WorldWideScience

Sample records for multiple sensor platform

  1. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori

    2017-08-28

    Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.

  2. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori

    2017-01-01

    Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954

  3. Wireless sensor platform

    Science.gov (United States)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  4. Efficient Sensor Integration on Platforms (NeXOS)

    Science.gov (United States)

    Memè, S.; Delory, E.; Del Rio, J.; Jirka, S.; Toma, D. M.; Martinez, E.; Frommhold, L.; Barrera, C.; Pearlman, J.

    2016-12-01

    In-situ ocean observing platforms provide power and information transmission capability to sensors. Ocean observing platforms can be mobile, such as ships, autonomous underwater vehicles, drifters and profilers, or fixed, such as buoys, moorings and cabled observatories. The process of integrating sensors on platforms can imply substantial engineering time and resources. Constraints range from stringent mechanical constraints to proprietary communication and control firmware. In NeXOS, the implementation of a PUCK plug and play capability is being done with applications to multiple sensors and platforms. This is complemented with a sensor web enablement that addresses the flow of information from sensor to user. Open standards are being tested in order to assess their costs and benefits in existing and future observing systems. Part of the testing implied open-source coding and hardware prototyping of specific control devices in particular for closed commercial platforms where firmware upgrading is not straightforward or possible without prior agreements or service fees. Some platform manufacturers such as European companies ALSEAMAR[1] and NKE Instruments [2] are currently upgrading their control and communication firmware as part of their activities in NeXOS. The sensor development companies Sensorlab[3] SMID[4] and TRIOS [5]upgraded their firmware with this plug and play functionality. Other industrial players in Europe and the US have been sent NeXOS sensors emulators to test the new protocol on their platforms. We are currently demonstrating that with little effort, it is also possible to have such middleware implemented on very low-cost compact computers such as the open Raspberry Pi[6], and have a full end-to-end interoperable communication path from sensor to user with sensor plug and play capability. The result is an increase in sensor integration cost-efficiency and the demonstration will be used to highlight the benefit to users and ocean observatory

  5. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring.

    Science.gov (United States)

    Wu, Chun-Chang; Chuang, Wen-Yu; Wu, Ching-Da; Su, Yu-Cheng; Huang, Yung-Yang; Huang, Yang-Jing; Peng, Sheng-Yu; Yu, Shih-An; Lin, Chih-Ting; Lu, Shey-Shi

    2017-03-29

    A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO₂ detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO₂ sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO₂/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations.

  6. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Chun-Chang Wu

    2017-03-01

    Full Text Available A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO2 detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO2 sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS system-on-chip (SoC is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE, an analog-to-digital convertor (ADC, a digital controller and a power management unit (PMU. Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO2/Humidity sensing platform that demonstrates a true self-powering functionality for long-term operations.

  7. Design and testing of a multi-sensor pedestrian location and navigation platform.

    Science.gov (United States)

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  8. A Synchronous Multi-Body Sensor Platform in a Wireless Body Sensor Network: Design and Implementation

    Science.gov (United States)

    Gil, Yeongjoon; Wu, Wanqing; Lee, Jungtae

    2012-01-01

    Background Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner. Object This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG) and simultaneously producing synchronous signals on a Wireless Body Sensor Network. Design We designed and implemented a platform for multiple bio-signals using Bluetooth communication. Results First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board. Conclusion A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals. PMID:23112605

  9. A Synchronous Multi-Body Sensor Platform in a Wireless Body Sensor Network: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Jungtae Lee

    2012-07-01

    Full Text Available Background: Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner. Object: This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG and simultaneously producing synchronous signals on a Wireless Body Sensor Network. Design: We designed and implemented a platform for multiple bio-signals using Bluetooth communication. Results: First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board. Conclusion: A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals.

  10. A Novel Optical Sensor Platform Designed for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Yang, Shuo; Zhou, Bochao; Sun, Tong; Grattan, Kenneth T V

    2013-01-01

    This paper presents a novel design of an optical sensor platform, enabling effective integration of a number of optical fibre ('wired') sensors with wireless sensor networks (WSNs). In this work, a fibre Bragg grating-based temperature sensor with low power consumption is specially designed as a sensing module and integrated successfully into a WSN, making full use of the advantages arising from both the advanced optical sensor designs and the powerful network functionalities resident in WSNs. The platform is expected to make an important impact on many applications, where either the conventional optical sensor designs or WSNs alone cannot meet the requirements.

  11. Stargate-based Acoustic Sensor Platform

    OpenAIRE

    Hanbiao Wang; Kung Yao; Deborah Estrin

    2004-01-01

    To facilitate the study of the wireless sensor network for demanding acoustic monitoring of long distance sources, we recently have also started working on the development of a new generation of wireless acoustic sensor network platform using the Stargate nodes. The 400 MHz PXA-255 XScale processor and the 64 MB SDRAM provide the Stargate platform a decent processing capability. The VX Pocket 440 sound card with four external microphones are attached to each Stargate node through the PCMCIA s...

  12. New Digital Metal-Oxide (MOx Sensor Platform

    Directory of Open Access Journals (Sweden)

    Daniel Rüffer

    2018-03-01

    Full Text Available The application of metal oxide gas sensors in Internet of Things (IoT devices and mobile platforms like wearables and mobile phones offers new opportunities for sensing applications. Metal-oxide (MOx sensors are promising candidates for such applications, thanks to the scientific progresses achieved in recent years. For the widespread application of MOx sensors, viable commercial offerings are required. In this publication, the authors show that with the new Sensirion Gas Platform (SGP a milestone in the commercial application of MOx technology has been reached. The architecture of the new platform and its performance in selected applications are presented.

  13. Distributed data fusion across multiple hard and soft mobile sensor platforms

    Science.gov (United States)

    Sinsley, Gregory

    One of the biggest challenges currently facing the robotics field is sensor data fusion. Unmanned robots carry many sophisticated sensors including visual and infrared cameras, radar, laser range finders, chemical sensors, accelerometers, gyros, and global positioning systems. By effectively fusing the data from these sensors, a robot would be able to form a coherent view of its world that could then be used to facilitate both autonomous and intelligent operation. Another distinct fusion problem is that of fusing data from teammates with data from onboard sensors. If an entire team of vehicles has the same worldview they will be able to cooperate much more effectively. Sharing worldviews is made even more difficult if the teammates have different sensor types. The final fusion challenge the robotics field faces is that of fusing data gathered by robots with data gathered by human teammates (soft sensors). Humans sense the world completely differently from robots, which makes this problem particularly difficult. The advantage of fusing data from humans is that it makes more information available to the entire team, thus helping each agent to make the best possible decisions. This thesis presents a system for fusing data from multiple unmanned aerial vehicles, unmanned ground vehicles, and human observers. The first issue this thesis addresses is that of centralized data fusion. This is a foundational data fusion issue, which has been very well studied. Important issues in centralized fusion include data association, classification, tracking, and robotics problems. Because these problems are so well studied, this thesis does not make any major contributions in this area, but does review it for completeness. The chapter on centralized fusion concludes with an example unmanned aerial vehicle surveillance problem that demonstrates many of the traditional fusion methods. The second problem this thesis addresses is that of distributed data fusion. Distributed data fusion

  14. Multi-function microfluidic platform for sensor integration.

    Science.gov (United States)

    Fernandes, Ana C; Semenova, Daria; Panjan, Peter; Sesay, Adama M; Gernaey, Krist V; Krühne, Ulrich

    2018-03-06

    The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening in bioprocesses. This platform is compatible with different sensor formats by enabling their replacement and was built in order to be highly flexible and thus suitable for a wide range of applications. Moreover, this re-usable platform can easily be connected to analytical equipment, such as HPLC, laboratory scale reactors or other microfluidic chips through the use of standardized fittings. In addition, the developed platform includes a two-sensor system interspersed with a mixing channel, which allows the detection of samples that might be outside the first sensor's range of detection, through dilution of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate solutions for up to 12 h. Furthermore, the influence of the fluid velocity on substrate diffusion was observed, indicating the need for in-flow calibration to achieve a good quantitative output. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. RadMAP: The Radiological Multi-sensor Analysis Platform

    International Nuclear Information System (INIS)

    Bandstra, Mark S.; Aucott, Timothy J.; Brubaker, Erik; Chivers, Daniel H.; Cooper, Reynold J.; Curtis, Joseph C.; Davis, John R.; Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J.; Srinivasan, Shreyas; Zakhor, Avideh; Zhang, Richard; Vetter, Kai

    2016-01-01

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  16. RadMAP: The Radiological Multi-sensor Analysis Platform

    Energy Technology Data Exchange (ETDEWEB)

    Bandstra, Mark S., E-mail: msbandstra@lbl.gov [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Aucott, Timothy J. [Department of Nuclear Engineering, University of California Berkeley, CA (United States); Brubaker, Erik [Sandia National Laboratory, Livermore, CA (United States); Chivers, Daniel H.; Cooper, Reynold J. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Curtis, Joseph C. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Nuclear Engineering, University of California Berkeley, CA (United States); Davis, John R. [Department of Nuclear Engineering, University of California Berkeley, CA (United States); Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Srinivasan, Shreyas [Department of Nuclear Engineering, University of California Berkeley, CA (United States); Department of Electrical Engineering and Computer Science, University of California Berkeley, CA (United States); Zakhor, Avideh; Zhang, Richard [Department of Electrical Engineering and Computer Science, University of California Berkeley, CA (United States); Vetter, Kai [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Nuclear Engineering, University of California Berkeley, CA (United States)

    2016-12-21

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  17. SREQP: A Solar Radiation Extraction and Query Platform for the Production and Consumption of Linked Data from Weather Stations Sensors

    Directory of Open Access Journals (Sweden)

    José Luis Sánchez-Cervantes

    2016-01-01

    Full Text Available Nowadays, solar radiation information is provided from sensors installed in different geographic locations and platforms of meteorological agencies. However, common formats such as PDF files and HTML documents to provide solar radiation information do not offer semantics in their content, and they may pose problems to integrate and fuse data from multiple resources. One of the challenges of sensors Web is the unification of data from multiple sources, although this type of information facilitates interoperability with other sensor Web systems. This research proposes architecture SREQP (Solar Radiation Extraction and Query Platform to extract solar radiation data from multiple external sources and merge them on a single and unique platform. SREQP makes use of Linked Data to generate a set of triples containing information about extracted data, which allows final users to query data through a SPARQL endpoint. The conceptual model was developed by using known vocabularies, such as SSN or WGS84. Moreover, an Analytic Hierarchy Process was carried out for the evaluation of SREQP in order to identify and evaluate the main features of Linked-Sensor-Data and the sensor Web systems. Results from the evaluation indicated that SREQP contained most of the features considered essential in Linked-Sensor-Data and sensor Web systems.

  18. SENSOR.awi.de: Management of heterogeneous platforms and sensors

    OpenAIRE

    Koppe, Roland; Gerchow, Peter; Macario, Ana; Haas, Antonie; Schäfer-Neth, Christian; Rehmcke, Steven; Walter, Andreas; Düde, Tobias; Weidinger, Philipp; Schäfer, Angela; Pfeiffenberger, Hans

    2018-01-01

    SENSOR.awi.de is a component of our data flow framework designed to enable a semi-automated flow of sensor observations to archives (acronym O2A). The dramatic increase in the number and type of platforms and respective sensors operated by Alfred Wegener Institute along with complex project-driven requirements in terms of satellite communication, sensor monitoring, quality control and validation, processing pipelines, visualization, and archival under FAIR principles, led us to build a g...

  19. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    Science.gov (United States)

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  20. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    Science.gov (United States)

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396

  1. Open-WiSe: a solar powered wireless sensor network platform.

    Science.gov (United States)

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  2. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    Directory of Open Access Journals (Sweden)

    Hsien-Chin Wei

    2017-02-01

    Full Text Available Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA platform. An adjustable microampere constant-current (AMCC source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives.

  3. SERS sensors for DVD platform

    DEFF Research Database (Denmark)

    Brøgger, Anna Line

    This Ph.D. thesis explores the engineering of a portable sensor system for detection of rare and small molecules. The Ph.D. project is part of the research project 'Multi-Sensor DVD platform' (MUSE), aiming to integrate different sensors on a rotating disc. The sensors are chosen to complement each...... other, creating more reliable and stable results for the end user. The rotating disc comprises microfluidic channels, which can be utilized for handling and manipulating liquid samples such as blood or water. The focus of this Ph.D. thesis, is on the integration of one specific sensor on a rotating disc....... The sensor is based upon surface enhanced Raman spectroscopy (SERS), which detects molecular vibrations. The aim of this thesis is to cover the different aspects of the sensor system. SERS substrates, consisting of nanopillars with gold or silver caps on top, have been fabricated by standard micro and nano...

  4. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    Directory of Open Access Journals (Sweden)

    Arthur Edwards

    2012-06-01

    Full Text Available Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe. The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  5. A body sensor platform for concurrent applications

    NARCIS (Netherlands)

    Bui, T.V.; Verhoeven, R.; Lukkien, J.J.

    2012-01-01

    This paper presents a Body Sensor Platform supporting concurrent applications that share resources and data. Concerns are application isolation, data privacy and platform trustworthiness in view of dynamic loading of applications. A prototype has been built on commercial-off-the-shelf hardware. The

  6. Multi-function microfluidic platform for sensor integration

    DEFF Research Database (Denmark)

    Fernandes, Ana C.; Semenova, Daria; Panjan, Peter

    2018-01-01

    The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high...... throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening...... of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate...

  7. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    Science.gov (United States)

    Kos, Anton; Tomažič, Sašo; Umek, Anton

    2016-01-01

    Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models. PMID:27049391

  8. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    Directory of Open Access Journals (Sweden)

    Anton Kos

    2016-04-01

    Full Text Available Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models.

  9. General Data Acquisition Platform for Wireless Sensor Network Based on CC2538

    Directory of Open Access Journals (Sweden)

    Yang Zhi-Jun

    2017-01-01

    Full Text Available Wireless sensor networks are the hotspots of current research and have very wide application prospects. Its front end is a sensor that can sense and check the external world. This paper takes temperature and humidity as the research object, and builds a wireless sensor network data acquisition platform by combining the Internet of things and the WeChat public platform. The platform uses DHT11 temperature and humidity sensors and CC2538 sensor nodes to obtain the relevant data, through the server and database for data access. The combination with WeChat public platform not only allows us to view the temperature and humidity in the WeChat public, but also allows us to understand the environmental changes of the relevant detection area more conveniently and quickly. The effectiveness of the platform is also demonstrated by the collection of temperature and humidity data.

  10. Java-based mobile agent platforms for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Carbone, A.; Fortino, G.; Galzarano, S.; Ganzha, M.; Paprzycki, M.

    2010-01-01

    This paper proposes an overview and comparison of mobile agent platforms for the development of wireless sensor network applications. In particular, the architecture, programming model and basic performance of two Java-based agent platforms, Mobile Agent Platform for Sun SPOT (MAPS) and Agent

  11. Integrated chemical sensor array platform based on a light emitting diode, xerogel-derived sensor elements, and high-speed pin printing

    International Nuclear Information System (INIS)

    Cho, Eun Jeong; Bright, Frank V.

    2002-01-01

    We report a new, solid-state, integrated optical array sensor platform. By using pin printing technology in concert with sol-gel-processing methods, we form discrete xerogel-based microsensor elements that are on the order of 100 μm in diameter and 1 μm thick directly on the face of a light emitting diode (LED). The LED serves as the light source to excite chemically responsive luminophores sequestered within the doped xerogel microsensors and the analyte-dependent emission from within the doped xerogel is detected with a charge coupled device (CCD). We overcome the problem of background illumination from the LED reaching the CCD and the associated biasing that results by coating the LED first with a thin layer of blue paint. The thin paint layer serves as an optical filter, knocking out the LEDs red-edge spectral tail. The problem of the spatially-dependent fluence across the LED face is solved entirely by performing ratiometric measurements. We illustrate the performance of the new sensor scheme by forming an array of 100 discrete O 2 -responsive sensing elements on the face of a single LED. The combination of pin printing with an integrated sensor and light source platform results in a rapid method of forming (∼1 s per sensor element) reusable sensor arrays. The entire sensor array can be calibrated using just one sensor element. Array-to-array reproducibly is <8%. Arrays can be formed using single or multiple pins with indistinguishable analytical performance

  12. Citizen Sensors for SHM: Towards a Crowdsourcing Platform

    Science.gov (United States)

    Ozer, Ekin; Feng, Maria Q.; Feng, Dongming

    2015-01-01

    This paper presents an innovative structural health monitoring (SHM) platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters. PMID:26102490

  13. Citizen Sensors for SHM: Towards a Crowdsourcing Platform

    Directory of Open Access Journals (Sweden)

    Ekin Ozer

    2015-06-01

    Full Text Available This paper presents an innovative structural health monitoring (SHM platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters.

  14. A Mixed-Signal Embedded Platform for Automotive Sensor Conditioning

    Directory of Open Access Journals (Sweden)

    Emilio Volpi

    2010-01-01

    Full Text Available A mixed-signal embedded system called Intelligent Sensor InterFace (ISIF suited to fast identify, trim, and verify an architecture to interface a given sensor is presented. This system has been developed according to a platform-based design approach, a methodology that has proved to be efficient for building complex mixed-signal embedded systems with short time-to-market. Such platform consists in a wide set of optimized high-performance analog, digital, and software intellectual property (IP modules for various kinds of sensors. These IPs can be easily defined for fast prototyping of the interface circuit for the given sensor. Final ASIC implementation for the given sensor conditioning can be easily derived with reduced risk and short development time. Some case examples are presented to demonstrate the effectiveness and flexibility of this system.

  15. A Mixed-Signal Embedded Platform for Automotive Sensor Conditioning

    Directory of Open Access Journals (Sweden)

    Giambastiani Adolfo

    2010-01-01

    Full Text Available Abstract A mixed-signal embedded system called Intelligent Sensor InterFace (ISIF suited to fast identify, trim, and verify an architecture to interface a given sensor is presented. This system has been developed according to a platform-based design approach, a methodology that has proved to be efficient for building complex mixed-signal embedded systems with short time-to-market. Such platform consists in a wide set of optimized high-performance analog, digital, and software intellectual property (IP modules for various kinds of sensors. These IPs can be easily defined for fast prototyping of the interface circuit for the given sensor. Final ASIC implementation for the given sensor conditioning can be easily derived with reduced risk and short development time. Some case examples are presented to demonstrate the effectiveness and flexibility of this system.

  16. The mid-IR silicon photonics sensor platform (Conference Presentation)

    Science.gov (United States)

    Kimerling, Lionel; Hu, Juejun; Agarwal, Anuradha M.

    2017-02-01

    Advances in integrated silicon photonics are enabling highly connected sensor networks that offer sensitivity, selectivity and pattern recognition. Cost, performance and the evolution path of the so-called `Internet of Things' will gate the proliferation of these networks. The wavelength spectral range of 3-8um, commonly known as the mid-IR, is critical to specificity for sensors that identify materials by detection of local vibrational modes, reflectivity and thermal emission. For ubiquitous sensing applications in this regime, the sensors must move from premium to commodity level manufacturing volumes and cost. Scaling performance/cost is critically dependent on establishing a minimum set of platform attributes for point, wearable, and physical sensing. Optical sensors are ideal for non-invasive applications. Optical sensor device physics involves evanescent or intra-cavity structures for applied to concentration, interrogation and photo-catalysis functions. The ultimate utility of a platform is dependent on sample delivery/presentation modalities; system reset, recalibration and maintenance capabilities; and sensitivity and selectivity performance. The attributes and performance of a unified Glass-on-Silicon platform has shown good prospects for heterogeneous integration on materials and devices using a low cost process flow. Integrated, single mode, silicon photonic platforms offer significant performance and cost advantages, but they require discovery and qualification of new materials and process integration schemes for the mid-IR. Waveguide integrated light sources based on rare earth dopants and Ge-pumped frequency combs have promise. Optical resonators and waveguide spirals can enhance sensitivity. PbTe materials are among the best choices for a standard, waveguide integrated photodetector. Chalcogenide glasses are capable of transmitting mid-IR signals with high transparency. Integrated sensor case studies of i) high sensitivity analyte detection in

  17. A Mixed-Signal Embedded Platform for Automotive Sensor Conditioning

    OpenAIRE

    Emilio Volpi; Luca Fanucci; Adolfo Giambastiani; Alessandro Rocchi; Francesco D'Ascoli; Marco Tonarelli; Massimiliano Melani; Corrado Marino

    2010-01-01

    Abstract A mixed-signal embedded system called Intelligent Sensor InterFace (ISIF) suited to fast identify, trim, and verify an architecture to interface a given sensor is presented. This system has been developed according to a platform-based design approach, a methodology that has proved to be efficient for building complex mixed-signal embedded systems with short time-to-market. Such platform consists in a wide set of optimized high-performance analog, digital, and software intellectual pr...

  18. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Mohamad Hajj-Hassan

    2008-12-01

    Full Text Available We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides that support sol-gelderived xerogel-based thin films. The xerogel-based sensor materials act as host media to house luminophore biochemical recognition elements. As a prototype implementation, we demonstrate gaseous oxygen (O2 responsive optical sensors that operate on the basis of monitoring luminescence intensity signals. The optical sensor employs a Light Emitting Diode (LED excitation source and a standard silicon photodiode as the detector. The sensor operates over the full scale (0%-100% of O2 concentrations with a response time of less than 1 second. This work has implications for the development of miniaturized multisensor platforms that can be cost-effectively and reliably mass-produced.

  19. THE TSUNAMI SERVICE BUS, AN INTEGRATION PLATFORM FOR HETEROGENEOUS SENSOR SYSTEMS

    Science.gov (United States)

    Fleischer, J.; Häner, R.; Herrnkind, S.; Kriegel, U.; Schwarting, H.; Wächter, J.

    2009-12-01

    The Tsunami Service Bus (TSB) is the sensor integration platform of the German Indonesian Tsunami Early Warning System (GITEWS) [1]. The primary goal of GITEWS is to deliver reliable tsunami warnings as fast as possible. This is achieved on basis of various sensor systems like seismometers, ocean instrumentation, and GPS stations, all providing fundamental data to support prediction of tsunami wave propagation by the GITEWS warning center. However, all these sensors come with their own proprietary data formats and specific behavior. Also new sensor types might be added, old sensors will be replaced. To keep GITEWS flexible the TSB was developed in order to access and control sensors in a uniform way. To meet these requirements the TSB follows the architectural blueprint of a Service Oriented Architecture (SOA). The integration platform implements dedicated services communicating via a service infrastructure. The functionality required for early warnings is provided by loosely coupled services replacing the "hard-wired" coupling at data level. Changes in the sensor specification are confined to the data level without affecting the warning center. Great emphasis was laid on following the Sensor Web Enablement (SWE) standard [2], specified by the Open Geospatial Consortium (OGC) [3]. As a result the full functionality needed in GITEWS could be achieved by implementing the four SWE services: The Sensor Observation Service for retrieving sensor measurements, the Sensor Alert Service in order to deliver sensor alerts, the Sensor Planning Service for tasking sensors, and the Web Notification Service for conduction messages to various media channels. Beyond these services the TSB also follows SWE Observation & Measurements specifications (O&M) for data encoding and Sensor Model Language (SensorML) for meta information. Moreover, accessing sensors via the TSB is not restricted to GITEWS. Multiple instances of the TSB can be composed to realize federate warning system

  20. Low power radio communication platform for wireless sensor network

    NARCIS (Netherlands)

    Dutta, R.; Bentum, Marinus Jan; van der Zee, Ronan A.R.; Kokkeler, Andre B.J.

    2009-01-01

    Wireless sensor networks are predicted to be the most versatile, popular and useful technology in the near future. A large number of applications are targeted which will hugely benefit from a network of tiny computers with few sensors, radio communication platform, intelligent networking and

  1. Mobile platform sampling for designing environmental sensor networks.

    Science.gov (United States)

    Budi, Setia; de Souza, Paulo; Timms, Greg; Susanto, Ferry; Malhotra, Vishv; Turner, Paul

    2018-02-09

    This paper proposes a method to design the deployment of sensor nodes in a new region where historical data is not available. A number of mobile platforms are simulated to build initial knowledge of the region. Further, an evolutionary algorithm is employed to find the optimum placement of a given number of sensor nodes that best represents the region of interest.

  2. Wireless sensor platform for harsh environments

    Science.gov (United States)

    Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor); Toygur, Lemi (Inventor); He, Yunli (Inventor)

    2009-01-01

    Reliable and efficient sensing becomes increasingly difficult in harsher environments. A sensing module for high-temperature conditions utilizes a digital, rather than analog, implementation on a wireless platform to achieve good quality data transmission. The module comprises a sensor, integrated circuit, and antenna. The integrated circuit includes an amplifier, A/D converter, decimation filter, and digital transmitter. To operate, an analog signal is received by the sensor, amplified by the amplifier, converted into a digital signal by the A/D converter, filtered by the decimation filter to address the quantization error, and output in digital format by the digital transmitter and antenna.

  3. Employing optical code division multiple access technology in the all fiber loop vibration sensor system

    Science.gov (United States)

    Tseng, Shin-Pin; Yen, Chih-Ta; Syu, Rong-Shun; Cheng, Hsu-Chih

    2013-12-01

    This study proposes a spectral amplitude coding-optical code division multiple access (SAC-OCDMA) framework to access the vibration frequency of a test object on the all fiber loop vibration sensor (AFLVS). Each user possesses an individual SAC, and fiber Bragg grating (FBG) encoders/decoders using multiple FBG arrays were adopted, providing excellent orthogonal properties in the frequency domain. The system also mitigates multiple access interference (MAI) among users. When an optical fiber is bent to a point exceeding the critical radius, the fiber loop sensor becomes sensitive to external physical parameters (e.g., temperature, strain, and vibration). The AFLVS involves placing a fiber loop with a specific radius on a designed vibration platform.

  4. Towards a social and context-aware multi-sensor fall detection and risk assessment platform.

    Science.gov (United States)

    De Backere, F; Ongenae, F; Van den Abeele, F; Nelis, J; Bonte, P; Clement, E; Philpott, M; Hoebeke, J; Verstichel, S; Ackaert, A; De Turck, F

    2015-09-01

    For elderly people fall incidents are life-changing events that lead to degradation or even loss of autonomy. Current fall detection systems are not integrated and often associated with undetected falls and/or false alarms. In this paper, a social- and context-aware multi-sensor platform is presented, which integrates information gathered by a plethora of fall detection systems and sensors at the home of the elderly, by using a cloud-based solution, making use of an ontology. Within the ontology, both static and dynamic information is captured to model the situation of a specific patient and his/her (in)formal caregivers. This integrated contextual information allows to automatically and continuously assess the fall risk of the elderly, to more accurately detect falls and identify false alarms and to automatically notify the appropriate caregiver, e.g., based on location or their current task. The main advantage of the proposed platform is that multiple fall detection systems and sensors can be integrated, as they can be easily plugged in, this can be done based on the specific needs of the patient. The combination of several systems and sensors leads to a more reliable system, with better accuracy. The proof of concept was tested with the use of the visualizer, which enables a better way to analyze the data flow within the back-end and with the use of the portable testbed, which is equipped with several different sensors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Design of verification platform for wireless vision sensor networks

    Science.gov (United States)

    Ye, Juanjuan; Shang, Fei; Yu, Chuang

    2017-08-01

    At present, the majority of research for wireless vision sensor networks (WVSNs) still remains in the software simulation stage, and the verification platforms of WVSNs that available for use are very few. This situation seriously restricts the transformation from theory research of WVSNs to practical application. Therefore, it is necessary to study the construction of verification platform of WVSNs. This paper combines wireless transceiver module, visual information acquisition module and power acquisition module, designs a high-performance wireless vision sensor node whose core is ARM11 microprocessor and selects AODV as the routing protocol to set up a verification platform called AdvanWorks for WVSNs. Experiments show that the AdvanWorks can successfully achieve functions of image acquisition, coding, wireless transmission, and obtain the effective distance parameters between nodes, which lays a good foundation for the follow-up application of WVSNs.

  6. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    Science.gov (United States)

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cross-platform learning: on the nature of children's learning from multiple media platforms.

    Science.gov (United States)

    Fisch, Shalom M

    2013-01-01

    It is increasingly common for an educational media project to span several media platforms (e.g., TV, Web, hands-on materials), assuming that the benefits of learning from multiple media extend beyond those gained from one medium alone. Yet research typically has investigated learning from a single medium in isolation. This paper reviews several recent studies to explore cross-platform learning (i.e., learning from combined use of multiple media platforms) and how such learning compares to learning from one medium. The paper discusses unique benefits of cross-platform learning, a theoretical mechanism to explain how these benefits might arise, and questions for future research in this emerging field. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  8. Biomedical sensor technologies on the platform of mobile phones

    Science.gov (United States)

    Liu, Lin; Liu, Jing

    2011-06-01

    Biomedical sensors have been widely used in various areas of biomedical practices, which play an important role in disease detection, diagnosis, monitoring, treatment, health management, and so on. However, most of them and their related platforms are generally not easily accessible or just too expensive or complicated to be kept at home. As an alternative, new technologies enabled from the mobile phones are gradually changing such situations. As can be freely available to almost everyone, mobile phone offers a unique way to improve the conventional medical care through combining with various biomedical sensors. Moreover, the established systems will be both convenient and low cost. In this paper, we present an overview on the state-of-art biomedical sensors, giving a brief introduction of the fundamental principles and showing several new examples or concepts in the area. The focus was particularly put on interpreting the technical strategies to innovate the biomedical sensor technologies based on the platform of mobile phones. Some challenging issues, including feasibility, usability, security, and effectiveness, were discussed. With the help of electrical and mechanical technologies, it is expected that a full combination between the biomedical sensors and mobile phones will bring a bright future for the coming pervasive medical care.

  9. Real-time GIS data model and sensor web service platform for environmental data management.

    Science.gov (United States)

    Gong, Jianya; Geng, Jing; Chen, Zeqiang

    2015-01-09

    Effective environmental data management is meaningful for human health. In the past, environmental data management involved developing a specific environmental data management system, but this method often lacks real-time data retrieving and sharing/interoperating capability. With the development of information technology, a Geospatial Service Web method is proposed that can be employed for environmental data management. The purpose of this study is to determine a method to realize environmental data management under the Geospatial Service Web framework. A real-time GIS (Geographic Information System) data model and a Sensor Web service platform to realize environmental data management under the Geospatial Service Web framework are proposed in this study. The real-time GIS data model manages real-time data. The Sensor Web service platform is applied to support the realization of the real-time GIS data model based on the Sensor Web technologies. To support the realization of the proposed real-time GIS data model, a Sensor Web service platform is implemented. Real-time environmental data, such as meteorological data, air quality data, soil moisture data, soil temperature data, and landslide data, are managed in the Sensor Web service platform. In addition, two use cases of real-time air quality monitoring and real-time soil moisture monitoring based on the real-time GIS data model in the Sensor Web service platform are realized and demonstrated. The total time efficiency of the two experiments is 3.7 s and 9.2 s. The experimental results show that the method integrating real-time GIS data model and Sensor Web Service Platform is an effective way to manage environmental data under the Geospatial Service Web framework.

  10. Monitoring system including an electronic sensor platform and an interrogation transceiver

    Science.gov (United States)

    Kinzel, Robert L.; Sheets, Larry R.

    2003-09-23

    A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

  11. Design of self-contained sensor for monitoring of deep-sea offshore platform

    Science.gov (United States)

    Song, Yang; Yu, Yan; Zhang, Chunwei; Dong, Weijie; Ou, Jinping

    2013-04-01

    Offshore platform, which is the base of the production and living in the sea, is the most important infrastructure for developing oil and gas resources. At present, there are almost 6500 offshore platforms servicing in the 53 countries' sea areas around the world, creating great wealth for the world. In general, offshore platforms may work for 20 years, however, offshore platforms are expensive, complex, bulky, and so many of them are on extended active duty. Because of offshore platforms servicing in the harsh marine environment for a long time, the marine environment have a great impact on the offshore platforms. Besides, with the impact and erosion of seawater, and material aging, the offshore platform is possible to be in unexpected situations when a badly sudden situation happens. Therefore, it is of great significance to monitor the marine environment and offshore platforms. The self-contained sensor for deep-sea offshore platform with its unique design, can not only effectively extend the working time of the sensor with the capability of converting vibration energy to electrical energy, but also simultaneously collect the data of acceleration, inclination, temperature and humidity of the deep sea, so that we can achieve the purpose of monitoring offshore platforms through analyzing the collected data. The self-contained sensor for monitoring of deep-sea offshore platform includes sensing unit, data collecting and storage unit, the energy supply unit. The sensing unit with multi-variables, consists of an accelerometer LIS344ALH, an inclinometer SCA103T and a temperature and humidity sensor SHT11; the data collecting and storage unit includes the MSP430 low-power MCU, large capacity memory, clock circuit and the communication interface, the communication interface includes USB interface, serial ports and wireless interface; in addition, the energy supply unit, converting vibration to electrical energy to power the overall system, includes the electromagnetic

  12. Tissue viability monitoring: a multi-sensor wearable platform approach

    Science.gov (United States)

    Mathur, Neha; Davidson, Alan; Buis, Arjan; Glesk, Ivan

    2016-12-01

    Health services worldwide are seeking ways to improve patient care for amputees suffering from diabetes, and at the same time reduce costs. The monitoring of residual limb temperature, interface pressure and gait can be a useful indicator of tissue viability in lower limb amputees especially to predict the occurrence of pressure ulcers. This is further exacerbated by elevated temperatures and humid micro environment within the prosthesis which encourages the growth of bacteria and skin breakdown. Wearable systems for prosthetic users have to be designed such that the sensors are minimally obtrusive and reliable enough to faithfully record movement and physiological signals. A mobile sensor platform has been developed for use with the lower limb prosthetic users. This system uses an Arduino board that includes sensors for temperature, gait, orientation and pressure measurements. The platform transmits sensor data to a central health authority database server infrastructure through the Bluetooth protocol at a suitable sampling rate. The data-sets recorded using these systems are then processed using machine learning algorithms to extract clinically relevant information from the data. Where a sensor threshold is reached a warning signal can be sent wirelessly together with the relevant data to the patient and appropriate medical personnel. This knowledge is also useful in establishing biomarkers related to a possible deterioration in a patient's health or for assessing the impact of clinical interventions.

  13. A wireless sensor tag platform for container security and integrity

    Science.gov (United States)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    2011-04-01

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. This allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.

  14. Wireless Sensor Network-Based Service Provisioning by a Brokering Platform.

    Science.gov (United States)

    Guijarro, Luis; Pla, Vicent; Vidal, Jose R; Naldi, Maurizio; Mahmoodi, Toktam

    2017-05-12

    This paper proposes a business model for providing services based on the Internet of Things through a platform that intermediates between human users and Wireless Sensor Networks (WSNs). The platform seeks to maximize its profit through posting both the price charged to each user and the price paid to each WSN. A complete analysis of the profit maximization problem is performed in this paper. We show that the service provider maximizes its profit by incentivizing all users and all Wireless Sensor Infrastructure Providers (WSIPs) to join the platform. This is true not only when the number of users is high, but also when it is moderate, provided that the costs that the users bear do not trespass a cost ceiling. This cost ceiling depends on the number of WSIPs, on the value of the intrinsic value of the service and on the externality that the WSIP has on the user utility.

  15. Gas Identification Using Passive UHF RFID Sensor Platform

    Directory of Open Access Journals (Sweden)

    Muhammad Ali AKBAR

    2015-11-01

    Full Text Available The concept of passive Radio Frequency Identification (RFID sensor tag is introduced to remove the dependency of current RFID platforms on battery life. In this paper, a gas identification system is presented using passive RFID sensor tag along with the processing unit. The RFID system is compliant to Electronics Product Code Generation 2 (EPC-Gen2 protocol in 902-928 MHz ISM band. Whereas the processing unit is implemented and analyzed in software and hardware platforms. The software platform uses MATLAB, whereas a High Level Synthesis (HLS tool is used to implement the processing unit on a Zynq platform. Moreover, two sets of different gases are used along with Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA based feature reduction approaches to analyze in detail the best feature reduction approach for efficient classification of gas data. It is found that for the first set of gases, 90 % gases are identified using first three principal components, which is 7 % more efficient than LDA. However in terms of hardware overhead, LDA requires 50 % less hardware resources than PCA. The classification results for the second set of gases reveal that 91 % of gas classification is obtained using LDA and first four PCA, while LDA requires 52 % less hardware resources than PCA. The RFID tag used for transmission is implemented in 0.13 µm CMOS process, with simulated average power consumption of 2.6 µW from 1.2 V supply. ThingMagic M6e embedded reader is used for RFID platform implementation. It shows an output power of 31.5 dBm which allows a read range up to 9 meters.

  16. The Global Sensor Web: A Platform for Citizen Science (Invited)

    Science.gov (United States)

    Simons, A. L.

    2013-12-01

    The Global Sensor Web (GSW) is an effort to provide an infrastructure for the collection, sharing and visualizing sensor data from around the world. Over the past three years the GSW has been developed and tested as a standardized platform for citizen science. The most developed of the citizen science projects built onto the GSW has been Distributed Electronic Cosmic-ray Observatory (DECO), which is an Android application designed to harness a global network of mobile devices, to detect the origin and behavior of the cosmic radiation. Other projects which can be readily built on top of GSW as a platform are also discussed. A cosmic-ray track candidate captured on a cell phone camera.

  17. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Science.gov (United States)

    Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min

    2013-01-01

    We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735

  18. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Directory of Open Access Journals (Sweden)

    Young Min Jhon

    2013-06-01

    Full Text Available We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate.

  19. Wireless energy transfer platform for medical sensors and implantable devices.

    Science.gov (United States)

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power.

  20. Hybrid Exploration Agent Platform and Sensor Web System

    Science.gov (United States)

    Stoffel, A. William; VanSteenberg, Michael E.

    2004-01-01

    A sensor web to collect the scientific data needed to further exploration is a major and efficient asset to any exploration effort. This is true not only for lunar and planetary environments, but also for interplanetary and liquid environments. Such a system would also have myriad direct commercial spin-off applications. The Hybrid Exploration Agent Platform and Sensor Web or HEAP-SW like the ANTS concept is a Sensor Web concept. The HEAP-SW is conceptually and practically a very different system. HEAP-SW is applicable to any environment and a huge range of exploration tasks. It is a very robust, low cost, high return, solution to a complex problem. All of the technology for initial development and implementation is currently available. The HEAP Sensor Web or HEAP-SW consists of three major parts, The Hybrid Exploration Agent Platforms or HEAP, the Sensor Web or SW and the immobile Data collection and Uplink units or DU. The HEAP-SW as a whole will refer to any group of mobile agents or robots where each robot is a mobile data collection unit that spends most of its time acting in concert with all other robots, DUs in the web, and the HEAP-SWs overall Command and Control (CC) system. Each DU and robot is, however, capable of acting independently. The three parts of the HEAP-SW system are discussed in this paper. The Goals of the HEAP-SW system are: 1) To maximize the amount of exploration enhancing science data collected; 2) To minimize data loss due to system malfunctions; 3) To minimize or, possibly, eliminate the risk of total system failure; 4) To minimize the size, weight, and power requirements of each HEAP robot; 5) To minimize HEAP-SW system costs. The rest of this paper discusses how these goals are attained.

  1. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    Directory of Open Access Journals (Sweden)

    Dmitry Solovei

    2015-01-01

    Full Text Available A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes’ coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.

  2. Programming signal processing applications on heterogeneous wireless sensor platforms

    NARCIS (Netherlands)

    Buondonno, L.; Fortino, G.; Galzarano, S.; Giannantonio, R.; Giordano, A.; Gravina, R.; Guerrieri, A.

    2009-01-01

    This paper proposes the SPINE frameworks (SPINE1.x and SPINE2) for the programming of signal processing applications on heterogeneous wireless sensor platforms. In particular, two integrable approaches based on the proposed frameworks are described that allow to develop applications for wireless

  3. Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.

    Science.gov (United States)

    Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D

    2004-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.

  4. A low cost, high precision extreme/harsh cold environment, autonomous sensor data gathering and transmission platform.

    Science.gov (United States)

    Chetty, S.; Field, L. A.

    2014-12-01

    SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.

  5. Automated platform for designing multiple robot work cells

    Science.gov (United States)

    Osman, N. S.; Rahman, M. A. A.; Rahman, A. A. Abdul; Kamsani, S. H.; Bali Mohamad, B. M.; Mohamad, E.; Zaini, Z. A.; Rahman, M. F. Ab; Mohamad Hatta, M. N. H.

    2017-06-01

    Designing the multiple robot work cells is very knowledge-intensive, intricate, and time-consuming process. This paper elaborates the development process of a computer-aided design program for generating the multiple robot work cells which offer a user-friendly interface. The primary purpose of this work is to provide a fast and easy platform for less cost and human involvement with minimum trial and errors adjustments. The automated platform is constructed based on the variant-shaped configuration concept with its mathematical model. A robot work cell layout, system components, and construction procedure of the automated platform are discussed in this paper where integration of these items will be able to automatically provide the optimum robot work cell design according to the information set by the user. This system is implemented on top of CATIA V5 software and utilises its Part Design, Assembly Design, and Macro tool. The current outcomes of this work provide a basis for future investigation in developing a flexible configuration system for the multiple robot work cells.

