WorldWideScience

Sample records for multiple time-scale phenomena

  1. Multiple time-scale methods in particle simulations of plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1985-01-01

    This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling

  2. Multiple time scale dynamics

    CERN Document Server

    Kuehn, Christian

    2015-01-01

    This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form.  The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this  book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective. 

  3. Multiple time scale methods in tokamak magnetohydrodynamics

    International Nuclear Information System (INIS)

    Jardin, S.C.

    1984-01-01

    Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B 2 /2μ 0 , which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed

  4. Fractal dimension algorithms and their application to time series associated with natural phenomena

    International Nuclear Information System (INIS)

    La Torre, F Cervantes-De; González-Trejo, J I; Real-Ramírez, C A; Hoyos-Reyes, L F

    2013-01-01

    Chaotic invariants like the fractal dimensions are used to characterize non-linear time series. The fractal dimension is an important characteristic of systems, because it contains information about their geometrical structure at multiple scales. In this work, three algorithms are applied to non-linear time series: spectral analysis, rescaled range analysis and Higuchi's algorithm. The analyzed time series are associated with natural phenomena. The disturbance storm time (Dst) is a global indicator of the state of the Earth's geomagnetic activity. The time series used in this work show a self-similar behavior, which depends on the time scale of measurements. It is also observed that fractal dimensions, D, calculated with Higuchi's method may not be constant over-all time scales. This work shows that during 2001, D reaches its lowest values in March and November. The possibility that D recovers a change pattern arising from self-organized critical phenomena is also discussed

  5. A Novel Multiple-Time Scale Integrator for the Hybrid Monte Carlo Algorithm

    International Nuclear Information System (INIS)

    Kamleh, Waseem

    2011-01-01

    Hybrid Monte Carlo simulations that implement the fermion action using multiple terms are commonly used. By the nature of their formulation they involve multiple integration time scales in the evolution of the system through simulation time. These different scales are usually dealt with by the Sexton-Weingarten nested leapfrog integrator. In this scheme the choice of time scales is somewhat restricted as each time step must be an exact multiple of the next smallest scale in the sequence. A novel generalisation of the nested leapfrog integrator is introduced which allows for far greater flexibility in the choice of time scales, as each scale now must only be an exact multiple of the smallest step size.

  6. Observation of diffusion phenomena of liquid phase with multiple components

    International Nuclear Information System (INIS)

    Eguchi, Wataru

    1979-01-01

    The diffusion phenomena of liquid phase with multiple components was directly observed, and the factors contributing to complex material transfer were investigated, comparing to the former experimental results. The most excellent method of observing the diffusion behavior of liquid phase used heretofore is to trace the time history of concentration distribution for each component in unsteady diffusion process. The method of directly observing the concentration distribution is usually classified into the analysis of diffused samples, the checking of radioactive isotope tracers, and the measurement of light refraction and transmission. The most suitable method among these is to trace this time history by utilizing the spectrophotometer of position scanning type. An improved spectrophotometer was manufactured for trial. The outline of the measuring system and the detail of the optical system of this new type spectrophotometer are explained. The resolving power for position measurement is described with the numerical calculation. As for the observation examples of the diffusion phenomena of liquid phase with multiple components, the diffusion of multiple electrolytes in aqueous solution, the observation of the material transfer phenomena accompanied by heterogeneous and single phase chemical reaction, and the observation of concentration distribution in the liquid diaphragm in a reaction absorption system are described. For each experimental item, the test apparatus, the sample material, the test process, the test results and the evaluation are explained in detail, and the diffusion phenomena of liquid phase with multiple components were pretty well elucidated. (Nakai, Y.)

  7. Outlook of multiple time and spatial scale simulation for understanding self-organizing phenomena in plasmas

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Horiuchi, Ritoku; Watanabe, Kunihiko; Sato, Tetsuya

    2003-01-01

    The importance of the methodology of computer simulation has been recognized in plasma physics since the early era of computer evolution. In particular, the goal of simulation in this research field has been characterized by attempts to treat phenomena in a self-consistent manner as much as possible. Owing to the astonishing progress in recent supercomputer technology, we are now standing on a doorway to open a new stage in the simulation research in this direction, that is, an execution of multi-layer model simulation to understand complex phenomena in plasmas. (author)

  8. A model for AGN variability on multiple time-scales

    Science.gov (United States)

    Sartori, Lia F.; Schawinski, Kevin; Trakhtenbrot, Benny; Caplar, Neven; Treister, Ezequiel; Koss, Michael J.; Urry, C. Megan; Zhang, C. E.

    2018-05-01

    We present a framework to link and describe active galactic nuclei (AGN) variability on a wide range of time-scales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different time-scales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio (L/LEdd) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the L/LEdd distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different time-scales, therefore providing new insights into AGN variability and black hole growth phenomena.

  9. Time in powers of ten natural phenomena and their timescales

    CERN Document Server

    't Hooft, Gerard

    2014-01-01

    In this richly illustrated book, Nobel Laureate Gerard 't Hooft and Theoretical Physicist Stefan Vandoren describe the enormous diversity of natural phenomena that take place at different time scales. In the tradition of the bestseller Powers of Ten , the authors zoom in and out in time, each step with a factor of ten. Starting from one second, time scales are enlarged until processes are reached that take much longer than the age of the universe. After the largest possible eternities, the reader is treated to the shortest and fastest phenomena known. Then the authors increase with powers of t

  10. HMC algorithm with multiple time scale integration and mass preconditioning

    Science.gov (United States)

    Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.

    2006-01-01

    We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.

  11. Investigations of grain size dependent sediment transport phenomena on multiple scales

    Science.gov (United States)

    Thaxton, Christopher S.

    Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for

  12. Multiple time scale analysis of pressure oscillations in solid rocket motors

    Science.gov (United States)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  13. Multiple time scales in modeling the incidence of infections acquired in intensive care units

    Directory of Open Access Journals (Sweden)

    Martin Wolkewitz

    2016-09-01

    Full Text Available Abstract Background When patients are admitted to an intensive care unit (ICU their risk of getting an infection will be highly depend on the length of stay at-risk in the ICU. In addition, risk of infection is likely to vary over calendar time as a result of fluctuations in the prevalence of the pathogen on the ward. Hence risk of infection is expected to depend on two time scales (time in ICU and calendar time as well as competing events (discharge or death and their spatial location. The purpose of this paper is to develop and apply appropriate statistical models for the risk of ICU-acquired infection accounting for multiple time scales, competing risks and the spatial clustering of the data. Methods A multi-center data base from a Spanish surveillance network was used to study the occurrence of an infection due to Methicillin-resistant Staphylococcus aureus (MRSA. The analysis included 84,843 patient admissions between January 2006 and December 2011 from 81 ICUs. Stratified Cox models were used to study multiple time scales while accounting for spatial clustering of the data (patients within ICUs and for death or discharge as competing events for MRSA infection. Results Both time scales, time in ICU and calendar time, are highly associated with the MRSA hazard rate and cumulative risk. When using only one basic time scale, the interpretation and magnitude of several patient-individual risk factors differed. Risk factors concerning the severity of illness were more pronounced when using only calendar time. These differences disappeared when using both time scales simultaneously. Conclusions The time-dependent dynamics of infections is complex and should be studied with models allowing for multiple time scales. For patient individual risk-factors we recommend stratified Cox regression models for competing events with ICU time as the basic time scale and calendar time as a covariate. The inclusion of calendar time and stratification by ICU

  14. Cut-off scaling and multiplicative reformalization in the theory of critical phenomena

    International Nuclear Information System (INIS)

    Forgacs, G.; Solyom, J.; Zawadowski, A.

    1976-03-01

    In the paper a new method to study the critical fluctuations in systems of 4-epsilon dimensions around the phase transition point is developed. This method unifies the Kadanoff scaling hypothesis as formulated by Wilson by help of his renormalization group technique and the simple mathematical structure of the Lie equations of the Gell-Mann-Low multiplicative renormalization. The basic idea of the new method is that a change in the physical cut-off can be compensated by an effective coupling in such a way that the Green's function and vertex in the original and transformed system differ only by a multiplicative factor. The critical indices, the anomalous dimensions and the critical exponent describing the correction to scaling are determined to second order in epsilon. The specific heat exponent is also calculated, in four dimensions the effect of fluctuations appears in the form of logarithmic corrections. In the last sections the new method is compared to other ones and the differences are discussed. (Sz.N.Z.)

  15. Non-Abelian Kubo formula and the multiple time-scale method

    International Nuclear Information System (INIS)

    Zhang, X.; Li, J.

    1996-01-01

    The non-Abelian Kubo formula is derived from the kinetic theory. That expression is compared with the one obtained using the eikonal for a Chern endash Simons theory. The multiple time-scale method is used to study the non-Abelian Kubo formula, and the damping rate for longitudinal color waves is computed. copyright 1996 Academic Press, Inc

  16. Fission time-scale in experiments and in multiple initiation model

    Energy Technology Data Exchange (ETDEWEB)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2011-12-15

    Rate of fission for highly-excited nuclei is affected by the viscose character of the systemmotion in deformation coordinates as was reported for very heavy nuclei with Z{sub C} > 90. The long time-scale of fission can be described in a model of 'fission by diffusion' that includes an assumption of the overdamped diabatic motion. The fission-to-spallation ratio at intermediate proton energy could be influenced by the viscosity, as well. Within a novel approach of the present work, the cross examination of the fission probability, time-scales, and pre-fission neutron multiplicities is resulted in the consistent interpretation of a whole set of the observables. Earlier, different aspects could be reproduced in partial simulations without careful coordination.

  17. Scaling for integral simulation of thermal-hydraulic phenomena in SBWR during LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Revankar, S.T.; Dowlati, R [Purdue Univ., West Layfayette, IN (United States)] [and others

    1995-09-01

    A scaling study has been conducted for simulation of thermal-hydraulic phenomena in the Simplified Boiling Water Reactor (SBWR) during a loss of coolant accident. The scaling method consists of a three-level scaling approach. The integral system scaling (global scaling or top down approach) consists of two levels, the integral response function scaling which forms the first level, and the control volume and boundary flow scaling which forms the second level. The bottom up approach is carried out by local phenomena scaling which forms the third level scaling. Based on this scaling study the design of the model facility called Purdue University Multi-Dimensional Integral Test Assembly (PUMA) has been carried out. The PUMA facility has 1/4 height and 1/100 area ratio scaling, corresponding to the volume scaling of 1/400. The PUMA power scaling based on the integral scaling is 1/200. The present scaling method predicts that PUMA time scale will be one-half that of the SBWR. The system pressure for PUMA is full scale, therefore, a prototypic pressure is maintained. PUMA is designed to operate at and below 1.03 MPa (150 psi), which allows it to simulate the prototypic SBWR accident conditions below 1.03 MPa (150 psi). The facility includes models for all components of importance.

  18. Multiple time scales of adaptation in auditory cortex neurons.

    Science.gov (United States)

    Ulanovsky, Nachum; Las, Liora; Farkas, Dina; Nelken, Israel

    2004-11-17

    Neurons in primary auditory cortex (A1) of cats show strong stimulus-specific adaptation (SSA). In probabilistic settings, in which one stimulus is common and another is rare, responses to common sounds adapt more strongly than responses to rare sounds. This SSA could be a correlate of auditory sensory memory at the level of single A1 neurons. Here we studied adaptation in A1 neurons, using three different probabilistic designs. We showed that SSA has several time scales concurrently, spanning many orders of magnitude, from hundreds of milliseconds to tens of seconds. Similar time scales are known for the auditory memory span of humans, as measured both psychophysically and using evoked potentials. A simple model, with linear dependence on both short-term and long-term stimulus history, provided a good fit to A1 responses. Auditory thalamus neurons did not show SSA, and their responses were poorly fitted by the same model. In addition, SSA increased the proportion of failures in the responses of A1 neurons to the adapting stimulus. Finally, SSA caused a bias in the neuronal responses to unbiased stimuli, enhancing the responses to eccentric stimuli. Therefore, we propose that a major function of SSA in A1 neurons is to encode auditory sensory memory on multiple time scales. This SSA might play a role in stream segregation and in binding of auditory objects over many time scales, a property that is crucial for processing of natural auditory scenes in cats and of speech and music in humans.

  19. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    Science.gov (United States)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  20. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    International Nuclear Information System (INIS)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-01-01

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  1. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  2. THE IMPORTANCE OF LIMIT SOLUTIONS & TEMPORAL AND SPATIAL SCALES IN THE TEACHING OF TRANSPORT PHENOMENA

    Directory of Open Access Journals (Sweden)

    SÁVIO LEANDRO BERTOLI

    2016-07-01

    Full Text Available In the engineering courses the field of Transport Phenomena is of significant importance and it is in several disciplines relating to Fluid Mechanics, Heat and Mass Transfer. In these disciplines, problems involving these phenomena are mathematically formulated and analytical solutions are obtained whenever possible. The aim of this paper is to emphasize the possibility of extending aspects of the teaching-learning in this area by a method based on time scales and limit solutions. Thus, aspects relative to the phenomenology naturally arise during the definition of the scales and / or by determining the limit solutions. Aspects concerning the phenomenology of the limit problems are easily incorporated into the proposed development, which contributes significantly to the understanding of physics inherent in the mathematical modeling of each limiting case studied. Finally the study aims to disseminate the use of the limit solutions and of the time scales in the general fields of engineering.

  3. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.

    Science.gov (United States)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-01

    Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A multiple-time-scale approach to the control of ITBs on JET

    International Nuclear Information System (INIS)

    Laborde, L.; Mazon, D.; Moreau, D.; Moreau, D.; Ariola, M.; Cordoliani, V.; Tala, T.

    2005-01-01

    The simultaneous real-time control of the current and temperature gradient profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. Recent experiments in JET have demonstrated significant progress in achieving such a control: different current and temperature gradient target profiles have been reached and sustained for several seconds using a controller based on a static linear model. It's worth noting that the inverse safety factor profile evolves on a slow time scale (resistive time) while the normalized electron temperature gradient reacts on a faster one (confinement time). Moreover these experiments have shown that the controller was sensitive to rapid plasma events such as transient ITBs during the safety factor profile evolution or MHD instabilities which modify the pressure profiles on the confinement time scale. In order to take into account the different dynamics of the controlled profiles and to better react to rapid plasma events the control technique is being improved by using a multiple-time-scale approximation. The paper describes the theoretical analysis and closed-loop simulations using a control algorithm based on two-time-scale state-space model. These closed-loop simulations using the full dynamic but linear model used for the controller design to simulate the plasma response have demonstrated that this new controller allows the normalized electron temperature gradient target profile to be reached faster than the one used in previous experiments. (A.C.)

  5. A multiple-time-scale approach to the control of ITBs on JET

    Energy Technology Data Exchange (ETDEWEB)

    Laborde, L.; Mazon, D.; Moreau, D. [EURATOM-CEA Association (DSM-DRFC), CEA Cadarache, 13 - Saint Paul lez Durance (France); Moreau, D. [Culham Science Centre, EFDA-JET, Abingdon, OX (United Kingdom); Ariola, M. [EURATOM/ENEA/CREATE Association, Univ. Napoli Federico II, Napoli (Italy); Cordoliani, V. [Ecole Polytechnique, 91 - Palaiseau (France); Tala, T. [EURATOM-Tekes Association, VTT Processes (Finland)

    2005-07-01

    The simultaneous real-time control of the current and temperature gradient profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. Recent experiments in JET have demonstrated significant progress in achieving such a control: different current and temperature gradient target profiles have been reached and sustained for several seconds using a controller based on a static linear model. It's worth noting that the inverse safety factor profile evolves on a slow time scale (resistive time) while the normalized electron temperature gradient reacts on a faster one (confinement time). Moreover these experiments have shown that the controller was sensitive to rapid plasma events such as transient ITBs during the safety factor profile evolution or MHD instabilities which modify the pressure profiles on the confinement time scale. In order to take into account the different dynamics of the controlled profiles and to better react to rapid plasma events the control technique is being improved by using a multiple-time-scale approximation. The paper describes the theoretical analysis and closed-loop simulations using a control algorithm based on two-time-scale state-space model. These closed-loop simulations using the full dynamic but linear model used for the controller design to simulate the plasma response have demonstrated that this new controller allows the normalized electron temperature gradient target profile to be reached faster than the one used in previous experiments. (A.C.)

  6. Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems

    Science.gov (United States)

    Razzak, M. A.; Alam, M. Z.; Sharif, M. N.

    2018-03-01

    In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.

  7. Hyperchromatic lens for recording time-resolved phenomena

    Science.gov (United States)

    Frayer, Daniel K.

    2017-07-11

    A method and apparatus for the capture of a high number of quasi-continuous effective frames of 2-D data from an event at very short time scales (from less than 10.sup.-12 to more than 10.sup.-8 seconds) is disclosed which allows for short recording windows and effective number of frames. Active illumination, from a chirped laser pulse directed to the event creates a reflection where wavelength is dependent upon time and spatial position is utilized to encode temporal phenomena onto wavelength. A hyperchromatic lens system receives the reflection and maps wavelength onto axial position. An image capture device, such as holography or plenoptic imaging device, captures the resultant focal stack from the hyperchromatic lens system in both spatial (imaging) and longitudinal (temporal) axes. The hyperchromatic lens system incorporates a combination of diffractive and refractive components to maximally separate focal position as a function of wavelength.

  8. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model.

    Directory of Open Access Journals (Sweden)

    Guido Gigante

    2015-11-01

    Full Text Available Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed 'quasi-orbits', which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network's firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms.

  9. Vibration phenomena in large scale pressure suppression tests

    International Nuclear Information System (INIS)

    Aust, E.; Boettcher, G.; Kolb, M.; Sattler, P.; Vollbrandt, J.

    1982-01-01

    Structure und fluid vibration phenomena (acceleration, strain; pressure, level) were observed during blow-down experiments simulating a LOCA in the GKSS full scale multivent pressure suppression test facility. The paper describes first the source related excitations during the two regimes of condensation oscillation and of chugging, and deals then with the response vibrations of the facility's wetwell. Modal analyses of the wetwell were run using excitation by hammer and by shaker in order to separate phenomena that are particular to the GKSS facility from more general ones, i.e. phenomena specific to the fluid related parameters of blowdown and to the geometry of the vent pipes only. The lowest periodicities at about 12 and 16 Hz stem from the vent acoustics. A frequency of about 36 to 38 Hz prominent during chugging seems to result from the lowest local models of two of the wetwell's walls when coupled by the wetwell pool. Further peaks found during blowdown in the spectra of signals at higher frequencies correspond to global vibration modes of the wetwell. (orig.)

  10. Stepwise integral scaling method and its application to severe accident phenomena

    International Nuclear Information System (INIS)

    Ishii, M.; Zhang, G.

    1993-10-01

    Severe accidents in light water reactors are characterized by an occurrence of multiphase flow with complicated phase changes, chemical reaction and various bifurcation phenomena. Because of the inherent difficulties associated with full-scale testing, scaled down and simulation experiments are essential part of the severe accident analyses. However, one of the most significant shortcomings in the area is the lack of well-established and reliable scaling method and scaling criteria. In view of this, the stepwise integral scaling method is developed for severe accident analyses. This new scaling method is quite different from the conventional approach. However, its focus on dominant transport mechanisms and use of the integral response of the system make this method relatively simple to apply to very complicated multi-phase flow problems. In order to demonstrate its applicability and usefulness, three case studies have been made. The phenomena considered are (1) corium dispersion in DCH, (2) corium spreading in BWR MARK-I containment, and (3) incore boil-off and heating process. The results of these studies clearly indicate the effectiveness of their stepwise integral scaling method. Such a simple and systematic scaling method has not been previously available to severe accident analyses

  11. Study of fission time scale from measurement of pre-scission light particle and γ-ray multiplicities

    International Nuclear Information System (INIS)

    Ramachandran, K.; Chatterjee, A.; Navin, A.

    2014-01-01

    This work presents the result of a simultaneous measurement of pre-scission multiplicities and analysis using the statistical model code JOANNE2 which includes deformation effects. Evaporation residue cross-sections has also been measured for the same system and analyzed in a consistent manner. The neutron, charged particle, GDR γ-ray and ER data could be explained consistently. The emission of neutrons seems to be favored towards larger deformation as compared to charged particles. The pre-scission time scale is deduced as 0-2 x 10 -21 s whereas the saddle-to-scission time scale is 36-39 x 10 -21 s. The total fission time scale is deduced as 36-41 x 10 -21 s

  12. The plasma transport equations derived by multiple time-scale expansions and turbulent transport. I. General theory

    International Nuclear Information System (INIS)

    Edenstrasser, J.W.

    1995-01-01

    A multiple time-scale derivative expansion scheme is applied to the dimensionless Fokker--Planck equation and to Maxwell's equations, where the parameter range of a typical fusion plasma was assumed. Within kinetic theory, the four time scales considered are those of Larmor gyration, particle transit, collisions, and classical transport. The corresponding magnetohydrodynamic (MHD) time scales are those of ion Larmor gyration, Alfven, MHD collision, and resistive diffusion. The solution of the zeroth-order equations results in the force-free equilibria and ideal Ohm's law. The solution of the first-order equations leads under the assumption of a weak collisional plasma to the ideal MHD equations. On the MHD-collision time scale, not only the full set of the MHD transport equations is obtained, but also turbulent terms, where the related transport quantities are one order in the expansion parameter larger than those of classical transport. Finally, at the resistive diffusion time scale the known transport equations are arrived at including, however, also turbulent contributions. copyright 1995 American Institute of Physics

  13. A Multiphysics Framework to Learn and Predict in Presence of Multiple Scales

    Science.gov (United States)

    Tomin, P.; Lunati, I.

    2015-12-01

    Modeling complex phenomena in the subsurface remains challenging due to the presence of multiple interacting scales, which can make it impossible to focus on purely macroscopic phenomena (relevant in most applications) and neglect the processes at the micro-scale. We present and discuss a general framework that allows us to deal with the situation in which the lack of scale separation requires the combined use of different descriptions at different scale (for instance, a pore-scale description at the micro-scale and a Darcy-like description at the macro-scale) [1,2]. The method is based on conservation principles and constructs the macro-scale problem by numerical averaging of micro-scale balance equations. By employing spatiotemporal adaptive strategies, this approach can efficiently solve large-scale problems [2,3]. In addition, being based on a numerical volume-averaging paradigm, it offers a tool to illuminate how macroscopic equations emerge from microscopic processes, to better understand the meaning of microscopic quantities, and to investigate the validity of the assumptions routinely used to construct the macro-scale problems. [1] Tomin, P., and I. Lunati, A Hybrid Multiscale Method for Two-Phase Flow in Porous Media, Journal of Computational Physics, 250, 293-307, 2013 [2] Tomin, P., and I. Lunati, Local-global splitting and spatiotemporal-adaptive Multiscale Finite Volume Method, Journal of Computational Physics, 280, 214-231, 2015 [3] Tomin, P., and I. Lunati, Spatiotemporal adaptive multiphysics simulations of drainage-imbibition cycles, Computational Geosciences, 2015 (under review)

  14. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    Directory of Open Access Journals (Sweden)

    Runchun Mark Wang

    2015-05-01

    Full Text Available We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP and Spike Timing Dependent Delay Plasticity (STDDP. We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2^26 (64M synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted and/or delayed pre-synaptic spike to the target synapse in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 2^36 (64G synaptic adaptors on a current high-end FPGA platform.

  15. Impact of thermoelectric phenomena on phase-change memory performance metrics and scaling

    International Nuclear Information System (INIS)

    Lee, Jaeho; Asheghi, Mehdi; Goodson, Kenneth E

    2012-01-01

    The coupled transport of heat and electrical current, or thermoelectric phenomena, can strongly influence the temperature distribution and figures of merit for phase-change memory (PCM). This paper simulates PCM devices with careful attention to thermoelectric transport and the resulting impact on programming current during the reset operation. The electrothermal simulations consider Thomson heating within the phase-change material and Peltier heating at the electrode interface. Using representative values for the Thomson and Seebeck coefficients extracted from our past measurements of these properties, we predict a cell temperature increase of 44% and a decrease in the programming current of 16%. Scaling arguments indicate that the impact of thermoelectric phenomena becomes greater with smaller dimensions due to enhanced thermal confinement. This work estimates the scaling of this reduction in programming current as electrode contact areas are reduced down to 10 nm × 10 nm. Precise understanding of thermoelectric phenomena and their impact on device performance is a critical part of PCM design strategies. (paper)

  16. [Multiple time scales analysis of spatial differentiation characteristics of non-point source nitrogen loss within watershed].

    Science.gov (United States)

    Liu, Mei-bing; Chen, Xing-wei; Chen, Ying

    2015-07-01

    Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.

  17. Examining the Interplay of Processes Across Multiple Time-Scales: Illustration With the Intraindividual Study of Affect, Health, and Interpersonal Behavior (iSAHIB).

    Science.gov (United States)

    Ram, Nilam; Conroy, David E; Pincus, Aaron L; Lorek, Amy; Rebar, Amanda; Roche, Michael J; Coccia, Michael; Morack, Jennifer; Feldman, Josh; Gerstorf, Denis

    Human development is characterized by the complex interplay of processes that manifest at multiple levels of analysis and time-scales. We introduce the Intraindividual Study of Affect, Health and Interpersonal Behavior (iSAHIB) as a model for how multiple time-scale study designs facilitate more precise articulation of developmental theory. Combining age heterogeneity, longitudinal panel, daily diary, and experience sampling protocols, the study made use of smartphone and web-based technologies to obtain intensive longitudinal data from 150 persons age 18-89 years as they completed three 21-day measurement bursts ( t = 426 bursts, t = 8,557 days) wherein they provided reports on their social interactions ( t = 64,112) as they went about their daily lives. We illustrate how multiple time-scales of data can be used to articulate bioecological models of development and the interplay among more 'distal' processes that manifest at 'slower' time-scales (e.g., age-related differences and burst-to-burst changes in mental health) and more 'proximal' processes that manifest at 'faster' time-scales (e.g., changes in context that progress in accordance with the weekly calendar and family influence processes).

  18. Neural Computations in a Dynamical System with Multiple Time Scales.

    Science.gov (United States)

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.

  19. Multiple time scale analysis of sediment and runoff changes in the Lower Yellow River

    Directory of Open Access Journals (Sweden)

    K. Chi

    2018-06-01

    Full Text Available Sediment and runoff changes of seven hydrological stations along the Lower Yellow River (LYR (Huayuankou Station, Jiahetan Station, Gaocun Station, Sunkou Station, Ai Shan Station, Qikou Station and Lijin Station from 1980 to 2003 were alanyzed at multiple time scale. The maximum value of monthly, daily and hourly sediment load and runoff conservations were also analyzed with the annually mean value. Mann–Kendall non-parametric mathematics correlation test and Hurst coefficient method were adopted in the study. Research results indicate that (1 the runoff of seven hydrological stations was significantly reduced in the study period at different time scales. However, the trends of sediment load in these stations were not obvious. The sediment load of Huayuankou, Jiahetan and Aishan stations even slightly increased with the runoff decrease. (2 The trends of the sediment load with different time scale showed differences at Luokou and Lijin stations. Although the annually and monthly sediment load were broadly flat, the maximum hourly sediment load showed decrease trend. (3 According to the Hurst coefficients, the trend of sediment and runoff will be continue without taking measures, which proved the necessary of runoff-sediment regulation scheme.

  20. Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles

    Directory of Open Access Journals (Sweden)

    Mi-An Xue

    2012-01-01

    Full Text Available A two-phase fluid flow model solving Navier-Stokes equations was employed in this paper to investigate liquid sloshing phenomena in cubic tank with horizontal baffle, perforated vertical baffle, and their combinatorial configurations under the harmonic motion excitation. Laboratory experiment of liquid sloshing in cubic tank with perforated vertical baffle was carried out to validate the present numerical model. Fairly good agreements were obtained from the comparisons between the present numerical results and the present experimental data, available numerical data. Liquid sloshing in cubic tank with multiple baffles was investigated numerically in detail under different external excitation frequencies. Power spectrum of the time series of free surface elevation was presented with the aid of fast Fourier transform technique. The dynamic impact pressures acting on the normal and parallel sidewalls were discussed in detail.

  1. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...

  2. Exploitation of Microdoppler and Multiple Scattering Phenomena for Radar Target Recognition

    Science.gov (United States)

    2006-08-24

    progress on the reserach grant "Exploitation of MicroDoppler and Multiple Scattering Phenomena for Radar Target Recognition" during the period 1...paper describes a methodology of modeling A number of ray-based EM techniques have been interferometric synthetic aperture radar (IFSAR) images...modes including the single present an IFSAR simulation methodology to simulate the antenna transmit mode, the ping-pong mode or the repeat interferogram

  3. Russian national time scale long-term stability

    Science.gov (United States)

    Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.

    1994-05-01

    The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.

  4. PSI-BOIL, a building block towards the multi-scale modeling of flow boiling phenomena

    International Nuclear Information System (INIS)

    Niceno, Bojan; Andreani, Michele; Prasser, Horst-Michael

    2008-01-01

    Full text of publication follows: In these work we report the current status of the Swiss project Multi-scale Modeling Analysis (MSMA), jointly financed by PSI and Swissnuclear. The project aims at addressing the multi-scale (down to nano-scale) modelling of convective boiling phenomena, and the development of physically-based closure laws for the physical scales appropriate to the problem considered, to be used within Computational Fluid Dynamics (CFD) codes. The final goal is to construct a new computational tool, called Parallel Simulator of Boiling phenomena (PSI-BOIL) for the direct simulation of processes all the way down to the small-scales of interest and an improved CFD code for the mechanistic prediction of two-phase flow and heat transfer in the fuel rod bundle of a nuclear reactor. An improved understanding of the physics of boiling will be gained from the theoretical work as well as from novel small- and medium scale experiments targeted to assist the development of closure laws. PSI-BOIL is a computer program designed for efficient simulation of turbulent fluid flow and heat transfer phenomena in simple geometries. Turbulence is simulated directly (DNS) and its efficiency plays a vital role in a successful simulation. Having high performance as one of the main prerequisites, PSIBOIL is tailored in such a way to be as efficient a tool as possible, relying on well-established numerical techniques and sacrificing all the features which are not essential for the success of this project and which might slow down the solution procedure. The governing equations are discretized in space with orthogonal staggered finite volume method. Time discretization is performed with projection method, the most obvious a the most widely used choice for DNS. Systems of linearized equation, stemming from the discretization of governing equations, are solved with the Additive Correction Multigrid (ACM). methods. Two distinguished features of PSI-BOIL are the possibility to

  5. New phenomena in the standard no-scale supergravity model

    CERN Document Server

    Kelley, S; Nanopoulos, Dimitri V; Zichichi, Antonino; Kelley, S; Lopez, J L; Nanopoulos, D V; Zichichi, A

    1994-01-01

    We revisit the no-scale mechanism in the context of the simplest no-scale supergravity extension of the Standard Model. This model has the usual five-dimensional parameter space plus an additional parameter \\xi_{3/2}\\equiv m_{3/2}/m_{1/2}. We show how predictions of the model may be extracted over the whole parameter space. A necessary condition for the potential to be stable is {\\rm Str}{\\cal M}^4>0, which is satisfied if \\bf m_{3/2}\\lsim2 m_{\\tilde q}. Order of magnitude calculations reveal a no-lose theorem guaranteeing interesting and potentially observable new phenomena in the neutral scalar sector of the theory which would constitute a ``smoking gun'' of the no-scale mechanism. This new phenomenology is model-independent and divides into three scenarios, depending on the ratio of the weak scale to the vev at the minimum of the no-scale direction. We also calculate the residual vacuum energy at the unification scale (C_0\\, m^4_{3/2}), and find that in typical models one must require C_0>10. Such constrai...

  6. Interfacial transport phenomena and stability in liquid-metal/water systems: scaling considerations

    International Nuclear Information System (INIS)

    Abdulla, S.; Liu, X.; Anderson, M.; Bonazza, R.; Corradini, M.; Cho, D.

    2001-01-01

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area give rise to very high heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In this paper we describe current results from the first year of this research that studies the transport phenomena involved with the injection of water into molten metals (e.g., lead alloys). In particular, this work discusses scaling considerations related to direct contact heat exchange, our experimental plans for investigation and a test plan for the important experimental parameters; i.e., the water and liquid metal mass flow rates, the liquid metal pool temperature and the ambient pressure of the direct contact heat exchanger. Past experimental work and initial scaling results suggest that our experiments can directly represent the proper liquid metal pool temperature and the water subcooling. The experimental variation in water and liquid metal flow rates and system pressure (1-10 bar), although smaller than the current conceptual system designs, is sufficient to verify the expected scale effects to demonstrate the phenomena. (authors)

  7. Multiple-Time-Scales Hierarchical Frequency Stability Control Strategy of Medium-Voltage Isolated Microgrid

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Guerrero, Josep M.

    2016-01-01

    In this paper, an islanded medium-voltage (MV) microgrid placed in Dongao Island is presented, which integrates renewable-energy-based distributed generations (DGs), energy storage system (ESS), and local loads. In an isolated microgrid without connection to the main grid to support the frequency......, it is more complex to control and manage. Thus in order to maintain the frequency stability in multiple-time-scales, a hierarchical control strategy is proposed. The proposed control architecture divides the system frequency in three zones: (A) stable zone, (B) precautionary zone and (C) emergency zone...... of Zone B. Theoretical analysis, time-domain simulation and field test results under various conditions and scenarios in the Dongao Island microgrid are presented to prove the validity of the introduced control strategy....

  8. Multiple dynamical time-scales in networks with hierarchically

    Indian Academy of Sciences (India)

    Modular networks; hierarchical organization; synchronization. ... we show that such a topological structure gives rise to characteristic time-scale separation ... This suggests a possible functional role of such mesoscopic organization principle in ...

  9. Beyond KNO multiplicative cascades and novel multiplicity scaling laws

    CERN Document Server

    Hegyi, S

    1999-01-01

    The collapse of multiplicity distributions P/sub n/ onto a universal scaling curve arises when P/sub n/ is expressed as a function of the standardized multiplicity (n-c)/ lambda with c and lambda being location and scale parameters governed by leading particle effects and the growth of average multiplicity. It is demonstrated that self- similar multiplicative cascade processes such as QCD parton branching naturally lead to a novel type of scaling behavior of P/sub n/ which manifests itself in Mellin space through a location change controlled by the degree of multifractality and a scale change governed by the depth of the cascade. Applying the new scaling rule it is shown how to restore data collapsing behavior of P/sub n/ measured in hh collisions at ISR and SPS energies. (21 refs).

  10. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  11. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    Administrator

    Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, ... by processes operating on a multiplicity of length .... real time. The design and interpretation of femto- second experiments has required considerable ...

  12. Scale-dependent intrinsic entropies of complex time series.

    Science.gov (United States)

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).

  13. Toward multi-scale simulation of reconnection phenomena in space plasma

    Science.gov (United States)

    Den, M.; Horiuchi, R.; Usami, S.; Tanaka, T.; Ogawa, T.; Ohtani, H.

    2013-12-01

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow. On the other hand configuration of the magnetic field leading to formation of diffusion region is determined in macroscopic scale and topological change after reconnection is also expressed in macroscopic scale. Thus magnetic reconnection is typical multi-scale phenomenon and microscopic and macroscopic physics are strongly coupled. Recently Horiuchi et al. developed an effective resistivity model based on particle-in-cell (PIC) simulation results obtained in study of collisionless driven reconnection and applied to a global magnetohydrodynamics (MHD) simulation of substorm in the Earth's magnetosphere. They showed reproduction of global behavior in substrom such as dipolarization and flux rope formation by global three dimensional MHD simulation. Usami et al. developed multi-hierarchy simulation model, in which macroscopic and microscopic physics are solved self-consistently and simultaneously. Based on the domain decomposition method, this model consists of three parts: a MHD algorithm for macroscopic global dynamics, a PIC algorithm for microscopic kinetic physics, and an interface algorithm to interlock macro and micro hierarchies. They verified the interface algorithm by simulation of plasma injection flow. In their latest work, this model was applied to collisionless reconnection in an open system and magnetic reconnection was successfully found. In this paper, we describe our approach to clarify multi-scale phenomena and report the current status. Our recent study about extension of the MHD domain to global system is presented. We

  14. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  15. Scaling Phenomena in Desalination With Multi Stage Flash Distillation (MSF)

    International Nuclear Information System (INIS)

    Siti-Alimah

    2006-01-01

    Assessment of scaling phenomena in MSF desalination has been carried out. Scale is one of predominantly problem in multi stage flash (MSF) desalination installation. The main types of scale in MSF are carbonate calcium (CaCO 3 ), hydroxide magnesium (Mg(OH) 2 ) and sulphate calcium (CaSO 4 ). CaCO 3 and Mg(OH) 2 scales result from the thermal decomposition of bicarbonate ion, however sulphate calcium scale result from reaction of calcium ion and sulfate ion present in seawater. The rate of formation scale in seawater depends on temperature, pH, concentration of ions, supersaturated solution, nucleation and diffusion. The scales in MSF installation can occur inside heat exchanger tube, brine heater tubes, water boxes, on the face of tube sheets and demister pads. Scaling reduces effectiveness (production and heat consumption) of the process. To avoid the reductions in performance caused by scale precipitation, desalination units employ scale control. To control this scaling problem, the following methods can be used; acid, additive (scale inhibitors) and mechanical cleaning. Stoichiometric amounts of acid must be added to seawater, because addition excess of acid will increase corrosion problems. Using of scale inhibitors as polyphosphates, phosphonates, polyacrylates and poly maleates have advantage and disadvantage. (author)

  16. Scaling of Thermal-Hydraulic Phenomena and System Code Assessment

    International Nuclear Information System (INIS)

    Wolfert, K.

    2008-01-01

    In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.

  17. Multiple time-scale optimization scheduling for islanded microgrids including PV, wind turbine, diesel generator and batteries

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Nan, Jiakai; Guerrero, Josep M.

    2017-01-01

    A multiple time-scale optimization scheduling including day ahead and short time for an islanded microgrid is presented. In this paper, the microgrid under study includes photovoltaics (PV), wind turbine (WT), diesel generator (DG), batteries, and shiftable loads. The study considers the maximum...... efficiency operation area for the diesel engine and the cost of the battery charge/discharge cycle losses. The day-ahead generation scheduling takes into account the minimum operational cost and the maximum load satisfaction as the objective function. Short-term optimal dispatch is based on minimizing...

  18. Critical point phenomena: universal physics at large length scales

    International Nuclear Information System (INIS)

    Bruce, A.; Wallace, D.

    1993-01-01

    This article is concerned with the behaviour of a physical system at, or close to, a critical point (ebullition, ferromagnetism..): study of the phenomena displayed in the critical region (Ising model, order parameter, correlation length); description of the configurations (patterns) formed by the microscopic degrees of freedom near a critical point, essential concepts of the renormalization group (coarse-graining, system flow, fixed-point and scale-invariance); how these concepts knit together to form the renormalization group method; and what kind of problems may be resolved by the renormalization group method. 12 figs., 1 ref

  19. Human learning: Power laws or multiple characteristic time scales?

    Directory of Open Access Journals (Sweden)

    Gottfried Mayer-Kress

    2006-09-01

    Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice – within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.

  20. Measures of spike train synchrony for data with multiple time scales

    NARCIS (Netherlands)

    Satuvuori, Eero; Mulansky, Mario; Bozanic, Nebojsa; Malvestio, Irene; Zeldenrust, Fleur; Lenk, Kerstin; Kreuz, Thomas

    2017-01-01

    Background Measures of spike train synchrony are widely used in both experimental and computational neuroscience. Time-scale independent and parameter-free measures, such as the ISI-distance, the SPIKE-distance and SPIKE-synchronization, are preferable to time scale parametric measures, since by

  1. Scaling laws governing the multiple scattering of diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The trajectories of fast molecules during and after penetration through foils are governed by Coulomb explosion and distorted by multiple scattering and other penetration phenomena. A scattering event may cause the energy available for Coulomb explosion to increase or decrease, and angular momentum may be transferred to the molecule. Because of continuing Coulomb explosion inside and outside the target foil, the transmission pattern recorded at a detector far away from the target is not just a linear superposition of Coulomb explosion and multiple scattering. The velocity distribution of an initially monochromatic and well-collimated, but randomly oriented, beam of molecular ions is governed by a generalization of the standard Bothe-Landau integral that governs the multiple scattering of atomic ions. Emphasis has been laid on the distribution in relative velocity and, in particular, relative energy. The statistical distributions governing the longitudinal motion (i.e., the relative motion along the molecular axis) and the rotational motion can be scaled into standard multiple-scattering distributions of atomic ions. The two scaling laws are very different. For thin target foils, the significance of rotational energy transfer is enhanced by an order of magnitude compared to switched-off Coulomb explosion. A distribution for the total relative energy (i.e., longitudinal plus rotational motion) has also been found, but its scaling behavior is more complex. Explicit examples given for all three distributions refer to power-law scattering. As a first approximation, scattering events undergone by the two atoms in the molecule were assumed uncorrelated. A separate section has been devoted to an estimate of the effect of impact-parameter correlation on the multiple scattering of penetrating molecules

  2. Ether and interpretation of some physical phenomena and concepts

    International Nuclear Information System (INIS)

    Rzayev, S.G.

