generation and automotive industries. However, the diffusive nature of the heat conduction process renders imaging of subsurface structures susceptible to blurring and degradation of the signal with feature depth. Although this constraint is fundamental, significant improvements in blur reduction, depth sensitivity and detection of subtle features have been achieved. These improvements have been facilitated by a Thermal Signal Reconstruction method, based on a least squares polynomial fit of the logarithm of the time history of each pixel. The process separates temporal and spatial nonuniformity noise components in the image sequence, and significantly reduces temporal noise. Time derivative images created from the reconstructed data allow detection of subsurface defects at earlier times in the sequence than conventional contrast images, significantly reducing undesirable blurring effects, and facilitating detection of low thermal contrast features that may not be detectable in the original data sequence.
Goswami, Kavita; Pandey, Bishwajeet; Hussain, Dil muhammed Akbar
2016-01-01
Multiplier is used for multiplication of a signal and a constant in digital signal processing (DSP). 28nm technology based Vedic multiplier is implemented with use of VHDL HDL, Xilinx ISE, Kintex-7 FPGA and XPower Analyzer. Vedic multiplier gain speed improvements by parallelizing the generation...... Programmable Gate Array (FPGA) in order to reduce the development cost. The development cost for Application Specific Integrated Circuits (ASICs) are high in compare to FPGA. Selection of the most energy efficient IO standards in place of signal gating is the main design methodology for design of energy...... efficient Vedic multiplier.There is 68.51%, 69.86%, 74.65%, and 78.39% contraction in total power of Vedic multiplier on 28nm Kintex-7 FPGA, when we use HSTL_II in place of HSTL_II_DCI_18 at 56.7oC, 53.5oC, 40oC and 21oC respectively....
Health-enhancing doping controls
Christiansen, Ask Vest
2010-01-01
Editorial published at International Network of Humanistic Doping Research (INHDR) website: http://www.doping.au.dk/en/online-resources/editorials/......Editorial published at International Network of Humanistic Doping Research (INHDR) website: http://www.doping.au.dk/en/online-resources/editorials/...
Unal, Mehmet; Ozer Unal, Durisehvar
2004-01-01
Gene or cell doping is defined by the World Anti-Doping Agency (WADA) as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". New research in genetics and genomics will be used not only to diagnose and treat disease, but also to attempt to enhance human performance. In recent years, gene therapy has shown progress and positive results that have highlighted the potential misuse of this technology and the debate of 'gene doping'. Gene therapies developed for the treatment of diseases such as anaemia (the gene for erythropoietin), muscular dystrophy (the gene for insulin-like growth factor-1) and peripheral vascular diseases (the gene for vascular endothelial growth factor) are potential doping methods. With progress in gene technology, many other genes with this potential will be discovered. For this reason, it is important to develop timely legal regulations and to research the field of gene doping in order to develop methods of detection. To protect the health of athletes and to ensure equal competitive conditions, the International Olympic Committee, WADA and International Sports Federations have accepted performance-enhancing substances and methods as being doping, and have forbidden them. Nevertheless, the desire to win causes athletes to misuse these drugs and methods. This paper reviews the current status of gene doping and candidate performance enhancement genes, and also the use of gene therapy in sports medicine and ethics of genetic enhancement.
Doping of organic semiconductors
Luessem, B.; Riede, M.; Leo, K. [Institut fuer Angewandte Photophysik, TU Dresden (Germany)
2013-01-15
The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Nicolas Eber
2009-01-01
The conventional approach to the economic analysis of doping in sport is that athletes are typically involved in a Prisoner’s Dilemma-type interaction (Breivik 1987, Bird and Wagner 1997, Eber and Thépot 1999, Haugen 2004).1 The idea is straightforward: doping being a dominant strategy (i.e., yielding a preferred outcome regardless of the strategy used by the competitor), each athlete finds it optimal to take drugs; this results in a situation of generalized doping although each athlete would...
Mascarenhas, Angelo
2004-11-09
Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.
Enhancing shelf life of minimally processed multiplier onion using silicone membrane.
Naik, Ravindra; Ambrose, Dawn C P; Raghavan, G S Vijaya; Annamalai, S J K
2014-12-01
The aim of storage of minimal processed product is to increase the shelf life and thereby extend the period of availability of minimally processed produce. The silicone membrane makes use of the ability of polymer to permit selective passage of gases at different rates according to their physical and chemical properties. Here, the product stored maintains its own atmosphere by the combined effects of respiration process of the commodity and the diffusion rate through the membrane. A study was undertaken to enhance the shelf life of minimally processed multiplier onion with silicone membrane. The respiration activity was recorded at a temperature of 30 ± 2 °C (RH = 60 %) and 5 ± 1 °C (RH = 90 %). The respiration was found to be 23.4, 15.6, 10 mg CO2kg(-1)h(-1) at 5 ± 1 °C and 140, 110, 60 mg CO2kg(-1) h(-1) at 30 ± 2° for the peeled, sliced and diced multiplier onion, respectively. The respiration rate for the fresh multiplier onion was recorded to be 5, 10 mg CO2kg(-1) h(-1) at 5 ± 1 °C and 30 ± 1 ° C, respectively. Based on the shelf life studies and on the sensory evaluation, it was found that only the peeled multiplier onion could be stored. The sliced and diced multiplier onion did not have the required shelf life. The shelf life of the multiplier onion in the peel form could be increased from 4-5 days to 14 days by using the combined effect of silicone membrane (6 cm(2)/kg) and low temperature (5 ± 1 °C).
Badertscher, A; Degunda, U; Epprecht, L; Gendotti, A; Horikawa, S; Knecht, L; Lussi, D; Marchionni, A; Natterer, G; Nguyen, K; Resnati, F; Rubbia, A; Viant, T
2012-01-01
We have operated a liquid-argon large-electron-multiplier time-projection chamber (LAr LEM-TPC) with a large active area of 76 $\\times$ 40 cm$^2$ and a drift length of 60 cm. This setup represents the largest chamber ever achieved with this novel detector concept. The chamber is equipped with an immersed built-in cryogenic Greinacher multi-stage high-voltage (HV) multiplier, which, when subjected to an external AC HV of $\\sim$1 kV$_{\\mathrm{pp}}$, statically charges up to a voltage a factor of $\\sim$30 higher inside the LAr vessel, creating a uniform drift field of $\\sim$0.5 kV/cm over the full drift length. This large LAr LEM-TPC was brought into successful operation in the double-phase (liquid-vapor) operation mode and tested during a period of $\\sim$1 month, recording impressive three-dimensional images of very high-quality from cosmic particles traversing or interacting in the sensitive volume. The double phase readout and HV systems achieved stable operation in cryogenic conditions demonstrating their go...
On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers
Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.
2013-01-01
A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.
M. Kasal
2006-06-01
Full Text Available A novel method for the optimization of the active frequency multiplier utilizing the harmonic terminating impedances with the defected ground structures (DGS has been developed. Furthermore, a new type of the low-pass filter with DGS for the higher harmonic suppression will be reported. Experimental conversion gains (14.52 dB for the doubler, 5.56 dB for the tripler and 0.43 dB for the quadrupler and real power-added efficiency (32.76 % for the doubler, 10.15 % for the tripler and 1.42 % for the quadrupler have been attained. To our knowledge, in the considered frequency range, these results represent the best performance reported up to date for the active frequency multipliers utilizing the low-cost BJTs.
Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium.
McCabe, David J; Tajalli, Ayhan; Austin, Dane R; Bondareff, Pierre; Walmsley, Ian A; Gigan, Sylvain; Chatel, Béatrice
2011-08-23
Pulses of light propagating through multiply scattering media undergo complex spatial and temporal distortions to form the familiar speckle pattern. There is much current interest in both the fundamental properties of speckles and the challenge of spatially and temporally refocusing behind scattering media. Here we report on the spatially and temporally resolved measurement of a speckle field produced by the propagation of an ultrafast optical pulse through a thick strongly scattering medium. By shaping the temporal profile of the pulse using a spectral phase filter, we demonstrate the spatially localized temporal recompression of the output speckle to the Fourier-limit duration, offering an optical analogue to time-reversal experiments in the acoustic regime. This approach shows that a multiply scattering medium can be put to profit for light manipulation at the femtosecond scale, and has a diverse range of potential applications that includes quantum control, biological imaging and photonics.
McCabe, David J; Austin, Dane R; Bondareff, Pierre; Walmsley, Ian A; Gigan, Sylvain; Chatel, Béatrice
2011-01-01
The multiple scattering of coherent light is a problem of both fundamental and applied importance. In optics, phase conjugation allows spatial focussing and imaging through a multiply scattering medium; however, temporal control is nonetheless elusive, and multiple scattering remains a challenge for femtosecond science. Here, we report on the spatially and temporally resolved measurement of a speckle field produced by the propagation of an ultrafast optical pulse through a thick strongly scattering medium. Using spectral pulse shaping, we demonstrate the spatially localized temporal recompression of the output speckle to the Fourier-limit duration, offering an optical analogue to time-reversal experiments in the acoustic regime. This approach shows that a multiply scattering medium can be put to profit for light manipulation at the femtosecond scale, and has a diverse range of potential applications that includes quantum control, biological imaging and photonics.
Hamouche, Lina; Laalami, Soumaya; Daerr, Adrian; Song, Solène; Holland, I Barry; Séror, Simone J; Hamze, Kassem; Putzer, Harald
2017-02-07
Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion.