  6. A thermal plasmonic sensor platform: resistive heating of nanohole arrays.

    Science.gov (United States)

    Virk, Mudassar; Xiong, Kunli; Svedendahl, Mikael; Käll, Mikael; Dahlin, Andreas B

    2014-06-11

    We have created a simple and efficient thermal plasmonic sensor platform by letting a DC current heat plasmonic nanohole arrays. The sensor can be used to determine thermodynamic parameters in addition to monitoring molecular reactions in real-time. As an application example, we use the thermal sensor to determine the kinetics and activation energy for desorption of thiol monolayers on gold. Further, the temperature of the metal can be measured optically by the spectral shift of the bonding surface plasmon mode (0.015 nm/K). We show that this resonance shift is caused by thermal lattice expansion, which reduces the plasma frequency of the metal. The sensor is also used to determine the thin film thermal expansion coefficient through a theoretical model for the expected resonance shift.

  7. Selection application for platforms and security protocols suitable for wireless sensor networks

    International Nuclear Information System (INIS)

    Moeller, S; Newe, T; Lochmann, S

    2009-01-01

    There is a great number of platforms and security protocols which can be used for wireless sensor networks (WSN). All these platforms and protocols have different properties with certain advantages and disadvantages. For a good choice of platform and an associated protocol, these advantages and disadvantages should be compared and the best for the appropriate WSN chosen. To select a Security protocol and a wireless platform suitable for a specific application a software tool will be developed. That tool will enable wireless network deployment engineers to easily select a suitable wireless platform for their application based on their network needs and application security requirements.

  8. The Challenges of Designing Digital Services for Multiple Mobile Platforms

    DEFF Research Database (Denmark)

    Ghazawneh, Ahmad

    2016-01-01

    on a multiple case study of three mobile application development firms from Sweden, Denmark and Norway, we synthesize the digital service design taxonomy to understand the challenges faced by third-party developers. Our study identifies a set of challenges in four different levels: user level, platform level...... to tap into and join the digital ecosystem. However, while there is an emerging literature on designing digital services, little empirical evidence exists about challenges faced by third-party developers while designing digital services, and in particular for multiple mobile platforms. Drawing......The value of digital services is increasingly recognized by owners of digital platforms. These services have central role in building and sustaining the business of the digital platform. In order to sustain the design of digital services, owners of digital platforms encourage third-party developers...

  9. Evaluation of sensor placement algorithms for on-orbit identification of space platforms

    Science.gov (United States)

    Glassburn, Robin S.; Smith, Suzanne Weaver

    1994-01-01

    Anticipating the construction of the international space station, on-orbit modal identification of space platforms through optimally placed accelerometers is an area of recent activity. Unwanted vibrations in the platform could affect the results of experiments which are planned. Therefore, it is important that sensors (accelerometers) be strategically placed to identify the amount and extent of these unwanted vibrations, and to validate the mathematical models used to predict the loads and dynamic response. Due to cost, installation, and data management issues, only a limited number of sensors will be available for placement. This work evaluates and compares four representative sensor placement algorithms for modal identification. Most of the sensor placement work to date has employed only numerical simulations for comparison. This work uses experimental data from a fully-instrumented truss structure which was one of a series of structures designed for research in dynamic scale model ground testing of large space structures at NASA Langley Research Center. Results from this comparison show that for this cantilevered structure, the algorithm based on Guyan reduction is rated slightly better than that based on Effective Independence.

  10. Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance

    International Nuclear Information System (INIS)

    Benkstein, Kurt D.; Martinez, Carlos J.; Li, Guofeng; Meier, Douglas C.; Montgomery, Christopher B.; Semancik, Steve

    2006-01-01

    The development of miniaturized chemical sensors is an increasingly active area of research. Such devices, particularly when they feature low mass and low power budgets, can impact a broad range of applications including industrial process monitoring, building security and extraterrestrial exploration. Nanostructured materials, because of their high surface area, can provide critical enhancements in the performance of chemical microsensors. We have worked to integrate nanomaterial films with MEMS (microelectromechanical systems) microhotplate platforms developed at the National Institute of Standards and Technology in order to gain the benefits of both the materials and the platforms in high-performance chemical sensor arrays. Here, we describe our success in overcoming the challenges of integration and the benefits that we have achieved with regard to the critical sensor performance characteristics of sensor response, speed, stability and selectivity. Nanostructured metal oxide sensing films were locally deposited onto microhotplates via chemical vapor deposition and microcapillary pipetting, and conductive polymer nanoparticle films were deposited via electrophoretic patterning. All films were characterized by scanning electron microscopy and evaluated as conductometric gas sensors

  11. Sensor data fusion to predict multiple soil properties

    NARCIS (Netherlands)

    Mahmood, H.S.; Hoogmoed, W.B.; Henten, van E.J.

    2012-01-01

    The accuracy of a single sensor is often low because all proximal soil sensors respond to more than one soil property of interest. Sensor data fusion can potentially overcome this inability of a single sensor and can best extract useful and complementary information from multiple sensors or sources.

  12. A zonal wavefront sensor with multiple detector planes

    Science.gov (United States)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  13. Smart wheelchair: integration of multiple sensors

    Science.gov (United States)

    Gassara, H. E.; Almuhamed, S.; Moukadem, A.; Schacher, L.; Dieterlen, A.; Adolphe, D.

    2017-10-01

    The aim of the present work is to develop a smart wheelchair by integrating multiple sensors for measuring user’s physiological signals and subsequently transmitting and monitoring the treated signals to the user, a designated person or institution. Among other sensors, force, accelerometer, and temperature sensors are successfully integrated within both the backrest and the seat cushions of the wheelchair; while a pulse sensor is integrated within the armrest. The pulse sensor is connected to an amplification circuit board that is, in turn, placed within the armrest. The force and temperature sensors are integrated into a textile cover of the cushions by means of embroidery and sewing techniques. The signal from accelerometer is transmitted through Wi-Fi connection. The electrical connections needed for power supplying of sensors are made by embroidered conductive threads.

  14. Wireless Sensor Networks--A Hands-On Modular Experiments Platform for Enhanced Pedagogical Learning

    Science.gov (United States)

    Taslidere, E.; Cohen, F. S.; Reisman, F. K.

    2011-01-01

    This paper presents the use of wireless sensor networks (WSNs) in educational research as a platform for enhanced pedagogical learning. The aim here with the use of a WSN platform was to go beyond the implementation stage to the real-life application stage, i.e., linking the implementation to real-life applications, where abstract theory and…

  15. Remote powering platform for implantable sensor systems at 2.45 GHz.

    Science.gov (United States)

    Kazanc, Onur; Yilmaz, Gurkan; Maloberti, Franco; Dehollain, Catherine

    2014-01-01

    Far-field remotely powered sensor systems enable long distance operation for low-power sensor systems. In this work, we demonstrate a remote powering platform with a miniaturized antenna and remote powering base station operating at 2.45 GHz. The rectenna, which is the energy receiving and conversion element of the sensor system, is designed and measured. The measurements for the tag are performed within 15 cm distance from the remote powering base station. The realized gain of the tag antenna is measured as -3.3 dB, which is 0.5 dB close to the simulations, where simulated realized gain is -2.8 dB.

  16. Automated Registration Of Images From Multiple Sensors

    Science.gov (United States)

    Rignot, Eric J. M.; Kwok, Ronald; Curlander, John C.; Pang, Shirley S. N.

    1994-01-01

    Images of terrain scanned in common by multiple Earth-orbiting remote sensors registered automatically with each other and, where possible, on geographic coordinate grid. Simulated image of terrain viewed by sensor computed from ancillary data, viewing geometry, and mathematical model of physics of imaging. In proposed registration algorithm, simulated and actual sensor images matched by area-correlation technique.

  17. Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture

    Science.gov (United States)

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622

  18. Developing a new wireless sensor network platform and its application in precision agriculture.

    Science.gov (United States)

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of "smart dust" offer great advantages due to their small size, low power consumption, easy integration and support for "green" applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network.

  19. Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform

    Science.gov (United States)

    Sullivan, Stephanie Whalen

    The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.

  20. BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding

    Science.gov (United States)

    Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C.; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno

    2013-01-01

    To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014

  1. RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing

    International Nuclear Information System (INIS)

    Potyrailo, Radislav A; Surman, Cheryl; Monk, David; Morris, William G; Wortley, Timothy; Vincent, Mark; Diana, Rafael; Pizzi, Vincent; Carter, Jeffrey; Gach, Gerard; Klensmeden, Staffan; Ehring, Hanno

    2011-01-01

    The lack of reliable single-use sensors prevents the biopharmaceutical industry from fully embracing single-use biomanufacturing processes. Sensors based on the same detection platform for all critical parameters in single-use bioprocess components would be highly desirable to significantly simplify their installation, calibration and operation. We review here our approach for passive radio-frequency identification (RFID)-based sensing that does not rely on costly proprietary RFID memory chips with an analog input but rather implements ubiquitous passive 13.56 MHz RFID tags as inductively coupled sensors with at least 16 bit resolution provided by a sensor reader. The developed RFID sensors combine several measured parameters from the resonant sensor antenna with multivariate data analysis and deliver unique capability of multiparameter sensing and rejection of environmental interferences with a single sensor. This general sensing approach provides an elegant solution for both analytical measurement and identification and documentation of the measured location. (topical review)

  2. MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding

    Directory of Open Access Journals (Sweden)

    Charlotte D’Hulst

    2016-07-01

    Full Text Available Typically, ∼0.1% of the total number of olfactory sensory neurons (OSNs in the main olfactory epithelium express the same odorant receptor (OR in a singular fashion and their axons coalesce into homotypic glomeruli in the olfactory bulb. Here, we have dramatically increased the total number of OSNs expressing specific cloned OR coding sequences by multimerizing a 21-bp sequence encompassing the predicted homeodomain binding site sequence, TAATGA, known to be essential in OR gene choice. Singular gene choice is maintained in these “MouSensors.” In vivo synaptopHluorin imaging of odor-induced responses by known M71 ligands shows functional glomerular activation in an M71 MouSensor. Moreover, a behavioral avoidance task demonstrates that specific odor detection thresholds are significantly decreased in multiple transgenic lines, expressing mouse or human ORs. We have developed a versatile platform to study gene choice and axon identity, to create biosensors with great translational potential, and to finally decode human olfaction.

  3. Design of A Development Platform for HW/SW Codesign of Wireless IOntegrated Sensor Nodes

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Leopold, Martin; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks are a new class of embedded computer systems which have been made possible mainly by the recent advances in the micro and the nano technology. In order to efficiently utilize the limited resources available on a sensor node, we need to optimize its key design...... parameters which is only possible by making system-level design decisions about its hardware and software (operating system and applications) architecture. In this paper, we present the design of a sensor node development platform in relation to an application of wireless integrated sensor networks for sow...

  4. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  5. Platform for efficient switching between multiple devices in the intensive care unit.

    Science.gov (United States)

    De Backere, F; Vanhove, T; Dejonghe, E; Feys, M; Herinckx, T; Vankelecom, J; Decruyenaere, J; De Turck, F

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". Handheld computers, such as tablets and smartphones, are becoming more and more accessible in the clinical care setting and in Intensive Care Units (ICUs). By making the most useful and appropriate data available on multiple devices and facilitate the switching between those devices, staff members can efficiently integrate them in their workflow, allowing for faster and more accurate decisions. This paper addresses the design of a platform for the efficient switching between multiple devices in the ICU. The key functionalities of the platform are the integration of the platform into the workflow of the medical staff and providing tailored and dynamic information at the point of care. The platform is designed based on a 3-tier architecture with a focus on extensibility, scalability and an optimal user experience. After identification to a device using Near Field Communication (NFC), the appropriate medical information will be shown on the selected device. The visualization of the data is adapted to the type of the device. A web-centric approach was used to enable extensibility and portability. A prototype of the platform was thoroughly evaluated. The scalability, performance and user experience were evaluated. Performance tests show that the response time of the system scales linearly with the amount of data. Measurements with up to 20 devices have shown no performance loss due to the concurrent use of multiple devices. The platform provides a scalable and responsive solution to enable the efficient switching between multiple devices. Due to the web-centric approach new devices can easily be integrated. The performance and scalability of the platform have been evaluated and it was shown that the response time and scalability of the platform was within an acceptable range.

  6. SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open Standards

    Directory of Open Access Journals (Sweden)

    Sergio Trilles

    2015-03-01

    Full Text Available The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN. The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things. Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and theWeb of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented.

  7. SEnviro: a sensorized platform proposal using open hardware and open standards.

    Science.gov (United States)

    Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín

    2015-03-06

    The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and theWeb of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented.

  8. Wearable sensors network for health monitoring using e-Health platform

    Directory of Open Access Journals (Sweden)

    I. Orha

    2014-06-01

    Full Text Available In this paper we have proposed to present a wearable system for automatic recording of the main physiological parameters of the human body: body temperature, galvanic skin response, respiration rate, blood pressure, pulse, blood oxygen content, blood glucose content, electrocardiogram (ECG, electromyography(EMG, and patient position. To realize this system, we have developed a program that can read and automatically save in a file, the data from specialized sensors. The results can be later interpreted, by comparing them with known normal values and thus offering the possibility for a primary health status diagnosis by specialized personnel. The data received from the wearable sensors is taken by an interface circuit, provided with signal conditioning (filtering, amplification, etc. A microcontroller controls the data acquisition. In this applications we used an Arduino Uno standard development platform. The data are transferred to a PC, using serial communication port of Arduino platform and a communications shield. The whole process of health assessment is commissioned by a program developed by us in the Python programming language. The program provides automatic recording of the aforementioned parameters in a predetermined sequence, or only certain parameters are registered.

  9. Experimental Platform for Usability Testing of Secure Medical Sensor Network Protocols

    DEFF Research Database (Denmark)

    Andersen, Jacob; Lo, Benny P.; Yang, Guang-Zhong

    2008-01-01

    designed security mechanisms are essential. Several experimental sensor network platforms have emerged in recent years targeted for clinical use. However, few of them consider the importance of security issues such as privacy and access control, and how these can impact the usability of the platform, while......Implementing security mechanisms such as access control for clinical use is a challenging research issue in BSN due to its required heterogeneous operating responses ranging from chronic diseases management to emergency care. To ensure the clinical uptake of the BSN technology, appropriately...... others develop BSN security without considering how a prototype implementation would be received by clinicians in real-life situations. The purpose of this paper is to present our initial effort in building a flexible experimental platform for providing a basic infrastructure with symmetric AES...

  10. Motion Sensors and Transducers to Navigate an Intelligent Mechatronic Platform for Outdoor Applications

    Directory of Open Access Journals (Sweden)

    Michail G. PAPOUTSIDAKIS

    2016-03-01

    Full Text Available The initial goal of this project is to investigate if different sensor types and their attached transducers can support everyday human needs. Nowadays, there is a constant need to automate many time consuming applications not only in industrial environments but also in smaller scale applications, therefore robotics is a field that continuously tracks research interest. The area of human assistance by machines in everyday needs, continues to grow and to keep users interest very high. "Mechatronics" differ from Robotics in terms of integrated electronics, the advantage of being easily re-programmable and more over the versatility of hosting all kind of sensor types, sensor networks, transducers and actuators. In this research project, such an integrated autonomous device will be presented, focusing around the use of sensors and their feedback signals for proximity, position, motion, distance, placement and finally navigation. The ultimate sensor type choice for the task as well as all transducers signals management will also be highlighted. An up-to-date technology microcontroller will host all the above information and moreover move the mechatronic platform via motor actuators. The control algorithm which will be designed for the application is responsible for receiving all feedback signals, processing them and safely navigate the system in order to undertake its mission. The project scenario, the necessary electronic equipment and the controller design method will be highlighted in the following paragraphs of this document. Conclusions and results of sensor usage, platform's performance and problems solutions, forms the rest of this paper body.

  11. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  12. An Open Platform for Seamless Sensor Support in Healthcare for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Jorge Miranda

    2016-12-01

    Full Text Available Population aging and increasing pressure on health systems are two issues that demand solutions. Involving and empowering citizens as active managers of their health represents a desirable shift from the current culture mainly focused on treatment of disease, to one also focused on continuous health management and well-being. Current developments in technological areas such as the Internet of Things (IoT, lead to new technological solutions that can aid this shift in the healthcare sector. This study presents the design, development, implementation and evaluation of a platform called Common Recognition and Identification Platform (CRIP, a part of the CareStore project, which aims at supporting caregivers and citizens to manage health routines in a seamless way. Specifically, the CRIP offers sensor-based support for seamless identification of users and health devices. A set of initial requirements was defined with a focus on usability limitations and current sensor technologies. The CRIP was designed and implemented using several technologies that enable seamless integration and interaction of sensors and people, namely Near Field Communication and fingerprint biometrics for identification and authentication, Bluetooth for communication with health devices and web services for wider integration with other platforms. Two CRIP prototypes were implemented and evaluated in laboratory during a period of eight months. The evaluations consisted of identifying users and devices, as well as seamlessly configure and acquire vital data from the last. Also, the entire Carestore platform was deployed in a nursing home where its usability was evaluated with caregivers. The evaluations helped assess that seamless identification of users and seamless configuration and communication with health devices is feasible and can help enable the IoT on healthcare applications. Therefore, the CRIP and similar platforms could be transformed into a valuable enabling

  13. An Open Platform for Seamless Sensor Support in Healthcare for the Internet of Things

    Science.gov (United States)

    Miranda, Jorge; Cabral, Jorge; Wagner, Stefan Rahr; Fischer Pedersen, Christian; Ravelo, Blaise; Memon, Mukhtiar; Mathiesen, Morten

    2016-01-01

    Population aging and increasing pressure on health systems are two issues that demand solutions. Involving and empowering citizens as active managers of their health represents a desirable shift from the current culture mainly focused on treatment of disease, to one also focused on continuous health management and well-being. Current developments in technological areas such as the Internet of Things (IoT), lead to new technological solutions that can aid this shift in the healthcare sector. This study presents the design, development, implementation and evaluation of a platform called Common Recognition and Identification Platform (CRIP), a part of the CareStore project, which aims at supporting caregivers and citizens to manage health routines in a seamless way. Specifically, the CRIP offers sensor-based support for seamless identification of users and health devices. A set of initial requirements was defined with a focus on usability limitations and current sensor technologies. The CRIP was designed and implemented using several technologies that enable seamless integration and interaction of sensors and people, namely Near Field Communication and fingerprint biometrics for identification and authentication, Bluetooth for communication with health devices and web services for wider integration with other platforms. Two CRIP prototypes were implemented and evaluated in laboratory during a period of eight months. The evaluations consisted of identifying users and devices, as well as seamlessly configure and acquire vital data from the last. Also, the entire Carestore platform was deployed in a nursing home where its usability was evaluated with caregivers. The evaluations helped assess that seamless identification of users and seamless configuration and communication with health devices is feasible and can help enable the IoT on healthcare applications. Therefore, the CRIP and similar platforms could be transformed into a valuable enabling technology for secure and

  14. An Open Platform for Seamless Sensor Support in Healthcare for the Internet of Things.

    Science.gov (United States)

    Miranda, Jorge; Cabral, Jorge; Wagner, Stefan Rahr; Fischer Pedersen, Christian; Ravelo, Blaise; Memon, Mukhtiar; Mathiesen, Morten

    2016-12-08

    Population aging and increasing pressure on health systems are two issues that demand solutions. Involving and empowering citizens as active managers of their health represents a desirable shift from the current culture mainly focused on treatment of disease, to one also focused on continuous health management and well-being. Current developments in technological areas such as the Internet of Things (IoT), lead to new technological solutions that can aid this shift in the healthcare sector. This study presents the design, development, implementation and evaluation of a platform called Common Recognition and Identification Platform (CRIP), a part of the CareStore project, which aims at supporting caregivers and citizens to manage health routines in a seamless way. Specifically, the CRIP offers sensor-based support for seamless identification of users and health devices. A set of initial requirements was defined with a focus on usability limitations and current sensor technologies. The CRIP was designed and implemented using several technologies that enable seamless integration and interaction of sensors and people, namely Near Field Communication and fingerprint biometrics for identification and authentication, Bluetooth for communication with health devices and web services for wider integration with other platforms. Two CRIP prototypes were implemented and evaluated in laboratory during a period of eight months. The evaluations consisted of identifying users and devices, as well as seamlessly configure and acquire vital data from the last. Also, the entire Carestore platform was deployed in a nursing home where its usability was evaluated with caregivers. The evaluations helped assess that seamless identification of users and seamless configuration and communication with health devices is feasible and can help enable the IoT on healthcare applications. Therefore, the CRIP and similar platforms could be transformed into a valuable enabling technology for secure and

  15. Use of multiple sensor technologies for quality control of in situ biogeochemical measurements: A SeaCycler case study

    Science.gov (United States)

    Atamanchuk, Dariia; Koelling, Jannes; Lai, Jeremy; Send, Uwe; Wallace, Douglas

    2017-04-01

    Over the last two decades observing capacity for the global ocean has increased dramatically. Emerging sensor technologies for dissolved gases, nutrients and bio-optical properties in seawater are allowing extension of in situ observations beyond the traditionally measured salinity, temperature and pressure (CTD). However the effort to extend observations using autonomous instruments and platforms carries the risk of losing the level of data quality achievable through conventional water sampling techniques. We will present results from a case study with the SeaCycler profiling winch focusing on quality control of the in-situ measurements. A total of 13 sensors were deployed from May 2016 to early 2017 on SeaCycler's profiling sensor float, including CTD, dissolved oxygen (O2, 3 sensors), carbon dioxide (pCO2, 2 sensors), nutrients, velocity sensors, fluorometer, transmissometer, single channel PAR sensor, and others. We will highlight how multiple measurement technologies (e.g. for O2 and CO2) complement each other and result in a high quality data product. We will also present an initial assessment of the bio-optical data, their implications for seasonal phytoplankton dynamics and comparisons to climatologies and ocean-color data products obtained from the MODIS satellite.

  16. Investigation of Matlab® as platform in navigation and control of an Automatic Guided Vehicle utilising an omnivision sensor.

    Science.gov (United States)

    Kotze, Ben; Jordaan, Gerrit

    2014-08-25

    Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed.

  17. Automated Water Quality Survey and Evaluation Using an IoT Platform with Mobile Sensor Nodes.

    Science.gov (United States)

    Li, Teng; Xia, Min; Chen, Jiahong; Zhao, Yuanjie; de Silva, Clarence

    2017-07-28

    An Internet of Things (IoT) platform with capabilities of sensing, data processing, and wireless communication has been deployed to support remote aquatic environmental monitoring. In this paper, the design and development of an IoT platform with multiple Mobile Sensor Nodes (MSN) for the spatiotemporal quality evaluation of surface water is presented. A survey planner is proposed to distribute the Sampling Locations of Interest (SLoIs) over the study area and generate paths for MSNs to visit the SLoIs, given the limited energy and time budgets. The SLoIs are chosen based on a cellular decomposition that is composed of uniform hexagonal cells. They are visited by the MSNs along a path ring generated by a planning approach that uses a spanning tree. For quality evaluation, an Online Water Quality Index (OLWQI) is developed to interpret the large quantities of online measurements. The index formulations are modified by a state-of-the-art index, the CCME WQI, which has been developed by the Canadian Council of Ministers of Environment (CCME) for off-line indexing. The proposed index has demonstrated effective and reliable performance in online indexing a large volume of measurements of water quality parameters. The IoT platform is deployed in the field, and its performance is demonstrated and discussed in this paper.

  18. Cross-Platform Learning: On the Nature of Children's Learning from Multiple Media Platforms

    Science.gov (United States)

    Fisch, Shalom M.

    2013-01-01

    It is increasingly common for an educational media project to span several media platforms (e.g., TV, Web, hands-on materials), assuming that the benefits of learning from multiple media extend beyond those gained from one medium alone. Yet research typically has investigated learning from a single medium in isolation. This paper reviews several…

  19. Development of a Cloud Computing-Based Pier Type Port Structure Stability Evaluation Platform Using Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung

    2018-05-23

    Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.

  20. A global calibration method for multiple vision sensors based on multiple targets

    International Nuclear Information System (INIS)

    Liu, Zhen; Zhang, Guangjun; Wei, Zhenzhong; Sun, Junhua

    2011-01-01

    The global calibration of multiple vision sensors (MVS) has been widely studied in the last two decades. In this paper, we present a global calibration method for MVS with non-overlapping fields of view (FOVs) using multiple targets (MT). MT is constructed by fixing several targets, called sub-targets, together. The mutual coordinate transformations between sub-targets need not be known. The main procedures of the proposed method are as follows: one vision sensor is selected from MVS to establish the global coordinate frame (GCF). MT is placed in front of the vision sensors for several (at least four) times. Using the constraint that the relative positions of all sub-targets are invariant, the transformation matrix from the coordinate frame of each vision sensor to GCF can be solved. Both synthetic and real experiments are carried out and good result is obtained. The proposed method has been applied to several real measurement systems and shown to be both flexible and accurate. It can serve as an attractive alternative to existing global calibration methods

  1. Intensive time series data exploitation: the Multi-sensor Evolution Analysis (MEA) platform

    Science.gov (United States)

    Mantovani, Simone; Natali, Stefano; Folegani, Marco; Scremin, Alessandro

    2014-05-01

    The monitoring of the temporal evolution of natural phenomena must be performed in order to ensure their correct description and to allow improvements in modelling and forecast capabilities. This assumption, that is obvious for ground-based measurements, has not always been true for data collected through space-based platforms: except for geostationary satellites and sensors, that allow providing a very effective monitoring of phenomena with geometric scale from regional to global; smaller phenomena (with characteristic dimension lower than few kilometres) have been monitored with instruments that could collect data only with a time interval in the order of several days; bi-temporal techniques have been the most used ones for years, in order to characterise temporal changes and try identifying specific phenomena. The more the number of flying sensor has grown and their performance improved, the more their capability of monitoring natural phenomena at a smaller geographic scale has grown: we can now count on tenth of years of remotely sensed data, collected by hundreds of sensors that are now accessible from a wide users' community, and the techniques for data processing have to be adapted to move toward a data intensive exploitation. Starting from 2008, the European Space Agency has initiated the development of the Multi-sensor Evolution Analysis (MEA) platform (https://mea.eo.esa.int), whose first aim was to permit the access and exploitation of long term remotely sensed satellite data from different platforms: 15 years of global (A)ATSR data together with 5 years of regional AVNIR-2 data were loaded into the system and were used, through a web-based graphic user interface, for land cover change analysis. The MEA data availability has grown during years integrating multi-disciplinary data that feature spatial and temporal dimensions: so far tenths of Terabytes of data in the land and atmosphere domains are available and can be visualized and exploited, keeping the

  2. MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding.

    Science.gov (United States)

    D'Hulst, Charlotte; Mina, Raena B; Gershon, Zachary; Jamet, Sophie; Cerullo, Antonio; Tomoiaga, Delia; Bai, Li; Belluscio, Leonardo; Rogers, Matthew E; Sirotin, Yevgeniy; Feinstein, Paul

    2016-07-26

    Typically, ∼0.1% of the total number of olfactory sensory neurons (OSNs) in the main olfactory epithelium express the same odorant receptor (OR) in a singular fashion and their axons coalesce into homotypic glomeruli in the olfactory bulb. Here, we have dramatically increased the total number of OSNs expressing specific cloned OR coding sequences by multimerizing a 21-bp sequence encompassing the predicted homeodomain binding site sequence, TAATGA, known to be essential in OR gene choice. Singular gene choice is maintained in these "MouSensors." In vivo synaptopHluorin imaging of odor-induced responses by known M71 ligands shows functional glomerular activation in an M71 MouSensor. Moreover, a behavioral avoidance task demonstrates that specific odor detection thresholds are significantly decreased in multiple transgenic lines, expressing mouse or human ORs. We have developed a versatile platform to study gene choice and axon identity, to create biosensors with great translational potential, and to finally decode human olfaction. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. A Portable Wireless Communication Platform Based on a Multi-Material Fiber Sensor for Real-Time Breath Detection

    Directory of Open Access Journals (Sweden)

    Mourad Roudjane

    2018-03-01

    Full Text Available In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual’s breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user’s comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16–1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute.

  4. Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments

    Directory of Open Access Journals (Sweden)

    Jyh-Da Wei

    2017-08-01

    Full Text Available High-end graphics processing units (GPUs, such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1, which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs. Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform. Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments.

  5. Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments.

    Science.gov (United States)

    Wei, Jyh-Da; Cheng, Hui-Jun; Lin, Chun-Yuan; Ye, Jin; Yeh, Kuan-Yu

    2017-01-01

    High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments.

  6. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki

    2018-01-01

    For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as “sensor platform LSI”) for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz. PMID:29342923

  7. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors

    Directory of Open Access Journals (Sweden)

    Chenzhong Shao

    2018-01-01

    Full Text Available For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS Large-Scale Integration (LSI (referred to as “sensor platform LSI” for bus-networked Micro-Electro-Mechanical-Systems (MEMS-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI was 73.66 Hz.

  8. Mobile Sensor Technologies Being Developed

    Science.gov (United States)

    Greer, Lawrence C.; Oberle, Lawrence G.

    2003-01-01

    The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a

  9. Investigation of Matlab® as Platform in Navigation and Control of an Automatic Guided Vehicle Utilising an Omnivision Sensor

    Directory of Open Access Journals (Sweden)

    Ben Kotze

    2014-08-01

    Full Text Available Automatic Guided Vehicles (AGVs are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed.

  10. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    Science.gov (United States)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  11. Generalized extracellular molecule sensor platform for programming cellular behavior.

    Science.gov (United States)

    Scheller, Leo; Strittmatter, Tobias; Fuchs, David; Bojar, Daniel; Fussenegger, Martin

    2018-04-23

    Strategies for expanding the sensor space of designer receptors are urgently needed to tailor cell-based therapies to respond to any type of medically relevant molecules. Here, we describe a universal approach to designing receptor scaffolds that enables antibody-specific molecular input to activate JAK/STAT, MAPK, PLCG or PI3K/Akt signaling rewired to transgene expression driven by synthetic promoters. To demonstrate its scope, we equipped the GEMS (generalized extracellular molecule sensor) platform with antibody fragments targeting a synthetic azo dye, nicotine, a peptide tag and the PSA (prostate-specific antigen) biomarker, thereby covering inputs ranging from small molecules to proteins. These four GEMS devices provided robust signaling and transgene expression with high signal-to-noise ratios in response to their specific ligands. The sensitivity of the nicotine- and PSA-specific GEMS devices matched the clinically relevant concentration ranges, and PSA-specific GEMS were able to detect pathological PSA levels in the serum of patients diagnosed with prostate cancer.

  12. Hybrid integrated label-free chemical and biological sensors.

    Science.gov (United States)

    Mehrabani, Simin; Maker, Ashley J; Armani, Andrea M

    2014-03-26

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.

  13. SAW-Based Phononic Crystal Microfluidic Sensor-Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications.

    Science.gov (United States)

    Oseev, Aleksandr; Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V; Hirsch, Soeren

    2017-09-23

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.

  14. Site Assessment of Multiple-Sensor Approaches for Buried Utility Detection

    Directory of Open Access Journals (Sweden)

    Alexander C. D. Royal

    2011-01-01

    Full Text Available The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. Open-cut methods are predominantly used, in preference to trenchless technology, to effect a repair, replace or install a new section of the network. This is, in part, due to the inability to determine the position of all utilities below the carriageway, making open-cut methods desirable in terms of dealing with uncertainty since the buried infrastructure is progressively exposed during excavation. However, open-cut methods damage the carriageway and disrupt society's functions. This paper describes the progress of a research project that aims to develop a multi-sensor geophysical platform that can improve the probability of complete detection of the infrastructure buried beneath the carriageway. The multi-sensor platform is being developed in conjunction with a knowledge-based system that aims to provide information on how the properties of the ground might affect the sensing technologies being deployed. The fusion of data sources (sensor data and utilities record data is also being researched to maximize the probability of location. This paper describes the outcome of the initial phase of testing along with the development of the knowledge-based system and the fusing of data to produce utility maps.

  15. Adaptive multi-node multiple input and multiple output (MIMO) transmission for mobile wireless multimedia sensor networks.

    Science.gov (United States)

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-10-02

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase.

  16. Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform.

    Science.gov (United States)

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R

    2018-02-23

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.

  17. Hybrid Integrated Label-Free Chemical and Biological Sensors

    Science.gov (United States)

    Mehrabani, Simin; Maker, Ashley J.; Armani, Andrea M.

    2014-01-01

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach. PMID:24675757

  18. Hybrid Integrated Label-Free Chemical and Biological Sensors

    Directory of Open Access Journals (Sweden)

    Simin Mehrabani

    2014-03-01

    Full Text Available Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits. This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.

  19. A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection

    Science.gov (United States)

    D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin

    1993-01-01

    A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...

  20. The Sensor Web: A Macro-Instrument for Coordinated Sensing

    Directory of Open Access Journals (Sweden)

    Kevin A. Delin

    2002-07-01

    Full Text Available The Sensor Web is a macro-instrument concept that allows for the spatiotemporal understanding of an environment through coordinated efforts between multiple numbers and types of sensing platforms, including both orbital and terrestrial and both fixed and mobile. Each of these platforms, or pods, communicates within their local neighborhood and thus distributes information to the instrument as a whole. Much as intelligence in the brain is a result of the myriad of connections between dendrites, it is anticipated that the Sensor Web will develop a macro-intelligence as a result of its distributed information with the pods reacting and adapting to their environment in a way that is much more than their individual sum. The sharing of data among individual pods will allow for a global perception and purpose of the instrument as a whole. The Sensor Web is to sensors what the Internet is to computers, with different platforms and operating systems communicating via a set of shared, robust protocols. This paper will outline the potential of the Sensor Web concept and describe the Jet Propulsion Laboratory (JPL Sensor Webs Project (http://sensorwebs.jpl.nasa.gov/. In particular, various fielded Sensor Webs will be discussed.

  1. A Multi-Technology Communication Platform for Urban Mobile Sensing.

    Science.gov (United States)

    Almeida, Rodrigo; Oliveira, Rui; Luís, Miguel; Senna, Carlos; Sargento, Susana

    2018-04-12

    A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network.

  2. A Multi-Technology Communication Platform for Urban Mobile Sensing

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida

    2018-04-01

    Full Text Available A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE, a delay-tolerant network (DTN-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network.

  3. A Multi-Technology Communication Platform for Urban Mobile Sensing

    Science.gov (United States)

    Almeida, Rodrigo; Oliveira, Rui

    2018-01-01

    A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network. PMID:29649175

  4. ROS-TMS and Big Sensor Box: Platforms for Informationally Structured Environment

    OpenAIRE

    倉爪, 亮; ユンソク, ピョ; 辻, 徳生; 河村, 晃宏

    2017-01-01

    This paper proposes new software and hardware platforms for an informationally structured environment named ROS-TMS and Big Sensor Box. We started the development of a management system for an informationally structured environment named TMS (Town Management System) in Robot Town Project in 2005. Since then we are continuing our efforts for the improvement of the performance and the enhancement of the functions of the TMS. Recently, we launched a new version of TMS named ROS-TMS, which resolv...

  5. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    Grace D

    2008-01-01

    Full Text Available Abstract We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  6. SenStick: Comprehensive Sensing Platform with an Ultra Tiny All-In-One Sensor Board for IoT Research

    Directory of Open Access Journals (Sweden)

    Yugo Nakamura

    2017-01-01

    Full Text Available We propose a comprehensive sensing platform called SenStick, which is composed of hardware (ultra tiny all-in-one sensor board, software (iOS, Android, and PC, and 3D case data. The platform aims to allow all the researchers to start IoT research, such as activity recognition and context estimation, easily and efficiently. The most important contribution is the hardware that we have designed. Various sensors often used for research are embedded in an ultra tiny board with the size of 50 mm (W × 10 mm (H × 5 mm (D and weight around 3 g including a battery. Concretely, the following sensors are embedded on this board: acceleration, gyro, magnetic, light, UV, temperature, humidity, and pressure. In addition, this board has BLE (Bluetooth low energy connectivity and capability of a rechargeable battery. By using 110 mAh battery, it can run more than 15 hours. The most different point from other similar boards is that our board has a large flash memory for logging all the data without a smartphone. By using SenStick, all the users can collect various data easily and focus on IoT data analytics. In this paper, we introduce SenStick platform and some case studies. Through the user study, we confirmed the usefulness of our proposed platform.

  7. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    Science.gov (United States)

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  8. Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors

    Science.gov (United States)

    Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.

    2017-12-01

    We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data

  9. Highly Sensitive and Reproducible SERS Sensor for Biological pH Detection Based on a Uniform Gold Nanorod Array Platform.

    Science.gov (United States)

    Bi, Liyan; Wang, Yunqing; Yang, Ying; Li, Yuling; Mo, Shanshan; Zheng, Qingyin; Chen, Lingxin

    2018-05-09

    Conventional research on surface-enhanced Raman scattering (SERS)-based pH sensors often depends on nanoparticle aggregation, whereas the variability in nanoparticle aggregation gives rise to poor repeatability in the SERS signal. Herein, we fabricated a gold nanorod array platform via an efficient evaporative self-assembly method. The platform exhibits great SERS sensitivity with an enhancement factor of 5.6 × 10 7 and maintains excellent recyclability and reproducibility with relative standard deviation (RSD) values of less than 8%. On the basis of the platform, we developed a highly sensitive bovine serum albumin (BSA)-coated 4-mercaptopyridine (4-MPy)-linked (BMP) SERS-based pH sensor to report pH ranging from pH 3.0 to pH 8.0. The intensity ratio variation of 1004 and 1096 cm -1 in 4-MPy showed excellent pH sensitivity, which decreased as the surrounding pH increased. Furthermore, this BMP SERS-based pH sensor was employed to measure the pH value in C57BL/6 mouse blood. We have demonstrated that the pH sensor has great advantages such as good stability, reliability, and accuracy, which could be extended for the design of point-of-care devices.

  10. OLED-polypropylene bio-CD sensor

    Science.gov (United States)

    Vengasandra, Srikanth; Cai, Yuankun; Grewell, David; Shinar, Joseph; Shinar, Ruth

    2008-08-01

    With the goal of developing microfluidic platforms for sensing applications, flash-free micro patterns were embossed in polypropylene surfaces with ultrasonic heating for a biosensing lab-on-CD application. The embossed features were designed to act as reservoirs, valves, and reaction chambers to allow, in combination with a compact sensing platform, the monitoring of analyte levels using a standard PC-CD player. To generate the compact sensor, as an example, we chose the photoluminescence (PL)-based detection of lactate and glucose using an OLED-based sensing platform. Once embossed, the surface energy of the plastic substrate was chemically modified to make it hydrophilic. Reagents, placed in separate reservoirs, were directed through burst valves towards a reaction chamber via CD rotation. Lactate or glucose were monitored by measuring the effect of the related dissolved oxygen level on the PL decay time of an oxygen-sensitive dye, following analyte oxidation catalyzed by a suitable specific oxidase enzyme. The results demonstrate the potential of integrating OLEDs as excitation sources in PL-based sensors with microfluidic CD-based platforms, including for simultaneous multiple analyses.

  11. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    Directory of Open Access Journals (Sweden)

    Ji She

    2016-12-01

    Full Text Available Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  12. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2008-06-01

    Full Text Available We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  13. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  14. Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks.

    Science.gov (United States)

    Anwar, Asim; Seet, Boon-Chong; Ding, Zhiguo

    2018-02-08

    Ubiquitous wireless sensor networks (UWSNs) have become a critical technology for enabling smart cities and other ubiquitous monitoring applications. Their deployment, however, can be seriously hampered by the spectrum available to the sheer number of sensors for communication. To support the communication needs of UWSNs without requiring more spectrum resources, the power-domain non-orthogonal multiple access (NOMA) technique originally proposed for 5th Generation (5G) cellular networks is investigated for UWSNs for the first time in this paper. However, unlike 5G networks that operate in the licensed spectrum, UWSNs mostly operate in unlicensed spectrum where sensors also experience cross-technology interferences from other devices sharing the same spectrum. In this paper, we model the interferences from various sources at the sensors using stochastic geometry framework. To evaluate the performance, we derive a theorem and present new closed form expression for the outage probability of the sensors in a downlink scenario under interference limited environment. In addition, diversity analysis for the ordered NOMA users is performed. Based on the derived outage probability, we evaluate the average link throughput and energy consumption efficiency of NOMA against conventional orthogonal multiple access (OMA) technique in UWSNs. Further, the required computational complexity for the NOMA users is presented.

  15. The tsunami service bus, an integration platform for heterogeneous sensor systems

    Science.gov (United States)

    Haener, R.; Waechter, J.; Kriegel, U.; Fleischer, J.; Mueller, S.