    2008-01-01

    On the basis of the concept of existence of an ether representation about time, space, matters and physical field are profound and also the essence of such phenomena, as corpuscular - wave dualism, change of time, scale and mass at movement body's is opened. The opportunity of transition from probability-statistical interpretation of the quantum phenomena to Laplace's determinism is shown

  3. Real time animation of space plasma phenomena

    International Nuclear Information System (INIS)

    Jordan, K.F.; Greenstadt, E.W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

  4. Cerebral methodology based computing to estimate real phenomena from large-scale nuclear simulation

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2011-01-01

    Our final goal is to estimate real phenomena from large-scale nuclear simulations by using computing processes. Large-scale simulations mean that they include scale variety and physical complexity so that corresponding experiments and/or theories do not exist. In nuclear field, it is indispensable to estimate real phenomena from simulations in order to improve the safety and security of nuclear power plants. Here, the analysis of uncertainty included in simulations is needed to reveal sensitivity of uncertainty due to randomness, to reduce the uncertainty due to lack of knowledge and to lead a degree of certainty by verification and validation (V and V) and uncertainty quantification (UQ) processes. To realize this, we propose 'Cerebral Methodology based Computing (CMC)' as computing processes with deductive and inductive approaches by referring human reasoning processes. Our idea is to execute deductive and inductive simulations contrasted with deductive and inductive approaches. We have established its prototype system and applied it to a thermal displacement analysis of a nuclear power plant. The result shows that our idea is effective to reduce the uncertainty and to get the degree of certainty. (author)

  5. Transport phenomena in strongly correlated Fermi liquids

    CERN Document Server

    Kontani, Hiroshi

    2013-01-01

    In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...

  6. Transport phenomena in strongly correlated Fermi liquids

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2013-01-01

    Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.

  7. Multiple time step integrators in ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-01-01

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy

  8. Experiments to investigate direct containment heating phenomena with scaled models of the Surry Nuclear Power Plant

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Allen, M.D.; Pilch, M.M.

    1994-01-01

    The Containment Technology Test Facility (CTTF) and the Surtsey Test Facility at Sandia National Laboratories (SNL) are used to perform scaled experiments for the Nuclear Regulatory Commission (NRC) that simulate High Pressure Melt Ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effects of direct containment heating (DCH) phenomena on the containment load. High-temperature, chemically reactive melt is ejected by high-pressure steam into a scale model of a reactor cavity. Debris is entrained by the steam blowdown into a containment model where specific phenomena, such as the effect of subcompartment structures, prototypic atmospheres, and hydrogen generation and combustion, can be studied

  9. Accurate scaling on multiplicity

    International Nuclear Information System (INIS)

    Golokhvastov, A.I.

    1989-01-01

    The commonly used formula of KNO scaling P n =Ψ(n/ ) for descrete distributions (multiplicity distributions) is shown to contradict mathematically the condition ΣP n =1. The effect is essential even at ISR energies. A consistent generalization of the concept of similarity for multiplicity distributions is obtained. The multiplicity distributions of negative particles in PP and also e + e - inelastic interactions are similar over the whole studied energy range. Collider data are discussed. 14 refs.; 8 figs

  10. Multiple Positive Solutions of a Nonlinear Four-Point Singular Boundary Value Problem with a p-Laplacian Operator on Time Scales

    Directory of Open Access Journals (Sweden)

    Shihuang Hong

    2009-01-01

    Full Text Available We present sufficient conditions for the existence of at least twin or triple positive solutions of a nonlinear four-point singular boundary value problem with a p-Laplacian dynamic equation on a time scale. Our results are obtained via some new multiple fixed point theorems.

  11. Nonlinear MHD dynamics of tokamak plasmas on multiple time scales

    International Nuclear Information System (INIS)

    Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.

    2003-01-01

    Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)

  12. A statistical approach to strange diffusion phenomena

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Sanchez, R.

    2005-01-01

    The study of particle (and heat) transport in fusion plasmas has revealed the existence of what might be called 'unusual' transport phenomena. Such phenomena are: unexpected scaling of the confinement time with system size, power degradation (i.e. sub-linear scaling of energy content with power input), profile stiffness (also known as profile consistency), rapid transient transport phenomena such as cold and heat pulses (travelling much faster than the diffusive timescale would allow), non-local behaviour and central profile peaking during off-axis heating, associated with unexplained inward pinches. The standard modelling framework, essentially equal to Fick's Law plus extensions, has great difficulty in providing an all-encompassing and satisfactory explanation of all these phenomena. This difficulty has motivated us to reconsider the basics of the modelling of diffusive phenomena. Diffusion is based on the well-known random walk. The random walk is captured in all its generality in the Continuous Time Random Walk (CTRW) formalism. The CTRW formalism is directly related to the well-known Generalized Master Equation, which describes the behaviour of tracer particle diffusion on a very fundamental level, and from which the phenomenological Fick's Law can be derived under some specific assumptions. We show that these assumptions are not necessarily satisfied under fusion plasma conditions, in which case other equations (such as the Fokker-Planck diffusion law or the Master Equation itself) provide a better description of the phenomena. This fact may explain part of the observed 'strange' phenomena (namely, the inward pinch). To show how the remaining phenomena mentioned above may perhaps find an explanation in the proposed alternative modelling framework, we have designed a toy model that incorporates a critical gradient mechanism, switching between rapid (super-diffusive) and normal diffusive transport as a function of the local gradient. It is then demonstrated

  13. Real-time magnetic resonance imaging of highly dynamic granular phenomena

    Science.gov (United States)

    Penn, Alexander; Pruessmann, Klaas P.; Müller, Christoph

    Probing non-intrusively the interior of three-dimensional granular systems is a challenging task for which a number of imaging techniques have been applied including positron emission particle tracking, X-ray tomography and magnetic resonance imaging (MRI). A particular advantage of MRI is its versatility allowing quantitative velocimetry through phase contrast encoding and tagging, arbitrary slice orientations and the flexibility to trade spatial for temporal resolution and vice versa during image reconstruction. However, previous attempts to image granular systems using MRI were often limited to (pseudo-) steady state systems due to the poor temporal resolution of conventional imaging methodology. Here we present an experimental approach that overcomes previous limitations in temporal resolution by implementing a variety of methodological advances, viz. parallel data acquisition through tailored multiple receiver coils, fast gradient readouts for time-efficient data sampling and engineered granular materials that contain signal sources of high proton density. Achieving a spatial and temporal resolution of, respectively, 2 mm x 2 mm and 50 ms, we were able to image highly dynamic phenomena in granular media such as bubble coalescence and granular compaction waves.

  14. Multiple scales in metapopulations of public goods producers

    Science.gov (United States)

    Bauer, Marianne; Frey, Erwin

    2018-04-01

    Multiple scales in metapopulations can give rise to paradoxical behavior: in a conceptual model for a public goods game, the species associated with a fitness cost due to the public good production can be stabilized in the well-mixed limit due to the mere existence of these scales. The scales in this model involve a length scale corresponding to separate patches, coupled by mobility, and separate time scales for reproduction and interaction with a local environment. Contrary to the well-mixed high mobility limit, we find that for low mobilities, the interaction rate progressively stabilizes this species due to stochastic effects, and that the formation of spatial patterns is not crucial for this stabilization.

  15. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    Science.gov (United States)

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at

  16. Time contour expression of limited range phenomena on stack chart; Jugo chart jo deno kyokuchi gensho jikan contour

    Energy Technology Data Exchange (ETDEWEB)

    Kametani, T

    1997-05-27

    Time contour expression of limited range phenomena on stack chart is examined for further improvement on the result of the ultimate interpretation in the seismic reflection survey. The policy is made clear from the beginning that local phenomena are to be discussed, and data prior CMP stacking is interpreted in detail. For this purpose, it is effective to make use of the time contour expression in the midpoint-offset plane simultaneously with the CMP and COP panels. For the review of data prior to CMP stacking, it is convenient to use the CMP (CDP) stacking chart in which the data is arranged methodically. In this chart, all the channels which are crude data prior to stacking are plotted on midpoint-offset coordinates, which plane is called the MOD (Midpoint Offset Domain) panel. Various panels can be chosen unrestrictedly, and their mutual relations can be easily grasped. When data points are given a time axis, they can be expressed in a time contour. Studies are conducted about the underground structure, multiple reflection paths divided by it, and characteristics of detour reflection attributable to faults. 4 refs., 9 figs.

  17. MULTIPLE SCALES FOR SUSTAINABLE RESULTS

    Science.gov (United States)

    This session will highlight recent research that incorporates the use of multiple scales and innovative environmental accounting to better inform decisions that affect sustainability, resilience, and vulnerability at all scales. Effective decision-making involves assessment at mu...

  18. Anti-control of chaos of single time-scale brushless DC motor.

    Science.gov (United States)

    Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng

    2006-09-15

    Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.

  19. Switching Phenomena in a System with No Switches

    Science.gov (United States)

    Preis, Tobias; Stanley, H. Eugene

    2010-02-01

    It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

  20. Microstructural evolution at multiple scales during plastic deformation

    DEFF Research Database (Denmark)

    Winther, Grethe

    During plastic deformation metals develop microstructures which may be analysed on several scales, e.g. bulk textures, the scale of individual grains, intragranular phenomena in the form of orientation spreads as well as dislocation patterning by formation of dislocation boundaries in metals of m......, which is backed up by experimental data [McCabe et al. 2004; Wei et al., 2011; Hong, Huang, & Winther, 2013]. The current state of understanding as well as the major challenges are discusse....

  1. Nonlinear triple-point problems on time scales

    Directory of Open Access Journals (Sweden)

    Douglas R. Anderson

    2004-04-01

    Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0

  2. Scale breaking effects in the quark-parton model for large P perpendicular phenomena

    International Nuclear Information System (INIS)

    Baier, R.; Petersson, B.

    1977-01-01

    We discuss how the scaling violations suggested by an asymptotically free parton model, i.e., the Q 2 -dependence of the transverse momentum of partons within hadrons may affect the parton model description of large p perpendicular phenomena. We show that such a mechanism can provide an explanation for the magnitude of the opposite side correlations and their dependence on the trigger momentum. (author)

  3. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity

    International Nuclear Information System (INIS)

    Xie, Huijuan; Gong, Yubing

    2017-01-01

    In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on multiple coherence resonances (MCR) and synchronization transitions (ST) induced by time delay in adaptive scale-free Hodgkin–Huxley neuronal networks. It is found that STDP has a big influence on MCR and ST induced by time delay and on the effect of network average degree on the MCR and ST. MCR is enhanced or suppressed as the adjusting rate A p of STDP decreases or increases, and there is optimal A p by which ST becomes strongest. As network average degree 〈k〉 increases, ST is enhanced and there is optimal 〈k〉 at which MCR becomes strongest. Moreover, for a larger A p value, ST is enhanced more rapidly with increasing 〈k〉 and the optimal 〈k〉 for MCR increases. These results show that STDP can either enhance or suppress MCR, and there is optimal STDP that can most strongly enhance ST induced by time delay in the adaptive neuronal networks. These findings could find potential implication for the information processing and transmission in neural systems.

  5. Simulating atomic-scale phenomena on surfaces of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kreisel, Andreas; Andersen, Brian [Niels Bohr Institute (Denmark); Choubey, Peayush; Hirschfeld, Peter [Univ. of Florida (United States); Berlijn, Tom [CNMS and CSMD, Oak Ridge National Laboratory (United States)

    2016-07-01

    Interest in atomic scale effects in superconductors has increased because of two general developments: First, the discovery of new materials as the cuprate superconductors, heavy fermion and Fe-based superconductors where the coherence length of the cooper pairs is as small to be comparable to the lattice constant, rendering small scale effects important. Second, the experimental ability to image sub-atomic features using scanning-tunneling microscopy which allows to unravel numerous physical properties of the homogeneous system such as the quasi particle excitation spectra or various types of competing order as well as properties of local disorder. On the theoretical side, the available methods are based on lattice models restricting the spatial resolution of such calculations. In the present project we combine lattice calculations using the Bogoliubov-de Gennes equations describing the superconductor with wave function information containing sub-atomic resolution obtained from ab initio approaches. This allows us to calculate phenomena on surfaces of superconductors as directly measured in scanning tunneling experiments and therefore opens the possibility to identify underlying properties of these materials and explain observed features of disorder. It will be shown how this method applies to the cuprate material Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} and a Fe based superconductor.

  6. Theory of critical phenomena in finite-size systems scaling and quantum effects

    CERN Document Server

    Brankov, Jordan G; Tonchev, Nicholai S

    2000-01-01

    The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals

  7. Hysteresis phenomena in hydraulic measurement

    International Nuclear Information System (INIS)

    Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y

    2012-01-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  8. Operational tools to build a multicriteria territorial risk scale with multiple stakeholders

    International Nuclear Information System (INIS)

    Cailloux, Olivier; Mayag, Brice; Meyer, Patrick; Mousseau, Vincent

    2013-01-01

    Evaluating and comparing the threats and vulnerabilities associated with territorial zones according to multiple criteria (industrial activity, population, etc.) can be a time-consuming task and often requires the participation of several stakeholders. Rather than a direct evaluation of these zones, building a risk assessment scale and using it in a formal procedure permits to automate the assessment and therefore to apply it in a repeated way and in large-scale contexts and, provided the chosen procedure and scale are accepted, to make it objective. One of the main difficulties of building such a formal evaluation procedure is to account for the multiple decision makers' preferences. The procedure used in this article, ELECTRE TRI, uses the performances of each territorial zone on multiple criteria, together with preferential parameters from multiple decision makers, to qualitatively assess their associated risk level. We also present operational tools in order to implement such a procedure in practice, and show their use on a detailed example

  9. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    Science.gov (United States)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  10. Reduced α-stable dynamics for multiple time scale systems forced with correlated additive and multiplicative Gaussian white noise

    Science.gov (United States)

    Thompson, William F.; Kuske, Rachel A.; Monahan, Adam H.

    2017-11-01

    Stochastic averaging problems with Gaussian forcing have been the subject of numerous studies, but far less attention has been paid to problems with infinite-variance stochastic forcing, such as an α-stable noise process. It has been shown that simple linear systems driven by correlated additive and multiplicative (CAM) Gaussian noise, which emerge in the context of reduced atmosphere and ocean dynamics, have infinite variance in certain parameter regimes. In this study, we consider the stochastic averaging of systems where a linear CAM noise process in the infinite variance parameter regime drives a comparatively slow process. We use (semi)-analytical approximations combined with numerical illustrations to compare the averaged process to one that is forced by a white α-stable process, demonstrating consistent properties in the case of large time-scale separation. We identify the conditions required for the fast linear CAM process to have such an influence in driving a slower process and then derive an (effectively) equivalent fast, infinite-variance process for which an existing stochastic averaging approximation is readily applied. The results are illustrated using numerical simulations of a set of example systems.

  11. Time-localized wavelet multiple regression and correlation

    Science.gov (United States)

    Fernández-Macho, Javier

    2018-02-01

    This paper extends wavelet methodology to handle comovement dynamics of multivariate time series via moving weighted regression on wavelet coefficients. The concept of wavelet local multiple correlation is used to produce one single set of multiscale correlations along time, in contrast with the large number of wavelet correlation maps that need to be compared when using standard pairwise wavelet correlations with rolling windows. Also, the spectral properties of weight functions are investigated and it is argued that some common time windows, such as the usual rectangular rolling window, are not satisfactory on these grounds. The method is illustrated with a multiscale analysis of the comovements of Eurozone stock markets during this century. It is shown how the evolution of the correlation structure in these markets has been far from homogeneous both along time and across timescales featuring an acute divide across timescales at about the quarterly scale. At longer scales, evidence from the long-term correlation structure can be interpreted as stable perfect integration among Euro stock markets. On the other hand, at intramonth and intraweek scales, the short-term correlation structure has been clearly evolving along time, experiencing a sharp increase during financial crises which may be interpreted as evidence of financial 'contagion'.

  12. Some aspects of geomagnetically conjugate phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, M.J.

    1987-12-01

    Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.

  13. On the nonlinear dynamics of trolling-mode AFM: Analytical solution using multiple time scales method

    Science.gov (United States)

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.

  14. Cross-Scale Modelling of Subduction from Minute to Million of Years Time Scale

    Science.gov (United States)

    Sobolev, S. V.; Muldashev, I. A.

    2015-12-01

    Subduction is an essentially multi-scale process with time-scales spanning from geological to earthquake scale with the seismic cycle in-between. Modelling of such process constitutes one of the largest challenges in geodynamic modelling today.Here we present a cross-scale thermomechanical model capable of simulating the entire subduction process from rupture (1 min) to geological time (millions of years) that employs elasticity, mineral-physics-constrained non-linear transient viscous rheology and rate-and-state friction plasticity. The model generates spontaneous earthquake sequences. The adaptive time-step algorithm recognizes moment of instability and drops the integration time step to its minimum value of 40 sec during the earthquake. The time step is then gradually increased to its maximal value of 5 yr, following decreasing displacement rates during the postseismic relaxation. Efficient implementation of numerical techniques allows long-term simulations with total time of millions of years. This technique allows to follow in details deformation process during the entire seismic cycle and multiple seismic cycles. We observe various deformation patterns during modelled seismic cycle that are consistent with surface GPS observations and demonstrate that, contrary to the conventional ideas, the postseismic deformation may be controlled by viscoelastic relaxation in the mantle wedge, starting within only a few hours after the great (M>9) earthquakes. Interestingly, in our model an average slip velocity at the fault closely follows hyperbolic decay law. In natural observations, such deformation is interpreted as an afterslip, while in our model it is caused by the viscoelastic relaxation of mantle wedge with viscosity strongly varying with time. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-year time range. We will also present results of the modeling of deformation of the

  15. The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.

    Science.gov (United States)

    Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter

    2011-10-13

    A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.

  16. Chaos anticontrol and synchronization of three time scales brushless DC motor system

    International Nuclear Information System (INIS)

    Ge Zhengming; Cheng Juiwen; Chen Yensheng

    2004-01-01

    Chaos anticontrol of three time scale brushless dc motors and chaos synchronization of different order systems are studied. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. By adding constant term, periodic square wave, the periodic triangle wave, the periodic sawtooth wave, and kx vertical bar x vertical bar term, to achieve anticontrol of chaotic or periodic systems, it is found that more chaotic phenomena of the system can be observed. Then, by coupled terms and linearization of error dynamics, we obtain the partial synchronization of two different order systems, i.e. brushless DC motor system and rate gyroscope system

  17. Can Transient Phenomena Help Improving Time Resolution in Scintillators?

    CERN Document Server

    Lecoq, P; Vasiliev, A

    2014-01-01

    The time resolution of a scintillator-based detector is directly driven by the density of photoelectrons generated in the photodetector at the detection threshold. At the scintillator level it is related to the intrinsic light yield, the pulse shape (rise time and decay time) and the light transport from the gamma-ray conversion point to the photodetector. When aiming at 10 ps time resolution, fluctuations in the thermalization and relaxation time of hot electrons and holes generated by the interaction of ionization radiation with the crystal become important. These processes last for up to a few tens of ps and are followed by a complex trapping-detrapping process, Poole-Frenkel effect, Auger ionization of traps and electron-hole recombination, which can last for a few ns with very large fluctuations. This paper will review the different processes at work and evaluate if some of the transient phenomena taking place during the fast thermalization phase can be exploited to extract a time tag with a precision in...

  18. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China

    Science.gov (United States)

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang

    2018-06-01

    China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM2.5 and PM10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM2.5 accumulation; low wind speed and high relative humidity constrained PM10 accumulation; and short sunshine duration and high wind speed constrained O3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.

  19. Synchronization and Causality Across Time-scales: Complex Dynamics and Extremes in El Niño/Southern Oscillation

    Science.gov (United States)

    Jajcay, N.; Kravtsov, S.; Tsonis, A.; Palus, M.

    2017-12-01

    A better understanding of dynamics in complex systems, such as the Earth's climate is one of the key challenges for contemporary science and society. A large amount of experimental data requires new mathematical and computational approaches. Natural complex systems vary on many temporal and spatial scales, often exhibiting recurring patterns and quasi-oscillatory phenomena. The statistical inference of causal interactions and synchronization between dynamical phenomena evolving on different temporal scales is of vital importance for better understanding of underlying mechanisms and a key for modeling and prediction of such systems. This study introduces and applies information theory diagnostics to phase and amplitude time series of different wavelet components of the observed data that characterizes El Niño. A suite of significant interactions between processes operating on different time scales was detected, and intermittent synchronization among different time scales has been associated with the extreme El Niño events. The mechanisms of these nonlinear interactions were further studied in conceptual low-order and state-of-the-art dynamical, as well as statistical climate models. Observed and simulated interactions exhibit substantial discrepancies, whose understanding may be the key to an improved prediction. Moreover, the statistical framework which we apply here is suitable for direct usage of inferring cross-scale interactions in nonlinear time series from complex systems such as the terrestrial magnetosphere, solar-terrestrial interactions, seismic activity or even human brain dynamics.

  20. Multi-Scale Dissemination of Time Series Data

    DEFF Research Database (Denmark)

    Guo, Qingsong; Zhou, Yongluan; Su, Li

    2013-01-01

    In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time...

  1. Modes of correlated angular motion in live cells across three distinct time scales

    International Nuclear Information System (INIS)

    Harrison, Andrew W; Kenwright, David A; Woodman, Philip G; Allan, Victoria J; Waigh, Thomas A

    2013-01-01

    Particle tracking experiments with high speed digital microscopy yield the positions and trajectories of lipid droplets inside living cells. Angular correlation analysis shows that the lipid droplets have uncorrelated motion at short time scales (τ 10 ms, becomes persistent, indicating directed movement. The motion at all time scales is associated with the lipid droplets being tethered to and driven along the microtubule network. The point at which the angular correlation changes from anti-persistent to persistent motion corresponds to the cross over between sub-diffusive and super diffusive motion, as observed by mean square displacement analysis. Correct analysis of the angular correlations of the detector noise is found to be crucial in modelling the observed phenomena. (paper)

  2. Multiple Positive Symmetric Solutions to p-Laplacian Dynamic Equations on Time Scales

    Directory of Open Access Journals (Sweden)

    You-Hui Su

    2009-01-01

    two examples are given to illustrate the main results and their differences. These results are even new for the special cases of continuous and discrete equations, as well as in the general time-scale setting.

  3. Kinota: An Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring

    Science.gov (United States)

    Miles, B.; Chepudira, K.; LaBar, W.

    2017-12-01

    The Open Geospatial Consortium (OGC) SensorThings API (STA) specification, ratified in 2016, is a next-generation open standard for enabling real-time communication of sensor data. Building on over a decade of OGC Sensor Web Enablement (SWE) Standards, STA offers a rich data model that can represent a range of sensor and phenomena types (e.g. fixed sensors sensing fixed phenomena, fixed sensors sensing moving phenomena, mobile sensors sensing fixed phenomena, and mobile sensors sensing moving phenomena) and is data agnostic. Additionally, and in contrast to previous SWE standards, STA is developer-friendly, as is evident from its convenient JSON serialization, and expressive OData-based query language (with support for geospatial queries); with its Message Queue Telemetry Transport (MQTT), STA is also well-suited to efficient real-time data publishing and discovery. All these attributes make STA potentially useful for use in environmental monitoring sensor networks. Here we present Kinota(TM), an Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring. Kinota, which roughly stands for Knowledge from Internet of Things Analyses, relies on Cassandra its underlying data store, which is a horizontally scalable, fault-tolerant open-source database that is often used to store time-series data for Big Data applications (though integration with other NoSQL or rational databases is possible). With this foundation, Kinota can scale to store data from an arbitrary number of sensors collecting data every 500 milliseconds. Additionally, Kinota architecture is very modular allowing for customization by adopters who can choose to replace parts of the existing implementation when desirable. The architecture is also highly portable providing the flexibility to choose between cloud providers like azure, amazon, google etc. The scalable, flexible and cloud friendly architecture of Kinota makes it ideal for use in next

  4. Single-event phenomena on recent semiconductor devices. Charge-type multiple-bit upsets in high integrated memories

    International Nuclear Information System (INIS)

    Makihara, Akiko; Shindou, Hiroyuki; Nemoto, Norio; Kuboyama, Satoshi; Matsuda, Sumio; Ohshima, Takeshi; Hirao, Toshio; Itoh, Hisayoshi

    2001-01-01

    High integrated memories are used in solid state data recorder (SSDR) of the satellite for accumulating observation data. Single event upset phenomena which turn over an accumulated data in the memory cells are caused by heavy ion incidence. Studies on single-bit upset and multiple-bit upset phenomena in the high integrated memory cells are in progress recently. 16 Mbit DRAM (Dynamic Random Access Memories) and 64 Mbit DRAM are irradiated by heavy ion species, such as iodine, bromine and nickel, in comparison with the irradiation damage in the cosmic environment. Data written on the memory devices are read out after the irradiation. The memory cells in three kinds of states, all of charged state, all of discharged state, and an alternative state of charge and discharge, are irradiated for sorting out error modes caused by heavy ion incidence. The soft error in a single memory cells is known as a turn over from charged state to discharged state. Electrons in electron-hole pair generated by heavy ion incidence are captured in a diffusion region between capacitor electrodes of semiconductor. The charged states in the capacitor electrodes before the irradiation are neutralized and changed to the discharged states. According to high integration of the memories, many of the cells are affected by a single ion incidence. The multiple-bit upsets, however, are generated in the memory cells of discharged state before the irradiation, also. The charge-type multiple-bit upsets is considered as that error data are written on the DRAM during refresh cycle of a sense-up circuit and a pre-charge circuit which control the DRAM. (M. Suetake)

  5. Basic physical phenomena, neutron production and scaling of the dense plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    This paper presents an attempt at establishing a model theory for the dense plasma focus in order to present a consistent interpretation of the basic physical phenomena leading to neutron production from both acceleration and thermal processes. To achieve this, the temporal history of the focus is divided into the compression of the plasma sheath, a qiescent and very dense phase with ensuing expansion, and an instable phase where the focus plasma is disrupted by instabilities. Finally, the decay of density, velocity and thermal fields is considered. Under the assumption that Io 2 /sigmaoRo 2 = const and to/Tc = const, scaling laws for plasma focus devices are derived. It is shown that while generally the neutron yield scales with the fourth power of maximum current, neutron production from thermal processes becomes increasingly important for large devices, while in the small devices neutron production from acceleration processes is by far predominant. (orig.) [de

  6. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Gundlach Carsten

    1999-01-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

  7. Estimating scaled treatment effects with multiple outcomes.

    Science.gov (United States)

    Kennedy, Edward H; Kangovi, Shreya; Mitra, Nandita

    2017-01-01

    In classical study designs, the aim is often to learn about the effects of a treatment or intervention on a single outcome; in many modern studies, however, data on multiple outcomes are collected and it is of interest to explore effects on multiple outcomes simultaneously. Such designs can be particularly useful in patient-centered research, where different outcomes might be more or less important to different patients. In this paper, we propose scaled effect measures (via potential outcomes) that translate effects on multiple outcomes to a common scale, using mean-variance and median-interquartile range based standardizations. We present efficient, nonparametric, doubly robust methods for estimating these scaled effects (and weighted average summary measures), and for testing the null hypothesis that treatment affects all outcomes equally. We also discuss methods for exploring how treatment effects depend on covariates (i.e., effect modification). In addition to describing efficiency theory for our estimands and the asymptotic behavior of our estimators, we illustrate the methods in a simulation study and a data analysis. Importantly, and in contrast to much of the literature concerning effects on multiple outcomes, our methods are nonparametric and can be used not only in randomized trials to yield increased efficiency, but also in observational studies with high-dimensional covariates to reduce confounding bias.

  8. Incipient multiple fault diagnosis in real time with applications to large-scale systems

    International Nuclear Information System (INIS)

    Chung, H.Y.; Bien, Z.; Park, J.H.; Seon, P.H.

    1994-01-01

    By using a modified signed directed graph (SDG) together with the distributed artificial neutral networks and a knowledge-based system, a method of incipient multi-fault diagnosis is presented for large-scale physical systems with complex pipes and instrumentations such as valves, actuators, sensors, and controllers. The proposed method is designed so as to (1) make a real-time incipient fault diagnosis possible for large-scale systems, (2) perform the fault diagnosis not only in the steady-state case but also in the transient case as well by using a concept of fault propagation time, which is newly adopted in the SDG model, (3) provide with highly reliable diagnosis results and explanation capability of faults diagnosed as in an expert system, and (4) diagnose the pipe damage such as leaking, break, or throttling. This method is applied for diagnosis of a pressurizer in the Kori Nuclear Power Plant (NPP) unit 2 in Korea under a transient condition, and its result is reported to show satisfactory performance of the method for the incipient multi-fault diagnosis of such a large-scale system in a real-time manner

  9. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  10. JY1 time scale: a new Kalman-filter time scale designed at NIST

    International Nuclear Information System (INIS)

    Yao, Jian; Parker, Thomas E; Levine, Judah

    2017-01-01

    We report on a new Kalman-filter hydrogen-maser time scale (i.e. JY1 time scale) designed at the National Institute of Standards and Technology (NIST). The JY1 time scale is composed of a few hydrogen masers and a commercial Cs clock. The Cs clock is used as a reference clock to ease operations with existing data. Unlike other time scales, the JY1 time scale uses three basic time-scale equations, instead of only one equation. Also, this time scale can detect a clock error (i.e. time error, frequency error, or frequency drift error) automatically. These features make the JY1 time scale stiff and less likely to be affected by an abnormal clock. Tests show that the JY1 time scale deviates from the UTC by less than  ±5 ns for ∼100 d, when the time scale is initially aligned to the UTC and then is completely free running. Once the time scale is steered to a Cs fountain, it can maintain the time with little error even if the Cs fountain stops working for tens of days. This can be helpful when we do not have a continuously operated fountain or when the continuously operated fountain accidentally stops, or when optical clocks run occasionally. (paper)

  11. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems

    CERN Document Server

    Nepomnyashchy, Alexander A

    2006-01-01

    Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale – one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004. They give examples of self-organization phenomena on micro- and nano-scale as well as examples of the interplay between phenomena on nano- and macro-scales leading to complex behavior in various physical, chemical and biological systems. They discuss such fascinating nano-scale self-organization phenomena as self-assembly of quantum dots in thin solid films, pattern formation in liquid crystals caused by light, self-organi...

  12. A multi scale approximation solution for the time dependent Boltzmann-transport equation

    International Nuclear Information System (INIS)

    Merk, B.

    2004-03-01

    The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is

  13. Eighty phenomena about the self: representation, evaluation, regulation, and change

    Science.gov (United States)

    Thagard, Paul; Wood, Joanne V.

    2015-01-01

    We propose a new approach for examining self-related aspects and phenomena. The approach includes (1) a taxonomy and (2) an emphasis on multiple levels of mechanisms. The taxonomy categorizes approximately eighty self-related phenomena according to three primary functions involving the self: representing, effecting, and changing. The representing self encompasses the ways in which people depict themselves, either to themselves or to others (e.g., self-concepts, self-presentation). The effecting self concerns ways in which people facilitate or limit their own traits and behaviors (e.g., self-enhancement, self-regulation). The changing self is less time-limited than the effecting self; it concerns phenomena that involve lasting alterations in how people represent and control themselves (e.g., self-expansion, self-development). Each self-related phenomenon within these three categories may be examined at four levels of interacting mechanisms (social, individual, neural, and molecular). We illustrate our approach by focusing on seven self-related phenomena. PMID:25870574

  14. Eighty Phenomena About the Self: Representation, Evaluation, Regulation, and Change

    Directory of Open Access Journals (Sweden)

    Paul eThagard

    2015-03-01

    Full Text Available We propose a new approach for examining self-related aspects and phenomena. The approach includes (1 a taxonomy and (2 an emphasis on multiple levels of mechanisms. The taxonomy categorizes approximately eighty self-related phenomena according to three primary functions involving the self: representing, effecting, and changing. The representing self encompasses the ways in which people depict themselves, either to themselves or to others (e.g., self-concepts, self-presentation. The effecting self concerns ways in which people facilitate or limit their own traits and behaviors (e.g., self-enhancement, self-regulation. The changing self is less time-limited than the regulating self; it concerns phenomena that involve lasting alterations in how people represent and control themselves (e.g., self-expansion, self-development. Each self-related phenomenon within these three categories may be examined at four levels of interacting mechanisms (social, individual, neural, and molecular. We illustrate our approach by focusing on seven self-related phenomena.

  15. Quantifying Contributions to Transport in Ionic Polymers Across Multiple Length Scales

    Science.gov (United States)

    Madsen, Louis

    Self-organized polymer membranes conduct mobile species (ions, water, alcohols, etc.) according to a hierarchy of structural motifs that span sub-nm to >10 μm in length scale. In order to comprehensively understand such materials, our group combines multiple types of NMR dynamics and transport measurements (spectroscopy, diffusometry, relaxometry, imaging) with structural information from scattering and microscopy as well as with theories of porous media,1 electrolytic transport, and oriented matter.2 In this presentation, I will discuss quantitative separation of the phenomena that govern transport in polymer membranes, from intermolecular interactions (<= 2 nm),3 to locally ordered polymer nanochannels (a few to 10s of nm),2 to larger polymer domain structures (10s of nm and larger).1 Using this multi-scale information, we seek to give informed feedback on the design of polymer membranes for use in, e . g . , efficient batteries, fuel cells, and mechanical actuators. References: [1] J. Hou, J. Li, D. Mountz, M. Hull, and L. A. Madsen. Journal of Membrane Science448, 292-298 (2013). [2] J. Li, J. K. Park, R. B. Moore, and L. A. Madsen. Nature Materials 10, 507-511 (2011). [3] M. D. Lingwood, Z. Zhang, B. E. Kidd, K. B. McCreary, J. Hou, and L. A. Madsen. Chemical Communications 49, 4283 - 4285 (2013).

  16. A New Approach to Adaptive Control of Multiple Scales in Plasma Simulations

    Science.gov (United States)

    Omelchenko, Yuri

    2007-04-01

    A new approach to temporal refinement of kinetic (Particle-in-Cell, Vlasov) and fluid (MHD, two-fluid) simulations of plasmas is presented: Discrete-Event Simulation (DES). DES adaptively distributes CPU resources in accordance with local time scales and enables asynchronous integration of inhomogeneous nonlinear systems with multiple time scales on meshes of arbitrary topologies. This removes computational penalties usually incurred in explicit codes due to the global Courant-Friedrich-Levy (CFL) restriction on a time-step size. DES stands apart from multiple time-stepping algorithms in that it requires neither selecting a global synchronization time step nor pre-determining a sequence of time-integration operations for individual parts of the system (local time increments need not bear any integer multiple relations). Instead, elements of a mesh-distributed solution self-adaptively predict and synchronize their temporal trajectories by directly enforcing local causality (accuracy) constraints, which are formulated in terms of incremental changes to the evolving solution. Together with flux-conservative propagation of information, this new paradigm ensures stable and fast asynchronous runs, where idle computation is automatically eliminated. DES is parallelized via a novel Preemptive Event Processing (PEP) technique, which automatically synchronizes elements with similar update rates. In this mode, events with close execution times are projected onto time levels, which are adaptively determined by the program. PEP allows reuse of standard message-passing algorithms on distributed architectures. For optimum accuracy, DES can be combined with adaptive mesh refinement (AMR) techniques for structured and unstructured meshes. Current examples of event-driven models range from electrostatic, hybrid particle-in-cell plasma systems to reactive fluid dynamics simulations. They demonstrate the superior performance of DES in terms of accuracy, speed and robustness.

  17. Reproducibility in Psychological Science: When Do Psychological Phenomena Exist?

    Directory of Open Access Journals (Sweden)

    Seppo E. Iso-Ahola

    2017-06-01

    Full Text Available Scientific evidence has recently been used to assert that certain psychological phenomena do not exist. Such claims, however, cannot be made because (1 scientific method itself is seriously limited (i.e., it can never prove a negative; (2 non-existence of phenomena would require a complete absence of both logical (theoretical and empirical support; even if empirical support is weak, logical and theoretical support can be strong; (3 statistical data are only one piece of evidence and cannot be used to reduce psychological phenomena to statistical phenomena; and (4 psychological phenomena vary across time, situations and persons. The human mind is unreproducible from one situation to another. Psychological phenomena are not particles that can decisively be tested and discovered. Therefore, a declaration that a phenomenon is not real is not only theoretically and empirically unjustified but runs counter to the propositional and provisional nature of scientific knowledge. There are only “temporary winners” and no “final truths” in scientific knowledge. Psychology is a science of subtleties in human affect, cognition and behavior. Its phenomena fluctuate with conditions and may sometimes be difficult to detect and reproduce empirically. When strictly applied, reproducibility is an overstated and even questionable concept in psychological science. Furthermore, statistical measures (e.g., effect size are poor indicators of the theoretical importance and relevance of phenomena (cf. “deliberate practice” vs. “talent” in expert performance, not to mention whether phenomena are real or unreal. To better understand psychological phenomena, their theoretical and empirical properties should be examined via multiple parameters and criteria. Ten such parameters are suggested.

  18. Reproducibility in Psychological Science: When Do Psychological Phenomena Exist?

    Science.gov (United States)

    Iso-Ahola, Seppo E.

    2017-01-01

    Scientific evidence has recently been used to assert that certain psychological phenomena do not exist. Such claims, however, cannot be made because (1) scientific method itself is seriously limited (i.e., it can never prove a negative); (2) non-existence of phenomena would require a complete absence of both logical (theoretical) and empirical support; even if empirical support is weak, logical and theoretical support can be strong; (3) statistical data are only one piece of evidence and cannot be used to reduce psychological phenomena to statistical phenomena; and (4) psychological phenomena vary across time, situations and persons. The human mind is unreproducible from one situation to another. Psychological phenomena are not particles that can decisively be tested and discovered. Therefore, a declaration that a phenomenon is not real is not only theoretically and empirically unjustified but runs counter to the propositional and provisional nature of scientific knowledge. There are only “temporary winners” and no “final truths” in scientific knowledge. Psychology is a science of subtleties in human affect, cognition and behavior. Its phenomena fluctuate with conditions and may sometimes be difficult to detect and reproduce empirically. When strictly applied, reproducibility is an overstated and even questionable concept in psychological science. Furthermore, statistical measures (e.g., effect size) are poor indicators of the theoretical importance and relevance of phenomena (cf. “deliberate practice” vs. “talent” in expert performance), not to mention whether phenomena are real or unreal. To better understand psychological phenomena, their theoretical and empirical properties should be examined via multiple parameters and criteria. Ten such parameters are suggested. PMID:28626435

  19. Study of Travelling Interplanetary Phenomena Report

    Science.gov (United States)

    Dryer, Murray

    1987-09-01

    Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.

  20. A Multiple-Scale Analysis of Evaporation Induced Marangoni Convection

    KAUST Repository

    Hennessy, Matthew G.

    2013-04-23

    This paper considers the stability of thin liquid layers of binary mixtures of a volatile (solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong compositional gradients can lead to Bénard-Marangoni-type convection that is similar to the kind which is observed in films that are heated from below. The onset of the instability is investigated by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading to a nonautonomous linearized system which impedes the use of normal modes. However, the time scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale, so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of the linearized problem. This is determined to leading and to next order. The corrections indicate that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of the linear operator, but it requires these eigenvalues to be well separated. The approximations are applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir, 25 (2009), pp. 624-632]. © 2013 Society for Industrial and Applied Mathematics.

  1. A Multiple-Scale Analysis of Evaporation Induced Marangoni Convection

    KAUST Repository

    Hennessy, Matthew G.; Mü nch, Andreas

    2013-01-01

    This paper considers the stability of thin liquid layers of binary mixtures of a volatile (solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong compositional gradients can lead to Bénard-Marangoni-type convection that is similar to the kind which is observed in films that are heated from below. The onset of the instability is investigated by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading to a nonautonomous linearized system which impedes the use of normal modes. However, the time scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale, so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of the linearized problem. This is determined to leading and to next order. The corrections indicate that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of the linear operator, but it requires these eigenvalues to be well separated. The approximations are applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir, 25 (2009), pp. 624-632]. © 2013 Society for Industrial and Applied Mathematics.

  2. PREFACE: The 395th Wilhelm and Else Heraeus Seminar: `Time-dependent phenomena in Quantum Mechanics'

    Science.gov (United States)

    Kleber, Manfred; Kramer, Tobias

    2008-03-01

    The 395th Wilhelm and Else Heraeus Seminar: `Time-dependent phenomena in Quantum Mechanics' took place at the Heinrich Fabri Institute in Blaubeuren, Germany, 12-16 September 2007. The conference covered a wide range of topics connected with time-dependent phenomena in quantum mechanical systems. The 20 invited talks and 15 short talks with posters at the workshop covered the historical debate between Schrödinger, Dirac and Pauli about the role of time in Quantum Mechanics (the debate was carried out sometimes in footnotes) up to the almost direct observation of electron dynamics on the attosecond time-scale. Semiclassical methods, time-delay, monodromy, variational principles and quasi-resonances are just some of the themes which are discussed in more detail in the papers. Time-dependent methods also shed new light on energy-dependent systems, where the detour of studying the time-evolution of a quantum states allows one to solve previously intractable problems. Additional information is available at the conference webpage http://www.quantumdynamics.de The organizer would like to thank all speakers, contributors, session chairs and referees for their efforts in making the conference a success. We also gratefully acknowledge the generous financial support from the Wilhelm and Else Heraeus Foundation for the conference and the production of this special volume of Journal of Physics: Conference Series. Manfred Kleber Physik Department T30, Technische Universität München, 85747 Garching, Germany mkleber@ph.tum.de Tobias Kramer Institut I: Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany tobias.kramer@physik.uni-regensburg.de Guest Editors Front row (from left): W Schleich, E J Heller, J B Delos, H Friedrich, K Richter, M Kleber, P Kramer, M Man'ko, A del Campo, V Man'ko, M Efremov, A Ruiz, M O Scully Middle row: A Zamora, R Aganoglu, T Kramer, J Eiglsperger, H Cruz, P Raab, I Cirac, G Muga, J Larson, V Dodonov, W Becker Back row: A Eckardt, A

  3. Regularization methods for ill-posed problems in multiple Hilbert scales

    International Nuclear Information System (INIS)

    Mazzieri, Gisela L; Spies, Ruben D

    2012-01-01

    Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, and regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases, convergence is proved and orders and optimal orders of convergence are shown. Finally, some potential applications and open problems are discussed. (paper)

  4. SDG and qualitative trend based model multiple scale validation

    Science.gov (United States)

    Gao, Dong; Xu, Xin; Yin, Jianjin; Zhang, Hongyu; Zhang, Beike

    2017-09-01

    Verification, Validation and Accreditation (VV&A) is key technology of simulation and modelling. For the traditional model validation methods, the completeness is weak; it is carried out in one scale; it depends on human experience. The SDG (Signed Directed Graph) and qualitative trend based multiple scale validation is proposed. First the SDG model is built and qualitative trends are added to the model. And then complete testing scenarios are produced by positive inference. The multiple scale validation is carried out by comparing the testing scenarios with outputs of simulation model in different scales. Finally, the effectiveness is proved by carrying out validation for a reactor model.