Yang, S; Buck, B; Li, C; Ljubicic, T; Majka, R; Shao, M; Smirnov, N; Visser, G; Xu, Z; Zhou, Y
2014-01-01
A thick gas electron multiplier (THGEM) chamber with an effective readout area of 10$\\times$10 cm$^{2}$ and a 11.3 mm ionization gap has been tested along with two regular gas electron multiplier (GEM) chambers in a cosmic ray test system. The thick ionization gap makes the THGEM chamber a mini-drift chamber. This kind mini-drift THGEM chamber is proposed as part of a transition radiation detector (TRD) for identifying electrons at an Electron Ion Collider (EIC) experiment. Through this cosmic ray test, an efficiency larger than 94$\\%$ and a spatial resolution $\\sim$220 $\\mu$m are achieved for the THGEM chamber at -3.65 kV. Thanks to its outstanding spatial resolution and thick ionization gap, the THGEM chamber shows excellent track reconstruction capability. The gain uniformity and stability of the THGEM chamber are also presented.
Delay-Power Performance Comparison of Multipliers in VLSI Circuit Design
Sumit Vaidya
2010-07-01
Full Text Available A typical processor central processing unit devotes a considerable amount of processing time inperforming arithmetic operations, particularly multiplication operations. Multiplication is one of thebasic arithmetic operations and it requires substantially more hardware resources and processing timethan addition and subtraction. In fact, 8.72% of all the instruction in typical processing units ismultiplication. In this paper, comparative study of different multipliers is done for low power requirementand high speed. The paper gives information of “Urdhva Tiryakbhyam” algorithm of Ancient IndianVedic Mathematics which is utilized for multiplication to improve the speed, area parameters ofmultipliers. Vedic Mathematics suggests one more formula for multiplication of large number i.e.“Nikhilam Sutra” which can increase the speed of multiplier by reducing the number of iterations.
Enhancing Multiplier Speed in Fast Fourier Transform Based on Vedic Mathematics
D.Subathra
2013-07-01
Full Text Available Vedic mathematics is an ancient system of mathematics which has a unique technique of calculations basedon 16 sutras. The performance of high speed multiplier is designed based on Urdhva Tiryabhyam, NikhilamNavatashcaramam Dashatah, and Anurupye Vedic mathematical algorithms. These algorithms givesminimum delay and used for multiplication of all types of numbers. The performance of high speed multiplieris designed and compared using these sutras for various NxN bit multiplications and implemented on theFFT of the DSP processor. Anurupye sutra on FFT is made efficient than Urdhva tiryabhyam and NikhilamNavatashcaramam Dashatah sutras by more reduction in computation time. This gives the method forhierarchical multiplier design. Logic verification of these designs is verified by simulating the logic circuitsin XILINX ISE 9.1 and MODELSIM SE 5.7g using VHDL coding
Area efficient Short Bit Width Two’s Compliment Multiplier Using CSA
N.V. Siva Rama Krishna .T
2014-05-01
Full Text Available Two’s complement multipliers are important for a wide range of applications. In this project, we present a technique to reduce by one row the maximum height of the partial product array generated by a radix-4 Modified Booth Encoded multiplier, without any increase in the delay of the partial product generation stage. The proposed method can be extended to higher radix encodings, as well as to the proposed approach using CSA to add partial products improve the performance by reducing area and delay; the results based on a rough theoretical analysis and on logic synthesis showed its efficiency in terms of both area and delay. And we are implementing this on CADENCE Platform in 180 nm technology. And using clock gating technique to reduce further delay
Noise limitations of multiplier phototubes in the radiation environment of space
Viehmann, W.; Eubanks, A. G.
1976-01-01
The contributions of Cerenkov emission, luminescence, secondary electron emission, and bremsstrahlung to radiation-induced data current and noise of multiplier phototubes were analyzed quantitatively. Fluorescence and Cerenkov emission in the tube window are the major contributors and can quantitatively account for dark count levels observed in orbit. Radiation-induced noise can be minimized by shielding, tube selection, and mode of operation. Optical decoupling of windows and cathode (side-window tubes) leads to further reduction of radiation-induced dark counts, as does reducing the window thickness and effective cathode area, and selection of window/cathode combinations of low fluorescence efficiency. In trapped radiation-free regions of near-earth orbits and in free space, Cerenkov emission by relativistic particles contributes predominantly to the photoelectron yield per event. Operating multiplier phototubes in the photon (pulse) counting mode will discriminate against these large pulses and substantially reduce the dark count and noise to levels determined by fluorescence.
Gas electron multiplier based on laser-perforated CVD diamond film: First tests
Franchino, S; Bolshakov, A; Ashkinazi, E; Kalkan, Y; Popovich, A; Komlenok, M; Sosnovtsev, V; Ralchenko, V
2016-01-01
Gas electron multiplier (GEM) is widely used in modern gas detectors of ionizing radiation in experiments on high-energy physics at accelerators and in other fields of science. Typically the GEM devices are based on a dielectric foil with holes and electrodes on both sides. GEMs made by radiation-hard dielectrics or wide band-gap semiconductors are desirable for some applications. The results of the first tests of the gas electron multiplier made of radiation-hard materials, such as polycrystalline CVD diamond with a thickness of 100 microns is described. Here we report on fabrication of GEM based on free-standing polycrystalline CVD diamond film and its first test.
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier using Modified CSA
Nishi Pandey
2015-10-01
Full Text Available Due to advancement of new technology in the field of VLSI and Embedded system, there is an increasing demand of high speed and low power consumption processor. Speed of processor greatly depends on its multiplier as well as adder performance. In spite of complexity involved in floating point arithmetic, its implementation is increasing day by day. Due to which high speed adder architecture become important. Several adder architecture designs have been developed to increase the efficiency of the adder. In this paper, we introduce an architecture that performs high speed IEEE 754 floating point multiplier using modified carry select adder (CSA. Modified CSA depend on booth encoder (BEC Technique. Booth encoder, Mathematics is an ancient Indian system of Mathematics. Here we are introduced two carry select based design. These designs are implementation Xilinx Vertex device family
High Speed Reconfigurable FIR Filter using Russian Peasant Multiplier with Sklansky Adder
K. Gunasekaran
2014-12-01
Full Text Available The Reconfigurable FIR filters are commonly used digital filters which find its major applications in digital signal processing and multi-standard wireless communications. The Direct form of FIR filter used in DSP application which consumes more area and power. To overcome this problem Multiplier Control Signal Decision (MCSD window schemes is incorporated into direct form FIR filter in order to dynamically change the filter order. Conventional reconfigurable FIR filter is designed using Russian Peasant Multiplier which consumes more area and delay due to poor performance of adder used in multiplication unit. In this study, modified reconfigurable FIR filter is designed to further reduce the area, power and time. In proposed Reconfigurable FIR filter, a Wallace adder is replaced by carry select adder with sklansky adder in Russian Peasant Multiplication technique. Hence, modified Reconfigurable FIR filter with carry select adder with sklansky adder consumes less area, delay and power than the conventional Reconfigurable FIR architecture with Russian Peasant Multiplication technique.
Casimir energy in a small volume multiply connected static hyperbolic pre-inflationary Universe
Müller, D; Opher, R; Muller, Daniel; Fagundes, Helio V.; Opher, Reuven
2001-01-01
A few years ago, Cornish, Spergel and Starkman (CSS), suggested that a multiply connected ``small'' Universe could allow for classical chaotic mixing as a pre-inflationary homogenization process. The smaller the volume, the more important the process. Also, a smaller Universe has a greater probability of being spontaneously created. Previously DeWitt, Hart and Isham (DHI) calculated the Casimir energy for static multiply connected flat space-times. Due to the interest in small volume hyperbolic Universes (e.g. CSS), we generalize the DHI calculation by making a a numerical investigation of the Casimir energy for a conformally coupled, massive scalar field in a static Universe, whose spatial sections are the Weeks manifold, the smallest Universe of negative curvature known. In spite of being a numerical calculation, our result is in fact exact. It is shown that there is spontaneous vacuum excitation of low multipolar components.
Golubev, V.N.; Dulin, V.A.; Kazanskij, Yu.A.
1986-10-01
To refine neutron capture cross sections for structural elements used in fast power reactors the neutron balance in multiplying media with neutron multiplication factor K/sub infinity/=1 has been studied at KBR and ERMINE critical assemblies. Reactivity of multiplying cells consisting of uranium and structural elements is measured as well as reactivity coefficients of individual structural materials. Corresponding calculations are performed using the versions of group constants applied in designing the fast reactors in the USSR and France. The CARNAVAL 4 constant version predicts well a fraction of neutron absorptions in steel and nickel for the spectra typical for a power reactor (ERMINE assembly). For softer spectra (KBR assembly) the agreement with experiment is better when the BNAB-78 constant version is used.
Guzman, J E Ortiz; Mitharwal, R; Beghein, Y; Eibert, T F; Cools, K; Andriulli, F P
2016-01-01
We present a hierarchical basis preconditioning strategy for the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation considering both simply and multiply connected geometries.To this end, we first consider the direct application of hierarchical basis preconditioners, developed for the Electric Field Integral Equation (EFIE), to the PMCHWT. It is notably found that, whereas for the EFIE a diagonal preconditioner can be used for obtaining the hierarchical basis scaling factors, this strategy is catastrophic in the case of the PMCHWT since it leads to a severly ill-conditioned PMCHWT system in the case of multiply connected geometries. We then proceed to a theoretical analysis of the effect of hierarchical bases on the PMCHWT operator for which we obtain the correct scaling factors and a provably effective preconditioner for both low frequencies and mesh refinements. Numerical results will corroborate the theory and show the effectiveness of our approach.
