WorldWideScience

Sample records for multiple science instruments

  1. The Instrument Implementation of Two-tier Multiple Choice to Analyze Students’ Science Process Skill Profile

    Directory of Open Access Journals (Sweden)

    Sukarmin Sukarmin

    2018-01-01

    Full Text Available This research is aimed to analyze the profile of students’ science process skill (SPS by using instrument two-tier multiple choice. This is a descriptive research that describes the profile of students’ SPS. Subjects of the research were 10th-grade students from high, medium and low categorized school. Instrument two-tier multiple choice consists of 30 question that contains an indicator of SPS. The indicator of SPS namely formulating a hypothesis, designing experiment, analyzing data, applying the concept, communicating, making a conclusion. Based on the result of the research and analysis, it shows that: 1 the average of indicator achievement of science process skill at high categorized school on formulating hypothesis is 74,55%, designing experiment is 74,89%, analyzing data is 67,89%, applying concept is 52,89%, communicating is 80,22%, making conclusion is 76%, 2. the average of indicator achievement of science process skill at medium categorized school on formulating hypothesis is 53,47%, designing experiment is 59,86%, analyzing data is 42,22%, applying concept is 33,19%, communicating is 76,25%, making conclusion is 61,53%, 3 the average of indicator achievement of science process skill at low categorized school on formulating hypothesis is 51%, designing experiment is 55,17%, analyzing data is 39,17%, applying concept is 35,83%, communicating is 58,83%, making conclusion is 58%.

  2. Neutron multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1983-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  3. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  4. The development and validation of a two-tiered multiple-choice instrument to identify alternative conceptions in earth science

    Science.gov (United States)

    Mangione, Katherine Anna

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and understanding of earth science concepts, and to describe relationships between content knowledge and alternative conceptions and planning instruction in the science classroom. Eighty-seven preservice teachers enrolled in the MAT program participated in this study. Sixty-eight participants were female, twelve were male, and seven chose not to answer. Forty-seven participants were in the elementary certification program, five were in the middle school certification program, and twenty-nine were pursuing secondary certification. Results indicate that the two-tiered, multiple-choice format can be a reliable and valid method for identifying alternative conceptions. Preservice teachers in all certification areas who participated in this study may possess common alternative conceptions previously identified in the literature. Alternative conceptions included: all rivers flow north to south, the shadow of the Earth covers the Moon causing lunar phases, the Sun is always directly overhead at noon, weather can be predicted by animal coverings, and seasons are caused by the Earth's proximity to the Sun. Statistical analyses indicated differences, however not all of them significant, among all subgroups according to gender and certification area. Generally males outperformed females and preservice teachers pursuing middle school certification had higher scores on the questionnaire followed by those obtaining secondary certification. Elementary preservice teachers scored the lowest. Additionally, self-reported scores of confidence in one's answers and understanding of the earth science concept in question were analyzed. There was a

  5. Neutron-multiplication measurement instrument

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results.

  6. Neutron-multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  7. The Science of String Instruments

    CERN Document Server

    Rossing, Thomas D

    2010-01-01

    Many performing musicians, as well as instrument builders, are coming to realize the importance of understanding the science of musical instruments. This book explains how string instruments produce sound. It presents basic ideas in simple language, and it also translates some more sophisticated ideas in non-technical language. It should be of interest to performers, researchers, and instrument makers alike.

  8. The Juno Gravity Science Instrument

    Science.gov (United States)

    Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo

    2017-11-01

    The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

  9. Developing the TRYAD Science Instrument

    Science.gov (United States)

    Van Eck, K. T.; Jenke, P.; Briggs, M. S.; Fuchs, J.; Capps, L.

    2017-12-01

    Terrestrial gamma-ray flashes (TGFs) are brief MeV gamma-ray flashes that are associated with thunderstorms, around 12km in altitude, and are viewed by orbiting satellites. These bright flashes of high energy photons were discovered in 1994. The two major models for TGFs that originate in thunderstorms are the Lightning Leader and Relativistic Feedback Discharge (RFD) model. Both depend on energetic electrons radiating via bremsstrahlung emission. The Lightning Leader model theorizes that lightning step leaders can accelerate electrons to relativistic speeds. The RFD model states that an energetic seed particle can be accelerated to relativistic speeds by strong electric fields inside of a thunderstorm. The main difference in the results of the two models is as follows; the Lightning Leader model results in a wider beam of gamma-rays than the RFD model because the electric field of a thunderstorm is more structured than that of lightning. The TRYAD mission will be the first to fly two detectors, inside CubeSats, in formation to detect TGFs from multiple points in the sky. The data from the CubeSats and the World Wide Lightning Location Network (WWLLN) will likely provide enough insight to constrain or eliminate some of the existing models for TGFs.This summer was spent testing components and constructing the engineering model of the scientific instrument that will be used to detect TGFs. The detector is made up of four lead-doped plastic scintillators which are coupled to arrays of Silicon Photomultipliers (SiPM). The signal from the SiPM array is then fed into a discriminator where a lower energy estimate can be determined and photon counts are recorded. I will present the progress made over the summer constructing the engineering model.

  10. Bright THz Instrument and Nonlinear THz Science

    Science.gov (United States)

    2017-10-30

    Report: Bright THz Instrument and Nonlinear THz Science The views, opinions and/or findings contained in this report are those of the author(s) and...Number: W911NF-16-1-0436 Organization: University of Rochester Title: Bright THz Instrument and Nonlinear THz Science Report Term: 0-Other Email: xi...exploring new cutting-edge research and broader applications, following the significant development of THz science and technology in the late 80’s, is the

  11. INSTRUMENTALISM IN SCIENCE: COMMENTS AND CRITICISMS

    African Journals Online (AJOL)

    Admin

    that guide the scientist in making his decisions or a perceived system of procedural rules. ... to science, information and theories than an ... instrumentalists try to provide the foundation of ..... instrumentalism, which are practical rather than.

  12. Data Science and Some Instruments

    Directory of Open Access Journals (Sweden)

    Corina SBUGHEA

    2017-12-01

    Full Text Available This paper is addressed to beginners, who want to form an overview on the field of Data Science, on the skills needed to access available IT tools, for obtaining meaningful and valuable analyzes in developing new strategies.

  13. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  14. Astrbiology Science and Technology for Instrument Development (ASTID)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Astrobiology Science and Technology for Instrument Development (ASTID) develops instrumentation capabilities to help meet Astrobiology science requirements on...

  15. The GLAST LAT Instrument Science Operations Center

    International Nuclear Information System (INIS)

    Cameron, Robert A.; SLAC

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources

  16. Critical Science Instrument Alignment of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.

    2016-01-01

    This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.

  17. Instrumentation between science, state and industry

    CERN Document Server

    Shinn, Terry

    2001-01-01

    these. In this book, we appropriate their conception of research-technology, and ex­ tend it to many other phenomena which are less stable and less localized in time and space than the Zeeman/Cotton situation. In the following pages, we use the concept for instances where research activities are orientated primarily toward technologies which facilitate both the production of scientific knowledge and the production of other goods. In particular, we use the tenn for instances where instruments and meth­ ods· traverse numerous geographic and institutional boundaries; that is, fields dis­ tinctly different and distant from the instruments' and methods' initial focus. We suggest that instruments such as the ultra-centrifuge, and the trajectories of the men who devise such artefacts, diverge in an interesting way from other fonns of artefacts and careers in science, metrology and engineering with which students of science and technology are more familiar. The instrument systems developed by re­ search-technolo...

  18. Space Infrared Telescope Facility (SIRTF) science instruments

    International Nuclear Information System (INIS)

    Ramos, R.; Hing, S.M.; Leidich, C.A.; Fazio, G.; Houck, J.R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem. 8 refs

  19. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  20. Direct concurrent comparison of multiple pediatric acute asthma scoring instruments.

    Science.gov (United States)

    Johnson, Michael D; Nkoy, Flory L; Sheng, Xiaoming; Greene, Tom; Stone, Bryan L; Garvin, Jennifer

    2017-09-01

    Appropriate delivery of Emergency Department (ED) treatment to children with acute asthma requires clinician assessment of acute asthma severity. Various clinical scoring instruments exist to standardize assessment of acute asthma severity in the ED, but their selection remains arbitrary due to few published direct comparisons of their properties. Our objective was to test the feasibility of directly comparing properties of multiple scoring instruments in a pediatric ED. Using a novel approach supported by a composite data collection form, clinicians categorized elements of five scoring instruments before and after initial treatment for 48 patients 2-18 years of age with acute asthma seen at the ED of a tertiary care pediatric hospital ED from August to December 2014. Scoring instruments were compared for inter-rater reliability between clinician types and their ability to predict hospitalization. Inter-rater reliability between clinician types was not different between instruments at any point and was lower (weighted kappa range 0.21-0.55) than values reported elsewhere. Predictive ability of most instruments for hospitalization was higher after treatment than before treatment (p < 0.05) and may vary between instruments after treatment (p = 0.054). We demonstrate the feasibility of comparing multiple clinical scoring instruments simultaneously in ED clinical practice. Scoring instruments had higher predictive ability for hospitalization after treatment than before treatment and may differ in their predictive ability after initial treatment. Definitive conclusions about the best instrument or meaningful comparison between instruments will require a study with a larger sample size.

  1. Assessment of Multiple Scattering Errors of Laser Diffraction Instruments

    National Research Council Canada - National Science Library

    Strakey, Peter

    2003-01-01

    The accuracy of two commercial laser diffraction instruments was compared under conditions of multiple scattering designed to simulate the high droplet number densities encountered in liquid propellant rocket combustors...

  2. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  3. New sources and instrumentation for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Alina, E-mail: a.gil@ajd.czest.pl [Faculty of Mathematical and Natural Sciences, JD University, Al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland)

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  4. New sources and instrumentation for neutron science

    International Nuclear Information System (INIS)

    Gil, Alina

    2011-01-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  5. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  6. Low-T, Low-Q Cryocoolers for Science Instruments

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the planned research is to advance the current space science instruments through the development of light weight and low power cryocoolers. Currently,...

  7. Data, instruments, and theory a dialectical approach to understanding science

    CERN Document Server

    Ackermann, Robert John

    1985-01-01

    Robert John Ackermann deals decisively with the problem of relativism that has plagued post-empiricist philosophy of science. Recognizing that theory and data are mediated by data domains (bordered data sets produced by scientific instruments), he argues that the use of instruments breaks the dependency of observation on theory and thus creates a reasoned basis for scientific objectivity.

  8. Purging sensitive science instruments with nitrogen in the STS environment

    Science.gov (United States)

    Lumsden, J. M.; Noel, M. B.

    1983-01-01

    Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).

  9. Remote Instrumentation for eScience and Related Aspects

    CERN Document Server

    Lawenda, Marcin; Meyer, Norbert; Pugliese, Roberto; Węglarz, Jan; Zappatore, Sandro

    2012-01-01

    Making scientific instruments a manageable resource over distributed computing infrastructures such as the grid has been a key focal point of e-science research in recent years. It is now known by the generic term ‘remote instrumentation’, and is the subject of this useful volume that covers a range of perspectives on the topic reflected by the contributions to the 2010 workshop on remote instrumentation held in Poznań, Poland. E-science itself is a complex set of disciplines requiring computationally intensive distributed operations, high-speed networking, and collaborative working tools. As such, it is most often (and correctly) associated with grid- and cloud-computing infrastructures and middleware. The contributions to this publication consider broader aspects of the theme of remote instrumentation applied to e-science, as well as exploring related technologies that enable the implementation of truly distributed and coordinated laboratories. Among the topics discussed are remote instrumentation and ...

  10. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  11. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  12. Advanced Instrumentation for Ultrafast Science at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, Nora [Univ. of Connecticut, Storrs, CT (United States)

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture the ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.

  13. Science Driven Instrumentation for LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bergmann, Uwe [SLAC National Accelerator Lab., Menlo Park, CA (United States); Brunger, Axel [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bostedt, Christoph [SLAC National Accelerator Lab., Menlo Park, CA (United States); Boutet, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bozek, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cocco, Daniele [SLAC National Accelerator Lab., Menlo Park, CA (United States); Devereaux, Tom [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ding, Yuantao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, Hermann [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fritz, David [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, Kelly [SLAC National Accelerator Lab., Menlo Park, CA (United States); Galayda, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Goldstein, Julia [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guhr, Markus [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, Jerome [SLAC National Accelerator Lab., Menlo Park, CA (United States); Heimann, Philip [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hodgson, Keith [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Zirong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kelez, Nicholas [SLAC National Accelerator Lab., Menlo Park, CA (United States); Montanez, Paul [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-03-24

    The world’s first x-ray free electron laser (XFEL), LCLS, has now been operating for more than three years and all six experimental stations are supporting user science and producing high impact scientific results. Other countries are rapidly catching up and a second XFEL, SACLA, is already operating in Japan with others coming on line in Germany, Korea and Switzerland within the next three to five years. In order to increase capability and capacity of LCLS, the Department of Energy has funded LCLS-II.

  14. The OCO-3 Mission: Science Objectives and Instrument Performance

    Science.gov (United States)

    Eldering, A.; Basilio, R. R.; Bennett, M. W.

    2017-12-01

    The Orbiting Carbon Observatory 3 (OCO-3) will continue global CO2 and solar-induced chlorophyll fluorescence (SIF) using the flight spare instrument from OCO-2. The instrument is currently being tested, and will be packaged for installation on the International Space Station (ISS) (launch readiness in early 2018.) This talk will focus on the science objectives, updated simulations of the science data products, and the outcome of recent instrument performance tests. The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). The combination of these dense CO2 and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis. In 2017, the OCO-2 instrument was transformed into the ISS-ready OCO-3 payload. The transformed instrument was thoroughly tested and characterized. Key characteristics, such as instrument ILS, spectral resolution, and radiometric performance will be described. Analysis of direct sun measurements taken during testing

  15. On DESTINY Science Instrument Electrical and Electronics Subsystem Framework

    Science.gov (United States)

    Kizhner, Semion; Benford, Dominic J.; Lauer, Tod R.

    2009-01-01

    Future space missions are going to require large focal planes with many sensing arrays and hundreds of millions of pixels all read out at high data rates'' . This will place unique demands on the electrical and electronics (EE) subsystem design and it will be critically important to have high technology readiness level (TRL) EE concepts ready to support such missions. One such omission is the Joint Dark Energy Mission (JDEM) charged with making precise measurements of the expansion rate of the universe to reveal vital clues about the nature of dark energy - a hypothetical form of energy that permeates all of space and tends to increase the rate of the expansion. One of three JDEM concept studies - the Dark Energy Space Telescope (DESTINY) was conducted in 2008 at the NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. This paper presents the EE subsystem framework, which evolved from the DESTINY science instrument study. It describes the main challenges and implementation concepts related to the design of an EE subsystem featuring multiple focal planes populated with dozens of large arrays and millions of pixels. The focal planes are passively cooled to cryogenic temperatures (below 140 K). The sensor mosaic is controlled by a large number of Readout Integrated Circuits and Application Specific Integrated Circuits - the ROICs/ASICs in near proximity to their sensor focal planes. The ASICs, in turn, are serviced by a set of "warm" EE subsystem boxes performing Field Programmable Gate Array (FPGA) based digital signal processing (DSP) computations of complex algorithms, such as sampling-up-the-ramp algorithm (SUTR), over large volumes of fast data streams. The SUTR boxes are supported by the Instrument Control/Command and Data Handling box (ICDH Primary and Backup boxes) for lossless data compression, command and low volume telemetry handling, power conversion and for communications with the spacecraft. The paper outlines how the JDEM DESTINY concept

  16. Programmable Input Mode Instrumentation Amplifier Using Multiple Output Current Conveyors

    Directory of Open Access Journals (Sweden)

    Pankiewicz Bogdan

    2017-03-01

    Full Text Available In this paper a programmable input mode instrumentation amplifier (IA utilising second generation, multiple output current conveyors and transmission gates is presented. Its main advantage is the ability to choose a voltage or current mode of inputs by setting the voltage of two configuration nodes. The presented IA is prepared as an integrated circuit block to be used alone or as a sub-block in a microcontroller or in a field programmable gate array (FPGA, which shall condition analogue signals to be next converted by an analogue-to-digital converter (ADC. IA is designed in AMS 0.35 µm CMOS technology and the power supply is 3.3 V; the power consumption is approximately 9.1 mW. A linear input range in the voltage mode reaches ± 1.68 V or ± 250 µA in current mode. A passband of the IA is above 11 MHz. The amplifier works in class A, so its current supply is almost constant and does not cause noise disturbing nearby working precision analogue circuits.

  17. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    Science.gov (United States)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  18. Advanced Technologies and Instrumentation at the National Science Foundation

    Science.gov (United States)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  19. Remote Access to Instrumental Analysis for Distance Education in Science

    Directory of Open Access Journals (Sweden)

    Dietmar Kennepohl

    2005-11-01

    Full Text Available Remote access to experiments offers distance educators another tool to integrate a strong laboratory component within a science course. Since virtually all modern chemical instrumental analysis in industry now use devices operated by a computer interface, remote control of instrumentation is not only relatively facile, it enhances students’ opportunity to learn the subject matter and be exposed to “real world” contents. Northern Alberta Institute of Technology (NAIT and Athabasca University are developing teaching laboratories based on the control of analytical instruments in real-time via an Internet connection. Students perform real-time analysis using equipment, methods, and skills that are common to modern analytical laboratories (or sophisticated teaching laboratories. Students obtain real results using real substances to arrive at real conclusions, just as they would if they were in a physical laboratory with the equipment; this approach allows students to access to conduct instrumental science experiments, thus providing them with an advantageous route to upgrade their laboratory skills while learning at a distance.

  20. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    Science.gov (United States)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars. ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  1. Recycled material-based science instruments to support science education in rural area at Central Sulawesi District of Indonesia

    Science.gov (United States)

    Ali, M.; Supriyatman; Saehana, S.

    2018-03-01

    It has been successfully designing low cost of science experiment from recycled materials. The science instruments were produced to explain expansion concept and hydrostatic pressure inside the liquid. Science instruments were calibrated and then validated. It was also implemented in science learning.

  2. Simultaneous control of multiple instruments at the Advanced Technology Solar Telescope

    Science.gov (United States)

    Johansson, Erik M.; Goodrich, Bret

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) is a 4-meter solar observatory under construction at Haleakala, Hawaii. The simultaneous use of multiple instruments is one of the unique capabilities that makes the ATST a premier ground based solar observatory. Control of the instrument suite is accomplished by the Instrument Control System (ICS), a layer of software between the Observatory Control System (OCS) and the instruments. The ICS presents a single narrow interface to the OCS and provides a standard interface for the instruments to be controlled. It is built upon the ATST Common Services Framework (CSF), an infrastructure for the implementation of a distributed control system. The ICS responds to OCS commands and events, coordinating and distributing them to the various instruments while monitoring their progress and reporting the status back to the OCS. The ICS requires no specific knowledge about the instruments. All information about the instruments used in an experiment is passed by the OCS to the ICS, which extracts and forwards the parameters to the appropriate instrument controllers. The instruments participating in an experiment define the active instrument set. A subset of those instruments must complete their observing activities in order for the experiment to be considered complete and are referred to as the must-complete instrument set. In addition, instruments may participate in eavesdrop mode, outside of the control of the ICS. All instrument controllers use the same standard narrow interface, which allows new instruments to be added without having to modify the interface or any existing instrument controllers.

  3. Local tax interaction with multiple tax instruments: evidence from Flemish municipalities

    OpenAIRE

    S. VAN PARYS; B. MERLEVEDE; T. VERBEKE

    2010-01-01

    We investigate the long run result of strategic interaction among local jurisdictions using multiple tax instruments. Most studies about local policy interaction only consider a single policy instrument. With multiple tax instruments, however, tax interaction is more complex. We construct a simple theoretical framework based on a basic spillover model, with two tax rates and immobile resources. We show that the signs of within and cross tax interaction crucially depend on the extent to which ...

  4. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  5. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  6. Developing instruments concerning scientific epistemic beliefs and goal orientations in learning science: a validation study

    Science.gov (United States)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-11-01

    The purpose of this study was to develop and validate two survey instruments to evaluate high school students' scientific epistemic beliefs and goal orientations in learning science. The initial relationships between the sampled students' scientific epistemic beliefs and goal orientations in learning science were also investigated. A final valid sample of 600 volunteer Taiwanese high school students participated in this survey by responding to the Scientific Epistemic Beliefs Instrument (SEBI) and the Goal Orientations in Learning Science Instrument (GOLSI). Through both exploratory and confirmatory factor analyses, the SEBI and GOLSI were proven to be valid and reliable for assessing the participants' scientific epistemic beliefs and goal orientations in learning science. The path analysis results indicated that, by and large, the students with more sophisticated epistemic beliefs in various dimensions such as Development of Knowledge, Justification for Knowing, and Purpose of Knowing tended to adopt both Mastery-approach and Mastery-avoidance goals. Some interesting results were also found. For example, the students tended to set a learning goal to outperform others or merely demonstrate competence (Performance-approach) if they had more informed epistemic beliefs in the dimensions of Multiplicity of Knowledge, Uncertainty of Knowledge, and Purpose of Knowing.

  7. Thickness measurement instrument with memory storage of multiple calibrations

    International Nuclear Information System (INIS)

    Lieber, S.; Schlesinger, J.; Lieber, D.; Baker, A.

    1979-01-01

    An improved backscatter instrument for the nondestructive measurement of coatings on a substrate is described. A memory having selectable memory areas, each area having stored intelligence available which is determinative of the shape of a functional plot of coating thickness versus backscatter counts per minute unique for each particular combination of emitting isotope, substrate material, coating material and physical characteristics of the measuring instrument. A memory selector switch connects a selected area of memory to a microprocessor operating under program control whereby the microprocessor reads the intelligence stored at the selected area and converts the backscattered count of the coating being measured into indicia of coating thickness

  8. Negotiating Discourses: Sixth-Grade Students' Use of Multiple Science Discourses during a Science Fair Presentation

    Science.gov (United States)

    Gomez, Kimberley

    2007-01-01

    This study offers important insights into the coexistence of multiple discourses and the link between these discourses and science understanding. It offers concrete examples of students' movement between multiple discourses in sixth-grade science fair presentations, and shows how those multiple discourses in science practices illuminate students'…

  9. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  10. Measuring primary teachers' attitudes toward teaching science: development of the dimensions of attitude toward science (DAS) instrument

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is

  11. Measuring Primary Teachers' Attitudes toward Teaching Science: Development of the Dimensions of Attitude toward Science (DAS) Instrument

    Science.gov (United States)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the…

  12. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    Directory of Open Access Journals (Sweden)

    Mohd Ali Samsudin

    2015-02-01

    Full Text Available This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5 primary schools in Penang, Malaysia. The findings showed a relationship between kinesthetic, logical-mathematical, visual-spatial and naturalistic intelligences with the preferred science teaching. In addition there was a correlation between kinesthetic and visual-spatial intelligences with science process skills, implying that multiple intelligences are related to science learning.

  13. Integrating Instrumental Data Provides the Full Science in 3D

    Science.gov (United States)

    Turrin, M.; Boghosian, A.; Bell, R. E.; Frearson, N.

    2017-12-01

    Looking at data sparks questions, discussion and insights. By integrating multiple data sets we deepen our understanding of how cryosphere processes operate. Field collected data provide measurements from multiple instruments supporting rapid insights. Icepod provides a platform focused on the integration of multiple instruments. Over the last three seasons, the ROSETTA-Ice project has deployed Icepod to comprehensively map the Ross Ice Shelf, Antarctica. This integrative data collection along with new methods of data visualization allows us to answer questions about ice shelf structure and evolution that arise during data processing and review. While data are vetted and archived in the field to confirm instruments are operating, upon return to the lab data are again reviewed for accuracy before full analysis. Recent review of shallow ice radar data from the Beardmore Glacier, an outlet glacier into the Ross Ice Shelf, presented an abrupt discontinuity in the ice surface. This sharp 8m surface elevation drop was originally interpreted as a processing error. Data were reexamined, integrating the simultaneously collected shallow and deep ice radar with lidar data. All the data sources showed the surface discontinuity, confirming the abrupt 8m drop in surface elevation. Examining high resolution WorldView satellite imagery revealed a persistent source for these elevation drops. The satellite imagery showed that this tear in the ice surface was only one piece of a larger pattern of "chatter marks" in ice that flows at a rate of 300 m/yr. The markings are buried over a distance of 30 km or after 100 years of travel down Beardmore Glacier towards the front of the Ross Ice Shelf. Using Icepod's lidar and cameras we map this chatter mark feature in 3D to reveal its full structure. We use digital elevation models from WorldView to map the other along flow chatter marks. In order to investigate the relationship between these surface features and basal crevasses, the deep ice

  14. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  15. What Are They Thinking? The Development and Use of an Instrument that Identifies Common Science Misconceptions

    Science.gov (United States)

    Stein, Mary; Barman, Charles R.; Larrabee, Timothy

    2007-01-01

    This article describes the rationale for, and development of, an online instrument that helps identify commonly held science misconceptions. Science Beliefs is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. It utilizes a true or false, along with a written-explanation, format. The true or…

  16. Development of perceived instrumentality for mathematics, reading and science curricula

    Science.gov (United States)

    Garcia, Steve L.