  5. Modeling and control of a large nuclear reactor. A three-time-scale approach

    Energy Technology Data Exchange (ETDEWEB)

    Shimjith, S.R. [Indian Institute of Technology Bombay, Mumbai (India); Bhabha Atomic Research Centre, Mumbai (India); Tiwari, A.P. [Bhabha Atomic Research Centre, Mumbai (India); Bandyopadhyay, B. [Indian Institute of Technology Bombay, Mumbai (India). IDP in Systems and Control Engineering

    2013-07-01

    Recent research on Modeling and Control of a Large Nuclear Reactor. Presents a three-time-scale approach. Written by leading experts in the field. Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property, with emphasis on three-time-scale systems.

  6. A Divide and Conquer Strategy for Scaling Weather Simulations with Multiple Regions of Interest

    Directory of Open Access Journals (Sweden)

    Preeti Malakar

    2013-01-01

    Full Text Available Accurate and timely prediction of weather phenomena, such as hurricanes and flash floods, require high-fidelity compute intensive simulations of multiple finer regions of interest within a coarse simulation domain. Current weather applications execute these nested simulations sequentially using all the available processors, which is sub-optimal due to their sub-linear scalability. In this work, we present a strategy for parallel execution of multiple nested domain simulations based on partitioning the 2-D processor grid into disjoint rectangular regions associated with each domain. We propose a novel combination of performance prediction, processor allocation methods and topology-aware mapping of the regions on torus interconnects. Experiments on IBM Blue Gene systems using WRF show that the proposed strategies result in performance improvement of up to 33% with topology-oblivious mapping and up to additional 7% with topology-aware mapping over the default sequential strategy.

  7. The Great Chains of Computing: Informatics at Multiple Scales

    Directory of Open Access Journals (Sweden)

    Kevin Kirby

    2011-10-01

    Full Text Available The perspective from which information processing is pervasive in the universe has proven to be an increasingly productive one. Phenomena from the quantum level to social networks have commonalities that can be usefully explicated using principles of informatics. We argue that the notion of scale is particularly salient here. An appreciation of what is invariant and what is emergent across scales, and of the variety of different types of scales, establishes a useful foundation for the transdiscipline of informatics. We survey the notion of scale and use it to explore the characteristic features of information statics (data, kinematics (communication, and dynamics (processing. We then explore the analogy to the principles of plenitude and continuity that feature in Western thought, under the name of the "great chain of being", from Plato through Leibniz and beyond, and show that the pancomputational turn is a modern counterpart of this ruling idea. We conclude by arguing that this broader perspective can enhance informatics pedagogy.

  8. Period multiplication and chaotic phenomena in atmospheric dielectric-barrier glow discharges

    International Nuclear Information System (INIS)

    Wang, Y. H.; Zhang, Y. T.; Wang, D. Z.; Kong, M. G.

    2007-01-01

    In this letter, evidence of temporal plasma nonlinearity in which atmospheric dielectric-barrier discharges undergo period multiplication and chaos using a one-dimensional fluid model is reported. Under the conditions conducive for chaotic states, several frequency windows are identified in which period multiplication and secondary bifurcations are observed. Such time-domain nonlinearity is important for controlling instabilities in atmospheric glow discharges

  9. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  10. A multiple-scale power series method for solving nonlinear ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2016-02-01

    Full Text Available The power series solution is a cheap and effective method to solve nonlinear problems, like the Duffing-van der Pol oscillator, the Volterra population model and the nonlinear boundary value problems. A novel power series method by considering the multiple scales $R_k$ in the power term $(t/R_k^k$ is developed, which are derived explicitly to reduce the ill-conditioned behavior in the data interpolation. In the method a huge value times a tiny value is avoided, such that we can decrease the numerical instability and which is the main reason to cause the failure of the conventional power series method. The multiple scales derived from an integral can be used in the power series expansion, which provide very accurate numerical solutions of the problems considered in this paper.

  11. Single and two-phase natural circulation in Westinghouse pressurized water reactor simulators: Phenomena, analysis and scaling

    International Nuclear Information System (INIS)

    Schultz, R.R.; Chapman, J.C.; Kukita, Y.; Motley, F.E.; Stumpf, H.; Chen, Y.S.; Tasaka, K.

    1987-01-01

    Natural circulation data obtained in the 1/48 scale W four loop PWR simulator - the Large Scale Test Facility (LSTF) are discussed and summarized. Core cooling modes, the primary fluid state, the primary loop mass flow and localized natural circulation phenomena occurring in the steam generator are presented. TRAC-PF1 LSTF model (using both a 1 U-tube and a 3 U-tube steam generator model) analyses of the LSTF natural circulation data including the SG recirculation patterns are presented and compared to the data. The LSTF data are then compared to similar natural circulation data obtained in the Primarkreislaufe (PKL) and the Semiscale facilities. Based on the 1/48 to 1/1705 scaling range which exists between the facilities, the implications of these data towrard natural circulation behavior in commercial plants are briefly discussed

  12. High energy scattering phenomena in the accelerators and colliders, and a study in the role of the 'leading particle effect' on the multiplicity of particles

    International Nuclear Information System (INIS)

    Bhattacharya, S.

    1989-01-01

    The role of the leading particles in high energy scattering phenomena has assumed much importance in recent times but it has not been duly considered in some theoretical studies. This oversight is pointed out, and some other shortcomings and insufficiencies of most of the contemporary theoretical studies not only from considerations of the leading particle effect (LPE) but also from some other viewpoints are mentio ned. A revised comparative study on the behaviour of the average multiplicity by taking into account some of the competing theoretical models and the influence of the leading particle effect on them is also presented. (author). 33 refs

  13. On logarithmic extensions of local scale-invariance

    International Nuclear Information System (INIS)

    Henkel, Malte

    2013-01-01

    Ageing phenomena far from equilibrium naturally present dynamical scaling and in many situations this may be generalised to local scale-invariance. Generically, the absence of time-translation-invariance implies that each scaling operator is characterised by two independent scaling dimensions. Building on analogies with logarithmic conformal invariance and logarithmic Schrödinger-invariance, this work proposes a logarithmic extension of local scale-invariance, without time-translation-invariance. Carrying this out requires in general to replace both scaling dimensions of each scaling operator by Jordan cells. Co-variant two-point functions are derived for the most simple case of a two-dimensional logarithmic extension. Their form is compared to simulational data for autoresponse functions in several universality classes of non-equilibrium ageing phenomena

  14. Multiple-scale approach for the expansion scaling of superfluid quantum gases

    International Nuclear Information System (INIS)

    Egusquiza, I. L.; Valle Basagoiti, M. A.; Modugno, M.

    2011-01-01

    We present a general method, based on a multiple-scale approach, for deriving the perturbative solutions of the scaling equations governing the expansion of superfluid ultracold quantum gases released from elongated harmonic traps. We discuss how to treat the secular terms appearing in the usual naive expansion in the trap asymmetry parameter ε and calculate the next-to-leading correction for the asymptotic aspect ratio, with significant improvement over the previous proposals.

  15. Studying the Kinematic Behavior of Coronal Mass Ejections and Other Solar Phenomena using the Time-Convolution Mapping Method

    Science.gov (United States)

    Hess Webber, Shea A.; Thompson, Barbara J.; Kwon, Ryun Young; Ireland, Jack

    2018-01-01

    An improved understanding of the kinematic properties of CMEs and CME-associated phenomena has several impacts: 1) a less ambiguous method of mapping propagating structures into their inner coronal manifestations, 2) a clearer view of the relationship between the “main” CME and CME-associated brightenings, and 3) an improved identification of the heliospheric sources of shocks, Type II bursts, and SEPs. We present the results of a mapping technique that facilitates the separation of CMEs and CME-associated brightenings (such as shocks) from background corona. The Time Convolution Mapping Method (TCMM) segments coronagraph data to identify the time history of coronal evolution, the advantage being that the spatiotemporal evolution profiles allow users to separate features with different propagation characteristics. For example, separating “main” CME mass from CME-associated brightenings or shocks is a well-known obstacle, which the TCMM aids in differentiating. A TCMM CME map is made by first recording the maximum value each individual pixel in the image reaches during the traversal of the CME. Then the maximum value is convolved with an index to indicate the time that the pixel reached that value. The TCMM user is then able to identify continuous “kinematic profiles,” indicating related kinematic behavior, and also identify breaks in the profiles that indicate a discontinuity in kinematic history (i.e. different structures or different propagation characteristics). The maps obtained from multiple spacecraft viewpoints (i.e., STEREO and SOHO) can then be fit with advanced structural models to obtain the 3D properties of the evolving phenomena. We will also comment on the TCMM's further applicability toward the tracking of prominences, coronal hole boundaries and coronal cavities.

  16. Rank Dynamics of Word Usage at Multiple Scales

    Directory of Open Access Journals (Sweden)

    José A. Morales

    2018-05-01

    Full Text Available The recent dramatic increase in online data availability has allowed researchers to explore human culture with unprecedented detail, such as the growth and diversification of language. In particular, it provides statistical tools to explore whether word use is similar across languages, and if so, whether these generic features appear at different scales of language structure. Here we use the Google Books N-grams dataset to analyze the temporal evolution of word usage in several languages. We apply measures proposed recently to study rank dynamics, such as the diversity of N-grams in a given rank, the probability that an N-gram changes rank between successive time intervals, the rank entropy, and the rank complexity. Using different methods, results show that there are generic properties for different languages at different scales, such as a core of words necessary to minimally understand a language. We also propose a null model to explore the relevance of linguistic structure across multiple scales, concluding that N-gram statistics cannot be reduced to word statistics. We expect our results to be useful in improving text prediction algorithms, as well as in shedding light on the large-scale features of language use, beyond linguistic and cultural differences across human populations.

  17. Broadband Structural Dynamics: Understanding the Impulse-Response of Structures Across Multiple Length and Time Scales

    Science.gov (United States)

    2010-08-18

    Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform  mtP

  18. X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials

    Science.gov (United States)

    Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit

    2017-09-01

    Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.

  19. Multiple scaling power in liquid gallium under pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Renfeng; Wang, Luhong; Li, Liangliang; Yu, Tony; Zhao, Haiyan; Chapman, Karena W.; Rivers, Mark L.; Chupas, Peter J.; Mao, Ho-kwang; Liu, Haozhe

    2017-06-01

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiple scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.

  20. Multi-scale approximation of Vlasov equation

    International Nuclear Information System (INIS)

    Mouton, A.

    2009-09-01

    One of the most important difficulties of numerical simulation of magnetized plasmas is the existence of multiple time and space scales, which can be very different. In order to produce good simulations of these multi-scale phenomena, it is recommended to develop some models and numerical methods which are adapted to these problems. Nowadays, the two-scale convergence theory introduced by G. Nguetseng and G. Allaire is one of the tools which can be used to rigorously derive multi-scale limits and to obtain new limit models which can be discretized with a usual numerical method: this procedure is so-called a two-scale numerical method. The purpose of this thesis is to develop a two-scale semi-Lagrangian method and to apply it on a gyrokinetic Vlasov-like model in order to simulate a plasma submitted to a large external magnetic field. However, the physical phenomena we have to simulate are quite complex and there are many questions without answers about the behaviour of a two-scale numerical method, especially when such a method is applied on a nonlinear model. In a first part, we develop a two-scale finite volume method and we apply it on the weakly compressible 1D isentropic Euler equations. Even if this mathematical context is far from a Vlasov-like model, it is a relatively simple framework in order to study the behaviour of a two-scale numerical method in front of a nonlinear model. In a second part, we develop a two-scale semi-Lagrangian method for the two-scale model developed by E. Frenod, F. Salvarani et E. Sonnendrucker in order to simulate axisymmetric charged particle beams. Even if the studied physical phenomena are quite different from magnetic fusion experiments, the mathematical context of the one-dimensional paraxial Vlasov-Poisson model is very simple for establishing the basis of a two-scale semi-Lagrangian method. In a third part, we use the two-scale convergence theory in order to improve M. Bostan's weak-* convergence results about the finite

  1. Generalized z-scaling for charged hadrons and jets

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.

    2006-01-01

    Generalization of z-scaling observed in the inclusive high-p T charged hadron and jet production is proposed. The scaling function ψ(z) describing both charged hadrons and jets produced in proton-(anti)proton collisions for various multiplicity densities and collision energies is constructed. Anomalous fractal dimensions and parameters characterizing associated medium for both classes of events are established. The basic features of the scaling established in minimum bias events are shown to be preserved up to the highest multiplicity densities measured in the experiments UA1, E735, CDF and STAR. The obtained results are of interest in the use of z-scaling as a tool for searching for new physics phenomena of particle production at high transverse momentum and in high-multiplicity region at the U70, Tevatron, RHIC and LHC

  2. Generalized z-scaling for charged hadrons and jets

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.

    2005-01-01

    Generalization of z-scaling observed in the inclusive high-p T charged hadron and jet production is proposed. The scaling function ψ(z) describing both charged hadrons and jets produced in proton-(anti)proton collisions for various multiplicity densities and collision energies is constructed. Anomalous fractal dimensions and parameters characterizing associated medium for both classes of events are established. The basic features of the scaling established in minimum bias events are shown to be preserved up to the highest multiplicity densities measured in experiments UA1, E735, CDF and STAR. The obtained results are of interest to use z-scaling as a tool for searching for new physics phenomena of particle production at high transverse momentum and in high-multiplicity region at the U70, Tevatron, RHIC and LHC

  3. Scaling and mean normalized multiplicity in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, M.Q.R.; Ahmad, M.S.; Hasan, R.

    1987-01-01

    Recently it has been reported that the dependence of the mean normalized multiplicity, R A , in hadron-nucleus collisions upon the effective number of projectile encounters, , is projectile independent. We report the failure of this kind of scaling using the world data at accelerator and cosmic ray energies. Infact, we have found that the dependence of R A upon the number of projectile encounters hA is projectile independent. This leads to a new kind of scaling. Further, the scaled multiplicity distributions are found independent on the nature and energy of the incident hadron in the energy range ≅ (17.2-300) GeV. (orig.)

  4. Accurate multiplicity scaling in isotopically conjugate reactions

    International Nuclear Information System (INIS)

    Golokhvastov, A.I.

    1989-01-01

    The generation of accurate scaling of mutiplicity distributions is presented. The distributions of π - mesons (negative particles) and π + mesons in different nucleon-nucleon interactions (PP, NP and NN) are described by the same universal function Ψ(z) and the same energy dependence of the scale parameter which determines the stretching factor for the unit function Ψ(z) to obtain the desired multiplicity distribution. 29 refs.; 6 figs

  5. Luminescence and ultrafast phenomena in InGaN multiple quantum wells

    International Nuclear Information System (INIS)

    Viswanath, Annamraju Kasi; Lee, J.I.; Kim, S.T.; Yang, G.M.; Lee, H.J.; Kim, Dongho

    2007-01-01

    High quality In 0.13 Ga 0.87 N/GaN multiple quantum wells (MQWs) on (0001) sapphire substrate were fabricated by MOCVD method. The quantum well thickness is as thin as 10 A, and the barrier thickness is 50 A. We have investigated these ultrathin MQWs by continuous wave (cw) and time-resolved spectroscopy in the picosecond time scales in a wide temperature range from 10 to 290 K. In the luminescence spectrum at 10 K, we observed a broad peak at 3.134 eV which was attributed to the quantum wells emission of InGaN. The full width at half maximum of this peak was 129 meV at 10 K and the broadening at low temperatures which was mostly inhomogeneous was thought to be due to compositional fluctuations and interfacial disorder in the alloy. We also observed an intense and narrow peak at 3.471 eV due to the GaN barrier. The temperature dependence of the luminescence was studied and the peak positions and the intensities of the different peaks were obtained. The activation energy of the InGaN quantum well emission peak was estimated as 69 meV. From the measurements of luminescence intensities and lifetimes at various temperatures, radiative and non-radiative recombination lifetimes were deduced. The results were explained by considering only the localization of the excitons due to potential fluctuations

  6. DL-sQUAL: A Multiple-Item Scale for Measuring Service Quality of Online Distance Learning Programs

    Science.gov (United States)

    Shaik, Naj; Lowe, Sue; Pinegar, Kem

    2006-01-01

    Education is a service with multiplicity of student interactions over time and across multiple touch points. Quality teaching needs to be supplemented by consistent quality supporting services for programs to succeed under the competitive distance learning landscape. ServQual and e-SQ scales have been proposed for measuring quality of traditional…

  7. Scaling of charged particle multiplicity distributions in relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Ahamd, N.; Hushnud; Azmi, M.D.; Zafar, M.; Irfan, M.; Khan, M.M.; Tufail, A.

    2011-01-01

    Validity of KNO scaling in hadron-hadron and hadron-nucleus collisions has been tested by several workers. Multiplicity distributions for p-emulsion interactions are found to be consistent with the KNO scaling hypothesis for pp collisions. The applicability of the scaling law was extended to FNAL energies by earlier workers. Slattery has shown that KNO scaling hypothesis is in fine agreement with the data for pp interactions over a wide range of incident energies. An attempt, is, therefore, made to examine the scaling hypothesis using multiplicity distributions of particles produced in 3.7A GeV/c 16 O-, 4.5A GeV/c and 14.5A GeV/c 28 Si - nucleus interactions

  8. Doubly stochastic Poisson process models for precipitation at fine time-scales

    Science.gov (United States)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  9. Correlated randomness and switching phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  10. The SCA description of inner-shell Coulomb ionization and associated phenomena

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1989-01-01

    The semiclassical trajectory method for describing atomic processes induced by charged projectiles is outlined. The framework for the perturbative SCA formalism is sketched with emphasis on the first-order time-dependent approach. Selected results from computations on inner-shell Coulomb ionization and δ-electron emission are presented. The kinematic scaling law for ionization and pair-production phenomena is treated in detail. The importance of this scaling law for high-energy atomic collision physics is stressed. (orig.)

  11. Multiple Indicator Stationary Time Series Models.

    Science.gov (United States)

    Sivo, Stephen A.

    2001-01-01

    Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…

  12. Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin; George Hirasaki

    2007-09-30

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow the computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil

  13. Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors

    International Nuclear Information System (INIS)

    Stephen, Damian G.; Dixon, James A.

    2011-01-01

    Research highlights: → We investigated anticipatory behaviors in response to chaotic metronomes. → We assessed multifractal structure in tap intervals and onset intervals. → Strength of multifractality in tap intervals appears to match that in onset intervals. - Abstract: Previous research on anticipatory behaviors has found that the fractal scaling of human behavior may attune to the fractal scaling of an unpredictable signal [Stephen DG, Stepp N, Dixon JA, Turvey MT. Strong anticipation: Sensitivity to long-range correlations in synchronization behavior. Physica A 2008;387:5271-8]. We propose to explain this attunement as a case of multifractal cascade dynamics [Schertzer D, Lovejoy S. Generalised scale invariance in turbulent phenomena. Physico-Chem Hydrodyn J 1985;6:623-5] in which perceptual-motor fluctuations are coordinated across multiple time scales. This account will serve to sharpen the contrast between strong and weak anticipation: whereas the former entails a sensitivity to the intermittent temporal structure of an unpredictable signal, the latter simply predicts sensitivity to an aggregate description of an unpredictable signal irrespective of actual sequence. We pursue this distinction through a reanalysis of Stephen et al.'s data by examining the relationship between the widths of singularity spectra for intertap interval time series and for each corresponding interonset interval time series. We find that the attunement of fractal scaling reported by Stephen et al. was not the trivial result of sensitivity to temporal structure in aggregate but reflected a subtle sensitivity to the coordination across multiple time scales of fluctuation in the unpredictable signal.

  14. Time scales of foam stability in shallow conduits: Insights from analogue experiments

    Science.gov (United States)

    Spina, L.; Scheu, B.; Cimarelli, C.; Arciniega-Ceballos, A.; Dingwell, D. B.

    2016-10-01

    Volcanic systems can exhibit periodical trends in degassing activity, characterized by a wide range of time scales. Understanding the dynamics that control such periodic behavior can provide a picture of the processes occurring in the feeding system. Toward this end, we analyzed the periodicity of outgassing in a series of decompression experiments performed on analogue material (argon-saturated silicone oil plus glass beads/fibers) scaled to serve as models of basaltic magma. To define the effects of liquid viscosity and crystal content on the time scale of outgassing, we investigated both: (1) pure liquid systems, at differing viscosities (100 and 1000 Pa s), and (2) particle-bearing suspensions (diluted and semidiluted). The results indicate that under dynamic conditions (e.g., decompressive bubble growth and fluid ascent within the conduit), the periodicity of foam disruption may be up to several orders of magnitude less than estimates based on the analysis of static conditions. This difference in foam disruption time scale is inferred to result from the contribution of bubble shear and bubble growth to inter-bubble film thinning. The presence of particles in the semidiluted regime is further linked to shorter bubble bursting times, likely resulting from contributions of the presence of a solid network and coalescence processes to the relative increase in bubble breakup rates. Finally, it is argued that these experiments represent a good analogue of gas-piston activity (i.e., the periodical rise-and-fall of a basaltic lava lake surface), implying a dominant role for shallow foam accumulation as a source process for these phenomena.

  15. Scaling relations for eddy current phenomena

    International Nuclear Information System (INIS)

    Dodd, C.V.; Deeds, W.E.

    1975-11-01

    Formulas are given for various electromagnetic quantities for coils in the presence of conductors, with the scaling parameters factored out so that small-scale model experiments can be related to large-scale apparatus. Particular emphasis is given to such quantities as eddy current heating, forces, power, and induced magnetic fields. For axially symmetric problems, closed-form integrals are available for the vector potential and all the other quantities obtainable from it. For unsymmetrical problems, a three-dimensional relaxation program can be used to obtain the vector potential and then the derivable quantities. Data on experimental measurements are given to verify the validity of the scaling laws for forces, inductances, and impedances. Indirectly these also support the validity of the scaling of the vector potential and all of the other quantities obtained from it

  16. Multiple-scale stochastic processes: Decimation, averaging and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Stefano, E-mail: stefano.bo@nordita.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Celani, Antonio [Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 - Trieste (Italy)

    2017-02-07

    The recent experimental progresses in handling microscopic systems have allowed to probe them at levels where fluctuations are prominent, calling for stochastic modeling in a large number of physical, chemical and biological phenomena. This has provided fruitful applications for established stochastic methods and motivated further developments. These systems often involve processes taking place on widely separated time scales. For an efficient modeling one usually focuses on the slower degrees of freedom and it is of great importance to accurately eliminate the fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. This procedure in general requires to perform two different operations: decimation and coarse-graining. We introduce the asymptotic methods that form the basis of this procedure and discuss their application to a series of physical, biological and chemical examples. We then turn our attention to functionals of the stochastic trajectories such as residence times, counting statistics, fluxes, entropy production, etc. which have been increasingly studied in recent years. For such functionals, the elimination of the fast degrees of freedom can present additional difficulties and naive procedures can lead to blatantly inconsistent results. Homogenization techniques for functionals are less covered in the literature and we will pedagogically present them here, as natural extensions of the ones employed for the trajectories. We will also discuss recent applications of these techniques to the thermodynamics of small systems and their interpretation in terms of information-theoretic concepts.

  17. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Directory of Open Access Journals (Sweden)

    Eduardo Freitas Moreira

    Full Text Available Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for

  18. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Science.gov (United States)

    Moreira, Eduardo Freitas; Boscolo, Danilo; Viana, Blandina Felipe

    2015-01-01

    Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and

  19. Scaling of chaotic multiplicity: A new observation in high-energy interactions

    International Nuclear Information System (INIS)

    Ghosh, D.; Ghosh, P.; Roy, J.

    1990-01-01

    We analyze high-energy-interaction data to study the dependence of chaotic multiplicity on the pseudorapidity window and propose a new scaling function bar Ψ(bar z)=left-angle n 1 right-angle/left-angle n right-angle max where left-angle n 1 right-angle is the chaotic multiplicity and bar z=left-angle n right-angle/left-angle n right-angle max is the reduced multiplicity, following the quantum-optical concept of particle production. It has been observed that the proposed ''chaotic multiplicity scaling'' is obeyed by pp, p bar p, and AA collisions at different available energies

  20. Temporal scale dependent interactions between multiple environmental disturbances in microcosm ecosystems.

    Science.gov (United States)

    Garnier, Aurélie; Pennekamp, Frank; Lemoine, Mélissa; Petchey, Owen L

    2017-12-01

    Global environmental change has negative impacts on ecological systems, impacting the stable provision of functions, goods, and services. Whereas effects of individual environmental changes (e.g. temperature change or change in resource availability) are reasonably well understood, we lack information about if and how multiple changes interact. We examined interactions among four types of environmental disturbance (temperature, nutrient ratio, carbon enrichment, and light) in a fully factorial design using a microbial aquatic ecosystem and observed responses of dissolved oxygen saturation at three temporal scales (resistance, resilience, and return time). We tested whether multiple disturbances combine in a dominant, additive, or interactive fashion, and compared the predictability of dissolved oxygen across scales. Carbon enrichment and shading reduced oxygen concentration in the short term (i.e. resistance); although no other effects or interactions were statistically significant, resistance decreased as the number of disturbances increased. In the medium term, only enrichment accelerated recovery, but none of the other effects (including interactions) were significant. In the long term, enrichment and shading lengthened return times, and we found significant two-way synergistic interactions between disturbances. The best performing model (dominant, additive, or interactive) depended on the temporal scale of response. In the short term (i.e. for resistance), the dominance model predicted resistance of dissolved oxygen best, due to a large effect of carbon enrichment, whereas none of the models could predict the medium term (i.e. resilience). The long-term response was best predicted by models including interactions among disturbances. Our results indicate the importance of accounting for the temporal scale of responses when researching the effects of environmental disturbances on ecosystems. © 2017 The Authors. Global Change Biology Published by John Wiley

  1. A Systematic Multi-Time Scale Solution for Regional Power Grid Operation

    Science.gov (United States)

    Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.

    2017-10-01

    Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.

  2. A study of multiplicity scaling of particles produced in 16O-nucleus collisions

    International Nuclear Information System (INIS)

    Ahmad, N.

    2015-01-01

    Koba-Nielsen-Olesen (KNO) scaling has been a dominant framework to study the behaviour of multiplicity distribution of charged particles produced in high-energy hadronic collisions. Several workers have made attempt to investigate multiplicity distributions of particles produced in hadron-hadron (h-h), hadron-nucleus (h-A) and nucleus-nucleus (A-A) collisions at relativistic energies. Multiplicity distributions in p-nucleus interactions in emulsion experiments are found to be consistent with the KNO scaling. The applicability of the scaling of multiplicities was extended to FNL energies by earlier workers. Slattery has shown that KNO scaling is in agreement with the data on pp interactions over a wide-range of energies

  3. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    Science.gov (United States)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-01-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence

  4. Sparing land for biodiversity at multiple spatial scales

    Directory of Open Access Journals (Sweden)

    Johan eEkroos

    2016-01-01

    Full Text Available A common approach to the conservation of farmland biodiversity and the promotion of multifunctional landscapes, particularly in landscapes containing only small remnants of non-crop habitats, has been to maintain landscape heterogeneity and reduce land-use intensity. In contrast, it has recently been shown that devoting specific areas of non-crop habitats to conservation, segregated from high-yielding farmland (‘land sparing’, can more effectively conserve biodiversity than promoting low-yielding, less intensively managed farmland occupying larger areas (‘land sharing’. In the present paper we suggest that the debate over the relative merits of land sparing or land sharing is partly blurred by the differing spatial scales at which it is suggested that land sparing should be applied. We argue that there is no single correct spatial scale for segregating biodiversity protection and commodity production in multifunctional landscapes. Instead we propose an alternative conceptual construct, which we call ‘multiple-scale land sparing’, targeting biodiversity and ecosystem services in transformed landscapes. We discuss how multiple-scale land sparing may overcome the apparent dichotomy between land sharing and land sparing and help to find acceptable compromises that conserve biodiversity and landscape multifunctionality.

  5. Neural Computations in a Dynamical System with Multiple Time Scales

    Directory of Open Access Journals (Sweden)

    Yuanyuan Mi

    2016-09-01

    Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.

  6. Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena

    Science.gov (United States)

    White, William E.

    2013-01-01

    Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423–449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161–2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (−95 to −35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence. PMID:23576698

  7. Hydrologic time and sustainability of shallow aquifers

    Science.gov (United States)

    Back, William; ,

    1994-01-01

    Measurement of water and short intervals of time are coeval events that began about 6000 BC in Mesopotamia. Even though time and hydrology have been intimately entwined, with time terms in the denominator of many hydrologic parameters, hydrology's a priori claim to time has not been consummated. Moreover, time takes on a greater importance now than in the past as the focus shifts to small site-scale aquifers whose sustainability can be physically and chemically threatened. One of the challenges for research in hydrogeology is to establish time scales for hydrologic phenomena such as infiltration rates, groundwater flow rates, rates of organic and inorganic reactions, and rates of groundwater withdrawal over the short term, and the long term and to understand the consequences of these various time scales. Credible monitoring programs must consider not only the spatial scale, but also the time scale of the phenomena being monitored.

  8. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    International Nuclear Information System (INIS)

    Hao Yinghang; Gong, Yubing; Wang Li; Ma Xiaoguang; Yang Chuanlu

    2011-01-01

    Research highlights: → Single synchronization transition for gap-junctional coupling. → Multiple synchronization transitions for chemical synaptic coupling. → Gap junctions and chemical synapses have different impacts on synchronization transition. → Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  9. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hao Yinghang [School of Physics, Ludong University, Yantai 264025 (China); Gong, Yubing, E-mail: gongyubing09@hotmail.co [School of Physics, Ludong University, Yantai 264025 (China); Wang Li; Ma Xiaoguang; Yang Chuanlu [School of Physics, Ludong University, Yantai 264025 (China)

    2011-04-15

    Research highlights: Single synchronization transition for gap-junctional coupling. Multiple synchronization transitions for chemical synaptic coupling. Gap junctions and chemical synapses have different impacts on synchronization transition. Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  10. Dynamic inequalities on time scales

    CERN Document Server

    Agarwal, Ravi; Saker, Samir

    2014-01-01

    This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.

  11. Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2008-01-01

    In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T c superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient, magnetoresistance

  12. A Rest Time-Based Prognostic Framework for State of Health Estimation of Lithium-Ion Batteries with Regeneration Phenomena

    Directory of Open Access Journals (Sweden)

    Taichun Qin

    2016-11-01

    Full Text Available State of health (SOH prognostics is significant for safe and reliable usage of lithium-ion batteries. To accurately predict regeneration phenomena and improve long-term prediction performance of battery SOH, this paper proposes a rest time-based prognostic framework (RTPF in which the beginning time interval of two adjacent cycles is adopted to reflect the rest time. In this framework, SOH values of regeneration cycles, the number of cycles in regeneration regions and global degradation trends are extracted from raw SOH time series and predicted respectively, and then the three sets of prediction results are integrated to calculate the final overall SOH prediction values. Regeneration phenomena can be found by support vector machine and hyperplane shift (SVM-HS model by detecting long beginning time intervals. Gaussian process (GP model is utilized to predict the global degradation trend, and nonlinear models are utilized to predict the regeneration amplitude and the cycle number of each regeneration region. The proposed framework is validated through experimental data from the degradation tests of lithium-ion batteries. The results demonstrate that both the global degradation trend and the regeneration phenomena of the testing batteries can be well predicted. Moreover, compared with the published methods, more accurate SOH prediction results can be obtained under this framework.

  13. Crossover Phenomena in Detrended Fluctuation Analysis Used in Financial Markets

    International Nuclear Information System (INIS)

    Ma Shihao

    2009-01-01

    A systematic analysis of Shanghai and Japan stock indices for the period of Jan. 1984 to Dec. 2005 is performed. After stationarity is verified by ADF (Augmented Dickey-Fuller) test, the power spectrum of the data exhibits a power law decay as a whole characterized by 1/f β processes with possible long range correlations. Subsequently, by using the method of detrended fluctuation analysis (DFA) of the general volatility in the stock markets, we find that the long-range correlations are occurred among the return series and the crossover phenomena exhibit in the results obviously. Further, Shanghai stock market shows long-range correlations in short time scale and shows short-range correlations in long time scale. Whereas, for Japan stock market, the data behaves oppositely absolutely. Last, we compare the varying of scale exponent in large volatility between two stock markets. All results obtained may indicate the possibility of characteristic of multifractal scaling behavior of the financial markets.

  14. In search of high density collective phenomena in nuclear collision

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1979-06-01

    The progress made toward uncovering signatures of collective phenomena is reviewed. Elements of the basic reaction mechanism leading to a complex background are first discussed. Possible hints of collective phenomena in proton and pion single and double inclusive spectra as well as π - multiplicity data are then described. 6 figures, 2 tables

  15. Sensory phenomena related to tics, obsessive-compulsive symptoms, and global functioning in Tourette syndrome.

    Science.gov (United States)

    Kano, Yukiko; Matsuda, Natsumi; Nonaka, Maiko; Fujio, Miyuki; Kuwabara, Hitoshi; Kono, Toshiaki

    2015-10-01

    Sensory phenomena, including premonitory urges, are experienced by patients with Tourette syndrome (TS) and obsessive-compulsive disorder (OCD). The goal of the present study was to investigate such phenomena related to tics, obsessive-compulsive symptoms (OCS), and global functioning in Japanese patients with TS. Forty-one patients with TS were assessed using the University of São Paulo Sensory Phenomena Scale (USP-SPS), the Premonitory Urge for Tics Scale (PUTS), the Yale Global Tic Severity Scale (YGTSS), the Dimensional Yale-Brown Obsessive-Compulsive Scale (DY-BOCS), and the Global Assessment of Functioning (GAF) Scale. USP-SPS and PUTS total scores were significantly correlated with YGTSS total and vocal tics scores. Additionally, both sensory phenomena severity scores were significantly correlated with DY-BOCS total OCS scores. Of the six dimensional OCS scores, the USP-SPS scores were significantly correlated with measures of aggression and sexual/religious dimensions. Finally, the PUTS total scores were significantly and negatively correlated with GAF scores. By assessing premonitory urges and broader sensory phenomena, and by viewing OCS from a dimensional approach, this study provides significant insight into sensory phenomena related to tics, OCS, and global functioning in patients with TS. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Multiple Scale Analysis of the Dynamic State Index (DSI)

    Science.gov (United States)

    Müller, A.; Névir, P.

    2016-12-01

    The Dynamic State Index (DSI) is a novel parameter that indicates local deviations of the atmospheric flow field from a stationary, inviscid and adiabatic solution of the primitive equations of fluid mechanics. This is in contrast to classical methods, which often diagnose deviations from temporal or spatial mean states. We show some applications of the DSI to atmospheric flow phenomena on different scales. The DSI is derived from the Energy-Vorticity-Theory (EVT) which is based on two global conserved quantities, the total energy and Ertel's potential enstrophy. Locally, these global quantities lead to the Bernoulli function and the PV building together with the potential temperature the DSI.If the Bernoulli function and the PV are balanced, the DSI vanishes and the basic state is obtained. Deviations from the basic state provide an indication of diabatic and non-stationary weather events. Therefore, the DSI offers a tool to diagnose and even prognose different atmospheric events on different scales.On synoptic scale, the DSI can help to diagnose storms and hurricanes, where also the dipole structure of the DSI plays an important role. In the scope of the collaborative research center "Scaling Cascades in Complex Systems" we show high correlations between the DSI and precipitation on convective scale. Moreover, we compare the results with reduced models and different spatial resolutions.

  17. Using Relational Reasoning to Learn about Scientific Phenomena at Unfamiliar Scales

    Science.gov (United States)

    Resnick, Ilyse; Davatzes, Alexandra; Newcombe, Nora S.; Shipley, Thomas F.

    2017-01-01

    Many scientific theories and discoveries involve reasoning about extreme scales, removed from human experience, such as time in geology and size in nanoscience. Thus, understanding scale is central to science, technology, engineering, and mathematics. Unfortunately, novices have trouble understanding and comparing sizes of unfamiliar large and…

  18. Effects of Network Structure, Competition and Memory Time on Social Spreading Phenomena

    Directory of Open Access Journals (Sweden)

    James P. Gleeson

    2016-05-01

    Full Text Available Online social media has greatly affected the way in which we communicate with each other. However, little is known about what fundamental mechanisms drive dynamical information flow in online social systems. Here, we introduce a generative model for online sharing behavior that is analytically tractable and that can reproduce several characteristics of empirical micro-blogging data on hashtag usage, such as (time-dependent heavy-tailed distributions of meme popularity. The presented framework constitutes a null model for social spreading phenomena that, in contrast to purely empirical studies or simulation-based models, clearly distinguishes the roles of two distinct factors affecting meme popularity: the memory time of users and the connectivity structure of the social network.

  19. Effects of Network Structure, Competition and Memory Time on Social Spreading Phenomena

    Science.gov (United States)

    Gleeson, James P.; O'Sullivan, Kevin P.; Baños, Raquel A.; Moreno, Yamir

    2016-04-01

    Online social media has greatly affected the way in which we communicate with each other. However, little is known about what fundamental mechanisms drive dynamical information flow in online social systems. Here, we introduce a generative model for online sharing behavior that is analytically tractable and that can reproduce several characteristics of empirical micro-blogging data on hashtag usage, such as (time-dependent) heavy-tailed distributions of meme popularity. The presented framework constitutes a null model for social spreading phenomena that, in contrast to purely empirical studies or simulation-based models, clearly distinguishes the roles of two distinct factors affecting meme popularity: the memory time of users and the connectivity structure of the social network.

  20. New strong interactions above the electroweak scale

    International Nuclear Information System (INIS)

    White, A.R.

    1994-01-01

    Theoretical arguments for a new higher-color quark sector, based on Pomeron physics in QCD, are briefly described. The electroweak symmetry-breaking, Strong CP conservation, and electroweak scale CP violation, that is naturally produced by this sector is also outlined. A further consequence is that above the electroweak scale there will be a radical change in the strong interaction. Electroweak states, in particular multiple W's and Z's, and new, semi-stable, very massive, baryons, will be commonly produced. The possible correlation of expected phenomena with a wide range of observed Cosmic Ray effects at and above the primary spectrum knee is described. Related phenomena that might be seen in the highest energy hard scattering events at the Fermilab Tevatron, some of which could be confused with top production, are also briefly discussed

  1. Going Multi-viral: Synthedemic Modelling of Internet-based Spreading Phenomena

    Directory of Open Access Journals (Sweden)

    Marily Nika

    2015-02-01

    Full Text Available Epidemics of a biological and technological nature pervade modern life. For centuries, scientific research focused on biological epidemics, with simple compartmental epidemiological models emerging as the dominant explanatory paradigm. Yet there has been limited translation of this effort to explain internet-based spreading phenomena. Indeed, single-epidemic models are inadequate to explain the multimodal nature of complex phenomena. In this paper we propose a novel paradigm for modelling internet-based spreading phenomena based on the composition of multiple compartmental epidemiological models. Our approach is inspired by Fourier analysis, but rather than trigonometric wave forms, our components are compartmental epidemiological models. We show results on simulated multiple epidemic data, swine flu data and BitTorrent downloads of a popular music artist. Our technique can characterise these multimodal data sets utilising a parsimonous number of subepidemic models.

  2. Benford analysis of quantum critical phenomena: First digit provides high finite-size scaling exponent while first two and further are not much better

    Science.gov (United States)

    Bera, Anindita; Mishra, Utkarsh; Singha Roy, Sudipto; Biswas, Anindya; Sen(De), Aditi; Sen, Ujjwal

    2018-06-01

    Benford's law is an empirical edict stating that the lower digits appear more often than higher ones as the first few significant digits in statistics of natural phenomena and mathematical tables. A marked proportion of such analyses is restricted to the first significant digit. We employ violation of Benford's law, up to the first four significant digits, for investigating magnetization and correlation data of paradigmatic quantum many-body systems to detect cooperative phenomena, focusing on the finite-size scaling exponents thereof. We find that for the transverse field quantum XY model, behavior of the very first significant digit of an observable, at an arbitrary point of the parameter space, is enough to capture the quantum phase transition in the model with a relatively high scaling exponent. A higher number of significant digits do not provide an appreciable further advantage, in particular, in terms of an increase in scaling exponents. Since the first significant digit of a physical quantity is relatively simple to obtain in experiments, the results have potential implications for laboratory observations in noisy environments.