    2009-04-01

    components remain unchanged, components can be maintained and evolved independently on each other and service functionality as a whole can be reused. In GITEWS the functional integration pattern was adopted by applying the principles of an Enterprise Service Bus (ESB) as a backbone. Four services provided by the so called Tsunami Service Bus (TSB) which are essential for early warning systems are realized compliant to services specified within the Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC). 3. ARCHITECTURE The integration platform was developed to access proprietary, heterogeneous sensor data and to provide them in a uniform manner for further use. Its core, the TSB provides both a messaging-backbone and -interfaces on the basis of a Java Messaging Service (JMS). The logical architecture of GITEWS consists of four independent layers: • A resource layer where physical or virtual sensors as well as data or model storages provide relevant measurement-, event- and analysis-data: Utilizable for the TSB are any kind of data. In addition to sensors databases, model data and processing applications are adopted. SWE specifies encoding both to access and to describe these data in a comprehensive way: 1. Sensor Model Language (SensorML): Standardized description of sensors and sensor data 2. Observations and Measurements (O&M): Model and encoding of sensor measurements • A service layer to collect and conduct data from heterogeneous and proprietary resources and provide them via standardized interfaces: The TSB enables interaction with sensors via the following services: 1. Sensor Observation Service (SOS): Standardized access to sensor data 2. Sensor Planning Service (SPS): Controlling of sensors and sensor networks 3. Sensor Alert Service (SAS): Active sending of data if defined events occur 4. Web Notification Service (WNS): Conduction of asynchronous dialogues between services • An orchestration layer where atomic services are composed and

  16. Development of a Respiratory Inductive Plethysmography Module Supporting Multiple Sensors for Wearable Systems

    Directory of Open Access Journals (Sweden)

    Zhengbo Zhang

    2012-09-01

    Full Text Available In this paper, we present an RIP module with the features of supporting multiple inductive sensors, no variable frequency LC oscillator, low power consumption, and automatic gain adjustment for each channel. Based on the method of inductance measurement without using a variable frequency LC oscillator, we further integrate pulse amplitude modulation and time division multiplexing scheme into a module to support multiple RIP sensors. All inductive sensors are excited by a high-frequency electric current periodically and momentarily, and the inductance of each sensor is measured during the time when the electric current is fed to it. To improve the amplitude response of the RIP sensors, we optimize the sensing unit with a matching capacitor parallel with each RIP sensor forming a frequency selection filter. Performance tests on the linearity of the output with cross-sectional area and the accuracy of respiratory volume estimation demonstrate good linearity and accurate lung volume estimation. Power consumption of this new RIP module with two sensors is very low. The performance of respiration measurement during movement is also evaluated. This RIP module is especially desirable for wearable systems with multiple RIP sensors for long-term respiration monitoring.

  17. AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    NARCIS (Netherlands)

    Ollero, Anibal; Bernard, Markus; La Civita, Marco; van Hoesel, L.F.W.; Marron, Pedro J.; Lepley, Jason; de Andres, Eduardo

    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network,

  18. A New Remotely Operated Sensor Platform for Interdisciplinary Observations under Sea Ice

    Directory of Open Access Journals (Sweden)

    Christian Katlein

    2017-09-01

    Full Text Available Observation of the climate and ecosystem of ice covered polar seas is a timely task for the scientific community. The goal is to assess the drastic and imminent changes of the polar sea ice cover induced by climate change. Retreating and thinning sea ice affects the planets energy budget, atmospheric, and oceanic circulation patterns as well as the ecosystem associated with this unique habitat. To increase the observational capabilities of sea ice scientists, we equipped a remotely operated vehicle (ROV as sensor platform for interdisciplinary research at the ice water interface. Here, we present the technical details and operation scheme of the new vehicle and provide data examples from a first campaign in the Arctic in autumn 2016 to demonstrate the vehicle's capabilities. The vehicle is designed for efficient operations in the harsh polar conditions. Redundant modular design allows operation by three scientists simultaneously operating a wide variety of sensors. Sensors from physical, chemical, and biological oceanography are combined with optical and acoustic sea ice sensors to provide a comprehensive picture of the underside of sea ice. The sensor suite provides comprehensive capabilities and can be further extended as additional ports for power and communication are available. The vehicle provides full six degrees of freedom in navigation, enabling intervention, and manipulation skills despite its simple one function manipulator arm.

  19. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform

    Science.gov (United States)

    Cennamo, Nunzio; De Maria, Letizia; D’Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-01-01

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor. PMID:25871719

  20. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform

    Directory of Open Access Journals (Sweden)

    Nunzio Cennamo

    2015-04-01

    Full Text Available In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform, based on a molecular imprinted polymer (MIP and surface plasmon resonance in a plastic optical fiber (POF, is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC method, confirming the good selectivity of the proposed sensor.

  1. Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform.

    Science.gov (United States)

    Cennamo, Nunzio; De Maria, Letizia; D'Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-04-13

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor.

  2. Simulating next-generation Cyber-physical computing platforms

    OpenAIRE

    Burgio, Paolo; Álvarez Martínez, Carlos; Ayguadé Parra, Eduard; Filgueras Izquierdo, Antonio; Jiménez González, Daniel; Martorell Bofill, Xavier; Navarro, Nacho; Giorgi, Roberto

    2015-01-01

    In specific domains, such as cyber-physical systems, platforms are quickly evolving to include multiple (many-) cores and programmable logic in a single system-on-chip, while includ- ing interfaces to commodity sensors/actuators. Programmable Logic (e.g., FPGA) allows for greater flexibility and dependability. However, the task of extracting the performance/watt potentia l of heterogeneous many-cores is often demanded at the application level, and this h...

  3. A Cross-Platform Tactile Capabilities Interface for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Jie eMa

    2016-04-01

    Full Text Available This article presents the core elements of a cross-platform tactile capabilities interface (TCI for humanoid arms. The aim of the interface is to reduce the cost of developing humanoid robot capabilities by supporting reuse through cross-platform deployment. The article presents a comparative analysis of existing robot middleware frameworks, as well as the technical details of the TCI framework that builds on the the existing YARP platform. The TCI framework currently includes robot arm actuators with robot skin sensors. It presents such hardware in a platform independent manner, making it possible to write robot control software that can be executed on different robots through the TCI frameworks. The TCI framework supports multiple humanoid platforms and this article also presents a case study of a cross-platform implementation of a set of tactile protective withdrawal reflexes that have been realised on both the Nao and iCub humanoid robot platforms using the same high-level source code.

  4. Open Source Platform Application to Groundwater Characterization and Monitoring

    Science.gov (United States)

    Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.

    2017-12-01

    Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.

  5. Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks

    Directory of Open Access Journals (Sweden)

    DongHo Kang

    2014-01-01

    Full Text Available Internet of Things (IoT consists of several tiny devices connected together to form a collaborative computing environment. Recently IoT technologies begin to merge with supervisory control and data acquisition (SCADA sensor networks to more efficiently gather and analyze real-time data from sensors in industrial environments. But SCADA sensor networks are becoming more and more vulnerable to cyber-attacks due to increased connectivity. To safely adopt IoT technologies in the SCADA environments, it is important to improve the security of SCADA sensor networks. In this paper we propose a multiple filtering technique based on whitelists to detect illegitimate packets. Our proposed system detects the traffic of network and application protocol attacks with a set of whitelists collected from normal traffic.

  6. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform.

    Science.gov (United States)

    Mehta, Daryush D; Zañartu, Matías; Feng, Shengran W; Cheyne, Harold A; Hillman, Robert E

    2012-11-01

    Many common voice disorders are chronic or recurring conditions that are likely to result from faulty and/or abusive patterns of vocal behavior, referred to generically as vocal hyperfunction. An ongoing goal in clinical voice assessment is the development and use of noninvasively derived measures to quantify and track the daily status of vocal hyperfunction so that the diagnosis and treatment of such behaviorally based voice disorders can be improved. This paper reports on the development of a new, versatile, and cost-effective clinical tool for mobile voice monitoring that acquires the high-bandwidth signal from an accelerometer sensor placed on the neck skin above the collarbone. Using a smartphone as the data acquisition platform, the prototype device provides a user-friendly interface for voice use monitoring, daily sensor calibration, and periodic alert capabilities. Pilot data are reported from three vocally normal speakers and three subjects with voice disorders to demonstrate the potential of the device to yield standard measures of fundamental frequency and sound pressure level and model-based glottal airflow properties. The smartphone-based platform enables future clinical studies for the identification of the best set of measures for differentiating between normal and hyperfunctional patterns of voice use.

  7. Autonomous biomorphic robots as platforms for sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-10-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.

  8. Autonomous biomorphic robots as platforms for sensors

    International Nuclear Information System (INIS)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-01-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology

  9. Low-cost embedded systems for democratizing ocean sensor technology in the coastal zone

    Science.gov (United States)

    Glazer, B. T.; Lio, H. I.

    2017-12-01

    Environmental sciences suffer from undersampling. Enabling sustained and unattended data collection in the coastal zone typically involves expensive instrumentation and infrastructure deployed as cabled observatories or moorings with little flexibility in deployment location following initial installation. High costs of commercially-available or custom instruments have limited the number of sensor sites that can be targeted by academic researchers, and have also limited engagement with the public. We have developed a novel, low-cost, open-source sensor and software platform to enable wireless data transfer of biogeochemical sensors in the coastal zone. The platform is centered upon widely available, low-cost, single board computers and microcontrollers. We have used a blend of on-hand research-grade sensors and low-cost open-source electronics that can be assembled by tech-savvy non-engineers. Robust, open-source code that remains customizable for specific miniNode configurations can match a specific site's measurement needs, depending on the scientific research priorities. We have demonstrated prototype capabilities and versatility through lab testing and field deployments of multiple sensor nodes with multiple sensor inputs, all of which are streaming near-real-time data from Kaneohe Bay over wireless RF links to a shore-based base station.

  10. Integrative set enrichment testing for multiple omics platforms

    Directory of Open Access Journals (Sweden)

    Poisson Laila M

    2011-11-01

    Full Text Available Abstract Background Enrichment testing assesses the overall evidence of differential expression behavior of the elements within a defined set. When we have measured many molecular aspects, e.g. gene expression, metabolites, proteins, it is desirable to assess their differential tendencies jointly across platforms using an integrated set enrichment test. In this work we explore the properties of several methods for performing a combined enrichment test using gene expression and metabolomics as the motivating platforms. Results Using two simulation models we explored the properties of several enrichment methods including two novel methods: the logistic regression 2-degree of freedom Wald test and the 2-dimensional permutation p-value for the sum-of-squared statistics test. In relation to their univariate counterparts we find that the joint tests can improve our ability to detect results that are marginal univariately. We also find that joint tests improve the ranking of associated pathways compared to their univariate counterparts. However, there is a risk of Type I error inflation with some methods and self-contained methods lose specificity when the sets are not representative of underlying association. Conclusions In this work we show that consideration of data from multiple platforms, in conjunction with summarization via a priori pathway information, leads to increased power in detection of genomic associations with phenotypes.

  11. Control of multiple robots using vision sensors

    CERN Document Server

    Aranda, Miguel; Sagüés, Carlos

    2017-01-01

    This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of: a method for visual robot homing based on a memory of omni-directional images a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs an algorithm to recover a generic motion between two 1-d views and which does not require a third view a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and c...

  12. Paper based electronics platform

    KAUST Repository

    Nassar, Joanna Mohammad; Sevilla, Galo Andres Torres; Hussain, Muhammad Mustafa

    2017-01-01

    A flexible and non-functionalized low cost paper-based electronic system platform fabricated from common paper, such as paper based sensors, and methods of producing paper based sensors, and methods of sensing using the paper based sensors

  13. Reconnaissance blind multi-chess: an experimentation platform for ISR sensor fusion and resource management

    Science.gov (United States)

    Newman, Andrew J.; Richardson, Casey L.; Kain, Sean M.; Stankiewicz, Paul G.; Guseman, Paul R.; Schreurs, Blake A.; Dunne, Jeffrey A.

    2016-05-01

    This paper introduces the game of reconnaissance blind multi-chess (RBMC) as a paradigm and test bed for understanding and experimenting with autonomous decision making under uncertainty and in particular managing a network of heterogeneous Intelligence, Surveillance and Reconnaissance (ISR) sensors to maintain situational awareness informing tactical and strategic decision making. The intent is for RBMC to serve as a common reference or challenge problem in fusion and resource management of heterogeneous sensor ensembles across diverse mission areas. We have defined a basic rule set and a framework for creating more complex versions, developed a web-based software realization to serve as an experimentation platform, and developed some initial machine intelligence approaches to playing it.

  14. RGB-D, Laser and Thermal Sensor Fusion for People following in a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Loreto Susperregi

    2013-06-01

    Full Text Available Detecting and tracking people is a key capability for robots that operate in populated environments. In this paper, we used a multiple sensor fusion approach that combines three kinds of sensors in order to detect people using RGB-D vision, lasers and a thermal sensor mounted on a mobile platform. The Kinect sensor offers a rich data set at a significantly low cost, however, there are some limitations to its use in a mobile platform, mainly that the Kinect algorithms for people detection rely on images captured by a static camera. To cope with these limitations, this work is based on the combination of the Kinect and a Hokuyo laser and a thermopile array sensor. A real-time particle filter system merges the information provided by the sensors and calculates the position of the target, using probabilistic leg and thermal patterns, image features and optical flow to this end. Experimental results carried out with a mobile platform in a Science museum have shown that the combination of different sensory cues increases the reliability of the people following system.

  15. A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis.

    Science.gov (United States)

    Lin, Yen-Heng; Ho, Kai-Siang; Yang, Chin-Tien; Wang, Jung-Hao; Lai, Chao-Sung

    2014-06-02

    The number and position of assembled nanowires cannot be controlled using most nanowire sensor assembling methods. In this paper, we demonstrate a high-yield, highly flexible platform for nanowire sensor assembly using a combination of optically induced dielectrophoresis (ODEP) and conventional dielectrophoresis (DEP). With the ODEP platform, optical images can be used as virtual electrodes to locally turn on a non-contact DEP force and manipulate a micron- or nano-scale substance suspended in fluid. Nanowires were first moved next to the previously deposited metal electrodes using optical images and, then, were attracted to and arranged in the gap between two electrodes through DEP forces generated by switching on alternating current signals to the metal electrodes. A single nanowire can be assembled within 24 seconds using this approach. In addition, the number of nanowires in a single nanowire sensor can be controlled, and the assembly of a single nanowire on each of the adjacent electrodes can also be achieved. The electrical properties of the assembled nanowires were characterized by IV curve measurement. Additionally, the contact resistance between the nanowires and electrodes and the stickiness between the nanowires and substrates were further investigated in this study.

  16. Multiple Distributed Smart Microgrids with a Self-Autonomous, Energy Harvesting Wireless Sensor Network

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Kheng Tan, Yen

    2012-01-01

    The chapter covers the smart wireless sensors for microgrids, as well as the energy harvesting technology used to sustain the operations of these sensors. Last, a case study on the multiple distributed smart microgrids with a self-autonomous, energy harvesting wireless sensor network is presented....

  17. Central Asia Water (CAWa) - A visualization platform for hydro-meteorological sensor data

    Science.gov (United States)

    Stender, Vivien; Schroeder, Matthias; Wächter, Joachim

    2014-05-01

    (SAS) for sending alerts. An OpenSource web-platform bundles the data, provided by the SWE web services of the hydro-meteorological stations, and provides tools for data visualization and data access. The visualization tool was implemented by using OpenSource tools like GeoExt/ExtJS and OpenLayers. Using the application the user can query the relevant sensor data, select parameter and time period, visualize and finally download the data. [1] http://www.cawa-project.net

  18. Targeting multiple heterogeneous hardware platforms with OpenCL

    Science.gov (United States)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware

  19. Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

    Science.gov (United States)

    Liu, Lei; Bai, Yu-Guang; Zhang, Da-Li; Wu, Zhi-Gang

    2013-01-01

    The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level. PMID:23860316

  20. Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Wu

    2013-07-01

    Full Text Available The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS error of 0.21 μrad, which is approximately equal to the noise level.

  1. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Francisco Javier Ferrández-Pastor

    2016-07-01

    Full Text Available The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water; however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols, the evolution of Internet technologies (Internet of Things and ubiquitous computing (Ubiquitous Sensor Networks allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists when a project is launched.

  2. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture.

    Science.gov (United States)

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José

    2016-07-22

    The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched.

  3. Single-Chip Multiple-Frequency RF MEMS Resonant Platform for Wireless Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel, single-chip, multiple-frequency platform for RF/IF filtering and clock reference based on contour-mode aluminum nitride (AlN) MEMS piezoelectric resonators...

  4. Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.

    Science.gov (United States)

    Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang

    2017-03-01

    This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Active and Passive Hybrid Sensor

    Science.gov (United States)

    Carswell, James R.

    2010-01-01

    A hybrid ocean wind sensor (HOWS) can map ocean vector wind in low to hurricane-level winds, and non-precipitating and precipitating conditions. It can acquire active and passive measurements through a single aperture at two wavelengths, two polarizations, and multiple incidence angles. Its low profile, compact geometry, and low power consumption permits installation on air craft platforms, including high-altitude unmanned aerial vehicles (UAVs).

  6. H-Shaped Multiple Linear Motor Drive Platform Control System Design Based on an Inverse System Method

    NARCIS (Netherlands)

    Qin, Caiyan; Zhang, Chaoning; Lu, H.

    2017-01-01

    Due to its simple mechanical structure and high motion stability, the H-shaped platform has been increasingly widely used in precision measuring, numerical control machining and semiconductor packaging equipment, etc. The H-shaped platform is normally driven by multiple (three) permanent magnet

  7. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  8. Strategies for Sharing Seismic Data Among Multiple Computer Platforms

    Science.gov (United States)

    Baker, L. M.; Fletcher, J. B.

    2001-12-01

    the user. Commercial software packages, such as MatLab, also have the ability to share data in their own formats across multiple computer platforms. Our Fortran applications can create plot files in Adobe PostScript, Illustrator, and Portable Document Format (PDF) formats. Vendor support for reading these files is readily available on multiple computer platforms. We will illustrate by example our strategies for sharing seismic data among our multiple computer platforms, and we will discuss our positive and negative experiences. We will include our solutions for handling the different byte ordering, floating-point formats, and text file ``end-of-line'' conventions on the various computer platforms we use (6 different operating systems on 5 processor architectures).

  9. Diversity Performance Analysis on Multiple HAP Networks

    Science.gov (United States)

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  10. Diversity Performance Analysis on Multiple HAP Networks

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-06-01

    Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  11. Absorption-Modulated Crossed-Optical Fiber-Sensor Platform for Measurements in Liquid Environments and Flow Streams

    Directory of Open Access Journals (Sweden)

    Paul E. Henning

    2017-01-01

    Full Text Available A new evanescent-wave fiber sensor is described that utilizes absorption-modulated luminescence (AML in combination with a crossed-fiber sensor platform. The luminescence signals of two crossed-fiber reference regions, placed on opposite sides of the stretch of fiber supporting the absorbance sensor, monitor the optical intensity in the fiber core. Evanescent absorption of the sensor reduces a portion of the excitation light and modulates the luminescence of the second reference region. The attenuation is determined from the luminescence intensity of both reference regions similar to the Beer-Lambert Law. The AML-Crossed-Fiber technique was demonstrated using the absorbance of the Zn(II-PAN2 complex at 555 nm. A linear response was obtained over a zinc(II concentration range of 0 to 20 μM (approximately 0 to 1.3 ppm. A nonlinear response was observed at higher zinc(II concentrations and was attributed to depletion of higher-order modes in the fiber. This was corroborated by the measured induced repopulation of these modes.

  12. Multiple-Event, Single-Photon Counting Imaging Sensor

    Science.gov (United States)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  13. Using Autonomous Underwater Vehicles as Sensor Platforms for Ice-Monitoring

    Directory of Open Access Journals (Sweden)

    Petter Norgren

    2014-10-01

    Full Text Available Due to the receding sea-ice extent in the Arctic, and the potentially large undiscovered petroleum resources present north of the Arctic circle, offshore activities in ice-infested waters are increasing. Due to the presence of drifting sea-ice and icebergs, ice management (IM becomes an important part of the offshore operation, and an important part of an IM system is the ability to reliably monitor the ice conditions. An autonomous underwater vehicle (AUV has a unique capability of high underwater spatial and temporal coverage, making it suitable for monitoring applications. Since the first Arctic AUV deployment in 1972, AUV technology has matured and has been used in complex under-ice operations. This paper motivates the use of AUVs as an ice-monitoring sensor platform. It discusses relevant sensor capabilities and challenges related to communication and navigation. This paper also presents experiences from a field campaign that took place in Ny-Aalesund at Svalbard in January 2014, where a REMUS 100 AUV was used for sea-floor mapping and collection of oceanographic parameters. Based on this, we discuss the experiences related to using AUVs for ice-monitoring. We conclude that AUVs are highly applicable for ice-monitoring, but further research is needed.

  14. Multifunctional Web Enabled Ocean Sensor Systems for the Monitoring of a Changing Ocean

    Science.gov (United States)

    Pearlman, Jay; Castro, Ayoze; Corrandino, Luigi; del Rio, Joaquin; Delory, Eric; Garello, Rene; Heuermann, Rudinger; Martinez, Enoc; Pearlman, Francoise; Rolin, Jean-Francois; Toma, Daniel; Waldmann, Christoph; Zielinski, Oliver

    2016-04-01

    As stated in the 2010 "Ostend Declaration", a major challenge in the coming years is the development of a truly integrated and sustainably funded European Ocean Observing System for supporting major policy initiatives such as the Integrated Maritime Policy and the Marine Strategy Framework Directive. This will be achieved with more long-term measurements of key parameters supported by a new generation of sensors whose costs and reliability will enable broad and consistent observations. Within the NeXOS project, a framework including new sensors capabilities and interface software has been put together that embraces the key technical aspects needed to improve the temporal and spatial coverage, resolution and quality of marine observations. The developments include new, low-cost, compact and integrated sensors with multiple functionalities that will allow for the measurements useful for a number of objectives, ranging from more precise monitoring and modeling of the marine environment to an improved assessment of fisheries. The project is entering its third year and will be demonstrating initial capabilities of optical and acoustic sensor prototypes that will become available for a number of platforms. For fisheries management, there is also a series of sensors that support an Ecosystem Approach to Fisheries (EAF). The greatest capabilities for comprehensive operations will occur when these sensors can be integrated into a multisensory capability on a single platform or multiply interconnected and coordinated platforms. Within NeXOS the full processing steps starting from the sensor signal all the way up to distributing collected environmental information will be encapsulated into standardized new state of the art Smart Sensor Interface and Web components to provide both improved integration and a flexible interface for scientists to control sensor operation. The use of the OGC SWE (Sensor Web Enablement) set of standards like OGC PUCK and SensorML at the instrument

  15. An Interactive Platform to Visualize Data-Driven Clinical Pathways for the Management of Multiple Chronic Conditions.

    Science.gov (United States)

    Zhang, Yiye; Padman, Rema

    2017-01-01

    Patients with multiple chronic conditions (MCC) pose an increasingly complex health management challenge worldwide, particularly due to the significant gap in our understanding of how to provide coordinated care. Drawing on our prior research on learning data-driven clinical pathways from actual practice data, this paper describes a prototype, interactive platform for visualizing the pathways of MCC to support shared decision making. Created using Python web framework, JavaScript library and our clinical pathway learning algorithm, the visualization platform allows clinicians and patients to learn the dominant patterns of co-progression of multiple clinical events from their own data, and interactively explore and interpret the pathways. We demonstrate functionalities of the platform using a cluster of 36 patients, identified from a dataset of 1,084 patients, who are diagnosed with at least chronic kidney disease, hypertension, and diabetes. Future evaluation studies will explore the use of this platform to better understand and manage MCC.

  16. A Microfluidic Long-Period Fiber Grating Sensor Platform for Chloride Ion Concentration Measurement

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2011-09-01

    Full Text Available Optical fiber sensors based on waveguide technology are promising and attractive in chemical, biotechnological, agronomy, and civil engineering applications. A microfluidic system equipped with a long-period fiber grating (LPFG capable of measuring chloride ion concentrations of several sample materials is presented. The LPFG-based microfluidic platform was shown to be effective in sensing very small quantities of samples and its transmitted light signal could easily be used as a measurand. The investigated sample materials included reverse osmosis (RO water, tap water, dilute aqueous sample of sea sand soaked in RO water, aqueous sample of sea sand soaked in RO water, dilute seawater, and seawater. By employing additionally a chloride ion-selective electrode sensor for the calibration of chloride-ion concentration, a useful correlation (R2 = 0.975 was found between the separately-measured chloride concentration and the light intensity transmitted through the LPFG at a wavelength of 1,550 nm. Experimental results show that the sensitivity of the LPFG sensor by light intensity interrogation was determined to be 5.0 × 10−6 mW/mg/L for chloride ion concentrations below 2,400 mg/L. The results obtained from the analysis of data variations in time-series measurements for all sample materials show that standard deviations of output power were relatively small and found in the range of 7.413 × 10−5–2.769 × 10−3 mW. In addition, a fairly small coefficients of variations were also obtained, which were in the range of 0.03%–1.29% and decreased with the decrease of chloride ion concentrations of sample materials. Moreover, the analysis of stability performance of the LPFG sensor indicated that the random walk coefficient decreased with the increase of the chloride ion concentration, illustrating that measurement stability using the microfluidic platform was capable of measuring transmitted optical power with accuracy in the range of −0

  17. Paper-Based Digital Microfluidic Chip for Multiple Electrochemical Assay Operated by a Wireless Portable Control System

    DEFF Research Database (Denmark)

    Ruecha, Nipapan; Lee, Jumi; Chae, Heedo

    2017-01-01

    for multiple analysis assays are fabricated by affordable printing techniques. For enhanced sensitivity of the sensor, the working electrode is modified through the electrochemical method, namely by reducing graphene with voltammetry and coating gold nanoparticles by amperometry. Detachable sensor and absorber...... designed portable power supply and wireless control system, the active paper-based chip platform can be utilized as an advanced point-of-care device for multiple assays in digital microfluidics....

  18. Context-Aware AAL Services through a 3D Sensor-Based Platform

    Directory of Open Access Journals (Sweden)

    Alessandro Leone

    2013-01-01

    Full Text Available The main goal of Ambient Assisted Living solutions is to provide assistive technologies and services in smart environments allowing elderly people to have high quality of life. Since 3D sensing technologies are increasingly investigated as monitoring solution able to outperform traditional approaches, in this work a noninvasive monitoring platform based on 3D sensors is presented providing a wide-range solution suitable in several assisted living scenarios. Detector nodes are managed by low-power embedded PCs in order to process 3D streams and extract postural features related to person’s activities. The feature level of details is tuned in accordance with the current context in order to save bandwidth and computational resources. The platform architecture is conceived as a modular system suitable to be integrated into third-party middleware to provide monitoring functionalities in several scenarios. The event detection capabilities were validated by using both synthetic and real datasets collected in controlled and real-home environments. Results show the soundness of the presented solution to adapt to different application requirements, by correctly detecting events related to four relevant AAL services.

  19. Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform

    International Nuclear Information System (INIS)

    Brau-Avila, A; Valenzuela-Galvan, M; Herrera-Jimenez, V M; Santolaria, J; Aguilar, J J; Acero, R

    2017-01-01

    The demand for faster and more reliable measuring tasks for the control and quality assurance of modern production systems has created new challenges for the field of coordinate metrology. Thus, the search for new solutions in coordinate metrology systems and the need for the development of existing ones still persists. One example of such a system is the portable coordinate measuring machine (PCMM), the use of which in industry has considerably increased in recent years, mostly due to its flexibility for accomplishing in-line measuring tasks as well as its reduced cost and operational advantages compared to traditional coordinate measuring machines. Nevertheless, PCMMs have a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification and optimization procedures. In this work the mathematical calibration procedure of a capacitive sensor-based indexed metrology platform (IMP) is presented. This calibration procedure is based on the readings and geometric features of six capacitive sensors and their targets with nanometer resolution. The final goal of the IMP calibration procedure is to optimize the geometric features of the capacitive sensors and their targets in order to use the optimized data in the verification procedures of PCMMs. (paper)

  20. Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform

    Science.gov (United States)

    Brau-Avila, A.; Santolaria, J.; Acero, R.; Valenzuela-Galvan, M.; Herrera-Jimenez, V. M.; Aguilar, J. J.

    2017-03-01

    The demand for faster and more reliable measuring tasks for the control and quality assurance of modern production systems has created new challenges for the field of coordinate metrology. Thus, the search for new solutions in coordinate metrology systems and the need for the development of existing ones still persists. One example of such a system is the portable coordinate measuring machine (PCMM), the use of which in industry has considerably increased in recent years, mostly due to its flexibility for accomplishing in-line measuring tasks as well as its reduced cost and operational advantages compared to traditional coordinate measuring machines. Nevertheless, PCMMs have a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification and optimization procedures. In this work the mathematical calibration procedure of a capacitive sensor-based indexed metrology platform (IMP) is presented. This calibration procedure is based on the readings and geometric features of six capacitive sensors and their targets with nanometer resolution. The final goal of the IMP calibration procedure is to optimize the geometric features of the capacitive sensors and their targets in order to use the optimized data in the verification procedures of PCMMs.

  1. Technology review: prototyping platforms for monitoring ambient conditions.

    Science.gov (United States)

    Afolaranmi, Samuel Olaiya; Ramis Ferrer, Borja; Martinez Lastra, Jose Luis

    2018-05-08

    The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO 2 , air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO 2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.

  2. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform.

    Science.gov (United States)

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-11-18

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.

  3. Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2016-01-01

    The paper presents the design, development, and fabrication of a flexible and wearable sensor based on carbon nanotube nanocomposite for monitoring specific physiological parameters. Polydimethylsiloxane (PDMS) was used as the substrate with a thin layer of a nanocomposite comprising functionalized multi-walled carbon nanotubes (MWCNTs) and PDMS as electrodes. The sensor patch functionalized on strain-sensitive capacitive sensing from interdigitated electrodes which were patterned with a laser on the nanocomposite layer. The thickness of the electrode layer was optimized regarding strain and conductivity. The sensor patch was connected to a monitoring device from one end and attached to the body on the other for examining purposes. Experimental results show the capability of the sensor patch used to detect respiration and limb movements. This work is a stepping stone of the sensing system to be developed for multiple physiological parameters.

  4. Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring

    KAUST Repository

    Nag, Anindya

    2016-10-16

    The paper presents the design, development, and fabrication of a flexible and wearable sensor based on carbon nanotube nanocomposite for monitoring specific physiological parameters. Polydimethylsiloxane (PDMS) was used as the substrate with a thin layer of a nanocomposite comprising functionalized multi-walled carbon nanotubes (MWCNTs) and PDMS as electrodes. The sensor patch functionalized on strain-sensitive capacitive sensing from interdigitated electrodes which were patterned with a laser on the nanocomposite layer. The thickness of the electrode layer was optimized regarding strain and conductivity. The sensor patch was connected to a monitoring device from one end and attached to the body on the other for examining purposes. Experimental results show the capability of the sensor patch used to detect respiration and limb movements. This work is a stepping stone of the sensing system to be developed for multiple physiological parameters.

  5. Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD.

    Science.gov (United States)

    Fletcher, Richard Ribón; Tam, Sharon; Omojola, Olufemi; Redemske, Richard; Kwan, Joyce

    2011-01-01

    We present a wearable sensor platform designed for monitoring and studying autonomic nervous system (ANS) activity for the purpose of mental health treatment and interventions. The mobile sensor system consists of a sensor band worn on the ankle that continuously monitors electrodermal activity (EDA), 3-axis acceleration, and temperature. A custom-designed ECG heart monitor worn on the chest is also used as an optional part of the system. The EDA signal from the ankle bands provides a measure sympathetic nervous system activity and used to detect arousal events. The optional ECG data can be used to improve the sensor classification algorithm and provide a measure of emotional "valence." Both types of sensor bands contain a Bluetooth radio that enables communication with the patient's mobile phone. When a specific arousal event is detected, the phone automatically presents therapeutic and empathetic messages to the patient in the tradition of Cognitive Behavioral Therapy (CBT). As an example of clinical use, we describe how the system is currently being used in an ongoing study for patients with drug-addiction and post-traumatic stress disorder (PTSD).

  6. Cooperative aquatic sensing using the telesupervised adaptive ocean sensor fleet

    Science.gov (United States)

    Dolan, John M.; Podnar, Gregg W.; Stancliff, Stephen; Low, Kian Hsiang; Elfes, Alberto; Higinbotham, John; Hosler, Jeffrey; Moisan, Tiffany; Moisan, John

    2009-09-01

    Earth science research must bridge the gap between the atmosphere and the ocean to foster understanding of Earth's climate and ecology. Typical ocean sensing is done with satellites or in situ buoys and research ships which are slow to reposition. Cloud cover inhibits study of localized transient phenomena such as Harmful Algal Blooms (HAB). A fleet of extended-deployment surface autonomous vehicles will enable in situ study of characteristics of HAB, coastal pollutants, and related phenomena. We have developed a multiplatform telesupervision architecture that supports adaptive reconfiguration based on environmental sensor inputs. Our system allows the autonomous repositioning of smart sensors for HAB study by networking a fleet of NOAA OASIS (Ocean Atmosphere Sensor Integration System) surface autonomous vehicles. In situ measurements intelligently modify the search for areas of high concentration. Inference Grid and complementary information-theoretic techniques support sensor fusion and analysis. Telesupervision supports sliding autonomy from high-level mission tasking, through vehicle and data monitoring, to teleoperation when direct human interaction is appropriate. This paper reports on experimental results from multi-platform tests conducted in the Chesapeake Bay and in Pittsburgh, Pennsylvania waters using OASIS platforms, autonomous kayaks, and multiple simulated platforms to conduct cooperative sensing of chlorophyll-a and water quality.

  7. Accurate 3D Positioning for a Mobile Platform in Non-Line-of-Sight Scenarios Based on IMU/Magnetometer Sensor Fusion.

    Science.gov (United States)

    Hellmers, Hendrik; Kasmi, Zakaria; Norrdine, Abdelmoumen; Eichhorn, Andreas

    2018-01-04

    In recent years, a variety of real-time applications benefit from services provided by localization systems due to the advent of sensing and communication technologies. Since the Global Navigation Satellite System (GNSS) enables localization only outside buildings, applications for indoor positioning and navigation use alternative technologies. Ultra Wide Band Signals (UWB), Wireless Local Area Network (WLAN), ultrasonic or infrared are common examples. However, these technologies suffer from fading and multipath effects caused by objects and materials in the building. In contrast, magnetic fields are able to pass through obstacles without significant propagation errors, i.e. in Non-Line of Sight Scenarios (NLoS). The aim of this work is to propose a novel indoor positioning system based on artificially generated magnetic fields in combination with Inertial Measurement Units (IMUs). In order to reach a better coverage, multiple coils are used as reference points. A basic algorithm for three-dimensional applications is demonstrated as well as evaluated in this article. The established system is then realized by a sensor fusion principle as well as a kinematic motion model on the basis of a Kalman filter. Furthermore, a pressure sensor is used in combination with an adaptive filtering method to reliably estimate the platform's altitude.

  8. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    Science.gov (United States)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  9. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis.

    Science.gov (United States)

    Mei, Feng; Fancy, Stephen P J; Shen, Yun-An A; Niu, Jianqin; Zhao, Chao; Presley, Bryan; Miao, Edna; Lee, Seonok; Mayoral, Sonia R; Redmond, Stephanie A; Etxeberria, Ainhoa; Xiao, Lan; Franklin, Robin J M; Green, Ari; Hauser, Stephen L; Chan, Jonah R

    2014-08-01

    Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.

  10. Miniaturized Planar Room Temperature Ionic Liquid Electrochemical Gas Sensor for Rapid Multiple Gas Pollutants Monitoring.

    Science.gov (United States)

    Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J

    2018-02-01

    The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.

  11. Development of a platform to combine sensor networks and home robots to improve fall detection in the home environment.

    Science.gov (United States)

    Della Toffola, Luca; Patel, Shyamal; Chen, Bor-rong; Ozsecen, Yalgin M; Puiatti, Alessandro; Bonato, Paolo

    2011-01-01

    Over the last decade, significant progress has been made in the development of wearable sensor systems for continuous health monitoring in the home and community settings. One of the main areas of application for these wearable sensor systems is in detecting emergency events such as falls. Wearable sensors like accelerometers are increasingly being used to monitor daily activities of individuals at a risk of falls, detect emergency events and send alerts to caregivers. However, such systems tend to have a high rate of false alarms, which leads to low compliance levels. Home robots can enable caregivers with the ability to quickly make an assessment and intervene if an emergency event is detected. This can provide an additional layer for detecting false positives, which can lead to improve compliance. In this paper, we present preliminary work on the development of a fall detection system based on a combination sensor networks and home robots. The sensor network architecture comprises of body worn sensors and ambient sensors distributed in the environment. We present the software architecture and conceptual design home robotic platform. We also perform preliminary characterization of the sensor network in terms of latencies and battery lifetime.

  12. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  13. Rapid world modelling from a mobile platform

    International Nuclear Information System (INIS)

    Barry, R.E.; Jones, J.P.; Little, C.Q.; Wilson, C.W.

    1997-01-01

    The ability to successfully use and interact with a computerized world model is dependent on the ability to create an accurate world model. The goal of this project was to develop a prototype system to remotely deploy sensors into a workspace, collect surface information, and rapidly build an accurate world model of that workspace. A key consideration was that the workspace areas are typically hazardous environments, where it is difficult or impossible for humans to enter. Therefore, the system needed to be fully remote, with no external connections. To accomplish this goal, an electric, mobile platform with battery power sufficient for both the platform and sensor electronics was procured and 3D range sensors were deployed on the platform to capture surface data within the workspace. A radio Ethernet connection was used to provide communications to the vehicle and all on-board electronics. Video from on-board cameras was also transmitted to the base station and used to teleoperate the vehicle. Range data generated by the on-board 3D sensors was transformed into surface maps, or models. Registering the sensor location to a consistent reference frame as the platform moved through the workspace allowed construction of a detailed 3D world model of the extended workspace

  14. Coresident sensor fusion and compression using the wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, D.A.

    1996-03-11

    Imagery from coresident sensor platforms, such as unmanned aerial vehicles, can be combined using, multiresolution decomposition of the sensor images by means of the two-dimensional wavelet transform. The wavelet approach uses the combination of spatial/spectral information at multiple scales to create a fused image. This can be done in both an ad hoc or model-based approach. We compare results from commercial ``fusion`` software and the ad hoc, wavelet approach. Results show the wavelet approach outperforms the commercial algorithms and also supports efficient compression of the fused image.

  15. The Sensor Management for Applied Research Technologies (SMART) Project

    Science.gov (United States)

    Goodman, Michael; Jedlovec, Gary; Conover, Helen; Botts, Mike; Robin, Alex; Blakeslee, Richard; Hood, Robbie; Ingenthron, Susan; Li, Xiang; Maskey, Manil; hide

    2007-01-01

    NASA seeks on-demand data processing and analysis of Earth science observations to facilitate timely decision-making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor, data type, and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output.

  16. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    Science.gov (United States)

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  17. Detection and Classification of Multiple Objects using an RGB-D Sensor and Linear Spatial Pyramid Matching

    OpenAIRE

    Dimitriou, Michalis; Kounalakis, Tsampikos; Vidakis, Nikolaos; Triantafyllidis, Georgios

    2013-01-01

    This paper presents a complete system for multiple object detection and classification in a 3D scene using an RGB-D sensor such as the Microsoft Kinect sensor. Successful multiple object detection and classification are crucial features in many 3D computer vision applications. The main goal is making machines see and understand objects like humans do. To this goal, the new RGB-D sensors can be utilized since they provide real-time depth map which can be used along with the RGB images for our ...

  18. Sensor platform for gas composition measurement

    NARCIS (Netherlands)

    De Graaf, G.; Bakker, F.; Wolffenbuttel, R.F.

    2011-01-01

    The gas sensor research presented here has a focus on the measurement of the composition of natural gas and gases from sustainable resources, such as biogas. For efficient and safe combustion, new sensor systems need to be developed to measure the composition of these new gases. In general about 6

  19. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform

    Science.gov (United States)

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-01-01

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform. PMID:27869722

  20. Hierarchical Parallel Matrix Multiplication on Large-Scale Distributed Memory Platforms

    KAUST Repository

    Quintin, Jean-Noel

    2013-10-01

    Matrix multiplication is a very important computation kernel both in its own right as a building block of many scientific applications and as a popular representative for other scientific applications. Cannon\\'s algorithm which dates back to 1969 was the first efficient algorithm for parallel matrix multiplication providing theoretically optimal communication cost. However this algorithm requires a square number of processors. In the mid-1990s, the SUMMA algorithm was introduced. SUMMA overcomes the shortcomings of Cannon\\'s algorithm as it can be used on a nonsquare number of processors as well. Since then the number of processors in HPC platforms has increased by two orders of magnitude making the contribution of communication in the overall execution time more significant. Therefore, the state of the art parallel matrix multiplication algorithms should be revisited to reduce the communication cost further. This paper introduces a new parallel matrix multiplication algorithm, Hierarchical SUMMA (HSUMMA), which is a redesign of SUMMA. Our algorithm reduces the communication cost of SUMMA by introducing a two-level virtual hierarchy into the two-dimensional arrangement of processors. Experiments on an IBM BlueGene/P demonstrate the reduction of communication cost up to 2.08 times on 2048 cores and up to 5.89 times on 16384 cores. © 2013 IEEE.