    Perceptions of instrumentality (PI) are the connections one sees between a current activity and a future goal. With high PI, one is motivated to persist with quality effort because the current activity, even when difficult, is perceived as aligned with, and progress toward, the goal. Conversely, with low PI, one is motivated to relinquish effort in pursuit of other, more meaningful goals. In view of the alarming dropout rates in this country, it appears that PI research has much to offer in understanding students' motivations to stay in school and hence to become employed in their field of choice. Because academic achievement motivation can be affected by gender and ethnicity, particularly for specific components of the curriculum, and because curricular content varies across grade levels and school settings, this line of research offers significant potential for understanding and improving student outcomes. This research examined the development of PI among suburban 6th, 8th, 10th and 12th graders from a school district in the southwestern United States. Twelve hundred students completed a one-time paper and pencil survey measuring the perceived instrumentality of mathematics, literacy and science courses in terms of the students' occupational choices. MANOVA was used to determine factors that may affect students' overall PI and individual subject PI. Grade, gender, ethnicity, occupational choice, expectancy and value were the independent variables. A school setting variable was examined for effects on 12th graders. For the 8th through 12th grade sample, significant main effects were observed for grade, gender, minority status, occupational choice and expectancy on PI. Results show that PI is highest in the 6 th grade. Males reported higher Math PI than females. Females reported higher Reading PI and Science PI than males. Minority students reported lower overall PI and Science PI than non-minority students. Students who aspire to professional careers report the

  17. Construction and Validation of an Instrument to Measure Taiwanese Elementary Students' Attitudes toward Their Science Class

    Science.gov (United States)

    Wang, Tzu-Ling; Berlin, Donna

    2010-12-01

    The main purpose of this study is to develop a valid and reliable instrument for measuring the attitudes toward science class of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs-science enjoyment, science confidence, and importance of science as related to science class experiences. A total of 265 elementary school students in Taiwan responded to the instrument developed. Data analysis indicated that the instrument exhibited satisfactory validity and reliability with the Taiwan population used. The Cronbach's alpha coefficient was 0.93 for the entire instrument indicating a satisfactory level of internal consistency. However, both principal component analysis and parallel analysis showed that the three attitude scales were not unique and should be combined and used as a general "attitudes toward science class" scale. The analysis also showed that there were no gender or grade-level differences in students' overall attitudes toward science class.

  18. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    OpenAIRE

    Mohd Ali Samsudin; Noor Hasyimah Haniza; Corrienna Abdul-Talib; Hayani Marlia Mhd Ibrahim

    2015-01-01

    This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5) primary schools in Penang, Malaysia. The findings showed a relationship betwee...

  19. Multiple Modes of Inquiry in Earth Science

    Science.gov (United States)

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  20. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    Science.gov (United States)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  1. Measuring Medical Housestaff Teamwork Performance Using Multiple Direct Observation Instruments: Comparing Apples and Apples.

    Science.gov (United States)

    Weingart, Saul N; Yaghi, Omar; Wetherell, Matthew; Sweeney, Megan

    2018-04-10

    To examine the composition and concordance of existing instruments used to assess medical teams' performance. A trained observer joined 20 internal medicine housestaff teams for morning work rounds at Tufts Medical Center, a 415-bed Boston teaching hospital, from October through December 2015. The observer rated each team's performance using 9 teamwork observation instruments that examined domains including team structure, leadership, situation monitoring, mutual support, and communication. Observations recorded on paper forms were stored electronically. Scores were normalized from 1 (low) to 5 (high) to account for different rating scales. Overall mean scores were calculated and graphed; weighted scores adjusted for the number of items in each teamwork domain. Teamwork scores were analyzed using t-tests, pair-wise correlations, and the Kruskal-Wallis statistic, and team performance was compared across instruments by domain. The 9 tools incorporated 5 major domains, with 5-35 items per instrument for a total of 161 items per observation session. In weighted and unweighted analyses, the overall teamwork performance score for a given team on a given day varied by instrument. While all of the tools identified the same low outlier, high performers on some instruments were low performers on others. Inconsistent scores for a given team across instruments persisted in domain-level analyses. There was substantial variation in the rating of individual teams assessed concurrently by a single observer using multiple instruments. Since existing teamwork observation tools do not yield concordant assessments, researchers should create better tools for measuring teamwork performance.

  2. Development of an instrument to measure student attitudes toward science fairs

    Science.gov (United States)

    Huddleston, Claudia A.

    Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.

  3. Development and validity of mathematical learning assessment instruments based on multiple intelligence

    Directory of Open Access Journals (Sweden)

    Helmiah Suryani

    2017-06-01

    Full Text Available This study was aimed to develop and produce an assessment instrument of mathematical learning results based on multiple intelligence. The methods in this study used Borg & Gall-Research and Development approach (Research & Development. The subject of research was 289 students. The results of research: (1 Result of Aiken Analysis showed 58 valid items were between 0,714 to 0,952. (2 Result of the Exploratory on factor analysis indicated the instrument consist of three factors i.e. mathematical logical intelligence-spatial intelligence-and linguistic intelligence. KMO value was 0.661 df 0.780 sig. 0.000 with valid category. This research succeeded to developing the assessment instrument of mathematical learning results based on multiple intelligence of second grade in elementary school with characteristics of logical intelligence of mathematics, spatial intelligence, and linguistic intelligence.

  4. The test beamline of the European Spallation Source - Instrumentation development and wavelength frame multiplication

    DEFF Research Database (Denmark)

    Woracek, R.; Hofmann, T.; Bulat, M.

    2016-01-01

    which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor...... wavelength band between 1.6 A and 10 A by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components....... This article describes the main capabilities of the instrument, its performance as experimentally verified during the commissioning, and its relevance to currently starting ESS instrumentation projects....

  5. The Impact of Crosstalk in the X-IFU Instrument on Athena Science Cases

    Science.gov (United States)

    Hartog, R. Den; Peille, P.; Dauser, T.; Jackson, B.; Bandler, S.; Barret, D.; Brand, T.; Herder, J-W Den; Kiviranta, M.; Kuur, J. Van Der; hide

    2016-01-01

    In this paper we present a first assessment of the impact of various forms of instrumental crosstalk on the science performance of the X-ray Integral Field Unit (X-IFU) on the Athena X-ray mission. This assessment is made using the SIXTE end-to-end simulator in the context of one of the more technically challenging science cases for the XIFU instrument. Crosstalk considerations may influence or drive various aspects of the design of the array of high-count-rate Transition Edge Sensor (TES) detectors and its Frequency Domain Multiplexed (FDM) readout architecture. The Athena X-ray mission was selected as the second L-class mission in ESA's Cosmic Vision 2015–25 plan, with alaunch foreseen in 2028, to address the theme ''Hot and Energetic Universe"1. One of the two instruments on boardAthena is the X-ray Integral Field Unit2 (X-IFU) which is based on an array of 3800 Transition Edge Sensors (TES's)operated at a temperature of 90 mK. The science cases pose an interesting challenge for this instrument, as they requirea combination of high energy resolution (2.5 eV FWHM or better), high spatial resolution (5 arcsec or better) and highcount rate capability (several tens of counts per second per detector for point sources as bright as 10 mCrab).The performance at the single sensor level has been demonstrated3, but the operation of such detectors in an array, usingmultiplexed readout, brings additional challenges, both for the design of the array in which the sensors are placed and forthe readout of the sensors. The readout of the detector array will be based on Frequency Domain Multiplexing (FDM)4.In this system of detectors and readout, crosstalk can arise through various mechanisms: on the TES array, neighboringsensors can couple through thermal crosstalk. Detectors adjacent in carrier frequency may suffer from electrical crosstalkdue to the finite width of the bandpass filters, and shared sources of impedance in their signal lines. The signals from theindividual

  6. Quantitative Analysis of Complex Multiple-Choice Items in Science Technology and Society: Item Scaling

    Directory of Open Access Journals (Sweden)

    Ángel Vázquez Alonso

    2005-05-01

    Full Text Available The scarce attention to assessment and evaluation in science education research has been especially harmful for Science-Technology-Society (STS education, due to the dialectic, tentative, value-laden, and controversial nature of most STS topics. To overcome the methodological pitfalls of the STS assessment instruments used in the past, an empirically developed instrument (VOSTS, Views on Science-Technology-Society have been suggested. Some methodological proposals, namely the multiple response models and the computing of a global attitudinal index, were suggested to improve the item implementation. The final step of these methodological proposals requires the categorization of STS statements. This paper describes the process of categorization through a scaling procedure ruled by a panel of experts, acting as judges, according to the body of knowledge from history, epistemology, and sociology of science. The statement categorization allows for the sound foundation of STS items, which is useful in educational assessment and science education research, and may also increase teachers’ self-confidence in the development of the STS curriculum for science classrooms.

  7. SOFIA science instruments: commissioning, upgrades and future opportunities

    Science.gov (United States)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  8. Instruments of Science and Citizenship: Science Education for Dutch Orphans During the Late Eighteenth Century

    Science.gov (United States)

    Roberts, Lissa L.

    2012-01-01

    One of the two most extensive instrument collections in the Netherlands during the second half of the eighteenth century—rivaling the much better known collection at the University of Leiden—belonged to an orphanage in The Hague that was specially established to mold hand-picked orphans into productive citizens. (The other was housed at the Mennonite Seminary in Amsterdam, for use in the education of its students.) The educational program at this orphanage, one of three established by the Fundatie van Renswoude, grew out of a marriage between the socially-oriented generosity of the wealthy Baroness van Renswoude and the pedagogical vision of the institute's director and head teacher—a vision that fit with the larger movement of oeconomic patriotism. Oeconomic patriotism, similar to `improvement' and oeconomic movements in other European countries and their colonies, sought to tie the investigation of nature to an improvement of society's material and moral well-being. Indeed, it was argued that these two facets of society should be viewed as inseparable from each other, distinguishing the movement from more modern conceptions of economics. While a number of the key figures in this Dutch movement also became prominent Patriots during the revolutionary period at the end of the century, fighting against the House of Orange, they did not have a monopoly on oeconomic ideas of societal improvement. This is demonstrated by the fact that an explicitly pro-Orangist society, Mathesis Scientiarum Genitrix, was organized in 1785 to teach science and mathematics to poor boys and orphans for very similar reasons: to turn them into productive and useful citizens. As was the case with the Fundatie van Renswoude, a collection of instruments was assembled to help make this possible. This story is of interest because it discusses a hitherto under-examined use to which science education was put during this period, by revealing the link between such programs and the highly

  9. History of Computer Science as an Instrument of Enlightenment

    OpenAIRE

    Fet , Yakov

    2013-01-01

    Part 6: Putting the History of Computing into Different Contexts; International audience; This report focuses on the dangerous problems that are currently facing the society – the negative phenomena in development of education and science. The most important way to solve this problem seems to be education and enlightenment. It is assumed that in the history of Computer Science, the intellectual and moral heritage of this history contains a wealth of material that can be used for the dissemina...

  10. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  11. Design and validation of a standards-based science teacher efficacy instrument

    Science.gov (United States)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  12. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  13. Instrument development for materials science research at WNR

    International Nuclear Information System (INIS)

    Eckert, J.; Silver, R.N.; Soper, A.; Vergamini, P.J.; Goldstone, J.; Larson, A.; Seeger, P.A.; Yarnell, J.

    1980-01-01

    The neutron scattering program at the Los Alamos spallation neutron source is based on the operational WNR facility which provides up to 11 μA of 800 MeV protons to a target in pulse widths up to 8 μs at 120 Hz. The immediate goals of the program are: to gain experience with neutron instrumentation at spallation neutron sources; and to explore the scientific potential for condensed matter research at these sources. The proton storage ring (PSR) funded for construction will provide 100 μA in 0.27 μs pulses at 12 Hz, therefore greatly improving intensity, time-of-flight (TOF) resolution, and repetition rate. The initial emphasis, given limited manpower and resources, has been placed on developing a set of prototype instruments which are relatively easy to implement and which take advantage of the unique characteristics of the present WNR when compared with reactor neutron sources

  14. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  15. The test beamline of the European Spallation Source – Instrumentation development and wavelength frame multiplication

    International Nuclear Information System (INIS)

    Woracek, R.; Hofmann, T.; Bulat, M.; Sales, M.; Habicht, K.; Andersen, K.; Strobl, M.

    2016-01-01

    The European Spallation Source (ESS), scheduled to start operation in 2020, is aiming to deliver the most intense neutron beams for experimental research of any facility worldwide. Its long pulse time structure implies significant differences for instrumentation compared to other spallation sources which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor at Helmholtz-Zentrum Berlin (HZB). Operating the TBL shall provide valuable experience in order to allow for a smooth start of operations at ESS. The beamline is capable of mimicking the ESS pulse structure by a double chopper system and provides variable wavelength resolution as low as 0.5% over a wide wavelength band between 1.6 Å and 10 Å by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components. This article describes the main capabilities of the instrument, its performance as experimentally verified during the commissioning, and its relevance to currently starting ESS instrumentation projects.

  16. The test beamline of the European Spallation Source – Instrumentation development and wavelength frame multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Woracek, R., E-mail: robin.woracek@esss.se [European Spallation Source ESS ERIC, P.O. Box 176, SE-22100 Lund (Sweden); Hofmann, T.; Bulat, M. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Sales, M. [Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby (Denmark); Habicht, K. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Andersen, K. [European Spallation Source ESS ERIC, P.O. Box 176, SE-22100 Lund (Sweden); Strobl, M. [European Spallation Source ESS ERIC, P.O. Box 176, SE-22100 Lund (Sweden); Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby (Denmark)

    2016-12-11

    The European Spallation Source (ESS), scheduled to start operation in 2020, is aiming to deliver the most intense neutron beams for experimental research of any facility worldwide. Its long pulse time structure implies significant differences for instrumentation compared to other spallation sources which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor at Helmholtz-Zentrum Berlin (HZB). Operating the TBL shall provide valuable experience in order to allow for a smooth start of operations at ESS. The beamline is capable of mimicking the ESS pulse structure by a double chopper system and provides variable wavelength resolution as low as 0.5% over a wide wavelength band between 1.6 Å and 10 Å by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components. This article describes the main capabilities of the instrument, its performance as experimentally verified during the commissioning, and its relevance to currently starting ESS instrumentation projects.

  17. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  18. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  19. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ken R. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305 (United States); Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Coffee, Ryan [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bostedt, Christoph, E-mail: bostedt@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-17

    A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  20. The Preschool Rating Instrument for Science and Mathematics (PRISM)

    Science.gov (United States)

    Brenneman, Kimberly; Stevenson-Garcia, Judi; Jung, Kwanghee; Frede, Ellen

    2011-01-01

    Until recently, few valid and reliable assessments were available to measure young children's mathematics and science learning in a "comprehensive" way. Now, a number of mathematics assessments have been developed and subjected to testing (Klein, Starkey, & Wakeley, 2000; Ginsburg, 2008; Clements & Sarama, 2008), and progress has…

  1. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  2. Review of decametric radio astronomy - instruments and science

    International Nuclear Information System (INIS)

    Erickson, W.C.; Cane, H.V.

    1987-01-01

    The techniques and instruments used in Galactic and extragalactic radio astronomy at dkm wavelengths are surveyed, and typical results are summarized. Consideration is given to the large specialized phased arrays used for early surveys, the use of wideband elements to increase frequency agility, experimental VLBI observations, and limitations on ground-based observations below about 10 MHz (where the proposed LF Space Array, with resolution 0.5-5 arcmin, could make a major contribution). Observations discussed cover the Galactic center, the Galactic background radiation, SNRs, compact Galactic sources, the ISM, and large extragalactic sources. 38 references

  3. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  4. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  5. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  6. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  7. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  8. Administrative support of novice science teachers: A multiple case study

    Science.gov (United States)

    Iacuone, Leann

    Novice science teachers leave the confines of colleges and universities to embark on a new adventure in education where they aim to influence young minds, make a difference in the world, and share their love for their content. They have learned their pedagogical skills with the support and assistance of fellow classmates, a supporting professor, and a cooperating teacher. These teachers enter their new place of employment and are met with many unexpected challenges, such as a lack of resources, no one to ask questions of, and a busy staff with already established relationships, causing them to feel an overall lack of support and resulting in many new teachers rethinking their career choice and leaving the field of education within 5 years of entering. This multiple-case study investigated the administrative support 4 novice science teachers received during an academic year and the novice teachers' perceptions of the support they received to answer the following research question: How do novice science teachers who have consistent interactions with administrators develop during their first year? To answer this question, semistructured interviews, reflection journals, observations, resumes, long-range plans, and student discipline referrals were collected. The findings from this study show novice science teachers who had incidents occur in the classroom requiring administrative assistance and guidance felt more confident in enforcing their classroom management policies and procedures as the year progressed to change student behavior. The novice science teachers perceived administrators who provided resources including technology, office supplies, science supplies, and the guidance of a mentor as supportive. Novice science teachers who engaged in dialogue after administrative observations, were provided the opportunity to attend professional development outside the district, and had a mentor who taught the same discipline made more changes to their instructional

  9. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  10. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  11. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  12. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  13. Language profiles in young children with autism spectrum disorder: A community sample using multiple assessment instruments.

    Science.gov (United States)

    Nevill, Rose; Hedley, Darren; Uljarević, Mirko; Sahin, Ensu; Zadek, Johanna; Butter, Eric; Mulick, James A

    2017-11-01

    This study investigated language profiles in a community-based sample of 104 children aged 1-3 years who had been diagnosed with autism spectrum disorder using Diagnostic and Statistical Manual of Mental Disorders (5th ed.) diagnostic criteria. Language was assessed with the Mullen scales, Preschool Language Scale, fifth edition, and Vineland-II parent-report. The study aimed to determine whether the receptive-to-expressive language profile is independent from the assessment instrument used, and whether nonverbal cognition, early communicative behaviors, and autism spectrum disorder symptoms predict language scores. Receptive-to-expressive language profiles differed between assessment instruments and reporters, and Preschool Language Scale, fifth edition profiles were also dependent on developmental level. Nonverbal cognition and joint attention significantly predicted receptive language scores, and nonverbal cognition and frequency of vocalizations predicted expressive language scores. These findings support the administration of multiple direct assessment and parent-report instruments when evaluating language in young children with autism spectrum disorder, for both research and in clinical settings. Results also support that joint attention is a useful intervention target for improving receptive language skills in young children with autism spectrum disorder. Future research comparing language profiles of young children with autism spectrum disorder to children with non-autism spectrum disorder developmental delays and typical development will add to our knowledge of early language development in children with autism spectrum disorder.

  14. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  15. Understandings of Nature of Science and Multiple Perspective Evaluation of Science News by Non-science Majors

    Science.gov (United States)

    Leung, Jessica Shuk Ching; Wong, Alice Siu Ling; Yung, Benny Hin Wai

    2015-10-01

    Understandings of nature of science (NOS) are a core component of scientific literacy, and a scientifically literate populace is expected to be able to critically evaluate science in the media. While evidence has remained inconclusive on whether better NOS understandings will lead to critical evaluation of science in the media, this study aimed at examining the correlation therein. Thirty-eight non-science majors, enrolled in a science course for non-specialists held in a local community college, evaluated three health news articles by rating the extent to which they agreed with the reported claims and providing as many justifications as possible. The majority of the participants were able to evaluate and justify their viewpoint from multiple perspectives. Students' evaluation was compared with their NOS conceptions, including the social and cultural embedded NOS, the tentative NOS, the peer review process and the community of practice. Results indicated that participants' understanding of the tentative NOS was significantly correlated with multiple perspective evaluation of science news reports of socioscientific nature (r = 0.434, p media of socioscientific nature. However, the null result for other target NOS aspects in this study suggested a lack of evidence to assume that understanding the social dimensions of science would have significant influence on the evaluation of science in the media. Future research on identifying the reasons for why and why not NOS understandings are applied in the evaluation will move this field forward.

  16. The Sound Access Parent Outcomes Instrument (SAPOI): Construction of a new instrument for children with severe multiple disabilities who use cochlear implants or hearing aids.

    Science.gov (United States)

    Hayward, Denyse V; Ritter, Kathryn; Mousavi, Amin; Vatanapour, Shabnam

    2016-01-01

    To report on the Phase 2 development of the Sound Access Parent Outcomes Instrument (SAPOI), a new instrument focused on formalizing outcomes that parents of children with severe multiple disabilities (SMD) who use amplification prioritize as important. Phase 2 of this project involved item selection and refinement of the SAPOI based on (a) Phase 1 study participant input, (b) clinical specialist feedback, and (c) test-retest instrument reliability. Phase 1 participant responses were utilized to construct a draft version of the SAPOI. Next, clinical specialists examined the instrument for content validity and utility and instrument reliability was examined through a test-retest process with parents of children with SMD. The draft SAPOI was constructed based on Phase 1 participant input. Clinical specialists supported content validity and utility of the instrument and the inclusion of 19 additional items across four categories, namely Child Affect, Child Interaction, Parent Well-being, and Child's Device Use. The SAPOI was completed twice at one-month intervals by parents of children with SMD to examine instrument reliability across the four categories (Child Affect, Child Interaction, Parent Well-being, and Child's Device Use). Instrument reliability was strong-to-excellent across all four sections. The SAPOI shows promise as a much-needed addition to the assessment battery currently used for children with SMD who use cochlear implants and hearing aids. It provides valuable information regarding outcomes resulting from access to sound in this population that currently used assessments do not identify.

  17. THE INCREASING OF PRESCHOOL MULTIPLE INTELLIGENCES BY EDUCATIVE PLAYING INSTRUMENT STIMULATION

    Directory of Open Access Journals (Sweden)

    Yuni Sufyanti Arief

    2017-04-01

    Full Text Available Introduction: Multiple Intelligences can be incresed by playing stimulation with educative playing instrument. Educative playing is the activity that uses educate ways and instrument. Educative playing very important to increase speech development, cognitive, socialisation with the environment and also increse the streght and skill of child’s body. Method: Design used in this study was quasy experiment design. The population was preschool children 4–5 years old in working area of Mojo Public Health Centre of Surabaya. The sample was preschool children 4–5 years old that spesific in inclution criteria of this study. Data were analyzed by wilcoxon signed rank test to compare the ordinal data pre and post intervention and mann withney u-test that compare between intervention group and control  group with level of signifi cance of α ≤ 0.05. Result: The result of speech development that analyzed by Wilcoxon signed rank test showed that controlled group had p = 0.157 and intervention group had p = 0.005 and the result of mann whitney test was p = 0.03. The result of kinesthetic development by wilcoxon signed rank test showed that controlled group has p = 0.317 and intervention group has p = 0.005, and analyzed by mann whitney test in kinesthetic development showed the result of p = 0.02. Discussion: Educative playing instrument (picture cards, play dough, origami and meronce increased speech and fine motoric development of preschool children 4–5 years old in Mojo Indah Kindergarten of Surabaya. Educative playing instrument is the activity that makes the playing function optimally in child development and this activity can increase the child development such as physical, speech, cognitive and social adaptation.

  18. Examining the Teaching of Science, and Technology and Engineering Content and Practices: An Instrument Modification Study

    Science.gov (United States)

    Love, Tyler S.; Wells, John G.; Parkes, Kelly A.

    2017-01-01

    A modified Reformed Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000) instrument was used to separately examine eight technology and engineering (T&E) educators' teaching of science, and T&E content and practices, as called for by the "Standards for Technological Literacy: Content for the Study of Technology"…

  19. Development and Validation of Nature of Science Instrument for Elementary School Students

    Science.gov (United States)

    Hacieminoglu, Esme; Yilmaz-Tüzün, Özgül; Ertepinar, Hamide

    2014-01-01

    The purposes of this study were to develop and validate an instrument for assessing elementary students' nature of science (NOS) views and to explain the elementary school students' NOS views, in terms of varying grade levels and gender. The sample included 782 students enrolled in sixth, seventh, and eighth grades. Exploratory factor analysis…

  20. Preliminary Analysis of Assessment Instrument Design to Reveal Science Generic Skill and Chemistry Literacy

    Science.gov (United States)

    Sumarni, Woro; Sudarmin; Supartono, Wiyanto

    2016-01-01

    The purpose of this research is to design assessment instrument to evaluate science generic skill (SGS) achievement and chemistry literacy in ethnoscience-integrated chemistry learning. The steps of tool designing refers to Plomp models including 1) Investigation Phase (Prelimenary Investigation); 2) Designing Phase (Design); 3)…

  1. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  2. The Astronomy and Space Science Concept Inventory: Assessment Instruments Aligned with the K-12 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.

    2011-01-01

    We report on the development of an item test bank and associated instruments based on those K-12 national standards which involve astronomy and space science. Utilizing hundreds of studies in the science education research literature on student misconceptions, we have constructed 211 unique items that measure the degree to which students abandon such ideas for accepted scientific views. Piloted nationally with 7599 students and their 88 teachers spanning grades 5-12, the items reveal a range of interesting results, particularly student difficulties in mastering the NRC Standards and AAAS Benchmarks. Teachers generally perform well on items covering the standards of the grade level at which they teach, exhibiting few misconceptions of their own. Teachers dramatically overestimate their students’ performance, perhaps because they are unaware of their students’ misconceptions. Examples are given showing how the developed instruments can be used to assess the effectiveness of instruction and to evaluate the impact of professional development activities for teachers.

  3. The Role of Clinical and Instrumented Outcome Measures in Balance Control of Individuals with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Neeta Kanekar

    2013-01-01

    Full Text Available Purpose. The aim of the study was to investigate differences in balance control between individuals with multiple sclerosis (MS and healthy control subjects using clinical scales and instrumented measures of balance and determine relationships between balance measures, fatigue, and disability levels in individuals with MS with and without a history of falls. Method. Twelve individuals with MS and twelve healthy controls were evaluated using the Berg Balance and Activities-specific Balance Confidence Scales, Modified Clinical Test of Sensory Interaction on Balance, and Limits of Stability Tests as well as Fatigue Severity Scale and Barthel Index. Results. Mildly affected individuals with MS had significant balance performance deficits and poor balance confidence levels (P<0.05. MS group had higher sway velocities and diminished stability limits (P<0.05, significant sensory impairments, high fatigue and disability levels (P<0.05. Sway velocity was a significant predictor of balance performance and the ability to move towards stability limits for the MS group. For the MS-fallers group, those with lower disability levels had faster movement velocities and better balance performance. Conclusion. Implementation of both clinical and instrumented tests of balance is important for the planning and evaluation of treatment outcomes in balance rehabilitation of people with MS.