  3. THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales

    Science.gov (United States)

    Howard, Marc W.; Eichenbaum, Howard

    2014-01-01

    A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126

  4. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  5. Renormalization group theory of critical phenomena

    International Nuclear Information System (INIS)

    Menon, S.V.G.

    1995-01-01

    Renormalization group theory is a framework for describing those phenomena that involve a multitude of scales of variations of microscopic quantities. Systems in the vicinity of continuous phase transitions have spatial correlations at all length scales. The renormalization group theory and the pertinent background material are introduced and applied to some important problems in this monograph. The monograph begins with a historical survey of thermal phase transitions. The background material leading to the renormalization group theory is covered in the first three chapters. Then, the basic techniques of the theory are introduced and applied to magnetic critical phenomena in the next four chapters. The momentum space approach as well as the real space techniques are, thus, discussed in detail. Finally, brief outlines of applications of the theory to some of the related areas are presented in the last chapter. (author)

  6. Integrated multi-scale modelling and simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Valot, C.; Bertolus, M.; Masson, R.; Malerba, L.; Rachid, J.; Besmann, T.; Phillpot, S.; Stan, M.

    2015-01-01

    This chapter aims at discussing the objectives, implementation and integration of multi-scale modelling approaches applied to nuclear fuel materials. We will first show why the multi-scale modelling approach is required, due to the nature of the materials and by the phenomena involved under irradiation. We will then present the multiple facets of multi-scale modelling approach, while giving some recommendations with regard to its application. We will also show that multi-scale modelling must be coupled with appropriate multi-scale experiments and characterisation. Finally, we will demonstrate how multi-scale modelling can contribute to solving technology issues. (authors)

  7. Evaluation of scaling concepts for integral system test facilities

    International Nuclear Information System (INIS)

    Condie, K.G.; Larson, T.K.; Davis, C.B.

    1987-01-01

    A study was conducted by EG and G Idaho, Inc., to identify and technically evaluate potential concepts which will allow the U.S. Nuclear Regulatory Commission to maintain the capability to conduct future integral, thermal-hydraulic facility experiments of interest to light water reactor safety. This paper summarizes the methodology used in the study and presents a rankings for each facility concept relative to its ability to simulate phenomena identified as important in selected reactor transients in Babcock and Wilcox and Westinghouse large pressurized water reactors. Established scaling methodologies are used to develop potential concepts for scaled integral thermal-hydraulic experiment facilities. Concepts selected included: full height, full pressure water; reduced height, reduced pressure water; reduced height, full pressure water; one-tenth linear, full pressure water; and reduced height, full scaled pressure Freon. Results from this study suggest that a facility capable of operating at typical reactor operating conditions will scale most phenomena reasonably well. Local heat transfer phenomena is best scaled by the full height facility, while the reduced height facilities provide better scaling where multi-dimensional phenomena are considered important. Although many phenomena in facilities using Freon or water at nontypical pressure will scale reasonably well, those phenomena which are heavily dependent on quality can be distorted. Furthermore, relation of data produced in facilities operating with nontypical fluids or at nontypical pressures to large plants will be a difficult and time-consuming process

  8. Approximations of time-dependent phenomena in quantum mechanics: adiabatic versus sudden processes

    International Nuclear Information System (INIS)

    Melnichuk, S V; Dijk, W van; Nogami, Y

    2005-01-01

    By means of a one-dimensional model of a particle in an infinite square-well potential with one wall moving at a constant speed, we examine aspects of time-dependent phenomena in quantum mechanics such as adiabatic and sudden processes. The particle is assumed to be initially in the ground state of the potential with its initial width. The time dependence of the wavefunction of the particle in the well is generally more complicated when the potential well is compressed than when it is expanded. We are particularly interested in the case in which the potential well is suddenly compressed. The so-called sudden approximation is not applicable in this case. We also study the energy of the particle in the changing well as a function of time for expansion and contraction as well as for expansion followed by contraction and vice versa

  9. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.

    1993-01-01

    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  10. Time functions function best as functions of multiple times

    NARCIS (Netherlands)

    Desain, P.; Honing, H.

    1992-01-01

    This article presents an elegant way of representing control functions at an abstractlevel. It introduces time functions that have multiple times as arguments. In this waythe generalized concept of a time function can support absolute and relative kinds of time behavior. Furthermore the

  11. Least-squares reverse time migration of multiples

    KAUST Repository

    Zhang, Dongliang

    2013-12-06

    The theory of least-squares reverse time migration of multiples (RTMM) is presented. In this method, least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual sources at the hydrophones and the surface-related multiples are the observed data. For a single source, the entire free-surface becomes an extended virtual source where the downgoing free-surface multiples more fully illuminate the subsurface compared to the primaries. Since each recorded trace is treated as the time history of a virtual source, knowledge of the source wavelet is not required and the ringy time series for each source is automatically deconvolved. If the multiples can be perfectly separated from the primaries, numerical tests on synthetic data for the Sigsbee2B and Marmousi2 models show that least-squares reverse time migration of multiples (LSRTMM) can significantly improve the image quality compared to RTMM or standard reverse time migration (RTM) of primaries. However, if there is imperfect separation and the multiples are strongly interfering with the primaries then LSRTMM images show no significant advantage over the primary migration images. In some cases, they can be of worse quality. Applying LSRTMM to Gulf of Mexico data shows higher signal-to-noise imaging of the salt bottom and top compared to standard RTM images. This is likely attributed to the fact that the target body is just below the sea bed so that the deep water multiples do not have strong interference with the primaries. Migrating a sparsely sampled version of the Marmousi2 ocean bottom seismic data shows that LSM of primaries and LSRTMM provides significantly better imaging than standard RTM. A potential liability of LSRTMM is that multiples require several round trips between the reflector and the free surface, so that high frequencies in the multiples suffer greater attenuation compared to the primary reflections. This can lead to lower

  12. Thermal transport phenomena in nanoparticle suspensions

    International Nuclear Information System (INIS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)

  13. Time-scales of stellar rotational variability and starspot diagnostics

    Science.gov (United States)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-01-01

    The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.

  14. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    Science.gov (United States)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and

  15. Precipitation Analysis at Fine Time Scales Using Multiple Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) in 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O"N-5O0S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  16. Relationship between Yield Point Phenomena and the Nanoindentation Pop-in Behavior of Steel

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.-H. [Seoul National University; Oh, C.-S. [Korean Institute of Materials Science; Lee, K. [Technical Research Laboratories, Republic of Korea; George, Easo P [ORNL; Han, H. N. [Seoul National University

    2012-01-01

    Pop-ins on nanoindentation load-displacement curves of a ferritic steel were correlated with yield drops on its tensile stress-strain curves. To investigate the relationship between these two phenomena, nanoindentation and tensile tests were performed on annealed specimens, prestrained specimens, and specimens aged for various times after prestraining. Clear nanoindentation pop-ins were observed on annealed specimens, which disappeared when specimens were indented right after the prestrain, but reappeared to varying degrees after strain aging. Yield drops in tensile tests showed similar disappearance and appearance, indicating that the two phenomena, at the nano- and macro-scale, respectively, are closely related and influenced by dislocation locking by solutes (Cottrell atmospheres).

  17. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    S Safinaz

    2017-08-01

    Full Text Available In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames to high resolution frames. We compare our outcomes with multiple exiting algorithms. Our extensive results of proposed technique RemCNN (Reconstruction error minimization Convolution Neural Network shows that our model outperforms the existing technologies such as bicubic, bilinear, MCResNet and provide better reconstructed motioning images and video frames. The experimental results shows that our average PSNR result is 47.80474 considering upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for Myanmar dataset which is very high in contrast to other existing techniques. This results proves our proposed model real-time video scaling based on convolution neural network architecture’s high efficiency and better performance.

  18. Classification of Small-Scale Eucalyptus Plantations Based on NDVI Time Series Obtained from Multiple High-Resolution Datasets

    Directory of Open Access Journals (Sweden)

    Hailang Qiao

    2016-02-01

    Full Text Available Eucalyptus, a short-rotation plantation, has been expanding rapidly in southeast China in recent years owing to its short growth cycle and high yield of wood. Effective identification of eucalyptus, therefore, is important for monitoring land use changes and investigating environmental quality. For this article, we used remote sensing images over 15 years (one per year with a 30-m spatial resolution, including Landsat 5 thematic mapper images, Landsat 7-enhanced thematic mapper images, and HJ 1A/1B images. These data were used to construct a 15-year Normalized Difference Vegetation Index (NDVI time series for several cities in Guangdong Province, China. Eucalyptus reference NDVI time series sub-sequences were acquired, including one-year-long and two-year-long growing periods, using invested eucalyptus samples in the study region. In order to compensate for the discontinuity of the NDVI time series that is a consequence of the relatively coarse temporal resolution, we developed an inverted triangle area methodology. Using this methodology, the images were classified on the basis of the matching degree of the NDVI time series and two reference NDVI time series sub-sequences during the growing period of the eucalyptus rotations. Three additional methodologies (Bounding Envelope, City Block, and Standardized Euclidian Distance were also tested and used as a comparison group. Threshold coefficients for the algorithms were adjusted using commission–omission error criteria. The results show that the triangle area methodology out-performed the other methodologies in classifying eucalyptus plantations. Threshold coefficients and an optimal discriminant function were determined using a mosaic photograph that had been taken by an unmanned aerial vehicle platform. Good stability was found as we performed further validation using multiple-year data from the high-resolution Gaofen Satellite 1 (GF-1 observations of larger regions. Eucalyptus planting dates

  19. Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses

    International Nuclear Information System (INIS)

    Liu, Chen; Wang, Jiang; Wang, Lin; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2014-01-01

    Highlights: • Synchronization transitions in hybrid scale-free neuronal networks are investigated. • Multiple synchronization transitions can be induced by the time delay. • Effect of synchronization transitions depends on the ratio of the electrical and chemical synapses. • Coupling strength and the density of inter-neuronal links can enhance the synchronization. -- Abstract: The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge

  20. The Fragility of Interdependency: Coupled Networks Switching Phenomena

    Science.gov (United States)

    Stanley, H. Eugene

    2013-03-01

    Recent disasters ranging from abrupt financial ``flash crashes'' and large-scale power outages to sudden death among the elderly dramatically exemplify the fact that the most dangerous vulnerability is hiding in the many interdependencies among different networks. In the past year, we have quantified failures in model of interconnected networks, and demonstrated the need to consider mutually dependent network properties in designing resilient systems. Specifically, we have uncovered new laws governing the nature of switching phenomena in coupled networks, and found that phenomena that are continuous ``second order'' phase transitions in isolated networks become discontinuous abrupt ``first order'' transitions in interdependent networks [S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, ``Catastrophic Cascade of Failures in Interdependent Networks,'' Nature 464, 1025 (2010); J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, ``Novel Behavior of Networks Formed from Interdependent Networks,'' Nature Physics 8, 40 (2012). We conclude by discussing the network basis for understanding sudden death in the elderly, and the possibility that financial ``flash crashes'' are not unlike the catastrophic first-order failure incidents occurring in coupled networks. Specifically, we study the coupled networks that are responsible for financial fluctuations. It appears that ``trend switching phenomena'' that we uncover are remarkably independent of the scale over which they are analyzed. For example, we find that the same laws governing the formation and bursting of the largest financial bubbles also govern the tiniest finance bubbles, over a factor of 1,000,000,000 in time scale [T. Preis, J. Schneider, and H. E. Stanley, ``Switching Processes in Financial Markets,'' Proc. Natl. Acad. Sci. USA 108, 7674 (2011); T. Preis and H. E. Stanley, ``Bubble Trouble: Can a Law Describe Bubbles and Crashes in Financial Markets?'' Physics World 24, No. 5, 29 (May 2011

  1. Least-squares reverse time migration of multiples

    KAUST Repository

    Zhang, Dongliang; Schuster, Gerard T.

    2013-01-01

    The theory of least-squares reverse time migration of multiples (RTMM) is presented. In this method, least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual

  2. Advanced Instrumentation for Measuring Fluid-Structure Coupling Phenomena in the Guide Vanes Cascade of a Pump-Turbine Scale Model

    OpenAIRE

    Roth, Steven; Hasmatuchi, Vlad; Botero, Francisco; Farhat, Mohamed; Avellan, François

    2010-01-01

    In the present study, the fluid-structure coupling is investigated in the guide vanes of a pump-turbine scale model placed in one of the test rigs of the Laboratory for Hydraulic Machines (EPFL) in Lausanne. The paper focuses on the advanced instrumentation used to get reliable and complete fluid-structure coupling results. Semi-conductor strain gages are installed on three guide vanes which are especially weakened to account for stronger fluid-structure coupling phenomena. These are statical...

  3. Multiple Charging Station Location-Routing Problem with Time Window of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Wang Li-ying

    2015-11-01

    Full Text Available This paper presents the electric vehicle (EV multiple charging station location-routing problem with time window to optimize the routing plan of capacitated EVs and the strategy of charging stations. In particular, the strategy of charging stations includes both infrastructure-type selection and station location decisions. The problem accounts for two critical constraints in logistic practice: the vehicle loading capacity and the customer time windows. A hybrid heuristic that incorporates an adaptive variable neighborhood search (AVNS with the tabu search algorithm for intensification was developed to address the problem. The specialized neighborhood structures and the selection methods of charging station used in the shaking step of AVNS were proposed. In contrast to the commercial solver CPLEX, experimental results on small-scale test instances demonstrate that the algorithm can find nearly optimal solutions on small-scale instances. The results on large-scale instances also show the effectiveness of the algorithm.

  4. Run-time Phenomena in Dynamic Software Updating: Causes and Effects

    DEFF Research Database (Denmark)

    Gregersen, Allan Raundahl; Jørgensen, Bo Nørregaard

    2011-01-01

    The development of a dynamic software updating system for statically-typed object-oriented programming languages has turned out to be a challenging task. Despite the fact that the present state of the art in dynamic updating systems, like JRebel, Dynamic Code Evolution VM, JVolve and Javeleon, all...... written in statically-typed object-oriented programming languages. In this paper, we present our experience from developing dynamically updatable applications using a state-of-the-art dynamic updating system for Java. We believe that the findings presented in this paper provide an important step towards...... provide very transparent and flexible technical solutions to dynamic updating, case studies have shown that designing dynamically updatable applications still remains a challenging task. This challenge has its roots in a number of run-time phenomena that are inherent to dynamic updating of applications...

  5. Discovery potential for new phenomena

    International Nuclear Information System (INIS)

    Godfrey, S.; Price, L.E.

    1997-03-01

    The authors examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. The authors first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. They then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales

  6. Bench-scale/field-scale interpretations: Session overview

    International Nuclear Information System (INIS)

    Cunningham, A.B.; Peyton, B.M.

    1995-04-01

    In situ bioremediation involves complex interactions between biological, chemical, and physical processes and requires integration of phenomena operating at scales ranging from that of a microbial cell (10 -6 ) to that of a remediation site (10 to 1000 m). Laboratory investigations of biodegradation are usually performed at a relatively small scale, governed by convenience, cost, and expedience. However, extending the results from a laboratory-scale experimental system to the design and operation of a field-scale system introduces (1) additional mass transport mechanisms and limitations; (2) the presence of multiple phases, contants, and competing microorganisms (3) spatial geologic heterogeneities; and (4) subsurface environmental factors that may inhibit bacterial growth such as temperature, pH, nutrient, or redox conditions. Field bioremediation rates may be limited by the availability of one of the necessary constituents for biotransformation: substrate, contaminant, electron acceptor, nutrients, or microorganisms capable of degrading the target compound. The factor that limits the rate of bioremediation may not be the same in the laboratory as it is in the field, thereby leading, to development of unsuccessful remediation strategies

  7. Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting

    Science.gov (United States)

    Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan

    2017-03-01

    Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.

  8. IUTAM Symposium on Fracture Phenomena in Nature and Technology

    CERN Document Server

    Carini, Angelo; Gei, Massimiliano; Salvadori, Alberto

    2014-01-01

    This book contains contributions presented at the IUTAM Symposium "Fracture Phenomena in Nature and Technology" held in Brescia, Italy, 1-5 July, 2012.The objective of the Symposium was fracture research, interpreted broadly to include new engineering and structural mechanics treatments of damage development and crack growth, and also large-scale failure processes as exemplified by earthquake or landslide failures, ice shelf break-up, and hydraulic fracturing (natural, or for resource extraction or CO2 sequestration), as well as small-scale rupture phenomena in materials physics including, e.g., inception of shear banding, void growth, adhesion and decohesion in contact and friction, crystal dislocation processes, and atomic/electronic scale treatment of brittle crack tips and fundamental cohesive properties.Special emphasis was given to multiscale fracture description and new scale-bridging formulations capable to substantiate recent experiments and tailored to become the basis for innovative computationa...

  9. Toward a CFD-grade database addressing LWR containment phenomena

    International Nuclear Information System (INIS)

    Paladino, Domenico; Andreani, Michele; Zboray, Robert; Dreier, Jörg

    2012-01-01

    Highlights: ► The SETH-2 PANDA tests have supplied data with CFD-grade on plumes and jets at large-scale. ► The PANDA tests have contributed to the understanding of phenomena with high safety relevance for LWRs. ► The analytical activities related increased confidence in the use of various computational tools for safety analysis. - Abstract: The large-scale, multi-compartment PANDA facility (located at PSI in Switzerland) is one of the state-of-the-art facilities which is continuously upgraded to progressively match the requirements of CFD-grade experiments. Within the OECD/SETH projects, the PANDA facility has been used for the creation of an experimental database on basic containment phenomena e.g. gas mixing, transport, stratification, condensation. In the PANDA tests, these phenomena are driven by large scale plumes or jets. In the paper is presented a selection of the SETH PANDA experimental results. Examples of analytical activities performed at PSI using the GOTHIC, CFX-4 and CFX-5 codes will be used to illustrate how the spatial and temporal resolutions of the measurement grid in PANDA tests are adequate for CFD code (and advanced containment codes) assessment and validation purposes.

  10. Time Scale in Least Square Method

    Directory of Open Access Journals (Sweden)

    Özgür Yeniay

    2014-01-01

    Full Text Available Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we consider the method of obtaining parameters of regression equation of integer values through time scale. Therefore, we implemented least squares method according to derivative definition of time scale and obtained coefficients related to the model. Here, there exist two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time scale theory would be a new vision in least square especially when assumptions of linear regression are violated.

  11. Relative importance of climate changes at different time scales on net primary productivity-a case study of the Karst area of northwest Guangxi, China.

    Science.gov (United States)

    Liu, Huiyu; Zhang, Mingyang; Lin, Zhenshan

    2017-10-05

    Climate changes are considered to significantly impact net primary productivity (NPP). However, there are few studies on how climate changes at multiple time scales impact NPP. With MODIS NPP product and station-based observations of sunshine duration, annual average temperature and annual precipitation, impacts of climate changes at different time scales on annual NPP, have been studied with EEMD (ensemble empirical mode decomposition) method in the Karst area of northwest Guangxi, China, during 2000-2013. Moreover, with partial least squares regression (PLSR) model, the relative importance of climatic variables for annual NPP has been explored. The results show that (1) only at quasi 3-year time scale do sunshine duration and temperature have significantly positive relations with NPP. (2) Annual precipitation has no significant relation to NPP by direct comparison, but significantly positive relation at 5-year time scale, which is because 5-year time scale is not the dominant scale of precipitation; (3) the changes of NPP may be dominated by inter-annual variabilities. (4) Multiple time scales analysis will greatly improve the performance of PLSR model for estimating NPP. The variable importance in projection (VIP) scores of sunshine duration and temperature at quasi 3-year time scale, and precipitation at quasi 5-year time scale are greater than 0.8, indicating important for NPP during 2000-2013. However, sunshine duration and temperature at quasi 3-year time scale are much more important. Our results underscore the importance of multiple time scales analysis for revealing the relations of NPP to changing climate.

  12. Superaging and Subaging Phenomena in a Nonequilibrium Critical Behavior of the Structurally Disordered Two-Dimensional XY Model

    Science.gov (United States)

    Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.

    2018-03-01

    A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.

  13. Multiples least-squares reverse time migration

    KAUST Repository

    Zhang, Dongliang

    2013-01-01

    To enhance the image quality, we propose multiples least-squares reverse time migration (MLSRTM) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. Since each recorded trace is treated as a virtual source, knowledge of the source wavelet is not required. Numerical tests on synthetic data for the Sigsbee2B model and field data from Gulf of Mexico show that MLSRTM can improve the image quality by removing artifacts, balancing amplitudes, and suppressing crosstalk compared to standard migration of the free-surface multiples. The potential liability of this method is that multiples require several roundtrips between the reflector and the free surface, so that high frequencies in the multiples are attenuated compared to the primary reflections. This can lead to lower resolution in the migration image compared to that computed from primaries.

  14. Single start multiple stop time digitizer

    International Nuclear Information System (INIS)

    Deshpande, P.A.; Mukhopadhyay, P.K.; Gopalakrishnan, K.R.

    1997-01-01

    A single start multiple stop time digitizer has been developed which can digitize the time between a start pulse and multiple stop pulses. The system has been designed as a PC add on card. The resolution of the instrument is 10 nSecs and the maximum length of time that it can measure is 1.28 milliseconds. Apart from time digitization, it can also resolve the height of the incoming pulses into 64 levels. After each input pulse the system dead time is less than 300 nSecs. The driver software for this card has been developed on DOS platform. It uses graphical user interface to provide a user friendly environment. The system is intended to be used in time of flight mass spectroscopy experiments. It can also be used for time of flight experiments in nuclear physics. (author). 2 figs

  15. Similarity rules of thermal stratification phenomena for water and sodium

    International Nuclear Information System (INIS)

    Ohtsuka, M.; Ikeda, T.; Yamakawa, M.; Shibata, Y.; Moriya, S.; Ushijima, S.; Fujimoto, K.

    1988-01-01

    Similarity rules for thermal stratification phenomena were studied using sodium and water experiments with scaled cylindrical vessels. The vessel dimensions were identical to focus on the effect of differences in fluid properties upon the phenomena. Comparisons of test results between sodium and water elucidated similar and dissimilar characteristics for thermal stratification phenomena which appeared in the scaled vessels. Results were as follows: (1) The dimensionless upward velocity of the thermal stratification interface was proportional to Ri -0.74 for water and sodium during the period when the buoyancy effect was dominant. (2) Dimensionless temperature transient rate at the outlet slit decreased with Ri for sodium and remained constant for water where Ri>0.2. The applicability of the scaled test results to an actual power plant was also studied by using multi-dimensional numerical analysis which was verified by the water and sodium experiments. Water experiments could simulate liquid metal fast breeder reactor flows more accurately than sodium experiments for dimensionless temperature gradient at the thermal stratification interface and dimensionless temperature transient rate at the intermediate heat exchanger inlet

  16. Distributed Model Predictive Control over Multiple Groups of Vehicles in Highway Intelligent Space for Large Scale System

    Directory of Open Access Journals (Sweden)

    Tang Xiaofeng

    2014-01-01

    Full Text Available The paper presents the three time warning distances for solving the large scale system of multiple groups of vehicles safety driving characteristics towards highway tunnel environment based on distributed model prediction control approach. Generally speaking, the system includes two parts. First, multiple vehicles are divided into multiple groups. Meanwhile, the distributed model predictive control approach is proposed to calculate the information framework of each group. Each group of optimization performance considers the local optimization and the neighboring subgroup of optimization characteristics, which could ensure the global optimization performance. Second, the three time warning distances are studied based on the basic principles used for highway intelligent space (HIS and the information framework concept is proposed according to the multiple groups of vehicles. The math model is built to avoid the chain avoidance of vehicles. The results demonstrate that the proposed highway intelligent space method could effectively ensure driving safety of multiple groups of vehicles under the environment of fog, rain, or snow.

  17. Modeling multiple time series annotations as noisy distortions of the ground truth: An Expectation-Maximization approach.

    Science.gov (United States)

    Gupta, Rahul; Audhkhasi, Kartik; Jacokes, Zach; Rozga, Agata; Narayanan, Shrikanth

    2018-01-01

    Studies of time-continuous human behavioral phenomena often rely on ratings from multiple annotators. Since the ground truth of the target construct is often latent, the standard practice is to use ad-hoc metrics (such as averaging annotator ratings). Despite being easy to compute, such metrics may not provide accurate representations of the underlying construct. In this paper, we present a novel method for modeling multiple time series annotations over a continuous variable that computes the ground truth by modeling annotator specific distortions. We condition the ground truth on a set of features extracted from the data and further assume that the annotators provide their ratings as modification of the ground truth, with each annotator having specific distortion tendencies. We train the model using an Expectation-Maximization based algorithm and evaluate it on a study involving natural interaction between a child and a psychologist, to predict confidence ratings of the children's smiles. We compare and analyze the model against two baselines where: (i) the ground truth in considered to be framewise mean of ratings from various annotators and, (ii) each annotator is assumed to bear a distinct time delay in annotation and their annotations are aligned before computing the framewise mean.

  18. On the Geologic Time Scale

    NARCIS (Netherlands)

    Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.

    2012-01-01

    This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam

  19. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Interactions between fluvial processes and floodplain ecosystems occur upon a floodplain surface that is often physically complex. Spatial patterns in floodplain topography have only recently been quantified over multiple scales, and discrepancies exist in how floodplain surfaces are perceived to be spatially organised. We measured spatial patterns in floodplain topography for pool 9 of the Upper Mississippi River, USA, using moving window analyses of eight surface metrics applied to a 1 × 1 m2 DEM over multiple scales. The metrics used were Range, SD, Skewness, Kurtosis, CV, SDCURV,Rugosity, and Vol:Area, and window sizes ranged from 10 to 1000 m in radius. Surface metric values were highly variable across the floodplain and revealed a high degree of spatial organisation in floodplain topography. Moran's I correlograms fit to the landscape of each metric at each window size revealed that patchiness existed at nearly all window sizes, but the strength and scale of patchiness changed within window size, suggesting that multiple scales of patchiness and patch structure exist in the topography of this floodplain. Scale thresholds in the spatial patterns were observed, particularly between the 50 and 100 m window sizes for all surface metrics and between the 500 and 750 m window sizes for most metrics. These threshold scales are ~ 15–20% and 150% of the main channel width (1–2% and 10–15% of the floodplain width), respectively. These thresholds may be related to structuring processes operating across distinct scale ranges. By coupling surface metrics, multi-scale analyses, and correlograms, quantifying floodplain topographic complexity is possible in ways that should assist in clarifying how floodplain ecosystems are structured.

  20. Least squares reverse time migration of controlled order multiples

    Science.gov (United States)

    Liu, Y.

    2016-12-01

    Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).

  1. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  2. Adaptation and learning: characteristic time scales of performance dynamics.

    Science.gov (United States)

    Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh

    2009-12-01

    A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.

  3. Heavy-metal toxicity phenomena in laboratory-scale ANFLOW bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, A.L.

    1982-04-01

    An energy-conserving wastewater treatment system was developed based on an anaerobic, upflow (ANFLOW) bioreactor. Since many applications of the ANFLOW process could involve the treatment of wastewaters containing heavy metals, the potentially toxic effects of these metals on the biological processes occurring in ANFLOW columns (primarily acetogenesis and methanogenesis) were investigated. Both step and pulse inputs of zinc ranging from 100 to 1000 mg/L were added to synthetic wastewaters being treated in ANFLOW columns with 0.057-m/sup 3/ volumes. Column responses were used to develop descriptive models for toxicity phenomena in such systems. It was found that an inhibition function could be defined and used to modify a model based on plugflow with axial dispersion and first-order kinetics for soluble substrate removal. The inhibitory effects of zinc on soluble substrate removal were found to be predominantly associated with its sorption by biosolids. Sorption initially occurred in the lower regions of the column, but was gradually observed in higher regions as the sorption capacity of the lower regions was exhausted. Sorption phenomena could be described with the Freundlich equation. Sorption processes were accompanied by shifts of biological processes to regions higher in the columns. A regenerative process was observed when feeding of wastewaters without zinc was resumed. It was postulated that regeneration could be based on sloughing of layers of biofilms, or other biosolids involved in zinc sorption, followed by continued growth of lower layers of biofilms not involved in heavy-metal sorption.

  4. Single molecule translocation in smectics illustrates the challenge for time-mapping in simulations on multiple scales.

    Science.gov (United States)

    Mukherjee, Biswaroop; Peter, Christine; Kremer, Kurt

    2017-09-21

    Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.

  5. Single molecule translocation in smectics illustrates the challenge for time-mapping in simulations on multiple scales

    Science.gov (United States)

    Mukherjee, Biswaroop; Peter, Christine; Kremer, Kurt

    2017-09-01

    Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.

  6. Sleep Management on Multiple Machines for Energy and Flow Time

    DEFF Research Database (Denmark)

    Chan, Sze-Hang; Lam, Tak-Wah; Lee, Lap Kei

    2011-01-01

    In large data centers, determining the right number of operating machines is often non-trivial, especially when the workload is unpredictable. Using too many machines would waste energy, while using too few would affect the performance. This paper extends the traditional study of online flow-time...... scheduling on multiple machines to take sleep management and energy into consideration. Specifically, we study online algorithms that can determine dynamically when and which subset of machines should wake up (or sleep), and how jobs are dispatched and scheduled. We consider schedules whose objective...... is to minimize the sum of flow time and energy, and obtain O(1)-competitive algorithms for two settings: one assumes machines running at a fixed speed, and the other allows dynamic speed scaling to further optimize energy usage. Like the previous work on the tradeoff between flow time and energy, the analysis...

  7. Magnetic phenomena in holographic superconductivity with Lifshitz scaling

    Directory of Open Access Journals (Sweden)

    Aldo Dector

    2015-09-01

    Full Text Available We investigate the effects of Lifshitz dynamical critical exponent z on a family of minimal D=4+1 holographic superconducting models, with a particular focus on magnetic phenomena. We see that it is possible to have a consistent Ginzburg–Landau approach to holographic superconductivity in a Lifshitz background. By following this phenomenological approach we are able to compute a wide array of physical quantities. We also calculate the Ginzburg–Landau parameter for different condensates, and conclude that in systems with higher dynamical critical exponent, vortex formation is more strongly unfavored energetically and exhibits a stronger Type I behavior. Finally, following the perturbative approach proposed by Maeda, Natsuume and Okamura, we calculate the critical magnetic field of our models for different values of z.

  8. Non-Linear Optical Phenomena in Detecting Materials as a Possibility for Fast Timing in Detectors of Ionizing Radiation

    CERN Document Server

    Korjik, M. V.; Buganov, O.; Fedorov, A. A.; Emelianchik, I.; Griesmayer, E.; Mechinsky, V.; Nargelas, S.; Sidletskiy, O.; Tamulaitis, G.; Tikhomirov, S. N.; Vaitkevicius, A.

    2016-01-01

    The time resolution of the detectors currently in use is limited by 50-70 ps due to the spontaneous processes involved in the development of the response signal, which forms after the relaxation of carriers generated during the interaction. In this study, we investigate the feasibility of exploiting sub-picosecond phenomena occurring after the interaction of scintillator material with ionizing radiation by probing the material with ultra-short laser pulses. One of the phenomena is the elastic polarization due to the local lattice distortion caused by the displacement of electrons and holes generated by ionization. The key feature of the elastic polarization is its short response time, which makes it prospective for using as an optically detectable time mark. The nonlinear optical absorption of femtosecond light pulses of appropriate wavelength is demonstrated to be a prospective tool to form the mark. This study was aimed at searching for inorganic crystalline media combining scintillation properties and non-...

  9. Time-correlated neutron analysis of a multiplying HEU source

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.C., E-mail: Eric.Miller@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Kalter, J.M.; Lavelle, C.M. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Watson, S.M.; Kinlaw, M.T.; Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID (United States); Noonan, W.A. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States)

    2015-06-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated {sup 3}He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.

  10. Time-correlated neutron analysis of a multiplying HEU source

    Science.gov (United States)

    Miller, E. C.; Kalter, J. M.; Lavelle, C. M.; Watson, S. M.; Kinlaw, M. T.; Chichester, D. L.; Noonan, W. A.

    2015-06-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.

  11. Time-correlated neutron analysis of a multiplying HEU source

    International Nuclear Information System (INIS)

    Miller, E.C.; Kalter, J.M.; Lavelle, C.M.; Watson, S.M.; Kinlaw, M.T.; Chichester, D.L.; Noonan, W.A.

    2015-01-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3 He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations

  12. Time-domain multiple-quantum NMR

    International Nuclear Information System (INIS)

    Weitekamp, D.P.

    1982-11-01

    The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species

  13. Toward a CFD-grade database addressing LWR containment phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Paladino, Domenico, E-mail: domenico.paladino@psi.ch [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Andreani, Michele; Zboray, Robert; Dreier, Joerg [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The SETH-2 PANDA tests have supplied data with CFD-grade on plumes and jets at large-scale. Black-Right-Pointing-Pointer The PANDA tests have contributed to the understanding of phenomena with high safety relevance for LWRs. Black-Right-Pointing-Pointer The analytical activities related increased confidence in the use of various computational tools for safety analysis. - Abstract: The large-scale, multi-compartment PANDA facility (located at PSI in Switzerland) is one of the state-of-the-art facilities which is continuously upgraded to progressively match the requirements of CFD-grade experiments. Within the OECD/SETH projects, the PANDA facility has been used for the creation of an experimental database on basic containment phenomena e.g. gas mixing, transport, stratification, condensation. In the PANDA tests, these phenomena are driven by large scale plumes or jets. In the paper is presented a selection of the SETH PANDA experimental results. Examples of analytical activities performed at PSI using the GOTHIC, CFX-4 and CFX-5 codes will be used to illustrate how the spatial and temporal resolutions of the measurement grid in PANDA tests are adequate for CFD code (and advanced containment codes) assessment and validation purposes.

  14. Elucidation of complicated phenomena in nuclear power field by computation science techniques

    International Nuclear Information System (INIS)

    Takahashi, Ryoichi

    1996-01-01

    In this crossover research, the complicated phenomena treated in nuclear power field are elucidated, and for connecting them to engineering application research, the development of high speed computer utilization technology and the large scale numerical simulation utilizing it are carried out. As the scale of calculation, it is aimed at to realize the three-dimensional numerical simulation of the largest scale in the world of about 100 million mesh and to develop the results into engineering research. In the nuclear power plants of next generation, the further improvement of economical efficiency is demanded together with securing safety, and it is important that the design window is large. The work of confirming quantitatively the size of design window is not easy, and it is very difficult to separate observed phenomena into elementary events. As the method of forecasting and reproducing complicated phenomena and quantifying design window, large scale numerical simulation is promising. The roles of theory, experiment and computation science are discussed. The system of executing this crossover research is described. (K.I.)

  15. Rasch analysis of the Multiple Sclerosis Impact Scale (MSIS-29)

    OpenAIRE

    Ramp, Melina; Khan, Fary; Misajon, Rose Anne; Pallant, Julie F

    2009-01-01

    Abstract Background Multiple Sclerosis (MS) is a degenerative neurological disease that causes impairments, including spasticity, pain, fatigue, and bladder dysfunction, which negatively impact on quality of life. The Multiple Sclerosis Impact Scale (MSIS-29) is a disease-specific health-related quality of life (HRQoL) instrument, developed using the patient's perspective on disease impact. It consists of two subscales assessing the physical (MSIS-29-PHYS) and psychological (MSIS-29-PSYCH) im...

  16. Guarantee of remaining life time. Integrity of mechanical components and control of ageing phenomena

    International Nuclear Information System (INIS)

    Schuler, X.; Herter, K.H.; Koenig, G.

    2012-01-01

    The life time of safety relevant systems, structures and components (SSC) of Nuclear Power Plants (NPP) is determined by two main principles. First of all the required quality has to be produced during the design and fabrication process. This means that quality has to be produced and can't be improved by excessive inspections (Basis Safety - quality through production principle). The second one is assigned to the initial quality which has to be maintained during operation. This concerns safe operation during the total life time (life time management), safety against ageing phenomena (AM - ageing management) as well as proof of integrity (e.g. break preclusion or avoidance of fracture for SSC with high safety relevance). Initiated by the Fukushima Dai-ichi event in Japan in spring 2011 for German NPP's Long Term Operation (LTO) is out of question. In June 2011 legislation took decision to phase-out from nuclear by 2022. As a fact safe operation shall be guaranteed for the remaining life time. Within this technical framework the ageing management is a key element. Depending on the safety-relevance of the SSC under observation including preventive maintenance various tasks are required in particular to clarify the mechanisms which contribute systemspecifically to the damage of the components and systems and to define their controlling parameters which have to be monitored and checked. Appropriate continuous or discontinuous measures are to be considered in this connection. The approach to ensure a high standard of quality in operation for the remaining life time and the management of the technical and organizational aspects are demonstrated and explained. The basis for ageing management to be applied to NNPs is included in Nuclear Safety Standard 1403 which describes the ageing management procedures. For SSC with high safety relevance a verification analysis for rupture preclusion (proof of integrity, integrity concept) shall be performed (Nuclear Safety Standard 3206

  17. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  18. Linear time algorithms to construct populations fitting multiple constraint distributions at genomic scales.

    Science.gov (United States)

    Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi

    2017-10-09

    Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.

  19. Patterns of disturbance at multiple scales in real and simulated landscapes

    Science.gov (United States)

    Giovanni Zurlini; Kurt H. Riitters; Nicola Zaccarelli; Irene Petrosoillo

    2007-01-01

    We describe a framework to characterize and interpret the spatial patterns of disturbances at multiple scales in socio-ecological systems. Domains of scale are defined in pattern metric space and mapped in geographic space, which can help to understand how anthropogenic disturbances might impact biodiversity through habitat modification. The approach identifies typical...

  20. Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test

    Science.gov (United States)

    Nielsen, Tanner; Williams, B.; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.

  1. Multiples least-squares reverse time migration

    KAUST Repository

    Zhang, Dongliang; Zhan, Ge; Dai, Wei; Schuster, Gerard T.

    2013-01-01

    To enhance the image quality, we propose multiples least-squares reverse time migration (MLSRTM) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. Since each recorded trace is treated

  2. Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis

    Science.gov (United States)

    Michael C. Dietze; Rodrigo Vargas; Andrew D. Richardson; Paul C. Stoy; Alan G. Barr; Ryan S. Anderson; M. Altaf Arain; Ian T. Baker; T. Andrew Black; Jing M. Chen; Philippe Ciais; Lawrence B. Flanagan; Christopher M. Gough; Robert F. Grant; David Hollinger; R. Cesar Izaurralde; Christopher J. Kucharik; Peter Lafleur; Shugang Liu; Erandathie Lokupitiya; Yiqi Luo; J. William Munger; Changhui Peng; Benjamin Poulter; David T. Price; Daniel M. Ricciuto; William J. Riley; Alok Kumar Sahoo; Kevin Schaefer; Andrew E. Suyker; Hanqin Tian; Christina Tonitto; Hans Verbeeck; Shashi B. Verma; Weifeng Wang; Ensheng Weng

    2011-01-01

    Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the...

  3. Flow reduction due to degassing and redissolution phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    At the Stripa mine in Sweden, flow and transport experiments in a water-saturated fractured granite were conducted to investigate techniques for site characterization for a geologic nuclear waste repository. In the Simulated Drift Experiment, measured water inflow to an excavated drift with pressure held at 1 bar was only 1/9th the value expected based on inflow to boreholes with pressure held at 2.7 bars. Several physical and chemical mechanisms were hypothesized to be responsible for this reduction in flow. One possibility is that significant degassing of dissolved nitrogen takes place between 2.7 and 1 bars, credating a two-phase regime with an accompanying decrease in fluid mobility, resulting in a decrease in flow to the drift. To investigate this process, theoretical studies on degassing and redissolution phenomena have been carried out, beginning with an idealized model which yields a simple analytical solution, then relaxing some of the simplifying assumptions and using TOUGH2 to study the phenomena numerically. In conjunction with these theoretical studies, laboratory experiments on flow and degassing in transparent fracture replicas are being carried out, and are being used to check the modeling approach. We need to develop a fundamental understanding of degassing and redissolution in particular and two-phase flow phenomena in general for flow in fractures and fracture networks, in order to successfully model conditions around a nuclear waste repository, where long time and large space scales may preclude conclusive field experiments.

  4. Scaling of multiplicity distribution in hadron collisions and diffractive-excitation like models

    International Nuclear Information System (INIS)

    Buras, A.J.; Dethlefsen, J.M.; Koba, Z.

    1974-01-01

    Multiplicity distribution of secondary particles in inelastic hadron collision at high energy is studied in the semiclassical impact parameter representation. The scaling function is shown to consist of two factors: one geometrical and the other dynamical. We propose a specific choice of these factors, which describe satisfactorily the elastic scattering, the ratio of elastic to total cross-section and the simple scaling behaviour of multiplicity distribution in p-p collisions. Two versions of diffractive-excitation like models (global and local excitation) are presented as interpretation of our choice of dynamical factor. (author)

  5. Scaling in multiplicity distributions of heavy, black and grey prongs in nuclear emulsions

    International Nuclear Information System (INIS)

    Nieminen, M.; Torsti, J.J.; Valtonen, E.