A mixed element based on Lagrange multiplier method for modified couple stress theory
Kwon, Young-Rok; Lee, Byung-Chai
2017-01-01
A 2D mixed element is proposed for the modified couple stress theory. The C1 continuity for the displacement field is required because of the second derivatives of displacement in the energy form of the theory. The C1 continuity is satisfied in a weak sense with the Lagrange multiplier method. A supplementary rotation is introduced as an independent variable and the kinematic relation between the physical rotation and the supplementary rotation is constrained with Lagrange multipliers. Convergence criteria and a stability condition are derived, and the number and the positions of nodes for each independent variable are determined. Internal degrees of freedom are condensed out, so the element has only 21 degrees of freedom. The proposed element passes the C^{0-1} patch test. Numerical results show that the principle of limitation is applied to the element and the element is robust to mesh distortion. Furthermore, the size effects are captured well with the element.
Lina Hamouche
2017-02-01
Full Text Available Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion.
Further Exploration of the Dendritic Cell Algorithm: Antigen Multiplier and Time Windows
Gu, Feng; Aickelin, Uwe
2010-01-01
As an immune-inspired algorithm, the Dendritic Cell Algorithm (DCA), produces promising performances in the field of anomaly detection. This paper presents the application of the DCA to a standard data set, the KDD 99 data set. The results of different implementation versions of the DXA, including the antigen multiplier and moving time windows are reported. The real-valued Negative Selection Algorithm (NSA) using constant-sized detectors and the C4.5 decision tree algorithm are used, to conduct a baseline comparison. The results suggest that the DCA is applicable to KDD 99 data set, and the antigen multiplier and moving time windows have the same effect on the DCA for this particular data set. The real-valued NSA with constant-sized detectors is not applicable to the data set, and the C4.5 decision tree algorithm provides a benchmark of the classification performance for this data set.
On isochronous cases of the Cherkas system and Jacobi's last multiplier
Choudhury, A Ghose [Department of Physics, Surendranath College, 24/2 Mahatma Gandhi Road, Calcutta-700 009 (India); Guha, Partha [Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig (Germany)], E-mail: a_ghosechoudhury@rediffmail.com, E-mail: partha.guha@mis.mpg.de
2010-03-26
We consider a large class of polynomial planar differential equations proposed by Cherkas (1976 Differensial'nye Uravneniya 12 201-6), and show that these systems admit a Lagrangian description via the Jacobi last multiplier (JLM). It is shown how the potential term can be mapped either to a linear harmonic oscillator potential or into an isotonic potential for specific values of the coefficients of the polynomials. This enables the identification of the specific cases of isochronous motion without making use of the computational procedure suggested by Hill et al (2007 Nonlinear Anal.: Theor. Methods Appl. 67 52-69), based on the Pleshkan algorithm. Finally, we obtain a Lagrangian description and perform a similar analysis for a cubic system to illustrate the applicability of this procedure based on Jacobi's last multiplier.
Mirkovic, M. A.; Nedeljkovic, N. N.
2008-07-01
We analyze the angular momentum distributions of the electron transferred into the Rydberg states of multiply charged ions escaping the solid surfaces. The population probabilities are calculated within the framework of two-state-vector model; in the case of large values of the angular momentum quantum numbers l the model takes into account an importance of a wide space region around the projectile trajectory. The reionization of the previously populated states is also taken into account. The corresponding ionization rates are obtained by the appropriate etalon equation method; in the large-l case the radial electronic coordinate rho is treated as variational parameter. The theoretical predictions based on the proposed population-reionization mechanism fit the available beam-foil experimental data; the obtained large-l distributions are also used to elucidate the recent experimental data concerning the multiply charged Rydberg ions interacting with micro-capillary foil.
Mutations in NRXN1 in a family multiply affected with brain disorders
Duong, Linh; Klitten, Laura L; Møller, Rikke S
2012-01-01
Mutation of the neurexin1-gene, NRXN1, interrupting the expression of neurexin1 has been associated with schizophrenia, autism, and intellectual disability. We have identified a family multiply affected with psychiatric, neurological, and somatic disorders along with an intricate co-segregation o......Mutation of the neurexin1-gene, NRXN1, interrupting the expression of neurexin1 has been associated with schizophrenia, autism, and intellectual disability. We have identified a family multiply affected with psychiatric, neurological, and somatic disorders along with an intricate co......-segregation of NRXN1 mutations. The proband suffered from autism, mental retardation, and epilepsy and on genotyping it was revealed that he carried a compound heterozygous mutation in the NRXN1 consisting of a 451¿kb deletion, affecting the promoter and first introns in addition to a point mutation, predicted...
Hamouche, Lina; Laalami, Soumaya; Daerr, Adrian; Song, Solène; Holland, I. Barry; Séror, Simone J.; Hamze, Kassem
2017-01-01
ABSTRACT Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion. PMID:28174308
Borazino-Doped Polyphenylenes.
Marinelli, Davide; Fasano, Francesco; Najjari, Btissam; Demitri, Nicola; Bonifazi, Davide
2017-04-19
The divergent synthesis of two series of borazino-doped polyphenylenes, in which one or more aryl units are replaced by borazine rings, is reported for the first time, taking advantage of the decarbonylative [4 + 2] Diels-Alder cycloaddition reaction between ethynyl and tetraphenylcyclopentadienone derivatives. Because of the possibility of functionalizing the borazine core with different groups on the aryl substituents at the N and B atoms of the borazino core, we have prepared borazino-doped polyphenylenes featuring different doping dosages and orientations. To achieve this, two molecular modules were prepared: a core and a branching unit. Depending on the chemical natures of the central aromatic module and the reactive group, each covalent combination of the modules yields one exclusive doping pattern. By means of this approach, three- and hexa-branched hybrid polyphenylenes featuring controlled orientations and dosages of the doping B3N3 rings have been prepared. Detailed photophysical investigations showed that as the doping dosage is increased, the strong luminescent signal is progressively reduced. This suggests that the presence of the B3N3 rings engages additional deactivation pathways, possibly involving excited states with an increasing charge-separated character that are restricted in the full-carbon analogues. Notably, a strong effect of the orientational doping on the fluorescence quantum yield was observed for those hybrid polyphenylene structures featuring low doping dosages. Finally, we showed that Cu-catalyzed 1,3-dipolar cycloaddition is also chemically compatible with the BN core, further endorsing the inorganic benzene as a versatile aromatic scaffold for engineering of molecular materials with tailored and exploitable optoelectronic properties.
FPGA Implementation of Double Precision Floating Point Multiplier using Xilinx Coregen Tool
Sukhvir Kaur; Parminder Singh Jassal
2013-01-01
Floating point arithmetic is widely used in many areas, especially scientific computation and signal processing. The main applications of floating points today are in the field of medical imaging, biometrics, motion capture and audio applications. The IEEE floating point standard defines both single precision and double precision formats. Multiplication is a core operation in many signal processing computations, and as such efficient implementation of floating point multipliers is an importan...
Efficiency and weight of voltage multiplier type ultra lightweight dc-dc converters
Harrigill, W. T., Jr.; Myers, I. T.
1975-01-01
An analytical and experimental study was made of a capacitor-diode voltage multiplier without a transformer which offers the possibility of high efficiency with light weight. The dc-dc conversion efficiencies of about 94 percent were achieved at output powers of 150 watts at 1000 volts using 8x multiplication. A detailed identification of losses was made, including forward drop losses in component, switching losses, reverse junction capacitance charging losses, and charging losses in the main ladder capacitors.
Agriculture and economic growth in Ethiopia: growth multipliers from a four-sector simulation model
1999-01-01
Agriculture accounts for over half of Ethiopian GDP, yet the case for agriculture as a focus of economic growth strategies must rely on identifying a set of intersectoral linkages through which agricultural growth contributes to the growth of nonagriculture in the Ethiopian economy. This article develops a four-sector numerical simulation model of economic growth in Ethiopia which permits the calculation of macroeconomic growth multipliers resulting from income shocks to agriculture, services...
Hörmander multipliers on two-dimensional dyadic Hardy spaces
Daly, J.; Fridli, S.
2008-12-01
In this paper we are interested in conditions on the coefficients of a two-dimensional Walsh multiplier operator that imply the operator is bounded on certain of the Hardy type spaces Hp, 0Dokl. Akad. Nauk SSSR 109 (1956) 701-703; S.G. Mihlin, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, 1965]. In this paper we extend these results to the two-dimensional dyadic Hardy spaces.
P N Shankar
2006-08-01
The recently suggested embedding method to solve linear boundary value problems is here extended to cover situations where the domain of interest is unbounded or multiply connected. The extensions involve the use of complete sets of exterior and interior eigenfunctions on canonical domains. Applications to typical boundary value problems for Laplace’s equation, the Oseen equations and the biharmonic equation are given as examples.
A HIGHLY TIME-EFFICIENT DIGITAL MULTIPLIER BASED ON THE A2 BINARY REPRESENTATION
Hatem BOUKADIDA,; Nejib HASSEN,; Zied GAFSI,; Besbes, Kamel
2011-01-01
A comparative study of different types of digital multipliers based on the A2 redundant binary representation is investigated in this paper. Some techniques have been proposed and implemented using different ALTERA Stratix FPGA platforms. The principle is to try to reduce the number of partial products terms to be summed with addition trees. These techniques are based on exploiting the associative and commutative properties of the addition operation. The multiplication was achieved using four...
A convolution type characterization for Lp - multipliers for the Heisenberg group
R. Radha
2007-01-01
Full Text Available It is well known that if m is an Lp - multiplier for the Fourier transform on ℝn(1
A Millimeter Wave Colgate Structure Dielectric Antenna with the built-in Diode Frequency Multiplier
2003-01-01
The dielectric antennas in millimeter wave region are very useful for the broadband mobile applications with small power dissipation. The colgate structure which is the one of the dielectric leakage antenna, should be longer in the size. We designed. the 'squeezed colgate type antenna and show that the antenna have low antenna directivities. This paper show the experiments of the antenna performance. Moreover the diode frequency multiplier is adapted to the dielectric antenna.