  1. Hierarchical Parallel Matrix Multiplication on Large-Scale Distributed Memory Platforms

    KAUST Repository

    Quintin, Jean-Noel; Hasanov, Khalid; Lastovetsky, Alexey

    2013-01-01

    Matrix multiplication is a very important computation kernel both in its own right as a building block of many scientific applications and as a popular representative for other scientific applications. Cannon's algorithm which dates back to 1969 was the first efficient algorithm for parallel matrix multiplication providing theoretically optimal communication cost. However this algorithm requires a square number of processors. In the mid-1990s, the SUMMA algorithm was introduced. SUMMA overcomes the shortcomings of Cannon's algorithm as it can be used on a nonsquare number of processors as well. Since then the number of processors in HPC platforms has increased by two orders of magnitude making the contribution of communication in the overall execution time more significant. Therefore, the state of the art parallel matrix multiplication algorithms should be revisited to reduce the communication cost further. This paper introduces a new parallel matrix multiplication algorithm, Hierarchical SUMMA (HSUMMA), which is a redesign of SUMMA. Our algorithm reduces the communication cost of SUMMA by introducing a two-level virtual hierarchy into the two-dimensional arrangement of processors. Experiments on an IBM BlueGene/P demonstrate the reduction of communication cost up to 2.08 times on 2048 cores and up to 5.89 times on 16384 cores. © 2013 IEEE.

  2. Multimodal wireless sensor network-based ambient assisted living in real homes with multiple residents.

    Science.gov (United States)

    Tunca, Can; Alemdar, Hande; Ertan, Halil; Incel, Ozlem Durmaz; Ersoy, Cem

    2014-05-30

    Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting.

  3. Multimodal Wireless Sensor Network-Based Ambient Assisted Living in Real Homes with Multiple Residents

    Directory of Open Access Journals (Sweden)

    Can Tunca

    2014-05-01

    Full Text Available Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs provide a great potential for ambient assisted living (AAL applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting.

  4. A Multimodal Deep Log-Based User Experience (UX) Platform for UX Evaluation.

    Science.gov (United States)

    Hussain, Jamil; Khan, Wajahat Ali; Hur, Taeho; Bilal, Hafiz Syed Muhammad; Bang, Jaehun; Hassan, Anees Ul; Afzal, Muhammad; Lee, Sungyoung

    2018-05-18

    The user experience (UX) is an emerging field in user research and design, and the development of UX evaluation methods presents a challenge for both researchers and practitioners. Different UX evaluation methods have been developed to extract accurate UX data. Among UX evaluation methods, the mixed-method approach of triangulation has gained importance. It provides more accurate and precise information about the user while interacting with the product. However, this approach requires skilled UX researchers and developers to integrate multiple devices, synchronize them, analyze the data, and ultimately produce an informed decision. In this paper, a method and system for measuring the overall UX over time using a triangulation method are proposed. The proposed platform incorporates observational and physiological measurements in addition to traditional ones. The platform reduces the subjective bias and validates the user's perceptions, which are measured by different sensors through objectification of the subjective nature of the user in the UX assessment. The platform additionally offers plug-and-play support for different devices and powerful analytics for obtaining insight on the UX in terms of multiple participants.

  5. Sequential interrogation of multiple FBG sensors using LPG modulation and an artificial neural network

    International Nuclear Information System (INIS)

    Basu, Mainak; Ghorai, S K

    2015-01-01

    Interrogating multiple fiber Bragg gratings (FBG) requires highly sensitive spectrum scanning equipment such as optical spectrum analyzers, tunable filters, acousto-optic tunable filters etc, which are expensive, bulky and time consuming. In this paper, we present a new approach for multiple FBG sensor interrogation using long-period gratings and an artificial neural network. The reflection spectra of the multiplexed FBGs are modulated by two long period gratings separately and the modulated optical intensities were detected by two photodetectors. The outputs of the detectors are then used as input in a previously trained artificial neural network to interrogate the FBG sensors. Simulations have been performed to determine the strain and wavelength shift using two and four sensors. The interrogation system has also been demonstrated experimentally for two sensors using simply supported beams in the range of 0–350 μstrain. The proposed interrogation scheme has been found to identify the perturbed FBG, and to determine strain and wavelength shift with reasonable accuracy. (paper)

  6. Efficient Routing in Wireless Sensor Networks with Multiple Sessions

    Directory of Open Access Journals (Sweden)

    Dianjie Lu

    2014-05-01

    Full Text Available Wireless Sensor Networks (WSNs are subject to node failures because of limited energy and link unreliability which makes the design of routing protocols in such networks a challenging task. The multipath routing scheme is an optimal alternative to address this problem which splits the traffic across multiple paths instead of routing all the traffic along a single path. However, using more paths introduces more contentions which degrade energy efficiency. The problem becomes even more difficult in the scenario of multiple sessions since different source-destination pairs may pass the same link which makes the flow distribution of each link uncertain. Our goal is to minimize the energy cost and provide the robust transmission by choosing the optimal paths. We first study the problem from a theoretical standpoint by mapping it to the multi-commodity network design problem. Since it is hard to build a global addressing scheme due to the great number of sensor nodes, we propose a Distributed Energy Efficient Routing protocol (D2ER. In D2ER, we employ the transportation method which can optimize the flow distribution with minimal energy consumption. Simulation results demonstrate that our optimal algorithm can save energy drastically.

  7. Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications

    International Nuclear Information System (INIS)

    Wagner, Torsten; Molina, Roberto; Yoshinobu, Tatsuo; Kloock, Joachim P.; Biselli, Manfred; Canzoneri, Michelangelo; Schnitzler, Thomas; Schoening, Michael J.

    2007-01-01

    The light-addressable potentiometric sensor is a promising technology platform for multi-sensor applications and lab-on-chip devices. However, many prior LAPS developments suffer from their lack in terms of non-portability, insufficient robustness, complicate handling, etc. Hence, portable and robust LAPS-based measurement devices have been investigated by the authors recently. In this work, a 'chip card'-based light-addressable potentiometric sensor system is presented. The utilisation of ordinary 'chip cards' allows an easy handling of different sensor chips for a wide range of possible applications. The integration of the electronic and the mechanical set-up into a single reader unit results in a compact design with the benefits of portability and low required space. In addition, the presented work includes a new multi-frequency measurement procedure, based on an FFT algorithm, which enables the simultaneous real-time measurement of up to 16 sensor spots. The comparison between the former batch-LAPS and the new FFT-based LAPS set-up will be presented. The immobilisation of biological cells (CHO: Chinese hamster ovary) demonstrates the possibility to record their metabolic activity with 16 measurement spots on the same chip. Furthermore, a Cd 2+ -selective chalcogenide-glass layer together with a pH-sensitive Ta 2 O 5 layer validates the use of the LAPS for chemical multi-sensor applications

  8. PERSON AUTHENTICATION USING MULTIPLE SENSOR DATA FUSION

    Directory of Open Access Journals (Sweden)

    S. Vasuhi

    2011-04-01

    Full Text Available This paper proposes a real-time system for face authentication, obtained through fusion of Infra Red (IR and visible images. In order to identify the unknown person authentication in highly secured areas, multiple algorithms are needed. The four well known algorithms for face recognition, Block Independent Component Analysis(BICA, Kalman Filtering(KF method, Discrete Cosine Transform(DCT and Orthogonal Locality Preserving Projections (OLPP are used to extract the features. If the data base size is very large and the features are not distinct then ambiguity will exists in face recognition. Hence more than one sensor is needed for critical and/or highly secured areas. This paper deals with multiple fusion methodology using weighted average and Fuzzy Logic. The visible sensor output depends on the environmental condition namely lighting conditions, illumination etc., to overcome this problem use histogram technique to choose appropriate algorithm. DCT and Kalman filtering are holistic approaches, BICA follows feature based approach and OLPP preserves the Euclidean structure of face space. These recognizers are capable of considering the problem of dimensionality reduction by eliminating redundant features and reducing the feature space. The system can handle variations like illumination, pose, orientation, occlusion, etc. up to a significant level. The integrated system overcomes the drawbacks of individual recognizers. The proposed system is aimed at increasing the accuracy of the person authentication system and at the same time reducing the limitations of individual algorithms. It is tested on real time database and the results are found to be 96% accurate.

  9. Open Source Based Sensor Platform for Mobile Environmental Monitoring and Data Acquisition

    Science.gov (United States)

    Schima, Robert; Goblirsch, Tobias; Misterek, René; Salbach, Christoph; Schlink, Uwe; Francyk, Bogdan; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    data processing, data provision and data visualization. The smart phone app allows the configuration of the mobile sensor devices and provides some built-in functions such as simple data visualization or data transmission via e-mail whereas the web service provides the visualization of the data and tools for data processing. In an initial field experiment, a methane monitoring based on our sensor integration platform was performed in the city area of Leipzig (Germany) in late June 2015. The study has shown that an urban monitoring can be conducted based on open source components. Moreover, the system enabled the detection of hot spots and methane emission sources. In September 2015, a larger scaled city monitoring based on the mobile monitoring platform was performed by five independently driving cyclists through the city center of Leipzig (Germany). As a result we were able to instantly show a heat and humidity map of the inner city center as well as an exposure map for each cyclist. This emphasizes the feasibility and high potential of open source based monitoring approaches for future research in the field of urban area monitoring in general, citizen science or the validation of remote sensing data.

  10. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly.

    Science.gov (United States)

    Gall, Oren Z; Zhong, Xiahua; Schulman, Daniel S; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S

    2017-06-30

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO 2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  11. Column-Parallel Single Slope ADC with Digital Correlated Multiple Sampling for Low Noise CMOS Image Sensors

    NARCIS (Netherlands)

    Chen, Y.; Theuwissen, A.J.P.; Chae, Y.

    2011-01-01

    This paper presents a low noise CMOS image sensor (CIS) using 10/12 bit configurable column-parallel single slope ADCs (SS-ADCs) and digital correlated multiple sampling (CMS). The sensor used is a conventional 4T active pixel with a pinned-photodiode as photon detector. The test sensor was

  12. A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamidreza Mousavi

    2017-01-01

    Full Text Available Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN. In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple fault conditions. The algorithm uses a calibration model based on AANN. AANN can reconstruct the faulty sensor using non-faulty sensors due to correlation between the process variables, and mean of the difference between reconstructed and original data determines which sensors are faulty. The algorithms are tested on a Dimerization process. The simulation results show that the S-AANN can isolate multiple faulty sensors with low computational time that make the algorithm appropriate candidate for online applications.

  13. A Multiple Mobility Support Approach (MMSA Based on PEAS for NCW in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Bong-Joo Koo

    2011-01-01

    Full Text Available Wireless Sensor Networks (WSNs can be implemented as one of sensor systems in Network Centric Warfare (NCW. Mobility support and energy efficiency are key concerns for this application, due to multiple mobile users and stimuli in real combat field. However, mobility support approaches that can be adopted in this circumstance are rare. This paper proposes Multiple Mobility Support Approach (MMSA based on Probing Environment and Adaptive Sleeping (PEAS to support the simultaneous mobility of both multiple users and stimuli by sharing the information of stimuli in WSNs. Simulations using Qualnet are conducted, showing that MMSA can support multiple mobile users and stimuli with good energy efficiency. It is expected that the proposed MMSA can be applied to real combat field.

  14. Chemical, physical, and meteorological data collected on multiple cruises from 7/17/1970 - 11/18/1984 (NODC Accession 0000073)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nutrients, physical, and meteorological data were collected from multiple platforms using meteorological sensors from 17 July 1970 to 14, November 1984. Data were...

  15. Performance Analysis of Multiple Wave Energy Converters Placed on a Floating Platform in the Frequency Domain

    Directory of Open Access Journals (Sweden)

    Hyebin Lee

    2018-02-01

    Full Text Available Wind-wave hybrid power generation systems have the potential to become a significant source of affordable renewable energy. However, their strong interactions with both wind- and wave-induced forces raise a number of technical challenges for modelling. The present study undertakes a numerical investigation on multi-body hydrodynamic interaction between a wind-wave hybrid floating platform and multiple wave energy converters (WECs in a frequency domain. In addition to the exact responses of the platform and the WECs, the power take-off (PTO mechanism was taken into account for analysis. The coupled hydrodynamic coefficients and wave exciting forces were obtained from WAMIT, the 3D diffraction/radiation solver based on the boundary element method. The overall performance of the multiple WECs is presented and compared with the performance of a single isolated WEC. The analysis showed significant differences in the dynamic responses of the WECs when the multi-body interaction was considered. In addition, the PTO damping effect made a considerable difference to the responses of the WECs. However, the platform response was only minimally affected by PTO damping. With regard to energy capture, the interaction effect of the designed multiple WEC array layout is evaluated. The WEC array configuration showed both constructive and destructive effects in accordance with the incident wave frequency and direction.

  16. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from...... the sensor bias current to magnetize magnetic beads in the vicinity of the sensor. The method allows for real-time measurements of the specific bead binding to the sensor surface during DNA hybridization and washing. Compared to other magnetic biosensing platforms, our approach eliminates the need...... for external electromagnets and thus allows for miniaturization of the sensor platform....

  17. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    Science.gov (United States)

    Bosse, Stefan

    2015-02-16

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  18. Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform and Mobile Multi-Agent Systems

    Directory of Open Access Journals (Sweden)

    Stefan Bosse

    2015-02-01

    Full Text Available Multi-agent systems (MAS can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  19. Hyperspectral target detection analysis of a cluttered scene from a virtual airborne sensor platform using MuSES

    Science.gov (United States)

    Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.

    2017-10-01

    The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been

  20. Internetting tactical security sensor systems

    Science.gov (United States)

    Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.

    1998-08-01

    The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control

  1. Architecture of optical sensor for recognition of multiple toxic metal ions from water.

    Science.gov (United States)

    Shenashen, M A; El-Safty, S A; Elshehy, E A

    2013-09-15

    Here, we designed novel optical sensor based on the wormhole hexagonal mesoporous core/multi-shell silica nanoparticles that enabled the selective recognition and removal of these extremely toxic metals from drinking water. The surface-coating process of a mesoporous core/double-shell silica platforms by several consequence decorations using a cationic surfactant with double alkyl tails (CS-DAT) and then a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (III) signaling probe enabled us to create a unique hierarchical multi-shell sensor. In this design, the high loading capacity and wrapping of the CS-DAT and III organic moieties could be achieved, leading to the formation of silica core with multi-shells that formed from double-silica, CS-DAT, and III dressing layers. In this sensing system, notable changes in color and reflectance intensity of the multi-shelled sensor for Cu(2+), Co(2+), Cd(2+), and Hg(2+) ions, were observed at pH 2, 8, 9.5 and 11.5, respectively. The multi-shelled sensor is added to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, selectivity, and signal stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Unmasking of Olive Oil Adulteration Via a Multi-Sensor Platform

    Directory of Open Access Journals (Sweden)

    Marco Santonico

    2015-08-01

    Full Text Available Methods for the chemical and sensorial evaluation of olive oil are frequently changed and tuned to oppose the increasingly sophisticated frauds. Although a plethora of promising alternatives has been developed, chromatographic techniques remain the more reliable yet, even at the expense of their related execution time and costs. In perspective of a continuous increment in the number of the analyses as a result of the global market, more rapid and effective methods to guarantee the safety of the olive oil trade are required. In this study, a novel artificial sensorial system, based on gas and liquid analysis, has been employed to deal with olive oil genuineness and authenticity issues. Despite these sensors having been widely used in the field of food science, the innovative electronic interface of the device is able to provide a higher reproducibility and sensitivity of the analysis. The multi-parametric platform demonstrated the capability to evaluate the organoleptic properties of extra-virgin olive oils as well as to highlight the presence of adulterants at blending concentrations usually not detectable through other methods.

  3. Efficient Routing in Wireless Sensor Networks with Multiple Sessions

    OpenAIRE

    Dianjie Lu; Guijuan Zhang; Ren Han; Xiangwei Zheng; Hong Liu

    2014-01-01

    Wireless Sensor Networks (WSNs) are subject to node failures because of limited energy and link unreliability which makes the design of routing protocols in such networks a challenging task. The multipath routing scheme is an optimal alternative to address this problem which splits the traffic across multiple paths instead of routing all the traffic along a single path. However, using more paths introduces more contentions which degrade energy efficiency. The problem becomes even more difficu...

  4. Seasonal and Inter-annual Phenological Varibility is Greatest in Low-Arctic and Wet Sites Across the North Slope of Alaska as Observed from Multiple Remote Sensing Platforms

    Science.gov (United States)

    Vargas, S. A., Jr.; Andresen, C. G.; May, J. L.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.

    2017-12-01

    The Arctic is experiencing among the most dramatic impacts from climate variability on the planet. Arctic plant phenology has been identified as an ideal indicator of climate change impacts and provides great insight into seasonal and inter-annual vegetative trends and their responses to such changes. Traditionally, phenology has been quantified using satellite-based systems and plot-level observations but each approach presents limitations especially in high latitude regions. Mid-scale systems (e.g. automated sensor platforms and trams) have shown to provide alternative, and in most cases, cheaper solutions with comparable results to those acquired traditionally. This study contributes to the US Arctic Observing Network (AON) and assesses the effectiveness of using digital images acquired from pheno-cams, a kite aerial photography (KAP) system, and plot-level images (PLI) in their capacity to assess phenological variability (e.g. snow melt, greening and end-of-season) for dominant vegetation communities present at two sites in both Utqiagvik and Atqasuk, Alaska, namely the Mobile Instrumented Sensor Platform (MISP) and the Circum-arctic Active Layer Monitoring (CALM) grids. RGB indices (e.g. GEI and %G) acquired from these methods were compared to the normalized difference vegetation index (NDVI) calculated from multispectral ground-based reflectance measurements, which has been identified and used as a proxy of primary productivity across multiple ecosystems including the Arctic. The 5 years of growing season data collected generally resulted with stronger Pearson's correlations between indices located in plots containing higher soil moisture versus those that were drier. Future studies will extend platform inter-comparison to the satellite level by scaling trends to MODIS land surface products. Trends documented thus far, however, suggest that the long-term changes in satellite NDVI for these study areas, could be a direct response from wet tundra landscapes.

  5. A Multiple Sensor Machine Vision System Technology for the Hardwood

    Science.gov (United States)

    Richard W. Conners; D.Earl Kline; Philip A. Araman

    1995-01-01

    For the last few years the authors have been extolling the virtues of a multiple sensor approach to hardwood defect detection. Since 1989 the authors have actively been trying to develop such a system. This paper details some of the successes and failures that have been experienced to date. It also discusses what remains to be done and gives time lines for the...

  6. Sensor-Based Human Activity Recognition in a Multi-user Scenario

    Science.gov (United States)

    Wang, Liang; Gu, Tao; Tao, Xianping; Lu, Jian

    Existing work on sensor-based activity recognition focuses mainly on single-user activities. However, in real life, activities are often performed by multiple users involving interactions between them. In this paper, we propose Coupled Hidden Markov Models (CHMMs) to recognize multi-user activities from sensor readings in a smart home environment. We develop a multimodal sensing platform and present a theoretical framework to recognize both single-user and multi-user activities. We conduct our trace collection done in a smart home, and evaluate our framework through experimental studies. Our experimental result shows that we achieve an average accuracy of 85.46% with CHMMs.

  7. Detection and Classification of Multiple Objects using an RGB-D Sensor and Linear Spatial Pyramid Matching

    DEFF Research Database (Denmark)

    Dimitriou, Michalis; Kounalakis, Tsampikos; Vidakis, Nikolaos

    2013-01-01

    , connected components detection and filtering approaches, in order to design a complete image processing algorithm for efficient object detection of multiple individual objects in a single scene, even in complex scenes with many objects. Besides, we apply the Linear Spatial Pyramid Matching (LSPM) [1] method......This paper presents a complete system for multiple object detection and classification in a 3D scene using an RGB-D sensor such as the Microsoft Kinect sensor. Successful multiple object detection and classification are crucial features in many 3D computer vision applications. The main goal...... is making machines see and understand objects like humans do. To this goal, the new RGB-D sensors can be utilized since they provide real-time depth map which can be used along with the RGB images for our tasks. In our system we employ effective depth map processing techniques, along with edge detection...

  8. Cantilever sensors: Nanomechanical tools for diagnostics

    DEFF Research Database (Denmark)

    Datar, R.; Kim, S.; Jeon, S.

    2009-01-01

    Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A micromachined cantilever platform integrates nanoscale science and microfab......Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A micromachined cantilever platform integrates nanoscale science...... and microfabrication technology for the label-free detection of biological molecules, allowing miniaturization. Molecular adsorption, when restricted to a single side of a deformable cantilever beam, results in measurable bending of the cantilever. This nanoscale deflection is caused by a variation in the cantilever...... surface stress due to biomolecular interactions and can be measured by optical or electrical means, thereby reporting on the presence of biomolecules. Biological specificity in detection is typically achieved by immobilizing selective receptors or probe molecules on one side of the cantilever using...

  9. Open-source sensors system for doing simple physics experiments

    Directory of Open Access Journals (Sweden)

    César Llamas Bello

    2018-04-01

    Full Text Available An open-source platform to be used in high school or university laboratories has been developed. The platform permits the performance of dynamics experiments in a simple and affordable way, combining measurements of different sensors in the platform. The sensors are controlled by an Arduino microcontroller, which can be wirelessly accessed with smartphones or tablets. The platform constitutes an economical sensing alternative to commercial configurations and can easily be extended by including new sensors that broaden the range of covered experiments.

  10. Open architecture of smart sensor suites

    Science.gov (United States)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  11. Surface analysis and electrochemistry of a robust carbon-nanofiber-based electrode platform H_2O_2 sensor

    International Nuclear Information System (INIS)

    Suazo-Dávila, D.; Rivera-Meléndez, J.; Koehne, J.; Meyyappan, M.; Cabrera, C.R.

    2016-01-01

    Highlights: • Vertically aligned carbon nanofibers were intercalated with SiO_2 for mechanical strength and isolation of individual electrodes. • Stable and robust electrochemical hydrogen peroxide sensor is stable and robust. • Five consecutive calibration curves were done with different hydrogen peroxide concentrations over a period of 3 days without any deterioration in the electrochemical response. • The sensor was also used for the measurement of hydrogen peroxide as one of the by-products of the reaction of cholesterol oxidase with cholesterol and the sensor response exhibited linear behavior from 50 μM to 1 mM in cholesterol concentration. • In general, the electrochemical sensor is robust, stable, and reproducible, and the detection limit and sensitivity responses were among the best when compared with the literature. - Abstract: A vertically aligned carbon nanofiber-based (VACNF) electrode platform was developed for an enzymeless hydrogen peroxide sensor. Vertical nanofibers have heights on the order of 2–3 μm, and diameters that vary from 50 to 100 nm as seen by atomic force microscopy. The VACNF was grown as individual, vertically, and freestanding structures using plasma-enhanced chemical vapor deposition. The electrochemical sensor, for the hydrogen peroxide measurement in solution, showed stability and reproducibility in five consecutive calibration curves with different hydrogen peroxide concentrations over a period of 3 days. The detection limit was 66 μM. The sensitivity for hydrogen peroxide electrochemical detection was 0.0906 mA cm"−"2 mM"−"1, respectively. The sensor was also used for the measurement of hydrogen peroxide as the by-product of the reaction of cholesterol with cholesterol oxidase as a biosensor application. The sensor exhibits linear behavior in the range of 50 μM–1 mM in cholesterol concentrations. The surface analysis and electrochemistry characterization is presented.

  12. Hyperspectral Sensors Final Report CRADA No. TC02173.0

    Energy Technology Data Exchange (ETDEWEB)

    Priest, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sauvageau, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-30

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Science Applications International Corporation (SAIC), National Security Space Operations/SRBU, to develop longwave infrared (LWIR) hyperspectral imaging (HSI) sensors for airborne and potentially ground and space, platforms. LLNL has designed and developed LWIR HSI sensors since 1995. The current generation of these sensors has applications to users within the U.S. Department of Defense and the Intelligence Community. User needs are for multiple copies provided by commercial industry. To gain the most benefit from the U.S. Government’s prior investments in LWIR HSI sensors developed at LLNL, transfer of technology and know-how from LLNL HSI experts to commercial industry was needed. The overarching purpose of the CRADA project was to facilitate the transfer of the necessary technology from LLNL to SAIC thereby allowing the U.S. Government to procure LWIR HSI sensors from this company.

  13. Multiple Intelligences: The Most Effective Platform for Global 21st Century Educational and Instructional Methodologies

    Science.gov (United States)

    McFarlane, Donovan A.

    2011-01-01

    This paper examines the theory of Multiple Intelligences (MI) as the most viable and effective platform for 21st century educational and instructional methodologies based on the understanding of the value of diversity in today's classrooms and educational institutions, the unique qualities and characteristics of individual learners, the…

  14. Effect of sensor-augmented pump treatment vs. multiple daily injections on albuminuria

    DEFF Research Database (Denmark)

    Vestergaard Rosenlund, Signe; Willum Hansen, Tine; Rossing, Peter

    2015-01-01

    CONTEXT: The effect of glycaemic control on persisting albuminuria remains unclear. Insulin delivery and glucose variability may be important Objective: To investigate the effect of 1 year treatment with sensor-augmented insulin pump (SAP) or multiple daily injections (MDI) on albuminuria. DESIGN...

  15. ECCE Toolkit: Prototyping Sensor-Based Interaction

    Directory of Open Access Journals (Sweden)

    Andrea Bellucci

    2017-02-01

    Full Text Available Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators. Prototyping physical interaction is hindered by the challenges of: (1 programming interactions among physical sensors/actuators and digital interfaces; (2 implementing functionality for different platforms in different programming languages; and (3 building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems, a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  16. Hybrid Multiple Soft-Sensor Models of Grinding Granularity Based on Cuckoo Searching Algorithm and Hysteresis Switching Strategy

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-01-01

    Full Text Available According to the characteristics of grinding process and accuracy requirements of technical indicators, a hybrid multiple soft-sensor modeling method of grinding granularity is proposed based on cuckoo searching (CS algorithm and hysteresis switching (HS strategy. Firstly, a mechanism soft-sensor model of grinding granularity is deduced based on the technique characteristics and a lot of experimental data of grinding process. Meanwhile, the BP neural network soft-sensor model and wavelet neural network (WNN soft-sensor model are set up. Then, the hybrid multiple soft-sensor model based on the hysteresis switching strategy is realized. That is to say, the optimum model is selected as the current predictive model according to the switching performance index at each sampling instant. Finally the cuckoo searching algorithm is adopted to optimize the performance parameters of hysteresis switching strategy. Simulation results show that the proposed model has better generalization results and prediction precision, which can satisfy the real-time control requirements of grinding classification process.

  17. A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation

    Directory of Open Access Journals (Sweden)

    Dongmei Huang

    2017-09-01

    Full Text Available Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.

  18. A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.

    Science.gov (United States)

    Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi

    2017-09-21

    Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.

  19. Feasibility of large-scale deployment of multiple wearable sensors in Parkinson's disease

    NARCIS (Netherlands)

    Silva de Lima, A.L.; Hahn, T.; Evers, L.J.W.; Vries, N.M. de; Cohen, E.; Afek, M.; Bataille, L.; Daeschler, M.; Claes, K.; Boroojerdi, B.; Terricabras, D.; Little, M.A.; Baldus, H.; Bloem, B.R.; Faber, M.J.

    2017-01-01

    Wearable devices can capture objective day-to-day data about Parkinson's Disease (PD). This study aims to assess the feasibility of implementing wearable technology to collect data from multiple sensors during the daily lives of PD patients. The Parkinson@home study is an observational, two-cohort

  20. MEMS Sensor Arrays for Cryogenic Propellant Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — KWJ offers this proposal for a low-power, practical and versatile MEMS sensor platform for NASA applications. The proposed nano-sensor platform is ultra-low power...

  1. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    Science.gov (United States)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  2. Recent Advances in Paper-Based Sensors

    Directory of Open Access Journals (Sweden)

    Edith Chow

    2012-08-01

    Full Text Available Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed.

  3. Open Standards for Sensor Information Processing

    Energy Technology Data Exchange (ETDEWEB)

    Pouchard, Line Catherine [ORNL; Poole, Stephen W [ORNL; Lothian, Josh [ORNL

    2009-07-01

    This document explores sensor standards, sensor data models, and computer sensor software in order to determine the specifications and data representation best suited for analyzing and monitoring computer system health using embedded sensor data. We review IEEE 1451, OGC Sensor Model Language and Transducer Model Language (TML), lm-sensors and Intelligent Platform Management Inititative (IPMI).

  4. Electrochemiluminescent graphene quantum dots enhanced by MoS2 as sensing platform: a novel molecularly imprinted electrochemiluminescence sensor for 2-methyl-4-chlorophenoxyacetic acid assay

    International Nuclear Information System (INIS)

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Zhang, Fuyuan; Liu, Jingmin; Zheng, Wenjie; Wang, Shuo

    2017-01-01

    Highlights: • Electrochemiluminescent MoS 2 -GQDs nanocomposite was fabricated for the first time. • MoS 2 -GQDs hybrid nanocomposite was used as ECL sensing platform. • Molecularly imprinted ECL sensor was fabricated for the determination of MCPA. • MoS 2 -GQDs nanocomposite may advance the developments of ECL sensor. - Abstract: The ECL properties and application of a novel luminescent material molybdenum disulfide-graphene quantum dots (MoS 2 -GQDs) hybrid nanocomposite was reported for the first time. The hybridization of MoS 2 and GQDs endowed nanocomposite with structural and compositional advantages for boosting the ECL performance of GQDs. Impressively, the ECL could be remarkable enhanced using MoS 2 -GQDs hybrid nanocomposite, which was ∼13, ∼185 and ∼596-folds larger than the ECL intensity of GQDs, MoS 2 modified electrodes and bare electrode, respectively. Subsequently, as a sensing platform, the MoS 2 -GQDs hybrid nanocomposite was applied to fabricate molecularly imprinted electrochemiluminescence sensor for the ultrasensitive and selective determination of 2-methyl-4-chlorophenoxyacetic acid. Under optimal conditions, the detection limit of the prepared sensor was 5.5 pmol L −1 (S/N = 3) within a linear concentration range of 10 pmol L −1 –0.1 μmol L −1 . The developped sensor exhibited high sensitivity, good selectivity, reproducibility and stability, suggesting the potential for detecting pesticides and veterinary drugs at trace levels in food safety and environmental control.

  5. Smart sensor: a platform for an interactive human physiological state recognition study

    Directory of Open Access Journals (Sweden)

    Andrej Gorochovik

    2013-03-01

    Full Text Available This paper describes a concept of making interactive human state recognition systems based on smart sensor design. The token measures on proper ADC signal processing had significantly lowered the interference level. A more reliable way of measuring human skin temperature was offered by using Maxim DS18B20 digital thermometers. They introduced a more sensible response to temperature changes compared to previously used analog LM35 thermometers. An adaptive HR measuring algorithm was introduced to suppress incorrect ECG signal readings caused by human muscular activities. User friendly interactive interface for touch sensitive GLCD screen was developed to present real time physiological data readings both in numerals and graphics. User was granted an ability to dynamically customize data processing methods according to his needs. Specific procedures were developed to simplify physiological state recording for further analysis. The introduced physiological data sampling and preprocessing platform was optimized to be compatible with “ATmega Oscilloscope” PC data collecting and visualizing software.

  6. MULTI SENSOR AND PLATFORMS SETUPS FOR VARIOUS AIRBORNE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    Full Text Available To combine various sensors to get a system for specific use became popular within the last 10 years. Metric mid format cameras meanwhile reach the 100 MPix and entered the mapping market to compete with the big format sensors. Beside that also other sensors as SLR Cameras provide high resolution and enter the aerial surveying market for orthophoto production or monitoring applications. Flexibility, purchase-costs, size and weight are common aspects to design multi-sensor systems. Some sensors are useful for mapping while others are part of environmental monitoring systems. Beside classical surveying aircrafts also UL Airplanes, Para/Trikes or UAVs make use of multi sensor systems. Many of them are customer specific while other already are frequently used in the market. This paper aims to show some setup, their application, what are the results and what are the pros and cons of them are.

  7. Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum.

    Science.gov (United States)

    Ruiyi, Li; Ling, Liu; Hongxia, Bei; Zaijun, Li

    2016-05-15

    Graphene aerogel has attracted increasing attention due to its large specific surface area, high-conductivity and electronic interaction. The paper reported a facile synthesis of nitrogen-doped multiple graphene aerogel/gold nanostar (termed as N-doped MGA/GNS) and its use as the electrochemical sensing platform for detection of double stranded (dsDNA). On the one hand, the N-doped MGA offers a much better electrochemical performance compared with classical graphene aerogel. Interestingly, the performance can be enhanced by only increasing the cycle number of graphene oxide gelation. On the other hand, the hybridization with GNS further enhances the electrocatalytic activity towards Fe(CN)6(3-/4-). In addition, the N-doped MGA/GNS provides a well-defined three-dimensional architecture. The unique structure make it is easy to combine with dsDNA to form the electroactive bioconjugate. The integration not only triggers an ultrafast DNA electron and charge transfer, but also realizes a significant synergy between N-doped MGA, GNS and dsDNA. As a result, the electrochemical sensor based on the hybrid exhibits highly sensitive differential pulse voltammetric response (DPV) towards dsDNA. The DPV signal linearly increases with the increase of dsDNA concentration in the range from 1.0×10(-)(21) g ml(-)(1) to 1.0×10(-16) g ml(-1) with the detection limit of 3.9×10(-22) g ml(-1) (S/N=3). The sensitivity is much more than that of all reported DNA sensors. The analytical method was successfully applied in the electrochemical detection of circulating free DNA in human serum. The study also opens a window on the electrical properties of multiple graphene aerogel and DNA as well their hybrids to meet the needs of further applications as special nanoelectronics in molecule diagnosis, bioanalysis and catalysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A resilient and secure software platform and architecture for distributed spacecraft

    Science.gov (United States)

    Otte, William R.; Dubey, Abhishek; Karsai, Gabor

    2014-06-01

    A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.

  9. Evaluation of Optical Detection Platforms for Multiplexed Detection of Proteins and the Need for Point-of-Care Biosensors for Clinical Use

    Directory of Open Access Journals (Sweden)

    Samantha Spindel

    2014-11-01

    Full Text Available This review investigates optical sensor platforms for protein multiplexing, the ability to analyze multiple analytes simultaneously. Multiplexing is becoming increasingly important for clinical needs because disease and therapeutic response often involve the interplay between a variety of complex biological networks encompassing multiple, rather than single, proteins. Multiplexing is generally achieved through one of two routes, either through spatial separation on a surface (different wells or spots or with the use of unique identifiers/labels (such as spectral separation—different colored dyes, or unique beads—size or color. The strengths and weaknesses of conventional platforms such as immunoassays and new platforms involving protein arrays and lab-on-a-chip technology, including commercially-available devices, are discussed. Three major public health concerns are identified whereby detecting medically-relevant markers using Point-of-Care (POC multiplex assays could potentially allow for a more efficient diagnosis and treatment of diseases.

  10. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    Science.gov (United States)

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A

    2015-01-06

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  11. Scientific Workflows and the Sensor Web for Virtual Environmental Observatories

    Science.gov (United States)

    Simonis, I.; Vahed, A.

    2008-12-01

    interfaces. All data sets and sensor communication follow well-defined abstract models and corresponding encodings, mostly developed by the OGC Sensor Web Enablement initiative. Scientific progress is currently accelerated by an emerging new concept called scientific workflows, which organize and manage complex distributed computations. A scientific workflow represents and records the highly complex processes that a domain scientist typically would follow in exploration, discovery and ultimately, transformation of raw data to publishable results. The challenge is now to integrate the benefits of scientific workflows with those provided by the Sensor Web in order to leverage all resources for scientific exploration, problem solving, and knowledge generation. Scientific workflows for the Sensor Web represent the next evolutionary step towards efficient, powerful, and flexible earth observation frameworks and platforms. Those platforms support the entire process from capturing data, sharing and integrating, to requesting additional observations. Multiple sites and organizations will participate on single platforms and scientists from different countries and organizations interact and contribute to large-scale research projects. Simultaneously, the data- and information overload becomes manageable, as multiple layers of abstraction will free scientists to deal with underlying data-, processing or storage peculiarities. The vision are automated investigation and discovery mechanisms that allow scientists to pose queries to the system, which in turn would identify potentially related resources, schedules processing tasks and assembles all parts in workflows that may satisfy the query.

  12. Acoustic Signature Monitoring and Management of Naval Platforms

    NARCIS (Netherlands)

    Basten, T.G.H.; Jong, C.A.F. de; Graafland, F.; Hof, J. van 't

    2015-01-01

    Acoustic signatures make naval platforms susceptible to detection by threat sensors. The variable operational conditions and lifespan of a platform cause variations in the acoustic signature. To deal with these variations, a real time signature monitoring capability is being developed, with advisory

  13. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

    Science.gov (United States)

    Oliker, Nurit; Ostfeld, Avi

    2015-09-01

    Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Wireless Impedance-Based SHM for Bolted Connections via Multiple PZT-Interfaces

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2011-01-01

    This study presents a structural health monitoring(SHM) method for bolted connections by using multi-channel wireless impedance sensor nodes and multiple PZT-interfaces. To achieve the objective, the following approaches are implemented. Firstly, a PZT-interface is designed to monitor bolt loosening in bolted connection based on variation of electro-mechanical(EM) impedance signatures. Secondly, a wireless impedance sensor node is designed for autonomous, cost-efficient and multi-channel monitoring. For the sensor platform, Imote2 is selected on the basis of its high operating speed, low power requirement and large storage memory. Finally, the performance of the wireless sensor node and the PZT-interfaces is experimentally evaluated for a bolt-connection model. Damage monitoring method using root mean square deviation(RMSD) index of EM impedance signatures is utilized to estimate the strength of the bolted joint

  15. Open source platform for collaborative construction of wearable sensor datasets for human motion analysis and an application for gait analysis.

    Science.gov (United States)

    Llamas, César; González, Manuel A; Hernández, Carmen; Vegas, Jesús

    2016-10-01

    Nearly every practical improvement in modeling human motion is well founded in a properly designed collection of data or datasets. These datasets must be made publicly available for the community could validate and accept them. It is reasonable to concede that a collective, guided enterprise could serve to devise solid and substantial datasets, as a result of a collaborative effort, in the same sense as the open software community does. In this way datasets could be complemented, extended and expanded in size with, for example, more individuals, samples and human actions. For this to be possible some commitments must be made by the collaborators, being one of them sharing the same data acquisition platform. In this paper, we offer an affordable open source hardware and software platform based on inertial wearable sensors in a way that several groups could cooperate in the construction of datasets through common software suitable for collaboration. Some experimental results about the throughput of the overall system are reported showing the feasibility of acquiring data from up to 6 sensors with a sampling frequency no less than 118Hz. Also, a proof-of-concept dataset is provided comprising sampled data from 12 subjects suitable for gait analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A wireless computational platform for distributed computing based traffic monitoring involving mixed Eulerian-Lagrangian sensing

    KAUST Repository

    Jiang, Jiming

    2013-06-01

    This paper presents a new wireless platform designed for an integrated traffic monitoring system based on combined Lagrangian (mobile) and Eulerian (fixed) sensing. The sensor platform is built around a 32-bit ARM Cortex M4 micro-controller and a 2.4GHz 802.15.4 ISM compliant radio module, and can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. The platform is specially designed and optimized to be integrated in a solar-powered wireless sensor network in which traffic flow maps are computed by the nodes directly using distributed computing. A MPPT circuitry is proposed to increase the power output of the attached solar panel. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debug. An ongoing implementation is briefly discussed, and compared with existing platforms used in wireless sensor networks. © 2013 IEEE.

  17. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  18. Surface analysis and electrochemistry of a robust carbon-nanofiber-based electrode platform H{sub 2}O{sub 2} sensor

    Energy Technology Data Exchange (ETDEWEB)

    Suazo-Dávila, D.; Rivera-Meléndez, J. [NASA-MIRO Center for Advanced Nanoscale Materials (CANM), Department of Chemistry, Molecular Sciences Research Center, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00936 (United States); Koehne, J.; Meyyappan, M. [Center for Nanotechnology, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Cabrera, C.R., E-mail: carlos.cabrera2@upr.edu [NASA-MIRO Center for Advanced Nanoscale Materials (CANM), Department of Chemistry, Molecular Sciences Research Center, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00936 (United States)

    2016-10-30

    Highlights: • Vertically aligned carbon nanofibers were intercalated with SiO{sub 2} for mechanical strength and isolation of individual electrodes. • Stable and robust electrochemical hydrogen peroxide sensor is stable and robust. • Five consecutive calibration curves were done with different hydrogen peroxide concentrations over a period of 3 days without any deterioration in the electrochemical response. • The sensor was also used for the measurement of hydrogen peroxide as one of the by-products of the reaction of cholesterol oxidase with cholesterol and the sensor response exhibited linear behavior from 50 μM to 1 mM in cholesterol concentration. • In general, the electrochemical sensor is robust, stable, and reproducible, and the detection limit and sensitivity responses were among the best when compared with the literature. - Abstract: A vertically aligned carbon nanofiber-based (VACNF) electrode platform was developed for an enzymeless hydrogen peroxide sensor. Vertical nanofibers have heights on the order of 2–3 μm, and diameters that vary from 50 to 100 nm as seen by atomic force microscopy. The VACNF was grown as individual, vertically, and freestanding structures using plasma-enhanced chemical vapor deposition. The electrochemical sensor, for the hydrogen peroxide measurement in solution, showed stability and reproducibility in five consecutive calibration curves with different hydrogen peroxide concentrations over a period of 3 days. The detection limit was 66 μM. The sensitivity for hydrogen peroxide electrochemical detection was 0.0906 mA cm{sup −2} mM{sup −1}, respectively. The sensor was also used for the measurement of hydrogen peroxide as the by-product of the reaction of cholesterol with cholesterol oxidase as a biosensor application. The sensor exhibits linear behavior in the range of 50 μM–1 mM in cholesterol concentrations. The surface analysis and electrochemistry characterization is presented.