  4. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  5. ExoMars Trace Gas Orbiter Instrument Modelling Approach to Streamline Science Operations

    Science.gov (United States)

    Munoz Fernandez, Michela; Frew, David; Ashman, Michael; Cardesin Moinelo, Alejandro; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Nespoli, Federico; Muniz Solaz, Carlos

    2018-05-01

    ExoMars Trace Gas Orbiter (TGO) science operations activities are centralised at ESAC's Science Operations Centre (SOC). The SOC receives the inputs from the principal investigators (PIs) in order to implement and deliver the spacecraft pointing requests and instrument timelines to the Mission Operations Centre (MOC). The high number of orbits per planning cycle has made it necessary to abstract the planning interactions between the SOC and the PI teams at the observation level. This paper describes the modelling approach we have conducted for TGOís instruments to streamline science operations. We have created dynamic observation types that scale to adapt to the conditions specified by the PI teams including observation timing, and pointing block parameters calculated from observation geometry. This approach is considered and improvement with respect to previous missions where the generation of the observation pointing and commanding requests was performed manually by the instrument teams. Automation software assists us to effectively handle the high density of planned orbits with increasing volume of scientific data and to successfully meet opportunistic scientific goals and objectives. Our planning tool combines the instrument observation definition files provided by the PIs together with the flight dynamics products to generate the Pointing Requests and the instrument timeline (ITL). The ITL contains all the validated commands at the TC sequence level and computes the resource envelopes (data rate, power, data volume) within the constraints. At the SOC, our main goal is to maximise the science output while minimising the number of iterations among the teams, ensuring that the timeline does not violate the state transitions allowed in the Mission Operations Rules and Constraints Document.

  6. Phylo: a citizen science approach for improving multiple sequence alignment.

    Directory of Open Access Journals (Sweden)

    Alexander Kawrykow

    Full Text Available BACKGROUND: Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. METHODOLOGY/PRINCIPAL FINDINGS: We introduce Phylo, a human-based computing framework applying "crowd sourcing" techniques to solve the Multiple Sequence Alignment (MSA problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. CONCLUSIONS/SIGNIFICANCE: We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of "human-brain peta-flops" of computation that are spent every day playing games

  7. The Use of Cronbach's Alpha When Developing and Reporting Research Instruments in Science Education

    Science.gov (United States)

    Taber, Keith S.

    2017-06-01

    Cronbach's alpha is a statistic commonly quoted by authors to demonstrate that tests and scales that have been constructed or adopted for research projects are fit for purpose. Cronbach's alpha is regularly adopted in studies in science education: it was referred to in 69 different papers published in 4 leading science education journals in a single year (2015)—usually as a measure of reliability. This article explores how this statistic is used in reporting science education research and what it represents. Authors often cite alpha values with little commentary to explain why they feel this statistic is relevant and seldom interpret the result for readers beyond citing an arbitrary threshold for an acceptable value. Those authors who do offer readers qualitative descriptors interpreting alpha values adopt a diverse and seemingly arbitrary terminology. More seriously, illustrative examples from the science education literature demonstrate that alpha may be acceptable even when there are recognised problems with the scales concerned. Alpha is also sometimes inappropriately used to claim an instrument is unidimensional. It is argued that a high value of alpha offers limited evidence of the reliability of a research instrument, and that indeed a very high value may actually be undesirable when developing a test of scientific knowledge or understanding. Guidance is offered to authors reporting, and readers evaluating, studies that present Cronbach's alpha statistic as evidence of instrument quality.

  8. Experimental innovations in surface science a guide to practical laboratory methods and instruments

    CERN Document Server

    Yates, John T

    2015-01-01

    This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.

  9. Science at the supermarket: multiplication, personalization and consumption of science in everyday life.

    Science.gov (United States)

    Tateo, Luca

    2014-06-01

    Which is the kind science's psychological guidance upon everyday life? I will try to discuss some issues about the role that techno-scientific knowledge plays in sense-making and decision making about practical questions of life. This relation of both love and hate, antagonism and connivance is inscribable in a wider debate between a trend of science to intervene in fields that are traditionally prerogative of political, religious or ethical choices, and, on the other side, the position of those who aim at stemming "technocracy" and governing these processes. I argue that multiplication, personalization and consumption are the characteristics of the relationship between science, technology and society in the age of "multiculturalism" and "multi-scientism". This makes more difficult but intriguing the study and understanding of the processes through which scientific knowledge is socialized. Science topics, like biotech, climate change, etc. are today an unavoidable reference frame. It is not possible to not know them and to attach them to the most disparate questions. Like in the case of Moscovici's "Freud for all seasons", the fact itself that the members of a group or a society believe in science as a reference point for others, roots its social representation and the belief that it can solve everyday life problems.

  10. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D; Dittrich, P-G; Duentsch, E [Senior Network Manager NEMO SpectroNet, Technologie- und Innovationspark Jena GmbH, Wildenbruchstrasse 15, D-07745 Jena (Germany)

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  11. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    International Nuclear Information System (INIS)

    Hofmann, D; Dittrich, P-G; Duentsch, E

    2010-01-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  12. Optical instrumentation for science and formation flying with a starshade observatory

    Science.gov (United States)

    Martin, Stefan; Scharf, Daniel; Cady, Eric; Liebe, Carl; Tang, Hong

    2015-09-01

    In conjunction with a space telescope of modest size, a starshade enables observation of small exoplanets close to the parent star by blocking the direct starlight while the planet light remains unobscured. The starshade is flown some tens of thousands of kilometers ahead of the telescope. Science instruments may include a wide field camera for imaging the target exoplanetary system as well as an integral field spectrometer for characterization of exoplanet atmospheres. We show the preliminary designs of the optical instruments for observatories such as Exo-S, discuss formation flying and control, retargeting maneuvers and other aspects of a starshade mission. The implementation of a starshade-ready WFIRST-AFTA is discussed and we show how a compact, standalone instrument package could be developed as an add-on to future space telescopes, requiring only minor additions to the telescope spacecraft.

  13. Evolution and validation of a personal form of an instrument for assessing science laboratory classroom environments

    Science.gov (United States)

    Fraser, Barry J.; Giddings, Geoffrey J.; McRobbie, Campbell J.

    The research reported in this article makes two distinctive contributions to the field of classroom environment research. First, because existing instruments are unsuitable for science laboratory classes, the Science Laboratory Environment Inventory (SLEI) was developed and validated. Second, a new Personal form of the SLEI (involving a student's perceptions of his or her own role within the class) was developed and validated in conjunction with the conventional Class form (involving a student's perceptions of the class as a whole), and its usefulness was investigated. The instrument was cross-nationally fieldtested with 5,447 students in 269 senior high school and university classes in six countries, and cross-validated with 1,594 senior high school students in 92 classes in Australia. Each SLEI scale exhibited satisfactory internal consistency reliability, discriminant validity, and factorial validity, and differentiated between the perceptions of students in different classes. A variety of applications with the new instrument furnished evidence about its usefulness and revealed that science laboratory classes are dominated by closed-ended activities; mean scores obtained on the Class form were consistently somewhat more favorable than on the corresponding Personal form; females generally held more favorable perceptions than males, but these differences were somewhat larger for the Personal form than the Class form; associations existed between attitudinal outcomes and laboratory environment dimensions; and the Class and Personal forms of the SLEI each accounted for unique variance in student outcomes which was independent of that accounted for by the other form.

  14. Astro 101 Students' Perceptions of Science: Results from the "Thinking about Science Survey Instrument"

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Mendelsohn, Benjamin M.

    2013-01-01

    What are the underlying worldviews and beliefs about the role of science in society held by students enrolled in a college-level, general education, introductory astronomy course (Astro 101)--and are those beliefs affected by active engagement instruction shown to significantly increase students' conceptual knowledge and reasoning abilities…

  15. Transmedia Storytelling in Science Communication: One Subject, Multiple Media, Multiple Stories

    Science.gov (United States)

    Unger, M.; Moloney, K.

    2012-12-01

    Each communication medium has particular storytelling strengths. For example, video is particularly good at illustrating a progression of events, text at background and context, and games at describing systems. In what USC's Prof. Henry Jenkins described as "transmedia storytelling," multiple media are used simultaneously, in an expansive rather than repetitive way, to better tell a single, complex story. The audience is given multiple entry points to the story, and the story is exposed to diverse and dispersed audiences, ultimately engaging a broader public. We will examine the effectiveness of a transmedia approach to communicating scientific and other complex concepts to a broad and diverse audience. Using the recently developed Educational Visitor Center at the NCAR-Wyoming Supercomputing Center as a case study, we will evaluate the reach of various means of presenting information about the geosciences, climate change and computational science. These will include an assessment of video, mechanical and digital interactive elements, animated movie segments, web-based content, photography, scientific visualizations, printed material and docent-led activities.

  16. Quantifying Gait Impairment Using an Instrumented Treadmill in People with Multiple Sclerosis

    Science.gov (United States)

    Kalron, Alon; Dvir, Zeevi; Frid, Lior; Achiron, Anat

    2013-01-01

    Background and Objective. Treadmill gait analysis has been proposed as an attractive alternative for overground walking measuring systems. The purpose of this study was twofold: first to determine spatiotemporal parameters of treadmill gait in patients with multiple sclerosis (MS) and second to examine whether these parameters are associated with specific functional impairments in this cohort. Method. Eighty-seven relapsing-remitting patients diagnosed with MS, 50 women and 37 men, aged 40.9 ± 11.9 with an expanded disability status scale (EDSS) score of 2.7 ± 1.6, participated in this study. Twenty-five apparently healthy subjects, 14 women and 11 men, aged 38.5 ± 9.4, served as controls. Spatiotemporal gait parameters were obtained using the Zebris FDM-T Treadmill (Zebris Medical GmbH, Germany). People with MS demonstrated significantly shorter steps, extended stride time, wider base of support, longer step time, reduced single support phase, and a prolonged double support phase compared to the healthy controls. The EDSS score was significantly correlated with all spatiotemporal gait parameters. Conclusion. The instrumented treadmill may be an effective tool in assessing ambulation capabilities of people with MS. PMID:23878746

  17. Synchrotron light sources and free-electron lasers accelerator physics, instrumentation and science applications

    CERN Document Server

    Khan, Shaukat; Schneider, Jochen; Hastings, Jerome

    2016-01-01

    Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources dri...

  18. The Nature of Science Instrument-Elementary (NOSI-E): the end of the road?

    Science.gov (United States)

    Peoples, Shelagh M; O'Dwyer, Laura M

    2014-01-01

    This research continues prior work published in this journal (Peoples, O'Dwyer, Shields and Wang, 2013). The first paper described the scale development, psychometric analyses and part-validation of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). In the first paper, evidence was provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. The research described in this paper examines two additional validity aspects (structural and external). The purpose of this study was to determine which of three competing internal models provides reliable, interpretable, and responsive measures of students' understanding of NOS. One postulate is that the NOS construct is unidimensional;. alternatively, the NOS construct is composed of five independent unidimensional constructs (the consecutive approach). Lastly, the NOS construct is multidimensional and composed of five inter-related but separate dimensions. The vast body of evidence supported the claim that the NOS construct is multidimensional. Measures from the multidimensional model were positively related to student science achievement and students' perceptions of their classroom environment; this provided supporting evidence for the external validity aspect of the NOS construct. As US science education moves toward students learning science through engaging in authentic scientific practices and building learning progressions (NRC, 2012), it will be important to assess whether this new approach to teaching science is effective, and the NOSI-E may be used as a measure of the impact of this reform.

  19. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  20. Multiple Homicide as a Function of Prisonization and Concurrent Instrumental Violence: Testing an Interactive Model--A Research Note

    Science.gov (United States)

    DeLisi, Matt; Walters, Glenn D.

    2011-01-01

    Prisonization (as measured by number of prior incarcerations) and concurrent instrumental offending (as measured by contemporaneous kidnapping, rape, robbery, and burglary offenses) were found to interact in 160 multiple-homicide offenders and 494 single-homicide offenders. Controlling for age, gender, race, criminal history, prior incarcerations,…

  1. Development and validation of an instrument to evaluate science teachers' assessment beliefs and practices

    Science.gov (United States)

    Genc, Evrim

    The primary purpose of this study was to develop a valid and reliable instrument to examine science teachers' assessment beliefs and practices in science classrooms. The present study also investigated the relationship between teachers' beliefs and practices in terms of assessment issues in science, their perceptions of the factors that influenced their assessment practices and their feelings towards high-stakes testing. The participants of the study were 408 science teachers teaching at middle and high school levels in the State of Florida. Data were collected through two modes of administration of the instrument as a paper-and-pencil and a web-based form. The response rate for paper-and-pencil administration was estimated as 68% whereas the response for the web administration was found to be 27%. Results from the various dimensions of validity and reliability analyses revealed that the 24 item-four-factor belief and practice measures were psychometrically sound and conceptually anchored measures of science teachers' assessment beliefs and self-reported practices. Reliability estimates for the belief measure ranged from .83 to .91 whereas alpha values for the practice measure ranged from .56 to .90. Results from the multigroup analysis supported that the instrument has the same theoretical structure across both administration groups. Therefore, future researchers may use either a paper-and-pencil or web-based format of the instrument. This study underscored a discrepancy between what teachers believe and how they act in classroom settings. It was emphasized that certain factors were mediating the dynamics between the belief and the practice. The majority of teachers reported that instruction time, class size, professional development activities, availability of school funding, and state testing mandates impact their assessment routines. Teachers reported that both the preparation process and the results of the test created unbelievable tension both on students and

  2. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1996-01-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year's summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer's summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs

  3. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, A [ed.

    1996-11-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year`s summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer`s summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs.

  4. Multiple Payload Ejector for Education, Science and Technology Experiments

    Science.gov (United States)

    Lechworth, Gary

    2005-01-01

    The education research community no longer has a means of being manifested on Space Shuttle flights, and small orbital payload carriers must be flown as secondary payloads on ELV flights, as their launch schedule, secondary payload volume and mass permits. This has resulted in a backlog of small payloads, schedule and cost problems, and an inability for the small payloads community to achieve routine, low-cost access to orbit. This paper will discuss Goddard's Wallops Flight Facility funded effort to leverage its core competencies in small payloads, sounding rockets, balloons and range services to develop a low cost, multiple payload ejector (MPE) carrier for orbital experiments. The goal of the MPE is to provide a low-cost carrier intended primarily for educational flight research experiments. MPE can also be used by academia and industry for science, technology development and Exploration experiments. The MPE carrier will take advantage of the DARPAI NASA partnership to perform flight testing of DARPA s Falcon small, demonstration launch vehicle. The Falcon is similar to MPE fiom the standpoint of focusing on a low-cost, responsive system. Therefore, MPE and Falcon complement each other for the desired long-term goal of providing the small payloads community with a low-cost ride to orbit. The readiness dates of Falcon and MPE are complementary, also. MPE is being developed and readied for flight within 18 months by a small design team. Currently, MPE is preparing for Critical Design Review in fall 2005, payloads are being manifested on the first mission, and the carrier will be ready for flight on the first Falcon demonstration flight in summer, 2006. The MPE and attached experiments can weigh up to 900 lb. to be compatible with Falcon demonstration vehicle lift capabilities fiom Wallops, and will be delivered to the Falcon demonstration orbit - 100 nautical mile circular altitude.

  5. Determination of spent nuclear fuel assembly multiplication with the differential die-away self-interrogation instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexis C. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, Marek; Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-09-01

    We present a novel method for determining the multiplication of a spent nuclear fuel assembly with a Differential Die-Away Self-Interrogation (DDSI) instrument. The signal, which is primarily created by thermal neutrons, is measured with four {sup 3}He detector banks surrounding a spent fuel assembly. The Rossi-alpha distribution (RAD) at early times reflects coincident events from single fissions as well as fission chains. Because of this fact, the early time domain contains information about both the fissile material and spontaneous fission material in the assembly being measured. A single exponential function fit to the early time domain of the RAD has a die-away time proportional to the spent fuel assembly (SFA) multiplication. This correlation was tested by simulating assay of 44 different SFAs with the DDSI instrument. The SFA multiplication was determined with a variance of 0.7%.

  6. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    Science.gov (United States)

    Ice, G. E.; Larson, B. C.; Liu, W.; Barabash, R. I.; Specht, E. D.; Pang, J. W. L.; Budai, J. D.; Tischler, J. Z.; Khounsary, A.; Liu, C.; Macrander, A. T.; Assoufid, L.

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization.

  7. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    International Nuclear Information System (INIS)

    Ice, G.E.; Larson, Ben C.; Liu, Wenjun; Barabash, Rozaliya; Specht, Eliot D; Pang, Judy; Budai, John D.; Tischler, Jonathan Zachary; Khounsary, Ali; Liu, Chian; Macrander, Albert T.; Assoufid, Lahsen

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization

  8. The Student Actions Coding Sheet (SACS): An Instrument for Illuminating the Shifts toward Student-Centered Science Classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Abd-Hamid, Nor Hashidah

    2011-01-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3)…

  9. INSTRUMENTS OF SUPPORT FOR RESEARCH AND DEVELOPMENT FUNDED BY LEADING DOMESTIC AND INTERNATIONAL SCIENCE FOUNDATIONS

    Directory of Open Access Journals (Sweden)

    Irina E. Ilina

    2017-06-01

    Full Text Available Introduction: one of the key aspects of the knowledge economy development is the growing significance of the results of research and development. The education and basic research play a key role in this process. Funding for education and fundamental science is carried out mainly at the expense of the state resources, including a system of foundations for scientific, engineering and innovation activities in Russia. The purpose of this article is to present recommendations for improving the tools of domestic foundations in funding fundamental research and development, including education and training. The propositions are made with a comparative analysis of the domestic and foreign science foun dations’ activities. Materials and Methods: the authors used analysis, comparison, induction, deduction, graphical analysis, generalisation and other scientific methods during the study. Results: the lack of comparability between domestic and foreign scientific funds in the volume of funding allocated for basic research and development is revealed. This situation affects the scientific research. The foreign foundations have a wide range of instruments to support research projects at all stages of the life cycle of grants for education and training prior to release of an innovative product to market (the use of “innovation elevator” system. The Russian national scientific foundations have no such possibilities. The authors guess that the Russian organisations ignore some of the instruments for supporting research and development. Use of these tools could enhance the effectiveness of research projects. According to the study of domestic and foreign experience in supporting research and development, the authors proposed a matrix composed of instruments for support in the fields of basic scientific researches and education with such phases of the project life cycle as “research” and “development”. Discussion and Conclusions: the foreign science

  10. Science Teaching Efficacy of Preservice Elementary Teachers: Examination of the Multiple Factors Reported as Influential

    Science.gov (United States)

    Tastan Kirik, Özgecan

    2013-01-01

    This study explores the science teaching efficacy beliefs of preservice elementary teachers and the relationship between efficacy beliefs and multiple factors such as antecedent factors (participation in extracurricular activities and number of science and science teaching methods courses taken), conceptual understanding, classroom management…

  11. Can Reliability of Multiple Component Measuring Instruments Depend on Response Option Presentation Mode?

    Science.gov (United States)

    Menold, Natalja; Raykov, Tenko

    2016-01-01

    This article examines the possible dependency of composite reliability on presentation format of the elements of a multi-item measuring instrument. Using empirical data and a recent method for interval estimation of group differences in reliability, we demonstrate that the reliability of an instrument need not be the same when polarity of the…

  12. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.

    Science.gov (United States)

    Ryu, Jiwon; Choi, Jaesoon; Kim, Hee Chan

    2013-01-01

    Robot-assisted minimally invasive surgery is effective for operations in limited space. Enhancing safety based on automatic tracking of surgical instrument position to prevent inadvertent harmful events such as tissue perforation or instrument collisions could be a meaningful augmentation to current robotic surgical systems. A vision-based instrument tracking scheme as a core algorithm to implement such functions was developed in this study. An automatic tracking scheme is proposed as a chain of computer vision techniques, including classification of metallic properties using k-means clustering and instrument movement tracking using similarity measures, Euclidean distance calculations, and a Kalman filter algorithm. The implemented system showed satisfactory performance in tests using actual robot-assisted surgery videos. Trajectory comparisons of automatically detected data and ground truth data obtained by manually locating the center of mass of each instrument were used to quantitatively validate the system. Instruments and collisions could be well tracked through the proposed methods. The developed collision warning system could provide valuable information to clinicians for safer procedures. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Integral Methodological Pluralism in Science Education Research: Valuing Multiple Perspectives

    Science.gov (United States)

    Davis, Nancy T.; Callihan, Laurie P.

    2013-01-01

    This article examines the multiple methodologies used in educational research and proposes a model that includes all of them as contributing to understanding educational contexts and research from multiple perspectives. The model, based on integral theory (Wilber in a theory of everything. Shambhala, Boston, 2000) values all forms of research as…

  14. Latest developments of neutron scattering instrumentation at the Juelich Centre for Neutron Science

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2013-01-01

    Jülich Centre for Neutron Science (JCNS) is operating a number of world-class neutron scattering instruments situated at the most powerful and advanced neutron sources (FRM II, ILL and SNS) and is continuously undertaking significant efforts in the development and upgrades to keep this instrumentation in line with the continuously changing scientific request. These developments are mostly based upon the latest progress in neutron optics and polarized neutron techniques. For example, the low-Q limit of the suite of small angle-scattering instruments has been extended to 4·10 -5 Å -1 by the successful use of focusing optics. A new generation of correction elements for the neutron spin-echo spectrometer has allowed for the use of the full field integral available, thus pushing further the instrument resolution. A significant progress has been achieved in the developments of 3 He neutron spin filters for purposes of the wide-angle polarization analysis for off-specular reflectometry and (grazing incidence) small-angle neutron scattering, e.g. the on-beam polarization of 3 He in large cells is allowing to achieve a high neutron beam polarization without any degradation in time. The wide Q-range polarization analysis using 3 He neutron spin filters has been implemented for small-angle neutron scattering that lead to the reduction up to 100 times of the intrinsic incoherent background from non-deuterated biological molecules. Also the work on wide-angle XYZ magnetic cavities (Magic PASTIS) will be presented. (author)

  15. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery.

    Science.gov (United States)

    He, Chao; Wang, Shuxin; Sang, Hongqiang; Li, Jinhua; Zhang, Linan

    2014-09-01

    Force sensing for robotic surgery is limited by the size of the instrument, friction and sterilization requirements. This paper presents a force-sensing instrument to avoid these restrictions. Operating forces were calculated according to cable tension. Mathematical models of the force-sensing system were established. A force-sensing instrument was designed and fabricated. A signal collection and processing system was constructed. The presented approach can avoid the constraints of space limits, sterilization requirements and friction introduced by the transmission parts behind the instrument wrist. Test results showed that the developed instrument has a 0.03 N signal noise, a 0.05 N drift, a 0.04 N resolution and a maximum error of 0.4 N. The validation experiment indicated that the operating and grasping forces can be effectively sensed. The developed force-sensing system can be used in minimally invasive robotic surgery to construct a force-feedback system. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments

    Directory of Open Access Journals (Sweden)

    Kenji Nakajima

    2017-11-01

    Full Text Available The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex (J-PARC, is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

  17. Hunting down the chimera of multiple disciplinarity in conservation science.

    Science.gov (United States)

    Pooley, Simon P; Mendelsohn, J Andrew; Milner-Gulland, E J

    2014-02-01

    The consensus is that both ecological and social factors are essential dimensions of conservation research and practice. However, much of the literature on multiple disciplinary collaboration focuses on the difficulties of undertaking it. This review of the challenges of conducting multiple disciplinary collaboration offers a framework for thinking about the diversity and complexity of this endeavor. We focused on conceptual challenges, of which 5 main categories emerged: methodological challenges, value judgments, theories of knowledge, disciplinary prejudices, and interdisciplinary communication. The major problems identified in these areas have proved remarkably persistent in the literature surveyed (c.1960-2012). Reasons for these failures to learn from past experience include the pressure to produce positive outcomes and gloss over disagreements, the ephemeral nature of many such projects and resulting lack of institutional memory, and the apparent complexity and incoherence of the endeavor. We suggest that multiple disciplinary collaboration requires conceptual integration among carefully selected multiple disciplinary team members united in investigating a shared problem or question. We outline a 9-point sequence of steps for setting up a successful multiple disciplinary project. This encompasses points on recruitment, involving stakeholders, developing research questions, negotiating power dynamics and hidden values and conceptual differences, explaining and choosing appropriate methods, developing a shared language, facilitating on-going communications, and discussing data integration and project outcomes. Although numerous solutions to the challenges of multiple disciplinary research have been proposed, lessons learned are often lost when projects end or experienced individuals move on. We urge multiple disciplinary teams to capture the challenges recognized, and solutions proposed, by their researchers while projects are in process. A database of well

  18. Dual use research: investigation across multiple science disciplines.

    Science.gov (United States)

    Oltmann, Shannon

    2015-04-01

    Most recent studies of dual use research have focused on the life sciences, although some researchers have suggested that dual use research occurs across many disciplines. This research is an initial investigation into the prevalence of dual use research in other scientific disciplines by surveying senior editors of scientific journals, drawn from Journal Citation Reports. The survey was emailed to 7,500 journal editors with a response rate of 10.1 %. Approximately 4.8 % of life science editors reported they had to consider whether to publish dual use research and 38.9 % said they decided to not publish the research in question. In disciplines other than the life sciences, 7.2 % of editors from other science disciplines reported that they had to consider whether to publish dual use research, and 48.4 % declined to publish it. The survey investigated relationships between dual use and the journal's source of funding and place of publication, but no relationships were found. Further research is needed to better understand the occurrence of dual use research in other science disciplines.