Fukushima plutonium effect and blow-up regimes in neutron-multiplying media
Rusov, V D; Vaschenko, V M; Linnik, E P; Zelentsova, T N; Beglaryan, M E; Chernegenko, S A; Kosenko, S I; Molchinikolov, P A; Smolyar, V P; Grechan, E V
2012-01-01
It is shown that the capture and fission cross-sections of 238U and 239Pu increase with temperature within 1000-3000K range, in contrast to those of 235U, that under certain conditions may lead to the so-called blow-up modes, stimulating the anomalous neutron flux and nuclear fuel temperature growth. Some features of the blow-up regimes in neutron-multiplying media are discussed.
Proposal for multi-anode photo multiplier tubes as photo detectors for the LHCb RICH
Muheim, F; Katvars, S; Wotton, S; Albrecht, E; Bernet, R; Eisenhardt, S; Muheim, F; Playfer, S; Cuneo, S; Petrolini, A; Sannino, M; Easo, S; Halley, A; Barber, G; Duane, A; Price, D; Simmons, B; Websdale, D; Calvi, M; Matteuzzi, C; Paganoni, M; Bibby, J; Charles, M; Harnew, N; Libby, J; Rademacker, J; Smale, N; Topp-Jorgensen, S; Wilkinson, G; Baker, J; Densham, C; French, M
2001-01-01
We propose to use the Multianode Photo Multiplier Tubes (MAPMT) as the photosensitive device for the Ring Imaging Cherenkov (RICH) detector in the LHCb experiment. We demonstrate that MAPMT meet the specifications which are required to perform excellent particle identification of charged tracks over the full acceptance. A baseline design is presented. At the end of 1999 the MAPMT has been selected as backup choice for the photodetectors. We present the implication of this decision on the baseline design.
Gigahertz-Range Multiplier Architectures Using MOS Current Mode Logic (MCML)
Srinivasan, Venkataramanujam
2003-01-01
The tremendous advancement in VLSI technologies in the past decade has fueled the need for intricate tradeoffs among speed, power dissipation and area. With gigahertz range microprocessors becoming commonplace, it is a typical design requirement to push the speed to its extreme while minimizing power dissipation and die area. Multipliers are critical components of many computational intensive circuits such as real time signal processing and arithmetic systems. The increasing demand in speed f...
S. Karunakaran
2012-01-01
Full Text Available Recent advances in mobile computing and multimedia applications demand high-performance and low-power VLSI Digital Signal Processing (DSP systems. One of the most widely used operations in DSP is Finite-Impulse Response (FIR filtering. In the existing method FIR filter is designed using array multiplier, which is having higher delay and power dissipation. The proposed method presents a programmable digital Finite Impulse Response (FIR filter for high-performance applications. The architecture is based on a computational sharing multiplier which specifically doing add and shift operation and also targets computation re-use in vector-scalar products. CSHM multiplier can be implemented by Carry Select Adder which is a high speed adder. A Carry-Select Adder (CSA can be implemented by using single ripple carry adder and add-one circuits using the fast all-one finding circuit and low-delay multiplexers to reduce the area and accelerate the speed of CSA. An 8-tap programmable FIR filter was implemented in tanner EDA tool using CMOS 180nm technology based on the proposed CSHM technique. In which the number of transistor, power (mW and clock cycle (ns of the filter using array multiplier are 6000, 3.732 and 9 respectively. The FIR filter using CSHM in which the number of transistor, power (mW and clock cycle (ns are 23500, 2.627 and 4.5 respectively. By adopting the proposed method for the design of FIR filter, the delay is reduced to about 43.2% in comparison with the existing method. The CSHM scheme and circuit-level techniques helped to achieve high-performance FIR filtering operation.
ORDER RESULTS OF GENERAL LINEAR METHODS FOR MULTIPLY STIFF SINGULAR PERTURBATION PROBLEMS
Si-qing Gan; Geng Sun
2002-01-01
In this paper we analyze the error behavior of general linear methods applied to some classes of one-parameter multiply stiff singularly perturbed problems. We obtain the global error estimate of algebraically and diagonally stable general linear methods. The main result of this paper can be viewed as an extension of that obtained by Xiao [13] for the case of Runge-Kutta methods.
Design and Performance Analysis of Various Adders and Multipliers Using GDI Technique
Simran kaur; Balwinder Singh; Jain, D.K.
2015-01-01
With the active development of portable electronic devices, the need for low power dissipation, high speed and compact implementation, give rise to several research intentions. There are several design techniques used for the circuit configuration in VLSI systems but there are very few design techniques that gives the required extensibility. This paper describes the implementation of various adders and multipliers. The design approach proposed in the article is based on the GDI (G...
Yang, Taiseung; Spilker, Robert L
2007-06-01
A three-dimensional (3D) contact finite element formulation has been developed for biological soft tissue-to-tissue contact analysis. The linear biphasic theory of Mow, Holmes, and Lai (1984, J. Biomech., 17(5), pp. 377-394) based on continuum mixture theory, is adopted to describe the hydrated soft tissue as a continuum of solid and fluid phases. Four contact continuity conditions derived for biphasic mixtures by Hou et al. (1989, ASME J. Biomech. Eng., 111(1), pp. 78-87) are introduced on the assumed contact surface, and a weighted residual method has been used to derive a mixed velocity-pressure finite element contact formulation. The Lagrange multiplier method is used to enforce two of the four contact continuity conditions, while the other two conditions are introduced directly into the weighted residual statement. Alternate formulations are possible, which differ in the choice of continuity conditions that are enforced with Lagrange multipliers. Primary attention is focused on a formulation that enforces the normal solid traction and relative fluid flow continuity conditions on the contact surface using Lagrange multipliers. An alternate approach, in which the multipliers enforce normal solid traction and pressure continuity conditions, is also discussed. The contact nonlinearity is treated with an iterative algorithm, where the assumed area is either extended or reduced based on the validity of the solution relative to contact conditions. The resulting first-order system of equations is solved in time using the generalized finite difference scheme. The formulation is validated by a series of increasingly complex canonical problems, including the confined and unconfined compression, the Hertz contact problem, and two biphasic indentation tests. As a clinical demonstration of the capability of the contact analysis, the gleno-humeral joint contact of human shoulders is analyzed using an idealized 3D geometry. In the joint, both glenoid and humeral head
2016-01-01
Background Bipolar disorder (BD) is a severe, familial psychiatric condition. Progress in understanding the aetiology of BD has been hampered by substantial phenotypic and genetic heterogeneity. We sought to mitigate these confounders by studying a multi-generational family multiply affected by BD and major depressive disorder (MDD), who carry an illness-linked haplotype on chromosome 4p. Within a family, aetiological heterogeneity is likely to be reduced, thus conferring greater power to det...
[Doping: effectiveness, consequences, prevention].
Guezennec, C Y
2001-02-01
The use of doping is linked with the history of sports. Doping abuse escalated until the mid sixties when government and sports authorities responded with antidoping laws and drug testing. Today, the details of substances detected in controls give a good indication on the importance of doping use. Three classes of pharmaceuticals account for most of the positive controls. They are anabolic steroids, stimulants and narcotics. Their use can be related with the goal of the athletes. Anabolic steroids are mainly used in sports such as bodybuilding or weight lifting in order to develop strength. Stimulants are used in sports were speed favors performance. All the products that enhance blood oxygen transportation are used in endurance sports, their efficacy is not scientifically demonstrated, but their use does result in real risks. Several studies have evidenced the medical problems resulting from prolonged doping. Doping control is impaired by the fact that many products now used, e.g. EPO or rhGH, are not detectable. Regular medical examination of athletes could help prevent use of doping.
Erdal, E; Rappaport, M; Shchemelinin, S; Vartsky, D; Breskin, A
2016-01-01
The bubble-assisted Liquid Hole-Multiplier (LHM) is a recently-introduced detection concept for noble-liquid time projection chambers. In this "local dual-phase" detection element, a gas bubble is supported underneath a perforated electrode (e.g., Thick Gas Electron Multiplier - THGEM, or Gas Electron Multiplier - GEM). Electrons drifting through the holes induce large electroluminescence signals as they pass into the bubble. In this work we report on recent results of THGEM and GEM electrodes coated with cesium iodide and immersed in liquid xenon, allowing - for the first time - the detection of primary VUV scintillation photons in addition to ionization electrons using LHMs.
Design, implementation and performance comparison of multiplier topologies in power-delay space
Mansi Jhamb
2016-03-01
Full Text Available With the advancements in the semiconductor industry, designing a high performance processor is a prime concern. Multiplier is one of the most crucial parts in almost every digital signal processing applications. This paper addresses the implementation of an 8-bit multiplier design employing CMOS full adder, full adder using Double Pass Transistor (DPL and multioutput carry Lookahead logic (CLA. DPL adder avoids the noise margin problem and speed degradation at low value of supply voltages associated with complementary pass transistor (CPL logic circuits. Multioutput carry lookahead adder leads to significant improvement in the speed of the overall circuitry. The investigation is carried out with simulation runs on HSPICE environment using 90 nm process technology at 25 °C. Finally, the design guidelines are derived to select the most suitable topology for the desired applications. Investigation reveals that multiplier design using multioutput carry lookahead adder proves to be more speed efficient in comparison with the other two considered design strategies.