  19. A Constellation of CubeSat InSAR Sensors for Rapid-Revisit Surface Deformation Studies

    Science.gov (United States)

    Wye, L.; Lee, S.; Yun, S. H.; Zebker, H. A.; Stock, J. D.; Wicks, C. W., Jr.; Doe, R.

    2016-12-01

    The 2007 NRC Decadal Survey for Earth Sciences highlights three major Earth surface deformation themes: 1) solid-earth hazards and dynamics; 2) human health and security; and 3) land-use change, ecosystem dynamics and biodiversity. Space-based interferometric synthetic aperture radar (InSAR) is a key change detection tool for addressing these themes. Here, we describe the mission and radar payload design for a constellation of S-band InSAR sensors specifically designed to provide the global, high temporal resolution, sub-cm level deformation accuracy needed to address some of the major Earth system goals. InSAR observations with high temporal resolution are needed to properly monitor certain nonlinearly time-varying features (e.g., unstable volcanoes, active fault lines, and heavily-used groundwater or hydrocarbon reservoirs). Good temporal coverage is also needed to reduce atmospheric artifacts by allowing multiple acquisitions to be averaged together, since each individual SAR measurement is corrupted by up to several cm of atmospheric noise. A single InSAR platform is limited in how often it can observe a given scene without sacrificing global spatial coverage. Multiple InSAR platforms provide the spatial-temporal flexibility required to maximize the science return. However, building and launching multiple InSAR platforms is cost-prohibitive for traditional satellites. SRI International (SRI) and our collaborators are working to exploit developments in nanosatellite technology, in particular the emergence of the CubeSat standard, to provide high-cadence InSAR capabilities in an affordable package. The CubeSat Imaging Radar for Earth Science (CIRES) subsystem, a prototype SAR elec­tronics package developed by SRI with support from a 2014 NASA ESTO ACT award, is specifically scaled to be a drop-in radar solution for resource-limited delivery systems like CubeSats and small airborne vehicles. Here, we present our mission concept and flow-down requirements for a

  20. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  1. Cross-platform wireless sensor network development

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Kusy, Branislav

    Design and development of wireless sensor network applications adds an additional layer of complexity to traditional computer systems. The developer needs to be an expert in resource constrained embedded devices as well as traditional desktop computers. We propose Tinylnventor, an open...

  2. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    Science.gov (United States)

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  3. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2014-08-01

    Full Text Available Traffic patterns in wireless sensor networks (WSNs usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  4. Fiber optic particle plasmon resonance sensor based on plasmonic light scattering interrogation

    International Nuclear Information System (INIS)

    Lin, H.Y.; Huang, C.H.; Chau, L.K.

    2012-01-01

    A highly sensitive fiber optic particle plasmon resonance sensor (FO-PPR) is demonstrated for label-free biochemical detection. The sensing strategy relies on interrogating the plasmonic scattering of light from gold nanoparticles on the optical fiber in response to the surrounding refractive index changes or molecular binding events. The refractive index resolution is estimated to be 3.8 x 10 -5 RIU. The limit of detection for anti-DNP antibody spiked in buffer is 1.2 x 10 -9 g/ml (5.3 pM) by using the DNP-functionalized FO-PPR sensor. The image processing of simultaneously recorded plasmonic scattering photographs at different compartments of the sensor is also demonstrated. Results suggest that the compact sensor can perform multiple independent measurements simultaneously by means of monitoring the plasmonic scattering intensity via photodiodes or a CCD. The potential of using a combination of different kinds of noble metal nanoparticles with different types of functionalized probes in multiple cascaded detection windows on a single fiber to become an inexpensive and ultrasensitive linear-array sensing platform for higher-throughput biochemical detection is provided. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. A mini-UAV VTOL Platform for Surveying Applications

    Directory of Open Access Journals (Sweden)

    Kuldeep Rawat

    2014-05-01

    Full Text Available In this paper we discuss implementation of a mini-Unmanned Aerial Vehicle (UAV vertical take-off and landing (VTOL platform for surveying activities related to highway construction. Recent advances in sensor and communication technologies have allowed scaling sizes of unmanned aerial platforms, and explore them for tasks that are economical and safe over populated or inhabited areas. In highway construction the capability of mini-UAVs to survey in hostile and/or hardly accessible areas can greatly reduce human risks. The project focused on developing a cost effective, remotely controlled, fuel powered mini-UAV VTOL (helicopter platform with certain payload capacity and configuration and demonstrated its use in surveying and monitoring activities required for highway planning and construction. With an on-board flight recorder global positioning system (GPS device, memory storage card, telemetry, inertial navigation sensors, and a video camera the mini-UAV can record flying coordinates and relay live video images to a remote ground receiver and surveyor. After all necessary integration and flight tests were done the mini-UAV helicopter was tested to operate and relay video from the areas where construction was underway. The mini-UAV can provide a platform for a range of sensors and instruments that directly support the operational requirements of transportation sector.

  6. A high performance, low power computational platform for complex sensing operations in smart cities

    KAUST Repository

    Jiang, Jiming; Claudel, Christian

    2017-01-01

    This paper presents a new wireless platform designed for an integrated traffic/flash flood monitoring system. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller and a 2.4GHz 802.15.4802.15.4 ISM compliant radio module. It can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. This platform is specifically designed for solar-powered, low bandwidth, high computational performance wireless sensor network applications. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debugging. We illustrate the performance of this wireless sensor platform on complex problems arising in smart cities, such as traffic flow monitoring, machine-learning-based flash flood monitoring or Kalman-filter based vehicle trajectory estimation. All design files have been uploaded and shared in an open science framework, and can be accessed from [1]. The hardware design is under CERN Open Hardware License v1.2.

  7. A high performance, low power computational platform for complex sensing operations in smart cities

    KAUST Repository

    Jiang, Jiming

    2017-02-02

    This paper presents a new wireless platform designed for an integrated traffic/flash flood monitoring system. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller and a 2.4GHz 802.15.4802.15.4 ISM compliant radio module. It can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. This platform is specifically designed for solar-powered, low bandwidth, high computational performance wireless sensor network applications. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debugging. We illustrate the performance of this wireless sensor platform on complex problems arising in smart cities, such as traffic flow monitoring, machine-learning-based flash flood monitoring or Kalman-filter based vehicle trajectory estimation. All design files have been uploaded and shared in an open science framework, and can be accessed from [1]. The hardware design is under CERN Open Hardware License v1.2.

  8. Development of a Whole-Body Haptic Sensor with Multiple Supporting Points and Its Application to a Manipulator

    Science.gov (United States)

    Hanyu, Ryosuke; Tsuji, Toshiaki

    This paper proposes a whole-body haptic sensing system that has multiple supporting points between the body frame and the end-effector. The system consists of an end-effector and multiple force sensors. Using this mechanism, the position of a contact force on the surface can be calculated without any sensor array. A haptic sensing system with a single supporting point structure has previously been developed by the present authors. However, the system has drawbacks such as low stiffness and low strength. Therefore, in this study, a mechanism with multiple supporting points was proposed and its performance was verified. In this paper, the basic concept of the mechanism is first introduced. Next, an evaluation of the proposed method, performed by conducting some experiments, is presented.

  9. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Directory of Open Access Journals (Sweden)

    Ion Stiharu

    2010-08-01

    Full Text Available Computer numerically controlled (CNC machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA-based sensor node.

  10. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Science.gov (United States)

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  11. Multiple Sensing Application on Wireless Sensor Network Simulation using NS3

    Science.gov (United States)

    Kurniawan, I. F.; Bisma, R.

    2018-01-01

    Hardware enhancement provides opportunity to install various sensor device on single monitoring node which then enables users to acquire multiple data simultaneously. Constructing multiple sensing application in NS3 is a challenging task since numbers of aspects such as wireless communication, packet transmission pattern, and energy model must be taken into account. Despite of numerous types of monitoring data available, this study only considers two types such as periodic, and event-based data. Periodical data will generate monitoring data follows configured interval, while event-based transmit data when certain determined condition is met. Therefore, this study attempts to cover mentioned aspects in NS3. Several simulations are performed with different number of nodes on arbitrary communication scheme.

  12. Advanced Sensors for Airborne Magnetic Measurements

    National Research Council Canada - National Science Library

    Bobb, L

    2001-01-01

    Numerous ground tests and platform tests were conducted to evaluate platform integration issues and the performance of the POLATOMIC 2000 magnetometer, a laser-pumped helium-4 total magnetic field sensor...

  13. Multiple Usage of Existing Satellite Sensors

    National Research Council Canada - National Science Library

    Keeney, James T

    2006-01-01

    .... Space offers a near-perfect vacuum to operate a passive or active sensor. Volume, mass and power on satellites is limited and risk management approaches tended to remove such sensors from satellite systems...

  14. Photon-counting image sensors

    CERN Document Server

    Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo

    2017-01-01

    The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.

  15. Crossed Optical Fiber Sensor Arrays for High-Spatial-Resolution Sensing: Application to Dissolved Oxygen Concentration Measurements

    Directory of Open Access Journals (Sweden)

    M. Veronica Rigo

    2012-01-01

    Full Text Available Optical fiber sensors using luminescent probes located along an optical fiber in the cladding of this fiber are of great interest for monitoring physical and chemical properties in their environment. The interrogation of a luminophore with a short laser pulse propagating through the fiber core allows for the measurement of the location of these luminophores. To increase the spatial resolution of such a measurements and to measure multiple analytes and properties in a confined space, a crossed optical fiber sensing platform can be employed. Here we describe the application of this platform to measuring the concentration of dissolved oxygen. The sensor is based on luminescence quenching of a ruthenium complex immobilized in a highly crosslinked film and covalently attached to the optical fibers. Both luminescence-intensity and luminescence-lifetime changes of the sensor molecules in response to changes in the concentration of oxygen dissolved in water are reported. For luminescence-intensity measurements, a second adjacent sensor region is employed as reference to account for laser pulse energy fluctuations. Enhanced quenching response in water is demonstrated by the use of organically modified poly(ethylene glycol precursors, which increase the hydrophobicity of the film surface.

  16. On-chip photonic particle sensor

    Science.gov (United States)

    Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian

    2018-02-01

    We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.

  17. Xsense: a miniaturised multi-sensor platform for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Kostesha, Natalie; Bosco, Filippo

    2011-01-01

    Realizing that no one sensing principle is perfect we set out to combine four fundamentally different sensing principles into one device. The reasoning is that each sensor will complement the others and provide redundancy under various environmental conditions. As each sensor can be fabricated...... using microfabrication the inherent advantages associated with MEMS technologies such as low fabrication costs and small device size allows us to integrate the four sensors into one portable device at a low cost....

  18. Teleoperated Marsupial Mobile Sensor Platform Pair for Telepresence Insertion Into Challenging Structures

    Science.gov (United States)

    Krasowski, Michael J.; Prokop, Norman F.; Greer, Lawrence C.

    2011-01-01

    A platform has been developed for two or more vehicles with one or more residing within the other (a marsupial pair). This configuration consists of a large, versatile robot that is carrying a smaller, more specialized autonomous operating robot(s) and/or mobile repeaters for extended transmission. The larger vehicle, which is equipped with a ramp and/or a robotic arm, is used to operate over a more challenging topography than the smaller one(s) that may have a more limited inspection area to traverse. The intended use of this concept is to facilitate the insertion of a small video camera and sensor platform into a difficult entry area. In a terrestrial application, this may be a bus or a subway car with narrow aisles or steep stairs. The first field-tested configuration is a tracked vehicle bearing a rigid ramp of fixed length and width. A smaller six-wheeled vehicle approximately 10 in. (25 cm) wide by 12 in. (30 cm) long resides at the end of the ramp within the larger vehicle. The ramp extends from the larger vehicle and is tipped up into the air. Using video feedback from a camera atop the larger robot, the operator at a remote location can steer the larger vehicle to the bus door. Once positioned at the door, the operator can switch video feedback to a camera at the end of the ramp to facilitate the mating of the end of the ramp to the top landing at the upper terminus of the steps. The ramp can be lowered by remote control until its end is in contact with the top landing. At the same time, the end of the ramp bearing the smaller vehicle is raised to minimize the angle of the slope the smaller vehicle has to climb, and further gives the operator a better view of the entry to the bus from the smaller vehicle. Control is passed over to the smaller vehicle and, using video feedback from the camera, it is driven up the ramp, turned oblique into the bus, and then sent down the aisle for surveillance. The demonstrated vehicle was used to scale the steps leading to

  19. Intelligent pressure measurement in multiple sensor arrays

    International Nuclear Information System (INIS)

    Matthews, C.A.

    1995-01-01

    Pressure data acquisition has typically consisted of a group of sensors scanned by an electronic or mechanical multiplexer. The data accuracy was dependent upon the temperature stability of the sensors. This paper describes a new method of pressure measurement that combines individual temperature compensated pressure sensors, a microprocessor, and an A/D converter in one module. Each sensor has its own temperature characteristics stored in a look-up table to minimize sensor thermal errors. The result is an intelligent pressure module that can output temperature compensated engineering units over an Ethernet interface. Calibration intervals can be dramatically extended depending upon system accuracy requirements and calibration techniques used

  20. Temperature, salinity, nutrients, and meteorological data collected from 1926 to 1991 aboard multiple platforms in Caspian Sea (NODC Accession 0072200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0072200 contains temperature, salinity, nutrients, and meteorological data collected from 1926 to 1991 aboard multiple platforms in Caspian Sea.

  1. Cotton phenotyping with lidar from a track-mounted platform

    Science.gov (United States)

    French, Andrew N.; Gore, Michael A.; Thompson, Alison

    2016-05-01

    High-Throughput Phenotyping (HTP) is a discipline for rapidly identifying plant architectural and physiological responses to environmental factors such as heat and water stress. Experiments conducted since 2010 at Maricopa, Arizona with a three-fold sensor group, including thermal infrared radiometers, active visible/near infrared reflectance sensors, and acoustic plant height sensors, have shown the validity of HTP with a tractor-based system. However, results from these experiments also show that accuracy of plant phenotyping is limited by the system's inability to discriminate plant components and their local environmental conditions. This limitation may be overcome with plant imaging and laser scanning which can help map details in plant architecture and sunlit/shaded leaves. To test the capability for mapping cotton plants with a laser system, a track-mounted platform was deployed in 2015 over a full canopy and defoliated cotton crop consisting of a scanning LIDAR driven by Arduinocontrolled stepper motors. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at 0.1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). These tests showed that an autonomous LIDAR platform can reduce HTP logistical problems and provide the capability to accurately map cotton plants and cotton bolls. A prototype track-mounted platform was developed to test the use of LIDAR scanning for High- Throughput Phenotyping (HTP). The platform was deployed in 2015 at Maricopa, Arizona over a senescent cotton crop. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at cotton bolls.

  2. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy.

    Science.gov (United States)

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-03-27

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.

  3. Optimal placement of multiple types of communicating sensors with availability and coverage redundancy constraints

    Science.gov (United States)

    Vecherin, Sergey N.; Wilson, D. Keith; Pettit, Chris L.

    2010-04-01

    Determination of an optimal configuration (numbers, types, and locations) of a sensor network is an important practical problem. In most applications, complex signal propagation effects and inhomogeneous coverage preferences lead to an optimal solution that is highly irregular and nonintuitive. The general optimization problem can be strictly formulated as a binary linear programming problem. Due to the combinatorial nature of this problem, however, its strict solution requires significant computational resources (NP-complete class of complexity) and is unobtainable for large spatial grids of candidate sensor locations. For this reason, a greedy algorithm for approximate solution was recently introduced [S. N. Vecherin, D. K. Wilson, and C. L. Pettit, "Optimal sensor placement with terrain-based constraints and signal propagation effects," Unattended Ground, Sea, and Air Sensor Technologies and Applications XI, SPIE Proc. Vol. 7333, paper 73330S (2009)]. Here further extensions to the developed algorithm are presented to include such practical needs and constraints as sensor availability, coverage by multiple sensors, and wireless communication of the sensor information. Both communication and detection are considered in a probabilistic framework. Communication signal and signature propagation effects are taken into account when calculating probabilities of communication and detection. Comparison of approximate and strict solutions on reduced-size problems suggests that the approximate algorithm yields quick and good solutions, which thus justifies using that algorithm for full-size problems. Examples of three-dimensional outdoor sensor placement are provided using a terrain-based software analysis tool.

  4. Optimal power allocation of a single transmitter-multiple receivers channel in a cognitive sensor network

    KAUST Repository

    Ayala Solares, Jose Roberto; Rezki, Zouheir; Alouini, Mohamed-Slim

    2012-01-01

    The optimal transmit power of a wireless sensor network with one transmitter and multiple receivers in a cognitive radio environment while satisfying independent peak, independent average, sum of peak and sum of average transmission rate constraints

  5. Comparison of performance of three commercial platforms for warfarin sensitivity genotyping.

    Science.gov (United States)

    Babic, Nikolina; Haverfield, Eden V; Burrus, Julie A; Lozada, Anthony; Das, Soma; Yeo, Kiang-Teck J

    2009-08-01

    We performed a 3-way comparison on the Osmetech eSensor, AutoGenomics INFINITI, and a real-time PCR method (Paragonx reagents/Stratagene RT-PCR platform) for their FDA-cleared warfarin panels, and additional polymorphisms (CYP2C9*5, *6, and 11 and extended VKORC1 panels) where available. One hundred de-identified DNA samples were used in this IRB-approved study. Accuracy was determined by comparison of genotyping results across three platforms. Any discrepancy was resolved by bi-directional sequencing. The CYP4F2 on Osmetech was validated by bi-directional sequencing. Accuracies for CYP2C9*2 and *3 were 100% for all 3 platforms. VKORC1 3673 genotyping accuracies were 100% on eSensor and 97% on Infiniti. CYP2C9*5, *6 and *11 showed 100% concordance between eSensor and Infiniti. VKORC1 6484 and 9041 variants compared between ParagonDx and Infiniti analyzer were 100% (6484) and 99% (9041) concordant. CYP4F2 was 100% concordant with sequencing results. The time required to generate the results from automated DNA extraction-to-result was approximately 8h on Infiniti, and 4h on eSensor and ParagonDx, respectively. Overall, we observed excellent CYP2C9*2 and *3 genotyping accuracy for all three platforms. For VKORC1 3673 genotyping, eSensor demonstrated a slightly higher accuracy than the Infiniti, and CYP4F2 on Osmetech was 100% accurate.

  6. Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project

    Science.gov (United States)

    Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.

    2006-01-01

    NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  7. A theoretical study on Love wave sensors in a structure with multiple viscoelastic layers on a piezoelectric substrate

    International Nuclear Information System (INIS)

    Liu, Jiansheng

    2014-01-01

    A theoretical method is used to analyze the performance of Love wave sensors with multiple viscoelastic guiding layers on a piezoelectric substrate. The method is based upon the theoretical model for multi-elastic-layer piezoelectric Love waves and the Maxwell–Weichert model for viscoelastic materials. The relationship between sensor performance and the characteristics of Love waves is discussed. Numerical calculation is completed for a Love wave delay line consisting of a viscoelastic SU-8 layer, an elastic SiO 2 layer, an ST-90°X quartz substrate and two interdigital transducers (IDTs) with a period of 40 μm deposited on the substrate surface. The calculated results prove that a Love wave sensor with such a two-layer structure can achieve better performance than a Love wave sensor with only one (visco)elastic or elastic guiding layer. Some interesting abnormal phenomena, such as an oscillation in mass velocity sensitivity (S mv ), are predicted at the area where tail-raising occurs in the propagation velocity. The method and the numerical results presented in this work may help in the development of a high-performing Love wave sensor with multiple layers. (papers)

  8. Simulation of Multi-Platform Geolocation Using a Hybrid TDOA/AOA Method

    National Research Council Canada - National Science Library

    Du, Huai-Jing; Lee, Jim P

    2004-01-01

    ...) geolocation of radar emitters. A mathematical model is developed by combining sensor information such as AOA measurements, TDOA measurements and sensor position information from all platforms. A least-squares (LS...

  9. Multiple Ca2+ sensors in secretion

    DEFF Research Database (Denmark)

    Walter, Alexander M; Groffen, Alexander J; Sørensen, Jakob Balslev

    2011-01-01

    Regulated neurotransmitter secretion depends on Ca(2+) sensors, C2 domain proteins that associate with phospholipids and soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complexes to trigger release upon Ca(2+) binding. Ca(2+) sensors are thought to prevent spontaneous...

  10. Improved response time of flexible microelectromechanical sensors employing eco-friendly nanomaterials.

    Science.gov (United States)

    Fan, Shicheng; Dan, Li; Meng, Lingju; Zheng, Wei; Elias, Anastasia; Wang, Xihua

    2017-11-09

    Flexible force/pressure sensors are of interest for academia and industry and have applications in wearable technologies. Most of such sensors on the market or reported in journal publications are based on the operation mechanism of probing capacitance or resistance changes of the materials under pressure. Recently, we reported the microelectromechanical (MEM) sensors based on a different mechanism: mechanical switches. Multiples of such MEM sensors can be integrated to achieve the same function of regular force/pressure sensors while having the advantages of ease of fabrication and long-term stability in operation. Herein, we report the dramatically improved response time (more than one order of magnitude) of these MEM sensors by employing eco-friendly nanomaterials-cellulose nanocrystals. For instance, the incorporation of polydimethysiloxane filled with cellulose nanocrystals shortened the response time of MEM sensors from sub-seconds to several milliseconds, leading to the detection of both diastolic and systolic pressures in the radial arterial blood pressure measurement. Comprehensive mechanical and electrical characterization of the materials and the devices reveal that greatly enhanced storage modulus and loss modulus play key roles in this improved response time. The demonstrated fast-response flexible sensors enabled continuous monitoring of heart rate and complex cardiovascular signals using pressure sensors for future wearable sensing platforms.

  11. Urban search mobile platform modeling in hindered access conditions

    Science.gov (United States)

    Barankova, I. I.; Mikhailova, U. V.; Kalugina, O. B.; Barankov, V. V.

    2018-05-01

    The article explores the control system simulation and the design of the experimental model of the rescue robot mobile platform. The functional interface, a structural functional diagram of the mobile platform control unit, and a functional control scheme for the mobile platform of secure robot were modeled. The task of design a mobile platform for urban searching in hindered access conditions is realized through the use of a mechanical basis with a chassis and crawler drive, a warning device, human heat sensors and a microcontroller based on Arduino platforms.

  12. A development platform for efficient realization of sensor systems

    Energy Technology Data Exchange (ETDEWEB)

    Roedjegaard, H.; Andersson, G.; Bjoerkholm, P.; Eibpoosh, M.; Loeoef, A. [IMEGO Inst., Goeteborg (Sweden); Ericson, T.; Hedstroem, M.; Schoener, A.; Kaplan, W. [ACREO AB, Electrum 236, Kista (Sweden); Johander, P.; Hagberg, B.; Hasselgren, L.; Malmstroem, K.; Nunez, D. [IVF Industrial Research and Development Corp., Moelndal (Sweden)

    2001-07-01

    We have developed TrySense{sup TM}, a tool for low cost rapid prototyping to speed up the development of new sensors and microsystems. TrySense is a general, wireless, battery powered stand-alone sensor test bench. (orig.)

  13. Development of a scalable generic platform for adaptive optics real time control

    Science.gov (United States)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  14. A Comparative Study of Multiple Object Detection Using Haar-Like Feature Selection and Local Binary Patterns in Several Platforms

    Directory of Open Access Journals (Sweden)

    Souhail Guennouni

    2015-01-01

    Full Text Available Object detection has been attracting much interest due to the wide spectrum of applications that use it. It has been driven by an increasing processing power available in software and hardware platforms. In this work we present a developed application for multiple objects detection based on OpenCV libraries. The complexity-related aspects that were considered in the object detection using cascade classifier are described. Furthermore, we discuss the profiling and porting of the application into an embedded platform and compare the results with those obtained on traditional platforms. The proposed application deals with real-time systems implementation and the results give a metric able to select where the cases of object detection applications may be more complex and where it may be simpler.

  15. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    Science.gov (United States)

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  16. An Embedded Software Platform for Distributed Automotive Environment Management

    Directory of Open Access Journals (Sweden)

    Seepold Ralf

    2009-01-01

    Full Text Available This paper discusses an innovative extension of the actual vehicle platforms that integrate intelligent environments in order to carry out e-safety tasks improving the driving security. These platforms are dedicated to automotive environments which are characterized by sensor networks deployed along the vehicles. Since this kind of platform infrastructure is hardly extensible and forms a non-scalable process unit, an embedded OSGi-based UPnP platform extension is proposed in this article. Such extension deploys a compatible and scalable uniform environment that allows to manage the vehicle components heterogeneity and to provide plug and play support, being compatible with all kind of devices and sensors located in a car network. Furthermore, such extension allows to autoregister any kind of external devices, wherever they are located, providing the in-vehicle system with additional services and data supplied by them. This extension also supports service provisioning and connections to external and remote network services using SIP technology.

  17. Sensor Pods: Multi-Resolution Surveys from a Light Aircraft

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2017-02-01

    Full Text Available Airborne remote sensing, whether performed from conventional aerial survey platforms such as light aircraft or the more recent Remotely Piloted Airborne Systems (RPAS has the ability to compliment mapping generated using earth-orbiting satellites, particularly for areas that may experience prolonged cloud cover. Traditional aerial platforms are costly but capture spectral resolution imagery over large areas. RPAS are relatively low-cost, and provide very-high resolution imagery but this is limited to small areas. We believe that we are the first group to retrofit these new, low-cost, lightweight sensors in a traditional aircraft. Unlike RPAS surveys which have a limited payload, this is the first time that a method has been designed to operate four distinct RPAS sensors simultaneously—hyperspectral, thermal, hyper, RGB, video. This means that imagery covering a broad range of the spectrum captured during a single survey, through different imaging capture techniques (frame, pushbroom, video can be applied to investigate different multiple aspects of the surrounding environment such as, soil moisture, vegetation vitality, topography or drainage, etc. In this paper, we present the initial results validating our innovative hybrid system adapting dedicated RPAS sensors for a light aircraft sensor pod, thereby providing the benefits of both methodologies. Simultaneous image capture with a Nikon D800E SLR and a series of dedicated RPAS sensors, including a FLIR thermal imager, a four-band multispectral camera and a 100-band hyperspectral imager was enabled by integration in a single sensor pod operating from a Cessna c172. However, to enable accurate sensor fusion for image analysis, each sensor must first be combined in a common vehicle coordinate system and a method for triggering, time-stamping and calculating the position/pose of each sensor at the time of image capture devised. Initial tests were carried out over agricultural regions with

  18. Hot air balloons fill gap in atmospheric and sensing platforms

    Science.gov (United States)

    Watson, Steven M.; Price, Russ

    Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.

  19. UrtheCast Second-Generation Earth Observation Sensors

    Science.gov (United States)

    Beckett, K.

    2015-04-01

    UrtheCast's Second-Generation state-of-the-art Earth Observation (EO) remote sensing platform will be hosted on the NASA segment of International Space Station (ISS). This platform comprises a high-resolution dual-mode (pushbroom and video) optical camera and a dual-band (X and L) Synthetic Aperture RADAR (SAR) instrument. These new sensors will complement the firstgeneration medium-resolution pushbroom and high-definition video cameras that were mounted on the Russian segment of the ISS in early 2014. The new cameras are expected to be launched to the ISS in late 2017 via the Space Exploration Technologies Corporation Dragon spacecraft. The Canadarm will then be used to install the remote sensing platform onto a CBM (Common Berthing Mechanism) hatch on Node 3, allowing the sensor electronics to be accessible from the inside of the station, thus limiting their exposure to the space environment and allowing for future capability upgrades. The UrtheCast second-generation system will be able to take full advantage of the strengths that each of the individual sensors offers, such that the data exploitation capabilities of the combined sensors is significantly greater than from either sensor alone. This represents a truly novel platform that will lead to significant advances in many other Earth Observation applications such as environmental monitoring, energy and natural resources management, and humanitarian response, with data availability anticipated to begin after commissioning is completed in early 2018.

  20. High throughput label-free platform for statistical bio-molecular sensing

    DEFF Research Database (Denmark)

    Bosco, Filippo; Hwu, En-Te; Chen, Ching-Hsiu

    2011-01-01

    Sensors are crucial in many daily operations including security, environmental control, human diagnostics and patient monitoring. Screening and online monitoring require reliable and high-throughput sensing. We report on the demonstration of a high-throughput label-free sensor platform utilizing...

  1. Optical sensor array platform based on polymer electronic devices

    NARCIS (Netherlands)

    Koetse, M.M.; Rensing, P.A.; Sharpe, R.B.A.; Heck, G.T. van; Allard, B.A.M.; Meulendijks, N.N.M.M.; Kruijt, P.G.M.; Tijdink, M.W.W.J.; Zwart, R.M. de; Houben, R.J.; Enting, E.; Veen, S.J.J.F. van; Schoo, H.F.M.

    2007-01-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be

  2. An update on MS Nurse PROfessional, an ongoing project of the European Multiple Sclerosis Platform.

    Science.gov (United States)

    Winslow, Anne

    2016-12-01

    Within the multidisciplinary team required to manage people with multiple sclerosis (MS) effectively, the nurse is the central component of coordinated care and support. A 2009 survey led by the European Multiple Sclerosis Platform, an umbrella organization of national MS associations, identified variance and disparity across Europe in the nursing care of MS patients. This led to development of MS Nurse PROfessional, a continuing medical education-accredited modular online learning program endorsed and approved by leading international nursing and professional groups, and people with MS, as a tool to support the evolving role of the European MS nurse. Analysis of participant experience and nurse practice to date has been overwhelmingly positive. Expansion of MS Nurse PRO is underway or planned for future.

  3. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    Directory of Open Access Journals (Sweden)

    Ji Xiong

    2014-04-01

    Full Text Available With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  4. Use of ultrasonic array method for positioning multiple partial discharge sources in transformer oil.

    Science.gov (United States)

    Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng

    2014-08-01

    Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.

  5. Remotely deployable aerial inspection using tactile sensors

    Science.gov (United States)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Sullivan, J. C.; Pipe, A. G.; Dobie, G.; Summan, R.

    2014-02-01

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  6. A collaborative smartphone sensing platform for detecting and tracking hostile drones

    Science.gov (United States)

    Boddhu, Sanjay K.; McCartney, Matt; Ceccopieri, Oliver; Williams, Robert L.

    2013-05-01

    In recent years, not only United States Armed Services but other Law-enforcement agencies have shown increasing interest in employing drones for various surveillance and reconnaissance purposes. Further, recent advancements in autonomous drone control and navigation technology have tremendously increased the geographic extent of dronebased missions beyond the conventional line-of-sight coverage. Without any sophisticated requirement on data links to control them remotely (human-in-loop), drones are proving to be a reliable and effective means of securing personnel and soldiers operating in hostile environments. However, this autonomous breed of drones can potentially prove to be a significant threat when acquired by antisocial groups who wish to target property and life in urban settlements. To further escalate the issue, the standard detection techniques like RADARs, RF data link signature scanners, etc..., prove futile as the drones are smaller in size to evade successful detection by a RADAR based system in urban environment and being autonomous, have the capability of operating without a traceable active data link (RF). Hence, towards investigating possible practical solutions for the issue, the research team at AFRL's Tec^Edge Labs under SATE and YATE programs has developed a highly scalable, geographically distributable and easily deployable smartphone-based collaborative platform that can aid in detecting and tracking unidentified hostile drones. In its current state, this collaborative platform built on the paradigm of "Human-as-Sensors", consists primarily of an intelligent Smartphone application that leverages appropriate sensors on the device to capture a drone's attributes (flight direction, orientation, shape, color, etc..,) with real-time collaboration capabilities through a highly composable sensor cloud and an intelligent processing module (based on a Probabilistic model) that can estimate and predict the possible flight path of a hostile drone

  7. A Kinect-Based Physiotherapy and Assessment Platform for Parkinson's Disease Patients

    OpenAIRE

    Pachoulakis, Ioannis; Xilourgos, Nikolaos; Papadopoulos, Nikolaos; Analyti, Anastasia

    2016-01-01

    We report on a Kinect-based, augmented reality, real-time physiotherapy platform tailored to Parkinson’s disease (PD) patients. The platform employs a Kinect sensor to extract real-time 3D skeletal data (joint information) from a patient facing the sensor (at 30 frames per second). In addition, a small collection of exercises practiced in traditional physiotherapy for PD patients has been implemented in the Unity 3D game engine. Each exercise employs linear or circular movement patterns and p...

  8. MyHealthAssistant: an event-driven middleware for multiple medical applications on a smartphone-mediated body sensor network.

    Science.gov (United States)

    Seeger, Christian; Van Laerhoven, Kristof; Buchmann, Alejandro

    2015-03-01

    An ever-growing range of wireless sensors for medical monitoring has shown that there is significant interest in monitoring patients in their everyday surroundings. It however remains a challenge to merge information from several wireless sensors and applications are commonly built from scratch. This paper presents a middleware targeted for medical applications on smartphone-like platforms that relies on an event-based design to enable flexible coupling with changing sets of wireless sensor units, while posing only a minor overhead on the resources and battery capacity of the interconnected devices. We illustrate the requirements for such middleware with three different healthcare applications that were deployed with our middleware solution, and characterize the performance with energy consumption, overhead caused for the smartphone, and processing time under real-world circumstances. Results show that with sensing-intensive applications, our solution only minimally impacts the phone's resources, with an added CPU utilization of 3% and a memory usage under 7 MB. Furthermore, for a minimum message delivery ratio of 99.9%, up to 12 sensor readings per second are guaranteed to be handled, regardless of the number of applications using our middleware.

  9. Paper based electronics platform

    KAUST Repository

    Nassar, Joanna Mohammad

    2017-07-20

    A flexible and non-functionalized low cost paper-based electronic system platform fabricated from common paper, such as paper based sensors, and methods of producing paper based sensors, and methods of sensing using the paper based sensors are provided. A method of producing a paper based sensor can include the steps of: a) providing a conventional paper product to serve as a substrate for the sensor or as an active material for the sensor or both, the paper product not further treated or functionalized; and b) applying a sensing element to the paper substrate, the sensing element selected from the group consisting of a conductive material, the conductive material providing contacts and interconnects, sensitive material film that exhibits sensitivity to pH levels, a compressible and/or porous material disposed between a pair of opposed conductive elements, or a combination of two of more said sensing elements. The method of sensing can further include measuring, using the sensing element, a change in resistance, a change in voltage, a change in current, a change in capacitance, or a combination of any two or more thereof.

  10. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.

    Science.gov (United States)

    Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra

    2017-01-03

    Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.

  11. Interferometric Reflectance Imaging Sensor (IRIS—A Platform Technology for Multiplexed Diagnostics and Digital Detection

    Directory of Open Access Journals (Sweden)

    Oguzhan Avci

    2015-07-01

    Full Text Available Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS, and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i low-magnification (ensemble biomolecular mass measurements and (ii high-magnification (digital detection of individual nanoparticles along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses.

  12. Bio-inspired ciliary force sensor for robotic platforms

    KAUST Repository

    Ribeiro, Pedro; Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jü rgen; Franco, Fernando; Cardoso, Susana; Bernardino, Alexandre; Schmitz, Alexander; Santos-Victor, Jose; Jamone, Lorenzo

    2017-01-01

    The detection of small forces is of great interest in any robotic application that involves interaction with the environment (e.g., objects manipulation, physical human-robot interaction, minimally invasive surgery), since it allows the robot to detect the contacts early on and to act accordingly. In this letter, we present a sensor design inspired by the ciliary structure frequently found in nature, consisting of an array of permanently magnetized cylinders (cilia) patterned over a giant magnetoresistance sensor (GMR). When these cylinders are deformed in shape due to applied forces, the stray magnetic field variation will change the GMR sensor resistivity, thus enabling the electrical measurement of the applied force. In this letter, we present two 3 mm × 3 mm prototypes composed of an array of five cilia with 1 mm of height and 120 and 200 μm of diameter for each prototype. A minimum force of 333 μN was measured. A simulation model for determining the magnetized cylinders average stray magnetic field is also presented.

  13. Bio-inspired ciliary force sensor for robotic platforms

    KAUST Repository

    Ribeiro, Pedro

    2017-01-20

    The detection of small forces is of great interest in any robotic application that involves interaction with the environment (e.g., objects manipulation, physical human-robot interaction, minimally invasive surgery), since it allows the robot to detect the contacts early on and to act accordingly. In this letter, we present a sensor design inspired by the ciliary structure frequently found in nature, consisting of an array of permanently magnetized cylinders (cilia) patterned over a giant magnetoresistance sensor (GMR). When these cylinders are deformed in shape due to applied forces, the stray magnetic field variation will change the GMR sensor resistivity, thus enabling the electrical measurement of the applied force. In this letter, we present two 3 mm × 3 mm prototypes composed of an array of five cilia with 1 mm of height and 120 and 200 μm of diameter for each prototype. A minimum force of 333 μN was measured. A simulation model for determining the magnetized cylinders average stray magnetic field is also presented.

  14. Colloidal nanophotonics: the emerging technology platform.

    Science.gov (United States)

    Gaponenko, Sergey; Demir, Hilmi Volkan; Seassal, Christian; Woggon, Ulrike

    2016-01-25

    Dating back to decades or even centuries ago, colloidal nanophotonics during the last ten years rapidly extends towards light emitting devices, lasers, sensors and photonic circuitry to manifest itself as an emerging technology platform rather than an entirely academic research field.

  15. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  16. Assembly procedure for Shot Loading Platform

    International Nuclear Information System (INIS)

    Routh, R.D.

    1995-01-01

    This supporting document describes the assembly procedure for the Shot Loading Platform. The Shot Loading Platform is used by multiple equipment removal projects to load shielding shot in the annular spaces of the equipment storage containers. The platform height is adjustable to accommodate different sizes of storage containers and transport assemblies

  17. Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.

    2016-01-01

    A high-performance fuel gauging sensor is described that uses five diaphragm-based pressure sensors, which are monitored using a linear array of polymer optical fiber Bragg gratings. The sensors were initially characterized using water, revealing a sensitivity of 98 pm/cm for four of the sensors...... of sensors manufactured with a polyurethane-based diaphragm showed no measurable deterioration over a three month period immersed in fuel. These sensors exhibited a sensitivity of 39 pm/cm, which is less than the silicone rubber devices due to the stiffer nature of the polyurethane material used....

  18. Results of agriclimatological studies using multiple satellite sensors like NOAA AVHRR; GMS IR and LANDSAT MSS and TM

    International Nuclear Information System (INIS)

    Choudhury, A.M.

    1990-08-01

    Bangladesh Space Research and Remote Sensing Organization (SPARRSO) routinely receives NOAA and GMS imagery and uses them in agrometeorological monitoring, it also uses LANDSAT MSS and TM data for this purpose. Analysis of multiple satellite sensor data shows advantages for high resolution sensors. However, in the ease of crop monitoring, a good correlation has been obtained between results obtained with NOAA AVHRR and LANDSAT MSS for vegetation index. Crop estimation has been made using all kinds of sensors and it has been found that higher resolution data always give more accurate results. (author). 3 refs

  19. Development and Characteristics of a Mobile, Semi-Autonomous Floating Platform for in situ Lake Measurements

    Science.gov (United States)

    Barry, D.; Lemmin, U.; Le Dantec, N.; Zulliger, L.; Rusterholz, M.; Bolay, M.; Rossier, J.; Kangur, K.

    2013-12-01

    In the development of sustainable management strategies of lakes more insight into their physical, chemical and ecological dynamics is needed. Field data obtained from various types of sensors with adequate spatial and temporal sampling rate are essential to understand better the processes that govern fluxes and pathways of water masses and transported compounds, whether for model validation or for monitoring purposes. One advantage of unmanned platforms is that they limit the disturbances typically affecting the quality of data collected on small vessels, including perturbations caused by movements of onboard crew. We have developed a mobile, semi-autonomous floating platform with 8 h power autonomy using a 5 m long by 2.5 m wide catamaran. Our approach focused on modularity and high payload capacity in order to accommodate a large number of sensors both in terms of electronic (power and data) and mechanical constraints of integration. Software architecture and onboard electronics use National Instruments technology to simplify and standardize integration of sensors, actuators and communication. Piecewise-movable deck sections allow optimizing platform stability depending on the payload. The entire system is controlled by a remote computer located on an accompanying vessel and connected via a wireless link with a range of over 1 km. Real-time transmission of GPS-stamped measurements allows immediate modifications in the survey plan if needed. The displacement of the platform is semi-autonomous, with the options of either autopilot mode following a pre-planned course specified by waypoints or remote manual control from the accompanying vessel. Maintenance of permanent control over the platform displacement is required for safety reasons with respect to other users of the lake. Currently, the sensor payload comprises an array of fast temperature probes, a bottom-tracking ADCP and atmospheric sensors including a radiometer. A towed CTD with additional water quality

  20. Sensor and Processing COI (Briefing Charts)

    Science.gov (United States)

    2014-05-27

    Persistent Surveillance • Target Detection, Recognition & ID at Standoff Ranges • Force/Platform/Sensor Protection • Target Tracking • Early Warning • BDA ...inhomogeneous and complex media is also a foundational challenge for President’s BRAIN initiative. 38 Explore Advanced Sensors And Processing

  1. Assessing UAV platform types and optical sensor specifications

    Science.gov (United States)

    Altena, B.; Goedemé, T.