  19. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    Science.gov (United States)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 microns, and delivered to instruments in the body of the rover. A drilled sample of sediment in outcrop is anticipated. At the time of writing this abstract, promising outcrops are

  20. Development and Large-Scale Validation of an Instrument to Assess Arabic-Speaking Students' Attitudes Toward Science

    Science.gov (United States)

    Abd-El-Khalick, Fouad; Summers, Ryan; Said, Ziad; Wang, Shuai; Culbertson, Michael

    2015-11-01

    This study is part of a large-scale project focused on 'Qatari students' Interest in, and Attitudes toward, Science' (QIAS). QIAS aimed to gauge Qatari student attitudes toward science in grades 3-12, examine factors that impact these attitudes, and assess the relationship between student attitudes and prevailing modes of science teaching in Qatari schools. This report details the development and validation of the 'Arabic-Speaking Students' Attitudes toward Science Survey' (ASSASS), which was specifically developed for the purposes of the QIAS project. The theories of reasoned action and planned behavior (TRAPB) [Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes (pp. 173-221). Mahwah, NJ: Erlbaum] guided the instrument development. Development and validation of the ASSASS proceeded in 3 phases. First, a 10-member expert panel examined an initial pool of 74 items, which were revised and consolidated into a 60-item version of the instrument. This version was piloted with 369 Qatari students from the target schools and grade levels. Analyses of pilot data resulted in a refined version of the ASSASS, which was administered to a national probability sample of 3027 participants representing all students enrolled in grades 3-12 in the various types of schools in Qatar. Of the latter, 1978 students completed the Arabic version of the instrument. Analyses supported a robust, 5-factor model for the instrument, which is consistent with the TRAPB framework. The factors were: Attitudes toward science and school science, unfavorable outlook on science, control beliefs about ability in science, behavioral beliefs about the consequences of engaging with science, and intentions to pursue science.

  1. Development and Validation of an Instrument to Measure Students' Motivation and Self-Regulation in Science Learning

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill; Fraser, Barry

    2011-10-01

    Students' motivational beliefs and self-regulatory practices have been identified as instrumental in influencing the engagement of students in the learning process. An important aim of science education is to empower students by nurturing the belief that they can succeed in science learning and to cultivate the adaptive learning strategies required to help to bring about that success. This article reports the development and validation of an instrument to measure salient factors related to the motivation and self-regulation of students in lower secondary science classrooms. The development of the instrument involved identifying key determinants of students' motivation and self-regulation in science learning based on theoretical and research underpinnings. Once the instrument was developed, a pilot study involving 52 students from two Grade 8 science classes was undertaken. Quantitative data were collected from 1,360 students in 78 classes across Grades 8, 9, and 10, in addition to in-depth qualitative information gathered from 10 experienced science teachers and 12 Grade 8 students. Analyses of the data suggest that the survey has strong construct validity when used with lower secondary students. This survey could be practically valuable as a tool for gathering information that may guide classroom teachers in refocusing their teaching practices and help to evaluate the effectiveness of intervention programmes.

  2. In Situ Analysis of Martian Phyllosilicates Using the Chemin Minerological Instrument on Mars Science Laboratory

    Science.gov (United States)

    Blake, David F.

    2008-01-01

    The CheMin minerological instrument on Mars Science Laboratory (MSL'09) [1] will return quantitive Xray diffraction data (XRD) and quantative X-ray fluorescence data (XRF;14

  3. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    Science.gov (United States)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  4. A Safe Cooperative Framework for Atmospheric Science Missions with Multiple Heterogeneous UAS using Piecewise Bezier Curves

    Science.gov (United States)

    Mehdi, S. Bilal; Puig-Navarro, Javier; Choe, Ronald; Cichella, Venanzio; Hovakimyan, Naira; Chandarana, Meghan; Trujillo, Anna; Rothhaar, Paul M.; Tran, Loc; Neilan, James H.; hide

    2016-01-01

    Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.

  5. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    Science.gov (United States)

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payre, Valerie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton E.; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick J.; Gasnault, Olivier; Maurice, Sylvestre

    2017-01-01

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.

  6. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments

    Directory of Open Access Journals (Sweden)

    A. Hilboll

    2013-04-01

    Full Text Available Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term dataset of tropospheric pollution. However, the observations differ in spatial resolution, local time of measurement, viewing geometry, and other details. All these factors can severely impact the retrieved NO2 columns. In this study, we present three ways to account for instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving the individual instruments' spatial resolutions. For combining measurements from GOME and SCIAMACHY into one consistent time series, we develop a method to explicitly account for the instruments' difference in ground pixel size (40 × 320 km2 vs. 30 × 60 km2. This is especially important when analysing NO2 changes over small, localised sources like, e.g. megacities. The method is based on spatial averaging of the measured earthshine spectra and extraction of a spatial pattern of the resolution effect. Furthermore, two empirical corrections, which summarise all instrumental differences by including instrument-dependent offsets in a fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series, and to an extended dataset comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution. Compared to previous studies, the longer study period leads to significantly reduced uncertainties. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over east-central China tripling from 1996 to 2011. All parts of the developed world

  7. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    Science.gov (United States)

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, Christophe; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  8. Science and the Large Hadron Collider: a probe into instrumentation, periodization and classification

    CERN Document Server

    Roy, Arpita

    2012-01-01

    On September 19, 2008, the Large Hadron Collider (LHC) at CERN, Switzerland, began the world’s highest energy experiments as a probe into the structure of matter and forces of nature. Just nine days after the gala start-up, an explosion occurred in the LHC tunnel that brought the epic collider to a complete standstill. In light of the catastrophic incident that disrupted the operation of the LHC, the paper investigates the relation of temporality to the cycle of work in science, and raises the question: What kind of methodological value should we ascribe to events such as crises or breakdowns? Drawing upon and integrating classical anthropological themes with two and a half years of fieldwork at the LHC particle accelerator complex, the paper explores how the incident in September, which affected the instrument, acquaints us with the distribution of work in the laboratory. The incident discloses that the organization of science is not a homogenous ensemble, but marked by an enormous diversity of tasks and p...

  9. View of Nature of Science (VNOS Form B: An Instrument for Assessing Preservice Teachers View of Nature of Science at Borneo University Tarakan

    Directory of Open Access Journals (Sweden)

    Listiani Listiani

    2017-03-01

    Full Text Available NOS form B is an instrument that has been developed and revised to assess the view of nature of science of preservice science teachers through nature of science aspects.Indeed, students and teachers have to have the view of nature of science to avoid misconceptions of science concepts. Unfortunately, research on the view of Nature of Science is less conducted in Indonesia. This is a qualitative research that was conducted in Borneo University Tarakan. Respondents are preservice biology teachers in the sixth semester. The first step of this research is translating and adapting the VNOS form B into Bahasa Indonesia to make sure that the instrument is culturally fit to Indonesian and the transadapted instrument then given to the respondents. The result shows that the VNOS form B can be applied to assess the view of nature of science of preservice biology teachers. However, the result also shows that most of preservice biology teachers have few understanding on aspects of nature of scince.

  10. High-Speed On-Board Data Processing for Science Instruments: HOPS

    Science.gov (United States)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  11. The Student Actions Coding Sheet (SACS): An instrument for illuminating the shifts toward student-centered science classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Hashidah Abd-Hamid, Nor

    2011-07-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3) refinement of the item pool based on reviewer comments, (4) pilot testing of the instrument, and (5) statistical reliability and item analysis leading to additional refinement and finalization of the instrument. In the field test, the instrument consisted of 26 items separated into four categories originally derived from student-centered instruction literature and used by the authors to sort student actions in previous research. The SACS was administered across 22 Grade 6-8 classrooms by 22 groups of observers, with a total of 67 SACS ratings completed. The finalized instrument was found to be internally consistent, with acceptable estimates from inter-rater intraclass correlation reliability coefficients at the p Observation Protocol. Based on the analyses completed, the SACS appears to be a useful instrument for inclusion in comprehensive assessment packages for illuminating the extent to which student-centered actions are occurring in science classrooms.

  12. Effects of extinction in multiple contexts on renewal of instrumental responses.

    Science.gov (United States)

    Bernal-Gamboa, Rodolfo; Nieto, Javier; Uengoer, Metin

    2017-09-01

    In two experiments with rats, we investigated the effects of using multiple contexts during extinction on renewal of lever-pressing behavior. During the first phase of both experiments, rats were reinforced to press a lever for food in Context A. Then, responses underwent extinction. For half of the animals, extinction sessions were conducted in a single context, whereas the other half received extinction in three different contexts. In Experiment 1, we observed that extinction in multiple contexts eliminated ABC renewal, but had no detectable impact on ABA renewal. Experiment 2 revealed that conducting extended extinction training in multiple contexts attenuated ABA renewal. Theoretical and clinical implications of the present findings are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Academic Research Equipment in the Physical and Computer Sciences and Engineering. An Analysis of Findings from Phase I of the National Science Foundation's National Survey of Academic Research Instruments and Instrumentation Needs.

    Science.gov (United States)

    Burgdorf, Kenneth; White, Kristine

    This report presents information from phase I of a survey designed to develop quantitative indicators of the current national stock, cost/investment, condition, obsolescence, utilization, and need for major research instruments in academic settings. Data for phase I (which focused on the physical and computer sciences and engineering) were…

  14. Instrumentation, control and data acquisition system with multiple configurations for test in nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Chiara, E-mail: chiara.monti@enea.it; Neri, Carlo; Pollastrone, Fabio

    2015-10-15

    Highlights: • ENEA developed and characterized a first prototype of the In-Vessel Viewing System (IVVS) probe for ITER. • Piezo motor technology to be used in IVVS probe was tested in neutrons, gamma radiations, high temperature, vacuum and high magnetic fields. • A general architecture of the Data Acquisition and Control System (DACS) was defined and then specialized for each test. • The test campaign has validated instrumentation solutions, which can be effectively used in final IVVS implementation or other ITER diagnostics or applications. - Abstract: The In-Vessel Viewing System is a 3D laser scanning system which will be used to inspect the blanket first wall in ITER. To make the IVVS probe design compatible with the harsh environmental conditions present in ITER, a test campaign was performed in 2012–2013 to verify the adequacy of the main components of the IVVS probe. The IVVS components inspected were an optical encoder, passive components and two customized ultrasonic piezoceramic motors that were instrumented with various sensors. A general architecture of the Data Acquisition and Control System (DACS) was defined and then specialized for each test. To be suitable for this test campaign, the DACS had to host various I/O modules and to properly interface the driver of the customized piezo motors, in order to permit the full control of the test and the acquisition of experimental data. This paper presents the instrumentation solutions designed and implemented for different facilities constraints and the related DACS developed in four specialized versions for the described test campaign.

  15. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  16. Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments

    Science.gov (United States)

    van Peet, Jacob C. A.; van der A, Ronald J.; Kelder, Hennie M.; Levelt, Pieternel F.

    2018-02-01

    A three-dimensional global ozone distribution has been derived from assimilation of ozone profiles that were observed by satellites. By simultaneous assimilation of ozone profiles retrieved from the nadir looking satellite instruments Global Ozone Monitoring Experiment 2 (GOME-2) and Ozone Monitoring Instrument (OMI), which measure the atmosphere at different times of the day, the quality of the derived atmospheric ozone field has been improved. The assimilation is using an extended Kalman filter in which chemical transport model TM5 has been used for the forecast. The combined assimilation of both GOME-2 and OMI improves upon the assimilation results of a single sensor. The new assimilation system has been demonstrated by processing 4 years of data from 2008 to 2011. Validation of the assimilation output by comparison with sondes shows that biases vary between -5 and +10 % between the surface and 100 hPa. The biases for the combined assimilation vary between -3 and +3 % in the region between 100 and 10 hPa where GOME-2 and OMI are most sensitive. This is a strong improvement compared to direct retrievals of ozone profiles from satellite observations.

  17. Compartmentalization in environmental science and the perversion of multiple thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Burkart, W. [Institute of Radiation Hygiene of the Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, D 85716 Oberschleissheim, Muenchen (Germany)

    2000-04-17

    Nature and living organisms are separated into compartments. The self-assembly of phospholipid micelles was as fundamental to the emergence of life and evolution as the formation of DNA precursors and their self-replication. Also, modern science owes much of its success to the study of single compartments, the dissection of complex structures and event chains into smaller study objects which can be manipulated with a set of more and more sophisticated equipment. However, in environmental science, these insights are obtained at a price: firstly, it is difficult to recognize, let alone to take into account what is lost during fragmentation and dissection; and secondly, artificial compartments such as scientific disciplines become self-sustaining, leading to new and unnecessary boundaries, subtly framing scientific culture and impeding progress in holistic understanding. The long-standing but fruitless quest to define dose-effect relationships and thresholds for single toxic agents in our environment is a central part of the problem. Debating single-agent toxicity in splendid isolation is deeply flawed in view of a modern world where people are exposed to low levels of a multitude of genotoxic and non-genotoxic agents. Its potential danger lies in the unwarranted postulation of separate thresholds for agents with similar action. A unifying concept involving toxicology and radiation biology is needed for a full mechanistic assessment of environmental health risks. The threat of synergism may be less than expected, but this may also hold for the safety margin commonly thought to be a consequence of linear no-threshold dose-effect relationship assumptions.

  18. The Concept Mastery in the Perspective of Gender of Junior High School Students on Eclipse Theme in Multiple Intelligences-based of Integrated Earth and Space Science Learning

    Science.gov (United States)

    Liliawati, W.; Utama, J. A.; Mursydah, L. S.

    2017-03-01

    The purpose of this study is to identify gender-based concept mastery differences of junior high school students after the implementation of multiple intelligences-based integrated earth and space science learning. Pretest-posttest group design was employed to two different classes at one of junior high school on eclipse theme in Tasikmalaya West Java: one class for boys (14 students) and one class of girls (18 students). The two-class received same treatment. The instrument of concepts mastery used in this study was open-ended eight essay questions. Reliability test result of this instrument was 0.9 (category: high) while for validity test results were high and very high category. We used instruments of multiple intelligences identification and learning activity observation sheet for our analysis. The results showed that normalized N-gain of concept mastery for boys and girls were improved, respectively 0.39 and 0.65. Concept mastery for both classes differs significantly. The dominant multiple intelligences for boys were in kinesthetic while girls dominated in the rest of multiple intelligences. Therefor we concluded that the concept mastery was influenced by gender and student’s multiple intelligences. Based on this finding we suggested to considering the factor of gender and students’ multiple intelligences given in the learning activity.

  19. Hilbert-Huang transform based instrumental assessment of intention tremor in multiple sclerosis

    Science.gov (United States)

    Carpinella, Ilaria; Cattaneo, Davide; Ferrarin, Maurizio

    2015-08-01

    Objective. This paper describes a method to extract upper limb intention tremor from gyroscope data, through the Hilbert-Huang transform (HHT), a technique suitable for the study of nonlinear and non-stationary processes. The aims of the study were to: (i) evaluate the method’s ability to discriminate between healthy controls and MS subjects; (ii) validate the proposed procedure against clinical tremor scores assigned using Fahn’s tremor rating scale (FTRS); and (iii) compare the performance of the HHT-based method with that of linear band-pass filters. Approach. HHT was applied on gyroscope data collected on 20 MS subjects and 13 healthy controls (CO) during finger-to-nose tests (FNTs) instrumented with an inertial sensor placed on the hand. The results were compared to those obtained after traditional linear filtering. The tremor amplitude was quantified with instrumental indexes (TIs) and clinical FTRS ratings. Main results. The TIs computed after HHT-based filtering discriminated between CO and MS subjects with clinically-detected intention tremor (MS_T). In particular, TIs were significantly higher in the final part of the movement (TI2) with respect to the first part (TI1), and, for all components (X, Y, Z), MST showed a TI2 significantly higher than in CO subjects. Moreover, the HHT detected subtle alterations not visible from clinical ratings, as TI2 (Z-component) was significantly increased in MS subjects without clinically-detected tremor (MS_NT). The method’s validity was demonstrated by significant correlations between clinical FTRS scores and TI2 related to X (rs = 0.587, p = 0.006) and Y (rs = 0.682, p < 0.001) components. Contrarily, fewer differences among the groups and no correlation between instrumental and clinical indexes emerged after traditional filtering. Significance. The present results supported the use of the HHT-based procedure for a fully-automated quantitative and objective measure of intention tremor in MS, which can overcome

  20. van Eijck and Roth's utilitarian science education: why the recalibration of science and traditional ecological knowledge invokes multiple perspectives to protect science education from being exclusive

    Science.gov (United States)

    Mueller, Michael P.; Tippins, Deborah J.

    2010-12-01

    This article is a philosophical analysis of van Eijck and Roth's (2007) claim that science and traditional ecological knowledge (TEK) should be recalibrated because they are incommensurate, particular to the local contexts in which they are practical. In this view, science maintains an incommensurate status as if it is a "fundamental" basis for the relative comparison of other cultural knowledges, which reduces traditional knowledge to a status of in relation to the prioritized (higher)-status of natural sciences. van Eijck and Roth reject epistemological Truth as a way of thinking about sciences in science education. Rather they adopt a utilitarian perspective of cultural-historical activity theory to demonstrate when traditional knowledge is considered science and when it is not considered science, for the purposes of evaluating what should be included in U.S. science education curricula. There are several challenges for evaluating what should be included in science education when traditional knowledges and sciences are considered in light of a utilitarian analysis. Science as diverse, either practically local or theoretically abstract, is highly uncertain, which provides opportunities for multiple perspectives to enlarge and protect the natural sciences from exclusivity. In this response to van Eijck and Roth, we make the case for considering dialectical relationships between science and TEK in order to ensure cultural diversity in science education, as a paradigm. We also emphasize the need to (re)dissolve the hierarchies and dualisms that may emerge when science is elevated in status in comparison with other knowledges. We conclude with a modification to van Eijck and Roth's perspective by recommending a guiding principle of cultural diversity in science education as a way to make curriculum choices. We envision this principle can be applied when evaluating science curricula worldwide.

  1. Sensory and Instrumental Flavor Changes in Green Tea Brewed Multiple Times

    Science.gov (United States)

    Lee, Jeehyun; Chambers, Delores; Chambers, Edgar

    2013-01-01

    Green teas in leaf form are brewed multiple times, a common selling point. However, the flavor changes, both sensory and volatile compounds, of green teas that have been brewed multiple times are unknown. The objectives of this study were to determine how the aroma and flavor of green teas change as they are brewed multiple times, to determine if a relationship exists between green tea flavors and green tea volatile compounds, and to suggest the number of times that green tea leaves can be brewed. The first and second brews of the green tea samples provided similar flavor intensities. The third and fourth brews provided milder flavors and lower bitterness and astringency when measured using descriptive sensory analysis. In the brewed liquor of green tea mostly linalool, nonanal, geraniol, jasmone, and β-ionone volatile compounds were present at low levels (using gas chromatography-mass spectrometry). The geraniol, linalool, and linalool oxide compounds in green tea may contribute to the floral/perfumy flavor. Green teas in leaf form may be brewed up to four times: the first two brews providing stronger flavor, bitterness, and astringency whereas the third and fourth brews will provide milder flavor, bitterness, and astringency. PMID:28239138

  2. Investigating the Quality of Project-Based Science and Technology Learning Environments in Elementary School: A Critical Review of Instruments

    Science.gov (United States)

    Thys, Miranda; Verschaffel, Lieven; Van Dooren, Wim; Laevers, Ferre

    2016-01-01

    This paper provides a systematic review of instruments that have the potential to measure the quality of project-based science and technology (S&T) learning environments in elementary school. To this end, a comprehensive literature search was undertaken for the large field of S&T learning environments. We conducted a horizontal bottom-up…

  3. Improving Student Perceptions of Science through the Use of State-of-the-Art Instrumentation in General Chemistry Laboratory

    Science.gov (United States)

    Aurentz, David J.; Kerns, Stefanie L.; Shibley, Lisa R.

    2011-01-01

    Access to state-of-the-art instrumentation, namely nuclear magnetic resonance (NMR) spectroscopy, early in the college curriculum was provided to undergraduate students in an effort to improve student perceptions of science. Proton NMR spectroscopy was introduced as part of an aspirin synthesis in a guided-inquiry approach to spectral…

  4. High-Speed On-Board Data Processing for Science Instruments

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  5. Intellectual property as an instrument of interaction between government, business, science and society

    Science.gov (United States)

    Nikitenko, S. M.; Mesyats, M. A.; Rozhkova, O. V.

    2017-09-01

    This article is devoted to research the characteristics associated with pledge of intellectual property in foreign and domestic practice. Holding intellectual property objects’ pledge transactions accelerates the pace of creating innovative systems in the economy. In present paper the modern scheme for bank loan, financing secured with patented intellectual property is researched. The authors give the brief description of features of pledge security registration for loans in some Europe countries. The Europe Union experience shows that as collateral for monetary loans can be used trademarks, patents on the intellectual property, as well as their registration requests. Russian experience of the pledge operations of the intellectual property is too small. This way of bank lending is at an early stage of development. The main constraint is the difficulty of assessing the value of the pledged intellectual property as intangible assets. However, taking into account world and domestic practice this direction for Russian market is estimated by the authors as promising one. Pledge transactions take place within the framework of the Quadruple-Helix Model concept that involves four participants: “science”, “business”, “government” and “society”. Intellectual property are estimates by the authors as an instrument of interaction between government, business, science and society.

  6. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    Science.gov (United States)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  7. The SPICE concept - An approach to providing geometric and other ancillary information needed for interpretation of data returned from space science instruments

    Science.gov (United States)

    Acton, Charles H., Jr.

    1990-01-01

    The Navigation Ancillary Information Facility (NAIF), acting under the direction of NASA's Office of Space Science and Applications, and with substantial participation of the planetary science community, is designing and implementing an ancillary data system - called SPICE - to assist scientists in planning and interpreting scientific observations taken from spaceborne instruments. The principal objective of the implemented SPICE system is that it will hold the essential geometric and related ancillary information needed to recover the full value of science instrument data, and that it will facilitate correlations of individual instrument datasets with data obtained from other instruments on the same or other spacecraft.

  8. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Dual-Tasking in Multiple Sclerosis - Implications for a Cognitive Screening Instrument.

    Science.gov (United States)

    Beste, Christian; Mückschel, Moritz; Paucke, Madlen; Ziemssen, Tjalf

    2018-01-01

    The monitoring of cognitive functions is central to the assessment and consecutive management of multiple sclerosis (MS). Though, especially cognitive processes that are central to everyday behavior like dual-tasking are often neglected. We examined dual-task performance using a psychological-refractory period (PRP) task in N = 21 patients and healthy controls and conducted standard neuropsychological tests. In dual-tasking, MS patients committed more erroneous responses when dual-tasking was difficult. In easier conditions, performance of MS patients did not differ to controls. Interestingly, the response times were generally not affected by the difficulty of the dual task, showing that the deficits observed do not reflect simple motor deficits or deficits in information processing speed but point out deficits in executive control functions and response selection in particular. Effect sizes were considerably large with d ∼0.80 in mild affected patients and the achieved power was above 99%. There are cognitive control and dual tasking deficits in MS that are not attributable to simple motor speed deficits. Scaling of the difficulty of dual-tasking makes the test applied suitable for a wide variety of MS-patients and may complement neuropsychological assessments in clinical care and research setting.