Isometric multipliers of a vector valued Beurling algebra on a discrete semigroup
2017-02-01
Let $(S, \\omega)$ be a weighted abelian semigroup, let $M_\\omega(S)$ be the semigroup of $\\omega$-bounded multipliers of $S$, and let $\\mathcal{A}$ be a strictly convex commutative Banach algebra with identity. It is shown that $T$ is an onto isometric multiplier of $\\mathcal{l}^1(S, \\omega, \\mathcal{A})$ if and only if there exists an invertible $\\sigma\\in M_\\omega(S)$, a unitary point $a\\in\\mathcal{A}$, and a $k > 0$ such that $T(f) = ka\\sum_{x\\in S}f(x)\\delta_{\\sigma (x)}$ for each $f = \\sum_{x\\in S}f(x)\\delta_x\\in\\mathcal{l}^1(S, \\omega, \\mathcal{A})$. It is also shown that an isomorphism from $\\mathcal{l}^1(S_1, \\omega_1, \\mathcal{A})$ onto $\\mathcal{l}^1(S_2, \\omega_2, \\mathcal{B})$ induces an isomorphism from $M(\\mathcal{l}^1(S_1, \\omega_1, \\mathcal{A}))$, the set of all multipliers of $\\mathcal{l}^1(S_1, \\omega_1, \\mathcal{A})$, onto $M(\\mathcal{l}^1(S_2, \\omega_2, \\mathcal{B}))$.
An Encryption Technique based upon Encoded Multiplier with Controlled Generation of Random Numbers
Sanjay Kumar Pal
2015-09-01
Full Text Available This paper presents an encryption technique based on independent random number generation for every individual message sent based upon a pass key which depends upon a secured telephonic conversation and the starting time of the conversation. . A multiplier technique is then applied on the plain text in order to generate the cipher text. The world runs on ciphers today and the generation of secure keys for producing a cipher asks for more simplicity yet requires much more effective cryptosystems which could generate a cipher with the most minimal complexity. Vedic Mathematics in itself offers a wide variety of techniques for encrypting a text which even involves concepts of elliptical curves, Vedic multiplier and so on. The Vedic Multiplier system is used for encoding and decoding and here we have used it to encrypt plain texts and generate a certain kind of cipher based on some random sequence of character equivalents and partial products. The objective of this paper will always resound for the development of a unique system which will ensure secrecy and authenticity for the private communication between two entities. The proposed idea can be implemented for inter-office message communication.
A Novel Methodology for Designing Radix-2n Serial-Serial Multipliers
Abdurazzag S. Almiladi
2010-01-01
Full Text Available Problem statement: The fast growth and increase in complexity of digital and image processing systems necessitate the migration from ad hoc design methods to methodological ones. Methodologies will certainly ease the trade off selection for those systems and shortens the design time. To increase those gained values and expand the searching space more appropriate methodologies need to be developed. Approach: A new methodology (table methodology to design radix-2n serial-serial multipliers was presented. Unlike other methodologies, the table methodology was used for the full design cycle, from the algorithm to the detailed fine control. Results: The methodology was used to identify the drawbacks in existing radix-2n serial-serial multipliers as well as deriving new efficient ones. Conclusion/Recommendations: To the author's knowledge this is the first time tables are used in this novel way in tackling the complete solution space of serial-serial multipliers. One important merit of the new methodology is that it made it clear that there is no need of parallel loading in serial-parallel architectures and hence they can be transferred to serial-serial ones and a as a consequence a huge saving of bus width, I/O pins, area and energy will be achieved.
Implementation of Binary Coded Decimal Digit Adders and Multipliers on Fpga Platform
Prof. R. P. Sarnaik
2014-04-01
Full Text Available Binary-coded decimal (BCD is a class of binary encodings of decimal numbers where each decimal digit is represented by a fixed number of bits. The main problem in existing decimal adders is the need of correction circuit as the result is in binary form which increases delay & area. In this paper, we propose a high speed BCD adder and multiplier without need of correction circuit. The Decimal carry-save adders (CSAs are used to design BCD digit adders which consist less area, low power and high speed performance. BCD Multiplier is design using Wallace Tree Architecture, explaining the use of half and full adders for addition of intermediate product terms obtained after the multiplication of two nibbles (4 bits.In this paper, correction free BCD Adder is efficient one. FPGAs provide an efficient hardware platform that can be employed for accelerating decimal algorithms. These designs are described and simulated using VHDL hardware description language Modelsim Simulator SE 6.3f. BCD Adders & BCD Multipliers are synthesized with the help of Altera Quartus II 9.1 sp2. Implementation results and comparison with existing designs are provided.
Mandarić Sanja
2014-01-01
Full Text Available Top-level sport imposes new and more demanding physical and psychological pressures, and the desire for competing, winning and selfassertion leads athletes into temptation to use prohibited substances in order to achieve the best possible results. Regardless of the fact that the adverse consequences of prohibited substances are well-known, prestige and the need to dominate sports arenas have led to their use in sports. Doping is one of the biggest issues in sport today, and the fight against it is a strategic objective on both global and national levels. World Anti-Doping Agency, the International Olympic Committee, international sports federations, national anti-doping agencies, national sports federations, as well as governments and their repressive apparatuses are all involved in the fight against doping in sport. This paper points to a different etymology and phenomenology of doping, the beginnings of doping in sport, sports doping scandals as well as the most important international instruments regulating this issue. Also, there is a special reference in this paper to the criminal and misdemeanor sanctions for doping in sport. In Serbia doping in sport is prohibited by the Law on Prevention of Doping in Sports which came into force in 2005 and which prescribes the measures and activities aimed at prevention of doping in sport. In this context, the law provides for the following three criminal offenses: use of doping substances, facilitating the use of doping substances, and unauthorized production and putting on traffic of doping substances. In addition, aiming at curbing the abuse of doping this law also provides for two violations. More frequent and repetitive doping scandals indicate that doping despite long-standing sanctions is still present in sports, which suggests that sanctions alone have not given satisfactory results so far.
Li, Xiuling; Guo, Zhimou; Sheng, Qianying; Xue, Xingya; Liang, Xinmiao
2012-06-21
Novel polar-copolymerized mixed-mode RP18/SCX material was developed for feasible phosphopeptide enrichment, in which multiply and singly phosphorylated peptides could be sequentially eluted and separated with high selectivity.
Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.
1987-01-01
A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.
Wehling, T O; Novoselov, K S; Morozov, S V; Vdovin, E E; Katsnelson, M I; Geim, A K; Lichtenstein, A I
2008-01-01
Graphene is considered as one of the most promising materials for post silicon electronics, as it combines high electron mobility with atomic thickness [Novoselov et al. Science 2004, 306, 666-669. Novoselov et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451-10453]. The possibility of chemical doping and related excellent chemical sensor properties of graphene have been demonstrated experimentally [Schedin et al. Nat. Mater. 2007, 6, 652-655], but a microscopic understanding of these effects has been lacking, so far. In this letter, we present the first joint experimental and theoretical investigation of adsorbate-induced doping of graphene. A general relation between the doping strength and whether adsorbates are open- or closed-shell systems is demonstrated with the NO2 system: The single, open shell NO2 molecule is found to be a strong acceptor, whereas its closed shell dimer N2O4 causes only weak doping. This effect is pronounced by graphene's peculiar density of states (DOS), which provides an ideal situation for model studies of doping effects in semiconductors. We show that this DOS is ideal for "chemical sensor" applications and explain the recently observed [Schedin et al. Nat. Mater. 2007, 6, 652-655] NO2 single molecule detection.
Vlaskin, Vladimir A; Barrows, Charles J; Erickson, Christian S; Gamelin, Daniel R
2013-09-25
A diffusion-based synthesis of doped colloidal semiconductor nanocrystals is demonstrated. This approach involves thermodynamically controlled addition of both impurity cations and host anions to preformed seed nanocrystals under equilibrium conditions, rather than kinetically controlled doping during growth. This chemistry allows thermodynamic crystal compositions to be prepared without sacrificing other kinetically trapped properties such as shape, size, or crystallographic phase. This doping chemistry thus shares some similarities with cation-exchange reactions, but proceeds without the loss of host cations and excels at the introduction of relatively unreactive impurity ions that have not been previously accessible using cation exchange. Specifically, we demonstrate the preparation of Cd(1-x)Mn(x)Se (0 ≤ x ≤ ∼0.2) nanocrystals with narrow size distribution, unprecedentedly high Mn(2+) content, and very large magneto-optical effects by diffusion of Mn(2+) into seed CdSe nanocrystals grown by hot injection. Controlling the solution and lattice chemical potentials of Cd(2+) and Mn(2+) allows Mn(2+) diffusion into the internal volumes of the CdSe nanocrystals with negligible Ostwald ripening, while retaining the crystallographic phase (wurtzite or zinc blende), shape anisotropy, and ensemble size uniformity of the seed nanocrystals. Experimental results for diffusion doping of other nanocrystals with other cations are also presented that indicate this method may be generalized, providing access to a variety of new doped semiconductor nanostructures not previously attainable by kinetic routes or cation exchange.