    2014-05-01

    Photogrammetric acquisition with unmanned aerial vehicles (UAV) has grown extensively over the last couple of years. Such mobile platforms and their processing software have matured, resulting in a market which offers off-the-shelf mapping solutions to surveying companies and geospatial enterprises. Different approaches in platform type and optical instruments exist, though its resulting products have similar specifications. To demonstrate differences in acquisitioning practice, a case study over an open mine was flown with two different off-the-shelf UAVs (a fixed-wing and a multi-rotor). The resulting imagery is analyzed to clarify the differences in collection quality. We look at image settings, and stress the fact of photographic experience if manual setting are applied. For mapping production it might be safest to set the camera on automatic. Furthermore, we try to estimate if blur is present due to image motion. A subtle trend seems to be present, for the fast flying platform though its extent is of similar order to the slow moving one. It shows both systems operate at their limits. Finally, the lens distortion is assessed with special attention to chromatic aberration. Here we see that through calibration such aberrations could be present, however detecting this phenomena directly on imagery is not straightforward. For such effects a normal lens is sufficient, though a better lens and collimator does give significant improvement.

  2. Critical stages of a biodetection platform development from sensor chip fabrication to surface chemistry and assay development

    Science.gov (United States)

    Uludag, Yildiz

    2014-06-01

    Once viewed solely as a tool to analyse biomolecular interactions, biosensors are gaining widespread interest for diagnostics, biological defense, environmental and quality assurance in agriculture/food industries. Advanced micro fabrication techniques have facilitated integration of microfluidics with sensing functionalities on the same chip making system automation more convenient1. Biosensor devices relying on lab-on-a-chip technologies and nanotechnology has attracted much of attention in recent years for biological defense research and development. However, compared with the numerous publications and patents available, the commercialization of biosensors technology has significantly lagged behind the research output. This paper reviews the reasons behind the slow commercialisation of biosensors with an insight to the critical stages of a biosensor development from the sensor chip fabrication to surface chemistry applications and nanotechnology applications in sensing with case studies. In addition, the paper includes the description of a new biodetection platform based on Real-time Electrochemical ProfilingTM (REPTM) that comprises novel electrode arrays and nanoparticle based sensing. The performance of the REPTM platform has been tested for the detection of Planktothrix agardhii, one of the toxic bloom-forming cyanobacteria, usually found in shallow fresh water sources that can be used for human consumption. The optimised REPTM assay allowed the detection of P. agardhii DNA down to 6 pM. This study, showed the potential of REPTM as a new biodetection platform for toxic bacteria and hence further studies will involve the development of a portable multi-analyte biosensor based on REPTM technology for on-site testing.

  3. Multiple Usage of Existing Satellite Sensors (PREPRINT)

    National Research Council Canada - National Science Library

    Keeney, James T

    2006-01-01

    .... Space offers a near-perfect vacuum to operate a passive or active sensor. Volume, mass and power on satellites is limited and risk management approaches tended to remove such sensors from satellite systems...

  4. An Adaptive Time-Spread Multiple-Access Policy for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Konstantinos Oikonomou

    2007-05-01

    Full Text Available Sensor networks require a simple and efficient medium access control policy achieving high system throughput with no or limited control overhead in order to increase the network lifetime by minimizing the energy consumed during transmission attempts. Time-spread multiple-access (TSMA policies that have been proposed for ad hoc network environments, can also be employed in sensor networks, since no control overhead is introduced. However, they do not take advantage of any cross-layer information in order to exploit the idiosyncrasies of the particular sensor network environment such as the presence of typically static nodes and a common destination for the forwarded data. An adaptive probabilistic TSMA-based policy, that is proposed and analyzed in this paper, exploits these idiosyncrasies and achieves higher system throughput than the existing TSMA-based policies without any need for extra control overhead. As it is analytically shown in this paper, the proposed policy always outperforms the existing TSMA-based policies, if certain parameter values are properly set; the analysis also provides for these proper values. It is also shown that the proposed policy is characterized by a certain convergence period and that high system throughput is achieved for long convergence periods. The claims and expectations of the provided analysis are supported by simulation results presented in this paper.

  5. Synchronizing data from irregularly sampled sensors

    Science.gov (United States)

    Uluyol, Onder

    2017-07-11

    A system and method include receiving a set of sampled measurements for each of multiple sensors, wherein the sampled measurements are at irregular intervals or different rates, re-sampling the sampled measurements of each of the multiple sensors at a higher rate than one of the sensor's set of sampled measurements, and synchronizing the sampled measurements of each of the multiple sensors.

  6. Maximizing the Lifetime of Wireless Sensor Networks Using Multiple Sets of Rendezvous

    Directory of Open Access Journals (Sweden)

    Bo Li

    2015-01-01

    Full Text Available In wireless sensor networks (WSNs, there is a “crowded center effect” where the energy of nodes located near a data sink drains much faster than other nodes resulting in a short network lifetime. To mitigate the “crowded center effect,” rendezvous points (RPs are used to gather data from other nodes. In order to prolong the lifetime of WSN further, we propose using multiple sets of RPs in turn to average the energy consumption of the RPs. The problem is how to select the multiple sets of RPs and how long to use each set of RPs. An optimal algorithm and a heuristic algorithm are proposed to address this problem. The optimal algorithm is highly complex and only suitable for small scale WSN. The performance of the proposed algorithms is evaluated through simulations. The simulation results indicate that the heuristic algorithm approaches the optimal one and that using multiple RP sets can significantly prolong network lifetime.

  7. On-Board Mining in the Sensor Web

    Science.gov (United States)

    Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.

    2004-12-01

    On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans

  8. Optical power transfer and communication methods for wireless implantable sensing platforms.

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  9. Neuroethologic differences in sleep deprivation induced by the single- and multiple-platform methods

    Directory of Open Access Journals (Sweden)

    R. Medeiros

    1998-05-01

    Full Text Available It has been proposed that the multiple-platform method (MP for desynchronized sleep (DS deprivation eliminates the stress induced by social isolation and by the restriction of locomotion in the single-platform (SP method. MP, however, induces a higher increase in plasma corticosterone and ACTH levels than SP. Since deprivation is of heuristic value to identify the functional role of this state of sleep, the objective of the present study was to determine the behavioral differences exhibited by rats during sleep deprivation induced by these two methods. All behavioral patterns exhibited by a group of 7 albino male Wistar rats submitted to 4 days of sleep deprivation by the MP method (15 platforms, spaced 150 mm apart and by 7 other rats submitted to sleep deprivation by the SP method were recorded in order to elaborate an ethogram. The behavioral patterns were quantitated in 10 replications by naive observers using other groups of 7 rats each submitted to the same deprivation schedule. Each quantification session lasted 35 min and the behavioral patterns presented by each rat over a period of 5 min were counted. The results obtained were: a rats submitted to the MP method changed platforms at a mean rate of 2.62 ± 1.17 platforms h-1 animal-1; b the number of episodes of noninteractive waking patterns for the MP animals was significantly higher than that for SP animals (1077 vs 768; c additional episodes of waking patterns (26.9 ± 18.9 episodes/session were promoted by social interaction in MP animals; d the cumulative number of sleep episodes observed in the MP test (311 was significantly lower (chi-square test, 1 d.f., P<0.05 than that observed in the SP test (534; e rats submitted to the MP test did not show the well-known increase in ambulatory activity observed after the end of the SP test; f comparison of 6 MP and 6 SP rats showed a significantly shorter latency to the onset of DS in MP rats (7.8 ± 4.3 and 29.0 ± 25.0 min, respectively

  10. Lifetime Optimization of a Multiple Sink Wireless Sensor Network through Energy Balancing

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Jain

    2015-01-01

    Full Text Available The wireless sensor network consists of small limited energy sensors which are connected to one or more sinks. The maximum energy consumption takes place in communicating the data from the nodes to the sink. Multiple sink WSN has an edge over the single sink WSN where very less energy is utilized in sending the data to the sink, as the number of hops is reduced. If the energy consumed by a node is balanced between the other nodes, the lifetime of the network is considerably increased. The network lifetime optimization is achieved by restructuring the network by modifying the neighbor nodes of a sink. Only those nodes are connected to a sink which makes the total energy of the sink less than the threshold. This energy balancing through network restructuring optimizes the network lifetime. This paper depicts this fact through simulations done in MATLAB.

  11. Volttron: An Agent Platform for the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Haack, Jereme N.; Akyol, Bora A.; Carpenter, Brandon J.; Tews, Cody W.; Foglesong, Lance W.

    2013-05-06

    VOLLTRON platform enables the deployment of intelligent sensors and controllers in the smart grid and provides a stable, secure and flexible framework that expands the sensing and control capabilities. VOLTTRON platform provides services fulfilling the essential requirements of resource management and security for agent operation in the power grid. The facilities provided by the platform allow agent developers to focus on the implementation of their agent system and not on the necessary "plumbing' code. For example, a simple collaborative demand response application was written in less than 200 lines of Python.

  12. Determination of hydrogen peroxide and glucose using a novel sensor platform based on Co0.4Fe0.6LaO3 nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Zhen; Gu, Shuqing; Ding, Yaping; Zhang, Fenfen; Jin, Jindi

    2013-01-01

    We report on a novel nonenzymatic sensor platform for the determination of hydrogen peroxide and glucose. It is based on a carbon paste electrode that was modified with Co 0.4 Fe 0.6 LaO 3 nanoparticles synthesized by the sol–gel method. The structure and morphology of Co 0.4 Fe 0.6 LaO 3 nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical performance of this sensor was evaluated by cyclic voltammetry and amperometry, and the results demonstrated that it exhibits strong electrocatalytical activity towards the oxidation of H 2 O 2 and glucose in an alkaline medium. The sensor has a limit of detection as low as 2.0 nM of H 2 O 2 and a linear range that extends from 0.01 to 800 μM. The response to glucose is characterized by two analytical ranges of different slope, viz. from 0.05 to 5 μM and from 5 to 500 μM, with a 10 nM limit of detection. The glucose sensor has a fast response and good long term stability. (author)

  13. Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Wiederoder, Michael S; Nallon, Eric C; Weiss, Matt; McGraw, Shannon K; Schnee, Vincent P; Bright, Collin J; Polcha, Michael P; Paffenroth, Randy; Uzarski, Joshua R

    2017-11-22

    A cross-reactive array of semiselective chemiresistive sensors made of polymer-graphene nanoplatelet (GNP) composite coated electrodes was examined for detection and discrimination of chemical warfare agents (CWA). The arrays employ a set of chemically diverse polymers to generate a unique response signature for multiple CWA simulants and background interferents. The developed sensors' signal remains consistent after repeated exposures to multiple analytes for up to 5 days with a similar signal magnitude across different replicate sensors with the same polymer-GNP coating. An array of 12 sensors each coated with a different polymer-GNP mixture was exposed 100 times to a cycle of single analyte vapors consisting of 5 chemically similar CWA simulants and 8 common background interferents. The collected data was vector normalized to reduce concentration dependency, z-scored to account for baseline drift and signal-to-noise ratio, and Kalman filtered to reduce noise. The processed data was dimensionally reduced with principal component analysis and analyzed with four different machine learning algorithms to evaluate discrimination capabilities. For 5 similarly structured CWA simulants alone 100% classification accuracy was achieved. For all analytes tested 99% classification accuracy was achieved demonstrating the CWA discrimination capabilities of the developed system. The novel sensor fabrication methods and data processing techniques are attractive for development of sensor platforms for discrimination of CWA and other classes of chemical vapors.

  14. Fiber Bragg grating sensor interrogators on chip: challenges and opportunities

    Science.gov (United States)

    Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio

    2017-04-01

    In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.

  15. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  16. An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis

    Science.gov (United States)

    Liu, Jie; Hu, Youmin; Wang, Yan; Wu, Bo; Fan, Jikai; Hu, Zhongxu

    2018-05-01

    The diagnosis of complicated fault severity problems in rotating machinery systems is an important issue that affects the productivity and quality of manufacturing processes and industrial applications. However, it usually suffers from several deficiencies. (1) A considerable degree of prior knowledge and expertise is required to not only extract and select specific features from raw sensor signals, and but also choose a suitable fusion for sensor information. (2) Traditional artificial neural networks with shallow architectures are usually adopted and they have a limited ability to learn the complex and variable operating conditions. In multi-sensor-based diagnosis applications in particular, massive high-dimensional and high-volume raw sensor signals need to be processed. In this paper, an integrated multi-sensor fusion-based deep feature learning (IMSFDFL) approach is developed to identify the fault severity in rotating machinery processes. First, traditional statistics and energy spectrum features are extracted from multiple sensors with multiple channels and combined. Then, a fused feature vector is constructed from all of the acquisition channels. Further, deep feature learning with stacked auto-encoders is used to obtain the deep features. Finally, the traditional softmax model is applied to identify the fault severity. The effectiveness of the proposed IMSFDFL approach is primarily verified by a one-stage gearbox experimental platform that uses several accelerometers under different operating conditions. This approach can identify fault severity more effectively than the traditional approaches.

  17. Data fusion for target tracking and classification with wireless sensor network

    Science.gov (United States)

    Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2016-10-01

    In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  18. Autonomous Mission Operations for Sensor Webs

    Science.gov (United States)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC

  19. H-Shaped Multiple Linear Motor Drive Platform Control System Design Based on an Inverse System Method

    Directory of Open Access Journals (Sweden)

    Caiyan Qin

    2017-12-01

    Full Text Available Due to its simple mechanical structure and high motion stability, the H-shaped platform has been increasingly widely used in precision measuring, numerical control machining and semiconductor packaging equipment, etc. The H-shaped platform is normally driven by multiple (three permanent magnet synchronous linear motors. The main challenges for H-shaped platform-control include synchronous control between the two linear motors in the Y direction as well as total positioning error of the platform mover, a combination of position deviation in X and Y directions. To deal with the above challenges, this paper proposes a control strategy based on the inverse system method through state feedback and dynamic decoupling of the thrust force. First, mechanical dynamics equations have been deduced through the analysis of system coupling based on the platform structure. Second, the mathematical model of the linear motors and the relevant coordinate transformation between dq-axis currents and ABC-phase currents are analyzed. Third, after the main concept of inverse system method being explained, the inverse system model of the platform control system has been designed after defining relevant system variables. Inverse system model compensates the original nonlinear coupled system into pseudo-linear decoupled linear system, for which typical linear control methods, like PID, can be adopted to control the system. The simulation model of the control system is built in MATLAB/Simulink and the simulation result shows that the designed control system has both small synchronous deviation and small total trajectory tracking error. Furthermore, the control program has been run on NI controller for both fixed-loop-time and free-loop-time modes, and the test result shows that the average loop computation time needed is rather small, which makes it suitable for real industrial applications. Overall, it proves that the proposed new control strategy can be used in

  20. Distributed Database Semantic Integration of Wireless Sensor Network to Access the Environmental Monitoring System

    Directory of Open Access Journals (Sweden)

    Ubaidillah Umar

    2018-06-01

    Full Text Available A wireless sensor network (WSN works continuously to gather information from sensors that generate large volumes of data to be handled and processed by applications. Current efforts in sensor networks focus more on networking and development services for a variety of applications and less on processing and integrating data from heterogeneous sensors. There is an increased need for information to become shareable across different sensors, database platforms, and applications that are not easily implemented in traditional database systems. To solve the issue of these large amounts of data from different servers and database platforms (including sensor data, a semantic sensor web service platform is needed to enable a machine to extract meaningful information from the sensor’s raw data. This additionally helps to minimize and simplify data processing and to deduce new information from existing data. This paper implements a semantic web data platform (SWDP to manage the distribution of data sensors based on the semantic database system. SWDP uses sensors for temperature, humidity, carbon monoxide, carbon dioxide, luminosity, and noise. The system uses the Sesame semantic web database for data processing and a WSN to distribute, minimize, and simplify information processing. The sensor nodes are distributed in different places to collect sensor data. The SWDP generates context information in the form of a resource description framework. The experiment results demonstrate that the SWDP is more efficient than the traditional database system in terms of memory usage and processing time.

  1. Integrated Spintronic Platforms for Biomolecular Recognition Detection

    Science.gov (United States)

    Martins, V. C.; Cardoso, F. A.; Loureiro, J.; Mercier, M.; Germano, J.; Cardoso, S.; Ferreira, R.; Fonseca, L. P.; Sousa, L.; Piedade, M. S.; Freitas, P. P.

    2008-06-01

    This paper covers recent developments in magnetoresistive based biochip platforms fabricated at INESC-MN, and their application to the detection and quantification of pathogenic waterborn microorganisms in water samples for human consumption. Such platforms are intended to give response to the increasing concern related to microbial contaminated water sources. The presented results concern the development of biological active DNA chips and protein chips and the demonstration of the detection capability of the present platforms. Two platforms are described, one including spintronic sensors only (spin-valve based or magnetic tunnel junction based), and the other, a fully scalable platform where each probe site consists of a MTJ in series with a thin film diode (TFD). Two microfluidic systems are described, for cell separation and concentration, and finally, the read out and control integrated electronics are described, allowing the realization of bioassays with a portable point of care unit. The present platforms already allow the detection of complementary biomolecular target recognition with 1 pM concentration.

  2. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors.

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-11

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  3. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  4. Morphological indicators of growth stages in carbonates platform evolution: comparison between present-day and Miocene platforms of Northern Borneo, Malaysia.

    Science.gov (United States)

    Pierson, B.; Menier, D.; Ting, K. K.; Chalabi, A.

    2012-04-01

    Satellite images of present-day reefs and carbonate platforms of the Celebes Sea, east of Sabah, Malaysia, exhibit large-scale features indicative of the recent evolution of the platforms. These include: (1) multiple, sub-parallel reef rims at the windward margin, suggestive of back-stepping of the platform margin; (2) contraction of the platform, possibly as a result of recent sea level fluctuations; (3) colonization of the internal lagoons by polygonal reef structures and (4) fragmentation of the platforms and creation of deep channels separating platforms that used to be part of a single entity. These features are analogue to what has been observed on seismic attribute maps of Miocene carbonate platforms of Sarawak. An analysis of several growth stages of a large Miocene platform, referred to as the Megaplatform, shows that the platform evolves in function of syn-depositional tectonic movements and sea level fluctuations that result in back-stepping of the margin, illustrated by multiple reef rims, contraction of the platform, the development of polygonal structures currently interpreted as karstic in origin and fragmentation of the megaplatform in 3 sub-entities separated by deep channels that precedes the final demise of the whole platform. Comparing similar features on present-day to platforms and Miocene platforms leads to a better understanding of the growth history of Miocene platforms and to a refined predictability of reservoir and non-reservoir facies distribution.

  5. Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990 (NODC Accession 0002717)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990

  6. Future of Hydroinformatics: Towards Open, Integrated and Interactive Online Platforms

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.

    2012-12-01

    Hydroinformatics is a domain of science and technology dealing with the management of information in the field of hydrology (IWA, 2011). There is the need for innovative solutions to the challenges towards open information, integration, and communication in the Internet. This presentation provides an overview of the trends and challenges in the future of hydroinformatics, and demonstrates an information system, Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for more

  7. Hierarchical DSE for multi-ASIP platforms

    DEFF Research Database (Denmark)

    Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak

    2013-01-01

    This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...

  8. PerPos: A Platform Providing Cloud Services for Pervasive Positioning

    DEFF Research Database (Denmark)

    Blunck, Henrik; Godsk, Torben; Grønbæk, Kaj

    2010-01-01

    -based building model manager that allows users to manage building models stored in the PerPos cloud for annotation, logging, and navigation purposes. A core service in the PerPos platform is sensor fusion for positioning that makes it seamless and efficient to combine a rich set of position sensors to obtain...

  9. Sensor data storage performance: SQL or NoSQL, physical or virtual

    NARCIS (Netherlands)

    Veen, J.S. van der; Waaij, B.D. van der; Meijer, R.J.

    2012-01-01

    Sensors are used to monitor certain aspects of the physical or virtual world and databases are typically used to store the data that these sensors provide. The use of sensors is increasing, which leads to an increasing demand on sensor data storage platforms. Some sensor monitoring applications need

  10. Stability and economy analysis based on computational fluid dynamics and field testing of hybrid-driven underwater glider with the water quality sensor in Danjiangkou Reservoir

    Directory of Open Access Journals (Sweden)

    Chao Li

    2015-12-01

    Full Text Available Hybrid-driven underwater glider is a new kind of unmanned platform for water quality monitoring. It has advantages such as high controllability and maneuverability, low cost, easy operation, and ability to carry multiple sensors. This article develops a hybrid-driven underwater glider, PETRELII, and integrates a water quality monitoring sensor. Considering stability and economy, an optimal layout scheme is selected from four candidates by simulation using computational fluid dynamics method. Trials were carried out in Danjiangkou Reservoir—important headwaters of the Middle Route of the South-to-North Water Diversion Project. In the trials, a monitoring strategy with polygonal mixed-motion was adopted to make full use of the advantages of the unmanned platform. The measuring data, including temperature, dissolved oxygen, conductivity, pH, turbidity, chlorophyll, and ammonia nitrogen, are obtained. These data validate the practicability of the theoretical layout obtained using computational fluid dynamics method and the practical performance of PETRELII with sensor.

  11. Energy-Efficient Implementation of ECDH Key Exchange for Wireless Sensor Networks

    Science.gov (United States)

    Lederer, Christian; Mader, Roland; Koschuch, Manuel; Großschädl, Johann; Szekely, Alexander; Tillich, Stefan

    Wireless Sensor Networks (WSNs) are playing a vital role in an ever-growing number of applications ranging from environmental surveillance over medical monitoring to home automation. Since WSNs are often deployed in unattended or even hostile environments, they can be subject to various malicious attacks, including the manipulation and capture of nodes. The establishment of a shared secret key between two or more individual nodes is one of the most important security services needed to guarantee the proper functioning of a sensor network. Despite some recent advances in this field, the efficient implementation of cryptographic key establishment for WSNs remains a challenge due to the resource constraints of small sensor nodes such as the MICAz mote. In this paper we present a lightweight implementation of the elliptic curve Diffie-Hellman (ECDH) key exchange for ZigBee-compliant sensor nodes equipped with an ATmega128 processor running the TinyOS operating system. Our implementation uses a 192-bit prime field specified by the NIST as underlying algebraic structure and requires only 5.20 ·106 clock cycles to compute a scalar multiplication if the base point is fixed and known a priori. A scalar multiplication using a random base point takes about 12.33 ·106 cycles. Our results show that a full ECDH key exchange between two MICAz motes consumes an energy of 57.33 mJ (including radio communication), which is significantly better than most previously reported ECDH implementations on comparable platforms.

  12. Parameter Estimation of Multiple Frequency-Hopping Signals with Two Sensors

    Directory of Open Access Journals (Sweden)

    Le Zuo

    2018-04-01

    Full Text Available This paper essentially focuses on parameter estimation of multiple wideband emitting sources with time-varying frequencies, such as two-dimensional (2-D direction of arrival (DOA and signal sorting, with a low-cost circular synthetic array (CSA consisting of only two rotating sensors. Our basic idea is to decompose the received data, which is a superimposition of phase measurements from multiple sources into separated groups and separately estimate the DOA associated with each source. Motivated by joint parameter estimation, we propose to adopt the expectation maximization (EM algorithm in this paper; our method involves two steps, namely, the expectation-step (E-step and the maximization (M-step. In the E-step, the correspondence of each signal with its emitting source is found. Then, in the M-step, the maximum-likelihood (ML estimates of the DOA parameters are obtained. These two steps are iteratively and alternatively executed to jointly determine the DOAs and sort multiple signals. Closed-form DOA estimation formulae are developed by ML estimation based on phase data, which also realize an optimal estimation. Directional ambiguity is also addressed by another ML estimation method based on received complex responses. The Cramer-Rao lower bound is derived for understanding the estimation accuracy and performance comparison. The verification of the proposed method is demonstrated with simulations.

  13. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Science.gov (United States)

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  14. Platform for monitoring water and solid fluxes in mountainous rivers

    Science.gov (United States)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  15. Ambient agents: embedded agents for remote control and monitoring using the PANGEA platform.

    Science.gov (United States)

    Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier; Corchado, Juan M

    2014-07-31

    Ambient intelligence has advanced significantly during the last few years. The incorporation of image processing and artificial intelligence techniques have opened the possibility for such aspects as pattern recognition, thus allowing for a better adaptation of these systems. This study presents a new model of an embedded agent especially designed to be implemented in sensing devices with resource constraints. This new model of an agent is integrated within the PANGEA (Platform for the Automatic Construction of Organiztions of Intelligent Agents) platform, an organizational-based platform, defining a new sensor role in the system and aimed at providing contextual information and interacting with the environment. A case study was developed over the PANGEA platform and designed using different agents and sensors responsible for providing user support at home in the event of incidents or emergencies. The system presented in the case study incorporates agents in Arduino hardware devices with recognition modules and illuminated bands; it also incorporates IP cameras programmed for automatic tracking, which can connect remotely in the event of emergencies. The user wears a bracelet, which contains a simple vibration sensor that can receive notifications about the emergency situation.

  16. Ambient Agents: Embedded Agents for Remote Control and Monitoring Using the PANGEA Platform

    Directory of Open Access Journals (Sweden)

    Gabriel Villarrubia

    2014-07-01

    Full Text Available Ambient intelligence has advanced significantly during the last few years. The incorporation of image processing and artificial intelligence techniques have opened the possibility for such aspects as pattern recognition, thus allowing for a better adaptation of these systems. This study presents a new model of an embedded agent especially designed to be implemented in sensing devices with resource constraints. This new model of an agent is integrated within the PANGEA (Platform for the Automatic Construction of Organiztions of Intelligent Agents platform, an organizational-based platform, defining a new sensor role in the system and aimed at providing contextual information and interacting with the environment. A case study was developed over the PANGEA platform and designed using different agents and sensors responsible for providing user support at home in the event of incidents or emergencies. The system presented in the case study incorporates agents in Arduino hardware devices with recognition modules and illuminated bands; it also incorporates IP cameras programmed for automatic tracking, which can connect remotely in the event of emergencies. The user wears a bracelet, which contains a simple vibration sensor that can receive notifications about the emergency situation.

  17. An integrative solution for managing, tracing and citing sensor-related information

    Science.gov (United States)

    Koppe, Roland; Gerchow, Peter; Macario, Ana; Schewe, Ingo; Rehmcke, Steven; Düde, Tobias

    2017-04-01

    In a data-driven scientific world, the need to capture information on sensors used in the data acquisition process has become increasingly important. Following the recommendations of the Open Geospatial Consortium (OGC), we started by adopting the SensorML standard for describing platforms, devices and sensors. However, it soon became obvious to us that understanding, implementing and filling such standards costs significant effort and cannot be expected from every scientist individually. So we developed a web-based sensor management solution (https://sensor.awi.de) for describing platforms, devices and sensors as hierarchy of systems which supports tracing changes to a system whereas hiding complexity. Each platform contains devices where each device can have sensors associated with specific identifiers, contacts, events, related online resources (e.g. manufacturer factsheets, calibration documentation, data processing documentation), sensor output parameters and geo-location. In order to better understand and address real world requirements, we have closely interacted with field-going scientists in the context of the key national infrastructure project "FRontiers in Arctic marine Monitoring ocean observatory" (FRAM) during the software development. We learned that not only the lineage of observations is crucial for scientists but also alert services using value ranges, flexible output formats and information on data providers (e.g. FTP sources) for example. Mostly important, persistent and citable versions of sensor descriptions are required for traceability and reproducibility allowing seamless integration with existing information systems, e.g. PANGAEA. Within the context of the EU-funded Ocean Data Interoperability Platform project (ODIP II) and in cooperation with 52north we are proving near real-time data via Sensor Observation Services (SOS) along with sensor descriptions based on our sensor management solution. ODIP II also aims to develop a harmonized

  18. Affordable dual-sensing proximity sensor for touchless interactive systems

    KAUST Repository

    Nassar, Joanna M.

    2016-09-13

    We report an ultra-low cost flexible proximity sensor using only off-the-shelf recyclable materials such as aluminum foil, napkin and double-sided tape. Unlike previous reports, our device structure exhibits two sensing capabilities in one platform, with outstanding long detection range of 20 cm and pressure sensitivity of 0.05 kPa. This is the first ever demonstration of a low-cost, accessible, and batch manufacturing process for pressure and proximity sensing on a singular platform. The mechanical flexibility of the sensor makes it possible to mount on various irregular platforms, which is vital in many areas, such as robotics, machine automation, vehicular technology and inspection tools.

  19. Application of commercial sensor manufacturing methods for NOx/NH3 mixed potential sensors for emissions control

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Nelson, Mark A [Los Alamos National Laboratory; Sekhar, Praveen [Los Alamos National Laboratory; Williamson, Todd [Los Alamos National Laboratory; Garzon, Fernando H [Los Alamos National Laboratory

    2009-01-01

    The purpose of this research effort is to develop a low cost on-board Nitrogen Oxide (NO{sub x})/Ammonia (NH{sub 3}) sensor that can not only be used for emissions control but has the potential to improve efficiency through better monitoring of the combustion process and feedback control in both vehicle and stationary systems. Over the past decade, Los AJamos National Laboratory (LANL) has developed a unique class of electrochemical gas sensors for the detection of carbon monoxide, hydrocarbons, hydrogen and nitrogen oxides. These sensors are based on the mixed-potential phenomenon and are a modification of the existing automotive lambda (oxygen) sensor and have the potential to meet the stringent sensitivity, selectivity and stability requirements of an on-board emissions/engine control sensor system. The current state of the art LANL technology is based on the stabilization of the electrochemical interfaces and relies on an externally heated, hand-made, tape cast device. We are now poised to apply our patented sensing principles in a mass production sensor platform that is more suitable for real world engine-out testing such as on dynamometers for vehicle applications and for exhaust-out testing in heavy boilers/SCR systems in power plants. In this present work, our goal is to advance towards commercialization of this technology by packaging the unique LANL sensor design in a standard automotive sensor-type platform. This work is being performed with the help of a leading US technical ceramics firm, utilizing commercial manufacturing techniques. Initial tape cast platforms with screen printed metal oxide and Pt sensor electrodes have shown promising results but also clearly show the need for us to optimize the electrode and electrolyte compositions/morphologies and interfaces of these devices in order to demonstrate a sensitive, selective, and stable NO{sub x} sensor. Our previous methods and routes to preparing stable and reproducible mixed potential sensors

  20. Large Scale Automatic Analysis and Classification of Roof Surfaces for the Installation of Solar Panels Using a Multi-Sensor Aerial Platform

    Directory of Open Access Journals (Sweden)

    Luis López-Fernández

    2015-09-01

    Full Text Available A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbor solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the areas, tilts, orientations and the existence of obstacles to locate the optimal zones inside each roof surface for the installation of solar panels. This information is complemented with the estimation of the solar irradiation received by each surface. This way, large areas may be efficiently analyzed obtaining as final result the optimal locations for the placement of solar panels as well as the information necessary (location, orientation, tilt, area and solar irradiation to estimate the productivity of a solar panel from its technical characteristics.

  1. Inertial Sensor Self-Calibration in a Visually-Aided Navigation Approach for a Micro-AUV

    Directory of Open Access Journals (Sweden)

    Francisco Bonin-Font

    2015-01-01

    Full Text Available This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF, which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope. The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time.

  2. Preparing for a Product Platform

    DEFF Research Database (Denmark)

    Fiil-Nielsen, Ole; Munk, Lone; Mortensen, Niels Henrik

    2005-01-01

    on commonalities and similarities in the product family, and variance should be based on customer demands. To relate these terms and to improve the basis on which decisions are made, we need a way of visualizing the hierarchy of the product family as well as the commonality and variance. This visualization method...... of the platform or ensuring that the platform can meet future demands will be very useful in the preparation process of a platform synthesis as well as in the updating or reengineering of an existing product development platform.......Experience in the industry as well as recent related scientific publications show the benefits of product development platforms. Companies use platforms to develop not a single but multiple products (i.e. a product family) simultaneously. When these product development projects are coordinated...

  3. Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester

    International Nuclear Information System (INIS)

    Reilly, Elizabeth K; Wright, Paul; Burghardt, Fred; Fain, Romy

    2011-01-01

    This paper discusses the direct application of scavenged energy to power a wireless sensor platform. A trapezoidal piezoelectric harvester was designed for a specific machine tool application and tested for robustness and longevity as well as performance. The design focused on resonant performance and distributed strain concentrations at a given resonant frequency and acceleration. Critical issues of power coupling and conditioning between harvester and wireless platform were addressed. The wireless platform consisted of a sensor, controller, power conditioning circuitry, and a custom low power radio. The system transmitted a sensor sample once every 10 s in a scavenging environment of 0.25 g and 100 Hz for a system duty cycle of approximately 0.2%

  4. A wearable fingernail chemical sensing platform: pH sensing at your fingertips.

    Science.gov (United States)

    Kim, Jayoung; Cho, Thomas N; Valdés-Ramírez, Gabriela; Wang, Joseph

    2016-04-01

    This article demonstrates an example of a wearable chemical sensor based on a fingernail platform. Fingernails represent an attractive wearable platform, merging beauty products with chemical sensing, to enable monitoring of our surrounding environment. The new colorimetric pH fingernail sensor relies on coating artificial nails with a recognition layer consisted of pH indicators entrapped in a polyvinyl chloride (PVC) matrix. Such color changing fingernails offer fast and reversible response to pH changes, repeated use, and intense color change detected easily with naked eye. The PVC matrix prevents leaching out of the indicator molecules from the fingernail sensor toward such repeated use. The limited narrow working pH range of a single pH indicator has been addressed by multiplexing three different pH indicators: bromothymol blue (pH 6.0-7.6), bromocresol green (pH 3.8-5.4), and cresol red (pH 7.2-8.8), as demonstrated for analyses of real-life samples of acidic, neutral, and basic character. The new concept of an optical wearable chemical sensor on fingernail platforms can be expanded towards diverse analytes for various applications in connection to the judicious design of the recognition layer. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Genomics-enabled sensor platform for rapid detection of viruses related to disease outbreak.

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M; Manginell, Ronald P; Moorman, Matthew W; Xiao, Xiaoyin; Edwards, Thayne L.; Anderson, John Moses; Pfeifer, Kent Bryant; Branch, Darren W.; Wheeler, David Roger; Polsky, Ronen; Lopez, DeAnna M.; Ebel, Gregory D.; Prasad, Abhishek N.; Brozik, James A.; Rudolph, Angela R.; Wong, Lillian P.

    2013-09-01

    Bioweapons and emerging infectious diseases pose growing threats to our national security. Both natural disease outbreak and outbreaks due to a bioterrorist attack are a challenge to detect, taking days after the outbreak to identify since most outbreaks are only recognized through reportable diseases by health departments and reports of unusual diseases by clinicians. In recent decades, arthropod-borne viruses (arboviruses) have emerged as some of the most significant threats to human health. They emerge, often unexpectedly, from cryptic transmission foci causing localized outbreaks that can rapidly spread to multiple continents due to increased human travel and trade. Currently, diagnosis of acute infections requires amplification of viral nucleic acids, which can be costly, highly specific, technically challenging and time consuming. No diagnostic devices suitable for use at the bedside or in an outbreak setting currently exist. The original goals of this project were to 1) develop two highly sensitive and specific diagnostic assays for detecting RNA from a wide range of arboviruses; one based on an electrochemical approach and the other a fluorescent based assay and 2) develop prototype microfluidic diagnostic platforms for preclinical and field testing that utilize the assays developed in goal 1. We generated and characterized suitable primers for West Nile Virus RNA detection. Both optical and electrochemical transduction technologies were developed for DNA-RNA hybridization detection and were implemented in microfluidic diagnostic sensing platforms that were developed in this project.

  6. Kalman Filtering for Discrete Stochastic Systems with Multiplicative Noises and Random Two-Step Sensor Delays

    Directory of Open Access Journals (Sweden)

    Dongyan Chen

    2015-01-01

    Full Text Available This paper is concerned with the optimal Kalman filtering problem for a class of discrete stochastic systems with multiplicative noises and random two-step sensor delays. Three Bernoulli distributed random variables with known conditional probabilities are introduced to characterize the phenomena of the random two-step sensor delays which may happen during the data transmission. By using the state augmentation approach and innovation analysis technique, an optimal Kalman filter is constructed for the augmented system in the sense of the minimum mean square error (MMSE. Subsequently, the optimal Kalman filtering is derived for corresponding augmented system in initial instants. Finally, a simulation example is provided to demonstrate the feasibility and effectiveness of the proposed filtering method.

  7. Hierarchical approach to optimization of parallel matrix multiplication on large-scale platforms

    KAUST Repository

    Hasanov, Khalid

    2014-03-04

    © 2014, Springer Science+Business Media New York. Many state-of-the-art parallel algorithms, which are widely used in scientific applications executed on high-end computing systems, were designed in the twentieth century with relatively small-scale parallelism in mind. Indeed, while in 1990s a system with few hundred cores was considered a powerful supercomputer, modern top supercomputers have millions of cores. In this paper, we present a hierarchical approach to optimization of message-passing parallel algorithms for execution on large-scale distributed-memory systems. The idea is to reduce the communication cost by introducing hierarchy and hence more parallelism in the communication scheme. We apply this approach to SUMMA, the state-of-the-art parallel algorithm for matrix–matrix multiplication, and demonstrate both theoretically and experimentally that the modified Hierarchical SUMMA significantly improves the communication cost and the overall performance on large-scale platforms.

  8. System perspectives for mobile platform design in m-Health

    Science.gov (United States)

    Roveda, Janet M.; Fink, Wolfgang

    2016-05-01

    Advances in integrated circuit technologies have led to the integration of medical sensor front ends with data processing circuits, i.e., mobile platform design for wearable sensors. We discuss design methodologies for wearable sensor nodes and their applications in m-Health. From the user perspective, flexibility, comfort, appearance, fashion, ease-of-use, and visibility are key form factors. From the technology development point of view, high accuracy, low power consumption, and high signal to noise ratio are desirable features. From the embedded software design standpoint, real time data analysis algorithms, application and database interfaces are the critical components to create successful wearable sensor-based products.

  9. Slot-waveguide biochemical sensor.

    Science.gov (United States)

    Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R

    2007-11-01

    We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.

  10. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya

    2018-01-30

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  11. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  12. Instrumental intelligent test of food sensory quality as mimic of human panel test combining multiple cross-perception sensors and data fusion.

    Science.gov (United States)

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng

    2014-09-02

    Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. GITEWS, an extensible and open integration platform for manifold sensor systems and processing components based on Sensor Web Enablement and the principles of Service Oriented Architectures

    Science.gov (United States)

    Haener, Rainer; Waechter, Joachim; Fleischer, Jens; Herrnkind, Stefan; Schwarting, Herrmann

    2010-05-01

    The German Indonesian Tsunami Early Warning System (GITEWS) is a multifaceted system consisting of various sensor types like seismometers, sea level sensors or GPS stations, and processing components, all with their own system behavior and proprietary data structure. To operate a warning chain, beginning from measurements scaling up to warning products, all components have to interact in a correct way, both syntactically and semantically. Designing the system great emphasis was laid on conformity to the Sensor Web Enablement (SWE) specification by the Open Geospatial Consortium (OGC). The technical infrastructure, the so called Tsunami Service Bus (TSB) follows the blueprint of Service Oriented Architectures (SOA). The TSB is an integration concept (SWE) where functionality (observe, task, notify, alert, and process) is grouped around business processes (Monitoring, Decision Support, Sensor Management) and packaged as interoperable services (SAS, SOS, SPS, WNS). The benefits of using a flexible architecture together with SWE lead to an open integration platform: • accessing and controlling heterogeneous sensors in a uniform way (Functional Integration) • assigns functionality to distinct services (Separation of Concerns) • allows resilient relationship between systems (Loose Coupling) • integrates services so that they can be accessed from everywhere (Location Transparency) • enables infrastructures which integrate heterogeneous applications (Encapsulation) • allows combination of services (Orchestration) and data exchange within business processes Warning systems will evolve over time: New sensor types might be added, old sensors will be replaced and processing components will be improved. From a collection of few basic services it shall be possible to compose more complex functionality essential for specific warning systems. Given these requirements a flexible infrastructure is a prerequisite for sustainable systems and their architecture must be

  14. Experiments with Sensor Motes and Java-DSP

    Science.gov (United States)

    Kwon, Homin; Berisha, V.; Atti, V.; Spanias, A.