  10. EU Science Diplomacy and Framework Programs as Instruments of STI Cooperation

    Directory of Open Access Journals (Sweden)

    К. А. Ibragimova

    2017-01-01

    Full Text Available This article examines the tools that the EU in interactions with third countries in the field of STI uses. The EU is a pioneer in the use of science and technology in the international arena, the creation of strategic bilateral agreements on science and technology and the conduct of political dialogues at the highest political level (at the country and regional levels. The EU actively uses its foreign policy instruments of influence, including the provision of access to its framework programs to researchers from third countries, as well as scientific diplomacy. The success of these programs and scientific diplomacy shows the effectiveness of the EU as a global actor. In its foreign policy global innovation strategy, the EU proceeds from the premise that no state in the world today can cope independently with modern global challenges such as climate change, migration, terrorism, etc. Therefore, the solution of these issues requires both an expert evaluation from an independent world scientific community, and the perseverance of diplomats and officials of branch ministries of national states capable of conveying the views of their government in international negotiations and defending national interests of the country to find a solution that suits everyone. The EU has the resources to create a "cumulative effect" by developing and applying common norms on the territory of theUnion, analyzing the innovation policies of member states and the possibility of sharing best practices. At the same time, the EU shares its vision of problems, values and priorities with partners and uses the tools of "soft power" (including its smart and normative force and scientific diplomacy in the field of STI. The soft power of the EU in the field of STI lies in the attractiveness of the EU as a research area in which it is possible to conduct modern high-quality international research with the involvement of scientific teams from different countries in both physical

  11. Decoupling Solar Variability and Instrument Trends Using the Multiple Same-Irradiance-Level (MuSIL) Analysis Technique

    Science.gov (United States)

    Woods, Thomas N.; Eparvier, Francis G.; Harder, Jerald; Snow, Martin

    2018-05-01

    The solar spectral irradiance (SSI) dataset is a key record for studying and understanding the energetics and radiation balance in Earth's environment. Understanding the long-term variations of the SSI over timescales of the 11-year solar activity cycle and longer is critical for many Sun-Earth research topics. Satellite measurements of the SSI have been made since the 1970s, most of them in the ultraviolet, but recently also in the visible and near-infrared. A limiting factor for the accuracy of previous solar variability results is the uncertainties for the instrument degradation corrections, which need fairly large corrections relative to the amount of solar cycle variability at some wavelengths. The primary objective of this investigation has been to separate out solar cycle variability and any residual uncorrected instrumental trends in the SSI measurements from the Solar Radiation and Climate Experiment (SORCE) mission and the Thermosphere, Mesosphere, Ionosphere, Energetic, and Dynamics (TIMED) mission. A new technique called the Multiple Same-Irradiance-Level (MuSIL) analysis has been developed, which examines an SSI time series at different levels of solar activity to provide long-term trends in an SSI record, and the most common result is a downward trend that most likely stems from uncorrected instrument degradation. This technique has been applied to each wavelength in the SSI records from SORCE (2003 - present) and TIMED (2002 - present) to provide new solar cycle variability results between 27 nm and 1600 nm with a resolution of about 1 nm at most wavelengths. This technique, which was validated with the highly accurate total solar irradiance (TSI) record, has an estimated relative uncertainty of about 5% of the measured solar cycle variability. The MuSIL results are further validated with the comparison of the new solar cycle variability results from different solar cycles.

  12. The Validity of the earth and space science learning materials with orientation on multiple intelligences and character education

    Science.gov (United States)

    Liliawati, W.; Utama, J. A.; Ramalis, T. R.; Rochman, A. A.

    2018-03-01

    Validation of the Earth and Space Science learning the material in the chapter of the Earth's Protector based on experts (media & content expert and practitioners) and junior high school students' responses are presented. The data came from the development phase of the 4D method (Define, Design, Develop, Dissemination) which consist of two steps: expert appraisal and developmental testing. The instrument employed is rubric of suitability among the book contents with multiple intelligences activities, character education, a standard of book assessment, a questionnaires and close procedure. The appropriateness of the book contents with multiple intelligences, character education and standard of book assessment is in a good category. Meanwhile, students who used the book in their learning process gave a highly positive response; the book was easy to be understood. In general, the result of cloze procedure indicates high readability of the book. As our conclusion is the book chapter of the Earth's Protector can be used as a learning material accommodating students’ multiple intelligences and character internalization.

  13. Exploring multiple intelligences theory in the context of science education: An action research approach

    Science.gov (United States)

    Goodnough, Karen Catherine

    2000-10-01

    Since the publication of Frames of Mind: The Theory in Practice, multiple intelligences, theory (Gardner, 1983) has been used by practitioners in a variety of ways to make teaching and learning more meaningful. However, little attention has been focused on exploring the potential of the theory for science teaching and learning. Consequently, this research study was designed to: (1) explore Howard Gardner's theory of multiple intelligences (1983) and its merit for making science teaching and learning more meaningful; (2) provide a forum for teachers to engage in critical self-reflection about their theory and practice in science education; (3) study the process of action research in the context of science education; and (4) describe the effectiveness of collaborative action research as a framework for teacher development and curriculum development. The study reports on the experiences of four teachers (two elementary teachers, one junior high teacher, and one high school teacher) and myself, a university researcher-facilitator, as we participated in a collaborative action research project. The action research group held weekly meetings over a five-month period (January--May, 1999). The inquiry was a qualitative case study (Stake, 1994) that aimed to understand the perspectives of those directly involved. This was achieved by using multiple methods to collect data: audiotaped action research meetings, fieldnotes, semi-structured interviews, journal writing, and concept mapping. All data were analysed on an ongoing basis. Many positive outcomes resulted from the study in areas such as curriculum development, teacher development, and student learning in science. Through the process of action research, research participants became more reflective about their practice and thus, enhanced their pedagogical content knowledge (Shulman, 1987) in science. Students became more engaged in learning science, gained a greater understanding of how they learn, and experienced a

  14. Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis

    Science.gov (United States)

    Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying

    2012-01-01

    This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…

  15. The Effect of Teaching Strategy Based on Multiple Intelligences on Students' Academic Achievement in Science Course

    Science.gov (United States)

    Abdi, Ali; Laei, Susan; Ahmadyan, Hamze

    2013-01-01

    The purpose of this study was to investigate the effects of Teaching Strategy based on Multiple Intelligences on students' academic achievement in sciences course. Totally 40 students from two different classes (Experimental N = 20 and Control N = 20) participated in the study. They were in the fifth grade of elementary school and were selected…

  16. Improving the Reading Ability of Science Students through Study Groups and Multiple Intelligences

    Science.gov (United States)

    Owolabi, Tunde; Okebukola, Foluso

    2009-01-01

    This study explored the effects of appropriate pedagogical skills (study groups and multiple intelligences) on students' efficiencies in reading skills. It employed a factorial design using three variables. A sample of 90 science students choosing from three intact classes were involved in the study. Data analyses were carried out using mean,…

  17. The MORPG-Based Learning System for Multiple Courses: A Case Study on Computer Science Curriculum

    Science.gov (United States)

    Liu, Kuo-Yu

    2015-01-01

    This study aimed at developing a Multiplayer Online Role Playing Game-based (MORPG) Learning system which enabled instructors to construct a game scenario and manage sharable and reusable learning content for multiple courses. It used the curriculum of "Introduction to Computer Science" as a study case to assess students' learning…

  18. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Science.gov (United States)

    Griffin, Thomas D.; Wiley, Jennifer; Britt, M. Anne; Salas, Carlos R.

    2012-01-01

    The main goal for the current study was to investigate whether individual differences in domain-general thinking dispositions might affect learning from multiple-document inquiry tasks in science. Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be…

  19. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    Science.gov (United States)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  20. The CAREQOL-MS was a useful instrument to measure caregiver quality of life in multiple sclerosis.

    Science.gov (United States)

    Benito-León, Julián; Rivera-Navarro, Jesús; Guerrero, Angel Luis; de Las Heras, Virginia; Balseiro, José; Rodríguez, Elena; Belló, Mireia; Martínez-Martín, Pablo

    2011-06-01

    To develop and test the first specific instrument for assessing caregiver health-related quality of life (HRQOL) in multiple sclerosis (MS) (CAREQOL-MS). Questionnaire items were derived from a literature review and the views of patients, caregivers, and experts. Instrument was reduced after the analyses of caregivers' interviews and experts' opinions. CAREQOL-MS psychometric properties were assessed in 276 MS caregivers. The final version consisted of 24 items (five subscales) and was free of floor or ceiling effects. For subscales, the Cronbach's alpha coefficient ranged from 0.75 to 0.90. The item-total correlation was 0.62-0.74 for subscale I (physical burden/global health); 0.56-0.74 for subscale II (social impact); 0.52-0.62 for subscale III (emotional impact), and 0.58-0.65 for subscale IV (need of help); subscale V (emotional reactions) had only two items. The intraclass correlation coefficient (0.96 for the total score; 0.75-0.95 for subscales) suggested satisfactory reproducibility. Association was close between CAREQOL-MS subscales and the Zarit burden interview and moderate with short form 36 mental/physical components. CAREQOL-MS subscales scores significantly increased (worse HRQOL) with increasing caregivers' age and Expanded Disability Status Scale. The standard error of the measurement ranged from 0.91 to 2.43 for subscales. Our results provided initial evidence of the usefulness and satisfactory psychometric properties of the CAREQOL-MS. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Middle school science teachers' reaction and pedagogical response to high stakes accountability: A multiple case study

    Science.gov (United States)

    Tse, Kenneth

    The purpose of this study was to understand how science teachers reacted to the high stakes accountability and standardized testing in California. In a multiple case study of middle and intermediate schools in Southern California, four research questions focused on the perceptions of secondary science teachers and how they responded to the changes in the accountability specifically geared towards science as a content area, the pedagogical skills teachers were using both outside and inside of the classroom that impact instruction, the pedagogical training received that related specifically to the content standards, the tools or impediments that existed for teachers to successfully utilize these pedagogical methods and types of support and assistance the school site administration and/or school district offered in learning about the California Science Standards and the STAR test. Interviews were conducted with multiple middle/intermediate school teachers, science department chairpersons and school site administrators to gather information about what the classroom teachers were doing pedagogically to improve student performance on the STAR tests. Moreover, the study described the issues that supported the professional development of the teacher and what schools and districts were doing to support them.

  2. The Process of Becoming an Embedded Curriculum Librarian in Multiple Health Sciences Programs.

    Science.gov (United States)

    Wilson, Gwen

    2015-01-01

    Higher education is moving to offer more fully online programs, and the health science fields are no different. These programs are either hybrid or completely online. It is up to the health sciences librarian to adapt services offered by the academic library to these types of courses. This column discusses the multiple ways a librarian can be an embedded librarian in a course using a learning management system (LMS). The process of creating a customized embedded librarian program, results, and lessons learned from the different embedded librarian roles are also discussed.

  3. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Directory of Open Access Journals (Sweden)

    Thomas D. GRIFFIN

    2012-10-01

    Full Text Available The main goal for the current study was to investigate whether individual differences in domaingeneral thinking dispositions might affect learning from multiple-document inquiry tasks in science.Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be different from what has been observed in the past from those documents. Understanding was assessed with two measures: an essay task and an inference verification task. Domain-general thinking dispositions were assessed with a Commitment to Logic, Evidence, and Reasoning (CLEAR thinking scale. The measures of understanding wereuniquely predicted by both reading skills and CLEAR thinking scores, and these effects were not attributable to prior knowledge or interest. The results suggest independent roles for thinkingdispositions and reading ability when students read to learn from multiple-document inquiry tasks in science.

  4. SPESS: A New Instrument for Measuring Student Perceptions in Earth and Ocean Science

    Science.gov (United States)

    Jolley, Allison; Lane, Erin; Kennedy, Ben; Frappé-Sénéclauze, Tom-Pierre

    2012-01-01

    This paper discusses the development and results of a new tool used for measuring shifts in students' perceptions of earth and ocean sciences called the Student Perceptions about Earth Sciences Survey (SPESS). The survey measures where students lie on the novice--expert continuum, and how their perceptions change after taking one or more earth and…

  5. The current practice of using multiple representations in year 4 science classrooms

    Science.gov (United States)

    Chuenmanee, Chanoknat; Thathong, Kongsak

    2018-01-01

    Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.

  6. Identification of multiple intelligences for high school students in theoretical and applied science courses

    Science.gov (United States)

    Wiseman, D. Kim

    Historically educators in the United States have used the Stanford-Binet intelligence test to measure a students' ability in logical/mathematical and linguistic domains. This measurement is being used by a society that has evolved from agrarian and industrial-based economies to what is presently labeled a technological society. As society has changed so have the educational needs of the students who will live in this technological society. This study assessed the multiple intelligences of high school students enrolled in theoretical and applied science (physics and applied physics) courses. Studies have verified that performance and outcomes of students enrolled in these courses are similar in standardized testing but instructional methodology and processes are dissimilar. Analysis of multiple intelligence profiles collected from this study found significant differences in logical/mathematical, bodily/kinesthetic and intrapersonal multiple intelligences of students in theoretical science courses compared to students in applied science courses. Those differences clearly illustrate why it is imperative for educators to expand the definition of intelligence for students entering the new millennium.

  7. Quantitative x-ray microanalysis in an AEM: instrumental considerations and applications to materials science

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1979-01-01

    There are a wide variety of instrumental problems which are present to some degree in all AEM instruments. The nature and magnitude of these artifacts can in some instances preclude the simple quantitative interpretation of the recorded x-ray emission spectrum using a thin-film electron excitation model; however, by judicious modifications to the instrument these complications can be effectively eliminated. The specific operating conditions of the microscope necessarily vary from one analysis to another depending on the type of specimen and experiment being performed. In general, however, the overall performance of the AEM system during x-ray analysis is optimized using the highest attainable incident electron energy; selecting the maximum probe diameter and probe current consistent with experimental limitations; and positioning the x-ray detector in a geometry such that it records information from the electron entrance surface of the specimen

  8. The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure.

    Science.gov (United States)

    Moore, Frederick A; Moore, Ernest E; Billiar, Timothy R; Vodovotz, Yoram; Banerjee, Anirban; Moldawer, Lyle L

    2017-09-01

    The history of the National Institute of General Medical Sciences (NIGMS) Research Centers in Peri-operative Sciences (RCIPS) is the history of clinical, translational, and basic science research into the etiology and treatment of posttraumatic multiple organ failure (MOF). Born out of the activism of trauma and burn surgeons after the Viet Nam War, the P50 trauma research centers have been a nidus of research advances in the field and the training of future academic physician-scientists in the fields of trauma, burns, sepsis, and critical illness. For over 40 years, research conducted under the aegis of this funding program has led to numerous contributions at both the bedside and at the bench. In fact, it has been this requirement for team science with a clinician-scientist working closely with basic scientists from multiple disciplines that has led the RCIPS to its unrivaled success in the field. This review will briefly highlight some of the major accomplishments of the RCIPS program since its inception, how they have both led and evolved as the field moved steadily forward, and how they are responsible for much of our current understanding of the etiology and pathology of MOF. This review is not intended to be all encompassing nor a historical reference. Rather, it serves as recognition to the foresight and support of many past and present individuals at the NIGMS and at academic institutions who have understood the cost of critical illness and MOF to the individual and to society.

  9. Detection Limit of Smectite by Chemin IV Laboratory Instrument: Preliminary Implications for Chemin on the Mars Science Laboratory Mission

    Science.gov (United States)

    Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.

    2011-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.

  10. Influence of multiple clinical use on fatigue resistance of ProTaper rotary nickel-titanium instruments.

    Science.gov (United States)

    Vieira, E P; França, E C; Martins, R C; Buono, V T L; Bahia, M G A

    2008-02-01

    To examine the influence of clinical use on the occurrence of deformation and fracture and on the fatigue resistance of ProTaper rotary instruments. Root canal treatments were performed on patients using the ProTaper rotary system. Ten sets of instruments were used by an experienced endodontist, each set in five molars. Another 10 sets of instruments were used by the same operator, each set in eight molars. In addition, 10 sets of instruments were used, each set in five molars, by undergraduate students with no clinical experience with the system. After clinical use, S1, S2, F1 and F2 instruments were analysed for damage by optical and scanning electron microscopy. The used sets, along with a control group of 12 sets of new instruments, were then tested in a bench device for fatigue resistance. The use of the ProTaper rotary instruments by an experienced endodontist allowed for the cleaning and shaping of the root canal system of up to eight molars without fracture. During the students work, six instruments fractured. Fatigue resistance decreased upon clinical use for all instruments analysed. Fatigue resistance of used instruments was reduced, but no significant change was observed amongst the instruments used for shaping the canals of five and eight molars. Operator experience affected the occurrence of fracture and plastic deformation during shaping.

  11. "Designing Instrument for Science Classroom Learning Environment in Francophone Minority Settings: Accounting for Voiced Concerns among Teachers and Immigrant/Refugee Students"

    Science.gov (United States)

    Bolivar, Bathélemy

    2015-01-01

    The three-phase process "-Instrument for Minority Immigrant Science Learning Environment," an 8-scale, 32-item see Appendix I- (I_MISLE) instrument when completed by teachers provides an accurate description of existing conditions in classrooms in which immigrant and refugee students are situated. Through the completion of the instrument…

  12. The wavelength frame multiplication chopper system for the ESS test beamline at the BER II reactor—A concept study of a fundamental ESS instrument principle

    International Nuclear Information System (INIS)

    Strobl, M.; Bulat, M.; Habicht, K.

    2013-01-01

    Contributing to the design update phase of the European Spallation Source ESS–scheduled to start operation in 2019–a test beamline is under construction at the BER II research reactor at Helmholtz Zentrum Berlin (HZB). This beamline offers experimental test capabilities of instrument concepts viable for the ESS. The experiments envisaged at this dedicated beamline comprise testing of components as well as of novel experimental approaches and methods taking advantage of the long pulse characteristic of the ESS source. Therefore the test beamline will be equipped with a sophisticated chopper system that provides the specific time structure of the ESS and enables variable wavelength resolutions via wavelength frame multiplication (WFM), a fundamental instrument concept beneficial for a number of instruments at ESS. We describe the unique chopper system developed for these purposes, which allows constant wavelength resolution for a wide wavelength band. Furthermore we discuss the implications for the conceptual design for related instrumentation at the ESS

  13. Factor analysis for instruments of science learning motivation and its implementation for the chemistry and biology teacher candidates

    Science.gov (United States)

    Prasetya, A. T.; Ridlo, S.

    2018-03-01

    The purpose of this study is to test the learning motivation of science instruments and compare the learning motivation of science from chemistry and biology teacher candidates. Kuesioner Motivasi Sains (KMS) in Indonesian adoption of the Science Motivation Questionnaire II (SMQ II) consisting of 25 items with a 5-point Likert scale. The number of respondents for the Exploratory Factor Analysis (EFA) test was 312. The Kaiser-Meyer-Olkin (KMO), determinant, Bartlett’s Sphericity, Measures of Sampling Adequacy (MSA) tests against KMS using SPSS 20.0, and Lisrel 8.51 software indicate eligible indications. However testing of Communalities obtained results that there are 4 items not qualified, so the item is discarded. The second test, all parameters of eligibility and has a magnitude of Root Mean Square Error of Approximation (RMSEA), P-Value for the Test of Close Fit (RMSEA <0.05), Goodness of Fit Index (GFI) was good. The new KMS with 21 valid items and composite reliability of 0.9329 can be used to test the level of learning motivation of science which includes Intrinsic Motivation, Sefl-Efficacy, Self-Determination, Grade Motivation and Career Motivation for students who master the Indonesian language. KMS trials of chemistry and biology teacher candidates obtained no significant difference in the learning motivation between the two groups.

  14. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP

    Czech Academy of Sciences Publication Activity Database

    Kletzing, C. A.; Kurth, W. S.; Acuna, M.; MacDowall, R. J.; Torbert, R. B.; Averkamp, T.; Bodet, D.; Bounds, S. R.; Chutter, M.; Connerney, J.; Crawford, D.; Dolan, J. S.; Dvorsky, R.; Hospodarsky, G. B.; Howard, J.; Jordanova, V.; Johnson, R. A.; Kirchner, D. L.; Mokrzycki, B.; Needell, G.; Odom, J.; Mark, D.; Pfaff Jr, R.; Phillips, J. R.; Piker, C. V.; Remington, S. L.; Rowland, D.; Santolík, Ondřej; Schnurr, R.; Sheppard, D.; Smith, C. W.; Thorne, R. M.; Tyler, J.

    2013-01-01

    Roč. 179, 1-4 (2013), s. 127-181 ISSN 0038-6308 Grant - others: NASA (US) 921647 Institutional support: RVO:68378289 Keywords : radiation belt physics * wave measurements * magnetometer measurements * space flight instruments * RBSP * radiation belt storm probes * Van Allen probes * whistler waves * geomagnetic storms * space weather Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.874, year: 2013 http://link.springer.com/article/10.1007%2Fs11214-013-9993-6#page-1

  15. Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory

    Science.gov (United States)

    Blake, D. F.; Vaniman, D.; Anderson, R.; Bish, D.; Chipera, S.; Chemtob, S.; Crisp, J.; DesMarais, D. J.; Downs, R.; Feldman, S.; hide

    2010-01-01

    The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14

  16. Multiple memory systems, multiple time points: how science can inform treatment to control the expression of unwanted emotional memories.

    Science.gov (United States)

    Visser, Renée M; Lau-Zhu, Alex; Henson, Richard N; Holmes, Emily A

    2018-03-19

    Memories that have strong emotions associated with them are particularly resilient to forgetting. This is not necessarily problematic, however some aspects of memory can be. In particular, the involuntary expression of those memories, e.g. intrusive memories after trauma, are core to certain psychological disorders. Since the beginning of this century, research using animal models shows that it is possible to change the underlying memory, for example by interfering with its consolidation or reconsolidation. While the idea of targeting maladaptive memories is promising for the treatment of stress and anxiety disorders, a direct application of the procedures used in non-human animals to humans in clinical settings is not straightforward. In translational research, more attention needs to be paid to specifying what aspect of memory (i) can be modified and (ii) should be modified. This requires a clear conceptualization of what aspect of memory is being targeted, and how different memory expressions may map onto clinical symptoms. Furthermore, memory processes are dynamic, so procedural details concerning timing are crucial when implementing a treatment and when assessing its effectiveness. To target emotional memory in its full complexity, including its malleability, science cannot rely on a single method, species or paradigm. Rather, a constructive dialogue is needed between multiple levels of research, all the way 'from mice to mental health'.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'. © 2018 The Authors.

  17. Measuring social science concepts in pharmacy education research: From definition to item analysis of self-report instruments.

    Science.gov (United States)

    Cor, M Ken

    Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    Science.gov (United States)

    Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  19. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  20. Las Ciencias instrumentales en la Investigación Biomédica Instrumental Sciences in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Josep Roma Millán

    2004-03-01

    Full Text Available Hay una serie de ciencias que se hacen imprescindibles para poder investigar e interpretar los resultados científicos, son la ciencias que llamamos instrumentales o auxiliares. Entre ellas se encuentran la Demografía, la Epidemiología y la Bioestadística. Además, hay que tomar en consideración las técnicas de investigación cualitativa, el conjunto de estrategias e instrumentos de búsqueda de información bibliográfica y, también las metodologías de presentación de resultados. Finalmente, no puede olvidarse la ética, en sus dos componentes de bioética y de ética del trabajo científico, si queremos desarrollar un trabajo siguiendo el método científico. Este capítulo explica cuál es la función de estas disciplinas en el seno de la investigación científica y del desarrollo de proyectos.Some scientific disciplines are essential for research and scientific results interpretation. Instrumental or auxiliary sciences include Demography, Epidemiology, and Biostatistics. Also, it is necessary to take into account the techniques for qualitative research, the strategies and instruments for bibliographic information and the methodology for scientific results presentation. Finally, to develop a project according to the scientific method, it is necessary to consider ethics, in its two components: bioethics and the ethics of scientific method. This report explains which is the function of these instrumental and auxiliary sciences in the context of the scientific research and the development of scientific projects.

  1. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    International Nuclear Information System (INIS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R.C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-01-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD 0.1 wt.% using electronic microprobe, and 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor elements.

  2. Employing the Five-Factor Mentoring Instrument: Analysing Mentoring Practices for Teaching Primary Science

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Savran-Gencer, Ayse

    2009-01-01

    Primary science education is a concern around the world and quality mentoring within schools can develop pre-service teachers' practices. A five-factor model for mentoring has been identified, namely, personal attributes, system requirements, pedagogical knowledge, modelling, and feedback. Final-year pre-service teachers (mentees, n = 211) from…

  3. Instrumental intelligent test of food sensory quality as mimic of human panel test combining multiple cross-perception sensors and data fusion

    International Nuclear Information System (INIS)

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng

    2014-01-01

    Highlights: • To develop a novel instrumental intelligent test methodology for food sensory analysis. • A novel data fusion was used in instrumental intelligent test methodology. • Linear and nonlinear tools were comparatively used for modeling. • The instrumental test methodology can be imitative of human test behavior. - Abstract: Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers

  4. Instrumental intelligent test of food sensory quality as mimic of human panel test combining multiple cross-perception sensors and data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng, E-mail: qschen@ujs.edu.cn

    2014-09-02

    Highlights: • To develop a novel instrumental intelligent test methodology for food sensory analysis. • A novel data fusion was used in instrumental intelligent test methodology. • Linear and nonlinear tools were comparatively used for modeling. • The instrumental test methodology can be imitative of human test behavior. - Abstract: Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers.

  5. The impact of science teachers' epistemological beliefs on authentic inquiry: A multiple-case study

    Science.gov (United States)

    Jackson, Dionne Bennett

    The purpose of this study was to examine how science teachers' epistemological beliefs impacted their use of authentic inquiry in science instruction. Participants in this multiple-case study included a total of four teachers who represented the middle, secondary and post-secondary levels. Based on the results of the pilot study conducted with a secondary science teacher, adjustments were made to the interview questions and observation protocol. Data collection for the study included semi-structured interviews, direct observations of instructional techniques, and the collection of artifacts. The cross case analysis revealed that the cases epistemological beliefs were mostly Transitional and the method of instruction used most was Discussion. Two of the cases exhibited consistent beliefs and instructional practices, whereas the other two exhibited beliefs beyond their instruction. The findings of this study support the literature on the influence of contextual factors and professional development on teacher beliefs and practice. The findings support and contradict literature relevant to the consistency of teacher beliefs with instruction. This study's findings revealed that the use of reform-based instruction, or Authentic Inquiry, does not occur when science teachers do not have the beliefs and experiences necessary to implement this form of instruction.

  6. Multiple-Choice Exams: An Obstacle for Higher-Level Thinking in Introductory Science Classes

    Science.gov (United States)

    Stanger-Hall, Kathrin F.