Kumar Kailasa, Suresh; Hasan, Nazim; Wu, Hui-Fen
2012-08-15
The development of liquid nitrogen assisted spray ionization mass spectrometry (LNASI MS) for the analysis of multiply charged proteins (insulin, ubiquitin, cytochrome c, α-lactalbumin, myoglobin and BSA), peptides (glutathione, HW6, angiotensin-II and valinomycin) and amino acid (arginine) clusters is described. The charged droplets are formed by liquid nitrogen assisted sample spray through a stainless steel nebulizer and transported into mass analyzer for the identification of multiply charged protein ions. The effects of acids and modifier volumes for the efficient ionization of the above analytes in LNASI MS were carefully investigated. Multiply charged proteins and amino acid clusters were effectively identified by LNASI MS. The present approach can effectively detect the multiply charged states of cytochrome c at 400 nM. A comparison between LNASI and ESI, CSI, SSI and V-EASI methods on instrumental conditions, applied temperature and observed charge states for the multiply charged proteins, shows that the LNASI method produces the good quality spectra of amino acid clusters at ambient conditions without applied any electric field and heat. To date, we believe that the LNASI method is the most simple, low cost and provided an alternative paradigm for production of multiply charged ions by LNASI MS, just as ESI-like ions yet no need for applying any electrical field and it could be operated at low temperature for generation of highly charged protein/peptide ions.
结构式凯恩斯乘数模型研究%The Analysis of Structural Keynes Multiplier Model
刘起运
2004-01-01
Keynesian multiplier theory is only limite to describe aggregate of macro-economics, without the function of representing the quantitative relationship of structural change of investment and consumption. By using I-O technique, we extend Keynesian multiplier thoery from aggregate analysis to structural analysis, and set forth the second-stage I-O analytic method. The structural Keynesian multiplier analytical method includes two forms: 1. I-O table (second-stage I-O table);2. Mathematical model. By combination the quadrant of Ⅱ and m in orginal I-O table form the second-stage I-O table. Although the second-stage I-O table having the similar structural form and I-O model as theorginal I-O table, the economic contents expressed by model are totally different. We explain the concrete methods and steps to establish structural investment multiplier and consumption multiplier and the economic structural relationship reflected by the model and economic meanings of various coefficients. In addition, we also point out five aspects we should pay attention to when establish and apply the structural multiplier model.
Matteoli, Sara; Finocchio, Lucia; Biagini, Ilaria; Giacomelli, Giovanni; Sodi, Andrea; Corvi, Andrea; Virgili, Gianni; Rizzo, Stanislao
2016-05-01
The aims of this study are to investigate (1) the ocular thermographic profiles in eyes affected by Age related Macular Degeneration (AMD) and age-matched controls to detect possible hemodynamic abnormalities that could be involved in the pathogenesis of the disease, (2) whether any risk factors associated with the disease could affect the development of a form of AMD rather than another. Thirty-four eyes with Age-Related Maculopathy (ARM), 41 eyes with dry AMD, 60 eyes affected by wet AMD, and 74 eyes with fibrotic AMD were included in the study. The control group consisted of 48 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, systemic diseases and a body temperature higher than 37.5 °C. A total of 210 eyes without pupil dilation were investigated by infrared thermography (FLIR A320). The Ocular Surface Temperature (OST) of five ocular areas was calculated by means of an image processing technique from the infrared images. Two-sample t-test, one-way ANOVA test and multivariate analysis were used for statistical analyses. ANOVA analyses showed no significant differences among AMD groups (P-value > 0.05), however, OST in AMD patients was significantly lower than in controls (P-value wet AMD instead of dry AMD. Infrared thermography may be a helpful, non-invasive and not time-consuming method to be used in the management of patients with this common degenerative maculopathy.
Lipski Adam
2015-12-01
Full Text Available The article presents an accelerated method for fatigue limit calculation which makes use of constant temperature increase rate observed in the middle time interval of specimen fatigue loading. The examination was performed on specimens prepared from drawn rods made of corrosion resistant austenitic steel X5CrNi18-10 (1.4301 subjected to rotating bending. For comparison purposes, the fatigue limit was also calculated with the aid of the Staircase method, using 30 specimens and assuming the base number of cycles equal to 10·106. Three specimens were used for accelerated examination during which their temperature was measured with the aid of the thermographic camera CEDIP Silver 420M (FLIR SC 5200. The applied loads were gradually increased until specimen damage took place. Based on the analysis of temperature changes during specimen loading, the average rate of temperature increase at successive loading stages was assessed. The obtained results were then approximated using the 2-nd order curve and its minimal value was assumed as corresponding to the fatigue limit. The performed statistic test has revealed that the fatigue limit calculated in the above way does not differ substantially from that determined using the Staircase method.
Batinjan, G; Zore, Z; Čelebić, A; Papić, M; Gabrić Pandurić, D; Filipović Zore, I
2014-12-01
The objective of this study was to assess the impact of low-level laser therapy on wound swelling, wound temperature changes, and oral health-related quality of life (OHRQoL) after surgical removal of impacted lower third molars. Forty patients with impacted lower third molars requiring surgical removal participated in this study; all were Pell-Gregory class IIB or IIC. The patients were divided randomly into two groups for post-extraction therapy. One group received antimicrobial photodynamic therapy (aPDT) and the other received no additional therapy (placebo group). Temperature measurements were done using an infrared thermographic camera on days 3 and 7 postoperative. OHRQoL was assessed in both groups on day 7 using the Oral Health Impact Profile questionnaire translated into Croatian (OHIP-14-CRO). Prior to surgical treatment, there was no difference in patient characteristics between the two groups. A significantly lower temperature and less wound swelling were recorded on day 3 postoperative in the aPDT group compared to the control group (Plower OHIP-14-CRO summary scores (P<0.01). The present study showed beneficial effects of the aPDT modality of low-level laser therapy: postoperative wound swelling was reduced and wound temperature decreased, and OHRQoL was better through the 7-day postoperative period in comparison to the placebo group.
An analysis of Y{sub 2}O{sub 3}:Eu{sup 3+} thin films for thermographic phosphor applications
Bosze, Eric J. [Department of Mechanical and Aerospace Engineering and Materials Science and Engineering Program, UC San Diego, La Jolla, CA 92093-0411 (United States); Hirata, Gustavo A. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California, MX CP 22860 (Mexico); McKittrick, Joanna, E-mail: jmckittrick@ucsd.ed [Department of Mechanical and Aerospace Engineering and Materials Science and Engineering Program, UC San Diego, La Jolla, CA 92093-0411 (United States)
2011-01-15
A comparative study of the luminescent properties of Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor powders and thin films sputtered from targets prepared from combustion synthesized powders is reported. Thin films of (Y{sub 0.96}Eu{sub 0.04}){sub 2}O{sub 3} were deposited on silicon substrates. Films deposited at 600 {sup o}C had both monoclinic and cubic phases of Y{sub 2}O{sub 3}, which developed to an oriented cubic phase after annealing. Films and powders showed a linear dependence of the intensity of the {sup 5}D{sub 7{yields}}{sup 7}F{sub 2} (611 nm) transition with temperature in the range 26-660 {sup o}C with an average rate of change of 1.8x10{sup -4} {sup o}C{sup -1}. The rate of change appears to be dependent on the Eu{sup 3+} concentration. This work shows that these thin films can be used as thermographic phosphors for remote temperature measurements.
Doped barium titanate nanoparticles
T K Kundu; A Jana; P Barik
2008-06-01
We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.
Partial Collapse of Plinian Volcanic Jets and the Production of Multiply Layered Ash Clouds
Gilchrist, J. T.; Jellinek, M.
2014-12-01
Powerful explosive volcanic eruptions inject ash high into the atmosphere, which spreads as an intrusion to form characteristic umbrella-shaped clouds. An enigmatic feature of a number of recent eruption clouds (e.g. Popocatepetl, 2012; Soufriere Hills, 2010; Mt. St. Helens, 1980 and Puyehue, 2011) is that they are constructed of multiple layers (Figure 1, left). How such layering emerges within an advancing gravity current of initially well-mixed ash is unclear. Potential major controls include the strength and structure of the atmospheric density stratification, the particle size distribution within the ash cloud and the entrainment of ambient atmosphere into the rising plume. Accordingly, we conduct analog experiments in which saltwater jets with mono- and bi-disperse suspensions of fine and coarse silica particles are injected into a saltwater tank with a linear density stratification. Whereas classical umbrella clouds are produced for strong jets (low source Richardson number, -Ri0) under all particle-loading conditions, multiply layered clouds emerge for weak jets (high -Ri0) and relatively concentrated bi-disperse and coarse mono-disperse suspensions. In particular, at high -Ri0 coarse particles inhibit entrainment and enhance the partial collapse of rising jets to form gravity currents that intermittently descend along the jet margin and spread at varying neutral buoyancy heights to form layers. For high concentrations of coarse sand gravity currents can reach the tank floor. Collapse and compaction of this material to form a deposit expels buoyant interstitial fluid that rises to form additional layers below and within the overlying multiply layered cloud. One layer and multiply layered clouds have distinct depositional patterns and present unique risks to air traffic.
Mixed Analog/Digital Matrix-Vector Multiplier for Neural Network Synapses
Lehmann, Torsten; Bruun, Erik; Dietrich, Casper
1996-01-01
In this work we present a hardware efficient matrix-vector multiplier architecture for artificial neural networks with digitally stored synapse strengths. We present a novel technique for manipulating bipolar inputs based on an analog two's complements method and an accurate current rectifier....../sign detector. Measurements on a CMOS test chip are presented and validates the techniques. Further, we propose to use an analog extension, based on a simple capacitive storage, for enhancing weight resolution during learning. It is shown that the implementation of Hebbian learning and back-propagation learning...
A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers
Schaknowski, N.A.; Smith, G.
2009-10-25
An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.