    1979-01-01

    The validity of Koba-Nielsen-Olesen scaling hypothesis was examined in the case of heavy, black, and grey prongs in proton-emulsion collisions ('heavy' means 'either black or grey'). The average multiplicities of these prongs were computed in the region 0.1-400 GeV for the nuclei C, N, O, S, Br, Ag, and I. After the inclusion of the energy-dependent excitation probability of the nuclei of the form P* = b 0 + b 1 ln E 0 into the model, experimental multiplicity distributions in the energy region 6-300 GeV agreed satisfactorily with the scaling hypothesis. The ratio of the dispersion D (D = √ 2 >- 2 ) to the average multiplicity in the scaling functions of heavy, balck, and grey prongs was estimated to be 0.86, 0.84, and 1.04, respectively, in the high energy region. (Auth.)

  6. The Abridgment and Relaxation Time for a Linear Multi-Scale Model Based on Multiple Site Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available Random effect in cellular systems is an important topic in systems biology and often simulated with Gillespie's stochastic simulation algorithm (SSA. Abridgment refers to model reduction that approximates a group of reactions by a smaller group with fewer species and reactions. This paper presents a theoretical analysis, based on comparison of the first exit time, for the abridgment on a linear chain reaction model motivated by systems with multiple phosphorylation sites. The analysis shows that if the relaxation time of the fast subsystem is much smaller than the mean firing time of the slow reactions, the abridgment can be applied with little error. This analysis is further verified with numerical experiments for models of bistable switch and oscillations in which linear chain system plays a critical role.

  7. Experimental Quantification of Pore-Scale Flow Phenomena in 2D Heterogeneous Porous Micromodels: Multiphase Flow Towards Coupled Solid-Liquid Interactions

    Science.gov (United States)

    Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.

    2017-12-01

    Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.

  8. Multiple output timing and trigger generator

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Robert M. [Los Alamos National Laboratory; Dale, Gregory E [Los Alamos National Laboratory

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  9. Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data

    Directory of Open Access Journals (Sweden)

    Heiko Balzter

    2015-03-01

    Full Text Available Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v is provided. The results show that the temporal scales of the current climate (1960–2014 are different from the long-term average (1850–1960. For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the

  10. Stochastic time scale for the Universe

    International Nuclear Information System (INIS)

    Szydlowski, M.; Golda, Z.

    1986-01-01

    An intrinsic time scale is naturally defined within stochastic gradient dynamical systems. It should be interpreted as a ''relaxation time'' to a local potential minimum after the system has been randomly perturbed. It is shown that for a flat Friedman-like cosmological model this time scale is of order of the age of the Universe. 7 refs. (author)

  11. Small multiplicity events in e+ + e- → Z0 and unconventional phenomena

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-12-01

    Events with two-, four- or six-charged particles and no photons produced through the process e + + e - → Z 0 provide an opportunity to search for unconventional phenomena at the SLC and LEP electron-positron colliders. Examples of unconventional processes are compared with the expected background from electromagnetic processes and from charged lepton pair production

  12. Pair plasma relaxation time scales.

    Science.gov (United States)

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  13. Modeling Group Perceptions Using Stochastic Simulation: Scaling Issues in the Multiplicative AHP

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn; van den Honert, Robin; Salling, Kim Bang

    2016-01-01

    This paper proposes a new decision support approach for applying stochastic simulation to the multiplicative analytic hierarchy process (AHP) in order to deal with issues concerning the scale parameter. The paper suggests a new approach that captures the influence from the scale parameter by maki...

  14. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  15. Decomposing Multi‐Level Ethnic Segregation in Auckland, New Zealand, 2001–2013 : Segregation Intensity for Multiple Groups at Multiple Scales

    NARCIS (Netherlands)

    Manley, D.J.; Johnston, Ron; Jones, Kelvyn

    2018-01-01

    There has been a growing appreciation that the processes generating urban residential segregation operate at multiple scales, stimulating innovations into the measurement of their outcomes. This paper applies a multi‐level modelling approach to that issue to the situation in Auckland, where multiple

  16. Coupled electric and transport phenomena in porous media

    NARCIS (Netherlands)

    Li, Shuai

    2014-01-01

    The coupled electrical and transport properties of clay-containing porous media are the topics of interest in this study. Both experimental and numerical (pore network modeling) techniques are employed to gain insight into the macro-scale interaction between electrical and solute transport phenomena

  17. From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest.

    Science.gov (United States)

    Torney, Colin J; Hopcraft, J Grant C; Morrison, Thomas A; Couzin, Iain D; Levin, Simon A

    2018-05-19

    A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Author(s).

  18. Systems near a critical point under multiplicative noise and the concept of effective potential

    Science.gov (United States)

    Shapiro, V. E.

    1993-07-01

    This paper presents a general approach to and elucidates the main features of the effective potential, friction, and diffusion exerted by systems near a critical point due to nonlinear influence of noise. The model is that of a general many-dimensional system of coupled nonlinear oscillators of finite damping under frequently alternating influences, multiplicative or additive, and arbitrary form of the power spectrum, provided the time scales of the system's drift due to noise are large compared to the scales of unperturbed relaxation behavior. The conventional statistical approach and the widespread deterministic effective potential concept use the assumptions about a small parameter which are particular cases of the considered. We show close correspondence between the asymptotic methods of these approaches and base the analysis on this. The results include an analytical treatment of the system's long-time behavior as a function of the noise covering all the range of its table- and bell-shaped spectra, from the monochromatic limit to white noise. The trend is considered both in the coordinate momentum and in the coordinate system's space. Particular attention is paid to the stabilization behavior forced by multiplicative noise. An intermittency, in a broad area of the control parameter space, is shown to be an intrinsic feature of these phenomena.

  19. Scaling analysis for a Savannah River reactor scaled model integral system

    International Nuclear Information System (INIS)

    Boucher, T.J.; Larson, T.K.; McCreery, G.E.; Anderson, J.L.

    1990-11-01

    801The Savannah River Laboratory has requested that the Idaho National Engineering Laboratory perform an analysis to help define, examine, and assess potential concepts for the design of a scaled integral hydraulics test facility representative of the current Savannah River Plant reactor design. In this report the thermal-hydraulic phenomena of importance (based on the knowledge and experience of the authors and the results of the joint INEL/TPG/SRL phenomena identification and ranking effort) to reactor safety during the design basis loss-of-coolant accident were examined and identified. Established scaling methodologies were used to develop potential concepts for integral hydraulic testing facilities. Analysis is conducted to examine the scaling of various phenomena in each of the selected concepts. Results generally support that a one-fourth (1/4) linear scale visual facility capable of operating at pressures up to 350 kPa (51 psia) and temperatures up to 330 K (134 degree F) will scale most hydraulic phenomena reasonably well. However, additional research will be necessary to determine the most appropriate method of simulating several of the reactor components, since the scaling methodology allows for several approaches which may only be assessed via appropriate research. 34 refs., 20 figs., 14 tabs

  20. New ISR and SPS collider multiplicity data and the Golokhvastov generalization of the KNO scaling

    International Nuclear Information System (INIS)

    Szwed, R.; Wrochna, G.

    1985-01-01

    The generalization of KNO scaling proposed by Golokhvastov (KNO-G scaling) is tested using pp multiplicity data, in particular results of the new high precision ISR measurements. Since the data obey KNO-G scaling over the full energy range √s=2.51-62.2 GeV with the scaling function psi(z), having only one free parameter, the superiority of the KNO-G over the standard approach is clearly demonstrated. The extrapolation within KNO-G scaling to the SPS Collider energy range and a comparison with the recent UA5 multiplicity results is presented. (orig.)

  1. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  2. Hardy type inequalities on time scales

    CERN Document Server

    Agarwal, Ravi P; Saker, Samir H

    2016-01-01

    The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and...

  3. Macroscopic quantum systems and gravitational phenomena

    International Nuclear Information System (INIS)

    Pikovski, I.

    2014-01-01

    Low-energy quantum systems are studied theoretically in light of possible experiments to test the interplay between quantum theory and general relativity. The research focus in this thesis is on quantum systems which can be controlled with very high precision and which allow for tests of quantum theory at novel scales in terms of mass and size. The pulsed regime of opto-mechanics is explored and it is shown how short optical pulses can be used to prepare and characterize quantum states of a massive mechanical resonator, and how some phenomenological models of quantum gravity can be probed. In addition, quantum interferometry with photons and matter-waves in the presence of gravitational time dilation is considered. It is shown that time dilation causes entanglement between internal states and the center-of-mass position and that it leads to decoherence of all composite quantum systems. The results of the thesis show that the interplay between quantum theory and general relativity affects even low-energy quantum systems and that it offers novel phenomena which can be probed in experiments. (author) [de

  4. Time scales in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Krolik J.

    2012-12-01

    Full Text Available We explore the temporal structure of tidal disruption events pointing out the corresponding transitions in the lightcurves of the thermal accretion disk and of the jet emerging from such events. The hydrodynamic time scale of the disrupted star is the minimal time scale of building up the accretion disk and the jet and it sets a limit on the rise time. This suggest that Swift J1644+57, that shows several flares with a rise time as short as a few hundred seconds could not have arisen from a tidal disruption of a main sequence star whose hydrodynamic time is a few hours. The disrupted object must have been a white dwarf. A second important time scale is the Eddington time in which the accretion rate changes form super to sub Eddington. It is possible that such a transition was observed in the light curve of Swift J2058+05. If correct this provides interesting constraints on the parameters of the system.

  5. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  6. AN INTEGRATED COMPUTER-AIDED APPROACH FOR MODELING DISINTEGRATION-RELATED PHENOMENA

    NARCIS (Netherlands)

    CARAMELLA, C.; FERRARI, F.; RONCHI, M.; Smilde, A. K.

    1990-01-01

    Two phenomena have frequently been related to tablet disintegration: water uptake and disintegrating force development. The combination of these two measures allowed a step forward to understanding disintegration mechanisms. In the present work, multiple linear regression analysis was used to relate

  7. Transport at basin scales: 2. Applications

    Directory of Open Access Journals (Sweden)

    A. Rinaldo

    2006-01-01

    Full Text Available In this paper, the second of a series, we apply the models discussed in Part 1 to a significant case study. The nature of the catchment under study, the transport phenomena investigated (i.e. nitrates moving as solutes within runoff waters and the scales involved in space and time, provide an elaborate test for theory and applications. Comparison of modeling predictions with field data (i.e. fluxes of carrier flow and solute nitrates suggests that the framework proposed for geomorphic transport models is capable to describe well large-scale transport phenomena driven and/or controlled by spatially distributed hydrologic fields (e.g. rainfall patterns in space and time, drainage pathways, soil coverage and type, matter stored in immobile phases. A sample MonteCarlo mode of application of the model is also discussed where hydrologic forcings and external nitrate applications (through fertilization are treated as random processes.

  8. Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques

    International Nuclear Information System (INIS)

    Hu, Hui; Jin, Zheyan; Lum, Chee; Nocera, Daniel; Koochesfahani, Manoochehr

    2010-01-01

    Recent progress made in the development of novel molecule-based flow diagnostic techniques, including molecular tagging velocimetry (MTV) and lifetime-based molecular tagging thermometry (MTT), to achieve simultaneous measurements of multiple important flow variables for micro-flows and micro-scale heat transfer studies is reported in this study. The focus of the work described here is the particular class of molecular tagging tracers that relies on phosphorescence. Instead of using tiny particles, especially designed phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, are used as tracers for both flow velocity and temperature measurements. A pulsed laser is used to 'tag' the tracer molecules in the regions of interest, and the tagged molecules are imaged at two successive times within the photoluminescence lifetime of the tracer molecules. The measured Lagrangian displacement of the tagged molecules provides the estimate of the fluid velocity. The simultaneous temperature measurement is achieved by taking advantage of the temperature dependence of phosphorescence lifetime, which is estimated from the intensity ratio of the tagged molecules in the acquired two phosphorescence images. The implementation and application of the molecular tagging approach for micro-scale thermal flow studies are demonstrated by two examples. The first example is to conduct simultaneous flow velocity and temperature measurements inside a microchannel to quantify the transient behavior of electroosmotic flow (EOF) to elucidate underlying physics associated with the effects of Joule heating on electrokinematically driven flows. The second example is to examine the time evolution of the unsteady heat transfer and phase changing process inside micro-sized, icing water droplets, which is pertinent to the ice formation and accretion processes as water droplets impinge onto cold wind turbine blades

  9. Investigation of some galactic and extragalactic gravitational phenomena

    Directory of Open Access Journals (Sweden)

    Jovanović P.

    2012-01-01

    Full Text Available Here we present a short overview of the most important results of our investigations of the following galactic and extragalactic gravitational phenomena: supermassive black holes in centers of galaxies and quasars, supermassive black hole binaries, gravitational lenses and dark matter. For the purpose of these investigations, we developed a model of a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, a model of a bright spot in an accretion disk and three different models of gravitational microlenses. All these models enabled us to study physics, spacetime geometry and effects of strong gravity in the vicinity of supermassive black holes, variability of some active galaxies and quasars, different effects in the lensed quasars with multiple images, as well as the dark matter fraction in the Universe. We also found an observational evidence for the first spectroscopically resolved sub-parsec orbit of a supermassive black hole binary system in the core of active galaxy NGC 4151. Besides, we studied applications of one potential alternative to dark matter in the form of a modified theory of gravity on Galactic scales, to explain the recently observed orbital precession of some S-stars, which are orbiting around a massive black hole at the Galactic center. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe

  10. Paranormal phenomena

    Science.gov (United States)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  11. State estimation of spatio-temporal phenomena

    Science.gov (United States)

    Yu, Dan

    This dissertation addresses the state estimation problem of spatio-temporal phenomena which can be modeled by partial differential equations (PDEs), such as pollutant dispersion in the atmosphere. After discretizing the PDE, the dynamical system has a large number of degrees of freedom (DOF). State estimation using Kalman Filter (KF) is computationally intractable, and hence, a reduced order model (ROM) needs to be constructed first. Moreover, the nonlinear terms, external disturbances or unknown boundary conditions can be modeled as unknown inputs, which leads to an unknown input filtering problem. Furthermore, the performance of KF could be improved by placing sensors at feasible locations. Therefore, the sensor scheduling problem to place multiple mobile sensors is of interest. The first part of the dissertation focuses on model reduction for large scale systems with a large number of inputs/outputs. A commonly used model reduction algorithm, the balanced proper orthogonal decomposition (BPOD) algorithm, is not computationally tractable for large systems with a large number of inputs/outputs. Inspired by the BPOD and randomized algorithms, we propose a randomized proper orthogonal decomposition (RPOD) algorithm and a computationally optimal RPOD (RPOD*) algorithm, which construct an ROM to capture the input-output behaviour of the full order model, while reducing the computational cost of BPOD by orders of magnitude. It is demonstrated that the proposed RPOD* algorithm could construct the ROM in real-time, and the performance of the proposed algorithms on different advection-diffusion equations. Next, we consider the state estimation problem of linear discrete-time systems with unknown inputs which can be treated as a wide-sense stationary process with rational power spectral density, while no other prior information needs to be known. We propose an autoregressive (AR) model based unknown input realization technique which allows us to recover the input

  12. Uniform Statistical Convergence on Time Scales

    Directory of Open Access Journals (Sweden)

    Yavuz Altin

    2014-01-01

    Full Text Available We will introduce the concept of m- and (λ,m-uniform density of a set and m- and (λ,m-uniform statistical convergence on an arbitrary time scale. However, we will define m-uniform Cauchy function on a time scale. Furthermore, some relations about these new notions are also obtained.

  13. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  14. Time evolution and use of multiple times in the N-body problem

    International Nuclear Information System (INIS)

    McGuire, J.H.; Godunov, A.L.

    2003-01-01

    Under certain conditions it is possible to describe time evolution using different times for different particles. Use of multiple times is optional in the independent particle approximation, where interparticle interactions are removed, and the N-particle evolution operator factors into N single-particle evolution operators. In this limit one may use either a single time, with a single energy-time Fourier transform, or N different times with a different energy-time transform for each particle. The use of different times for different particles is fully justified when coherence between single-particle amplitudes is lost, e.g., if relatively strong randomly fluctuating residual fields influence each particle independently. However, when spatial correlation is present the use of multiple times is not feasible, even when the evolution of the particles is uncorrelated in time. Some calculations in simple atomic systems with and without spatial and temporal correlation between different electrons are included

  15. Full-scale and time-scale heating experiments at Stripa: preliminary results

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, Michael; California Univ., Berkeley

    1978-01-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  16. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.

    2004-01-01

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions

  17. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  18. Rasch analysis of the Multiple Sclerosis Impact Scale (MSIS-29

    Directory of Open Access Journals (Sweden)

    Misajon Rose

    2009-06-01

    Full Text Available Abstract Background Multiple Sclerosis (MS is a degenerative neurological disease that causes impairments, including spasticity, pain, fatigue, and bladder dysfunction, which negatively impact on quality of life. The Multiple Sclerosis Impact Scale (MSIS-29 is a disease-specific health-related quality of life (HRQoL instrument, developed using the patient's perspective on disease impact. It consists of two subscales assessing the physical (MSIS-29-PHYS and psychological (MSIS-29-PSYCH impact of MS. Although previous studies have found support for the psychometric properties of the MSIS-29 using traditional methods of scale evaluation, the scale has not been subjected to a detailed Rasch analysis. Therefore, the objective of this study was to use Rasch analysis to assess the internal validity of the scale, and its response format, item fit, targeting, internal consistency and dimensionality. Methods Ninety-two persons with definite MS residing in the community were recruited from a tertiary hospital database. Patients completed the MSIS-29 as part of a larger study. Rasch analysis was undertaken to assess the psychometric properties of the MSIS-29. Results Rasch analysis showed overall support for the psychometric properties of the two MSIS-29 subscales, however it was necessary to reduce the response format of the MSIS-29-PHYS to a 3-point response scale. Both subscales were unidimensional, had good internal consistency, and were free from item bias for sex and age. Dimensionality testing indicated it was not appropriate to combine the two subscales to form a total MSIS score. Conclusion In this first study to use Rasch analysis to fully assess the psychometric properties of the MSIS-29 support was found for the two subscales but not for the use of the total scale. Further use of Rasch analysis on the MSIS-29 in larger and broader samples is recommended to confirm these findings.

  19. Rasch analysis of the Multiple Sclerosis Impact Scale (MSIS-29)

    Science.gov (United States)

    Ramp, Melina; Khan, Fary; Misajon, Rose Anne; Pallant, Julie F

    2009-01-01

    Background Multiple Sclerosis (MS) is a degenerative neurological disease that causes impairments, including spasticity, pain, fatigue, and bladder dysfunction, which negatively impact on quality of life. The Multiple Sclerosis Impact Scale (MSIS-29) is a disease-specific health-related quality of life (HRQoL) instrument, developed using the patient's perspective on disease impact. It consists of two subscales assessing the physical (MSIS-29-PHYS) and psychological (MSIS-29-PSYCH) impact of MS. Although previous studies have found support for the psychometric properties of the MSIS-29 using traditional methods of scale evaluation, the scale has not been subjected to a detailed Rasch analysis. Therefore, the objective of this study was to use Rasch analysis to assess the internal validity of the scale, and its response format, item fit, targeting, internal consistency and dimensionality. Methods Ninety-two persons with definite MS residing in the community were recruited from a tertiary hospital database. Patients completed the MSIS-29 as part of a larger study. Rasch analysis was undertaken to assess the psychometric properties of the MSIS-29. Results Rasch analysis showed overall support for the psychometric properties of the two MSIS-29 subscales, however it was necessary to reduce the response format of the MSIS-29-PHYS to a 3-point response scale. Both subscales were unidimensional, had good internal consistency, and were free from item bias for sex and age. Dimensionality testing indicated it was not appropriate to combine the two subscales to form a total MSIS score. Conclusion In this first study to use Rasch analysis to fully assess the psychometric properties of the MSIS-29 support was found for the two subscales but not for the use of the total scale. Further use of Rasch analysis on the MSIS-29 in larger and broader samples is recommended to confirm these findings. PMID:19545445

  20. Modeling and Control of a Large Nuclear Reactor A Three-Time-Scale Approach

    CERN Document Server

    Shimjith, S R; Bandyopadhyay, B

    2013-01-01

    Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property,...

  1. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  2. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks

    Directory of Open Access Journals (Sweden)

    Claudia eCasellato

    2015-02-01

    Full Text Available The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.

  3. Multi-scale simulations of droplets in generic time-dependent flows

    Science.gov (United States)

    Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.

  4. Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice

    Science.gov (United States)

    Kurkela, Aleksi; Lappi, Tuomas; Peuron, Jarkko

    2018-03-01

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Above the Debye scale the classical Yang-Mills (CYM) theory can be matched smoothly to kinetic theory. First we study the limits of the quasiparticle picture of the CYM fields by determining the plasmon mass of the system using 3 different methods. Then we argue that one needs a numerical calculation of a system of classical gauge fields and small linearized fluctuations, which correspond to quantum fluctuations, in a way that keeps the separation between the two manifest. We demonstrate and test an implementation of an algorithm with the linearized fluctuation showing that the linearization indeed works and that the Gauss's law is conserved.

  5. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    Science.gov (United States)

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Mouse Activity across Time Scales: Fractal Scenarios

    Science.gov (United States)

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  7. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  8. Recent developments in the theory of critical phenomena

    International Nuclear Information System (INIS)

    Schroer, B.

    1974-01-01

    The work of Kadanoff, Wilson and Wegner, in the language of Euclidian field theory, is revised. In addition to Wilson's renormalization group method, which is based on the idea of eliminating short range fluctuations, the renormalization method of quantum field theory is discussed, which, in the present context, is called reparametrization (in order to avoid confusion). A reparametrization which is of particular interest in the theory of critical phenomena is the one which leads to scaling equations. New scaling equations which remain free of infrared divergences in two and three dimensions, are derived. The method allows a rather compact and unified discussion of Kadanoff's scaling laws and the related concept of global scaling fields, as well as the scale invariant correlation functions [pt

  9. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  10. Auroral and sub-auroral phenomena: an electrostatic picture

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2010-02-01

    Full Text Available Many auroral and sub-auroral phenomena are manifestations of an underlying magnetosphere-ionosphere coupling. In the electrostatic perspective the associated auroral current circuit describes how the generator (often in the magnetosphere is connected to the load (often in the ionosphere through field-aligned currents. The present paper examines the generic properties of the current continuity equation that characterizes the auroral circuit. The physical role of the various elements of the current circuit is illustrated by considering a number of magnetospheric configurations, various auroral current-voltage relations, and different types of behaviour of the ionospheric conductivity. Based on realistic assumptions concerning the current-voltage relation and the ionospheric conductivity, a comprehensive picture of auroral and sub-auroral phenomena is presented, including diffuse aurora, discrete auroral arcs, black aurora, and subauroral ion drift. The electrostatic picture of field-aligned potential differences, field-aligned currents, ionospheric electric fields and plasma drift, and spatial scales for all these phenomena is in qualitative agreement with observations.

  11. Diagnosing the Atmospheric/Oceanic Phenomena Associated with the Onset, Demise and Mid-Summer Drought of the Rainy Season in Mesoamerica

    Science.gov (United States)

    Groenen, D.; Bourassa, M. A.

    2017-12-01

    The rainfall in Mesoamerica (Mexico and Central America) has influences from two bodies of water, interesting topography, and complex wind patterns, which complicates weather forecasting. Knowing the approximate onset and demise of the rainy season is critical for the optimal growth and development of key crops in this region such as coffee, bananas, rice, and maize. This study compares three methods to calculate the onset/demise dates of the individual years' rainy season, using area-averaged rainfall data (7-28 °N/77-109 °W) from two datasets. After these onset/demise dates are obtained using rainfall data, the atmospheric and oceanic phenomena associated with the timing is analyzed using MERRA-2 reanalysis data. The objective is to link the large-scale phenomena to the individual years' onset/demise dates, as well as link the weather phenomena to the interannual variability of the onset/demise dates. In addition, the broad scale rainy season will be connected with regional onset/demise dates on the scale of 400km. Linking the broad scale rainfall regimes to the regional regimes will allow a more cohesive view of the dynamics related to rainfall variability in the Mesoamerican region. A smoothing method will be used to analyze the timing and intensity of the mid-summer drought (MSD), a minimum in rainfall typically occurring during July and August. The goal of this research is to link the physical and dynamical mechanisms that cause the Mesoamerican rainy season and mid-summer drought (MSD) in order to better understand the predictability of Mesoamerican rainfall and ensure the health and safety of key crops.

  12. Soil moisture memory at sub-monthly time scales

    Science.gov (United States)

    Mccoll, K. A.; Entekhabi, D.

    2017-12-01

    For soil moisture-climate feedbacks to occur, the soil moisture storage must have `memory' of past atmospheric anomalies. Quantifying soil moisture memory is, therefore, essential for mapping and characterizing land-atmosphere interactions globally. Most previous studies estimate soil moisture memory using metrics based on the autocorrelation function of the soil moisture time series (e.g., the e-folding autocorrelation time scale). This approach was first justified by Delworth and Manabe (1988) on the assumption that monthly soil moisture time series can be modelled as red noise. While this is a reasonable model for monthly soil moisture averages, at sub-monthly scales, the model is insufficient due to the highly non-Gaussian behavior of the precipitation forcing. Recent studies have shown that significant soil moisture-climate feedbacks appear to occur at sub-monthly time scales. Therefore, alternative metrics are required for defining and estimating soil moisture memory at these shorter time scales. In this study, we introduce metrics, based on the positive and negative increments of the soil moisture time series, that can be used to estimate soil moisture memory at sub-monthly time scales. The positive increments metric corresponds to a rapid drainage time scale. The negative increments metric represents a slower drying time scale that is most relevant to the study of land-atmosphere interactions. We show that autocorrelation-based metrics mix the two time scales, confounding physical interpretation. The new metrics are used to estimate soil moisture memory at sub-monthly scales from in-situ and satellite observations of soil moisture. Reference: Delworth, Thomas L., and Syukuro Manabe. "The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate." Journal of Climate 1, no. 5 (May 1, 1988): 523-47. doi:10.1175/1520-0442(1988)0012.0.CO;2.

  13. Lead Selenide Nanostructures Self-Assembled across Multiple Length Scales and Dimensions

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2016-01-01

    Full Text Available A self-assembly approach to lead selenide (PbSe structures that have organized across multiple length scales and multiple dimensions has been achieved. These structures consist of angstrom-scale 0D PbSe crystals, synthesized via a hot solution process, which have stacked into 1D nanorods via aligned dipoles. These 1D nanorods have arranged into nanoscale 2D sheets via directional short-ranged attraction. The nanoscale 2D sheets then further aligned into larger 2D microscale planes. In this study, the authors have characterized the PbSe structures via normal and cryo-TEM and EDX showing that this multiscale multidimensional self-assembled alignment is not due to drying effects. These PbSe structures hold promise for applications in advanced materials—particularly electronic technologies, where alignment can aid in device performance.

  14. Applied measuring techniques for the investigation of time-dependent flow phenomena in centrifugal compressors

    International Nuclear Information System (INIS)

    Hass, U.; Haupt, U.; Jansen, M.; Kassens, K.; Knapp, P.; Rautenberg, M.

    1978-01-01

    During the past 10 years new measuring techniques have been developed for the experimental investigation of highly loaded centrifugal compressors. These measuring techniques take into account the time dependency of the fluctuating physical quantities such as pressure, temperature, and velocity. Some key points of these experimental techniques are shown and explained in this paper. An important basis for such measurements is the accurate dynamic calibration of the measuring apparatus. In addition, some problems involved analyzing measured signals are dealt with and pressure measurements and their interpretation are shown. Finally optical, acoustical and vibrational measuring procedures are described which are additionally used for the investigation of non-stationary flow phenomena. (orig.) [de

  15. Multiple scales and phases in discrete chains with application to folded proteins

    Science.gov (United States)

    Sinelnikova, A.; Niemi, A. J.; Nilsson, Johan; Ulybyshev, M.

    2018-05-01

    Chiral heteropolymers such as large globular proteins can simultaneously support multiple length scales. The interplay between the different scales brings about conformational diversity, determines the phase properties of the polymer chain, and governs the structure of the energy landscape. Most importantly, multiple scales produce complex dynamics that enable proteins to sustain live matter. However, at the moment there is incomplete understanding of how to identify and distinguish the various scales that determine the structure and dynamics of a complex protein. Here we address this impending problem. We develop a methodology with the potential to systematically identify different length scales, in the general case of a linear polymer chain. For this we introduce and analyze the properties of an order parameter that can both reveal the presence of different length scales and can also probe the phase structure. We first develop our concepts in the case of chiral homopolymers. We introduce a variant of Kadanoff's block-spin transformation to coarse grain piecewise linear chains, such as the C α backbone of a protein. We derive analytically, and then verify numerically, a number of properties that the order parameter can display, in the case of a chiral polymer chain. In particular, we propose that in the case of a chiral heteropolymer the order parameter can reveal traits of several different phases, contingent on the length scale at which it is scrutinized. We confirm that this is the case with crystallographic protein structures in the Protein Data Bank. Thus our results suggest relations between the scales, the phases, and the complexity of folding pathways.

  16. Long time scale hard X-ray variability in Seyfert 1 galaxies

    Science.gov (United States)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and

  17. Investigation of small break loss-of-coolant phenomena in a small scale nonnuclear test facility

    International Nuclear Information System (INIS)

    Cozzuol, J.M.; Fauble, T.J.; Harvego, E.A.

    1980-01-01

    A small-scale nonnuclear integral test facility designed to simulate a pressurized water reactor (PWR) system was used to evaluate the effects of a small break loss-of-coolant accident (LOCA) on the system thermal-hydraulic response. The experiment approximated a 2.5% (11-cm diameter) communicative break in the cold leg of a PWR, and included initial conditions which were similar to conditions in a PWR operating at full power. The 2.5% break size ensured that the nominal break flow rate was greater than the high pressure injection system (HPIS) flow rate, thus providing the potential for a continuous system depressurization. The sequence of events was similar to that used in evaluation model analysis of small break loss-of-coolant accidents, and included simulated reactor scram and loss of offsite power. Comparisions of experimental data with computer code calculations are used to demonstrate the capabilities and limitations of integral system calculations used to predict phenomena which can be important in the assessment of a small break LOCA in a PWR

  18. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  19. The Time Scale of Recombination Rate Evolution in Great Apes

    Science.gov (United States)

    Stevison, Laurie S.; Woerner, August E.; Kidd, Jeffrey M.; Kelley, Joanna L.; Veeramah, Krishna R.; McManus, Kimberly F.; Bustamante, Carlos D.; Hammer, Michael F.; Wall, Jeffrey D.

    2016-01-01

    Abstract We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471–475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10–15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives. PMID:26671457

  20. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    International Nuclear Information System (INIS)

    Soler, J.M.

    1999-09-01

    performance, in agreement with the previous estimates. Finally, the results of two- and three-dimensional simple flow models incorporating advection (Darcy's law) and thermal osmosis show that, under the conditions in the vicinity of the repository at the time scales of interest, the advective component of flow will oppose and cancel the thermal-osmotic component. After evaluating the different coupled transport mechanisms, the conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, at least under the conditions at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years). (author)

  1. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    Energy Technology Data Exchange (ETDEWEB)

    Soler, J.M.

    1999-09-01

    performance, in agreement with the previous estimates. Finally, the results of two- and three-dimensional simple flow models incorporating advection (Darcy's law) and thermal osmosis show that, under the conditions in the vicinity of the repository at the time scales of interest, the advective component of flow will oppose and cancel the thermal-osmotic component. After evaluating the different coupled transport mechanisms, the conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, at least under the conditions at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years). (author)

  2. Correlations in multiple production on nuclei and Glauber model of multiple scattering

    International Nuclear Information System (INIS)

    Zoller, V.R.; Nikolaev, N.N.

    1982-01-01

    Critical analysis of possibility for describing correlation phenomena during multiple production on nuclei within the framework of the Glauber multiple seattering model generalized for particle production processes with Capella, Krziwinski and Shabelsky has been performed. It was mainly concluded that the suggested generalization of the Glauber model gives dependences on Ng(Np) (where Ng-the number of ''grey'' tracess, and Np-the number of protons flying out of nucleus) and, eventually, on #betta# (where #betta#-the number of intranuclear interactions) contradicting experience. Independent of choice of relation between #betta# and Ng(Np) in the model the rapidity corrletor Rsub(eta) is overstated in the central region and understated in the region of nucleus fragmentation. In mean multiplicities these two contradictions of experience are disguised with random compensation and agreement with experience in Nsub(S) (function of Ng) cannot be an argument in favour of the model. It is concluded that eiconal model doesn't permit to quantitatively describe correlation phenomena during the multiple production on nuclei

  3. One-dimensional multiple-well oscillators: A time-dependent

    Indian Academy of Sciences (India)

    ... quantum mechanical multiple-well oscillators. An imaginary-time evolution technique, coupled with the minimization of energy expectation value to reach a global minimum, subject to orthogonality constraint (for excited states) has been employed. Pseudodegeneracy in symmetric, deep multiple-well potentials, probability ...

  4. Brain functional integration: an epidemiologic study on stress-producing dissociative phenomena

    Science.gov (United States)

    Messina, Giovanni; Carotenuto, Marco; Maldonato, Nelson Mauro; Moretto, Enrico; Leone, Elena; De Luca, Vincenzo; Monda, Marcellino; Messina, Antonietta

    2018-01-01

    Dissociative phenomena are common among psychiatric patients; the presence of these symptoms can worsen the prognosis, increasing the severity of their clinical conditions and exposing them to increased risk of suicidal behavior. Personality disorders as long duration stressful experiences may support the development of dissociative phenomena. In 933 psychiatric outpatients consecutively recruited, presence of dissociative phenomena was identified with the Dissociative Experience Scale (DES). Dissociative phenomena were significantly more severe in the group of people with mental disorders and/or personality disorders. All psychopathologic traits detected with the symptom checklist-90-revised had a significant correlation with the total score on the DES. Using total DES score as the dependent variable, a linear regression model was constructed. Mental and personality disorders which were associated with greater severity of dissociative phenomena on analysis of variance were included as predictors; scores from the nine scales of symptom checklist-90-revised, significantly correlated to total DES score, were used as covariates. The model consisted of seven explanatory variables (four factors and three covariates) explaining 82% of variance. The four significant factors were the presence of borderline and narcissistic personality disorder, substance abuse disorders and psychotic disorders. Significant covariates were psychopathologic traits of anger, psychoticism and obsessiveness. This study, confirming Janet’s theory, explains that, mental disorders and psychopathologic experiences of patients can configure the chronic stress condition that produces functional damage to the adaptive executive system. The symptoms of dissociative depersonalization/derealization and dissociative amnesia can be explained, in large part, through their current and previous psychopathologic experiences. PMID:29296086

  5. Measuring the impact of multiple sclerosis on psychosocial functioning: the development of a new self-efficacy scale.

    Science.gov (United States)

    Airlie, J; Baker, G A; Smith, S J; Young, C A

    2001-06-01

    To develop a scale to measure self-efficacy in neurologically impaired patients with multiple sclerosis and to assess the scale's psychometric properties. Cross-sectional questionnaire study in a clinical setting, the retest questionnaire returned by mail after completion at home. Regional multiple sclerosis (MS) outpatient clinic or the Clinical Trials Unit (CTU) at a large neuroscience centre in the UK. One hundred persons with MS attending the Walton Centre for Neurology and Neurosurgery and Clatterbridge Hospital, Wirral, as outpatients. Cognitively impaired patients were excluded at an initial clinic assessment. Patients were asked to provide demographic data and complete the self-efficacy scale along with the following validated scales: Hospital Anxiety and Depression Scale, Rosenberg Self-Esteem Scale, Impact, Stigma and Mastery and Rankin Scales. The Rankin Scale and Barthel Index were also assessed by the physician. A new 11-item self-efficacy scale was constructed consisting of two domains of control and personal agency. The validity of the scale was confirmed using Cronbach's alpha analysis of internal consistency (alpha = 0.81). The test-retest reliability of the scale over two weeks was acceptable with an intraclass correlation coefficient of 0.79. Construct validity was investigated using Pearson's product moment correlation coefficient resulting in significant correlations with depression (r= -0.52) anxiety (r =-0.50) and mastery (r= 0.73). Multiple regression analysis demonstrated that these factors accounted for 70% of the variance of scores on the self-efficacy scale, with scores on mastery, anxiety and perceived disability being independently significant. Assessment of the psychometric properties of this new self-efficacy scale suggest that it possesses good validity and reliability in patients with multiple sclerosis.

  6. Validity and Reliability of the Turkish Version of the Monitoring My Multiple Sclerosis Scale.

    Science.gov (United States)

    Polat, Cansu; Tülek, Zeliha; Kürtüncü, Murat; Eraksoy, Mefkure

    2017-06-01

    This research was conducted to adapt the Monitoring My Multiple Sclerosis (MMMS) scale, which is a scale used for self-evaluation by multiple sclerosis (MS) patients of their own health and quality of life, to Turkish and to determine the psychometric properties of the scale. The methodological research was conducted in the outpatient MS clinic of a university hospital between January and September 2013. The sample in this study consisted of 140 patients aged above 18 who had a diagnosis of definite MS. Patients who experienced attacks in the previous month or had any serious medical problems other than MS were not included in the group. The linguistic validity of MMMS was tested by a backward-forward translation method and an expert panel. Reliability analysis was performed using test-retest correlations, item-total correlations, and internal consistency analysis. Confirmatory factor analysis and concurrent validity were used to determine the construct validity. The Multiple Sclerosis Quality of Life-54 instrument was used to determine concurrent validity and the Expanded Disability Status Scale, Hospital Anxiety and Depression Scale, and Mini Mental State Examination were used for further determination of the construct validity. We determined that the scale consisted of four factors with loadings ranging from 0.49 to 0.79. The correlation coefficients of the scale were determined to be between 0.47 and 0.76 for item-total score and between 0.60 and 0.81 for items and subscale scores. Cronbach's alpha coefficient was determined to be 0.94 for the entire scale and between 0.64 and 0.89 for the subscales. Test-retest correlations were significant. Correlations between MMMS and other scales were also found to be significant. The Turkish MMMS provides adequate validity and reliability for assessing the impact of MS on quality of life and health status in patients.

  7. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines

    Science.gov (United States)

    Grant, Evan H. Campbell; Miller, David A. W.; Schmidt, Benedikt R.; Adams, Michael J.; Amburgey, Staci M.; Chambert, Thierry A.; Cruickshank, Sam S.; Fisher, Robert N.; Green, David M.; Hossack, Blake R.; Johnson, Pieter T.J.; Joseph, Maxwell B.; Rittenhouse, Tracy A. G.; Ryan, Maureen E.; Waddle, J. Hardin; Walls, Susan C.; Bailey, Larissa L.; Fellers, Gary M.; Gorman, Thomas A.; Ray, Andrew M.; Pilliod, David S.; Price, Steven J.; Saenz, Daniel; Sadinski, Walt; Muths, Erin L.

    2016-01-01

    Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a “smoking gun” was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed.

  8. Analysis of graphic representation ability in oscillation phenomena

    Science.gov (United States)

    Dewi, A. R. C.; Putra, N. M. D.; Susilo

    2018-03-01

    This study aims to investigates how the ability of students to representation graphs of linear function and harmonic function in understanding of oscillation phenomena. Method of this research used mix methods with concurrent embedded design. The subjects were 35 students of class X MIA 3 SMA 1 Bae Kudus. Data collection through giving essays and interviews that lead to the ability to read and draw graphs in material of Hooke's law and oscillation characteristics. The results of study showed that most of the students had difficulty in drawing graph of linear function and harmonic function of deviation with time. Students’ difficulties in drawing the graph of linear function is the difficulty of analyzing the variable data needed in graph making, confusing the placement of variable data on the coordinate axis, the difficulty of determining the scale interval on each coordinate, and the variation of how to connect the dots forming the graph. Students’ difficulties in representing the graph of harmonic function is to determine the time interval of sine harmonic function, the difficulty to determine the initial deviation point of the drawing, the difficulty of finding the deviation equation of the case of oscillation characteristics and the confusion to different among the maximum deviation (amplitude) with the length of the spring caused the load.Complexity of the characteristic attributes of the oscillation phenomena graphs, students tend to show less well the ability of graphical representation of harmonic functions than the performance of the graphical representation of linear functions.

  9. Atomistic simulations of materials: Methods for accurate potentials and realistic time scales

    Science.gov (United States)

    Tiwary, Pratyush

    This thesis deals with achieving more realistic atomistic simulations of materials, by developing accurate and robust force-fields, and algorithms for practical time scales. I develop a formalism for generating interatomic potentials for simulating atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects to high-energy collisions. This is done by fitting against an extensive database of ab initio results, as well as to experimental measurements for mixed oxide nuclear fuels. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies. A hybrid stochastic and deterministic algorithm is proposed that while maintaining fully atomistic resolution, allows one to achieve milliseconds and longer time scales for several thousands of atoms. The method exploits the rare event nature of the dynamics like other such methods, but goes beyond them by (i) not having to pick a scheme for biasing the energy landscape, (ii) providing control on the accuracy of the boosted time scale, (iii) not assuming any harmonic transition state theory (HTST), and (iv) not having to identify collective coordinates or interesting degrees of freedom. The method is validated by calculating diffusion constants for vacancy-mediated diffusion in iron metal at low temperatures, and comparing against brute-force high temperature molecular dynamics. We also calculate diffusion constants for vacancy diffusion in tantalum metal, where we compare against low-temperature HTST as well

  10. Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice

    Directory of Open Access Journals (Sweden)

    Kurkela Aleksi

    2018-01-01

    Full Text Available Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Above the Debye scale the classical Yang-Mills (CYM theory can be matched smoothly to kinetic theory. First we study the limits of the quasiparticle picture of the CYM fields by determining the plasmon mass of the system using 3 different methods. Then we argue that one needs a numerical calculation of a system of classical gauge fields and small linearized fluctuations, which correspond to quantum fluctuations, in a way that keeps the separation between the two manifest. We demonstrate and test an implementation of an algorithm with the linearized fluctuation showing that the linearization indeed works and that the Gauss’s law is conserved.