    2012-01-01

    Learning science requires higher-level (critical) thinking skills that need to be practiced in science classes. This study tested the effect of exam format on critical-thinking skills. Multiple-choice (MC) testing is common in introductory science courses, and students in these classes tend to associate memorization with MC questions and may not see the need to modify their study strategies for critical thinking, because the MC exam format has not changed. To test the effect of exam format, I used two sections of an introductory biology class. One section was assessed with exams in the traditional MC format, the other section was assessed with both MC and constructed-response (CR) questions. The mixed exam format was correlated with significantly more cognitively active study behaviors and a significantly better performance on the cumulative final exam (after accounting for grade point average and gender). There was also less gender-bias in the CR answers. This suggests that the MC-only exam format indeed hinders critical thinking in introductory science classes. Introducing CR questions encouraged students to learn more and to be better critical thinkers and reduced gender bias. However, student resistance increased as students adjusted their perceptions of their own critical-thinking abilities. PMID:22949426

  7. Instruments for radiation measurement in life sciences (5). Development of imaging technology in life science. 4. Real-time bioradiography

    International Nuclear Information System (INIS)

    Sasaki, Toru; Iwamoto, Akinori; Tsuboi, Hisashi; Katoh, Toru; Kudo, Hiroyuki; Kazawa, Erito; Watanabe, Yasuyoshi

    2006-01-01

    Real-time bioradiography, new bioradiography method, can collect and produce image of metabolism and function of cell in real-time. The principles of instrumentation, development process and the application examples of neuroscience and biomedical gerontology are stated. The bioradiography method, the gas-tissue live-cell autoradiography method and the real-time bioradiography method are explained. As the application examples, the molecular mechanism of oxidative stress at brain ischemia and the analysis of SOD gene knockout animals are reported. Comparison between FDG-PET of epileptic brain and FDG- bioradiography image of live-cell of brain tissue, the real-time bioradiography system, improvement of image by surface treatment, the detection limit of β + ray from F 18 , image of living-slices of brain tissue by FDG-real-time bioradiography and radioluminography, continuous FDG image of living-slices of rat brain tissue, and analysis of carbohydrate metabolism of living-slices of brain tissue of mouse lacking SOD gene during aerophobia and reoxygenation process are reported. (S.Y.)

  8. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests

    International Nuclear Information System (INIS)

    Wiens, Roger C.; Barraclough, Bruce; Barkley, Walter C.; Bender, Steve; Bernardin, John; Bultman, Nathan; Clanton, Robert C.; Clegg, Samuel; Delapp, Dorothea; Dingler, Robert; Enemark, Don; Flores, Mike; Hale, Thomas; Lanza, Nina; Lasue, Jeremie; Latino, Joseph; Little, Cynthia; Morrison, Leland; Nelson, Tony; Romero, Frank; Salazar, Steven; Stiglich, Ralph; Storms, Steven; Trujillo, Tanner; Ulibarri, Mike; Vaniman, David; Whitaker, Robert; Witt, James; Maurice, Sylvestre; Bouye, Marc; Cousin, Agnes; Cros, Alain; D'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Kouach, Driss; Lasue, Jeremie; Pares, Laurent; Poitrasson, Franck; Striebig, Nicolas; Thocaven, Jean-Jacques; Saccoccio, Muriel; Perez, Rene; Bell, James F. III; Hays, Charles; Blaney, Diana; DeFlores, Lauren; Elliott, Tom; Kan, Ed; Limonadi, Daniel; Lindensmith, Chris; Miller, Ed; Reiter, Joseph W.; Roberts, Tom; Simmonds, John J.; Warner, Noah; Blank, Jennifer; Bridges, Nathan; Cais, Phillippe; Clark, Benton; Cremers, David; Dyar, M. Darby; Fabre, Cecile; Herkenhoff, Ken; Kirkland, Laurel; Landis, David; Langevin, Yves; Lanza, Nina; Newsom, Horton; Ollila, Ann; LaRocca, Frank; Ott, Melanie; Mangold, Nicolas; Manhes, Gerard; Mauchien, Patrick; Blank, Jennifer; McKay, Christopher; Mooney, Joe; Provost, Cheryl; Morris, Richard V.; Sautter, Violaine; Sautter, Violaine; Waterbury, Rob; Wong-Swanson, Belinda; Barraclough, Bruce; Bender, Steve; Vaniman, David

    2012-01-01

    The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover Curiosity provides remote compositional information using the first laser-induced breakdown spectrometer (LIBS) on a planetary mission, and provides sample texture and morphology data using a remote micro-imager (RMI). Overall, ChemCam supports MSL with five capabilities: remote classification of rock and soil characteristics; quantitative elemental compositions including light elements like hydrogen and some elements to which LIBS is uniquely sensitive (e.g., Li, Be, Rb, Sr, Ba); remote removal of surface dust and depth profiling through surface coatings; context imaging; and passive spectroscopy over the 240-905 nm range. ChemCam is built in two sections: The mast unit, consisting of a laser, telescope, RMI, and associated electronics, resides on the rover's mast, and is described in a companion paper. ChemCam's body unit, which is mounted in the body of the rover, comprises an optical de-multiplexer, three spectrometers, detectors, their coolers, and associated electronics and data handling logic. Additional instrument components include a 6 m optical fiber which transfers the LIBS light from the telescope to the body unit, and a set of onboard calibration targets. ChemCam was integrated and tested at Los Alamos National Laboratory where it also underwent LIBS calibration with 69 geological standards prior to integration with the rover. Post-integration testing used coordinated mast and instrument commands, including LIBS line scans on rock targets during system-level thermal-vacuum tests. In this paper we describe the body unit, optical fiber, and calibration targets, and the assembly, testing, and verification of the instrument prior to launch. (authors)

  9. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    Science.gov (United States)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  10. Assessing middle school students` understanding of science relationships and processes: Year 2 - instrument validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R.; Minnick, K.

    1997-01-01

    Our overall purpose for this multi-year project was to develop an alternative assessment format measuring rural middle school students understanding of science concepts and processes and the interrelationships among them. This kind of understanding is called structural knowledge. We had 3 major interrelated goals: (1) Synthesize the existing literature and critically evaluate the actual and potential use of measures of structural knowledge in science education. (2) Develop a structural knowledge alternative assessment format. (3) Examine the validity of our structural knowledge format. We accomplished the first two goals during year 1. The structural knowledge assessment we identified and developed further was a select-and-fill-in concept map format. The goal for our year 2 work was to begin to validate this assessment approach. This final report summarizes our year 2 work.

  11. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    Science.gov (United States)

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  12. A brief history of science as seen through the development of scientific instruments

    CERN Document Server

    Crump, Thomas

    2002-01-01

    From earliest pre-history, with the dawning understanding of fire and its many uses, up to the astonishing advances of the twenty-first century, Thomas Crump traces the ever more sophisticated means employed in our attempts to understand the universe. The result is a vigorous and readable account of how our curious nature has continually pushed forward the frontiers of science and, as a consequence, human civilization.

  13. Enhnacing the science of the WFIRST coronagraph instrument with post-processing.

    Science.gov (United States)

    Pueyo, Laurent; WFIRST CGI data analysis and post-processing WG

    2018-01-01

    We summarize the results of a three years effort investigating how to apply to the WFIRST coronagraph instrument (CGI) modern image analysis methods, now routinely used with ground-based coronagraphs. In this post we quantify the gain associated post-processing for WFIRST-CGI observing scenarios simulated between 2013 and 2017. We also show based one simulations that spectrum of planet can be confidently retrieved using these processing tools with and Integral Field Spectrograph. We then discuss our work using CGI experimental data and quantify coronagraph post-processing testbed gains. We finally introduce stability metrics that are simple to define and measure, and place useful lower bound and upper bounds on the achievable RDI post-processing contrast gain. We show that our bounds hold in the case of the testbed data.

  14. The Goldstone solar system radar: A science instrument for planetary research

    Science.gov (United States)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  15. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    Science.gov (United States)

    Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

    2017-08-01

    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

  16. OCEANUS: A high science return Uranus orbiter with a low-cost instrument suite

    Science.gov (United States)

    Elder, C. M.; Bramson, A. M.; Blum, L. W.; Chilton, H. T.; Chopra, A.; Chu, C.; Das, A.; Davis, A. B.; Delgado, A.; Fulton, J.; Jozwiak, L. M.; Khayat, A.; Landis, M. E.; Molaro, J. L.; Slipski, M.; Valencia, S.; Watkins, J.; Young, C. L.; Budney, C. J.; Mitchell, K. L.

    2018-07-01

    Ice-giant-sized planets are the most common type of observed exoplanet, yet the two ice giants in our own solar system (Uranus and Neptune) are the least explored class of planet, having only been observed through ground-based observations and a single flyby each by Voyager 2 approximately 30 years ago. These single flybys were unable to characterize the spatial and temporal variability in ice giant magnetospheres, some of the most odd and intriguing magnetospheres in the solar system. They also offered only limited constraints on the internal structure of ice giants; understanding the internal structure of a planet is important for understanding its formation and evolution. The most recent planetary science Decadal Survey by the U.S. National Academy of Sciences, "Vision and Voyages for Planetary Science in the Decade 2013-2022," identified the ice giant Uranus as the third highest priority for a Flagship mission in the decade 2013-2022. However, in the event that NASA or another space agency is unable to fly a Flagship-class mission to an ice giant in the next decade, this paper presents a mission concept for a focused, lower cost Uranus orbiter called OCEANUS (Origins and Composition of the Exoplanet Analog Uranus System). OCEANUS would increase our understanding of the interior structure of Uranus, its magnetosphere, and how its magnetic field is generated. These goals could be achieved with just a magnetometer and the spacecraft's radio system. This study shows that several of the objectives outlined by the Decadal Survey, including one of the two identified as highest priority, are within reach for a New-Frontiers-class mission.

  17. The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2012-10-01

    The alpha particle X-ray spectrometers on the Mars exploration rovers Spirit and Opportunity accomplished extensive elemental analysis of the Martian surface through a combination of XRF and PIXE. An advanced APXS is now part of the Mars Science Laboratory's Curiosity rover. APXS spectra contain contributions which enhance elemental peak areas but which do not arise from these elements within the sample under study, thereby introducing error into derived concentrations. A detailed examination of these effects in the MSL APXS enables us to test two schemes for making the necessary corrections.

  18. Instrumental intelligent test of food sensory quality as mimic of human panel test combining multiple cross-perception sensors and data fusion.

    Science.gov (United States)

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng

    2014-09-02

    Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Analysis of Multiple Choice Tests Designed by Faculty Members of Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Reza Pourmirza Kalhori

    2013-12-01

    Full Text Available Dear Editor Multiple choice tests are the most common objective tests in medical education which are used to assess the ind-ividual knowledge, recall, recognition and problem solving abilities. One of the testing components is the post-test analysis. This component includes; first, qualitative analysis of the taxonomy of questions based on the Bloom’s educational objectives and percentage of the questions with no structural problems; and second, the quantitative analysis of the reliability (KR-20 and indices of difficulty and differentiation (1. This descriptive-analytical study was aimed to qualitatively and quan-titatively investigate the multiple-choice tests of the faculty members at Kermanshah University of Medical Sciences in 2009-2010. The sample size comprised of 156 tests. Data were analyzed by SPSS-16 software using t-test, chi-squared test, ANOVA and Tukey multiple comparison tests. The mean of reliability (KR-20, difficulty index, and discrimination index were 0.68 (± 0.31, 0.56 (± 0.15 and 0.21 (± 0.15, respectively, which were acceptable. The analysis of the tests at Mashad University of Medical Sciences indicated that the mean for the reliability of the tests was 0.72, and 52.2% of the tests had inappropriate difficulty index and 49.2% of the tests did not have acceptable differentiation index (2. Comparison of the tests at Kermanshah University of Medical Sciences for the fields of anatomy, physiology, biochemistry, genetics, statistics and behavioral sciences courses at Malaysia Faculty of Medicine (3 and tests at Argentina Faculty of Medicine (4 showed that while difficulty index was acceptable in all three universities, but differentiation indices in Malaysia and Argentina Medical Faculties were higher than that in Kermanshah University of Medical Sciences. The mean for the questions with no structural flaws in all tests, taxonomy I, taxonomy II, and taxonomy III were 73.88% (± 14.88, 34.65% (± 15.78, 41.34% (± 13

  20. Misconceptions and biases in German students' perception of multiple energy sources: implications for science education

    Science.gov (United States)

    Lee, Roh Pin

    2016-04-01

    Misconceptions and biases in energy perception could influence people's support for developments integral to the success of restructuring a nation's energy system. Science education, in equipping young adults with the cognitive skills and knowledge necessary to navigate in the confusing energy environment, could play a key role in paving the way for informed decision-making. This study examined German students' knowledge of the contribution of diverse energy sources to their nation's energy mix as well as their affective energy responses so as to identify implications for science education. Specifically, the study investigated whether and to what extent students hold mistaken beliefs about the role of multiple energy sources in their nation's energy mix, and assessed how misconceptions could act as self-generated reference points to underpin support/resistance of proposed developments. An in-depth analysis of spontaneous affective associations with five key energy sources also enabled the identification of underlying concerns driving people's energy responses and facilitated an examination of how affective perception, in acting as a heuristic, could lead to biases in energy judgment and decision-making. Finally, subgroup analysis differentiated by education and gender supported insights into a 'two culture' effect on energy perception and the challenge it poses to science education.

  1. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  2. Development of the science instrument CLUPI: the close-up imager on board the ExoMars rover

    Science.gov (United States)

    Josset, J.-L.; Beauvivre, S.; Cessa, V.; Martin, P.

    2017-11-01

    First mission of the Aurora Exploration Programme of ESA, ExoMars will demonstrate key flight and in situ enabling technologies, and will pursue fundamental scientific investigations. Planned for launch in 2013, ExoMars will send a robotic rover to the surface of Mars. The Close-UP Imager (CLUPI) instrument is part of the Pasteur Payload of the rover fixed on the robotic arm. It is a robotic replacement of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits at high resolution is crucial for the understanding of the geological context of any site where the Pasteur rover may be active on Mars. At the resolution provided by CLUPI (approx. 15 micrometer/pixel), rocks show a plethora of surface and internal structures, to name just a few: crystals in igneous rocks, sedimentary structures such as bedding, fracture mineralization, secondary minerals, details of the surface morphology, sedimentary bedding, sediment components, surface marks in sediments, soil particles. It is conceivable that even textures resulting from ancient biological activity can be visualized, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes, potentially present in sediments and in palaeocavitites in any rock type. CLUPI is a complete imaging system, consisting of an APS (Active Pixel Sensor) camera with 27° FOV optics. The sensor is sensitive to light between 400 and 900 nm with 12 bits digitization. The fixed focus optics provides well focused images of 4 cm x 2.4 cm rock area at a distance of about 10 cm. This challenging camera system, less than 200g, is an independent scientific instrument linked to the rover on board computer via a SpaceWire interface. After the science goals and specifications presentation, the development of this complex high performance miniaturized imaging system will be described.

  3. New instrument for measuring student beliefs about physics and learning physics: The Colorado Learning Attitudes about Science Survey

    Science.gov (United States)

    Adams, W. K.; Perkins, K. K.; Podolefsky, N. S.; Dubson, M.; Finkelstein, N. D.; Wieman, C. E.

    2006-06-01

    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure student beliefs about physics and about learning physics. This instrument extends previous work by probing additional aspects of student beliefs and by using wording suitable for students in a wide variety of physics courses. The CLASS has been validated using interviews, reliability studies, and extensive statistical analyses of responses from over 5000 students. In addition, a new methodology for determining useful and statistically robust categories of student beliefs has been developed. This paper serves as the foundation for an extensive study of how student beliefs impact and are impacted by their educational experiences. For example, this survey measures the following: that most teaching practices cause substantial drops in student scores; that a student’s likelihood of becoming a physics major correlates with their “Personal Interest” score; and that, for a majority of student populations, women’s scores in some categories, including “Personal Interest” and “Real World Connections,” are significantly different from men’s scores.

  4. The Moon Mineralogy Mapper (M3) imaging spectrometerfor lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation

    Science.gov (United States)

    C. Pieters,; P. Mouroulis,; M. Eastwood,; J. Boardman,; Green, R.O.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Cate, D.; Chatterjee, A.; Clark, R.; Barr, D.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, K.; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriguez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  5. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    Science.gov (United States)

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  6. Utilizing Multifaceted Rasch Measurement through Facets to Evaluate Science Education Data Sets Composed of Judges, Respondents, and Rating Scale Items: An Exemplar Utilizing the Elementary Science Teaching Analysis Matrix Instrument

    Science.gov (United States)

    Boone, William J.; Townsend, J. Scott; Staver, John R.

    2016-01-01

    When collecting data, science education researchers frequently have multiple respondents evaluate multiple artifacts using multiple criteria. Herein, the authors introduce Multifaceted Rasch Measurement (MFRM) analysis and explain why MFRM must be used when "judges'" data are collected. The authors use data from elementary science…

  7. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  8. Strategy For Implementing The UN "Zero-Gravity Instrument Project" To Promote Space Science Among School Children In Nigeria

    Science.gov (United States)

    Alabi, O.; Agbaje, G.; Akinyede, J.

    2015-12-01

    The United Nations "Zero Gravity Instrument Project" (ZGIP) is one of the activities coordinated under the Space Education Outreach Program (SEOP) of the African Regional Centre for Space Science and Technology Education in English (ARCSSTE-E) to popularize space science among pre-collegiate youths in Nigeria. The vision of ZGIP is to promote space education and research in microgravity. This paper will deliberate on the strategy used to implement the ZGIP to introduce school children to authentic scientific data and inquiry. The paper highlights how the students learned to collect scientific data in a laboratory environment, analyzed the data with specialized software, obtained results, interpreted and presented the results of their study in a standard format to the scientific community. About 100 school children, aged between 7 and 21 years, from ten public and private schools located in Osun State, Nigeria participated in the pilot phase of the ZGIP which commenced with a 1-day workshop in March 2014. During the inauguration workshop, the participants were introduced to the environment of outer space, with special emphasis on the concept of microgravity. They were also taught the basic principle of operation of the Clinostat, a Zero-Gravity Instrument donated to ARCSSTE-E by the United Nations Office for Outer Space Affairs (UN-OOSA), Vienna, under the Human Space Technology Initiative (UN-HSTI). At the end of the workshop, each school designed a project, and had a period of 1 week, on a planned time-table, to work in the laboratory of ARCSSTE-E where they utilized the clinostat to examine the germination of indigenous plant seeds in simulated microgravity conditions. The paper also documents the post-laboratory investigation activities, which included presentation of the results in a poster competition and an evaluation of the project. The enthusiasm displayed by the students, coupled with the favorable responses recorded during an oral interview conducted to

  9. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  10. Framing new research in science literacy and language use: Authenticity, multiple discourses, and the Third Space

    Science.gov (United States)

    Wallace, Carolyn S.

    2004-11-01

    This article presents a theoretical framework in the form of a model on which to base research in scientific literacy and language use. The assumption guiding the framework is that scientific literacy is comprised of the abilities to think metacognitively, to read and write scientific texts, and to apply the elements of a scientific argument. The framework is composed of three theoretical constructs: authenticity, multiple discourses, and Bhabha's Third Space. Some of the implications of the framework are that students need opportunities to (a) use scientific language in everyday situations; (b) negotiate readily among the many discourse genres of science; and (c) collaborate with teachers and peers on the meaning of scientific language. These ideas are illustrated with data excerpts from contemporary research studies. A set of potential research issues for the future is posed at the end of the article.

  11. A concise revised myeloma comorbidity index as a valid prognostic instrument in a large cohort of 801 multiple myeloma patients

    NARCIS (Netherlands)

    M. Engelhardt (Monika); Domm, A.-S. (Anne-Saskia); Dold, S.M. (Sandra Maria); G. Ihorst (Gabriele); Reinhardt, H. (Heike); Zober, A. (Alexander); Hieke, S. (Stefanie); Baayen, C. (Corine); Müller, S.J. (Stefan Jürgen); H. Einsele (Hermann); P. Sonneveld (Pieter); O. Landgren; M. Schumacher (M.); R. Wäsch (Ralph)

    2017-01-01

    textabstractWith growing numbers of elderly multiple myeloma patients, reliable tools to assess their vulnerability are required. The objective of the analysis herein was to develop and validate an easy to use myeloma risk score (revised Myeloma Comorbidity Index) that allows for risk prediction of

  12. With hiccups and bumps: the development of a Rasch-based instrument to measure elementary students' understanding of the nature of science.

    Science.gov (United States)

    Peoples, Shelagh M; O'Dwyer, Laura M; Shields, Katherine A; Wang, Yang

    2013-01-01

    This research describes the development process, psychometric analyses and part validation study of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). Evidence is provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. A future article will examine the structural and external validity aspects. Rasch modeling proved especially productive in scale improvement efforts. The instrument, designed for large-scale assessment use, is conceptualized using five construct domains. Data from 741 elementary students were used to pilot the Rasch scale, with continuous improvements made over three successive administrations. The psychometric properties of the NOSI-E instrument are consistent with the basic assumptions of Rasch measurement, namely that the items are well-fitting and invariant. Items from each of the five domains (Empirical, Theory-Laden, Certainty, Inventive, and Socially and Culturally Embedded) are spread along the scale's continuum and appear to overlap well. Most importantly, the scale seems appropriately calibrated and responsive for elementary school-aged children, the target age group. As a result, the NOSI-E should prove beneficial for science education research. As the United States' science education reform efforts move toward students' learning science through engaging in authentic scientific practices (NRC, 2011), it will be important to assess whether this new approach to teaching science is effective. The NOSI-E can be used as one measure of whether this reform effort has an impact.

  13. Study on a conceptual design of a data acquisition and instrument control system for experimental suites at materials and life science facility (MLF) of J-PARC

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Nakatani, Takeshi; Torii, Shuki; Higemoto, Wataru; Otomo, Toshiya

    2006-02-01

    The JAEA (Japan Atomic Energy Agency)-KEK (High Energy Accelerator Research Organization) joint project, Japan Proton Accelerator Research Complex (J-PARC), is now under construction. Materials and Life Science Facility (MLF) is one of planned facilities in this research complex. The neutron and muon sources will be installed at MLF and world's highest class intensive beam, which is utilized for variety of scientific research subject, will be delivered. To discuss the necessary computing environments for neutron and muon instruments at J-PARC, the MLF computing environment group (MLF-CEG) has been organized. We, members of the DAQ subgroup (DAQ-SG) are responsible for considering data acquisition and instrument control systems for the experimental suites at MLF. In the framework of the MLF-CEG, we are surveying the computer resources which is required for data acquisition and instrument control at future instruments, current situation of existing facilities and possible solutions those we can achieve. We are discussing the most suitable system that can bring out full performance of our instruments. This is the first interim report of the DAQ-SG, in which our activity of 2003-2004 is summarized. In this report, a conceptual design of the software, the related a data acquisition and instrument control system for experimental instruments at MLF are proposed. (author)

  14. Retrieval practice after multiple context changes, but not long retention intervals, reduces the impact of a final context change on instrumental behavior.

    Science.gov (United States)

    Trask, Sydney; Bouton, Mark E

    2018-06-01

    Recent evidence from this laboratory suggests that a context switch after operant learning consistently results in a decrement in responding. One way to reduce this decrement is to train the response in multiple contexts. One interpretation of this result, rooted in stimulus sampling theory, is that conditioning of a greater number of common stimulus elements arising from more contexts causes better generalization to new contexts. An alternative explanation is that each change of context causes more effortful retrieval, and practice involving effortful retrieval results in learning that is better able to transfer to new situations. The current experiments were designed to differentiate between these two explanations for the first time in an animal learning and memory task. Experiment 1 demonstrated that the detrimental impact of a context change on an instrumental nose-poking response can be reduced by training the response in multiple contexts. Experiment 2 then found that a training procedure which inserted extended retention intervals between successive training sessions did not reduce the detrimental impact of a final context change. This occurred even though the inserted retention intervals had a detrimental impact on responding (and, thus, presumably retrieval) similar to the effect that context switches had in Experiment 1. Together, the results suggest that effortful retrieval practice may not be sufficient to reduce the negative impact of a context change on instrumental behavior. A common elements explanation which supposes that physical and temporal contextual cues do not overlap may account for the findings more readily.

  15. Comparing Multiple Intelligences Approach with Traditional Teaching on Eight Grade Students' Achievement in and Attitudes toward Science

    Science.gov (United States)

    Kaya, Osman Nafiz; Dogan, Alev; Gokcek, Nur; Kilic, Ziya; Kilic, Esma

    2007-01-01

    The purpose of this study was to investigate the effects of multiple intelligences (MI) teaching approach on 8th Grade students' achievement in and attitudes toward science. This study used a pretest-posttest control group experimental design. While the experimental group (n=30) was taught a unit on acids and bases using MI teaching approach, the…

  16. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-02-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During the quantitative data collection phase, a new instrument—the Social Constructivist Learning Environment Survey (SCLES)—was developed and used to collect data from 1,955 grade 9 science students from 52 classes in 50 schools in the Western Cape province, South Africa. The data were analysed to evaluate the reliability and validity of the new instrument, which assessed six dimensions of the classroom learning environment, namely, Working with Ideas, Personal Relevance, Collaboration, Critical Voice, Uncertainty in Science and Respect for Difference. Two dimensions were developed specifically for the present study in order to contextualise the questionnaire to the requirements of the new South African curriculum (namely, Metacognition and Respect for Difference). In the qualitative data collection phase, two case studies were used to investigate whether profiles of class mean scores on the new instrument could provide an accurate and "trustworthy" description of the learning environment of individual science classes. The study makes significant contributions to the field of learning environments in that it is one of the first major studies of its kind in South Africa with a focus on social constructivism and because the instrument developed captures important aspects of the learning environment associated with social constructivism.

  17. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses.