    2009-01-01

    Distributed wireless sensor networks (WSNs) are being proposed for various applications including defense, security, and smart stages. The introduction of hardware wireless sensors in a signal processing education setting can serve as a paradigm for data acquisition, collaborative signal processing, or simply as a platform for obtaining,…

  15. A survey of middleware for sensor and network virtualization.

    Science.gov (United States)

    Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd

    2014-12-12

    Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization.

  16. A Survey of Middleware for Sensor and Network Virtualization

    Science.gov (United States)

    Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd.

    2014-01-01

    Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization. PMID:25615737

  17. Mining robotics sensors

    CSIR Research Space (South Africa)

    Green, JJ

    2011-07-01

    Full Text Available International Conference of CAD/CAM, Robotics & Factories of the Future (CARs&FOF 2011) 26-28 July 2-11, Kuala Lumpur, Malaysia Mining Robotics Sensors Perception Sensors on a Mine Safety Platform Green JJ1, Hlophe K2, Dickens J3, Teleka R4, Mathew Price5...-28 July 2-11, Kuala Lumpur, Malaysia visualization in confined, lightless environments, and thermography for assessing the safety and stability of hanging walls. Over the last decade approximately 200 miners have lost their lives per year in South...

  18. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    Science.gov (United States)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  19. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: simultaneous oxygen and pH monitoring.

    Science.gov (United States)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-05-17

    Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ0/τ100 (PL decay time τ at 0% O2/τ at 100% O2) that is often used to express S increases ×1.9 to 20.7 relative to the lower molecular weight PS, where this ratio is 11.0. This increase reduces to ×1.7 when the PEG is added (τ0/τ100=18.2), but the latter results in an increase ×2.7 in the PL intensity. The sensor's response time is <10s in all cases. The microporous structure of these blended films, with PEG decorating PS pores, serves a dual purpose. It results in light scattering that reduces the EL that is waveguided in the substrate of the OLEDs and

  20. Enabling IoT ecosystems through platform interoperability

    OpenAIRE

    Bröring, Arne; Schmid, Stefan; Schindhelm, Corina-Kim; Khelil, Abdelmajid; Kabisch, Sebastian; Kramer, Denis; Le Phuoc, Danh; Mitic, Jelena; Anicic, Darko; Teniente López, Ernest

    2017-01-01

    Today, the Internet of Things (IoT) comprises vertically oriented platforms for things. Developers who want to use them need to negotiate access individually and adapt to the platform-specific API and information models. Having to perform these actions for each platform often outweighs the possible gains from adapting applications to multiple platforms. This fragmentation of the IoT and the missing interoperability result in high entry barriers for developers and prevent the emergence of broa...

  1. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with Spatial Data Infrastructures (sensdi)

    Science.gov (United States)

    Bhattacharya, D.; Painho, M.

    2017-09-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  2. SMART CITIES INTELLIGENCE SYSTEM (SMACiSYS INTEGRATING SENSOR WEB WITH SPATIAL DATA INFRASTRUCTURES (SENSDI

    Directory of Open Access Journals (Sweden)

    D. Bhattacharya

    2017-09-01

    Full Text Available The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS with sensor-web access (SENSDI utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  3. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    Science.gov (United States)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  4. Complementors as Connectors: Open Innovation in Digital Product Platforms

    NARCIS (Netherlands)

    Hilbolling, Susan; Berends, Hans; Deken, F.; Tuertscher, Philipp

    2018-01-01

    Through open, standardized interfaces, autonomous third parties can develop complementary products and services for digital product platforms, but, at the same time, these third parties also establish connections that span multiple platforms - beyond the control of the platform owner. This paper

  5. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    Science.gov (United States)

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  6. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms

    Science.gov (United States)

    Bonastre, Alberto; Ors, Rafael

    2017-01-01

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues. PMID:29295494

  7. Fast neutron background characterization with the Radiological Multi-sensor Analysis Platform (RadMAP)

    Energy Technology Data Exchange (ETDEWEB)

    Davis, John R., E-mail: john.davis@usma.edu [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); The United States Military Academy, West Point, NY (United States); Brubaker, Erik [Sandia National Laboratories, Livermore, CA (United States); Vetter, Kai [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2017-06-21

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. The expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate. Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. Three areas analyzed in San Francisco, Downtown Oakland, and Berkeley all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.

  8. Arctic phytoplankton and zooplankton abundance, temperature and salinity measurements collected from multiple platforms from 1903-02-22 to 1970-09-30 (NODC Accession 0069178)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Arctic phytoplankton and zooplankton abundance, temperature and salinity measurements collected from multiple platforms from 1903-02-22 to 1970-09-30 by Zoological...

  9. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor.

    Science.gov (United States)

    Park, Yoo Min; Han, Yong Duk; Chun, Hyeong Jin; Yoon, Hyun C

    2017-07-15

    We present a hand-held optical biosensing system utilizing a smartphone-embedded illumination sensor that is integrated with immunoblotting assay method. The smartphone-embedded illumination sensor is regarded as an alternative optical receiver that can replaces the conventional optical analysis apparatus because the illumination sensor can respond to the ambient light in a wide range of wavelengths, including visible and infrared. To demonstrate the biosensing applicability of our system employing the enzyme-mediated immunoblotting and accompanying light interference, various types of ambient light conditions including outdoor sunlight and indoor fluorescent were tested. For the immunoblotting assay, the biosensing channel generating insoluble precipitates as an end product of the enzymatic reaction is fabricated and mounted on the illumination sensor of the smartphone. The intensity of penetrating light arrives on the illumination sensor is inversely proportional to the amount of precipitates produced in the channel, and these changes are immediately analyzed and quantified via smartphone software. In this study, urinary C-terminal telopeptide fragment of type II collagen (uCTX-II), a biomarker of osteoarthritis diagnosis, was tested as a model analyte. The developed smartphone-based sensing system efficiently measured uCTX-II in the 0-5ng/mL concentration range with a high sensitivity and accuracy under various light conditions. These assay results show that the illumination sensor-based optical biosensor is suitable for point-of-care testing (POCT). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Swath width study. A simulation assessment of costs and benefits of a sensor system for agricultural application

    Science.gov (United States)

    1979-01-01

    Satellites provide an excellent platform from which to observe crops on the scale and frequency required to provide accurate crop production estimates on a worldwide basis. Multispectral imaging sensors aboard these platforms are capable of providing data from which to derive acreage and production estimates. The issue of sensor swath width was examined. The quantitative trade trade necessary to resolve the combined issue of sensor swath width, number of platforms, and their orbits was generated and are included. Problems with different swath width sensors were analyzed and an assessment of system trade-offs of swath width versus number of satellites was made for achieving Global Crop Production Forecasting.

  11. Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2011-06-01

    Full Text Available This paper presents an effective hybrid control approach for building stable wireless sensor networks between heterogeneous unmanned vehicles using long‐ endurance aerial robotic vehicles. For optimal deployment of the aerial vehicles in communication networks, a gradient climbing based self‐estimating control algorithm is utilized to locate the aerial platforms to maintain maximum communication throughputs between distributed multiple nodes. The autonomous aerial robots, which function as communication relay nodes, extract and harvest thermal energy from the atmospheric environment to improve their flight endurance within specified communication coverage areas. The rapidly‐deployable sensor networks with the high‐endurance aerial vehicles can be used for various application areas including environment monitoring, surveillance, tracking, and decision‐making support. Flight test and simulation studies are conducted to evaluate the effectiveness of the proposed hybrid control technique for robust communication networks.

  12. Wireless Sensor Network for Indoor Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-06-01

    Full Text Available Indoor air quality monitoring system consists of wireless sensor device, nRF24L01 wireless transceiver modules, C8051MCU, STM32103 remote monitoring platform, alarm device and data server. Distributed in the interior space of wireless sensors measure parameters of the local air quality, wireless transceiver module of the MCU to transmit data to the remote monitoring platform for analysis which displayed and stored field environment data or charts. The data collecting from wireless sensors to be send by wireless Access Point to the remote data server based on B/S architecture, intelligent terminals such as mobile phone, laptop, tablet PC on the Internet monitor indoor air quality in real-time. When site environment air quality index data exceeds the threshold in the monitoring device, the remote monitoring platform sends out the alarm SMS signal to inform user by GSM module. Indoor air quality monitoring system uses modular design method, has the portability and scalability has the low manufacture cost, real-time monitoring data and man-machine interaction.

  13. Wireless Sensor Networks for Ambient Assisted Living

    Directory of Open Access Journals (Sweden)

    Raúl Aquino-Santos

    2013-11-01

    Full Text Available This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study.

  14. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  15. Robust segment-type energy harvester and its application to a wireless sensor

    International Nuclear Information System (INIS)

    Lee, Soobum; Youn, Byeng D; Jung, Byung C

    2009-01-01

    This paper presents an innovative design platform of a piezoelectric energy harvester (EH), called a segment-type EH, and its application to a wireless sensor. Energy harvesting technology is motivated to minimize battery replacement cost for wireless sensors, which aims at developing self-powered sensors by utilizing ambient energy sources. Vibration energy is one of the widely available ambient energy sources which can be converted into electrical energy using piezoelectric material. The current state-of-the-art in piezoelectric EH technology mainly utilizes a single natural frequency, which is less effective when utilizing a random ambient vibration with multi-modal frequencies. This research thus proposes a segment-type harvester to generate electric power efficiently which utilizes multiple modes by separating the piezoelectric material. In order to reflect the random nature of ambient vibration energy, a stochastic design optimization is solved to determine the optimal configuration in terms of energy efficiency and durability. A prototype is manufactured and mounted on a heating, ventilation, air conditioning (HVAC) system to operate a temperature wireless sensor. It shows its excellent performance to generate sufficient power for real-time temperature monitoring for building automation

  16. Smart Control of Multiple Evaporator Systems with Wireless Sensor and Actuator Networks

    Directory of Open Access Journals (Sweden)

    Apolinar González-Potes

    2016-02-01

    Full Text Available This paper describes the complete integration of a fuzzy control of multiple evaporator systems with the IEEE 802.15.4 standard, in which we study several important aspects for this kind of system, like a detailed analysis of the end-to-end real-time flows over wireless sensor and actuator networks (WSAN, a real-time kernel with an earliest deadline first (EDF scheduler, periodic and aperiodic tasking models for the nodes, lightweight and flexible compensation-based control algorithms for WSAN that exhibit packet dropouts, an event-triggered sampling scheme and design methodologies. We address the control problem of the multi-evaporators with the presence of uncertainties, which was tackled through a wireless fuzzy control approach, showing the advantages of this concept where it can easily perform the optimization for a set of multiple evaporators controlled by the same smart controller, which should have an intelligent and flexible architecture based on multi-agent systems (MAS that allows one to add or remove new evaporators online, without the need for reconfiguring, while maintaining temporal and functional restrictions in the system. We show clearly how we can get a greater scalability, the self-configuration of the network and the least overhead with a non-beacon or unslotted mode of the IEEE 802.15.4 protocol, as well as wireless communications and distributed architectures, which could be extremely helpful in the development process of networked control systems in large spatially-distributed plants, which involve many sensors and actuators. For this purpose, a fuzzy scheme is used to control a set of parallel evaporator air-conditioning systems, with temperature and relative humidity control as a multi-input and multi-output closed loop system; in addition, a general architecture is presented, which implements multiple control loops closed over a communication network, integrating the analysis and validation method for multi

  17. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms

    Directory of Open Access Journals (Sweden)

    Piyush Dak

    2016-04-01

    Full Text Available Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with “open” digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  18. Mobile Prototyping Platforms for Remote Engineering Applications

    Directory of Open Access Journals (Sweden)

    Karsten Henke

    2009-08-01

    Full Text Available This paper describes a low-cost mobile communication platform as a universal rapid-prototyping system, which is based on the Quadrocopter concept. At the Integrated Hardware and Software Systems Group at the Ilmenau University of Technology these mobile platforms are used to motivate bachelor and master students to study Computer Engineering sciences. This could be done by increasing their interest in technical issues, using this platform as integral part of a new ad-hoc lab to demonstrate different aspects in the area of Mobile Communication as well as universal rapid prototyping nodes to investigate different mechanisms for self-organized mobile communication systems within the International Graduate School on Mobile Communications. Beside the three fields of application, the paper describes the current architecture concept of the mobile prototyping platform as well as the chosen control mechanism and the assigned sensor systems to fulfill all the required tasks.

  19. Sol-Gel Thin Films for Plasmonic Gas Sensors

    Science.gov (United States)

    Della Gaspera, Enrico; Martucci, Alessandro

    2015-01-01

    Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors. PMID:26184216

  20. Multi-Sensor Architectures

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki; Khan, M. Z.

    2012-01-01

    The use of multiple sensors typically requires the fusion of data from different type of sensors. The combined use of such a data has the potential to give an efficient, high quality and reliable estimation. Input data from different sensors allows the introduction of target attributes (target ty...

  1. Multi-Sensor Systems Development for UXO Detection and Discrimination: Hand-Held Dual Magnetic/Electromagnetic Induction Sensor

    National Research Council Canada - National Science Library

    Wright, David; Bennett, Jr., , Hollis H; Dove, Linda P; Butler, Dwain K

    2008-01-01

    ...) detection and discrimination system. This breakthrough technology markedly reduces UXO false alarm rates by fusing two heretofore incompatible sensor platforms, integrating highly accurate spatial data in real time, and applying...

  2. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  3. A Platform for e-Health Control and Location Services for Wandering Patients

    Directory of Open Access Journals (Sweden)

    Samantha Yasivee Carrizales-Villagómez

    2018-01-01

    Full Text Available Wandering patients frequently have diseases that demand continuous health control, such as taking pills at specific times, constant blood pressure and heart rate monitoring, temperature and stress level checkups, and so on. These could be jeopardized by their wandering behavior. Mobile applications that focus on health care have received special interest from medical specialists. These applications have been widely accepted, due to the availability of smart devices that include sensors. However, sensor-based applications are highly energy demanding and as such, they can be unaffordable in mobile e-health control due to battery constraints. This paper presents the design and implementation of a platform aimed at providing support in e-health control and provision of location services for wandering patients through real-time medical and mobility information analysis. The platform includes a configurable mobile application for heart rate and stress level monitoring based on Bluetooth Low Energy technology (BLE, and a web service for monitoring and control of the wandering patients. Due to battery limitations of smart devices with sensors, the mobile application includes energy-efficient handling and transmission policies to make more efficient the transmission of medical information from the sensor-based smart device to the web service. In turn, the web service provides e-health control services for patients and caregivers. Through the platform functionality, caregivers (and patients can receive notifications and suggestions in response to emergency, contingency situations, or deviations from health and mobility patterns of the wandering patients. This paper describes a platform that conceals continuous monitoring with energy-efficient applications in favor of e-health control of wandering patients.

  4. Evaluating Unmanned Aerial Platforms for Cultural Heritage Large Scale Mapping

    Science.gov (United States)

    Georgopoulos, A.; Oikonomou, C.; Adamopoulos, E.; Stathopoulou, E. K.

    2016-06-01

    When it comes to large scale mapping of limited areas especially for cultural heritage sites, things become critical. Optical and non-optical sensors are developed to such sizes and weights that can be lifted by such platforms, like e.g. LiDAR units. At the same time there is an increase in emphasis on solutions that enable users to get access to 3D information faster and cheaper. Considering the multitude of platforms, cameras and the advancement of algorithms in conjunction with the increase of available computing power this challenge should and indeed is further investigated. In this paper a short review of the UAS technologies today is attempted. A discussion follows as to their applicability and advantages, depending on their specifications, which vary immensely. The on-board cameras available are also compared and evaluated for large scale mapping. Furthermore a thorough analysis, review and experimentation with different software implementations of Structure from Motion and Multiple View Stereo algorithms, able to process such dense and mostly unordered sequence of digital images is also conducted and presented. As test data set, we use a rich optical and thermal data set from both fixed wing and multi-rotor platforms over an archaeological excavation with adverse height variations and using different cameras. Dense 3D point clouds, digital terrain models and orthophotos have been produced and evaluated for their radiometric as well as metric qualities.

  5. Nano-enabled sensors, electronics and energy source on polymer, paper and thread substrates

    Science.gov (United States)

    Mostafalu, Pooria

    Over the past decades, design and development of portable devices for monitoring of biomarkers especially for at risk patients is receiving considerable attention. These devices are either single use diagnostic platforms, wearable on body or on fabric, or they are implanted close to the tissue and organ that it monitors and cures. Sensors, energy sources, and data acquisition devices are the main components of a such monitoring platform. Sensors collect the information using bio-recognition tools such as enzymes and antibodies. Then, the transducers (electrodes, fluorophore, etc) convert it to the appropriate format, for instance electrical and optical signals. After that, data acquisition system amplifies and digitizes the signal and transfers the data to the recording instruments for further processing. Moreover, energy sources are necessary for powering the sensors and electronics. In wearable and implantable applications, these devices need to be flexible, light weight and biocompatible, and their performance should be similar to their rigid counterparts. In this dissertation we address these requirement for wearable and implantable devices. We showed integrated sensors, electronics, and energy sources on flexible polymers, paper, and thread. These devices provide many advantages for monitoring of the physiological condition of a patient and treatment accordingly. Real-time capability of the platform was enabled using wireless telemetry. One of the major innovations of this dissertation is the use of thread as a substrate for making medical diagnostic devices. While conventional substrates (glass, silicon, polyimide, PDMS etc) hold great promise for making wearable and implantable devices, their overall structure and form has remained essentially two dimensional, limiting their function to tissue surfaces such as skin. However, the ability to integrate functional components such as sensors, actuators, and electronics in a way that they penetrate multiple layers

  6. Detection and Classification of UXO Using Unmanned Undersea Electromagnetic Sensing Platforms

    Science.gov (United States)

    Schultz, G.; Keranen, J.; McNinch, J.; Miller, J.

    2017-12-01

    Important seafloor applications, including mine countermeasures, unexploded ordnance (UXO) surveys, salvage, and underwater hazards, require the detection, geo-registration, and characterization of man-made targets on, or below, the seafloor. Investigations in littoral environments can be time-consuming and expensive due to the challenges of accurately tracking underwater assets, the difficulty of quick or effective site reconnaissance activities, high levels of clutter in nearshore areas, and lack of situational awareness and real-time feedback to operators. Consequently, a high payoff exists for effective methods using sensor and data fusion, feature extraction, and effective payload integration and deployment for improved assessments of littoral infrastructure. We present technology development and demonstration results from multiple technology research, development, and demonstration projects over the last 3 years that have been focused on advancing seafloor target detection, tracking, and classification for specific environmental and defense missions. We focus on challenges overcome in integrating and testing new miniaturized passive magnetic and controlled-source electromagnetic sensors on a variety of remotely and autonomously operated sensing platforms (ROVs, AUVs and bottom crawling systems). In particular, we present aspects of the design, development, and testing of array configurations of miniaturized atomic magnetometers/gradiometers and multi-dimensional electromagnetic (EM) sensor arrays. Results from nearshore (surf zone and marsh in North Carolina) and littoral experiments (bays and reef areas of Florida Gulf and Florida Keys) are presented.

  7. A gas sensor array for the simultaneous detection of multiple VOCs.

    Science.gov (United States)

    Zhang, Yumin; Zhao, Jianhong; Du, Tengfei; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2017-05-16

    Air quality around the globe is declining and public health is seriously threatened by indoor air pollution. Typically, indoor air pollutants are composed of a series of volatile organic compounds (VOCs) that are generally harmful to the human body, especially VOCs with low molecular weights (less than 100 Da). Moreover, in some situations, more than one type of VOC is present; thus, a device that can detect one or more VOCs simultaneously would be most beneficial. Here, we synthesized a sensor array with 4 units to detect 4 VOCs: acetone (unit 1), benzene (unit 2), methanol (unit 3) and formaldehyde (unit 4) simultaneously. All units were simultaneously exposed to 2.5 ppm of all four VOCs. The sensitivity of unit 1 was 14.67 for acetone and less than 2.54 for the other VOCs. The sensitivities of units 2, 3 and 4 to benzene, methanol and formaldehyde were 2 18.64, 20.98 and 17.26, respectively, and less than 4.01 for the other VOCs. These results indicated that the sensor array exhibited good selectivity and could be used for the real-time monitoring of indoor air quality. Thus, this device will be useful in situations requiring the simultaneous detection of multiple VOCs.

  8. Temperature profiles from MBT casts from a World-Wide distribution from MULTIPLE PLATFORMS from 1948-04-08 to 1968-12-14 (NODC Accession 9300131)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from MBT casts from a World-Wide distribution. Data were collected from MULTIPLE PLATFORMS from 08 April 1948 to 14 Decmeber...

  9. Identification of platform levels

    DEFF Research Database (Denmark)

    Mortensen, Niels Henrik

    2005-01-01

    reduction, ability to launch a wider product portfolio without increasing resources and reduction of complexity within the whole company. To support the multiple product development process, platform based product development has in many companies such as Philips, VW, Ford etc. proven to be a very effective...... product development in one step and therefore the objective of this paper is to identify levels of platform based product development. The structure of this paper is as follows. First the applied terminology for platforms will be briefly explained and then characteristics between single and multi product...... development will be examined. Based on the identification of the above characteristics five platform levels are described. The research presented in this paper is a result of MSc, Ph.D projects at the Technical University of Denmark and consultancy projects within the organisation of Institute of Product...

  10. A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics.

    Science.gov (United States)

    Ashok, Praveen C; Giardini, Mario E; Dholakia, Kishan; Sibbett, Wilson

    2014-01-01

    We report the development of a fiber-based Raman sensor to be used in tumour margin identification during endoluminal robotic surgery. Although this is a generic platform, the sensor we describe was adapted for the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic platform. On such a platform, the Raman sensor is intended to identify ambiguous tissue margins during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a disposable sleeve was specially designed. A straightforward user-compatible interface was implemented where a supervised multivariate classification algorithm was used to classify different tissue types based on specific Raman fingerprints so that it could be used without prior knowledge of spectroscopic data analysis. The protocol avoids inter-patient variability in data and the sensor system is not restricted for use in the classification of a particular tissue type. Representative tissue classification assessments were performed using this system on excised tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Xiao, Teng; Cui, Weipan [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Joseph, E-mail: jshinar@iastate.edu [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth, E-mail: rshinar@iastate.edu [Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-05-17

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ{sub 0}/τ{sub 100} (PL decay time τ at 0% O{sub 2}/τ at 100% O{sub 2}) that is often used

  12. Cooperative Transmission in Mobile Wireless Sensor Networks with Multiple Carrier Frequency Offsets: A Double-Differential Approach

    Directory of Open Access Journals (Sweden)

    Kun Zhao

    2014-01-01

    Full Text Available As a result of the rapidly increasing mobility of sensor nodes, mobile wireless sensor networks (MWSNs would be subject to multiple carrier frequency offsets (MCFOs, which result in time-varying channels and drastically degrade the network performance. To enhance the performance of such MWSNs, we propose a relay selection (RS based double-differential (DD cooperative transmission scheme, termed RSDDCT, in which the best relay sensor node is selected to forward the source sensor node’s signals to the destination sensor node with the detect-and-forward (DetF protocol. Assuming a Rayleigh fading environment, first, exact closed-form expressions for the outage probability and average bit error rate (BER of the RSDDCT scheme are derived. Then, simple and informative asymptotic outage probability and average BER expressions at the large signal-to-noise ratio (SNR regime are presented, which reveal that the RSDDCT scheme can achieve full diversity. Furthermore, the optimum power allocation strategy in terms of minimizing the average BER is investigated, and simple analytical solutions are obtained. Simulation results demonstrate that the proposed RSDDCT scheme can achieve excellent performance over fading channels in the presence of unknown random MCFOs. It is also shown that the proposed optimum power allocation strategy offers substantial average BER performance improvement over the equal power allocation strategy.

  13. Temperature profiles from XBT casts from a World-Wide distribution from MULTIPLE PLATFORMS from 1979-06-03 to 1988-05-27 (NODC Accession 8800182)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from a World-Wide distribution. Data were collected from MULTIPLE PLATFORMS from 03 June 1979 to 27 May 1988. Data...

  14. Optimal power allocation of a single transmitter-multiple receivers channel in a cognitive sensor network

    KAUST Repository

    Ayala Solares, Jose Roberto

    2012-08-01

    The optimal transmit power of a wireless sensor network with one transmitter and multiple receivers in a cognitive radio environment while satisfying independent peak, independent average, sum of peak and sum of average transmission rate constraints is derived. A suboptimal scheme is proposed to overcome the frequency of outages for the independent peak transmission rate constraint. In all cases, numerical results are provided for Rayleigh fading channels. © 2012 IEEE.

  15. Next generation sensing platforms for extended deployments in large-scale, multidisciplinary, adaptive sampling and observational networks

    Science.gov (United States)

    Cross, J. N.; Meinig, C.; Mordy, C. W.; Lawrence-Slavas, N.; Cokelet, E. D.; Jenkins, R.; Tabisola, H. M.; Stabeno, P. J.

    2016-12-01

    New autonomous sensors have dramatically increased the resolution and accuracy of oceanographic data collection, enabling rapid sampling over extremely fine scales. Innovative new autonomous platofrms like floats, gliders, drones, and crawling moorings leverage the full potential of these new sensors by extending spatiotemporal reach across varied environments. During 2015 and 2016, The Innovative Technology for Arctic Exploration Program at the Pacific Marine Environmental Laboratory tested several new types of fully autonomous platforms with increased speed, durability, and power and payload capacity designed to deliver cutting-edge ecosystem assessment sensors to remote or inaccessible environments. The Expendable Ice-Tracking (EXIT) gloat developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) is moored near bottom during the ice-free season and released on an autonomous timer beneath the ice during the following winter. The float collects a rapid profile during ascent, and continues to collect critical, poorly-accessible under-ice data until melt, when data is transmitted via satellite. The autonomous Oculus sub-surface glider developed by the University of Washington and PMEL has a large power and payload capacity and an enhanced buoyancy engine. This 'coastal truck' is designed for the rapid water column ascent required by optical imaging systems. The Saildrone is a solar and wind powered ocean unmanned surface vessel (USV) developed by Saildrone, Inc. in partnership with PMEL. This large-payload (200 lbs), fast (1-7 kts), durable (46 kts winds) platform was equipped with 15 sensors designed for ecosystem assessment during 2016, including passive and active acoustic systems specially redesigned for autonomous vehicle deployments. The senors deployed on these platforms achieved rigorous accuracy and precision standards. These innovative platforms provide new sampling capabilities and cost efficiencies in high-resolution sensor deployment

  16. IoT Platforms: Analysis for Building Projects

    Directory of Open Access Journals (Sweden)

    Rusu Liviu DUMITRU

    2017-01-01

    Full Text Available This paper presents a general survey of IoT platforms in terms of features for IoT project de-velopers. I will briefly summarize the state of knowledge in terms of technology regarding “In-ternet of Things” first steps in developing this technology, history, trends, sensors and micro-controllers used. I have evaluated a number of 5 IoT platforms in terms of the features needed to develop a IoT project. I have listed those components that are most appreciated by IoT pro-ject developers and the results have been highlighted in a comparative analysis of these plat-forms from the point of view of IoT project developers and which are strictly necessary as a de-velopment environment for an IoT project based. I’ve also considered the users' views of such platforms in terms of functionality, advantages, disadvantages and dangers presented by this technology.

  17. In plane optical sensor based on organic electronic devices

    NARCIS (Netherlands)

    Koetse, M.M; Rensing, P.A.; Heck, G.T. van; Sharpe, R.B.A.; Allard, B.A.M.; Wieringa, F.P.; Kruijt, P.G.M.; Meulendijks, N.M.M.; Jansen, H.; Schoo, H.F.M.

    2008-01-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils

  18. DEVELOPMENT OF AN INSPECTION PLATFORM AND A SUITE OR SENSORS FOR ASSESSING CORROSION AND MECHANICAL DAMAGE ON UNPIGGABLE TRANSMISSION MAINS

    Energy Technology Data Exchange (ETDEWEB)

    George C. Vradis

    2004-02-01

    This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), Foster-Miller, Inc., GE Oil & Gas (PII), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL). The total cost of the project is $772,525, with the National Energy Technology Laboratory of the US Department of Energy contributing $572,525, and the Northeast Gas Association contributing $200,000. The present report summarizes the accomplishments of the project during its fifth three-month period (from October 2003 through December 2003). The efforts of the project focused during this period in completing the assessment of the tether technology, which is intended to be used as the means of communication between robot and operator, in completing the design of the MFL sensor modules, and in completing the kinematic studies and tractor design. In addition, work on the ovality sensor has been completed, while work on system integration is nearly complete. Results to date indicate that the robotic system under design will be able to meet most of the design specifications initially prescribed. The kinematic analysis shows that from a locomotor point of view an inspection of a 16 inch-24 inch pipe size range with a single platform is most likely possible. However, the limitations imposed by the sensor are more restrictive, final preliminary design results showing that in order to cover this pipe range, two different sensor systems will be needed; one for the 16 inch-20 inch pipe size range and one for the 20 inch-24 inch range. Finally, the analysis has shown that tether operation will be limited to flows of less than 30 ft/sec; these results will have to be confirmed experimentally during the next phase of work.

  19. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie, E-mail: yangjie396768@163.com [Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing 210044 (China); School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Liu, Qingquan [Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing 210044 (China); Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing 210044 (China); Dai, Wei [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Ding, Renhui [Jiangsu Meteorological Observation Center, Nanjing 210008 (China)

    2016-08-15

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  20. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation.

    Science.gov (United States)

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Renhui

    2016-08-01

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  1. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation

    International Nuclear Information System (INIS)

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Renhui

    2016-01-01

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  2. Interoperable eHealth Platform for Personalized Smart Services

    DEFF Research Database (Denmark)

    Mihaylov, Mihail Rumenov; Mihovska, Albena Dimitrova; Kyriazakos, Sofoklis

    2015-01-01

    personalized context-aware applications to serve the user's needs. This paper proposes the use of advised sensing, context-aware and cloud-based lifestyle reasoning to design an innovative eHealth platform that supports highly personalized smart services to primary users. The architecture of the platform has...... been designed in accordance with the interoperability requirements and standards as proposed by ITU-T and Continua Alliance. In particular, we define the interface dependencies and functional requirements needed, to allow eCare and eHealth vendors to manufacture interoperable sensors, ambient and home...

  3. Operating Protocol and Networking Issues of a Telemedicine Platform Integrating from Wireless Home Sensors to the Hospital Information System

    Directory of Open Access Journals (Sweden)

    Massimiliano Donati

    2013-01-01

    Full Text Available Chronic heart failure (CHF is among the major causes of hospitalization for elderly citizens. Its considerable impact on patient quality of life, the resources congestion, and the related costs can be efficiently mitigated using remote wireless biosensors networks placed at patient home, able to communicate in secure way over the public Internet with the cardiology departmental Hospital Information System (HIS. In this way, physicians can monitor the situation of several patients at distance and quickly realize and act alterations in vital parameters. In this scenario, the Health@Home (H@H platform is conceived. The pool of Bluetooth sensors enables patients to daily collect vital signs at home in noninvasive fashion. A home gateway receives and processes all signals before sending them to a server node in charge of interfacing with the usual HIS. The novel concept of operating protocol (OP represents a list of actions, remotely configurable, that the domestic network has to follow (required measurements, transmissions, comparisons with personalized thresholds, etc.. The first medical tests on 30 patients (1 month allowed to verify the model, both from the patient and the medical perspective. The main evaluation metrics were usability, flexibility, and reliability of the communication from sensors to HIS.

  4. Wireless sensors and sensor networks for homeland security applications.

    Science.gov (United States)

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  5. Instrumental intelligent test of food sensory quality as mimic of human panel test combining multiple cross-perception sensors and data fusion

    International Nuclear Information System (INIS)

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng

    2014-01-01

    Highlights: • To develop a novel instrumental intelligent test methodology for food sensory analysis. • A novel data fusion was used in instrumental intelligent test methodology. • Linear and nonlinear tools were comparatively used for modeling. • The instrumental test methodology can be imitative of human test behavior. - Abstract: Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers

  6. Instrumental intelligent test of food sensory quality as mimic of human panel test combining multiple cross-perception sensors and data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng, E-mail: qschen@ujs.edu.cn

    2014-09-02

    Highlights: • To develop a novel instrumental intelligent test methodology for food sensory analysis. • A novel data fusion was used in instrumental intelligent test methodology. • Linear and nonlinear tools were comparatively used for modeling. • The instrumental test methodology can be imitative of human test behavior. - Abstract: Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers.

  7. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments.

    Science.gov (United States)

    Martin, Daniel B; Holzman, Ted; May, Damon; Peterson, Amelia; Eastham, Ashley; Eng, Jimmy; McIntosh, Martin

    2008-11-01

    Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.

  8. Use of offshore mooring platform for sea wave motion analysis

    International Nuclear Information System (INIS)

    Cicconi, G.; Dagnino, I.; Papa, L.

    1979-01-01

    An offshore mooring platform for supertankers may often turn out to be an ideal solution for the problem of installing a meteorological station. Its location may be particularly desirable for the purpose of recording and analysing sea wave motion in deep water or in the intermediate zone between shallow and deep water. The preliminary results obtained through the operation of a subsurface sensor at the mooring platform off the harbour of Genova are reported. (author)

  9. Use of offshore mooring platform for sea wave motion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cicconi, G.; Dagnino, I.; Papa, L. (Genova Univ. (Italy). Ist. Geofisica e Geodetico); Basano, L.; Ottonello, P. (Genoa Univ. (Italy))

    An offshore mooring platform for supertankers may often turn out to be an ideal solution for the problem of installing a meteorological station. Its location may be particularly desirable for the purpose of recording and analysing sea wave motion in deep water or in the intermediate zone between shallow and deep water. The preliminary results obtained through the operation of a subsurface sensor at the mooring platform off the harbour of Genova are reported.

  10. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Shoji Kawahito

    2016-11-01

    Full Text Available This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs. This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC. The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median: 0.29 e−rms when compared with the CMS gain of two (2.4 e−rms, or 16 (1.1 e−rms.

  11. [Orange Platform].

    Science.gov (United States)

    Toba, Kenji

    2017-07-01

    The Organized Registration for the Assessment of dementia on Nationwide General consortium toward Effective treatment in Japan (ORANGE platform) is a recently established nationwide clinical registry for dementia. This platform consists of multiple registries of patients with dementia stratified by the following clinical stages: preclinical, mild cognitive impairment, early-stage, and advanced-stage dementia. Patients will be examined in a super-longitudinal fashion, and their lifestyle, social background, genetic risk factors, and required care process will be assessed. This project is also notable because the care registry includes information on the successful, comprehensive management of patients with dementia. Therefore, this multicenter prospective cohort study will contribute participants to all clinical trials for Alzheimer's disease as well as improve the understanding of individuals with dementia.

  12. A New Multi-Sensor Track Fusion Architecture for Multi-Sensor Information Integration

    National Research Council Canada - National Science Library

    Jean, Buddy H; Younker, John; Hung, Chih-Cheng

    2004-01-01

    .... This new technology will integrate multi-sensor information and extract integrated multi-sensor information to detect, track and identify multiple targets at any time, in any place under all weather conditions...

  13. Development of Testing Platform for Digital I and C System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. Y.; Kim, Y. M.; Jeong, C. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    According to digitalization of the NPP (Nuclear Power Plant) I and C (Instrumentation and Control) system, cyber threats against I and C system are increased. Moreover, the complexity of I and C system are increased due to adopt the up-to-date technologies (i. e., smart sensor, wireless network, and Field Programmable Gate Array / Complex Programmable Logic Device) into NPP's I and C system. For example, new issues such as cyber threat are introduced from digitalized I and C systems and components to replace obsolete analog equipment in existing NPPs. Furthermore, use of wireless communication, FPGA/CPLD, and smart sensor could introduce new considerations such as Defense-in-Depth and Diversity. Therefore, the proof testing for digital I and C system is required to verify the adverse effect from use of up-to-date digital technologies and identify the criteria to resolve and mitigate (or prevent) the (possibility of) effects. The objective of this study is developing the Testing Platform for the proof testing. The digital I and C System Test Platform is implemented using test platform hardware, component software, and architectural design. The digital I and C testing platform includes the safety-related PLC and relevant ladder logics, Windows-based C++ codes for host PC. For software, there are seven spike models to confirm the each module's functionality and generate/monitor the signals to/from PLCs. For future work, digital I and C System Test Platform architecture will be implemented using spike models. And a set of acceptance test against cyber security, smart sensor, wireless network, and FPGA/CPLD will be conducted using digital I and C System Test Platform.

  14. Development of Testing Platform for Digital I and C System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Park, G. Y.; Kim, Y. M.; Jeong, C. H.

    2013-01-01

    According to digitalization of the NPP (Nuclear Power Plant) I and C (Instrumentation and Control) system, cyber threats against I and C system are increased. Moreover, the complexity of I and C system are increased due to adopt the up-to-date technologies (i. e., smart sensor, wireless network, and Field Programmable Gate Array / Complex Programmable Logic Device) into NPP's I and C system. For example, new issues such as cyber threat are introduced from digitalized I and C systems and components to replace obsolete analog equipment in existing NPPs. Furthermore, use of wireless communication, FPGA/CPLD, and smart sensor could introduce new considerations such as Defense-in-Depth and Diversity. Therefore, the proof testing for digital I and C system is required to verify the adverse effect from use of up-to-date digital technologies and identify the criteria to resolve and mitigate (or prevent) the (possibility of) effects. The objective of this study is developing the Testing Platform for the proof testing. The digital I and C System Test Platform is implemented using test platform hardware, component software, and architectural design. The digital I and C testing platform includes the safety-related PLC and relevant ladder logics, Windows-based C++ codes for host PC. For software, there are seven spike models to confirm the each module's functionality and generate/monitor the signals to/from PLCs. For future work, digital I and C System Test Platform architecture will be implemented using spike models. And a set of acceptance test against cyber security, smart sensor, wireless network, and FPGA/CPLD will be conducted using digital I and C System Test Platform

  15. Functionalization and Characterization of Nanomaterial Gated Field-Effect Transistor-Based Biosensors and the Design of a Multi-Analyte Implantable Biosensing Platform

    Science.gov (United States)

    Croce, Robert A., Jr.

    Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled

  16. A wireless computational platform for distributed computing based traffic monitoring involving mixed Eulerian-Lagrangian sensing

    KAUST Repository

    Jiang, Jiming; Claudel, Christian G.

    2013-01-01

    .4GHz 802.15.4 ISM compliant radio module, and can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. The platform is specially designed and optimized to be integrated in a solar-powered wireless sensor network in which

  17. Fault diagnosis of sensor networked structures with multiple faults using a virtual beam based approach

    Science.gov (United States)

    Wang, H.; Jing, X. J.

    2017-07-01

    This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.

  18. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    Science.gov (United States)

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  19. Temperature profile data from XBT casts from MULTIPLE PLATFORMS from a World-Wide distribution from 02 January 1990 to 31 December 1995 (NODC Accession 0001268)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution from 02 January 1990 to 31 December 1995. Data were submitted by the UK Hydrographic...

  20. Micro technology based sun sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Pedersen, Martin; Fléron, René

    2003-01-01

    various payloads and platforms. The conventional and commercial actuators and attitude sensors are in most cases not suited for these satellites, which again lead to new design considerations. Another important property is the launch cost, which can be kept relatively low as a result of the concept....... This fact enables students to get hands-on experience with satellite systems design and project management. This paper describes the attitude control and determination system of a Danish student satellite (DTUsat), with main focus on the two-axis MOEMS sun sensor developed. On the magnetotorquer controlled...... DTUsat sun sensors are needed along with a magnetometer to obtain unambiguous attitude determination for the ACDS and the payloads - an electrodynamic tether and a camera. The accuracy needed was not obtainable by employing conventional attitude sensors. Hence a linear slit sensor was designed...

  1. Self Calibrating Interferometric Sensor

    DEFF Research Database (Denmark)

    Sørensen, Henrik Schiøtt

    mask. The fabricated micro structures have been electroplated for later injection molding, showing the potential of the MIBD sensor to be mass produced with high reproducibility and sensitivity. In part three MIBD experiments on vital biological systems are described. Label–free binding studies of bio......This thesis deals with the development of an optical sensor based on micro interferometric backscatter detection (MIBD). A price effective, highly sensitive and ready for mass production platform is the goal of this project. The thesis covers three areas. The first part of the thesis deals...

  2. Wearable textile platform for assessing stroke patient treatment in daily life conditions

    Directory of Open Access Journals (Sweden)

    Federico eLorussi

    2016-03-01

    Full Text Available Monitoring physical activities during post-stroke rehabilitation in daily life may help physicians to optimize and tailor the training program for patients. The European research project INTERACTION (FP7-ICT-2011-7-287351 evaluated motor capabilities in stroke patients during the recovery treatment period. We developed wearable sensing platform based on the sensor fusion among inertial, knitted piezoresistive sensors and textile EMG electrodes . The device was conceived in modular form and consists of a separate shirt, trousers, glove and shoe. Thanks to the novel fusion approach it has been possible to develop a model for the shoulder taking into account the scapulo-thoracic joint of the scapular girdle, considerably improving the estimation of the hand position in reaching activities. In order to minimize the sensor set used to monitor gait, a single inertial sensor fused with a textile goniometer proved to reconstruct the orientation of all the body segments of the leg. Finally, the sensing glove, endowed with three textile goniometers and three force sensors showed good capabilities in the reconstruction of grasping activities and evaluating the interaction of the hand with the environment, according to the project specifications. This paper reports on the design and the technical evaluation of the performance of the sensing platform, tested on healthy subjects.