  11. Ancient Chinese observations of physical phenomena attending solar eclipses

    International Nuclear Information System (INIS)

    Wang, P.K.; Siscoe, G.L.

    1980-01-01

    The realization that solar activity probably undergoes changes in qualitative character on time scales greater than the 11 or 22 year cycle but short compared to the duration of recorded history gives renewed importance to historical documents describing the state of solar activity. Modern eclipse observation reveal the presence of solar acitivity through the appearance of coronal structures and prominences. It has been widely remarked that eclipse records prior to the 18th century are uniformly silent on these conspicuous solar eclipse features, raising the possibility, however unlikely, that a change in solar activity has occurred which rendered them only recently noticeable. We present here material from ancient Chinese sources, primarily astrological, that describe phenomena attending solar eclipses that are almost certainly coronal structures and prominences. Thus, these aspects of the present character of solar activity have apparently occurred at other times in history, if not continuously. (orig.)

  12. Multiple Shooting and Time Domain Decomposition Methods

    CERN Document Server

    Geiger, Michael; Körkel, Stefan; Rannacher, Rolf

    2015-01-01

    This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms.  The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics.  This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied...

  13. Generalized z-scaling and pp collisions at RHIC

    International Nuclear Information System (INIS)

    Tokarev, Mikhail; Zborovsky, Imrich

    2007-01-01

    New generalization of the z-scaling in inclusive particle production is proposed. The scaling variable z is expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. Explicit dependence of z on the momentum fractions y a and y b of the scattered and recoil constituents carried by the inclusive particle and recoil object is included. The scaling function Ψ (z) for charged and identified hadrons produced in proton-proton collisions is constructed. The scheme allows unique description of data on inclusive cross sections of charged hadrons, pions, kaons, antiprotons and lambdas produced at RHIC energies. The obtained results suggest that the z-scaling may be used as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at proton-proton colliders RHIC and LHC. (author)

  14. Addressing the scaling issue by thermalhydraulic system codes: recent results

    International Nuclear Information System (INIS)

    D'auria, F.; Cherubini, M.; Galassi, G.M.; Muellner, N. . E-mail of corresponding author: dauria@ing.unipi.it; D'auria, F.)

    2005-01-01

    This lecture presents an introduction into the scaling issue following a 'top-down' approach. This means, recent studies which deal with a scaling analysis in LWR with special regards to the WWER Russian reactor type are presented to demonstrate important phenomena for scaling, to be more precise, the counterpart test (CT) methodology. As an example, one CT, a Small Break LOCA carried out in the PSB facility, is presented. PSB is a full height, full pressure rig that reproduces a WWER 1000, power and volume scaling factor is 1:300. The CT has been designed deriving boundary and initial condition from the same test performed in LOBI (that reproduces a PWR). The adopted scaling approach is based on the selection of a few characteristic parameters. They are chosen taking into account their relevance in the behaviour of the transient. The calculation of the SBLOCA has been performed using Relap5/Mod3.3 computer code and its accuracy has been demonstrated by qualitative and quantitative evaluation. For the quantitative evaluation the use of the FFT Based Method is foreseen and the fulfilment of its limits has been obtained. The aim of the example is to give an overview about the theoretical concepts of scaling, which is termed the s caling strategy , and comprises the steps of the selected scaling approach. At the same time interesting results from ongoing research projects will be presented. Comparing experimental data it was found that the investigated facilities show similar behaviour concerning the time trends, and are able to predict on a qualitative level the same thermal hydraulic phenomena. Main obtained results are summarized as follows: PSB and LOBI main parameters have similar trends. This is a confirmation of the validity of the adopted scaling approach and shows that PWR and WWER reactor type behaviour are very close to each other. No new phenomena occur during the CT, notwithstanding the two facilities have a different lay out, and the already known

  15. Neutron multiplicities as a measure for scission time scales and reaction violences

    International Nuclear Information System (INIS)

    Knoche, K.; Scobel, W.; Sprute, L.

    1991-01-01

    We discuss the temporal evolution of the fusion-fission reactions 32 S + 197 Au, 232 Th measured for 838 MeV projectiles by means of the neutron clock method. The results confirm existent precision lifetime versus fissility data. The total neutron multiplicity as a measure of the initial excitation energy E * is compared with the folding angle method. (author). 13 refs, 8 figs

  16. Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots

    KAUST Repository

    El-Ballouli, Ala’a O.

    2014-03-19

    We examine ultrafast intraconduction band relaxation and multiple-exciton generation (MEG) in PbS quantum dots (QDs) using transient absorption spectroscopy with 120 fs temporal resolution. The intraconduction band relaxation can be directly and excellently resolved spectrally and temporally by applying broadband pump-probe spectroscopy to excite and detect the wavelengths around the exciton absorption peak, which is located in the near-infrared region. The time-resolved data unambiguously demonstrate that the intraband relaxation time progressively increases as the pump-photon energy increases. Moreover, the relaxation time becomes much shorter as the size of the QDs decreases, indicating the crucial role of spatial confinement in the intraband relaxation process. Additionally, our results reveal the systematic scaling of the intraband relaxation time with both excess energy above the effective energy band gap and QD size. We also assess MEG in different sizes of the QDs. Under the condition of high-energy photon excitation, which is well above the MEG energy threshold, ultrafast bleach recovery due to the nonradiative Auger recombination of the multiple electron-hole pairs provides conclusive experimental evidence for the presence of MEG. For instance, we achieved quantum efficiencies of 159, 129 and 106% per single-absorbed photon at pump photoexcition of three times the band gap for QDs with band gaps of 880 nm (1.41 eV), 1000 nm (1.24 eV) and 1210 nm (1.0 eV), respectively. These findings demonstrate clearly that the efficiency of transferring excess photon energy to carrier multiplication is significantly increased in smaller QDs compared with larger ones. Finally, we discuss the Auger recombination dynamics of the multiple electron-hole pairs as a function of QD size.

  17. Characterizing interdependencies of multiple time series theory and applications

    CERN Document Server

    Hosoya, Yuzo; Takimoto, Taro; Kinoshita, Ryo

    2017-01-01

    This book introduces academic researchers and professionals to the basic concepts and methods for characterizing interdependencies of multiple time series in the frequency domain. Detecting causal directions between a pair of time series and the extent of their effects, as well as testing the non existence of a feedback relation between them, have constituted major focal points in multiple time series analysis since Granger introduced the celebrated definition of causality in view of prediction improvement. Causality analysis has since been widely applied in many disciplines. Although most analyses are conducted from the perspective of the time domain, a frequency domain method introduced in this book sheds new light on another aspect that disentangles the interdependencies between multiple time series in terms of long-term or short-term effects, quantitatively characterizing them. The frequency domain method includes the Granger noncausality test as a special case. Chapters 2 and 3 of the book introduce an i...

  18. Some nonlinear dynamic inequalities on time scales

    Indian Academy of Sciences (India)

    In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous and discrete analysis. Since then many authors have expounded on various aspects of the theory of dynamic equations on time scales. Recently, there has been much research activity concerning the new theory. For example, we ...

  19. Karhunen-Loève (PCA) based detection of multiple oscillations in multiple measurement signals from large-scale process plants

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    2007-01-01

     In the perspective of optimizing the control and operation of large scale process plants, it is important to detect and to locate oscillations in the plants. This paper presents a scheme for detecting and localizing multiple oscillations in multiple measurements from such a large-scale power plant....... The scheme is based on a Karhunen-Lo\\`{e}ve analysis of the data from the plant. The proposed scheme is subsequently tested on two sets of data: a set of synthetic data and a set of data from a coal-fired power plant. In both cases the scheme detects the beginning of the oscillation within only a few samples....... In addition the oscillation localization has also shown its potential by localizing the oscillations in both data sets....

  20. Slow speed—fast motion: time-lapse recordings in physics education

    Science.gov (United States)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2018-05-01

    Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s-1, allowing us to study transient physics phenomena happening too fast for the naked eye. Here we want to extend the range of phenomena which may be studied by video analysis in the opposite direction by focusing on much longer time scales ranging from minutes, hours to many days or even months. We discuss this time-lapse method, needed equipment and give a few hints of how to produce respective recordings for two specific experiments.

  1. Almost Automorphic Functions on the Quantum Time Scale and Applications

    Directory of Open Access Journals (Sweden)

    Yongkun Li

    2017-01-01

    Full Text Available We first propose two types of concepts of almost automorphic functions on the quantum time scale. Secondly, we study some basic properties of almost automorphic functions on the quantum time scale. Then, we introduce a transformation between functions defined on the quantum time scale and functions defined on the set of generalized integer numbers; by using this transformation we give equivalent definitions of almost automorphic functions on the quantum time scale; following the idea of the transformation, we also give a concept of almost automorphic functions on more general time scales that can unify the concepts of almost automorphic functions on almost periodic time scales and on the quantum time scale. Finally, as an application of our results, we establish the existence of almost automorphic solutions of linear and semilinear dynamic equations on the quantum time scale.

  2. Novel scaling of the multiplicity distributions in the sequential fragmentation process and in the percolation

    International Nuclear Information System (INIS)

    Botet, R.

    1996-01-01

    A novel scaling of the multiplicity distributions is found in the shattering phase of the sequential fragmentation process with inhibition. The same scaling law is shown to hold in the percolation process. (author)

  3. Classification of Farmland Landscape Structure in Multiple Scales

    Science.gov (United States)

    Jiang, P.; Cheng, Q.; Li, M.

    2017-12-01

    Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.

  4. Preface to special issue: Layered Phenomena in the Mesopause Region

    Science.gov (United States)

    Chu, Xinzhao; Marsh, Daniel R.

    2017-09-01

    Historically, the Layered Phenomena in the Mesopause Region (LPMR) workshops have focused on studies of mesospheric clouds and their related science, including spectacular noctilucent clouds (NLCs), polar mesospheric clouds (PMCs), and polar mesospheric summer echoes (PMSEs). This is because, in the pre-technology era, these high-altitude ( 85 km) clouds revealed the existence of substance above the 'normal atmosphere' - our near-space environment is not empty! The occurrence and nature of these clouds have commanded the attention of atmospheric and space scientists for generations. Modern technologies developed in the last 50 years have enabled scientists to significantly advance our understanding of these layered phenomena. Satellite observations expanded these studies to global scales, while lidar and radar observations from the ground enabled fine-scale studies. The launch of the Aeronomy of Ice in the Mesosphere (AIM) satellite in 2007 brought mesospheric cloud research to a more mature level.

  5. A laboratory scale fundamental time?

    International Nuclear Information System (INIS)

    Mendes, R.V.

    2012-01-01

    The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)

  6. Depersonalisation and schizophrenia: Comparative study of initial and multiple episodes of schizophrenia.

    Science.gov (United States)

    Luque-Luque, Rogelio; Chauca-Chauca, Geli Marie; Alonso-Lobato, Pablo; Jaen-Moreno, M Jose

    2016-01-01

    The phenomena of depersonalisation/derealisation have classically been associated with the initial phases of psychosis, and it is assumed that they would precede (even by years) the onset of clinical psychosis, being much more common in the prodromal and acute phases of the illness. The aims of the present study are to analyse the differences in depersonalisation/derealisation between patients with initial and multiple episodes and the factors that could influence this. A descriptive, controlled and cross-sectional study of 48 patients diagnosed with paranoid schizophrenia (20 with an initial episode and 28 with multiple episodes). These patients were assessed using scales such as the Cambridge Depersonalization Scale, the Positive and Negative Symptom Scale, and the Dissociative Experiences Scale. Participants with initial episodes score higher on both the Cambridge Depersonalisation Scale, and the subscale of the Dissociative Experiences Scale that evaluates such experiences. There were no associations between these types of experience and the positive symptoms subscale of the Positive and Negative Symptom Scale. Depersonalisation/derealisation experiences appear with greater frequency, duration and intensity in patients in the early stages of the illnesses, gradually decreasing as they become chronic. Copyright © 2016 SEP y SEPB. Published by Elsevier España. All rights reserved.

  7. Multi-scale Modeling of Dendritic Alloy Solidification

    OpenAIRE

    Dagner, Johannes

    2009-01-01

    Solidification of metallic melts is one of the most important processes in material science. The microstructure, which is formed during freezing, determines the mechanical properties of the final product largely. Many physical phenomena influence the solidification process and hence the resulting microstructure. One important parameter is influence of melt flow, which may modify heat and species transport on a large range of length- and time-scales. On the micro-scale, it influences the conce...

  8. Research on evaluation of coupled thermo-hydro-mechanical phenomena in the near-field

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Imai, Hisashi; Fukutome, Kazuhito; Kayukawa, Koji; Sasaki, Hajime; Moro, Yoshiji

    2004-02-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against EXperiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. We carried out the simulation against the Task 1 (simulation of FEBEX in-situ full-scale experiment), Task 3 BMT1 (Bench Mark Test against the near field coupling phenomena) and Task 3 BMT2 (Bench Mark Test against the up-scaling of fractured rock mass). This report shows the simulation results against these tasks. Furthermore, technical investigations about the in-situ full-scale experiment (called Prototype Repository Project) in Aespoe HRL facility by SKB of Sweden were performed. In order to evaluate the coupled phenomena in the engineered barrier, we use the new swelling model based on the theoretical approach. In this paper, we introduce the modeling approach and applicability about the new model. (author)

  9. Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

    International Nuclear Information System (INIS)

    Allen, M.D.; Pilch, M.M.; Blanchat, T.K.; Griffith, R.O.; Nichols, R.T.

    1994-05-01

    The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report

  10. Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M.D.; Pilch, M.M.; Blanchat, T.K.; Griffith, R.O. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.T. [Ktech Corp., Albuquerque, NM (United States)

    1994-05-01

    The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report.

  11. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow

    Science.gov (United States)

    Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan

    2018-03-01

    An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.

  12. A Timing-Driven Partitioning System for Multiple FPGAs

    Directory of Open Access Journals (Sweden)

    Kalapi Roy

    1996-01-01

    Full Text Available Field-programmable systems with multiple FPGAs on a PCB or an MCM are being used by system designers when a single FPGA is not sufficient. We address the problem of partitioning a large technology mapped FPGA circuit onto multiple FPGA devices of a specific target technology. The physical characteristics of the multiple FPGA system (MFS pose additional constraints to the circuit partitioning algorithms: the capacity of each FPGA, the timing constraints, the number of I/Os per FPGA, and the pre-designed interconnection patterns of each FPGA and the package. Existing partitioning techniques which minimize just the cut sizes of partitions fail to satisfy the above challenges. We therefore present a timing driven N-way partitioning algorithm based on simulated annealing for technology-mapped FPGA circuits. The signal path delays are estimated during partitioning using a timing model specific to a multiple FPGA architecture. The model combines all possible delay factors in a system with multiple FPGA chips of a target technology. Furthermore, we have incorporated a new dynamic net-weighting scheme to minimize the number of pin-outs for each chip. Finally, we have developed a graph-based global router for pin assignment which can handle the pre-routed connections of our MFS structure. In order to reduce the time spent in the simulated annealing phase of the partitioner, clusters of circuit components are identified by a new linear-time bottom-up clustering algorithm. The annealing-based N-way partitioner executes four times faster using the clusters as opposed to a flat netlist with improved partitioning results. For several industrial circuits, our approach outperforms the recursive min-cut bi-partitioning algorithm by 35% in terms of nets cut. Our approach also outperforms an industrial FPGA partitioner by 73% on average in terms of unroutable nets. Using the performance optimization capabilities in our approach we have successfully partitioned the

  13. Search for new phenomena in a lepton plus high jet multiplicity final state with the ATLAS experiment using $\\sqrt{s}$ = 13 TeV proton-proton collision data

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagnaia, Paolo; Bahmani, Marzieh; Bahrasemani, Sina; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Beck, Helge Christoph; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrá, Sonia; Carrillo-Montoya, German D; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'eramo, Louis; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Daneri, Maria Florencia; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernst, Michael; Errede, Steven; Escalier, Marc; Escobar, Carlos; Esposito, Bellisario; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Förster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; García Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Geß{}ner, Gregor; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herr, Holger; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higón-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kendrick, James; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jesse Kar Kee; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loesle, Alena; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Mateos, David; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McPherson, Robert; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meier, Karlheinz; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'connor, Kelsey; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearson, Benjamin; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Poulard, Gilbert; Poulsen, Trine; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rangel-Smith, Camila; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherafati, Nima; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Søgaard, Andreas; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Sopczak, Andre; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, D M S; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valentinetti, Sara; Valero, Alberto; Valéry, Lo\\"ic; Valkar, Stefan; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wagner-Kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Qing; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Lailin; Xu, Tairan; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamatani, Masahiro; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Yu, Jaehoon; Yu, Jie; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zemaityte, Gabija; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2017-09-19

    A search for new phenomena in final states characterized by high jet multiplicity, an isolated lepton (electron or muon) and either zero or at least three b-tagged jets is presented. The search uses 36.1 fb$^{-1}$ of $\\sqrt{s}$ = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider in 2015 and 2016. The dominant sources of background are estimated using parameterized extrapolations, based on observables at medium jet multiplicity, to predict the b-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits are extracted constraining four simplified models of R-parity-violating supersymmetry that feature either gluino or top-squark pair production. The exclusion limits reach as high as 2.1 TeV in gluino mass and 1.2 TeV in top-squark mass in the models considered. In addition, an upper limit is set on the cross-section for Standar...

  14. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    Science.gov (United States)

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  15. Multivariable dynamic calculus on time scales

    CERN Document Server

    Bohner, Martin

    2016-01-01

    This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.

  16. Scaling properties of Polish rain series

    Science.gov (United States)

    Licznar, P.

    2009-04-01

    Scaling properties as well as multifractal nature of precipitation time series have not been studied for local Polish conditions until recently due to lack of long series of high-resolution data. The first Polish study of precipitation time series scaling phenomena was made on the base of pluviograph data from the Wroclaw University of Environmental and Life Sciences meteorological station located at the south-western part of the country. The 38 annual rainfall records from years 1962-2004 were converted into digital format and transformed into a standard format of 5-minute time series. The scaling properties and multifractal character of this material were studied by means of several different techniques: power spectral density analysis, functional box-counting, probability distribution/multiple scaling and trace moment methods. The result proved the general scaling character of time series at the range of time scales ranging form 5 minutes up to at least 24 hours. At the same time some characteristic breaks at scaling behavior were recognized. It is believed that the breaks were artificial and arising from the pluviograph rain gauge measuring precision limitations. Especially strong limitations at the precision of low-intensity precipitations recording by pluviograph rain gauge were found to be the main reason for artificial break at energy spectra, as was reported by other authors before. The analysis of co-dimension and moments scaling functions showed the signs of the first-order multifractal phase transition. Such behavior is typical for dressed multifractal processes that are observed by spatial or temporal averaging on scales larger than the inner-scale of those processes. The fractal dimension of rainfall process support derived from codimension and moments scaling functions geometry analysis was found to be 0.45. The same fractal dimension estimated by means of the functional box-counting method was equal to 0.58. At the final part of the study

  17. Numerical simulation of severe convective phenomena over Croatian and Hungarian territory

    Science.gov (United States)

    Mahović, Nataša Strelec; Horvath, Akos; Csirmaz, Kalman

    2007-02-01

    Squall lines and supercells cause severe weather and huge damages in the territory of Croatia and Hungary. These long living events can be recognised by radar very well, but the problem of early warning, especially successful numerical forecast of these phenomena, has not yet been solved in this region. Two case studies are presented here in which dynamical modelling approach gives promising results: a squall line preceding a cold front and a single supercell generated because of a prefrontal instability. The numerical simulation is performed using the PSU/NCAR meso-scale model MM5, with horizontal resolution of 3 km. Lateral boundary conditions are taken from the ECMWF model. The moist processes are resolved by Reisner mixed-phase explicit moisture scheme and for the radiation scheme a rapid radiative transfer model is applied. The analysis nudging technique is applied for the first two hours of the model run. The results of the simulation are very promising. The MM5 model reconstructed the appearance of the convective phenomena and showed the development of thunderstorm into the supercell phase. The model results give very detailed insight into wind changes showing the rotation of supercells, clearly distinguish warm core of the cell and give rather good precipitation estimate. The successful simulation of convective phenomena by a high-resolution MM5 model showed that even smaller scale conditions are contained in synoptic scale patterns, represented in this case by the ECMWF model.

  18. Liquidity crises on different time scales

    Science.gov (United States)

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  19. Relativity theory and time perception: single or multiple clocks?

    Science.gov (United States)

    Buhusi, Catalin V; Meck, Warren H

    2009-07-22

    Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  20. Relativity theory and time perception: single or multiple clocks?

    Directory of Open Access Journals (Sweden)

    Catalin V Buhusi

    2009-07-01

    Full Text Available Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock.Rats were trained to time three durations (e.g., 10, 30, and 90 s. When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results.These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  1. The phenomena of Pine's "four psychologies": their contrast and interplay as exhibited in the Beatles' "white album".

    Science.gov (United States)

    Brog, M A

    1995-01-01

    Psychoanalytically informed clinicians are frequently challenged with recognizing and integrating into their work the diverse phenomena central to differing psychoanalytic theoretical frameworks. In addressing this dilemma, Pine has formulated a "multiple model" that recognizes the qualitatively different psychological phenomena and the distinct motivational forces emphasized by what he calls "the four psychologies of psychoanalysis," the psychologies of drive, ego, object relations and self. This model makes it possible to describe individual personality organizations in terms of psychological hierarchies of the phenomena of the four psychologies. Use of this model promotes a particular kind of listening stance that facilitates recognition and use of a wide variety of clinical data. The usefulness of this model is demonstrated through its application to a creative work, the Beatles' "White Album." This application shows the utility of Pine's psychological hierarchies in describing differing personality organizations, the "multiple functions" mental events can represent through serving the motives of multiple psychologies, and the frequent interactions that occur between the differing psychological phenomena. Pine's model facilitates a recognition that an important quality found in works by the Beatles is their demonstration in strikingly clear form, of the qualitatively different aspects of human experience emphasized by the four psychologies. The accessibility of Beatles music makes it a potentially valuable teaching tool for demonstrating Pine's model.

  2. Time scale algorithm: Definition of ensemble time and possible uses of the Kalman filter

    Science.gov (United States)

    Tavella, Patrizia; Thomas, Claudine

    1990-01-01

    The comparative study of two time scale algorithms, devised to satisfy different but related requirements, is presented. They are ALGOS(BIPM), producing the international reference TAI at the Bureau International des Poids et Mesures, and AT1(NIST), generating the real-time time scale AT1 at the National Institute of Standards and Technology. In each case, the time scale is a weighted average of clock readings, but the weight determination and the frequency prediction are different because they are adapted to different purposes. The possibility of using a mathematical tool, such as the Kalman filter, together with the definition of the time scale as a weighted average, is also analyzed. Results obtained by simulation are presented.

  3. Hierarchical Parallel Matrix Multiplication on Large-Scale Distributed Memory Platforms

    KAUST Repository

    Quintin, Jean-Noel

    2013-10-01

    Matrix multiplication is a very important computation kernel both in its own right as a building block of many scientific applications and as a popular representative for other scientific applications. Cannon\\'s algorithm which dates back to 1969 was the first efficient algorithm for parallel matrix multiplication providing theoretically optimal communication cost. However this algorithm requires a square number of processors. In the mid-1990s, the SUMMA algorithm was introduced. SUMMA overcomes the shortcomings of Cannon\\'s algorithm as it can be used on a nonsquare number of processors as well. Since then the number of processors in HPC platforms has increased by two orders of magnitude making the contribution of communication in the overall execution time more significant. Therefore, the state of the art parallel matrix multiplication algorithms should be revisited to reduce the communication cost further. This paper introduces a new parallel matrix multiplication algorithm, Hierarchical SUMMA (HSUMMA), which is a redesign of SUMMA. Our algorithm reduces the communication cost of SUMMA by introducing a two-level virtual hierarchy into the two-dimensional arrangement of processors. Experiments on an IBM BlueGene/P demonstrate the reduction of communication cost up to 2.08 times on 2048 cores and up to 5.89 times on 16384 cores. © 2013 IEEE.

  4. Hierarchical Parallel Matrix Multiplication on Large-Scale Distributed Memory Platforms

    KAUST Repository

    Quintin, Jean-Noel; Hasanov, Khalid; Lastovetsky, Alexey

    2013-01-01

    Matrix multiplication is a very important computation kernel both in its own right as a building block of many scientific applications and as a popular representative for other scientific applications. Cannon's algorithm which dates back to 1969 was the first efficient algorithm for parallel matrix multiplication providing theoretically optimal communication cost. However this algorithm requires a square number of processors. In the mid-1990s, the SUMMA algorithm was introduced. SUMMA overcomes the shortcomings of Cannon's algorithm as it can be used on a nonsquare number of processors as well. Since then the number of processors in HPC platforms has increased by two orders of magnitude making the contribution of communication in the overall execution time more significant. Therefore, the state of the art parallel matrix multiplication algorithms should be revisited to reduce the communication cost further. This paper introduces a new parallel matrix multiplication algorithm, Hierarchical SUMMA (HSUMMA), which is a redesign of SUMMA. Our algorithm reduces the communication cost of SUMMA by introducing a two-level virtual hierarchy into the two-dimensional arrangement of processors. Experiments on an IBM BlueGene/P demonstrate the reduction of communication cost up to 2.08 times on 2048 cores and up to 5.89 times on 16384 cores. © 2013 IEEE.

  5. On fractal space-time and fractional calculus

    Directory of Open Access Journals (Sweden)

    Hu Yue

    2016-01-01

    Full Text Available This paper gives an explanation of fractional calculus in fractal space-time. On observable scales, continuum models can be used, however, when the scale tends to a smaller threshold, a fractional model has to be adopted to describe phenomena in micro/nano structure. A time-fractional Fornberg-Whitham equation is used as an example to elucidate the physical meaning of the fractional order, and its solution process is given by the fractional complex transform.

  6. Multiple Time-Instances Features of Degraded Speech for Single Ended Quality Measurement

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Dubey

    2017-01-01

    Full Text Available The use of single time-instance features, where entire speech utterance is used for feature computation, is not accurate and adequate in capturing the time localized information of short-time transient distortions and their distinction from plosive sounds of speech, particularly degraded by impulsive noise. Hence, the importance of estimating features at multiple time-instances is sought. In this, only active speech segments of degraded speech are used for features computation at multiple time-instances on per frame basis. Here, active speech means both voiced and unvoiced frames except silence. The features of different combinations of multiple contiguous active speech segments are computed and called multiple time-instances features. The joint GMM training has been done using these features along with the subjective MOS of the corresponding speech utterance to obtain the parameters of GMM. These parameters of GMM and multiple time-instances features of test speech are used to compute the objective MOS values of different combinations of multiple contiguous active speech segments. The overall objective MOS of the test speech utterance is obtained by assigning equal weight to the objective MOS values of the different combinations of multiple contiguous active speech segments. This algorithm outperforms the Recommendation ITU-T P.563 and recently published algorithms.

  7. Small-scale fluctuations in the microwave background radiation and multiple gravitational lensing

    International Nuclear Information System (INIS)

    Kashlinsky, A.

    1988-01-01

    It is shown that multiple gravitational lensing of the microwave background radiation (MBR) by static compact objects significantly attenuates small-scale fluctuations in the MBR. Gravitational lensing, by altering trajectories of MBR photons reaching an observer, leads to (phase) mixing of photons from regions with different initial fluctuations. As a result of this diffusion process the original fluctuations are damped on scales up to several arcmin. An equation that describes this process and its general solution are given. It is concluded that the present upper limits on the amplitude of the MBR fluctuations on small scales cannot constrain theories of galaxy formation. 25 references

  8. Receptivity to Kinetic Fluctuations: A Multiple Scales Approach

    Science.gov (United States)

    Edwards, Luke; Tumin, Anatoli

    2017-11-01

    The receptivity of high-speed compressible boundary layers to kinetic fluctuations (KF) is considered within the framework of fluctuating hydrodynamics. The formulation is based on the idea that KF-induced dissipative fluxes may lead to the generation of unstable modes in the boundary layer. Fedorov and Tumin solved the receptivity problem using an asymptotic matching approach which utilized a resonant inner solution in the vicinity of the generation point of the second Mack mode. Here we take a slightly more general approach based on a multiple scales WKB ansatz which requires fewer assumptions about the behavior of the stability spectrum. The approach is modeled after the one taken by Luchini to study low speed incompressible boundary layers over a swept wing. The new framework is used to study examples of high-enthalpy, flat plate boundary layers whose spectra exhibit nuanced behavior near the generation point, such as first mode instabilities and near-neutral evolution over moderate length scales. The configurations considered exhibit supersonic unstable second Mack modes despite the temperature ratio Tw /Te > 1 , contrary to prior expectations. Supported by AFOSR and ONR.

  9. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales.

    Directory of Open Access Journals (Sweden)

    Sarah C Avitabile

    Full Text Available Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter. Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood, they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales.

  10. Optimizing multiple reliable forward contracts for reservoir allocation using multitime scale streamflow forecasts

    Science.gov (United States)

    Lu, Mengqian; Lall, Upmanu; Robertson, Andrew W.; Cook, Edward

    2017-03-01

    Streamflow forecasts at multiple time scales provide a new opportunity for reservoir management to address competing objectives. Market instruments such as forward contracts with specified reliability are considered as a tool that may help address the perceived risk associated with the use of such forecasts in lieu of traditional operation and allocation strategies. A water allocation process that enables multiple contracts for water supply and hydropower production with different durations, while maintaining a prescribed level of flood risk reduction, is presented. The allocation process is supported by an optimization model that considers multitime scale ensemble forecasts of monthly streamflow and flood volume over the upcoming season and year, the desired reliability and pricing of proposed contracts for hydropower and water supply. It solves for the size of contracts at each reliability level that can be allocated for each future period, while meeting target end of period reservoir storage with a prescribed reliability. The contracts may be insurable, given that their reliability is verified through retrospective modeling. The process can allow reservoir operators to overcome their concerns as to the appropriate skill of probabilistic forecasts, while providing water users with short-term and long-term guarantees as to how much water or energy they may be allocated. An application of the optimization model to the Bhakra Dam, India, provides an illustration of the process. The issues of forecast skill and contract performance are examined. A field engagement of the idea is useful to develop a real-world perspective and needs a suitable institutional environment.

  11. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1989-01-01

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  12. Phase Plane Analysis Method of Nonlinear Traffic Phenomena

    Directory of Open Access Journals (Sweden)

    Wenhuan Ai

    2015-01-01

    Full Text Available A new phase plane analysis method for analyzing the complex nonlinear traffic phenomena is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the analysis in phase plane. According to the new model, various traffic phenomena, such as the well-known shock waves, rarefaction waves, and stop-and-go waves, are analyzed in the phase plane. From the phase plane diagrams, we can see the relationship between traffic jams and system instability. So the problem of traffic flow could be converted into that of system stability. The results show that the traffic phenomena described by the new method is consistent with that described by traditional methods. Moreover, the phase plane analysis highlights the unstable traffic phenomena we are chiefly concerned about and describes the variation of density or velocity with time or sections more clearly.

  13. Genetic structuring of northern myotis (Myotis septentrionalis) at multiple spatial scales

    Science.gov (United States)

    Johnson, Joshua B.; Roberts, James H.; King, Timothy L.; Edwards, John W.; Ford, W. Mark; Ray, David A.

    2014-01-01

    Although groups of bats may be genetically distinguishable at large spatial scales, the effects of forest disturbances, particularly permanent land use conversions on fine-scale population structure and gene flow of summer aggregations of philopatric bat species are less clear. We genotyped and analyzed variation at 10 nuclear DNA microsatellite markers in 182 individuals of the forest-dwelling northern myotis (Myotis septentrionalis) at multiple spatial scales, from within first-order watersheds scaling up to larger regional areas in West Virginia and New York. Our results indicate that groups of northern myotis were genetically indistinguishable at any spatial scale we considered, and the collective population maintained high genetic diversity. It is likely that the ability to migrate, exploit small forest patches, and use networks of mating sites located throughout the Appalachian Mountains, Interior Highlands, and elsewhere in the hibernation range have allowed northern myotis to maintain high genetic diversity and gene flow regardless of forest disturbances at local and regional spatial scales. A consequence of maintaining high gene flow might be the potential to minimize genetic founder effects following population declines caused currently by the enzootic White-nose Syndrome.

  14. Imaging of first-order surface-related multiples by reverse-time migration

    Science.gov (United States)

    Liu, Xuejian; Liu, Yike; Hu, Hao; Li, Peng; Khan, Majid

    2017-02-01

    Surface-related multiples have been utilized in the reverse-time migration (RTM) procedures, and additional illumination for subsurface can be provided. Meanwhile, many cross-talks are generated from undesired interactions between forward- and backward-propagated seismic waves. In this paper, subsequent to analysing and categorizing these cross-talks, we propose RTM of first-order multiples to avoid most undesired interactions in RTM of all-order multiples, where only primaries are forward-propagated and crosscorrelated with the backward-propagated first-order multiples. With primaries and multiples separated during regular seismic data processing as the input data, first-order multiples can be obtained by a two-step scheme: (1) the dual-prediction of higher-order multiples; and (2) the adaptive subtraction of predicted higher-order multiples from all-order multiples within local offset-time windows. In numerical experiments, two synthetic and a marine field data sets are used, where different cross-talks generated by RTM of all-order multiples can be identified and the proposed RTM of first-order multiples can provide a very interpretable image with a few cross-talks.

  15. Validation Results for Core-Scale Oil Shale Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  16. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  17. Efficient Processing of Multiple DTW Queries in Time Series Databases

    DEFF Research Database (Denmark)

    Kremer, Hardy; Günnemann, Stephan; Ivanescu, Anca-Maria

    2011-01-01

    . In many of today’s applications, however, large numbers of queries arise at any given time. Existing DTW techniques do not process multiple DTW queries simultaneously, a serious limitation which slows down overall processing. In this paper, we propose an efficient processing approach for multiple DTW...... for multiple DTW queries....

  18. Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune

    Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... such dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...

  19. Scaling of charged particle multiplicity in Pb-Pb collisions at SPS energies

    CERN Document Server

    Abreu, M C; Alexa, C; Arnaldi, R; Ataian, M R; Baglin, C; Baldit, A; Bedjidian, Marc; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Haroutunian, R; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Silva, S; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N

    2002-01-01

    The charged particle multiplicity distribution $dN_{ch}/d\\eta$ has been measured by the NA50 experiment in Pb--Pb collisions at the CERN SPS. Measurements were done at incident energies of 40 and 158 GeV per nucleon over a broad impact parameter range. The multiplicity distributions are studied as a function of centrality using the number of participating nucleons ($N_{part}$), or the number of binary nucleon--nucleon collisions ($N_{coll}$). Their values at midrapidity exhibit a power law scaling behaviour given by $N_{part}^{1.00}$ and $N_{coll}^{0.75}$ at 158 GeV. Compatible results are found for the scaling behaviour at 40 GeV. The width of the $dN_{ch}/d\\eta$ distributions is larger at 158 than at 40 GeV/nucleon and decreases slightly with centrality at both energies. Our results are compared to similar studies performed by other experiments both at the CERN SPS and at RHIC.}

  20. Generalized z-scaling in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.

    2006-01-01

    New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is a fractal measure which depends on kinematical characteristics of the underlying subprocess expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. In the generalized approach, the x 1 and x 2 are functions of the momentum fractions y a and y b of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function ψ(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the ψ(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons, and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at the proton-proton colliders RHIC and LHC

  1. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.

    Science.gov (United States)

    Serebrinsky, Santiago A

    2011-03-01

    We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.

  2. Comparison of CFD Simulations of Moderator Circulation Phenomena for a CANDU-6 Reactor and MCT Facility

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Cha, Jae Eun Cha; Seo, Han

    2013-01-01

    The Korea Atomic Energy Research Institute is constructing a Moderator Circulation Test (MCT) facility to simulate thermal-hydraulic phenomena in a 1/4 scale-down moderator tank similar to that in a prototype power plant during steady state operation and accident conditions. In the present study, two numerical CFD simulations for the prototype and scaled-down moderator tanks were carried out to check whether the moderator flow and temperature patterns of both the prototype reactor and scaled-down facility are identical. Two different sets of simulations of the moderator circulation phenomena were performed for a CANDU-6 reactor and MCT facility. The results of both simulations were compared to study the effects of scaling on the moderator flow and temperature patterns. There is no significant difference in the results between the prototype and scaled-down model. It was concluded that the present scaling method is properly employed to model the real reactor in the MCT facility

  3. Comparison of CFD Simulations of Moderator Circulation Phenomena for a CANDU-6 Reactor and MCT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae; Cha, Jae Eun Cha; Seo, Han [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The Korea Atomic Energy Research Institute is constructing a Moderator Circulation Test (MCT) facility to simulate thermal-hydraulic phenomena in a 1/4 scale-down moderator tank similar to that in a prototype power plant during steady state operation and accident conditions. In the present study, two numerical CFD simulations for the prototype and scaled-down moderator tanks were carried out to check whether the moderator flow and temperature patterns of both the prototype reactor and scaled-down facility are identical. Two different sets of simulations of the moderator circulation phenomena were performed for a CANDU-6 reactor and MCT facility. The results of both simulations were compared to study the effects of scaling on the moderator flow and temperature patterns. There is no significant difference in the results between the prototype and scaled-down model. It was concluded that the present scaling method is properly employed to model the real reactor in the MCT facility.

  4. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  5. Curvaton paradigm can accommodate multiple low inflation scales

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2004-01-01

    Recent arguments show that some curvaton field may generate the cosmological curvature perturbation. As the curvaton is independent of the inflaton field, there is a hope that the fine tunings of inflation models can be cured by the curvaton scenario. More recently, however, Lyth discussed that there is a strong bound for the Hubble parameter during inflation even if one assumes the curvaton scenario. Although the most serious constraint was evaded, the bound seems rather crucial for many models of a low inflation scale. In this paper we try to remove the constraint. We show that the bound is drastically modified if there were multiple stages of inflation. (letter to the editor)

  6. Gender Effect According to Item Directionality on the Perceived Stress Scale for Adults with Multiple Sclerosis

    Science.gov (United States)

    Gitchel, W. Dent; Roessler, Richard T.; Turner, Ronna C.

    2011-01-01

    Assessment is critical to rehabilitation practice and research, and self-reports are a commonly used form of assessment. This study examines a gender effect according to item wording on the "Perceived Stress Scale" for adults with multiple sclerosis. Past studies have demonstrated two-factor solutions on this scale and other scales measuring…

  7. Comprehending emergent systems phenomena through direct-manipulation animation

    Science.gov (United States)

    Aguirre, Priscilla Abel

    This study seeks to understand the type of interaction mode that best supports learning and comprehension of emergent systems phenomena. Given that the literature has established that students hold robust misconceptions of such phenomena, this study investigates the influence of using three types of interaction; speed-manipulation animation (SMN), post-manipulation animation (PMA) and direct-manipulation animation (DMA) for increasing comprehension and testing transfer of the phenomena, by looking at the effect of simultaneous interaction of haptic and visual channels on long term and working memories when seeking to comprehend emergent phenomena. The questions asked were: (1) Does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool (i.e., SMA, PMA or DMA), improve students' mental model construction of systems, thus increasing comprehension of this scientific concept? And (2) does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool, give the students the necessary complex cognitive skill which can then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios? In an empirical study undergraduate and graduate students were asked to participate in one of three experimental conditions: SMA, PMA, or DMA. The results of the study found that it was the participants of the SMA treatment condition that had the most improvement in post-test scores. Students' understanding of the phenomena increased most when they used a dynamic model with few interactive elements (i.e., start, stop, and speed) that allowed for real time visualization of one's interaction on the phenomena. Furthermore, no indication was found that the learning of emergent phenomena, with the aid of a dynamic interactive modeling tool, gave the students the necessary complex cognitive skill which could then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios

  8. Managing multiple roles: development of the Work-Family Conciliation Strategies Scale.

    Science.gov (United States)

    Matias, Marisa; Fontaine, Anne Marie

    2014-07-17

    Juggling the demands of work and family is becoming increasingly difficult in today's world. As dual-earners are now a majority and men and women's roles in both the workplace and at home have changed, questions have been raised regarding how individuals and couples can balance family and work. Nevertheless, research addressing work-family conciliation strategies is limited to a conflict-driven approach and context-specific instruments are scarce. This study develops an instrument for assessing how dual-earners manage their multiple roles detaching from a conflict point of view highlighting the work-family conciliation strategies put forward by these couples. Through qualitative and quantitative procedures the Work-Family Conciliation Strategies Scales was developed and is composed by 5 factors: Couple Coping; Positive Attitude Towards Multiple Roles, Planning and Management Skills, Professional Adjustments and Institutional Support; with good adjustment [χ2/df = 1.22; CFI = .90, RMSEA = .04, SRMR = .08.] and good reliability coefficients [from .67 to .87]. The developed scale contributes to research because of its specificity to the work-family framework and its focus on the proactive nature of balancing work and family roles. The results support further use of this instrument.