    Science.gov (United States)

    Durham, Mary F; Knight, Jennifer K; Couch, Brian A

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. © 2017 M. F. Durham et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. The development and validation of the Self-Efficacy Beliefs about Equitable Science Teaching and learning instrument for prospective elementary teachers

    Science.gov (United States)

    Ritter, Jennifer M.

    1999-12-01

    The purpose of this study was to develop, validate and establish the reliability of an instrument to assess the self-efficacy beliefs of prospective elementary teachers with regards to science teaching and learning for diverse learners. The study used Bandura's theoretical framework, in that the instrument would use the self-efficacy construct to explore the beliefs of prospective elementary science teachers with regards to science teaching and learning to diverse learners: specifically the two dimensions of self-efficacy beliefs defined by Bandura (1977): personal self-efficacy and outcome expectancy. A seven step plan was designed and followed in the process of developing the instrument, which was titled the Self-Efficacy Beliefs about Equitable Science Teaching or SEBEST. Diverse learners as recognized by Science for All Americans (1989) are "those who in the past who have largely been bypassed in science and mathematics education: ethnic and language minorities and girls" (p. xviii). That definition was extended by this researcher to include children from low socioeconomic backgrounds based on the research by Gomez and Tabachnick (1992). The SEBEST was administered to 226 prospective elementary teachers at The Pennsylvania State University. Using the results from factor analyses, Coefficient Alpha, and Chi-Square a 34 item instrument was found to achieve the greatest balance across the construct validity, reliability and item balance with the content matrix. The 34 item SEBEST was found to load purely on four factors across the content matrix thus providing evidence construct validity. The Coefficient Alpha reliability for the 34 item SEBEST was .90 and .82 for the PSE sub-scale and .78 for the OE sub-scale. A Chi-Square test (X2 = 2.7 1, df = 7, p > .05) was used to confirm that the 34 items were balanced across the Personal Self-Efficacy/Outcome Expectancy and Ethnicity/LanguageMinority/Gender Socioeconomic Status/dimensions of the content matrix. Based on

  19. Chinese and Australian Year 3 Children's Conceptual Understanding of Science: A Multiple Comparative Case Study

    Science.gov (United States)

    Tao, Ying; Oliver, Mary Colette; Venville, Grady Jane

    2012-01-01

    Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high,…

  20. The Impact of Science Integrated Curriculum Supplements on Early Childhood Teachers' Attitudes and Beliefs towards Science while In-Service: A Multiple Case

    Science.gov (United States)

    Collins, Kellian L.

    Science at the early childhood level has been rarely taught as a single subject or integrated into the curriculum. One reason why early childhood educators avoid teaching science are their attitudes, beliefs, and lack of understanding scientific concepts as presented in traditional science curriculums. The intervention used by researchers for improving beliefs and attitudes in K-6 pre-service teachers towards teaching science in early childhood has been science method courses. For in service teachers, the intervention has been professional development workshops, seminars, and symposiums. Though these interventions have had a positive impact on teachers' attitudes and beliefs toward teaching science, the interventions have not necessarily guaranteed more science being taught in the preschool classroom. The specific problem investigated for this study was how to improve the interventions designed to improve preschool teachers' attitudes and beliefs so that they would feel more confident in teaching science to young children. The purpose of this study was to examine how implementing a one-week science integrated curriculum supplement could be an effective tool for improving preschool teachers' attitudes and beliefs toward teaching science. This study utilized the qualitative multiple case study research method. A logical model was created based on negative teacher attitudes and beliefs attributes that were the core components of the Preschool Teachers' Attitudes and Beliefs toward Science teaching (P-TABS) questionnaire. The negative attributes were paired with positive interventions and encapsulated in a one-week science integrated curriculum supplement based on the factors of teacher comfort, child benefit and challenges. The primary source of evidence for this study was the semi-structured interview. The researcher contacted 24 early childhood facilities, 44 emails were sent to preschool teachers, four teachers agreed to participate in the study. The results of the

  1. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book I. Physics, Reactor Physics and Nuclear Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is part one from two books published for the meeting contains papers on Physics, Reactor Physics and Nuclear Instrumentation as results of research activities in National Atomic Energy Agency. There are 39 papers indexed individually. (ID)

  2. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology. Part I : Physics, Reactor Physics and Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Sudjatmoko; Karmanto, Eko Edy; Supartini, Endang

    1996-04-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by PPNY BATAN for monitoring the research Activity which achieved in BATAN. The Proceeding contains a proposal about basic which has physics; reactor physics and nuclear instrumentation. This proceedings is the first part from two part which published in series. There are 33 articles which have separated index

  3. Preservation of Multiple Mammalian Tissues to Maximize Science Return from Ground Based and Spaceflight Experiments.

    Science.gov (United States)

    Choi, Sungshin; Ray, Hami E; Lai, San-Huei; Alwood, Joshua S; Globus, Ruth K

    2016-01-01

    Even with recent scientific advancements, challenges posed by limited resources and capabilities at the time of sample dissection continue to limit the collection of high quality tissues from experiments that can be conducted only infrequently and at high cost, such as in space. The resources and time it takes to harvest tissues post-euthanasia, and the methods and duration of long duration storage, potentially have negative impacts on sample quantity and quality, thereby limiting the scientific outcome that can be achieved. The goals of this study were to optimize methods for both sample recovery and science return from rodent experiments, with possible relevance to both ground based and spaceflight studies. The first objective was to determine the impacts of tissue harvest time post-euthanasia, preservation methods, and storage duration, focusing on RNA quality and enzyme activities in liver and spleen as indices of sample quality. The second objective was to develop methods that will maximize science return by dissecting multiple tissues after long duration storage in situ at -80°C. Tissues of C57Bl/6J mice were dissected and preserved at various time points post-euthanasia and stored at -80°C for up to 11 months. In some experiments, tissues were recovered from frozen carcasses which had been stored at -80°C up to 7 months. RNA quantity and quality was assessed by measuring RNA Integrity Number (RIN) values using an Agilent Bioanalyzer. Additionally, the quality of tissues was assessed by measuring activities of hepatic enzymes (catalase, glutathione reductase and GAPDH). Fresh tissues were collected up to one hour post-euthanasia, and stored up to 11 months at -80°C, with minimal adverse effects on the RNA quality of either livers or RNAlater-preserved spleens. Liver enzyme activities were similar to those of positive controls, with no significant effect observed at any time point. Tissues dissected from frozen carcasses that had been stored for up to 7

  4. The Inclusion of Science Process Skills in Multiple Choice Questions: Are We Getting Any Better?

    Science.gov (United States)

    Elmas, Ridvan; Bodner, George M.; Aydogdu, Bulent; Saban, Yakup

    2018-01-01

    The goal of this study was to analyze the science and technology questions with respect to science process skills (SPS) included in the "Transition from Primary to Secondary Education" (TEOG) examination developed for use with 8th-grade students in Turkey. The 12 TEOG exams administered in the course of three academic years from 2014…

  5. The Spiral of Science (Mis)Education, Parker's "Multiple Influences," and Missed Opportunities

    Science.gov (United States)

    Richardson Bruna, Katherine

    2014-01-01

    In this reflection on Carolyn Parker's article, I connect to my own professional work at the intersection of Latino education and science education as well as to my own personal interest in liberation theology. I use constructs central to liberation theology to indicate what a liberationist science might look like and push us, in doing so, to…

  6. Posterior all-pedicle screw instrumentation combined with multiple chevron and concave rib osteotomies in the treatment of adolescent congenital kyphoscoliosis.

    Science.gov (United States)

    Ayvaz, Mehmet; Olgun, Z Deniz; Demirkiran, H Gokhan; Alanay, Ahmet; Yazici, Muharrem

    2014-01-01

    Congenital kyphoscoliosis is a disorder that often requires surgical treatment. Although many methods of surgical treatment exist, posterior-only vertebral column resection with instrumentation and fusion seem to have become the gold standard for very severe and very rigid curves. Multiple chevron and concave rib osteotomies have been previously reported to be effective in the treatment of neglected severe idiopathic curves. We hypothesized that this method may also be used successfully in the treatment of congenital kyphoscoliosis. To evaluate the effectiveness and safety of multiple chevron osteotomies combined with concave rib osteotomy and posterior pedicle screw instrumentation. Retrospective chart review in the spine service of a large university hospital. Adolescent patients undergoing a specific surgical treatment for the indication of rigid congenital kyphoscoliotic deformity. Radiographic images were used for the measurement of deformity correction. The Turkish version of the Scoliosis Research Society 22 (SRS-22) Patient Questionnaire has been used as a clinical outcome measure in the patient population. A retrospective chart review was performed. Patients admitted to Hacettepe Hospital Spine Center during the period of 2005 to 2009 were included. Criteria for inclusion were as follows: adolescent age group (10-16 years); congenital kyphoscoliosis; formation and/or segmentation defect of at least two vertebral motion segments; surgical treatment of deformity by posterior all-pedicle screw instrumentation, multiple chevron osteotomies, and multiple concave rib osteotomies; follow-up of at least 24 months; and a complete set of preoperative, postoperative, and follow-up standing posteroanterior and lateral full spinal radiographs. The patients' hospital records and X-rays were reviewed. Duration of surgery, intraoperative blood loss, postoperative transfusion requirements, postoperative stay in postanesthesia care unit (PACU), time of hospitalization, and

  7. Thinking science with thinking machines: The multiple realities of basic and applied knowledge in a research border zone.

    Science.gov (United States)

    Hoffman, Steve G

    2015-04-01

    Some scholars dismiss the distinction between basic and applied science as passé, yet substantive assumptions about this boundary remain obdurate in research policy, popular rhetoric, the sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I draw on a multiple ontology framework to provide a more stable affirmation of a constructivist position in science and technology studies that cannot be reduced to a matter of competing perspectives on a single reality. The analysis is grounded in ethnographic research in the border zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring but differently situated labs engage in three distinct repertoires that render the reality of basic and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects are nowhere to be found, the boundary between basic and applied is neither illusion nor mere propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course.

  8. Beyond the City Lights: A Multiple-Case Study of Successful, Experienced Secondary Science Teachers in Rural Schools

    Science.gov (United States)

    DeVore-Wedding, Beverly R.

    Recruitment and retention concerns for teachers, particularly in rural school districts and in science, fill the daily news and research literature. The shortage of STEM workers is also another concern as well. Then why do nationally recognized secondary science teachers remain in rural schools with lower salaries, increased responsibilities beyond teaching content, and multi-preparations, stay in those schools? How do they overcome challenges in their schools? This multiple case study focuses on Presidential Award for Excellence in Mathematics and Science Teaching (PAEMST) awardees who have taught secondary science in rural school districts 10 years or more. Eight rural PAEMST high school science teachers were identified in Nebraska and the six contiguous states; four consented to participate in this study. Interviews of these teachers and a colleague, principal, and or students were conducted to answer the research questions. Using a lens of resiliency, similarities were identified that show how these teachers overcome adversity and thrived in their rural school and communities. Resilient themes that emerged from this study are adaptability, autonomy, collaborative, competency, connectedness, problem-solvers, and resourcefulness. Common themes of success for teaching in rural schools for the four teachers were autonomy and relationships. Common themes of challenges for teaching in rural schools were diversity, funding, professional isolation, and teaching assignments. These characteristics and strategies may help schools with their recruitment and retention of teachers as well as teachers themselves benefiting from hearing other teachers' stories of success and longevity.

  9. The spiral of science (mis)education, Parker's ``multiple influences,'' and missed opportunities

    Science.gov (United States)

    Richardson Bruna, Katherine

    2014-06-01

    In this reflection on Carolyn Parker's article, I connect to my own professional work at the intersection of Latino education and science education as well as to my own personal interest in liberation theology. I use constructs central to liberation theology to indicate what a liberationist science might look like and push us, in doing so, to put learning, not teaching, at the center of our efforts.

  10. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Science.gov (United States)

    Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; DeFlores, L.; Delapp, D.; Dyar, M.D.; Fabre, C.; Gasnault, O.; Lanza, N.; Mazoyer, J.; Melikechi, N.; Meslin, P.-Y.; Newsom, H.; Ollila, A.; Perez, R.; Tokar, R.; Vaniman, D.

    2013-01-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  11. The PESPERF Scale: An Instrument for Measuring Service Quality in the School of Physical Education and Sports Sciences (PESS)

    Science.gov (United States)

    Yildiz, Suleyman M.; Kara, Ali

    2009-01-01

    Purpose: HEdPERF (Higher Education PERFormance) is one of the most recently developed scales in the literature to measure service quality in higher education. However, HEdPERF is designed to measure service quality at a macro level (university level) and may be considered as a more generic measurement instrument. In higher education, new scales…

  12. What Do You Know about Alternative Energy? Development and Use of a Diagnostic Instrument for Upper Secondary School Science

    Science.gov (United States)

    Cheong, Irene Poh-Ai; Johari, Marliza; Said, Hardimah; Treagust, David F.

    2015-01-01

    The need for renewable and non-fossil fuels is now recognised by nations throughout the world. Consequently, an understanding of alternative energy is needed both in schools and in everyday life-long learning situations. This study developed a two-tier instrument to diagnose students' understanding and alternative conceptions about alternative…

  13. Construction and Validation of an Instrument to Measure Problem-Solving Skills of Suburban High School Physical Science Students

    Science.gov (United States)

    Herak, Patrick James

    2010-01-01

    The purpose of this study was to develop a problem-solving instrument that could easily be used by a classroom teacher. The research questions were (1) can the Problem-Solving Skills Assessments (PSSAs) differentiate between students with varying levels of selected problem-solving skills? (2) Can the PSSAs measure student growth due to…

  14. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    Science.gov (United States)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  15. Compte rendu de : Charles T. Wolfe and Ofer Gal (eds., The body as object and instrument of knowledge. Embodied empiricism in early modern science

    Directory of Open Access Journals (Sweden)

    Bernard Joly

    2011-03-01

    Full Text Available Cet ouvrage collectif, qui résulte en partie des travaux d’un atelier sur l’empirisme incarné dans la science moderne qui s’est tenu à l’université de Sydney en février 2009, rassemble quinze communications regroupées en trois parties : « The Body as Object », « The Body as Instrument », « Embodies Minds ». L’objectif des auteurs est de corriger la conception dominante que se font les historiens des sciences et de la philosophie de l’émergence de la philosophie expérimentale, et de l’empirism...

  16. A Novel Multiple Choice Question Generation Strategy: Alternative Uses for Controlled Vocabulary Thesauri in Biomedical-Sciences Education.

    Science.gov (United States)

    Lopetegui, Marcelo A; Lara, Barbara A; Yen, Po-Yin; Çatalyürek, Ümit V; Payne, Philip R O

    2015-01-01

    Multiple choice questions play an important role in training and evaluating biomedical science students. However, the resource intensive nature of question generation limits their open availability, reducing their contribution to evaluation purposes mainly. Although applied-knowledge questions require a complex formulation process, the creation of concrete-knowledge questions (i.e., definitions, associations) could be assisted by the use of informatics methods. We envisioned a novel and simple algorithm that exploits validated knowledge repositories and generates concrete-knowledge questions by leveraging concepts' relationships. In this manuscript we present the development and validation of a prototype which successfully produced meaningful concrete-knowledge questions, opening new applications for existing knowledge repositories, potentially benefiting students of all biomedical sciences disciplines.

  17. Research-Based Worksheets on Using Multiple Representations in Science Classrooms

    Science.gov (United States)

    Hill, Matthew; Sharma, Manjula

    2015-01-01

    The ability to represent the world like a scientist is difficult to teach; it is more than simply knowing the representations (e.g., graphs, words, equations and diagrams). For meaningful science learning to take place, consideration needs to be given to explicitly integrating representations into instructional methods, linked to the content, and…

  18. Misconceptions and Biases in German Students' Perception of Multiple Energy Sources: Implications for Science Education

    Science.gov (United States)

    Lee, Roh Pin

    2016-01-01

    Misconceptions and biases in energy perception could influence people's support for developments integral to the success of restructuring a nation's energy system. Science education, in equipping young adults with the cognitive skills and knowledge necessary to navigate in the confusing energy environment, could play a key role in paving the way…

  19. Comparing Panelists' Understanding of Standard Setting across Multiple Levels of an Alternate Science Assessment

    Science.gov (United States)

    Hansen, Mary A.; Lyon, Steven R.; Heh, Peter; Zigmond, Naomi

    2013-01-01

    Large-scale assessment programs, including alternate assessments based on alternate achievement standards (AA-AAS), must provide evidence of technical quality and validity. This study provides information about the technical quality of one AA-AAS by evaluating the standard setting for the science component. The assessment was designed to have…

  20. Science in Service to Society - A Review of Applied Science & Decision Support Development Serving Multiple Economic Sectors

    Science.gov (United States)

    Mahoney, W. P., III

    2015-12-01

    For more than 30 years, the Research Applications Laboratory (RAL) of the National Center for Atmospheric Research (NCAR) has conducted fundamental and applied research focused on developing decision support tools spanning multiple end-user groups representing a variety of economic sectors. Technology transfer is a primary mission of the laboratory where innovation is a key attribute and multidisciplinary research and development are the norm. Application areas include, aviation, surface transportation, wind and solar energy prediction, climate, weather and health, numerical weather prediction, biological and chemical plume dispersion for homeland security, flood prediction and water resource management, soil condition and crop maturity prediction among other application areas. The majority of the developed capabilities have been operationalized by the public, private, and academic sectors. Several commercial companies have been successfully formed around the technologies (e.g., Weather Information Technologies, Inc., Peak Weather Resources, Inc., and Global Weather Corporation) and many existing companies have improved their products by utilizing the RAL-developed weather system advancements (The Weather Channel, WSI, Schneider Electric, Xcel Energy, United Airlines, Vaisala, Panasonic, Idaho Power, etc.). The economic benefit estimates of implementing these technologies have ranged from billions of dollars in avoided commercial aircraft accidents over the last 30 years to 10s of millions of dollars of annual savings by state departments of transportation via more efficient ice and snow maintenance operations. Research and development at RAL is connected to the Broader Impacts Criterion of NSF and its focus on research that results in significant economic or societal impact. This talk will describe our research-to-operations process and discuss several technology transfer examples that have led to commercial opportunities.

  1. Early modern mathematical instruments.

    Science.gov (United States)

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  2. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines

    NARCIS (Netherlands)

    Ellrott, Kyle; Bailey, Matthew H.; Saksena, Gordon; Covington, Kyle R.; Kandoth, Cyriac; Stewart, Chip; Hess, Julian; Ma, Singer; Chiotti, Kami E.; McLellan, Michael; Sofia, Heidi J.; Hutter, Carolyn M.; Getz, Gad; Wheeler, David A.; Ding, Li; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz

    2018-01-01

    The Cancer Genome Atlas (TCGA) cancer genomics dataset includes over 10,000 tumor-normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring analysis. Here we describe the Multi-Center Mutation Calling in Multiple Cancers project, our effort to generate a

  3. The Development and Validation of Test Instruments to Measure Observation and Comparison in Junior High School Science.

    Science.gov (United States)

    Hungerford, Harold Ralph

    This study attempted to design tests for the purpose of measuring the acquisition of the science skills of observation and comparison, to determine if these skills, as measured by these tests, could be differentially improved using differing amounts of training, and to determine the effects of race and cultural status on performance with the…

  4. Banque d’instruments de mesure en recherche : Une innovation au service des membres chercheurs en sciences infirmières

    Directory of Open Access Journals (Sweden)

    Sylvie Le May

    2017-04-01

    Full Text Available Résumé : Introduction : Face aux difficultés que rencontrent ses enseignants et étudiants à retrouver des instruments de mesure valides dans les bases de données, le Réseau de Recherche en Interventions en Sciences Infirmières du Québec (RRISIQ a récemment choisi de développer une banque d’instruments de mesure accessible et bien documentée utilisant le logiciel bibliographique Zotero. Cet article a pour but de décrire la Banque d’instruments du RRISIQ, d’en exposer les défis et ses perspectives de développement. Description : La Banque comprend plus de 1400 liens ou références à des instruments de mesure reliés aux interventions cliniques, à l’organisation des services infirmiers et à la formation infirmière. L’utilisateur a accès à des références bibliographiques d’articles scientifiques sur les instruments, en anglais et en français. En naviguant dans la Banque, il clique sur l'article de son choix, obtenant ainsi une description bibliographique complète, dont une adresse web lui permettant d’accéder en ligne au plein texte. Résultats : La Banque d’instruments Zotero nécessite un faible coût d’entretien technique pour effectuer des sauvegardes, résoudre les difficultés et gérer les demandes d'accès. Elle est appréciée par ses utilisateurs. Discussion : La Banque prendra de l’ampleur dans les années à venir et des démarches sont actuellement réalisées par l’équipe pour la publiciser davantage auprès de ses membres et de leurs étudiants. L’équipe envisage de la rendre disponible à d’autres équipes de recherche du Québec.

  5. International Conferences and Young Scientists Schools on Computational Information Technologies for Environmental Sciences (CITES) as a professional growth instrument

    Science.gov (United States)

    Gordov, E. P.; Lykosov, V. N.; Genina, E. Yu; Gordova, Yu E.

    2017-11-01

    The paper describes a regular events CITES consisting of young scientists school and international conference as a tool for training and professional growth. The events address the most pressing issues of application of information-computational technologies in environmental sciences and young scientists’ training, diminishing a gap between university graduates’ skill and concurrent challenges. The viability of the approach to the CITES organization is proved by the fact that single event organized in 2001 turned into a series, quite a few young participants successfully defended their PhD thesis and a number of researchers became Doctors of Science during these years. Young researchers from Russia and foreign countries show undiminishing interest to these events.

  6. Accessorizing Building Science – A Web Platform to Support Multiple Market Transformation Programs

    Energy Technology Data Exchange (ETDEWEB)

    Madison, Michael C.; Antonopoulos, Chrissi A.; Dowson, Scott T.; Franklin, Trisha L.; Carlsen, Leif C.; Baechler, Michael C.

    2014-09-28

    As demand for improved energy efficiency in homes increases, builders need information on the latest findings in building science, rapidly ramping-up energy codes, and technical requirements for labeling programs. The Building America Solution Center is a Department of Energy (DOE) website containing hundreds of expert guides designed to help residential builders install efficiency measures in new and existing homes. Builders can package measures with other media for customized content. Website content provides technical support to market transformation programs such as ENERGY STAR and has been cloned and adapted to provide content for the Better Buildings Residential Program. The Solution Center uses the Drupal open source content management platform to combine a variety of media in an interactive manner to make information easily accessible. Developers designed a unique taxonomy to organize and manage content. That taxonomy was translated into web-based modules that allow users to rapidly traverse structured content with related topics, and media. We will present information on the current design of the Solution Center and the underlying technology used to manage the content. The paper will explore development of features, such as “Field Kits” that allow users to bundle and save content for quick access, along with the ability to export PDF versions of content. Finally, we will discuss development of an Android based mobile application, and a visualization tool for interacting with Building Science Publications that allows the user to dynamically search the entire Building America Library.

  7. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, R.C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Maurice, S.; Lasue, J.; Forni, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Anderson, R.B. [United States Geological Survey, Flagstaff, AZ (United States); Clegg, S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bender, S. [Planetary Science Institute, Tucson, AZ (United States); Blaney, D. [Jet Propulsion Laboratory, Pasadena, CA (United States); Barraclough, B.L. [Planetary Science Institute, Tucson, AZ (United States); Cousin, A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Deflores, L. [Jet Propulsion Laboratory, Pasadena, CA (United States); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Dyar, M.D. [Mount Holyoke College, South Hadley, MA (United States); Fabre, C. [Georessources, Nancy (France); Gasnault, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Lanza, N. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Mazoyer, J. [LESIA, Observatoire de Paris, Meudon (France); Melikechi, N. [Delaware State University, Dover, DE (United States); Meslin, P.-Y. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Newsom, H. [University of New Mexico, Albuquerque, NM (United States); and others

    2013-04-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  8. Formatting Open Science: agilely creating multiple document formats for academic manuscripts with Pandoc Scholar

    Directory of Open Access Journals (Sweden)

    Albert Krewinkel

    2017-05-01

    Full Text Available The timely publication of scientific results is essential for dynamic advances in science. The ubiquitous availability of computers which are connected to a global network made the rapid and low-cost distribution of information through electronic channels possible. New concepts, such as Open Access publishing and preprint servers are currently changing the traditional print media business towards a community-driven peer production. However, the cost of scientific literature generation, which is either charged to readers, authors or sponsors, is still high. The main active participants in the authoring and evaluation of scientific manuscripts are volunteers, and the cost for online publishing infrastructure is close to negligible. A major time and cost factor is the formatting of manuscripts in the production stage. In this article we demonstrate the feasibility of writing scientific manuscripts in plain markdown (MD text files, which can be easily converted into common publication formats, such as PDF, HTML or EPUB, using Pandoc. The simple syntax of Markdown assures the long-term readability of raw files and the development of software and workflows. We show the implementation of typical elements of scientific manuscripts—formulas, tables, code blocks and citations—and present tools for editing, collaborative writing and version control. We give an example on how to prepare a manuscript with distinct output formats, a DOCX file for submission to a journal, and a LATEX/PDF version for deposition as a PeerJ preprint. Further, we implemented new features for supporting ‘semantic web’ applications, such as the ‘journal article tag suite’—JATS, and the ‘citation typing ontology’—CiTO standard. Reducing the work spent on manuscript formatting translates directly to time and cost savings for writers, publishers, readers and sponsors. Therefore, the adoption of the MD format contributes to the agile production of open science

  9. ``I Just Want The Credit!'' - Perceived Instrumentality as the Main Characteristic of Boys' Motivation in a Grade 11 Science Course

    Science.gov (United States)

    Nieswandt, Martina; Shanahan, Marie-Claire

    2008-01-01

    This case study examines the motivational structure of a group of male students ( n = 10) in a grade 11 General Science class at an independent single-sex school. We approach the concept of motivation through the integration of three different theoretical approaches: sociocultural theory, future time perspective and achievement goal theory. This framework allows us to stress the dialectical interdependence of motivation, as expressed through individual goals, and the socially and culturally influenced origins of these goals. Our results suggest that the boys internalised the administrative description of the course as meeting a diploma requirement, which they expressed in their perception of the course as being for “non-science” people who “just need a credit.” However, we also found situational changes in students’ motivational structure towards more intrinsic orientations when they were engaged in topics with personal everyday and future relevance. These situational changes in students’ goal structures illustrate that our participants did not internalise classroom and school goal messages wholly and, instead, selectively and constructively transformed these goal messages depending on their own motivational structure and beliefs. These results stress the importance of teachers scaffolding not only for conceptual learning but also for student motivation in science classes, especially those that purposefully teach towards scientific literacy.