  3. Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes.

    Science.gov (United States)

    Salomons, Etto L; Havinga, Paul J M; van Leeuwen, Henk

    2016-09-27

    A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1) the window length for our classifiers is increased, and (2) if we apply a two-step approach that uses a refined classification after a global classification has been performed.

  4. Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Etto L. Salomons

    2016-09-01

    Full Text Available A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1 the window length for our classifiers is increased, and (2 if we apply a two-step approach that uses a refined classification after a global classification has been performed.

  5. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    Science.gov (United States)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  6. The COMET Sleep Research Platform.

    Science.gov (United States)

    Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A

    2014-01-01

    The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.

  7. Robotic vehicle with multiple tracked mobility platforms

    Science.gov (United States)

    Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.

    2012-07-24

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  8. Electro-active sensor, method for constructing the same; apparatus and circuitry for detection of electro-active species

    Science.gov (United States)

    Buehler, Martin (Inventor)

    2009-01-01

    An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.

  9. AssistMe robot, an assistance robotic platform

    Directory of Open Access Journals (Sweden)

    A. I. Alexan

    2012-06-01

    Full Text Available This paper presents the design and implementation of a full size assistance robot. Its main purpose it to assist a person and eventually avoid a life threatening situation. Its implementation revolves around a chipKIT Arduino board that interconnects a robotic base controller with a 7 inch TABLET PC and various sensors. Due to the Android and Arduino combination, the robot can interact with the person and provide an easy development platform for future improvement and feature adding. The TABLET PC is Webcam, WIFI and Bluetooth enabled, offering a versatile platform that is able to process data and in the same time provide the user a friendly interface.

  10. Estimation of attitudes from a low-cost miniaturized inertial platform ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    from the output of the three angular rate sensors in the platform using the strapdown .... studied, modelled and compensated in order to reach an adequate quality of the .... 6. Matlab/Simulink implementation. The Kalman Filter-based fusion ...

  11. A Study of Wearable Bio-Sensor Technologies and Applications in Healthcare

    Directory of Open Access Journals (Sweden)

    Amir Mehmood

    2017-06-01

    Full Text Available In today’s world the rapid advancements in Micro-Electromechanical Systems (MEMS and Nano technology have improved almost all the aspects of daily life routine with the help of different smart devices such as smart phones, compact electronic devices etc. The prime example of these emerging developments is the development of wireless sensors for healthcare procedures. One kind of these sensors is wearable bio-sensors. In this paper, the technologies of two types of bio-sensors (ECG, EMG are investigated and also compared with traditional ECG, EMG equipment. We have taken SHIMMERTM wireless sensor platform as an example of wearable biosensors technology. We have investigated the systems developed for analysis techniques with SHIMMERTM ECG and EMG wearable bio-sensors and these biosensors are used in continuous remote monitoring. For example, applications in continuous health monitoring of elderly people, critical chronic patients and Fitness & Fatigue observations. Nevertheless, early fall detection in older adults and weak patients, treatment efficacy assessment. This study not only provides the basic concepts of wearable wireless bio-sensors networks (WBSN, but also provides basic knowledge of different sensor platforms available for patient’s remote monitoring. Also various healthcare applications by using bio-sensors are discussed and in last comparison with traditional ECG and EMG is presented.

  12. Porting of serial molecular dynamics code on MIMD platforms

    International Nuclear Information System (INIS)

    Celino, M.

    1995-05-01

    A molecular Dynamics (MD) code, utilized for the study of atomistic models of metallic systems has been parallelized for MIMD (Multiple Instructions Multiple Data) parallel platforms by means of the Parallel Virtual Machine (PVM) message passing library. Since the parallelization implies modifications of the sequential algorithms, these are described from the point of view of the Statistical Mechanics theory. Furthermore, techniques and parallelization strategies utilized and the MD parallel code are described in detail. Benchmarks on several MIMD platforms (IBM SP1 and SP2, Cray T3D, Cluster of workstations) allow performances evaluation of the code versus the different characteristics of the parallel platforms

  13. Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks.

    Science.gov (United States)

    Johnson, Kenneth S; Jannasch, Hans W; Coletti, Luke J; Elrod, Virginia A; Martz, Todd R; Takeshita, Yuichiro; Carlson, Robert J; Connery, James G

    2016-03-15

    Increasing atmospheric carbon dioxide is driving a long-term decrease in ocean pH which is superimposed on daily to seasonal variability. These changes impact ecosystem processes, and they serve as a record of ecosystem metabolism. However, the temporal variability in pH is observed at only a few locations in the ocean because a ship is required to support pH observations of sufficient precision and accuracy. This paper describes a pressure tolerant Ion Sensitive Field Effect Transistor pH sensor that is based on the Honeywell Durafet ISFET die. When combined with a AgCl pseudoreference sensor that is immersed directly in seawater, the system is capable of operating for years at a time on platforms that cycle from depths of several km to the surface. The paper also describes the calibration scheme developed to allow calibrated pH measurements to be derived from the activity of HCl reported by the sensor system over the range of ocean pressure and temperature. Deployments on vertical profiling platforms enable self-calibration in deep waters where pH values are stable. Measurements with the sensor indicate that it is capable of reporting pH with an accuracy of 0.01 or better on the total proton scale and a precision over multiyear periods of 0.005. This system enables a global ocean observing system for ocean pH.

  14. Research on the Multiple Factors Influencing Human Identification Based on Pyroelectric Infrared Sensors

    Science.gov (United States)

    Lou, Ping; Hu, Jianmin

    2018-01-01

    Analysis of the multiple factors affecting human identification ability based on pyroelectric infrared technology is a complex problem. First, we examine various sensed pyroelectric waveforms of the human body thermal infrared signal and reveal a mechanism for affecting human identification. Then, we find that the mechanism is decided by the distance, human target, pyroelectric infrared (PIR) sensor, the body type, human moving velocity, signal modulation mask, and Fresnel lens. The mapping relationship between the sensed waveform and multiple influencing factors is established, and a group of mathematical models are deduced which fuse the macro factors and micro factors. Finally, the experimental results show the macro-factors indirectly affect the recognition ability of human based on the pyroelectric technology. At the same time, the correctness and effectiveness of the mathematical models is also verified, which make it easier to obtain more pyroelectric infrared information about the human body for discriminating human targets. PMID:29462908

  15. Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2014-01-01

    We demonstrate a magnetoresistive sensor platform that allows for the real-time detection of point mutations in DNA targets. Specifically, we detect point mutations at two sites in the human beta globin gene. For DNA detection, the present sensor technology has a detection limit of about 160p...... of magnetic beads, which enables real-time quantification of the specific binding of magnetic beads to the sensor surface under varying experimental conditions....

  16. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  17. IR panoramic alerting sensor concepts and applications

    Science.gov (United States)

    de Jong, Arie N.; Schwering, Piet B. W.

    2003-09-01

    During the last decade, protection of military and civilian operational platforms against weapons like guns, grenades, missiles, Unmanned Combat Aerial (and surface) Vehicles (UCAV's) and mines, has been an issue of increased importance due to the improved kill-probability of these threats. The standard countermeasure package of armour, guns, decoys, jammers, camouflage nets and smokes is inadequate when not accompanied by a suitable sensor package, primarily consisting of an alerting device, triggering consecutive steps in the countermeasure-chain. In this process of alert four different detection techniques are considered: pre-alert, giving the directions of possible attack, detection of an action of attack, identification of the threat and finally the precise localization (3-D). The design of the alerting device is greatly depending on the platform, on which it will be used, the associated and affordable cost and the nature of the threat. A number of sensor packages, considered, developed and evaluated at TNO-FEL is presented for simple, medium size and large and expensive platforms. In recent years the requirements for these sensors have become more and more strigent due to the growing number of scenarios. The attack can practically be from any direction, implying the need for a large Field of Regard (FOR), the attack range can vary considerably and the type of threat can be very diverse, implying great flexibility and dynamic range and rapid response of the sensor. Especially the localization at short ranges is a challenging issue. Various configurations including advantages and drawbacks are discussed.

  18. Node-to-node field calibration of wireless distributed air pollution sensor network.

    Science.gov (United States)

    Kizel, Fadi; Etzion, Yael; Shafran-Nathan, Rakefet; Levy, Ilan; Fishbain, Barak; Bartonova, Alena; Broday, David M

    2018-02-01

    Low-cost air quality sensors offer high-resolution spatiotemporal measurements that can be used for air resources management and exposure estimation. Yet, such sensors require frequent calibration to provide reliable data, since even after a laboratory calibration they might not report correct values when they are deployed in the field, due to interference with other pollutants, as a result of sensitivity to environmental conditions and due to sensor aging and drift. Field calibration has been suggested as a means for overcoming these limitations, with the common strategy involving periodical collocations of the sensors at an air quality monitoring station. However, the cost and complexity involved in relocating numerous sensor nodes back and forth, and the loss of data during the repeated calibration periods make this strategy inefficient. This work examines an alternative approach, a node-to-node (N2N) calibration, where only one sensor in each chain is directly calibrated against the reference measurements and the rest of the sensors are calibrated sequentially one against the other while they are deployed and collocated in pairs. The calibration can be performed multiple times as a routine procedure. This procedure minimizes the total number of sensor relocations, and enables calibration while simultaneously collecting data at the deployment sites. We studied N2N chain calibration and the propagation of the calibration error analytically, computationally and experimentally. The in-situ N2N calibration is shown to be generic and applicable for different pollutants, sensing technologies, sensor platforms, chain lengths, and sensor order within the chain. In particular, we show that chain calibration of three nodes, each calibrated for a week, propagate calibration errors that are similar to those found in direct field calibration. Hence, N2N calibration is shown to be suitable for calibration of distributed sensor networks. Copyright © 2017 Elsevier Ltd. All

  19. A Social Environmental Sensor Network Integrated within a Web GIS Platform

    Directory of Open Access Journals (Sweden)

    Yorghos Voutos

    2017-11-01

    Full Text Available We live in an era where typical measures towards the mitigation of environmental degradation follow the identification and recording of natural parameters closely associated with it. In addition, current scientific knowledge on the one hand may be applied to minimize the environmental impact of anthropogenic activities, whereas informatics on the other, playing a key role in this ecosystem, do offer new ways of implementing complex scientific processes regarding the collection, aggregation and analysis of data concerning environmental parameters. Furthermore, another related aspect to consider is the fact that almost all relevant data recordings are influenced by their given spatial characteristics. Taking all aforementioned inputs into account, managing such a great amount of complex and remote data requires specific digital structures; these structures are typically deployed over the Web on an attempt to capitalize existing open software platforms and modern developments of hardware technology. In this paper we present an effort to provide a technical solution based on sensing devices that are based on the well-known Arduino platform and operate continuously for gathering and transmitting of environmental state information. Controls, user interface and extensions of the proposed project rely on the Android mobile device platform (both from the software and hardware side. Finally, a crucial novel aspect of our work is the fact that all herein gathered data carry spatial information, which is rather fundamental for the successful correlation between pollutants and their place of origin. The latter is implemented by an interactive Web GIS platform operating oversight in situ and on a timeline basis.

  20. Multi-camera synchronization core implemented on USB3 based FPGA platform

    Science.gov (United States)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado

    2015-03-01

    Centered on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a new technique to synchronize up to 8 individual self-timed cameras with minimal error. Small form factor self-timed camera modules of 1 mm x 1 mm or smaller do not normally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge of synchronizing multiple selftimed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames, a Master-Slave interface was implemented. A single camera is defined as the Master, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the implementation of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.

  1. RTEMP: Exploring an end-to-end, agnostic platform for multidisciplinary real-time analytics in the space physics community and beyond

    Science.gov (United States)

    Chaddock, D.; Donovan, E.; Spanswick, E.; Jackel, B. J.

    2014-12-01

    Large-scale, real-time, sensor-driven analytics are a highly effective set of tools in many research environments; however, the barrier to entry is expensive and the learning curve is steep. These systems need to operate efficiently from end to end, with the key aspects being data transmission, acquisition, management and organization, and retrieval. When building a generic multidisciplinary platform, acquisition and data management needs to be designed with scalability and flexibility as the primary focus. Additionally, in order to leverage current sensor web technologies, the integration of common sensor data standards (ie. SensorML and SWE Services) should be supported. Perhaps most important, researchers should be able to get started and integrate the platform into their set of research tools as easily and quickly as possible. The largest issue with current platforms is that the sensor data must be formed and described using the previously mentioned standards. As useful as these standards are for organizing data, they are cumbersome to adopt, often restrictive, and are required to be geospatially-driven. Our solution, RTEMP (Real-time Environment Monitoring Platform), is a real-time analytics platform with over ten years and an estimated two million dollars of investment. It has been developed for our continuously expanding requirements of operating and building remote sensors and supporting equipment for space physics research. A key benefit of our approach is RTEMP's ability to manage agnostic data. This allows data that flows through the system to be structured in any way that best addresses the needs of the sensor operators and data users, enabling extensive flexibility and streamlined development and research. Here we begin with an overview of RTEMP and how it is structured. Additionally, we will showcase the ways that we are using RTEMP and how it is being adopted by researchers in an increasingly broad range of other research fields. We will lay out a

  2. Discrete sensors distribution for accurate plantar pressure analyses.

    Science.gov (United States)

    Claverie, Laetitia; Ille, Anne; Moretto, Pierre

    2016-12-01

    The aim of this study was to determine the distribution of discrete sensors under the footprint for accurate plantar pressure analyses. For this purpose, two different sensor layouts have been tested and compared, to determine which was the most accurate to monitor plantar pressure with wireless devices in research and/or clinical practice. Ten healthy volunteers participated in the study (age range: 23-58 years). The barycenter of pressures (BoP) determined from the plantar pressure system (W-inshoe®) was compared to the center of pressures (CoP) determined from a force platform (AMTI) in the medial-lateral (ML) and anterior-posterior (AP) directions. Then, the vertical ground reaction force (vGRF) obtained from both W-inshoe® and force platform was compared for both layouts for each subject. The BoP and vGRF determined from the plantar pressure system data showed good correlation (SCC) with those determined from the force platform data, notably for the second sensor organization (ML SCC= 0.95; AP SCC=0.99; vGRF SCC=0.91). The study demonstrates that an adjusted placement of removable sensors is key to accurate plantar pressure analyses. These results are promising for a plantar pressure recording outside clinical or laboratory settings, for long time monitoring, real time feedback or for whatever activity requiring a low-cost system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor

    Science.gov (United States)

    Lee, Jung Sook; Chae, Min; Kim, Jung Bog

    2010-01-01

    A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…

  4. A gimbal platform stabilization for topographic applications

    Energy Technology Data Exchange (ETDEWEB)

    Michele, Mangiameli, E-mail: michele.mangiameli@dica.unict.it; Giuseppe, Mussumeci [Dept. of Civil Engineering and Architecture, University of Catania, Catania (Italy)

    2015-03-10

    The aim of this work is the stabilization of a Gimbal platform for optical sensors acquisitions in topographic applications using mobile vehicles. The stabilization of the line of sight (LOS) consists in tracking the command velocity in presence of nonlinear noise due to the external environment. The hardware architecture is characterized by an Ardupilot platform that allows the control of both the mobile device and the Gimbal. Here we developed a new approach to stabilize the Gimbal platform, which is based on neural network. For the control system, we considered a plant that represents the transfer function of the servo system control model for an inertial stabilized Gimbal platform. The transductor used in the feed-back line control is characterized by the Rate Gyro transfer function installed onboard of Ardupilot. For the simulation and investigation of the system performance, we used the Simulink tool of Matlab. Results show that the hardware/software approach is efficient, reliable and cheap for direct photogrammetry, as well as for general purpose applications using mobile vehicles.

  5. Autonomous micro-platform for multisensors with an advanced power management unit (PMU

    Directory of Open Access Journals (Sweden)

    P. Bellier

    2018-04-01

    Full Text Available In this work, we developed and characterised an autonomous micro-platform including several types of sensors, an advanced power management unit (PMU and radio frequency (RF transmission capabilities. Autonomy requires integration of an energy harvester, an energy storage device, a PMU, ultra-low-power components (including sensors and optimized software. Our choice was to use commercial off-the-shelf components with low-power consumption, low cost and compactness as selection criteria. For the multi-purpose micro-platform, we choose to include the most common sensors (such as temperature, humidity, luminosity, acceleration, etc. and to integrate them in one miniaturised autonomous device.A processing unit is embedded in the system. It allows for data acquisition from each sensor individually, simple data processing, and storing and/or wireless data transmission. Such a system can be used as stand-alone, with an internal storage in a non-volatile memory, or as a node in a wireless network, with bi-directional communication with a hub device where data can be analysed further. According to specific application requirements, system settings can be adjusted, such as the sampling rate, the resolution and the processing of the sensor data.Parallel to full autonomous functionality, the low-power design enables us to power the system by a small battery leading to a high degree of autonomy at a high sampling rate. Therefore, we also developed an alternative battery-powered version of the micro-platform that increases the range of applications. As such, the system is highly versatile and due to its reduced dimensions, it can be used nearly everywhere. Typical applications include the Internet of Things, Industry 4.0, home automation and building structural health monitoring.

  6. Steam distribution and energy delivery optimization using wireless sensors

    Science.gov (United States)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.

    2011-05-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  7. An energy-efficient adaptive sampling scheme for wireless sensor networks

    NARCIS (Netherlands)

    Masoum, Alireza; Meratnia, Nirvana; Havinga, Paul J.M.

    2013-01-01

    Wireless sensor networks are new monitoring platforms. To cope with their resource constraints, in terms of energy and bandwidth, spatial and temporal correlation in sensor data can be exploited to find an optimal sampling strategy to reduce number of sampling nodes and/or sampling frequencies while

  8. Urinary incontinence monitoring system using laser-induced graphene sensors

    KAUST Repository

    Nag, Anindya

    2017-12-25

    This paper presents the design and development of a sensor patch to be used in a sensing system to deal with the urinary incontinence problem primarily faced by women and elderly people. The sensor patches were developed from laser-induced graphene from low-cost commercial polyimide (PI) polymers. The graphene was manually transferred to a commercial tape, which was used as sensor patch for experimentation. Salt solutions with different concentrations were tested to determine the most sensitive frequency region of the sensor. The results are encouraging to further develop this sensor in a platform for a fully functional urinary incontinence detection system.

  9. Integrated Microfluidic Gas Sensors for Water Monitoring

    Science.gov (United States)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  10. MEMSWear - Biomonitoring - Incorporating sensors into smart shirt for wireless sentinel medical detection and alarm

    International Nuclear Information System (INIS)

    Po, Samuel Ng Choon; Dagang, Guo; Hapipi, Mohammad Dzulkifli Bin Mohyi; Hock, Francis Tay Eng

    2006-01-01

    This paper presents a method of using a body-distributed smart sensor platform for continuous detection of vital physiological signs in a body area network (BAN) system. An overview of the approach utilising predefined sentinel vital sign events is mentioned in order to optimise the platform in both hardware and software level. A BAN system consisting of smart sensor platform with short range ISM transmission will be used to communicate with a communication gateway. This communication gateway will encode and send the signals via Bluetooth to designated devices to inform caregivers, family members or transmit information to internet server

  11. MEMSWear - Biomonitoring - Incorporating sensors into smart shirt for wireless sentinel medical detection and alarm

    Energy Technology Data Exchange (ETDEWEB)

    Po, Samuel Ng Choon; Dagang, Guo; Hapipi, Mohammad Dzulkifli Bin Mohyi; Hock, Francis Tay Eng [Mechanical Engineering National University Of Singapore, 10 Kent Ridge Crescent, Singapore 119260 Singapore (Singapore)

    2006-04-01

    This paper presents a method of using a body-distributed smart sensor platform for continuous detection of vital physiological signs in a body area network (BAN) system. An overview of the approach utilising predefined sentinel vital sign events is mentioned in order to optimise the platform in both hardware and software level. A BAN system consisting of smart sensor platform with short range ISM transmission will be used to communicate with a communication gateway. This communication gateway will encode and send the signals via Bluetooth to designated devices to inform caregivers, family members or transmit information to internet server.

  12. Multiple Sensor Camera for Enhanced Video Capturing

    Science.gov (United States)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  13. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 1; Theory

    Science.gov (United States)

    Ganguly, Sangram; Schull, Mitchell A.; Samanta, Arindam; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramakrishna R.; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The generation of multi-decade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR) data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products. The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits decoupling of the structural and radiometric components and obeys the energy conservation law. The approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty, which accounts for varying information content of the remote sensing measurements, i.e., Normalized Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher

  14. Performance Measurement of Complex Event Platforms

    Directory of Open Access Journals (Sweden)

    Eva Zámečníková

    2016-12-01

    Full Text Available The aim of this paper is to find and compare existing solutions of complex event processing platforms (CEP. CEP platforms generally serve for processing and/or predicting of high frequency data. We intend to use CEP platform for processing of complex time series and integrate a solution for newly proposed method of decision making. The decision making process will be described by formal grammar. As there are lots of CEP solutions we will take the following characteristics under consideration - the processing in real time, possibility of processing of high volume data from multiple sources, platform independence, platform allowing integration with user solution and open license. At first we will talk about existing CEP tools and their specific way of use in praxis. Then we will mention the design of method for formalization of business rules used for decision making. Afterwards, we focus on two platforms which seem to be the best fit for integration of our solution and we will list the main pros and cons of each approach. Next part is devoted to benchmark platforms for CEP. Final part is devoted to experimental measurements of platform with integrated method for decision support.

  15. Oceanographic station and other data from meteorological sensors, CTD, and bottle casts from numerous platforms and processed by NODC to the NODC standard Station Data II (SD2) Output Format from 1955-05-04 to 1986-09-24

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station and other data from meteorological sensors, CTD, and bottle casts from numerous platforms from 1955-05-04 to 1986-09-24. Data were processed by...

  16. Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens

    Directory of Open Access Journals (Sweden)

    O. Zielinski

    2009-09-01

    Full Text Available Marine environments are influenced by a wide diversity of anthropogenic and natural substances and organisms that may have adverse effects on human health and ecosystems. Real-time measurements of pollutants, toxins, and pathogens across a range of spatial scales are required to adequately monitor these hazards, manage the consequences, and to understand the processes governing their magnitude and distribution. Significant technological advancements have been made in recent years for the detection and analysis of such marine hazards. In particular, sensors deployed on a variety of mobile and fixed-point observing platforms provide a valuable means to assess hazards. In this review, we present state-of-the-art of sensor technology for the detection of harmful substances and organisms in the ocean. Sensors are classified by their adaptability to various platforms, addressing large, intermediate, or small areal scales. Current gaps and future demands are identified with an indication of the urgent need for new sensors to detect marine hazards at all scales in autonomous real-time mode. Progress in sensor technology is expected to depend on the development of small-scale sensor technologies with a high sensitivity and specificity towards target analytes or organisms. However, deployable systems must comply with platform requirements as these interconnect the three areal scales. Future developments will include the integration of existing methods into complex and operational sensing systems for a comprehensive strategy for long-term monitoring. The combination of sensor techniques on all scales will remain crucial for the demand of large spatial and temporal coverage.

  17. YARP: Yet Another Robot Platform

    Directory of Open Access Journals (Sweden)

    Lorenzo Natale

    2008-11-01

    Full Text Available We describe YARP, Yet Another Robot Platform, an open-source project that encapsulates lessons from our experience in building humanoid robots. The goal of YARP is to minimize the effort devoted to infrastructure-level software development by facilitating code reuse, modularity and so maximize research-level development and collaboration. Humanoid robotics is a "bleeding edge" field of research, with constant flux in sensors, actuators, and processors. Code reuse and maintenance is therefore a significant challenge. We describe the main problems we faced and the solutions we adopted. In short, the main features of YARP include support for inter-process communication, image processing as well as a class hierarchy to ease code reuse across different hardware platforms. YARP is currently used and tested on Windows, Linux and QNX6 which are common operating systems used in robotics.

  18. Towards a Market Entry Framework for Digital Payment Platforms

    DEFF Research Database (Denmark)

    Kazan, Erol; Damsgaard, Jan

    2016-01-01

    This study presents a framework to understand and explain the design and configuration of digital payment platforms and how these platforms create conditions for market entries. By embracing the theoretical lens of platform envelopment, we employed a multiple and comparative-case study...... in a European setting by using our framework as an analytical lens to assess market-entry conditions. We found that digital payment platforms have acquired market entry capabilities, which is achieved through strategic platform design (i.e., platform development and service distribution) and technology design...... (i.e., issuing evolutionary and revolutionary payment instruments). The studied cases reveal that digital platforms leverage payment services as a mean to bridge and converge core and adjacent platform markets. In so doing, platform envelopment strengthens firms’ market position in their respective...

  19. Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation

    Directory of Open Access Journals (Sweden)

    Yeqiang Shu

    2012-01-01

    Full Text Available The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results.

  20. CAOS: the nested catchment soil-vegetation-atmosphere observation platform

    Science.gov (United States)

    Weiler, Markus; Blume, Theresa

    2016-04-01

    Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this

  1. Rigid multipodal platforms for metal surfaces

    Directory of Open Access Journals (Sweden)

    Michal Valášek

    2016-03-01

    Full Text Available In this review the recent progress in molecular platforms that form rigid and well-defined contact to a metal surface are discussed. Most of the presented examples have at least three anchoring units in order to control the spatial arrangement of the protruding molecular subunit. Another interesting feature is the lateral orientation of these foot structures which, depending on the particular application, is equally important as the spatial arrangement of the molecules. The numerous approaches towards assembling and organizing functional molecules into specific architectures on metal substrates are reviewed here. Particular attention is paid to variations of both, the core structures and the anchoring groups. Furthermore, the analytical methods enabling the investigation of individual molecules as well as monomolecular layers of ordered platform structures are summarized. The presented multipodal platforms bearing several anchoring groups form considerably more stable molecule–metal contacts than corresponding monopodal analogues and exhibit an enlarged separation of the functional molecules due to the increased footprint, as well as restrict tilting of the functional termini with respect to the metal surface. These platforms are thus ideally suited to tune important properties of the molecule–metal interface. On a single-molecule level, several of these platforms enable the control over the arrangement of the protruding rod-type molecular structures (e.g., molecular wires, switches, rotors, sensors with respect to the surface of the substrate.

  2. Simultaneous detection of multiple HPV DNA via bottom-well microfluidic chip within an infra-red PCR platform.

    Science.gov (United States)

    Liu, Wenjia; Warden, Antony; Sun, Jiahui; Shen, Guangxia; Ding, Xianting

    2018-03-01

    Portable Polymerase Chain Reaction (PCR) devices combined with microfluidic chips or lateral flow stripes have shown great potential in the field of point-of-need testing (PoNT) as they only require a small volume of patient sample and are capable of presenting results in a short time. However, the detection for multiple targets in this field leaves much to be desired. Herein, we introduce a novel PCR platform by integrating a bottom-well microfluidic chip with an infra-red (IR) excited temperature control method and fluorescence co-detection of three PCR products. Microfluidic chips are utilized to partition different samples into individual bottom-wells. The oil phase in the main channel contains multi-walled carbon nanotubes which were used as a heat transfer medium that absorbs energy from the IR-light-emitting diode (LED) and transfers heat to the water phase below. Cyclical rapid heating and cooling necessary for PCR are achieved by alternative power switching of the IR-LED and Universal Serial Bus (USB) mini-fan with a pulse width modulation scheme. This design of the IR-LED PCR platform is economic, compact, and fully portable, making it a promising application in the field of PoNT. The bottom-well microfluidic chip and IR-LED PCR platform were combined to fulfill a three-stage thermal cycling PCR for 40 cycles within 90 min for Human Papilloma Virus (HPV) detection. The PCR fluorescent signal was successfully captured at the end of each cycle. The technique introduced here has broad applications in nucleic acid amplification and PoNT devices.

  3. Estimating Single and Multiple Target Locations Using K-Means Clustering with Radio Tomographic Imaging in Wireless Sensor Networks

    Science.gov (United States)

    2015-03-26

    clustering is an algorithm that has been used in data mining applications such as machine learning applications , pattern recognition, hyper-spectral imagery...42 3.7.2 Application of K-means Clustering . . . . . . . . . . . . . . . . . 42 3.8 Experiment Design...Tomographic Imaging WLAN Wireless Local Area Networks WSN Wireless Sensor Network xx ESTIMATING SINGLE AND MULTIPLE TARGET LOCATIONS USING K-MEANS CLUSTERING

  4. A nanoparticle-based sensor for visual detection of multiple mutations

    Energy Technology Data Exchange (ETDEWEB)

    Elenis, Dimitrios S; Ioannou, Penelope C [Department of Chemistry, University of Athens, Athens 15771 (Greece); Christopoulos, Theodore K, E-mail: ioannou@chem.uoa.gr [Department of Chemistry, University of Patras, Patras 26500 (Greece)

    2011-04-15

    Disposable dipstick-type DNA biosensors in the form of lateral flow strips are particularly useful for genotyping in a small laboratory or for field testing due to their simplicity, low cost and portability. Their unique advantage is that they enable visual detection in minutes without the use of instruments. In addition, the dry-reagent format minimizes the pipetting, incubation and washing steps. In this work, we significantly enhance the multiplexing capabilities of lateral flow strip biosensors without compromising their simplicity. Multiplex genotyping is carried out by polymerase chain reaction (PCR) followed by a single primer extension reaction for all target alleles, in which a primer is extended and biotin is incorporated only if it is perfectly complementary to the target. Multiallele detection is achieved by multiple test spots on the membrane of the sensor, each comprising a suspension of polystyrene microspheres functionalized with capture probes. The products of the primer extension reaction hybridize, through specific sequence tags, to the capture probes and are visualized by using antibiotin-conjugated gold nanoparticles. This design enables accommodation of multiple spots in a small area because the microspheres are trapped in the fibres of the membrane and remain fixed in site without any diffusion. Furthermore, the detectability is improved because the hybrids are exposed on the surface of the trapped microspheres rather than inside the pores of the membrane. We demonstrate the specificity and performance of the biosensor for multiallele genotyping.

  5. A nanoparticle-based sensor for visual detection of multiple mutations

    International Nuclear Information System (INIS)

    Elenis, Dimitrios S; Ioannou, Penelope C; Christopoulos, Theodore K

    2011-01-01

    Disposable dipstick-type DNA biosensors in the form of lateral flow strips are particularly useful for genotyping in a small laboratory or for field testing due to their simplicity, low cost and portability. Their unique advantage is that they enable visual detection in minutes without the use of instruments. In addition, the dry-reagent format minimizes the pipetting, incubation and washing steps. In this work, we significantly enhance the multiplexing capabilities of lateral flow strip biosensors without compromising their simplicity. Multiplex genotyping is carried out by polymerase chain reaction (PCR) followed by a single primer extension reaction for all target alleles, in which a primer is extended and biotin is incorporated only if it is perfectly complementary to the target. Multiallele detection is achieved by multiple test spots on the membrane of the sensor, each comprising a suspension of polystyrene microspheres functionalized with capture probes. The products of the primer extension reaction hybridize, through specific sequence tags, to the capture probes and are visualized by using antibiotin-conjugated gold nanoparticles. This design enables accommodation of multiple spots in a small area because the microspheres are trapped in the fibres of the membrane and remain fixed in site without any diffusion. Furthermore, the detectability is improved because the hybrids are exposed on the surface of the trapped microspheres rather than inside the pores of the membrane. We demonstrate the specificity and performance of the biosensor for multiallele genotyping.

  6. Long-term real-time structural health monitoring using wireless smart sensor

    Science.gov (United States)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  7. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading.

    Science.gov (United States)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M; Sendra, Jose Ramón; Lechuga, Laura M

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  8. A semi-physical simulation platform of attitude determination and control system for satellite

    Directory of Open Access Journals (Sweden)

    Yuanjin Yu

    2016-05-01

    Full Text Available A semi-physical simulation platform for attitude determination and control system is proposed to verify the attitude estimator and controller on ground. A simulation target, a host PC, many attitude sensors, and actuators compose the simulation platform. The simulation target is composed of a central processing unit board with VxWorks operating system and many input/output boards connected via Compact Peripheral Component Interconnect bus. The executable programs in target are automatically generated from the simulation models in Simulink based on Real-Time Workshop of MATLAB. A three-axes gyroscope, a three-axes magnetometer, a sun sensor, a star tracer, three flywheels, and a Global Positioning System receiver are connected to the simulation target, which formulates the attitude control cycle of a satellite. The simulation models of the attitude determination and control system are described in detail. Finally, the semi-physical simulation platform is used to demonstrate the availability and rationality of the control scheme of a micro-satellite. Comparing the results between the numerical simulation in Simulink and the semi-physical simulation, the semi-physical simulation platform is available and the control scheme successfully achieves three-axes stabilization.

  9. The Design of Tools for Sketching Sensor-Based Interaction

    DEFF Research Database (Denmark)

    Brynskov, Martin; Lunding, Rasmus; Vestergaard, Lasse Steenbock

    2012-01-01

    In this paper we motivate, present, and give an initial evaluation of DUL Radio, a small wireless toolkit for sketching sensor-based interaction. In the motivation, we discuss the purpose of this specific platform, which aims to balance ease-of-use (learning, setup, initialization), size, speed......, flexibility and cost, aimed at wearable and ultra-mobile prototyping where fast reaction is needed (e.g. in controlling sound), and we discuss the general issues facing this category of embodied interaction design tools. We then present the platform in more detail, both regarding hard- ware and software....... In the brief evaluation, we present our initial experiences with the platform both in design projects and in teaching. We conclude that DUL Radio does seem to be a relatively easy-to-use tool for sketching sensor-based interaction compared to other solutions, but that there are many ways to improve it. Target...

  10. National Community Solar Platform

    Energy Technology Data Exchange (ETDEWEB)

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  11. 2-Sensor Problem

    Directory of Open Access Journals (Sweden)

    Michael Segal

    2004-11-01

    Full Text Available Abstract: Ad-hoc networks of sensor nodes are in general semi-permanently deployed. However, the topology of such networks continuously changes over time, due to the power of some sensors wearing out to new sensors being inserted into the network, or even due to designers moving sensors around during a network re-design phase (for example, in response to a change in the requirements of the network. In this paper, we address the problem of covering a given path by a limited number of sensors — in our case to two, and show its relation to the well-studied matrix multiplication problem.

  12. MoBall: An Energy-Harvesting & Self-Propelling Spherical Sensor Platform

    Data.gov (United States)

    National Aeronautics and Space Administration — There are many harsh, windy environments where a persistent in situ mobile sensor network could provide valuable data to help answer outstanding questions in the...

  13. Dual-color bioluminescent sensor proteins for therapeutic drug monitoring of antitumor antibodies

    NARCIS (Netherlands)

    van Rosmalen, M.; Ni, Y.; Vervoort, D.F.M.; Arts, R.; Ludwig, S.K.J.; Merkx, M.

    2018-01-01

    Monitoring the levels of therapeutic antibodies in individual patients would allow patient-specific dose optimization, with the potential for major therapeutic and financial benefits. Our group recently developed a new platform of bioluminescent sensor proteins (LUMABS; LUMinescent AntiBody Sensor)

  14. A Novel Software Platform Extending Advances in Monitoring Technologies to On-demand Decision Support

    Science.gov (United States)

    Ormerod, R.; Scholl, M.

    2017-12-01

    Rapid evolution is occurring in the monitoring and assessment of air emissions and their impacts. The development of next generation lower cost sensor technologies creates the potential for much more intensive and far-reaching monitoring networks that provide spatially rich data. While much attention at present is being directed at the types and performance characteristics of sensor technologies, it is important also that the full potential of rich data sources be realized. Parallel to sensor developments, software platforms to display and manage data in real time are increasingly common adjuncts to sensor networks. However, the full value of data can be realized by extending platform capabilities to include complex scientific functions that are integrated into an action-oriented management framework. Depending on the purpose and nature of a monitoring network, there will be a variety of potential uses of the data or its derivatives, for example: statistical analysis for policy development, event analysis, real-time issue management including emergency response and complaints, and predictive management. Moving these functions into an on-demand, optionally mobile, environment greatly increases the value and accessibility of the data. Increased interplay between monitoring data and decision-making in an operational environment is optimised by a system that is designed with equal weight on technical robustness and user experience. A system now being used by several regulatory agencies and a larger number of industries in the US, Latin America, Europe, Australia and Asia has been developed to provide a wide range of on-demand decision-support in addition to the basic data collection, display and management that most platforms offer. With stable multi-year operation, the platform, known as Envirosuite, is assisting organisations to both reduce operating costs and improve environmental performance. Some current examples of its application across a range of applications

  15. Monitoring System of Environmental Variables Using a Wireless Sensor Network and Platforms of Internet of Things

    Directory of Open Access Journals (Sweden)

    Manuel Quiñones-Cuenca

    2017-02-01

    Full Text Available This work proposes a system for collecting meteorological data using a Wireless Sensor Network (WSN, that is able to transmit data in real-time. The system automatizes the process of collecting the data in a continuous manner for long periods of time, for this, the module is equipped with a source of solar energy that allows autonomous operation. In order to obtain viability of design and prototype implementation, the construction of two systems was proposed based on DigiMesh and Wi-Fi; those prototypes could be applied to different scenarios such as urban and rural areas. Additionally, it was performed an evaluation of broadcasting of information to platforms of Internet of Things (IoT, where the data collected by the nodes will be managed and displayed. This system was conceived as a low-cost alternative compared with conventional weather stations that offer these facilities and are based on free hardware and software components. Finally, the validation of the obtained results was performed using a statistical analysis with the collected data of the weather station Davis Vantage Pro, obtaining a maximum average relative error of 4.93%.

  16. Solid State pH Sensor Based on Light Emitting Diodes (LED As Detector Platform

    Directory of Open Access Journals (Sweden)

    Dermot Diamond

    2006-08-01

    Full Text Available A low-power, high sensitivity, very low-cost light emitting diode (LED-baseddevice developed for low-cost sensor networks was modified with bromocresol greenmembrane to work as a solid-state pH sensor. In this approach, a reverse-biased LEDfunctioning as a photodiode is coupled with a second LED configured in conventionalemission mode. A simple timer circuit measures how long (in microsecond it takes for thephotocurrent generated on the detector LED to discharge its capacitance from logic 1 ( 5 Vto logic 0 ( 1.7 V. The entire instrument provides an inherently digital output of lightintensity measurements for a few cents. A light dependent resistor (LDR modified withsimilar sensor membrane was also used as a comparison method. Both the LED sensor andthe LDR sensor responded to various pH buffer solutions in a similar way to obtainsigmoidal curves expected of the dye. The pKa value obtained for the sensors was found toagree with the literature value.

  17. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    Science.gov (United States)

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.

  18. Business and IT Capabilities for Cloud Platform Success

    DEFF Research Database (Denmark)

    Hahn, Christopher; Huntgeburth, Jan; Winkler, Till J.

    2016-01-01

    The growing proliferation of cloud platform ecosystems demands a deeper understanding of the capabilities that help existing and emerging platform providers to be successful by creating and appropriating value. This multiple case study of four cloud platform providers (three large, one SME......) instantiates Rai and Tang’s (2014) framework of dyadic IT and network IT capabilities for a cloud platform context and extends it by exploring previously undertheorized cloud platform business capabilities. We further build on this extended framework by employing a configurational perspective to elucidate...... the complementary role of the three proposed business capabilities (incentives and rules, ecosystem marketing and sales, partner development and support) for relevant value creation and appropriation mechanisms. In addition to providing a capability framework catered to the cloud platform context, our findings...

  19. Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review

    Science.gov (United States)

    Grimes, Craig A.; Roy, Somnath C.; Rani, Sanju; Cai, Qingyun

    2011-01-01

    Thick-film magnetoelastic sensors vibrate mechanically in response to a time varying magnetic excitation field. The mechanical vibrations of the magnetostrictive magnetoelastic material launch, in turn, a magnetic field by which the sensor can be monitored. Magnetic field telemetry enables contact-less, remote-query operation that has enabled many practical uses of the sensor platform. This paper builds upon a review paper we published in Sensors in 2002 (Grimes, C.A.; et al. Sensors 2002, 2, 294–313), presenting a comprehensive review on the theory, operating principles, instrumentation and key applications of magnetoelastic sensing technology. PMID:22163768

  20. Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Craig A. Grimes

    2011-03-01

    Full Text Available Thick-film magnetoelastic sensors vibrate mechanically in response to a time varying magnetic excitation field. The mechanical vibrations of the magnetostrictive magnetoelastic material launch, in turn, a magnetic field by which the sensor can be monitored. Magnetic field telemetry enables contact-less, remote-query operation that has enabled many practical uses of the sensor platform. This paper builds upon a review paper we published in Sensors in 2002 (Grimes, C.A.; et al. Sensors 2002, 2, 294-313, presenting a comprehensive review on the theory, operating principles, instrumentation and key applications of magnetoelastic sensing technology.