Single photon timing resolution and detection efficiency of the IRST silicon photo-multipliers
Collazuol, G. [Scuola Normale Superiore, 56127 Pisa (Italy); INFN Sezione di Pisa, 56127 Pisa (Italy)], E-mail: gianmaria.collazuol@pi.infn.it; Ambrosi, G. [INFN Sezione di Perugia, 06123 Perugia (Italy); Boscardin, M. [Fondazione Bruno Kessler - IRST, Divisione Microsistemi, 38050 Trento (Italy); Corsi, F. [DEE-Politecnico di Bari and INFN Sezione di Bari, 70125 Bari (Italy); Dalla Betta, G.F. [INFN Sezione di Padova, Gruppo Collegato di Trento, 38050 Trento (Italy); Del Guerra, A. [INFN Sezione di Pisa, 56127 Pisa (Italy); Dipartimento di Fisica, Universita di Pisa, 56127 Pisa (Italy); Dinu, N. [INFN Sezione di Padova, Gruppo Collegato di Trento, 38050 Trento (Italy); Galimberti, M. [Intense Laser Irradiation Laboratory, IPCF-CNR, 56127 Pisa (Italy); Giulietti, D. [INFN Sezione di Pisa, 56127 Pisa (Italy); Dipartimento di Fisica, Universita di Pisa, 56127 Pisa (Italy); Intense Laser Irradiation Laboratory, IPCF-CNR, 56127 Pisa (Italy); Gizzi, L.A.; Labate, L. [INFN Sezione di Pisa, 56127 Pisa (Italy); Intense Laser Irradiation Laboratory, IPCF-CNR, 56127 Pisa (Italy); Llosa, G.; Marcatili, S. [INFN Sezione di Pisa, 56127 Pisa (Italy); Dipartimento di Fisica, Universita di Pisa, 56127 Pisa (Italy); Morsani, F. [INFN Sezione di Pisa, 56127 Pisa (Italy); Piemonte, C.; Pozza, A. [Fondazione Bruno Kessler - IRST, Divisione Microsistemi, 38050 Trento (Italy); Zaccarelli, L. [INFN Sezione di Pisa, 56127 Pisa (Italy); Zorzi, N. [Fondazione Bruno Kessler - IRST, Divisione Microsistemi, 38050 Trento (Italy)
2007-10-21
Silicon photo-multipliers (SiPM) consist in matrices of tiny, passive quenched avalanche photo-diode cells connected in parallel via integrated resistors and operated in Geiger mode. Novel types of SiPM are being developed at FBK-IRST (Trento, Italy). Despite their classical shallow junction n-on-p structure the devices are unique in their enhanced photo-detection efficiency (PDE) for short-wavelengths and in their low level of dark rate and excess noise factor. After a summary of the extensive SiPM characterization we will focus on the study of PDE and the single photon timing resolution.
The Early Exercise Premium Representation for American Options on Multiply Assets
Klimsiak, Tomasz, E-mail: tomas@mat.umk.pl; Rozkosz, Andrzej, E-mail: rozkosz@mat.umk.pl [Nicolaus Copernicus University, Faculty of Mathematics and Computer Science (Poland)
2016-02-15
In the paper we consider the problem of valuation of American options written on dividend-paying assets whose price dynamics follow the classical multidimensional Black and Scholes model. We provide a general early exercise premium representation formula for options with payoff functions which are convex or satisfy mild regularity assumptions. Examples include index options, spread options, call on max options, put on min options, multiply strike options and power-product options. In the proof of the formula we exploit close connections between the optimal stopping problems associated with valuation of American options, obstacle problems and reflected backward stochastic differential equations.
Feng, Qing; Wanigasekara, Eranda; Breitbach, Zachary S; Armstrong, Daniel W
2012-04-01
Two newly developed UV transparent phosphonium-based cationic reagents were evaluated as background electrolyte additives for capillary electrophoresis for the separation of multiply charged anions, including several complex anions. These cationic reagents showed moderate suppression of the electroosmotic flow, interacted with the analytes to improve their separation and often improved the peak shape. The effects of the additives and their concentration on the separation were studied, as well as the buffer type, pH, and voltage. The dicationic reagent effectively separated eight divalent anions within 17 min and the tetracationic reagent best separated nine trivalent anions, as well as a mixture of all the anions.
Neutron diffusion in a randomly inhomogeneous multiplying medium with random phase approximation
Imre, Kaya [Courant Institute of Mathematical Sciences, New York University, New York 10012 (United States); Akcasu, A. Ziya [University of Michigan, Ann Arbor, Michigan 48109 (United States)
2012-06-15
Neutron diffusion in a randomly inhomogeneous multiplying medium is studied. By making use of a random phase assumption we show that the average neutron density approximately satisfies an integral equation in Fourier space, which is solved using Kummer functions. We used multi-dimensional formulation. In the case of one dimension, we obtain the result of Rosenbluth and Tao for the mean total density for large t. In the three-dimensional case, a closed form of solution is derived for the mean total neutron density. Its asymptotic behavior is also investigated for large t.
Method of automatic tuning pf preset coefficient of electron gain of photoelectron multiplier
Smirnov, O Yu
2002-01-01
Paper describes technique to time the preset coefficient of electron gain of photoelectron multiplier (PEM) ensuring high accuracy at minimal involvement of an operator. Subsequent to rough setting of voltage in PEM the automatic system tunes high voltage so that coefficient of electron gain of PEM corresponds to the preset one within the limits of the required accuracy (up to 2%). The technique was efficiently used to tune two thousands of PEMs for the Borexino solar neutrino detector in the Gran Sasso National Laboratory, Italy
Construction of a Gas Electron Multiplier (GEM) Detector for Medical Imaging
2013-01-01
A prototype Gas Electron Multiplier (GEM) detector is under construction for medical imaging purposes. A single thick GEM of size 10x10 cm^2 is assembled inside a square shaped air-tight box which is made of Perspex glass. In order to ionize gas inside the drift field two types of voltage supplier circuits were fabricated, and array of 2x4 pads of each size 4x8 mm^2 were utilized for collecting avalanche charges. Preliminary testing results show that the circuit which produces high voltage an...
Multiplier Spectra and the Moduli Space of Degree 3 Morphisms on P1
Hutz, Benjamin
2011-01-01
The moduli space of degree $d$ morphisms on $\\mathbb{P}^1$ has received much study. McMullen showed that, except for certain families of Latt\\`es maps, there is a finite-to-one correspondence (over $\\mathbb{C}$) between classes of morphisms in the moduli space and the multipliers of the periodic points. For degree 2 morphisms Milnor (over $\\mathbb{C}$) and Silverman (over $\\mathbb{Z}$) showed that the correspondence is an isomorphism. In this article we address two cases: polynomial maps of any degree and rational maps of degree 3.
Pointwise Multipliers of Triebel-Lizorkin Spaces on Carnot-Carathéodory Spaces
Yanchang Han
2012-01-01
Full Text Available Let be a Carnot-Carathéodory space, namely, is a smooth manifold, is a control, or Carnot-Carathéodory, metric induced by a collection of vector fields of finite type. is a nonnegative Borel regular measure on satisfying that there exists constant such that for all and diam , . Using the discrete Calderón reproducing formula and the Plancherel-Pôlya characterization of the inhomogeneous Triebel-Lizorkin spaces developed in Han et al., in press and Han et al., 2008, pointwise multipliers of inhomogeneous Triebel-Lizorkin spaces are obtained.
The impact of founder events on chromosomal variability in multiply mating species
Pool, John E; Nielsen, Rasmus
2008-01-01
In species with heterogametic males, the relative levels of X chromosome versus autosome diversity hold key information about the evolutionary forces at work in a population. It has been shown that population size changes alter the ratio of X linked to autosomal (X/A) variation, with population...... size reductions and recent bottlenecks leading to decreased X/A diversity ratios. Here we use theory and simulation to investigate a separate demographic effect-that of founder events involving multiply mated females-and find that it leads to much stronger reductions in X/A diversity ratios than...
The role of Lagrange multiplier in Gauss-Bonnet dark energy
Makarenko, Andrey N.
2016-04-01
We review accelerating cosmology in Gauss-Bonnet gravity with Lagrange multiplier constraint studied in [S. Capozziello, A. N. Makarenko and S. D. Odintsov, Phys. Rev. D 87 (2013) 084037, arXiv: 1302.0093 [gr-qc], S. Capozziello, M. Francaviglia and A. N. Makarenko, Astrophys. Space Sci. 349 (2014) 603-609, arXiv: 1304.5440 [gr-qc]. Several examples of dark energy universes are presented. We can get new dark energy solutions (with additional scalar) as well as certain limits to earlier found accelerating solutions.
Recent measurements on the Hamamatsu 13 in., R8055, PhotoMultiplier Tubes
The NESTOR Collaboration; Tsagli, S.; Aggouras, G.; Anassontzis, E. G.; Ball, A. E.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Ludvig, J.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L. K.; Siotis, I.; Sopher, J.; Staveris, T.; Tsagli, V.; Zhukov, V. A.
2006-11-01
The key component of NESTOR, the deep-sea Cherenkov neutrino telescope, built in the Mediterranean, NW of Greece, is the optical module. The NESTOR Optical Module employs a PhotoMultiplier Tube (PMT) in a transparent glass pressure housing. The Hamamatsu PMT R8055-01, 13 in. photomultiplier was selected for NESTOR to replace the old 15'' Hamamatsu PMTs (R2018-03). Extensive tests have been made on the sensitivity, uniformity, time resolution and noise rates of 162 R8055-01 13 in. PMTs
Modified Augmented Lagrange Multiplier Methods for Large-Scale Chemical Process Optimization
无
2001-01-01
Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.
Golden, R. L.; Badhwar, G. D.; Stephens, S. A.