  9. Scaling properties in time-varying networks with memory

    Science.gov (United States)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  10. Critical phenomena of regular black holes in anti-de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying [Peking University, Center for High Energy Physics, Beijing (China)

    2017-04-15

    In General Relativity, addressing coupling to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward-AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition, while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell equal area law in the P-V (or S-T) diagram is violated and consequently the critical point (T{sub *},P{sub *}) of the first order small-large black hole transition does not coincide with the inflection point (T{sub c},P{sub c}) of the isotherms; the Clapeyron equation describing the coexistence curve of the Van der Waals (vdW) fluid is no longer valid; the heat capacity at constant pressure is finite at the critical point; the various exponents near the critical point are also different from those of the vdW fluid. (orig.)

  11. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise

    International Nuclear Information System (INIS)

    Shu Chang-Zheng; Nie Lin-Ru; Zhou Zhong-Rao

    2012-01-01

    Stochastic resonance (SR)-like and resonance suppression (RS)-like phenomena in a time-delayed bistable system driven by additive white noise are investigated by means of stochastic simulations of the power spectrum, the quality factor of the power spectrum, and the mean first-passage time (MFPT) of the system. The calculative results indicate that: (i) as the system is driven by a small periodic signal, the quality factor as a function delay time exhibits a maximal value at smaller noise intensities, i.e., an SR-like phenomenon. With the increment in additive noise intensity, the extremum gradually disappears and the quality factor decreases monotonously with delay time. (ii) As the additive noise intensity is smaller, the curve of the MFPT with respect to delay time displays a peak, i.e., an RS-like phenomenon. At higher levels of noise, however, the non-monotonic behavior is lost. (general)

  12. Multiple-scale structures: from Faraday waves to soft-matter quasicrystals

    Directory of Open Access Journals (Sweden)

    Samuel Savitz

    2018-05-01

    Full Text Available For many years, quasicrystals were observed only as solid-state metallic alloys, yet current research is now actively exploring their formation in a variety of soft materials, including systems of macromolecules, nanoparticles and colloids. Much effort is being invested in understanding the thermodynamic properties of these soft-matter quasicrystals in order to predict and possibly control the structures that form, and hopefully to shed light on the broader yet unresolved general questions of quasicrystal formation and stability. Moreover, the ability to control the self-assembly of soft quasicrystals may contribute to the development of novel photonics or other applications based on self-assembled metamaterials. Here a path is followed, leading to quantitative stability predictions, that starts with a model developed two decades ago to treat the formation of multiple-scale quasiperiodic Faraday waves (standing wave patterns in vibrating fluid surfaces and which was later mapped onto systems of soft particles, interacting via multiple-scale pair potentials. The article reviews, and substantially expands, the quantitative predictions of these models, while correcting a few discrepancies in earlier calculations, and presents new analytical methods for treating the models. In so doing, a number of new stable quasicrystalline structures are found with octagonal, octadecagonal and higher-order symmetries, some of which may, it is hoped, be observed in future experiments.

  13. Multiple-scale structures: from Faraday waves to soft-matter quasicrystals.

    Science.gov (United States)

    Savitz, Samuel; Babadi, Mehrtash; Lifshitz, Ron

    2018-05-01

    For many years, quasicrystals were observed only as solid-state metallic alloys, yet current research is now actively exploring their formation in a variety of soft materials, including systems of macromolecules, nanoparticles and colloids. Much effort is being invested in understanding the thermodynamic properties of these soft-matter quasicrystals in order to predict and possibly control the structures that form, and hopefully to shed light on the broader yet unresolved general questions of quasicrystal formation and stability. Moreover, the ability to control the self-assembly of soft quasicrystals may contribute to the development of novel photonics or other applications based on self-assembled metamaterials. Here a path is followed, leading to quantitative stability predictions, that starts with a model developed two decades ago to treat the formation of multiple-scale quasiperiodic Faraday waves (standing wave patterns in vibrating fluid surfaces) and which was later mapped onto systems of soft particles, interacting via multiple-scale pair potentials. The article reviews, and substantially expands, the quantitative predictions of these models, while correcting a few discrepancies in earlier calculations, and presents new analytical methods for treating the models. In so doing, a number of new stable quasicrystalline structures are found with octagonal, octadecagonal and higher-order symmetries, some of which may, it is hoped, be observed in future experiments.

  14. Efficient Selection of Multiple Objects on a Large Scale

    DEFF Research Database (Denmark)

    Stenholt, Rasmus

    2012-01-01

    The task of multiple object selection (MOS) in immersive virtual environments is important and still largely unexplored. The diffi- culty of efficient MOS increases with the number of objects to be selected. E.g. in small-scale MOS, only a few objects need to be simultaneously selected. This may...... consuming. Instead, we have implemented and tested two of the existing approaches to 3-D MOS, a brush and a lasso, as well as a new technique, a magic wand, which automati- cally selects objects based on local proximity to other objects. In a formal user evaluation, we have studied how the performance...

  15. Bounds of Certain Dynamic Inequalities on Time Scales

    Directory of Open Access Journals (Sweden)

    Deepak B. Pachpatte

    2014-10-01

    Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.

  16. Critical phenomena and renormalization group transformations

    International Nuclear Information System (INIS)

    Castellani, C.; Castro, C. di

    1980-01-01

    Our main goal is to guide the reader to find out the common rational behind the various renormalization procedures which have been proposed in the last ten years. In the first part of these lectures old arguments on universality and scaling will be briefly recalled. To our opinion these introductory remarks allow one to stress the physical origin of the two majore renormalization procedures, which have been used in the theory of critical phenomena: the Wilson and the field theoretic approach. All the general properties of a ''good'' renormalization transformation will also come out quite naturally. (author)

  17. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  18. How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map.

    Directory of Open Access Journals (Sweden)

    Stephen Grossberg

    Full Text Available Place cells in the hippocampus of higher mammals are critical for spatial navigation. Recent modeling clarifies how this may be achieved by how grid cells in the medial entorhinal cortex (MEC input to place cells. Grid cells exhibit hexagonal grid firing patterns across space in multiple spatial scales along the MEC dorsoventral axis. Signals from grid cells of multiple scales combine adaptively to activate place cells that represent much larger spaces than grid cells. But how do grid cells learn to fire at multiple positions that form a hexagonal grid, and with spatial scales that increase along the dorsoventral axis? In vitro recordings of medial entorhinal layer II stellate cells have revealed subthreshold membrane potential oscillations (MPOs whose temporal periods, and time constants of excitatory postsynaptic potentials (EPSPs, both increase along this axis. Slower (faster subthreshold MPOs and slower (faster EPSPs correlate with larger (smaller grid spacings and field widths. A self-organizing map neural model explains how the anatomical gradient of grid spatial scales can be learned by cells that respond more slowly along the gradient to their inputs from stripe cells of multiple scales, which perform linear velocity path integration. The model cells also exhibit MPO frequencies that covary with their response rates. The gradient in intrinsic rhythmicity is thus not compelling evidence for oscillatory interference as a mechanism of grid cell firing. A response rate gradient combined with input stripe cells that have normalized receptive fields can reproduce all known spatial and temporal properties of grid cells along the MEC dorsoventral axis. This spatial gradient mechanism is homologous to a gradient mechanism for temporal learning in the lateral entorhinal cortex and its hippocampal projections. Spatial and temporal representations may hereby arise from homologous mechanisms, thereby embodying a mechanistic "neural relativity" that

  19. Tracking Multiple People Online and in Real Time

    Science.gov (United States)

    2015-12-21

    NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 21-12-2015 Approved for public release; distribution is unlimited. Tracking multiple people ...online and in real time We cast the problem of tracking several people as a graph partitioning problem that takes the form of an NP-hard binary...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Duke University 2200 West Main Street Suite 710 Durham, NC 27705 -4010 ABSTRACT Tracking multiple

  20. Assessment level of anxiety and depression in patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Kusnetsova D.E.

    2012-06-01

    Full Text Available

    In patients with multiple sclerosis observed polymorphism of the emergency psychiatric disorders with a wide range of psychopathological phenomena — from neurotic and personality disorders to psychotic states and epileptiform syndrome. However, the problems of mental health problems in people with MS for a long time little attention was paid. The aim of our study was to analyze the level of anxiety and depression severity in patients with multiple sclerosis. According to this objective have been identifed objectives of the study: to determine the level of depression and anxiety in MS patients according to sex, age, course, duration of disease. For our work was selected group of patients with documented diagnosis of multiple sclerosis, Charles Poser criteria, consisting of 79 persons, with a disease duration of more than 2 years. We used a specially designed questionnaire, which included a table to assess complaints, anamnesis, the neurological status of the patient, and standard questionnaires (test anxiety, Taylor Depression Scale Research psychoneurology them. Spondylitis, the index of overall psychological well-being. The study found that mood disorders such as anxiety, depression, often occurs in patients with multiple sclerosis. However, they are expressed in groups of patients receiving and not receiving DMD, in many ways. Thus, it should be recommended  Vat practical neurologists in the treatment of multiple sclerosis patients to pay attention to whether or not they have a certain range of mental disorders, and above all, anxious-depressive syndrome, which is in need of medical and non-pharmacological correction.

  1. Time-dependent scaling patterns in high frequency financial data

    Science.gov (United States)

    Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso

    2016-10-01

    We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.

  2. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  3. Multiple impacts in dissipative granular chains

    CERN Document Server

    Nguyen, Ngoc Son

    2014-01-01

    The extension of collision models for single impacts between two bodies, to the case of multiple impacts (which take place when several collisions occur at the same time in a multibody system) is a challenge in Solid Mechanics, due to the complexity of such phenomena, even in the frictionless case. This monograph aims at presenting the main multiple collision rules proposed in the literature. Such collisions typically occur in granular materials, the simplest of which are made of chains of aligned balls. These chains are used throughout the book to analyze various multiple impact rules which extend the classical Newton (kinematic restitution), Poisson (kinetic restitution) and Darboux-Keller (energetic or kinetic restitution) approaches for impact modelling. The shock dynamics in various types of chains of aligned balls (monodisperse, tapered, decorated, stepped chains) is carefully studied and shown to depend on several parameters: restitution coefficients, contact stiffness ratios, elasticity coefficients (...

  4. Usability of a new multiple high-speed pulse time data registration, processing and real-time display system for pulse time interval analysis

    International Nuclear Information System (INIS)

    Yawata, Takashi; Sakaue, Hisanobu; Hashimoto, Tetsuo; Itou, Shigeki

    2006-01-01

    A new high-speed multiple pulse time data registration, processing and real-time display system for time interval analysis (TIA) was developed for counting either β-α or α-α correlated decay-events. The TIA method has been so far limited to selective extraction of successive α-α decay events within the milli-second time scale owing to the use of original electronic hardware. In the present pulse-processing system, three different high-speed α/β(γ) pulses could be fed quickly to original 32 bit PCI board (ZN-HTS2) within 1 μs. This original PCI board is consisting of a timing-control IC (HTS-A) and 28 bit counting IC (HTS-B). All channel and pulse time data were stored to FIFO RAM, followed to transfer into temporary CPU RAM (32 MB) by DMA. Both data registration (into main RAM (200 MB)) and calculation of pulse time intervals together with real-time TIA-distribution display simultaneously processed using two sophisticate softwares. The present system has proven to succeed for the real-time display of TIA distribution spectrum even when 1.6x10 5 cps pulses from pulse generator were given to the system. By using this new system combined with liquid scintillation counting (LSC) apparatus, both a natural micro-second order β-α correlated decay-events and a milli-second order α-α correlated decay-event could be selectively extracted from the mixture of natural radionuclides. (author)

  5. Transport phenomena in environmental engineering

    Science.gov (United States)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  6. Algorithmic Foundation of Spectral Rarefaction for Measuring Satellite Imagery Heterogeneity at Multiple Spatial Scales

    Science.gov (United States)

    Rocchini, Duccio

    2009-01-01

    Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600

  7. Laser experimental system as teaching aid for demonstrating basic phenomena of laser feedback

    International Nuclear Information System (INIS)

    Xu, Ling; Zhao, Shijie; Zhang, Shulian

    2015-01-01

    An experimental laser teaching system is developed to demonstrate laser feedback phenomena, which bring great harm to optical communication and benefits to precision measurement. The system consists of an orthogonally polarized He-Ne laser, a feedback mirror which reflects the laser output light into the laser cavity, and an optical attenuator which changes the intensity of the feedback light. As the feedback mirror is driven by a piezoelectric ceramic, the attenuator is adjusted and the feedback mirror is tilted, the system can demonstrate many basic laser feedback phenomena, including weak, moderate and strong optical feedback, multiple feedback and polarization flipping. Demonstrations of these phenomena can give students a better understanding about the intensity and polarization of lasers. The system is well designed and assembled, simple to operate, and provides a valuable teaching aid at an undergraduate level. (paper)

  8. Integral criteria for large-scale multiple fingerprint solutions

    Science.gov (United States)

    Ushmaev, Oleg S.; Novikov, Sergey O.

    2004-08-01

    We propose the definition and analysis of the optimal integral similarity score criterion for large scale multmodal civil ID systems. Firstly, the general properties of score distributions for genuine and impostor matches for different systems and input devices are investigated. The empirical statistics was taken from the real biometric tests. Then we carry out the analysis of simultaneous score distributions for a number of combined biometric tests and primary for ultiple fingerprint solutions. The explicit and approximate relations for optimal integral score, which provides the least value of the FRR while the FAR is predefined, have been obtained. The results of real multiple fingerprint test show good correspondence with the theoretical results in the wide range of the False Acceptance and the False Rejection Rates.

  9. Quantum critical matter. Quantum phase transitions with multiple dynamics and Weyl superconductors

    International Nuclear Information System (INIS)

    Meng, Tobias

    2012-01-01

    In this PhD thesis, the physics of quantum critical matter and exotic quantum state close to quantum phase transitions is investigated. We will focus on three different examples that highlight some of the interesting phenomena related to quantum phase transitions. Firstly, we discuss the physics of quantum phase transitions in quantum wires as a function of an external gate voltage when new subbands are activated. We find that at these transitions, strong correlations lead to the formation of an impenetrable gas of polarons, and identify criteria for possible instabilities in the spin- and charge sectors of the model. Our analysis is based on the combination of exact resummations, renormalization group techniques and Luttinger liquid approaches. Secondly, we turn to the physics of multiple divergent time scales close to a quantum critical point. Using an appropriately generalized renormalization group approach, we identify that the presence of multiple dynamics at a quantum phase transition can lead to the emergence of new critical scaling exponents and thus to the breakdown of the usual scaling schemes. We calculate the critical behavior of various thermodynamic properties and detail how unusual physics can arise. It is hoped that these results might be helpful for the interpretation of experimental scaling puzzles close to quantum critical points. Thirdly, we turn to the physics of topological transitions, and more precisely the physics of Weyl superconductors. The latter are the superconducting variant of the topologically non-trivial Weyl semimetals, and emerge at the quantum phase transition between a topological superconductor and a normal insulator upon perturbing the transition with a time reversal symmetry breaking perturbation, such as magnetism. We characterize the topological properties of Weyl superconductors and establish a topological phase diagram for a particular realization in heterostructures. We discuss the physics of vortices in Weyl

  10. Hydrodynamic time scales for intense laser-heated clusters

    International Nuclear Information System (INIS)

    Parra, Enrique; Alexeev, Ilya; Fan, Jingyun; Kim, Kiong Y.; McNaught, Stuart J.; Milchberg, Howard M.

    2003-01-01

    Measurements are presented of x-ray (>1.5 keV) and extreme ultraviolet (EUV, λ equal to 2-44 nm) emission from argon clusters irradiated with constant-energy (50 mJ), variable-width laser pulses ranging from 100 fs to 10 ns. The results for clusters can be understood in terms of two time scales: a short time scale for optimal resonant absorption at the critical-density layer in the expanding plasma, and a longer time scale for the plasma to drop below critical density. We present a one-dimensional hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical-density plasma layer. These simulations explain the dependence of generation efficiency on laser pulse width

  11. Physics in space-time with scale-dependent metrics

    Science.gov (United States)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  12. Dynamic Modeling, Optimization, and Advanced Control for Large Scale Biorefineries

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail

    with a complex conversion route. Computational fluid dynamics is used to model transport phenomena in large reactors capturing tank profiles, and delays due to plug flows. This work publishes for the first time demonstration scale real data for validation showing that the model library is suitable...

  13. Multiple scales and singular limits for compressible rotating fluids with general initial data

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Novotný, A.

    2014-01-01

    Roč. 39, č. 6 (2014), s. 1104-1127 ISSN 0360-5302 Keywords : compressible Navier-Stokes equations * multiple scales * oscillatory integrals Subject RIV: BA - General Mathematics Impact factor: 1.013, year: 2014 http://www.tandfonline.com/doi/full/10.1080/03605302.2013.856917

  14. Validation of the fatigue scale for motor and cognitive functions in a danish multiple sclerosis cohort

    DEFF Research Database (Denmark)

    Oervik, M. S.; Sejbaek, T.; Penner, I. K.

    2017-01-01

    Background Our objective was to validate the Danish translation of the Fatigue Scale for Motor and Cognitive Functions (FSMC) in multiple sclerosis (MS) patients. Materials and methods A Danish MS cohort (n = 84) was matched and compared to the original German validation cohort (n = 309) and a he......Background Our objective was to validate the Danish translation of the Fatigue Scale for Motor and Cognitive Functions (FSMC) in multiple sclerosis (MS) patients. Materials and methods A Danish MS cohort (n = 84) was matched and compared to the original German validation cohort (n = 309...... positive correlations between the two fatigue scales implied high convergent validity (total scores: r = 0.851, p gender). Correcting for depression did not result in any significant adjustments of the correlations...

  15. Time scales of supercooled water and implications for reversible polyamorphism

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2015-09-01

    Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.

  16. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    Science.gov (United States)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  17. Steffensen's Integral Inequality on Time Scales

    Directory of Open Access Journals (Sweden)

    Ozkan Umut Mutlu

    2007-01-01

    Full Text Available We establish generalizations of Steffensen's integral inequality on time scales via the diamond- dynamic integral, which is defined as a linear combination of the delta and nabla integrals.

  18. Exploitation of rapid acidification phenomena of food waste in reducing the hydraulic retention time (HRT) of high rate anaerobic digester without conceding on biogas yield.

    Science.gov (United States)

    Kuruti, Kranti; Begum, Sameena; Ahuja, Shruti; Anupoju, Gangagni Rao; Juntupally, Sudharshan; Gandu, Bharath; Ahuja, Devender Kumar

    2017-02-01

    The aim of the present work was to study and infer a full scale experience on co-digestion of 1000kg of FW (400kg cooked food waste and 600kg uncooked food waste) and 2000L of rice gruel (RG) on daily basis based on a high rate biomethanation technology called "Anaerobic gas lift reactor" (AGR). The pH of raw substrate was low (5.2-5.5) that resulted in rapid acidification phenomena with in 12h in the feed preparation tank that facilitated to obtain a lower hydraulic residence time (HRT) of 10days. At full load, AGR was fed with 245kg of total solids, 205kg of volatile solids (167kg of organic matter in terms of chemical oxygen demand) which resulted in the generation of biogas and bio manure of 140m 3 /day and 110kg/day respectively. The produced biogas replaced 60-70kg of LPG per day. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Flood statistics of simple and multiple scaling; Invarianza di scala del regime di piena

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, Renzo; Mancini, Marco; Burlando, Paolo; De Michele, Carlo [Milan, Politecnico Univ. (Italy). DIIAR; Brath, Armando [Bologna, Univ. (Italy). DISTART

    1996-09-01

    The variability of flood probabilities throughout the river network is investigated by introducing the concepts of simple and multiple scaling. Flood statistics and quantiles as parametrized by drainage area are considered, and a distributed geomorphoclimatic model is used to analyze in detail their scaling properties for two river basins in Thyrrhenian Liguria (North-Western Italy). Although temporal storm precipitation and spatial runoff production are not scaling, the resulting flood flows do not display substantial deviations from statistical self-similarity or simple scaling. This result has a wide potential in order to assess the concept of hydrological homogeneity, also indicating a new route towards establishing physically-based procedures for flood frequency regionalization.

  20. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  1. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs

    Science.gov (United States)

    Yahyanejad, Saeed; Rinner, Bernhard

    2015-06-01

    The use of multiple small-scale UAVs to support first responders in disaster management has become popular because of their speed and low deployment costs. We exploit such UAVs to perform real-time monitoring of target areas by fusing individual images captured from heterogeneous aerial sensors. Many approaches have already been presented to register images from homogeneous sensors. These methods have demonstrated robustness against scale, rotation and illumination variations and can also cope with limited overlap among individual images. In this paper we focus on thermal and visual image registration and propose different methods to improve the quality of interspectral registration for the purpose of real-time monitoring and mobile mapping. Images captured by low-altitude UAVs represent a very challenging scenario for interspectral registration due to the strong variations in overlap, scale, rotation, point of view and structure of such scenes. Furthermore, these small-scale UAVs have limited processing and communication power. The contributions of this paper include (i) the introduction of a feature descriptor for robustly identifying corresponding regions of images in different spectrums, (ii) the registration of image mosaics, and (iii) the registration of depth maps. We evaluated the first method using a test data set consisting of 84 image pairs. In all instances our approach combined with SIFT or SURF feature-based registration was superior to the standard versions. Although we focus mainly on aerial imagery, our evaluation shows that the presented approach would also be beneficial in other scenarios such as surveillance and human detection. Furthermore, we demonstrated the advantages of the other two methods in case of multiple image pairs.

  2. Numerical Investigation of Multiple-, Interacting-Scale Variable-Density Ground Water Flow Systems

    Science.gov (United States)

    Cosler, D.; Ibaraki, M.

    2004-12-01

    The goal of our study is to elucidate the nonlinear processes that are important for multiple-, interacting-scale flow and solute transport in subsurface environments. In particular, we are focusing on the influence of small-scale instability development on variable-density ground water flow behavior in large-scale systems. Convective mixing caused by these instabilities may mix the fluids to a greater extent than would be the case with classical, Fickian dispersion. Most current numerical schemes for interpreting field-scale variable-density flow systems do not explicitly account for the complexities caused by small-scale instabilities and treat such processes as "lumped" Fickian dispersive mixing. Such approaches may greatly underestimate the mixing behavior and misrepresent the overall large-scale flow field dynamics. The specific objectives of our study are: (i) to develop an adaptive (spatial and temporal scales) three-dimensional numerical model that is fully capable of simulating field-scale variable-density flow systems with fine resolution (~1 cm); and (ii) to evaluate the importance of scale-dependent process interactions by performing a series of simulations on different problem scales ranging from laboratory experiments to field settings, including an aquifer storage and freshwater recovery (ASR) system similar to those planned for the Florida Everglades and in-situ contaminant remediation systems. We are examining (1) methods to create instabilities in field-scale systems, (2) porous media heterogeneity effects, and (3) the relation between heterogeneity characteristics (e.g., permeability variance and correlation length scales) and the mixing scales that develop for varying degrees of unstable stratification. Applications of our work include the design of new water supply and conservation measures (e.g., ASR systems), assessment of saltwater intrusion problems in coastal aquifers, and the design of in-situ remediation systems for aquifer restoration

  3. Time scales of tunneling decay of a localized state

    International Nuclear Information System (INIS)

    Ban, Yue; Muga, J. G.; Sherman, E. Ya.; Buettiker, M.

    2010-01-01

    Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observing diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.

  4. Soil erosion under multiple time-varying rainfall events

    Science.gov (United States)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  5. Opportunities for reactor scale experimental physics

    International Nuclear Information System (INIS)

    1999-01-01

    A reactor scale tokamak plasma will exhibit three areas of physics phenomenology not accessible by contemporary experimental facilities. These are: (1) instabilities generated by energetic alpha particles; (2) self-heating phenomena; and (3) reactor scale physics, which includes integration of diverse physics phenomena, each with its own scaling properties. In each area, selected examples are presented that demonstrate the importance and uniqueness of physics results from reactor scale facilities for both inductive and steady state reactor options. It is concluded that the physics learned in such investigations will be original physics not attainable with contemporary facilities. In principle, a reactor scale facility could have a good measure of flexibility to optimize the tokamak approach to magnetic fusion energy. (author)

  6. Combining MCDA and risk analysis: dealing with scaling issues in the multiplicative AHP

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn; van den Honert, Rob; Salling, Kim Bang

    the progression factor 2 is used for calculating scores of alternatives and √2 for calculation of criteria weights when transforming the verbal judgments stemming from pair wise comparisons. However, depending on the decision context, the decision-makers aversion towards risk, etc., it is most likely......This paper proposes a new decision support system (DSS) for applying risk analysis and stochastic simulation to the multiplicative AHP in order to deal with issues concerning the progression factors. The multiplicative AHP makes use of direct rating on a logarithmic scale, and for this purpose...

  7. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  8. Finite-Time Stability of Large-Scale Systems with Interval Time-Varying Delay in Interconnection

    Directory of Open Access Journals (Sweden)

    T. La-inchua

    2017-01-01

    Full Text Available We investigate finite-time stability of a class of nonlinear large-scale systems with interval time-varying delays in interconnection. Time-delay functions are continuous but not necessarily differentiable. Based on Lyapunov stability theory and new integral bounding technique, finite-time stability of large-scale systems with interval time-varying delays in interconnection is derived. The finite-time stability criteria are delays-dependent and are given in terms of linear matrix inequalities which can be solved by various available algorithms. Numerical examples are given to illustrate effectiveness of the proposed method.

  9. Pinch-off Scaling Law of Soap Bubbles

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  10. The experiment and analysis on small leak phenomena

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Hwang, S. T.; Kim, B. H.; Jeong, J. Y.

    2000-07-01

    The liquid sodium which is used as a coolant in LMFBR, may give rise to a serious trouble in the safety aspect of steam generator. The defects in a heat transfer tube, such as pin-hole or tube welding defect, will result in a leakage of high pressure steam into the sodium side and production of hydrogen gas and corrosive sodium compounds which can cause significant damage to the tube wall of steam generator by using exothermic reaction. In significant damage to the tube wall of steam generator by using exothermic reaction. In this case, initial leak size will be enlarged with time and the leak rate developed to large leak through the micro, small, intermediate leaks. Therefore, the analysis of sodium-water reaction phenomena on the micro and small water leaks in the heat transfer tube is very important in the initial leak stage in the aspects of the protection of leak progress and safety evaluation of steam generator. In this study, firstly, the micro and small leaks phenomena, such as reopen size, shape, and time of leak path, self-wastage, corrosion of tube materials, was analyzed from the literature survey and water leakage experiments using the leak specimen. In small water leak experiments, the leak path was plugged by the sodium-water reaction products at the leak path of a specimen, and re-open phenomena were not observed in initial experiments. Other leak experiments, reopen phenomena of self-plugged leak path was observed. Re-open mechanism of sealed path could be explained by the thermal transient and vibration of heat transfer tube. As a result, perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen was appeared with double layer of circular type, and reopen size of this specimen surface was about 2 mm diameter on sodium side. Also, the corrosion of a specimen initiated from sodium side, the segregation phenomena of Cr in the specimen was found much more than those of

  11. The function of communities in protein interaction networks at multiple scales

    Directory of Open Access Journals (Sweden)

    Jones Nick S

    2010-07-01

    Full Text Available Abstract Background If biology is modular then clusters, or communities, of proteins derived using only protein interaction network structure should define protein modules with similar biological roles. We investigate the link between biological modules and network communities in yeast and its relationship to the scale at which we probe the network. Results Our results demonstrate that the functional homogeneity of communities depends on the scale selected, and that almost all proteins lie in a functionally homogeneous community at some scale. We judge functional homogeneity using a novel test and three independent characterizations of protein function, and find a high degree of overlap between these measures. We show that a high mean clustering coefficient of a community can be used to identify those that are functionally homogeneous. By tracing the community membership of a protein through multiple scales we demonstrate how our approach could be useful to biologists focusing on a particular protein. Conclusions We show that there is no one scale of interest in the community structure of the yeast protein interaction network, but we can identify the range of resolution parameters that yield the most functionally coherent communities, and predict which communities are most likely to be functionally homogeneous.

  12. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  13. Quantifying Forest Spatial Pattern Trends at Multiple Extents: An Approach to Detect Significant Changes at Different Scales

    Directory of Open Access Journals (Sweden)

    Ludovico Frate

    2014-09-01

    Full Text Available We propose a procedure to detect significant changes in forest spatial patterns and relevant scales. Our approach consists of four sequential steps. First, based on a series of multi-temporal forest maps, a set of geographic windows of increasing extents are extracted. Second, for each extent and date, specific stochastic simulations that replicate real-world spatial pattern characteristics are run. Third, by computing pattern metrics on both simulated and real maps, their empirical distributions and confidence intervals are derived. Finally, multi-temporal scalograms are built for each metric. Based on cover maps (1954, 2011 with a resolution of 10 m we analyze forest pattern changes in a central Apennines (Italy reserve at multiple spatial extents (128, 256 and 512 pixels. We identify three types of multi-temporal scalograms, depending on pattern metric behaviors, describing different dynamics of natural reforestation process. The statistical distribution and variability of pattern metrics at multiple extents offers a new and powerful tool to detect forest variations over time. Similar procedures can (i help to identify significant changes in spatial patterns and provide the bases to relate them to landscape processes; (ii minimize the bias when comparing pattern metrics at a single extent and (iii be extended to other landscapes and scales.

  14. Changes in channel morphology over human time scales [Chapter 32

    Science.gov (United States)

    John M. Buffington

    2012-01-01

    Rivers are exposed to changing environmental conditions over multiple spatial and temporal scales, with the imposed environmental conditions and response potential of the river modulated to varying degrees by human activity and our exploitation of natural resources. Watershed features that control river morphology include topography (valley slope and channel...

  15. Dynamical properties of the growing continuum using multiple-scale method

    Directory of Open Access Journals (Sweden)

    Hynčík L.

    2008-12-01

    Full Text Available The theory of growth and remodeling is applied to the 1D continuum. This can be mentioned e.g. as a model of the muscle fibre or piezo-electric stack. Hyperelastic material described by free energy potential suggested by Fung is used whereas the change of stiffness is taken into account. Corresponding equations define the dynamical system with two degrees of freedom. Its stability and the properties of bifurcations are studied using multiple-scale method. There are shown the conditions under which the degenerated Hopf's bifurcation is occuring.

  16. 3-D time-dependent numerical model of flow patterns within a large-scale Czochralski system

    Science.gov (United States)

    Nam, Phil-Ouk; O, Sang-Kun; Yi, Kyung-Woo

    2008-04-01

    Silicon single crystals grown through the Czochralski (Cz) method have increased in size to 300 mm, resulting in the use of larger crucibles. The objective of this study is to investigate the continuous Cz method in a large crucible (800 mm), which is performed by inserting a polycrystalline silicon rod into the melt. The numerical model is based on a time-dependent and three-dimensional standard k- ɛ turbulent model using the analytical software package CFD-ACE+, version 2007. Wood's metal melt, which has a low melting point ( Tm=70 °C), was used as the modeling fluid. Crystal rotation given in the clockwise direction with rotation rates varying from 0 to 15 rpm, while the crucible was rotated counter-clockwise, with rotation rates between 0 and 3 rpm. The results show that asymmetrical phenomena of fluid flow arise as results of crystal and crucible rotation, and that these phenomena move with the passage of time. Near the crystal, the flow moves towards the crucible at the pole of the asymmetrical phenomena. Away from the poles, a vortex begins to form, which is strongly pronounced in the region between the poles.

  17. MOTOR REHABILITATION OF INVALIDS WITH INFRINGEMENT OF LOCOMOTOR FUNCTION DUE TO RESIDUAL PHENOMENA OF STROKE

    Directory of Open Access Journals (Sweden)

    G. M. Tsirkin

    2013-01-01

    Full Text Available This paper demonstrates the clinical efficacy of multiparametric biofeedback in patients aged 45 to 60 years with residual phenomena after stroke with 1 to 5 years prescription. Comparison was made according to the international scale. Patients in the control group and the main group were selected at random.It was shown that the use of multiparametric biofeedback allows to reduce spasticity, restore body image and improve hemodynamics, increase adaptive capacity of the body, improve coordination. At the sa me time, when compared with medical therapy of spasticity, this technology is an order higher cost-effective.

  18. Charged Particles Multiplicity and Scaling Violation of Fragmentation Functions in Electron-Positron Annihilation

    International Nuclear Information System (INIS)

    Ghaffary, Tooraj

    2016-01-01

    By the use of data from the annihilation process of electron-positron in AMY detector at 60 GeV center of mass energy, charged particles multiplicity distribution is obtained and fitted with the KNO scaling. Then, momentum spectra of charged particles and momentum distribution with respect to the jet axis are obtained, and the results are compared to the different models of QCD; also, the distribution of fragmentation functions and scaling violations are studied. It is being expected that the scaling violations of the fragmentation functions of gluon jets are stronger than the quark ones. One of the reasons for such case is that splitting function of quarks is larger than splitting function of gluon.

  19. Scale-invariant Green-Kubo relation for time-averaged diffusivity

    Science.gov (United States)

    Meyer, Philipp; Barkai, Eli; Kantz, Holger

    2017-12-01

    In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.

  20. Human-Robot Teaming for Hydrologic Data Gathering at Multiple Scales

    Science.gov (United States)

    Peschel, J.; Young, S. N.

    2017-12-01

    The use of personal robot-assistive technology by researchers and practitioners for hydrologic data gathering has grown in recent years as barriers to platform capability, cost, and human-robot interaction have been overcome. One consequence to this growth is a broad availability of unmanned platforms that might or might not be suitable for a specific hydrologic investigation. Through multiple field studies, a set of recommendations has been developed to help guide novice through experienced users in choosing the appropriate unmanned platforms for a given application. This talk will present a series of hydrologic data sets gathered using a human-robot teaming approach that has leveraged unmanned aerial, ground, and surface vehicles over multiple scales. The field case studies discussed will be connected to the best practices, also provided in the presentation. This talk will be of interest to geoscience researchers and practitioners, in general, as well as those working in fields related to emerging technologies.

  1. DEVELOPMENT OF THE PROBABLY-GEOGRAPHICAL FORECAST METHOD FOR DANGEROUS WEATHER PHENOMENA

    Directory of Open Access Journals (Sweden)

    Elena S. Popova

    2015-12-01

    Full Text Available This paper presents a scheme method of probably-geographical forecast for dangerous weather phenomena. Discuss two general realization stages of this method. Emphasize that developing method is response to actual questions of modern weather forecast and it’s appropriate phenomena: forecast is carried out for specific point in space and appropriate moment of time.

  2. Delay time and tunneling transient phenomena

    International Nuclear Information System (INIS)

    Garcia-Calderon, Gaston; Villavicencio, Jorge

    2002-01-01

    Analytic solutions to the time-dependent Schroedinger equation for cutoff wave initial conditions are used to investigate the time evolution of the transmitted probability density for tunneling. For a broad range of values of the potential barrier opacity α, we find that the probability density exhibits two evolving structures. One refers to the propagation of a forerunner related to a time domain resonance [Phys. Rev. A 64, 0121907 (2001)], while the other consists of a semiclassical propagating wave front. We find a regime where the forerunners are absent, corresponding to positive time delays, and show that this regime is characterized by opacities α c . The critical opacity α c is derived from the analytical expression for the delay time, which reflects a link between transient effects in tunneling and the delay time

  3. Science and Paranormal Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  4. Understanding hydraulic fracturing: a multi-scale problem

    Science.gov (United States)

    Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.

    2016-01-01

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789

  5. Superimpose methods for uncooled infrared camera applied to the micro-scale thermal characterization of composite materials

    Science.gov (United States)

    Morikawa, Junko

    2015-05-01

    The mobile type apparatus for a quantitative micro-scale thermography using a micro-bolometer was developed based on our original techniques such as an achromatic lens design to capture a micro-scale image in long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. The total size of the instrument was designed as it was put in the 17 cm x 28 cm x 26 cm size carrying box. The video signal synthesizer enabled to record a direct digital signal of monitoring temperature or positioning data. The encoded digital signal data embedded in each image was decoded to read out. The protocol to encode/decode the measured data was originally defined. The mixed signals of IR camera and the imposed data were applied to the pixel by pixel emissivity corrections and the pseudo-acceleration of the periodical thermal phenomena. Because the emissivity of industrial materials and biological tissues were usually inhomogeneous, it has the different temperature dependence on each pixel. The time-scale resolution for the periodic thermal event was improved with the algorithm for "pseudoacceleration". It contributes to reduce the noise by integrating the multiple image data, keeping a time resolution. The anisotropic thermal properties of some composite materials such as thermal insulating materials of cellular plastics and the biometric composite materials were analyzed using these techniques.

  6. Development of real time visual evaluation system for sodium transient thermohydraulic experiments

    International Nuclear Information System (INIS)

    Tanigawa, Shingo

    1990-01-01

    A real time visual evaluation system, the Liquid Metal Visual Evaluation System (LIVES), has been developed for the Plant Dynamics Test Loop facility at O-arai Engineering Center. This facility is designed to provide sodium transient thermohydraulic experimental data not only in a fuel subassembly but also in a plant wide system simulating abnormal or accident conditions in liquid metal fast breeder reactors. Since liquid metal sodium is invisible, measurements to obtain experimental data are mainly conducted by numerous thermo couples installed at various locations in the test sections and the facility. The transient thermohydraulic phenomena are a result of complicated interactions among global and local scale three-dimensional phenomena, and short- and long-time scale phenomena. It is, therefore, difficult to grasp intuitively thermohydraulic behaviors and to observe accurately both temperature distribution and flow condition solely by digital data or various types of analog data in evaluating the experimental results. For effectively conducting sodium transient experiments and for making it possible to observe exactly thermohydraulic phenomena, the real time visualization technique for transient thermohydraulics has been developed using the latest Engineering Work Station. The system makes it possible to observe and compare instantly the experiment and analytical results while experiment or analysis is in progress. The results are shown by not only the time trend curves but also the graphic animations. This paper shows an outline of the system and sample applications of the system. (author)

  7. From Chicken Breath to the Killer Lakes of Cameroon: Uniting Seven Interesting Phenomena with a Single Chemical Underpinning.

    Science.gov (United States)

    DeLorenzo, Ron

    2001-01-01

    Recommends integrating different applications to serve the need for students to know the relevancy of the course of their future. Uses different and unrelated phenomena to teach equilibria. Introduces six phenomena; (1) Killer Lakes of Cameroon, (2) Chicken Breath, (3) The Permian Ocean, (4) Snow Line, (5) Hard-Water Boiler Scale, and (6)…

  8. A Sequential, Implicit, Wavelet-Based Solver for Multi-Scale Time-Dependent Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Donald A. McLaren

    2013-04-01

    Full Text Available This paper describes and tests a wavelet-based implicit numerical method for solving partial differential equations. Intended for problems with localized small-scale interactions, the method exploits the form of the wavelet decomposition to divide the implicit system created by the time-discretization into multiple smaller systems that can be solved sequentially. Included is a test on a basic non-linear problem, with both the results of the test, and the time required to calculate them, compared with control results based on a single system with fine resolution. The method is then tested on a non-trivial problem, its computational time and accuracy checked against control results. In both tests, it was found that the method requires less computational expense than the control. Furthermore, the method showed convergence towards the fine resolution control results.

  9. Rating scale for psychogenic nonepileptic seizures: scale development and clinimetric testing.

    Science.gov (United States)

    Cianci, Vittoria; Ferlazzo, Edoardo; Condino, Francesca; Mauvais, Hélène Somma; Farnarier, Guy; Labate, Angelo; Latella, Maria Adele; Gasparini, Sara; Branca, Damiano; Pucci, Franco; Vazzana, Francesco; Gambardella, Antonio; Aguglia, Umberto

    2011-06-01

    Our aim was to develop a clinimetric scale evaluating motor phenomena, associated features, and severity of psychogenic nonepileptic seizures (PNES). Sixty video/EEG-recorded PNES induced by suggestion maneuvers were evaluated. We examined the relationship between results from this scale and results from the Clinical Global Impression (CGI) scale to validate this technique. Interrater reliabilities of the PNES scale for three raters were analyzed using the AC1 statistic, Kendall's coefficient of concordance (KCC), and intraclass correlation coefficients (ICCs). The relationship between the CGI and PNES scales was evaluated with Spearman correlations. The AC1 statistic demonstrated good interrater reliability for each phenomenon analyzed (tremor/oscillation, tonic; clonic/jerking, hypermotor/agitation, atonic/akinetic, automatisms, associated features). KCC and the ICC showed moderate interrater agreement for phenomenology, associated phenomena, and total PNES scores. Spearman's correlation of mean CGI score with mean total PNES score was 0.69 (Pscale described here accurately evaluates the phenomenology of PNES and could be used to assess and compare subgroups of patients with PNES. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  11. Pre-breakdown light emission phenomena in low-pressure argon between parabolic electrodes

    NARCIS (Netherlands)

    Wagenaars, E.; Perriëns, N.W.B.; Brok, W.J.M.; Bowden, M.D.; Veldhuizen, van E.M.; Kroesen, G.M.W.