1975-01-01
The continuity equation for cosmic ray propagation is used to derive a set of linear equations interrelating the fluxes of multiply charged nuclei as observed at any particular part of the galaxy. The derivation leads to model independent definitions for cosmic ray storage time, mean density of target nuclei and effective mass traversed. The set of equations form a common framework for comparisons of theories and observations. As an illustration, it is shown that there exists a large class of propagation models which give the same result as the exponential path length model. The formalism is shown to accommodate dynamic as well as equilibrium models of production and propagation.
Majkic, M. D.; Nedeljkovic, N. N.; Galijas, S. M. D.
2010-07-01
We elaborated the time-symmetric, two-state vector model to investigate the intermediate stages of the electron capture into the Rydberg states of multiply charged ions interacting with solid surface under the grazing incidence geometry. The neutralization distances for the ions XeZ+ interacting with Al-surface are calculated, for core charges Z ?[5,30]. The corresponding mean neutralization distances are in agreement with the data deduced from the measured kinetic energy gain due to the image acceleration of the ions.
Decay rates of large-l Rydberg states of multiply charged ions approaching solid surfaces
Nedeljkovic, N. N.; Mirkovic, M. A.; Bozanic, D. K.
2008-07-01
We investigate the ionization of large-l multiply charged Rydberg ions approaching solid surfaces within the framework of decay model and applying the etalon equation method. The radial coordinate rho of the active electron is treated as a variational parameter and therefore the parabolic symmetry is preserved in this procedure. The complex eigenenergies are calculated from which the energy terms and the ionization rates are derived. We find that the large-l Rydberg states decay at approximately the same ion-surface distances as the low-l states oriented toward the vacuum and considerably closer to the surface comparing to the low-l states oriented towards the surface.
Algebra and Geometry of Hamilton's Quaternions: 'Well, Papa, Can You Multiply Triplets?'
2016-06-01
Inspired by the relation between the algebra ofcomplex numbers and plane geometry, WilliamRowan Hamilton sought an algebra of triples forapplication to three-dimensional geometry. Unableto multiply and divide triples, he inventeda non-commutative division algebra of quadruples,in what he considered his most significantwork, generalizing the real and complex numbersystems. We give a motivated introduction toquaternions and discuss how they are related toPauli matrices, rotations in three dimensions, thethree sphere, the group SU(2) and the celebratedHopf fibrations.
An extension of the immersed boundary method based on the distributed Lagrange multiplier approach
Feldman, Yuri; Gulberg, Yosef
2016-10-01
An extended formulation of the immersed boundary method, which facilitates simulation of incompressible isothermal and natural convection flows around immersed bodies and which may be applied for linear stability analysis of the flows, is presented. The Lagrangian forces and heat sources are distributed on the fluid-structure interface. The method treats pressure, the Lagrangian forces, and heat sources as distributed Lagrange multipliers, thereby implicitly providing the kinematic constraints of no-slip and the corresponding thermal boundary conditions for immersed surfaces. Extensive verification of the developed method for both isothermal and natural convection 2D flows is provided. Strategies for adapting the developed approach to realistic 3D configurations are discussed.
Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.
1993-01-01
A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.
Goran Vasić
2015-05-01
Full Text Available Doping is the way in which athletes misuse of chemicals and other types of medical interventions (eg, blood replacement, try to get ahead in the results of other athletes or their performance at the expense of their own health. The aim of this work is the analysis of blood doping and the display of negative consequences that this way of increasing capabilities brings. Method: The methodological work is done descriptively. Results: Even in 1972 at the Stockholm Institute for gymnastics and sport, first Dr. Bjorn Ekblom started having blood doping. Taken from the blood, athletes through centifuge separating red blood cells from blood plasma, which is after a month of storage in the fridge, every athlete back into the bloodstream. Tests aerobic capacity thereafter showed that the concerned athletes can run longer on average for 25% of the treadmill than before. Discussion: Blood doping carries with it serious risks, excessive amount of red cells “thickens the blood,” increased hematocrit, which reduces the heart’s ability to pump blood to the periphery. All this makes it difficult for blood to flow through blood vessels, and there is a great danger that comes to a halt in the circulation, which can cause cardiac arrest, stroke, pulmonary edema, and other complications that can be fatal.
Christiansen, Ask Vest; Gleaves, John
2014-01-01
Compared to football-players cyclists are virtuous role models. Yes, Lance Armstrong, Michael Rasmussen and other riders have doped, and because of this they have received the predicate as the most immoral athletes in the sporting world. But if morality is not only a question of whether a person...
Reasons, Charles E.
Since the social reality of the drug problem has largely emanated from the diffuse conceptions of the drug user, an analysis of the history of the "dope fiend" mythology is presented in this paper in an attempt to assess the manner in which certain publics are informed about the problem. A content analysis of drug-related imagery was made from…
A new level-shifting structure with multiply metal rings by divided RESURF technique
Liu Jizhi; Chen Xingbi
2009-01-01
A new structure of a lateral n-MOST and a new level-shifting structure with multiply metal rings(MMRs) by divided RESURF technique have been proposed.The device and electrical performances of the structure are analyzed and simulated by MEDICI.In comparison to the level-shifting structure with multiply floating field plates (MFFPs)used before,the structure stated here improves the reliability and diminishes the voltage difference between the voltage of the power supply of the high-side gate driver and the voltage of the output terminal of the level-shifting structure,which is also that of the input terminal of the high-side gate driver.The maximal voltage difference of the level-shifting structure in this paper is 30%lower than that used before.Therefore,good voltage isolation and current isolation are obtained.The structure can be used in the level-shifting circuit of various applications.
Zhao, Quanyu; Kurata, Hiroyuki
2010-08-01
Elementary mode (EM) analysis is potentially effective in integrating transcriptome or proteome data into metabolic network analyses and in exploring the mechanism of how phenotypic or metabolic flux distribution is changed with respect to environmental and genetic perturbations. The EM coefficients (EMCs) indicate the quantitative contribution of their associated EMs and can be estimated by maximizing Shannon's entropy as a general objective function in our previous study, but the use of EMCs is still restricted to a relatively small-scale networks. We propose a fast and universal method that optimizes hundreds of thousands of EMCs under the constraint of the Maximum entropy principle (MEP). Lagrange multipliers (LMs) are applied to maximize the Shannon's entropy-based objective function, analytically solving each EMC as the function of LMs. Consequently, the number of such search variables, the EMC number, is dramatically reduced to the reaction number. To demonstrate the feasibility of the MEP with Lagrange multipliers (MEPLM), it is coupled with enzyme control flux (ECF) to predict the flux distributions of Escherichia coli and Saccharomycescerevisiae for different conditions (gene deletion, adaptive evolution, temperature, and dilution rate) and to provide a quantitative understanding of how metabolic or physiological states are changed in response to these genetic or environmental perturbations at the elementary mode level. It is shown that the ECF-based method is a feasible framework for the prediction of metabolic flux distribution by integrating enzyme activity data into EMs to genetic and environmental perturbations.
Tomaschitz, R
1994-01-01
We investigate scattering effects in open Robertson-Walker cosmologies whose spacelike slices are multiply connected hyperbolic manifolds. We work out an example in which the 3-space is infinite and has the topology of a solid torus. The world-lines in these cosmologies are unstable, and classical probability densities evolving under the horospherical geodesic flow show dispersion, as do the densities of scalar wave packets. The rate of dispersion depends crucially on the expansion factor, and we calculate the time evolution of their widths. We find that the cosmic expansion can confine dispersion: The diameter of the domain of chaoticity in the 3-manifold provides the natural, time-dependent length unit in an infinite, multiply connected universe. In a toroidal 3-space manifold this diameter is just the length of the limit cycle. On this scale we find that the densities take a finite limit width in the late stage of the expansion. In the early stage classical densities and conformally coupled fields approach...
Silicon Photo-Multiplier Readouts for Scintillators in High-Energy Astronomy
Bloser, Peter F.; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.
2008-01-01
New scintillator materials have recently been shown to hold great potential for low-cost, reliable gamma-ray detectors in high-energy astronomy. New devices for the detection of scintillation light promise to make scintillator-based instruments even more attractive by reducing mass and power requirements,in particular, silicon photo-multipliers (SiPMs) are starting to become commercially available that offer gains and quantum efficiencies similar to those of photo-multiplier tubes (PMTs), but with greatly reduced mass, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. We have conducted laboratory tests of a sample of commercially available SiPMs coupled to LaBr3;Ce, a scintillator of relevance to to future high-energy astrophysics missions. We present results for gamma-ray spectroscopy. compare the SiPM performance to that of a PMT, and discuss the extent to which SiPMs offer significant advantages for scintillator-based space missions.
Variable selection for multiply-imputed data with application to dioxin exposure study.
Chen, Qixuan; Wang, Sijian
2013-09-20
Multiple imputation (MI) is a commonly used technique for handling missing data in large-scale medical and public health studies. However, variable selection on multiply-imputed data remains an important and longstanding statistical problem. If a variable selection method is applied to each imputed dataset separately, it may select different variables for different imputed datasets, which makes it difficult to interpret the final model or draw scientific conclusions. In this paper, we propose a novel multiple imputation-least absolute shrinkage and selection operator (MI-LASSO) variable selection method as an extension of the least absolute shrinkage and selection operator (LASSO) method to multiply-imputed data. The MI-LASSO method treats the estimated regression coefficients of the same variable across all imputed datasets as a group and applies the group LASSO penalty to yield a consistent variable selection across multiple-imputed datasets. We use a simulation study to demonstrate the advantage of the MI-LASSO method compared with the alternatives. We also apply the MI-LASSO method to the University of Michigan Dioxin Exposure Study to identify important circumstances and exposure factors that are associated with human serum dioxin concentration in Midland, Michigan.