    2006-01-01

    An experimental study on pre-breakdown light emission in low-pressure argon gas was performed. In a pulsed discharge, pre-breakdown phenomena were observed for repetition rates between 100 and 2000 Hz and pulse duration of 100 ¿s. These phenomena were studied with time-resolved emission imaging

  12. A permutation-based multiple testing method for time-course microarray experiments

    Directory of Open Access Journals (Sweden)

    George Stephen L

    2009-10-01

    Full Text Available Abstract Background Time-course microarray experiments are widely used to study the temporal profiles of gene expression. Storey et al. (2005 developed a method for analyzing time-course microarray studies that can be applied to discovering genes whose expression trajectories change over time within a single biological group, or those that follow different time trajectories among multiple groups. They estimated the expression trajectories of each gene using natural cubic splines under the null (no time-course and alternative (time-course hypotheses, and used a goodness of fit test statistic to quantify the discrepancy. The null distribution of the statistic was approximated through a bootstrap method. Gene expression levels in microarray data are often complicatedly correlated. An accurate type I error control adjusting for multiple testing requires the joint null distribution of test statistics for a large number of genes. For this purpose, permutation methods have been widely used because of computational ease and their intuitive interpretation. Results In this paper, we propose a permutation-based multiple testing procedure based on the test statistic used by Storey et al. (2005. We also propose an efficient computation algorithm. Extensive simulations are conducted to investigate the performance of the permutation-based multiple testing procedure. The application of the proposed method is illustrated using the Caenorhabditis elegans dauer developmental data. Conclusion Our method is computationally efficient and applicable for identifying genes whose expression levels are time-dependent in a single biological group and for identifying the genes for which the time-profile depends on the group in a multi-group setting.

  13. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  14. Theoretical and experimental notes on noise phenomena of KUR

    International Nuclear Information System (INIS)

    Kishida, Kuniharu

    1980-01-01

    The classification of global or local noise is important in reactor noise analysis. The term of ''global'' or ''local'' corresponds to that of ''system size'' or ''cell size'' in statistical physics. On the other hand, point model or phase space description is used in time series analysis. If a time series model describing spatial behavior is established, it will serve to reactor diagnosis. The noise phenomena of KUR are discussed from these points of view. In other words, from experimental results, the point reactor picture is reasonable to neutronic aspect but quantitative problem remains in coolant temperature fluctuations. By taking into account a diffusion type model, the spatial dependence is discussed for the problem remaining in coolant temperature fluctuations. It is pointed out that the time-space picture is a crucial idea of reactor noise phenomena. (author)

  15. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  16. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  17. Homoclinic phenomena in the gravitational collapse

    International Nuclear Information System (INIS)

    Koiller, J.; Mello Neto, J.R.T. de; Soares, I.D.

    1984-01-01

    A class of Bianchi IX cosmological models is shown to have chaotic gravitational collapse, due to Poincare's homoclinic phenomena. Such models can be programmed so that for any given positive integer N (N=infinity included) the universe undergoes N non-periodic oscillations (each oscillation requiring a long time) before collapsing. For N=infinity the universe undergoes periodic oscillations. (Author) [pt

  18. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.

    Science.gov (United States)

    Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian

    2015-01-01

    Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.

  19. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes

    Science.gov (United States)

    Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian

    2015-01-01

    Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903

  20. Time evolution of multiple quantum coherences in NMR

    International Nuclear Information System (INIS)

    Sanchez, Claudia M.; Pastawski, Horacio M.; Levstein, Patricia R.

    2007-01-01

    In multiple quantum NMR, individual spins become correlated with one another over time through their dipolar couplings. In this way, the usual Zeeman selection rule can be overcome and forbidden transitions can be excited. Experimentally, these multiple quantum coherences (MQC) are formed by the application of appropriate sequences of radio frequency pulses that force the spins to act collectively. 1 H spin coherences of even order up to 16 were excited in a polycrystalline sample of ferrocene (C 5 H 5 ) 2 Fe and up to 32 in adamantane (C 10 H 16 ) and their evolutions studied in different conditions: (a) under the natural dipolar Hamiltonian, H ZZ (free evolution) and with H ZZ canceled out by (b) time reversion or (c) with the MREV8 sequence. The results show that when canceling H ZZ the coherences decay with characteristic times (τ c ∼200 μs), which are more than one order of magnitude longer than those under free evolution (τ c ∼10 μs). In addition, it is observed that with both MREV8 and time reversion sequences, the higher the order of the coherence (larger number of correlated spins) the faster the speed of degradation, as it happens during the evolution with H ZZ . In both systems, it is observed that the sequence of time reversion of the dipolar Hamiltonian preserves coherences for longer times than MREV8

  1. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Anthony B., E-mail: acosta@northwestern.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Green, Jason R., E-mail: jason.green@umb.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125 (United States)

    2013-08-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.

  2. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    International Nuclear Information System (INIS)

    Costa, Anthony B.; Green, Jason R.

    2013-01-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N 2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra

  3. Modelling of Sub-daily Hydrological Processes Using Daily Time-Step Models: A Distribution Function Approach to Temporal Scaling

    Science.gov (United States)

    Kandel, D. D.; Western, A. W.; Grayson, R. B.

    2004-12-01

    Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and

  4. Nonequilibrium Phenomena in Plasmas

    CERN Document Server

    Sharma, A Surjalal

    2005-01-01

    The complexity of plasmas arises mainly from their inherent nonlinearity and far from equilibrium nature. The nonequilibrium behavior of plasmas is evident in the natural settings, for example, in the Earth's magnetosphere. Similarly, laboratory plasmas such as fusion bottles also have their fair share of complex behavior. Nonequilibrium phenomena are intimately connected with statistical dynamics and form one of the growing research areas in modern nonlinear physics. These studies encompass the ideas of self-organization, phase transition, critical phenomena, self-organized criticality and turbulence. This book presents studies of complexity in the context of nonequilibrium phenomena using theory, modeling, simulations, and experiments, both in the laboratory and in nature.

  5. uncertain dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    V. Lakshmikantham

    1995-01-01

    Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.

  6. IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies

    Science.gov (United States)

    Sumy, D. F.; Woodward, R.; Frassetto, A.

    2014-12-01

    The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We

  7. Hydrologic test plans for large-scale, multiple-well tests in support of site characterization at Hanford, Washington

    International Nuclear Information System (INIS)

    Rogers, P.M.; Stone, R.; Lu, A.H.

    1985-01-01

    The Basalt Waste Isolation Project is preparing plans for tests and has begun work on some tests that will provide the data necessary for the hydrogeologic characterization of a site located on a United States government reservation at Hanford, Washington. This site is being considered for the Nation's first geologic repository of high level nuclear waste. Hydrogeologic characterization of this site requires several lines of investigation which include: surface-based small-scale tests, testing performed at depth from an exploratory shaft, geochemistry investigations, regional studies, and site-specific investigations using large-scale, multiple-well hydraulic tests. The large-scale multiple-well tests are planned for several locations in and around the site. These tests are being designed to provide estimates of hydraulic parameter values of the geologic media, chemical properties of the groundwater, and hydrogeologic boundary conditions at a scale appropriate for evaluating repository performance with respect to potential radionuclide transport

  8. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  9. A digital silicon photomultiplier with multiple time-to-digital converters

    Energy Technology Data Exchange (ETDEWEB)

    Garutti, Erika [University Hamburg (Germany); Silenzi, Alessandro [DESY, Hamburg (Germany); Xu, Chen [DESY, Hamburg (Germany); University Hamburg (Germany)

    2013-07-01

    A silicon photomultiplier (SiPM) with pixel level signal digitization and column-wise connected time-to-digital converters (TDCs) has been developed for an endoscopic Positron Emission Tomography (PET) detector. A digital SiPM has pixels consist of a single photon avalanche diode (SPAD) and circuit elements to optimize overall dark counts and temporal response. Compared with conventional analog SiPM, digital SiPM's direct signal route from SPAD to TDC improves single photon time resolution. In addition, using multiple TDCs can perform the statistical estimation of the time-of-arrival in multiple photon detection case such as readout of scintillation crystals. Characterization measurements of the prototype digital SiPM and a Monte-Carlo simulation to predict the timing performance of the PET detector are shown.

  10. Boundary layer phenomena for differential-delay equations with state-dependent time lags, I.

    Science.gov (United States)

    Mallet-Paret, John; Nussbaum, Roger D.

    1992-11-01

    In this paper we begin a study of the differential-delay equation \\varepsilon x'(t) = - x(t) + f(x(t - r)), r = r(x(t)) . We prove the existence of periodic solutions for 0equations. In a companion paper these results will be used to investigate the limiting profile and corresponding boundary layer phenomena for periodic solutions as ɛ approaches zero.

  11. Megascale rhythmic shoreline forms on a beach with multiple bars

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2008-06-01

    Full Text Available The study, carried out in 2003 and 2006 at the Lubiatowo Coastal ResearchStation (Poland, located on the non-tidal southern Baltic coast(tidal range < 0.06 m, focused on larger rhythmic forms (mega-cusps withwavelengths in the interval 500 m > Lc > 20 m. Statistical analyses of detailed shoreline configurations were performed mostly with the Discrete Wavelet Transformmethod (DWT. The beach is composed of fine sand with grain diameter D50 ≈ 0.22 mm, which produces 4 longshore sandbars and a gently sloping seabed with β = 0.015. The analysis confirms the key role of bars in hydro- and morphodynamic surf zone processes.The hypothesis was therefore set up that, in a surf zone with multiple bars, the bars and mega-scale shoreline rhythmic forms form one integrated physical system; experimental evidence to substantiate this hypothesis was also sought.In such a system not only do self-regulation processes include swash zone phenomena, they also incorporate processes in offshore surf zone locations.The longshore dimensions of large cusps are thus related to the distances between periodically active large bed forms (bars. The spatial dimension of bar system activity (number of active bars depends, at a given time scale, on the associated hydrodynamic conditions. It was assumed that such a time scale could include either the development and duration of a storm, or a period of stable, yet distinct waves, capable of remodelling the beach configuration.The indentation to wavelength ratio of mega-cusps for the studied non-tidal dissipative environment may be one order of magnitude greater than for mesotidal, reflective beaches.

  12. Efficiency scale and technological change in credit unions and multiple banks using the COSIF

    Directory of Open Access Journals (Sweden)

    Wanderson Rocha Bittencourt

    2016-08-01

    Full Text Available The modernization of the financial intermediation process and adapting to new technologies, brought adjustments to operational processes, providing the reduction of information borrowing costs, allowing generate greater customer satisfaction, due to increased competitiveness in addition to making gains with long efficiency period. In this context, this research aims to analyze the evolution in scale and technological efficiency of credit and multiple cooperative banks from 2009 to 2013. We used the method of Data Envelopment Analysis - DEA, which allows to calculate the change in efficiency of institutions through the Malmquist Index. The results indicated that institutions that employ larger volumes of assets in the composition of its resources presented evolution in scale and technological efficiency, influencing the change in total factor productivity. It should be noticed that cooperatives had, in some years, advances in technology and scale efficiency higher than banks. However, this result can be explained by the fact that the average efficiency of credit unions have been lower than that of banks in the analyzed sample, indicating that there is greater need to improve internal processes by cooperatives, compared to multiple banks surveyed.

  13. Multi-scale biomedical systems: measurement challenges

    International Nuclear Information System (INIS)

    Summers, R

    2016-01-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper. (paper)

  14. Community males show multiple-perpetrator rape proclivity: development and preliminary validation of an interest scale.

    Science.gov (United States)

    Alleyne, Emma; Gannon, Theresa A; Ó Ciardha, Caoilte; Wood, Jane L

    2014-02-01

    The literature on Multiple Perpetrator Rape (MPR) is scant; however, a significant proportion of sexual offending involves multiple perpetrators. In addition to the need for research with apprehended offenders of MPR, there is also a need to conduct research with members of the general public. Recent advances in the forensic literature have led to the development of self-report proclivity scales. These scales have enabled researchers to conduct evaluative studies sampling from members of the general public who may be perpetrators of sexual offenses and have remained undetected, or at highest risk of engaging in sexual offending. The current study describes the development and preliminary validation of the Multiple-Perpetrator Rape Interest Scale (M-PRIS), a vignette-based measure assessing community males' sexual arousal to MPR, behavioral propensity toward MPR and enjoyment of MPR. The findings show that the M-PRIS is a reliable measure of community males' sexual interest in MPR with high internal reliability and temporal stability. In a sample of university males we found that a large proportion (66%) did not emphatically reject an interest in MPR. We also found that rape-supportive cognitive distortions, antisocial attitudes, and high-risk sexual fantasies were predictors of sexual interest in MPR. We discuss these findings and the implications for further research employing proclivity measures referencing theory development and clinical practice.

  15. A simple analytical scaling method for a scaled-down test facility simulating SB-LOCAs in a passive PWR

    International Nuclear Information System (INIS)

    Lee, Sang Il

    1992-02-01

    A Simple analytical scaling method is developed for a scaled-down test facility simulating SB-LOCAs in a passive PWR. The whole scenario of a SB-LOCA is divided into two phases on the basis of the pressure trend ; depressurization phase and pot-boiling phase. The pressure and the core mixture level are selected as the most critical parameters to be preserved between the prototype and the scaled-down model. In each phase the high important phenomena having the influence on the critical parameters are identified and the scaling parameters governing the high important phenomena are generated by the present method. To validate the model used, Marviken CFT and 336 rod bundle experiment are simulated. The models overpredict both the pressure and two phase mixture level, but it shows agreement at least qualitatively with experimental results. In order to validate whether the scaled-down model well represents the important phenomena, we simulate the nondimensional pressure response of a cold-leg 4-inch break transient for AP-600 and the scaled-down model. The results of the present method are in excellent agreement with those of AP-600. It can be concluded that the present method is suitable for scaling the test facility simulating SB-LOCAs in a passive PWR

  16. Molecular dynamics simulation of shock wave and spallation phenomena in metal foils irradiated by femtosecond laser pulse

    Science.gov (United States)

    Zhakhovsky, Vasily; Demaske, Brian; Inogamov, Nail; Oleynik, Ivan

    2010-03-01

    Femtosecond laser irradiation of metals is an effective technique to create a high-pressure frontal layer of 100-200 nm thickness. The associated ablation and spallation phenomena can be studied in the laser pump-probe experiments. We present results of a large-scale MD simulation of ablation and spallation dynamics developing in 1,2,3μm thick Al and Au foils irradiated by a femtosecond laser pulse. Atomic-scale mechanisms of laser energy deposition, transition from pressure wave to shock, reflection of the shock from the rear-side of the foil, and the nucleation of cracks in the reflected tensile wave, having a very high strain rate, were all studied. To achieve a realistic description of the complex phenomena induced by strong compression and rarefaction waves, we developed new embedded atom potentials for Al and Au based on cold pressure curves. MD simulations revealed the complex interplay between spallation and ablation processes: dynamics of spallation depends on the pressure profile formed in the ablated zone at the early stage of laser energy absorption. It is shown that the essential information such as material properties at high strain rate and spall strength can be extracted from the simulated rear-side surface velocity as a function of time.

  17. Evaluation of scaling invariance embedded in short time series.

    Directory of Open Access Journals (Sweden)

    Xue Pan

    Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  18. Evaluation of scaling invariance embedded in short time series.

    Science.gov (United States)

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  19. Haters Phenomena in Social Media

    OpenAIRE

    Pradipta, Angga; Lailiyah, S.Sos, M.I.Kom, Nuriyatul

    2016-01-01

    Social media is internet-basic media, functioned as interaction media room based on multimedia technology. And social media created some effects. One of the negative effects of social media is haters phenomena. Haters are a person who easily said dirty words, harass, and humiliate to others. This phenomena causes anxiety—especially in Indonesia, even the Government issued public policy and letter of regulation about this phenomena, through Paragraph 27 verse (3) IT Constitution, Paragraph 45 ...

  20. Hierarchical approach to optimization of parallel matrix multiplication on large-scale platforms

    KAUST Repository

    Hasanov, Khalid

    2014-03-04

    © 2014, Springer Science+Business Media New York. Many state-of-the-art parallel algorithms, which are widely used in scientific applications executed on high-end computing systems, were designed in the twentieth century with relatively small-scale parallelism in mind. Indeed, while in 1990s a system with few hundred cores was considered a powerful supercomputer, modern top supercomputers have millions of cores. In this paper, we present a hierarchical approach to optimization of message-passing parallel algorithms for execution on large-scale distributed-memory systems. The idea is to reduce the communication cost by introducing hierarchy and hence more parallelism in the communication scheme. We apply this approach to SUMMA, the state-of-the-art parallel algorithm for matrix–matrix multiplication, and demonstrate both theoretically and experimentally that the modified Hierarchical SUMMA significantly improves the communication cost and the overall performance on large-scale platforms.

  1. Smith predictor-based multiple periodic disturbance compensation for long dead-time processes

    Science.gov (United States)

    Tan, Fang; Li, Han-Xiong; Shen, Ping

    2018-05-01

    Many disturbance rejection methods have been proposed for processes with dead-time, while these existing methods may not work well under multiple periodic disturbances. In this paper, a multiple periodic disturbance rejection is proposed under the Smith predictor configuration for processes with long dead-time. One feedback loop is added to compensate periodic disturbance while retaining the advantage of the Smith predictor. With information of the disturbance spectrum, the added feedback loop can remove multiple periodic disturbances effectively. The robust stability can be easily maintained through the rigorous analysis. Finally, simulation examples demonstrate the effectiveness and robustness of the proposed method for processes with long dead-time.

  2. Super-transient scaling in time-delay autonomous Boolean network motifs

    Energy Technology Data Exchange (ETDEWEB)

    D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  3. Augmented Visual Experience of Simulated Solar Phenomena

    Science.gov (United States)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  4. Scaling Effects on Materials Tribology: From Macro to Micro Scale.

    Science.gov (United States)

    Stoyanov, Pantcho; Chromik, Richard R

    2017-05-18

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.

  5. High Agreement was Obtained Across Scores from Multiple Equated Scales for Social Anxiety Disorder using Item Response Theory.

    Science.gov (United States)

    Sunderland, Matthew; Batterham, Philip; Calear, Alison; Carragher, Natacha; Baillie, Andrew; Slade, Tim

    2018-04-10

    There is no standardized approach to the measurement of social anxiety. Researchers and clinicians are faced with numerous self-report scales with varying strengths, weaknesses, and psychometric properties. The lack of standardization makes it difficult to compare scores across populations that utilise different scales. Item response theory offers one solution to this problem via equating different scales using an anchor scale to set a standardized metric. This study is the first to equate several scales for social anxiety disorder. Data from two samples (n=3,175 and n=1,052), recruited from the Australian community using online advertisements, were utilised to equate a network of 11 self-report social anxiety scales via a fixed parameter item calibration method. Comparisons between actual and equated scores for most of the scales indicted a high level of agreement with mean differences <0.10 (equivalent to a mean difference of less than one point on the standardized metric). This study demonstrates that scores from multiple scales that measure social anxiety can be converted to a common scale. Re-scoring observed scores to a common scale provides opportunities to combine research from multiple studies and ultimately better assess social anxiety in treatment and research settings. Copyright © 2018. Published by Elsevier Inc.

  6. Rhythmical Phenomena in Dermal Perfusion - Proved Assesment Strategies and new Discoveries

    Directory of Open Access Journals (Sweden)

    Markus Huelsbusch

    2005-01-01

    Full Text Available The phenomena of rhythm fluctuation of arterial blood pressure were discovered already in the first continuous recordings in the 18th century. However the formation of such rhythms hasn’t been explained until now. This work presents two concepts which could aid in bringing new insights into the understanding of these rhythms. One development is a multisensor system capable to acquire multiple PPG channels, ECG and additionally breathing signals to correlate local and central driven oscillations. The second new development is Photoplethysmography Imaging which allows contactless measurements of cutaneous perfusion with spatial resolution. Together with the necessary mathematical analysis tools like the Wavelet Transform a sound basis for assessment and evaluation of rhythm fluctuations in human hemodynamics is provided. Using the presented framework new, previously unreported phenomena of distributed blood volume movements in dermal perfusion could be observed.

  7. Neighborhood street scale elements, sedentary time and cardiometabolic risk factors in inactive ethnic minority women.

    Science.gov (United States)

    Lee, Rebecca E; Mama, Scherezade K; Adamus-Leach, Heather J

    2012-01-01

    Cardiometabolic risk factors such as obesity, excess percent body fat, high blood pressure, elevated resting heart rate and sedentary behavior have increased in recent decades due to changes in the environment and lifestyle. Neighborhood micro-environmental, street scale elements may contribute to health above and beyond individual characteristics of residents. To investigate the relationship between neighborhood street scale elements and cardiometabolic risk factors among inactive ethnic minority women. Women (N = 410) completed measures of BMI, percent body fat, blood pressure, resting heart rate, sedentary behavior and demographics. Trained field assessors completed the Pedestrian Environment Data Scan in participants' neighborhoods. Data were collected from 2006-2008. Multiple regression models were conducted in 2011 to estimate the effect of environmental factors on cardiometabolic risk factors. Adjusted regression models found an inverse association between sidewalk buffers and blood pressure, between traffic control devices and resting heart rate, and a positive association between presence of pedestrian crossing aids and BMI (psattractiveness and safety for walking and cycling were related to more time spent in a motor vehicle (psrelationships among micro-environmental, street scale elements that may confer important cardiometabolic benefits and risks for residents. Living in the most attractive and safe neighborhoods for physical activity may be associated with longer times spent sitting in the car.

  8. Multiple sclerosis: Left advantage for auditory laterality in dichotic tests of central auditory processing and relationship of psychoacoustic tests with the Multiple Sclerosis Disability Scale-EDSS.

    Science.gov (United States)

    Peñaloza López, Yolanda Rebeca; Orozco Peña, Xóchitl Daisy; Pérez Ruiz, Santiago Jesús

    2018-04-03

    To evaluate the central auditory processing disorders in patients with multiple sclerosis, emphasizing auditory laterality by applying psychoacoustic tests and to identify their relationship with the Multiple Sclerosis Disability Scale (EDSS) functions. Depression scales (HADS), EDSS, and 9 psychoacoustic tests to study CAPD were applied to 26 individuals with multiple sclerosis and 26 controls. Correlation tests were performed between the EDSS and psychoacoustic tests. Seven out of 9 psychoacoustic tests were significantly different (P<.05); right or left (14/19 explorations) with respect to control. In dichotic digits there was a left-ear advantage compared to the usual predominance of RDD. There was significant correlation in five psychoacoustic tests and the specific functions of EDSS. The left-ear advantage detected and interpreted as an expression of deficient influences of the corpus callosum and attention in multiple sclerosis should be investigated. There was a correlation between psychoacoustic tests and specific EDSS functions. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  10. Dynamics symmetries of Hamiltonian system on time scales

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  11. Personality factors in recently diagnosed multiple sclerosis patients: a preliminary investigation with the NEO-FFI scale

    Directory of Open Access Journals (Sweden)

    Aline Braz de Lima

    2015-03-01

    Full Text Available This article describes some prevalent personality dimensions of recently diagnosed multiple sclerosis patients. A sample of 33 female recently diagnosed with relapsing-remitting multiple sclerosis (RRMS was assessed with the NEO-FFI personality scale. Beck depression (BDI and anxiety (BAI scales were also used. No significant levels of anxiety or depression were identified in this group. As for personality factors, conscientiousness was the most common factor found, whereas openness to experience was the least observed. Literature on the relationship between personality and MS is scarce and there are no Brazilian studies on this subject. Some personality traits might complicate or facilitate the experience of living with a chronic, disabling and uncertain neurological condition such as MS.

  12. Teaching optical phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  13. Improving seasonal forecasts of hydroclimatic variables through the state of multiple large-scale climate signals

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Block, P. J.

    2017-12-01

    Increasingly uncertain hydrologic regimes combined with more frequent and intense extreme events are challenging water systems management worldwide, emphasizing the need of accurate medium- to long-term predictions to timely prompt anticipatory operations. Despite modern forecasts are skillful over short lead time (from hours to days), predictability generally tends to decrease on longer lead times. Global climate teleconnection, such as El Niño Southern Oscillation (ENSO), may contribute in extending forecast lead times. However, ENSO teleconnection is well defined in some locations, such as Western USA and Australia, while there is no consensus on how it can be detected and used in other regions, particularly in Europe, Africa, and Asia. In this work, we generalize the Niño Index Phase Analysis (NIPA) framework by contributing the Multi Variate Niño Index Phase Analysis (MV-NIPA), which allows capturing the state of multiple large-scale climate signals (i.e. ENSO, North Atlantic Oscillation, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Indian Ocean Dipole) to forecast hydroclimatic variables on a seasonal time scale. Specifically, our approach distinguishes the different phases of the considered climate signals and, for each phase, identifies relevant anomalies in Sea Surface Temperature (SST) that influence the local hydrologic conditions. The potential of the MV-NIPA framework is demonstrated through an application to the Lake Como system, a regulated lake in northern Italy which is mainly operated for flood control and irrigation supply. Numerical results show high correlations between seasonal SST values and one season-ahead precipitation in the Lake Como basin. The skill of the resulting MV-NIPA forecast outperforms the one of ECMWF products. This information represents a valuable contribution to partially anticipate the summer water availability, especially during drought events, ultimately supporting the improvement of the Lake Como

  14. A general real-time formulation for multi-rate mass transfer problems

    Directory of Open Access Journals (Sweden)

    O. Silva

    2009-08-01

    Full Text Available Many flow and transport phenomena, ranging from delayed storage in pumping tests to tailing in river or aquifer tracer breakthrough curves or slow kinetics in reactive transport, display non-equilibrium (NE behavior. These phenomena are usually modeled by non-local in time formulations, such as multi-porosity, multiple processes non equilibrium, continuous time random walk, memory functions, integro-differential equations, fractional derivatives or multi-rate mass transfer (MRMT, among others. We present a MRMT formulation that can be used to represent all these models of non equilibrium. The formulation can be extended to non-linear phenomena. Here, we develop an algorithm for linear mass transfer, which is accurate, computationally inexpensive and easy to implement in existing groundwater or river flow and transport codes. We illustrate this approach by application to published data involving NE groundwater flow and solute transport in rivers and aquifers.

  15. Passage times of asymmetric anomalous walks with multiple paths

    International Nuclear Information System (INIS)

    Caceres, Manuel O; Insua, G Liliana

    2005-01-01

    We investigate the transient and the long-time behaviour of asymmetric anomalous walks in heterogeneous media. Two types of disorder are worked out explicitly: weak and strong disorder; in addition, the occurrence of disordered multiple paths is considered. We calculate the first passage time distribution of the associated stochastic transport process. We discuss the occurrence of the crossover from a power law to an exponential decay for the long-time behaviour of the distribution of the first passage times of disordered biased walks

  16. Hadron--hadron reactions, high multiplicity

    International Nuclear Information System (INIS)

    Diebold, R.

    1978-09-01

    A coverage of results on high energy and high multiplicity hadron reactions, charm searches and related topics, ultrahigh energy events and exotic phenomena (cosmic rays), and the nuclear effects in high energy collisions and related topics is discussed. 67 references

  17. Astrophysical constraints on Planck scale dissipative phenomena.

    Science.gov (United States)

    Liberati, Stefano; Maccione, Luca

    2014-04-18

    The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.

  18. Comprehensive assessments of measures mitigating heat island phenomena in urban areas; Heat shinku wo riyoshita daikibo reibo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T; Yamamoto, S; Yoshikado, H; Kondo, H; Kaneho, N; Saegusa, N; Inaba, A [National Institute for Resources and Environment, Tsukuba (Japan); Inoue, M [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    This paper describes the assessment method of measures mitigating heat island phenomena in urban areas. The heat island phenomena were classified into meso-scale with 100 km-scale, block-scale with several km-scale, and building-scale with 100 m-scale. Urban thermal environment simulation model was developed in response to each scale. For the development, regional data using aircraft and artificial satellite observations, surface observation and thermal environment observation at Shinjuku new central city of Tokyo, and artificial waste heat actual survey data in the southern Kanto district were utilized. Results of the urban thermal environment simulation were introduced as an application of this model. Temperature distributions of the heat island in the Kanto district were simulated with considering urban conditions near Tokyo and without considering it. Daily changes of wall surfaces of high buildings and road surface were calculated. Increase in the air temperature in the back stream of building roofs with increased temperature was determined. 4 figs.

  19. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  20. Frontiers in transport phenomena research and education: Energy systems, biological systems, security, information technology and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, T.L.; Faghri, A. [Department of Mechanical Engineering, The University of Connecticut, Storrs, CT 06269-3139 (United States); Viskanta, R. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States)

    2008-09-15

    A US National Science Foundation-sponsored workshop entitled ''Frontiers in Transport Phenomena Research and Education: Energy Systems, Biological Systems, Security, Information Technology, and Nanotechnology'' was held in May of 2007 at the University of Connecticut. The workshop provided a venue for researchers, educators and policy-makers to identify frontier challenges and associated opportunities in heat and mass transfer. Approximately 300 invited participants from academia, business and government from the US and abroad attended. Based upon the final recommendations on the topical matter of the workshop, several trends become apparent. A strong interest in sustainable energy is evident. A continued need to understand the coupling between broad length (and time) scales persists, but the emerging need to better understand transport phenomena at the macro/mega scale has evolved. The need to develop new metrology techniques to collect and archive reliable property data persists. Societal sustainability received major attention in two of the reports. Matters involving innovation, entrepreneurship, and globalization of the engineering profession have emerged, and the responsibility to improve the technical literacy of the public-at-large is discussed. Integration of research thrusts and education activities is highlighted throughout. Specific recommendations, made by the panelists with input from the international heat transfer community and directed to the National Science Foundation, are included in several reports. (author)

  1. Microsecond time-scale kinetics of transient biochemical reactions

    NARCIS (Netherlands)

    Mitic, S.; Strampraad, M.J.F.; Hagen, W.R.; de Vries, S.

    2017-01-01

    To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs

  2. Full-scale and time-scale heating experiments at Stripa: preliminary results. Technical project report No. 11

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, M.

    1978-12-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  3. Multi-scale modeling with cellular automata: The complex automata approach

    NARCIS (Netherlands)

    Hoekstra, A.G.; Falcone, J.-L.; Caiazzo, A.; Chopard, B.

    2008-01-01

    Cellular Automata are commonly used to describe complex natural phenomena. In many cases it is required to capture the multi-scale nature of these phenomena. A single Cellular Automata model may not be able to efficiently simulate a wide range of spatial and temporal scales. It is our goal to

  4. Time for memory

    DEFF Research Database (Denmark)

    Murakami, Kyoko

    2012-01-01

    This article is a continuous dialogue on memory triggered by Brockmeier’s (2010) article. I drift away from the conventionalization of the archive as a spatial metaphor for memory in order to consider the greater possibility of “time” for conceptualizing memory. The concept of time is central...... in terms of autobiographical memory. The second category of time is discussed, drawing on Augustine and Bergson amongst others. Bergson’s notion of duration has been considered as a promising concept for a better understanding of autobiographical memory. Psychological phenomena such as autobiographical...... memory should embrace not only spatial dimension, but also a temporal dimension, in which a constant flow of irreversible time, where multiplicity, momentarily, dynamic stability and becoming and emergence of novelty can be observed....

  5. Length and time scales of atmospheric moisture recycling

    Directory of Open Access Journals (Sweden)

    R. J. van der Ent

    2011-03-01

    Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.

  6. Seeing the forest through the trees: Considering roost-site selection at multiple spatial scales

    Science.gov (United States)

    Jachowski, David S.; Rota, Christopher T.; Dobony, Christopher A.; Ford, W. Mark; Edwards, John W.

    2016-01-01

    Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural

  7. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    Science.gov (United States)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  8. Emergent Phenomena at Oxide Interfaces

    International Nuclear Information System (INIS)

    Hwang, H.Y.

    2012-01-01

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r → -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t → -t. In quantum mechanics, the time-evolution of the wave-function Ψ is given by the phase factor e -iEt/h b ar with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign

  9. Sensory and Instrumental Flavor Changes in Green Tea Brewed Multiple Times

    Science.gov (United States)

    Lee, Jeehyun; Chambers, Delores; Chambers, Edgar

    2013-01-01

    Green teas in leaf form are brewed multiple times, a common selling point. However, the flavor changes, both sensory and volatile compounds, of green teas that have been brewed multiple times are unknown. The objectives of this study were to determine how the aroma and flavor of green teas change as they are brewed multiple times, to determine if a relationship exists between green tea flavors and green tea volatile compounds, and to suggest the number of times that green tea leaves can be brewed. The first and second brews of the green tea samples provided similar flavor intensities. The third and fourth brews provided milder flavors and lower bitterness and astringency when measured using descriptive sensory analysis. In the brewed liquor of green tea mostly linalool, nonanal, geraniol, jasmone, and β-ionone volatile compounds were present at low levels (using gas chromatography-mass spectrometry). The geraniol, linalool, and linalool oxide compounds in green tea may contribute to the floral/perfumy flavor. Green teas in leaf form may be brewed up to four times: the first two brews providing stronger flavor, bitterness, and astringency whereas the third and fourth brews will provide milder flavor, bitterness, and astringency. PMID:28239138

  10. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  11. Large Deviations for Two-Time-Scale Diffusions, with Delays

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2010-01-01

    We consider the problem of large deviations for a two-time-scale reflected diffusion process, possibly with delays in the dynamical terms. The Dupuis-Ellis weak convergence approach is used. It is perhaps the most intuitive and simplest for the problems of concern. The results have applications to the problem of approximating optimal controls for two-time-scale systems via use of the averaged equation.

  12. Some New Inequalities of Opial's Type on Time Scales

    Directory of Open Access Journals (Sweden)

    Samir H. Saker

    2012-01-01

    Full Text Available We will prove some new dynamic inequalities of Opial's type on time scales. The results not only extend some results in the literature but also improve some of them. Some continuous and discrete inequalities are derived from the main results as special cases. The results can be applied on the study of distribution of generalized zeros of half-linear dynamic equations on time scales.

  13. A non-stationary relationship between global climate phenomena and human plague incidence in Madagascar.

    Science.gov (United States)

    Kreppel, Katharina S; Caminade, Cyril; Telfer, Sandra; Rajerison, Minoarison; Rahalison, Lila; Morse, Andy; Baylis, Matthew

    2014-10-01

    Plague, a zoonosis caused by Yersinia pestis, is found in Asia and the Americas, but predominantly in Africa, with the island of Madagascar reporting almost one third of human cases worldwide. Plague's occurrence is affected by local climate factors which in turn are influenced by large-scale climate phenomena such as the El Niño Southern Oscillation (ENSO). The effects of ENSO on regional climate are often enhanced or reduced by a second large-scale climate phenomenon, the Indian Ocean Dipole (IOD). It is known that ENSO and the IOD interact as drivers of disease. Yet the impacts of these phenomena in driving plague dynamics via their effect on regional climate, and specifically contributing to the foci of transmission on Madagascar, are unknown. Here we present the first analysis of the effects of ENSO and IOD on plague in Madagascar. We use a forty-eight year monthly time-series of reported human plague cases from 1960 to 2008. Using wavelet analysis, we show that over the last fifty years there have been complex non-stationary associations between ENSO/IOD and the dynamics of plague in Madagascar. We demonstrate that ENSO and IOD influence temperature in Madagascar and that temperature and plague cycles are associated. The effects on plague appear to be mediated more by temperature, but precipitation also undoubtedly influences plague in Madagascar. Our results confirm a relationship between plague anomalies and an increase in the intensity of ENSO events and precipitation. This work widens the understanding of how climate factors acting over different temporal scales can combine to drive local disease dynamics. Given the association of increasing ENSO strength and plague anomalies in Madagascar it may in future be possible to forecast plague outbreaks in Madagascar. The study gives insight into the complex and changing relationship between climate factors and plague in Madagascar.

  14. A non-stationary relationship between global climate phenomena and human plague incidence in Madagascar.

    Directory of Open Access Journals (Sweden)

    Katharina S Kreppel

    2014-10-01

    Full Text Available Plague, a zoonosis caused by Yersinia pestis, is found in Asia and the Americas, but predominantly in Africa, with the island of Madagascar reporting almost one third of human cases worldwide. Plague's occurrence is affected by local climate factors which in turn are influenced by large-scale climate phenomena such as the El Niño Southern Oscillation (ENSO. The effects of ENSO on regional climate are often enhanced or reduced by a second large-scale climate phenomenon, the Indian Ocean Dipole (IOD. It is known that ENSO and the IOD interact as drivers of disease. Yet the impacts of these phenomena in driving plague dynamics via their effect on regional climate, and specifically contributing to the foci of transmission on Madagascar, are unknown. Here we present the first analysis of the effects of ENSO and IOD on plague in Madagascar.We use a forty-eight year monthly time-series of reported human plague cases from 1960 to 2008. Using wavelet analysis, we show that over the last fifty years there have been complex non-stationary associations between ENSO/IOD and the dynamics of plague in Madagascar. We demonstrate that ENSO and IOD influence temperature in Madagascar and that temperature and plague cycles are associated. The effects on plague appear to be mediated more by temperature, but precipitation also undoubtedly influences plague in Madagascar. Our results confirm a relationship between plague anomalies and an increase in the intensity of ENSO events and precipitation.This work widens the understanding of how climate factors acting over different temporal scales can combine to drive local disease dynamics. Given the association of increasing ENSO strength and plague anomalies in Madagascar it may in future be possible to forecast plague outbreaks in Madagascar. The study gives insight into the complex and changing relationship between climate factors and plague in Madagascar.

  15. Introduction to wave scattering, localization, and mesoscopic phenomena

    CERN Document Server

    Sheng, Ping

    1995-01-01

    This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)

  16. Tidal Channel Diatom Assemblages Reflect within Wetland Environmental Conditions and Land Use at Multiple Scales

    Science.gov (United States)

    We characterized regional patterns of the tidal channel benthic diatom community and examined the relative importance of local wetland and surrounding landscape level factors measured at multiple scales in structuring this assemblage. Surrounding land cover was characterized at ...

  17. Student-directed investigation of natural phenomena: Using digital simulations to achieve NGSS-aligned 3D learning in middle school

    Science.gov (United States)

    Selvans, M. M.; Spafford, C. D.

    2016-12-01

    Many Earth Science phenomena cannot be observed directly because they happen slowly (e.g., Plate Motion) or at large spatial scales (e.g., Weather Patterns). Such topics are investigated by scientists through analysis of large data sets, numerical modeling, and laboratory studies that isolate aspects of the overall phenomena. Middle school students have limited time and lab equipment in comparison, but can employ authentic science practices through investigations using interactive digital simulations (sims). Designing a sim aligned to the Next Generation Science Standards (NGSS) allows students to explore and connect to science ideas in a seamless and supportive way that also deepens their understanding of the phenomena. We helped develop seven units, including the two above, that cover the middle school Earth Science Disciplinary Core Ideas and give students exposure to the other two dimensions of the NGSS (science practices and cross-cutting concepts). These units are developed by the Learning Design Group and Amplify Science. Sims are key to how students engage in 3D learning in these units. For example, in the Rock Transformations Sim students can investigate the ideas that energy from the sun and from Earth's interior can transform rock, and that the transformation processes change the Earth's surface at varying time and spatial scales (ESS2.A). Students can choose and selectively apply transformation processes (melting, weathering, etc.) or energy sources to rock in a cross-section landscape to explore their effects. Students are able to plan steps for making a particular rock transformation happen and carry out their own investigations. A benefit of using a digital platform for student learning is the ability to embed formative assessment. When students plan and carry out missions to achieve specific objectives, the digital platform can capture a record of their actions to measure how they apply science ideas from instruction. Data of these actions, combined

  18. A Multiple-Item Scale for Assessing E-Government Service Quality

    Science.gov (United States)

    Papadomichelaki, Xenia; Mentzas, Gregoris

    A critical element in the evolution of e-governmental services is the development of sites that better serve the citizens’ needs. To deliver superior service quality, we must first understand how citizens perceive and evaluate online citizen service. This involves defining what e-government service quality is, identifying its underlying dimensions, and determining how it can be conceptualized and measured. In this article we conceptualise an e-government service quality model (e-GovQual) and then we develop, refine, validate, confirm and test a multiple-item scale for measuring e-government service quality for public administration sites where citizens seek either information or services.

  19. National Earthquake Information Center Seismic Event Detections on Multiple Scales

    Science.gov (United States)

    Patton, J.; Yeck, W. L.; Benz, H.; Earle, P. S.; Soto-Cordero, L.; Johnson, C. E.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (NEIC) monitors seismicity on local, regional, and global scales using automatic picks from more than 2,000 near-real time seismic stations. This presents unique challenges in automated event detection due to the high variability in data quality, network geometries and density, and distance-dependent variability in observed seismic signals. To lower the overall detection threshold while minimizing false detection rates, NEIC has begun to test the incorporation of new detection and picking algorithms, including multiband (Lomax et al., 2012) and kurtosis (Baillard et al., 2014) pickers, and a new bayesian associator (Glass 3.0). The Glass 3.0 associator allows for simultaneous processing of variably scaled detection grids, each with a unique set of nucleation criteria (e.g., nucleation threshold, minimum associated picks, nucleation phases) to meet specific monitoring goals. We test the efficacy of these new tools on event detection in networks of various scales and geometries, compare our results with previous catalogs, and discuss lessons learned. For example, we find that on local and regional scales, rapid nucleation of small events may require event nucleation with both P and higher-amplitude secondary phases (e.g., S or Lg). We provide examples of the implementation of a scale-independent associator for an induced seismicity sequence (local-scale), a large aftershock sequence (regional-scale), and for monitoring global seismicity. Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic kurtosis-based P-and S-phase picker designed for local seismic networks. Bulletin of the Seismological Society of America, 104(1), 394-409. Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic picker developments and optimization: FilterPicker - a robust, broadband picker for real-time seismic monitoring and earthquake early-warning, Seism. Res. Lett. , 83, 531-540, doi: 10

  20. Nanoscale and microscale phenomena fundamentals and applications

    CERN Document Server

    Khandekar, Sameer

    2015-01-01

    The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.