  10. Examining small "c" creativity in the science classroom: Multiple case studies of five high school teachers

    Science.gov (United States)

    Lasky, Dorothea Shawn

    As the US continues to strive toward building capacity for a workforce in STEM fields (NSF, 2006), educational organizations and researchers have constructed frameworks that focus on increasing competencies in creativity in order to achieve this goal (ISTE, 2007; Karoly & Panis, 2004; Partnership for 21st Century Skills, 2007). Despite these recommendations, many teachers either do not believe in the relevance of nurturing creativity in their students (Kaufman & Sternberg, 2007) or accept the importance of it, but do not know how best to foster it in their classrooms (Kampylis et al., 2009). Researchers conclude that teachers need to revise their ideas about the kind of creativity they can expect from their students to reflect the idea of small 'c' versus large 'C' creativity. There is a dearth of literature that looks closely at teacher practice surrounding creativity in the US and gives teachers a set of practical suggestions they can follow easily. I examined five case studies of teachers as they participated in and implemented a large-scale, NSF-funded project premised on the idea that training teachers in 21 st century pedagogies, (for example, problem-based learning), helps teachers create classrooms that increase science competencies in students. I investigated how teachers' curricular choices affect the amount of student creativity produced in their classrooms. Analysis included determining CAT scores for student products and continua scores along the Small 'c' Creativity Framework. In the study, I present an understanding of how teachers' beliefs influence practice and how creativity is fostered in students through various styles of teacher practice. The data showed a relationship between teachers' CAT scores, framework scores, and school context. Thus, alongside CAT, the framework was determined to be a successful tool for understanding the degree to which teachers foster small 'c' creativity. Other themes emerged, which included teachers' allotment of

  11. Professional competencies in health sciences education: from multiple intelligences to the clinic floor.

    Science.gov (United States)

    Lane, India F

    2010-03-01

    Nontechnical competencies identified as essential to the health professional's success include ethical behavior, interpersonal, self-management, leadership, business, and thinking competencies. The literature regarding such diverse topics, and the literature regarding "professional success" is extensive and wide-ranging, crossing educational, psychological, business, medical and vocational fields of study. This review is designed to introduce ways of viewing nontechnical competence from the psychology of human capacity to current perspectives, initiatives and needs in practice. After an introduction to the tensions inherent in educating individuals for both biomedical competency and "bedside" or "cageside" manner, the paper presents a brief overview of the major lines of inquiry into intelligence theory and how theories of multiple intelligences can build a foundation for conceptualizing professional and life skills. The discussion then moves from broad concepts of intelligence to more specific workplace skill sets, with an emphasis on professional medical education. This section introduces the research on noncognitive variables in various disciplines, the growing emphasis on competency based education, and the SKA movement in veterinary education. The next section presents the evidence that nontechnical, noncognitive or humanistic skills influence achievement in academic settings, medical education and clinical performance, as well as the challenges faced when educational priorities must be made.

  12. Prioritizing multiple health behavior change research topics: expert opinions in behavior change science.

    Science.gov (United States)

    Amato, Katie; Park, Eunhee; Nigg, Claudio R

    2016-06-01

    Multiple health behavior change (MHBC) approaches are understudied. The purpose of this study is to provide strategic MHBC research direction. This cross-sectional study contacted participants through the Society of Behavioral Medicine email listservs and rated the importance of 24 MHBC research topics (1 = not at all important, 5 = extremely important) separately for general and underserved populations. Participants (n = 76) were 79 % female; 76 % White, 10 % Asian, 8 % African American, 5 % Hispanic, and 1 % Native Hawaiian/Pacific Islander. Top MHBC research priorities were predictors of behavior change and the sustainability, long-term effects, and dissemination/translation of interventions for both populations. Recruitment and retention of participants (t(68) = 2.17, p = 0.000), multi-behavioral indices (t(68) = 3.54, p = 0.001), and measurement burden (t(67) = 5.04, p = 0.001) were important for the underserved. Results identified the same top research priorities across populations. For the underserved, research should emphasize recruitment, retention, and measurement burden.

  13. Development of a generic system for real-time data access and remote control of multiple in-situ water quality monitoring instruments

    Science.gov (United States)

    Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.

    2005-05-01

    Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with

  14. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    Science.gov (United States)

    Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.

    2015-02-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.

  15. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    International Nuclear Information System (INIS)

    Chan, V.S.; Garofalo, A.M.; Leuer, J.A.; Costley, A.E.; Wan, B.N.

    2015-01-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher B T and I p can result in a high gain Q fus  ∼ 12, P fus  ∼ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target. (paper)

  16. Instruments for radiation measurement in life sciences (5), ''Development of imaging technology in life sciences'' III. Development of small animal PET scanners

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Murayama, Hideo

    2006-01-01

    This paper summarizes the requisites for small animal PET scanners, present state of their market and of their development in National Institute of Radiological Sciences (NIRS). Relative to the apparatus clinically used, the requisites involve the high spatial resolution of 0.8-1.5 mm and high sensitivity of the equipment itself due to low dose of the tracer to be given to animals. At present, more than 20 institutions like universities, research facilities and companies are developing the PET equipment for small animals and about 10 machines are in the market. However, their resolution and sensitivity are not fully satisfactory and for their improvement, investigators are paying attention to the gamma ray measurement by depth-of-interaction (DOI) method. NIRS has been also developing the machine jPET-D4 and has proposed to manufacture jPET-RD having 4-layer DOI detectors with the absolute central sensitivity as high as 14.7%. jPET-RD is to have the spatial resolution as high as <1mm (central view) and -1.4 mm (periphery). (T.I.)

  17. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  18. Riddles of the Sphinx: Titan Science Questions at the End of Cassini-Huygens

    Science.gov (United States)

    Nixon, C. A.; Achterberg, R. K.; Buch, A.; Clark, R. N.; Coll, P.; Flasar, F. M.; Hayes, A. G.; Iess, L.; Lorenz, R. D.; Lopes, R.; Mastroguiseppe, M.; Raulin, F.; Smith, T.; Solomidou, A.; Sotin, C.; Strobel, D. F.; Turtle, E. P.; Vuitton, V.; West, R. A.; Yelle, R.

    2017-02-01

    The paper will describe the outstanding high-level questions for Titan science that are remaining at the end of the Cassini-Huygens mission, compiled by a cross-section of scientists from multiple instrument teams.

  19. "A bare outpost of learned European culture on the edge of the jungles of Java": Johan Maurits Mohr (1716-1775) and the emergence of instrumental and institutional science in Dutch colonial Indonesia.

    Science.gov (United States)

    Zuidervaart, Huib J; Van Gent, Rob H

    2004-03-01

    The transits of Venus in 1761 and 1769 appear to mark the starting point of instrumental science in the Dutch East Indies (now Indonesia). This essay examines the conditions that triggered and constituted instrumental and institutional science on Indonesian soil in the late eighteenth century. In 1765 the Reverend J. M. Mohr, whose wife had received a large inheritance, undertook to build a fully equipped private observatory in Batavia (now Jakarta). There he made several major astronomical and meteorological observations. Mohr's initiative inspired other Europeans living on Java around 1770 to start a scientific movement. Because of the lack of governmental and other support, it was not until 1778 that this offspring of the Dutch-Indonesian Enlightenment became a reality. The Bataviaasch Genootschap van Kunsten en Wetenschappen tried from the beginning to put into effect the program Mohr had outlined. The members even bought his instruments from his widow, intending to continue his measurements. For a number of reasons, however, this instrumental program was more than the society could support. Around 1790 instrumental science in the former Dutch East Indies came to a standstill, not to be resumed for several decades.

  20. Sustainability Instruction in High Doses: Results From Incorporation of Multiple InTeGrate Modules Into an Environmental Science Class

    Science.gov (United States)

    Rademacher, L. K.

    2017-12-01

    The Interdisciplinary Teaching about Earth for a Sustainable Future (InTeGrate) community has developed extensive courses and modules designed for broad adoption into geoscience classrooms in diverse environments. I participated in a three-semester research project designed to test the efficacy of incorporating "high doses" (minimum 3 modules or 18 class periods) of InTeGrate materials into a course, in my case, an introductory environmental science class. InTeGrate materials were developed by groups of instructors from a range of institutions across the US. These materials include an emphasis on systems thinking, interdisciplinary approaches, and sustainability, and those themes are woven throughout the modules. The three semesters included a control in which no InTeGrate materials were used, a pilot in which InTeGrate materials were tested, and a treatment semesters in which tested materials were modified as needed and fully implemented into the course. Data were collected each semester on student attitudes using the InTeGrate Attitudinal Instrument (pre and post), a subset of Geoscience Literacy Exam questions (pre and post), and a series of assessments and essay exam questions (post only). Although results suggest that learning gains were mixed, changes in attitudes pre- and post-instruction were substantial. Changes in attitudes regarding the importance of sustainable employers, the frequency of self-reported individual sustainable actions, and motivation level for creating a sustainable society were observed in the control and treatment semesters, with the treatment semester showing the greatest gains. Importantly, one of the biggest differences between the control and treatment semesters is the reported impact that the course had on influencing students' sustainable behaviors. The treatment semester course impacted students' sustainable behaviors far more than the control semester.

  1. The Effect of Differentiating Instruction Using Multiple Intelligences on Achievement in and Attitudes towards Science in Middle School Students with Learning Disabilities

    Science.gov (United States)

    Gomaa, Omema Mostafa Kamel

    2014-01-01

    This study investigated the effect of using differentiated instruction using multiple intelligences on achievement in and attitudes towards science in middle school students with learning disabilities. A total of 61 students identified with LD participated. The sample was randomly divided into two groups; experimental (n= 31 boys )and control (n=…

  2. Text-Based Argumentation with Multiple Sources: A Descriptive Study of Opportunity to Learn in Secondary English Language Arts, History, and Science

    Science.gov (United States)

    Litman, Cindy; Marple, Stacy; Greenleaf, Cynthia; Charney-Sirott, Irisa; Bolz, Michael J.; Richardson, Lisa K.; Hall, Allison H.; George, MariAnne; Goldman, Susan R.

    2017-01-01

    This study presents a descriptive analysis of 71 videotaped lessons taught by 34 highly regarded secondary English language arts, history, and science teachers, collected to inform an intervention focused on evidence-based argumentation from multiple text sources. Studying the practices of highly regarded teachers is valuable for identifying…

  3. Hermeneutic phenomenological multiple case study of the cultural references of elementary teachers and the place of fundamentalist Southern Baptist religion in teaching science

    Science.gov (United States)

    Thomas, Susan Elizabeth Shelton

    It has been said, "The two greatest forces in human history are science and religion" (Schachter-Shalomi & Smith, 1999, p. 220). It is those forces and their influence on science teaching that motivated the focus of this study to explore the cultural referents of elementary teachers and the place of fundamentalist Southern Baptist religious beliefs in teaching elementary science. Through a hermeneutic phenomenological framework, multiple case study method was used to interpret the individual consciousness and classroom lived experiences of three elementary teachers. The particularities surrounding elementary science instruction by devout Southern Baptist teachers was explored through several data sources, which included: personal interactions with the teachers, classroom observations, journaling, and interviews (Stake, 1995; Yin, 2003). Insights gained from this study indicate that the religious component of the culture of elementary teachers affects science teaching and learning. In Alabama, Southern Baptist beliefs influence both the public and private lives of educators. Replicated themes revealed the following themes: (a) a lack of concern for occasionally mentioning God in class due to the conservatively religious nature of Southern culture, (b) the teachers' beliefs affected classroom instruction and student interaction, (c) a commitment to science teaching in the context of the elementary classrooms, and (d) the teachers' as mediators. In addition, the theoretical framework provided an awareness of how the lives of the three educators could yield replicated themes. Indications are for a better understanding of how religion, as part of culture, influences science classroom instruction, including teacher education programs and aspects of science teaching and learning.

  4. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  5. Instrumentation and control and human machine interface science and technology road-map in support of advanced reactors and fuel programs in the U.S

    International Nuclear Information System (INIS)

    Miller, D. W.; Arndt, S. A.; Bond, L. J.; Dudenhoeffer, D.; Hallbert, B.; Holcomb, D. E.; Wood, R. T.; Naser, J. A.; O'Hara, J.; Quinn, E. L.

    2006-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology road-map being developed to address the major challenges in this technical area for the Gen IV and other U.S. Dept. of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems as well as their licensing considerations. The ICHMI road-map will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues. (authors)

  6. Instrumentation and control and human machine interface science and technology Road-map in support of advanced reactors and fuel programs in the U.S

    International Nuclear Information System (INIS)

    Miller, D. W.; Arndt, S. A.; Dudenhoeffer, D.; Hallbert, B.; Bond, L. J.; Holcomb, D. E.; Wood, R. T.; Naser, J. A.; O'Hara, J.; Quinn, E. L.

    2008-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Road-map (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI Road-map will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues. (authors)

  7. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  8. Instrumentation and Control and Human Machine Interface Science and Technology Roadmap in Support of Advanced Reactors and Fuel Programs in the U.S

    International Nuclear Information System (INIS)

    Miller, Don W.; Arndt, Steven A.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Bond, Leonard J.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

    2008-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Roadmap (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI roadmap will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues

  9. Assessing the Life Science Knowledge of Students and Teachers Represented by the K-8 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.; Coyle, Harold; Cook Smith, Nancy; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K-8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test…

  10. From individual coping strategies to illness codification: the reflection of gender in social science research on multiple chemical sensitivities (MCS).

    Science.gov (United States)

    Nadeau, Geneviève; Lippel, Katherine

    2014-09-10

    Emerging fields such as environmental health have been challenged, in recent years, to answer the growing methodological calls for a finer integration of sex and gender in health-related research and policy-making. Through a descriptive examination of 25 peer-reviewed social science papers published between 1996 and 2011, we explore, by examining methodological designs and theoretical standpoints, how the social sciences have integrated gender sensitivity in empirical work on Multiple Chemical Sensitivities (MCS). MCS is a "diagnosis" associated with sensitivities to chronic and low-dose chemical exposures, which remains contested in both the medical and institutional arenas, and is reported to disproportionately affect women. We highlighted important differences between papers that did integrate a gender lens and those that did not. These included characteristics of the authorship, purposes, theoretical frameworks and methodological designs of the studies. Reviewed papers that integrated gender tended to focus on the gender roles and identity of women suffering from MCS, emphasizing personal strategies of adaptation. More generally, terminological confusions in the use of sex and gender language and concepts, such as a conflation of women and gender, were observed. Although some men were included in most of the study samples reviewed, specific data relating to men was undereported in results and only one paper discussed issues specifically experienced by men suffering from MCS. Papers that overlooked gender dimensions generally addressed more systemic social issues such as the dynamics of expertise and the medical codification of MCS, from more consistently outlined theoretical frameworks. Results highlight the place for a critical, systematic and reflexive problematization of gender and for the development of methodological and theoretical tools on how to integrate gender in research designs when looking at both micro and macro social dimensions of environmental

  11. The scientific use of technological instruments

    NARCIS (Netherlands)

    Boon, Mieke; Hansson, Sven Ove

    2015-01-01

    One of the most obvious ways in which the natural sciences depend on technology is through the use of instruments. This chapter presents a philosophical analysis of the role of technological instruments in science. Two roles of technological instruments in scientific practices are distinguished:

  12. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    Science.gov (United States)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  13. How Important are the Laws of Definite and Multiple Proportions in Chemistry and Teaching Chemistry? A History and Philosophy of Science Perspective

    Science.gov (United States)

    Niaz, Mansoor

    The main objectives of this study are:(1) to elaborate a framework based on a rational reconstruction of developments that led to the formulation of the laws of definite and multiple proportions; (2) to ascertain students' views of the two laws; (3) to formulate criteria based on the framework for evaluating chemistry textbooks' treatment of the two laws; and (4) to provide a rationale for chemistry teachers to respond to the question: Can we teach chemistry without the laws of definite and multiple proportions? Results obtained show that most of the textbooks present the laws of definite and multiple proportions within an inductivist perspective, characterized by the following sequence: experimental findings showed that chemical elements combined in fixed/multiple proportions, followed by the formulation of the laws of definite and multiple proportions, and finally Dalton's atomic theory was postulated to explain the laws. Students were found to be reluctant to question the laws that they learnt as the building blocks of chemistry. It is concluded that by emphasizing the laws of definite and multiple proportions, textbooks inevitably endorse the dichotomy between theories and laws, which is questioned by philosophers of science (Lakatos 1970; Giere 1995a, b). An alternative approach is presented which shows that we can teach chemistry without the laws of definite and multiple proportions.

  14. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  15. Legitimating Lived Curriculum: Towards a Curricular Landscape of Multiplicity.

    Science.gov (United States)

    Aoki, Ted T.

    1993-01-01

    Contrasts the instrumental character of traditional curriculum plans with the retextured curricular landscape inhabited by a hypothetical fifth-grade teacher struggling to help individual students learn. The idea is to teach science as a humanity, so that a privileged technoscientific mindset can be demystified and the multiplicity of human…

  16. Evaluating Secondary Students' Scientific Reasoning in Genetics Using a Two-Tier Diagnostic Instrument

    Science.gov (United States)

    Tsui, Chi-Yan; Treagust, David

    2010-01-01

    While genetics has remained as one key topic in school science, it continues to be conceptually and linguistically difficult for students with the concomitant debates as to what should be taught in the age of biotechnology. This article documents the development and implementation of a two-tier multiple-choice instrument for diagnosing grades 10…

  17. Building a Generic Virtual Research Environment Framework for Multiple Earth and Space Science Domains and a Diversity of Users.

    Science.gov (United States)

    Wyborn, L. A.; Fraser, R.; Evans, B. J. K.; Friedrich, C.; Klump, J. F.; Lescinsky, D. T.

    2017-12-01

    Virtual Research Environments (VREs) are now part of academic infrastructures. Online research workflows can be orchestrated whereby data can be accessed from multiple external repositories with processing taking place on public or private clouds, and centralised supercomputers using a mixture of user codes, and well-used community software and libraries. VREs enable distributed members of research teams to actively work together to share data, models, tools, software, workflows, best practices, infrastructures, etc. These environments and their components are increasingly able to support the needs of undergraduate teaching. External to the research sector, they can also be reused by citizen scientists, and be repurposed for industry users to help accelerate the diffusion and hence enable the translation of research innovations. The Virtual Geophysics Laboratory (VGL) in Australia was started in 2012, built using a collaboration between CSIRO, the National Computational Infrastructure (NCI) and Geoscience Australia, with support funding from the Australian Government Department of Education. VGL comprises three main modules that provide an interface to enable users to first select their required data; to choose a tool to process that data; and then access compute infrastructure for execution. VGL was initially built to enable a specific set of researchers in government agencies access to specific data sets and a limited number of tools. Over the years it has evolved into a multi-purpose Earth science platform with access to an increased variety of data (e.g., Natural Hazards, Geochemistry), a broader range of software packages, and an increasing diversity of compute infrastructures. This expansion has been possible because of the approach to loosely couple data, tools and compute resources via interfaces that are built on international standards and accessed as network-enabled services wherever possible. Built originally for researchers that were not fussy about

  18. Gardening for Homonyms: Integrating Science and Language Arts to Support Children's Creative Use of Multiple Meaning Words

    Science.gov (United States)

    Luna, Melissa J.; Rye, James Andrew; Forinash, Melissa; Minor, Alana

    2015-01-01

    Curriculum integration can increase the presence of science at the elementary level. The purpose of this article is to share how two second-grade teachers have integrated language arts content as a part of science-language arts instruction in a garden-based learning context. One application was a teacher-designed "Gardening for Homonyms"…

  19. "All We Did Was Things Like Forces and Motion?…": Multiple Discourses in the Development of Primary Science Teachers

    Science.gov (United States)

    Danielsson, Anna; Warwick, Paul

    2014-01-01

    Previous research has highlighted challenges associated with embracing an inquiry approach to science teaching for primary teachers, often associating these challenges with insecurity linked to the lack of content knowledge. We argue that in order to understand the extent to which primary student teachers are able to embrace science teaching…

  20. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  1. Experimenting with string musical instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  2. Experimenting with String Musical Instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  3. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  4. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  5. "I think I use them, but I'm not sure what each one is called": Integration of multiple literacies in secondary social studies and science classes

    Science.gov (United States)

    Lickteig, Amanda D.

    In the past, literacy was viewed solely as the basic, functional skills of reading and writing. However, with the New London Group's (1996) proposal of multiliteracies and the more recent push for a plurality of literacies (NCTE, 2011), teachers have been urged to expand their definitions of literacy. This qualitative study explores how secondary-level social studies and science teachers perceive literacies and identifies their instructional literacies practices. Data were collected through a pre- and post-questionnaire, three focus group sessions, classroom observations, field notes, and artifacts. This study solicited nearly one hundred secondary social studies and science teachers from three Midwestern school districts. Eight educators (four social studies and four science) participated in the study that took place in the spring of 2015. Furthermore, a generous grant from a local chapter of Phi Delta Kappa partially funded this research. After applying initial and holistic codes to the data, nine themes emerged: conventional, progressive, hesitant/emerging, collaborate, calibrate, perform, practice, interdisciplinary, and intradisciplinary. The nine themes were further classified by how they appeared in the data: dispositional themes, behavioral themes, and bridge themes. Throughout the data analysis, contemporary genre theory guided the study (Devitt, 2004). Descriptive codes, derived from contemporary genre theory, further revealed that the situational, social, historical, and individual aspects of genre influence teachers' pedagogical practices related to multiple literacies across disciplines. Therefore, the ways in which teachers perceived multiple literacies and implemented them into classroom instruction are multifaceted and vary depending on grade level, content area, and teaching location. However, teachers' dispositions regarding literacy move beyond a traditional mindset of functional reading and writing as they engage in professional learning

  6. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  7. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  8. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  9. Advanced optical instruments technology

    Science.gov (United States)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  10. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  11. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    International Nuclear Information System (INIS)

    Boutet, Sebastien

    2011-01-01

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  12. Troubled Waters: where Multiple Streams of Inequality Converge in the Math and Science Experiences of Nonprivileged Girls

    Science.gov (United States)

    Parrott, Laurel; Spatig, Linda; Kusimo, Patricia S.; Carter, Carolyn C.; Keyes, Marian

    Water is often hardest to navigate at the confluence of individual streams. As they experience math and science, nonprivileged girls maneuver through roiling waters where the streams of gender, ethnicity, poverty, place, and teaching practices converge. Just as waters of separate streams blend, these issues - too often considered separate factors - become blended and difficult to isolate, and the resulting turbulence produces a bumpy ride. We draw on 3 years of qualitative data collected as part of an intervention program to explore the math and science experiences and perceptions of a group of ethnically diverse, low socioeconomic status rural and urban adolescent Appalachian girls. After describing program and community contexts, we explore "opportunity to leant" issues - specifically, expectations, access to content, and support networks - and examine their schooling experiences against visions of science and math reform and pressures for accountability. Data are discussed within a framework of critical educational theory.

  13. `All We Did was Things Like Forces and Motion …': Multiple Discourses in the development of primary science teachers

    Science.gov (United States)

    Danielsson, Anna; Warwick, Paul

    2014-01-01

    Previous research has highlighted challenges associated with embracing an inquiry approach to science teaching for primary teachers, often associating these challenges with insecurity linked to the lack of content knowledge. We argue that in order to understand the extent to which primary student teachers are able to embrace science teaching informed by scientific literacy for all, it is important to take into account various, sometimes competing, science teacher and primary teacher Discourses. The aim of this paper is to explore how such Discourses are constituted in the context of learning to teach during a 1-year university-based Post Graduate Certificate of Education course. The empirical data consist of semi-structured interviews with 11 student teachers. The analysis identifies 5 teacher Discourses and we argue that these can help us to better understand some of the tensions involved in becoming a primary teacher with a responsibility for teaching science: for example, in terms of the interplay between the student teachers' own educational biographies and institutionally sanctioned Discourses. One conclusion is that student teachers' willingness and ability to embrace a Discourse of science education, informed by the aim of scientific literacy for all, may be every bit as constrained by their experience of learning science through 'traditional schooling' as it is by their confidence with respect to their own subject knowledge. The 5 Discourses, with their complex interrelations, raise questions about which identity positions are available to students in the intersections of the Discourses and which identity positions teacher educators may seek to make available for their students.

  14. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  15. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  16. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  17. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  18. Multiple Intelligence Scores of Science Stream Students and Their Relation with Reading Competency in Malaysian University English Test (MUET)

    Science.gov (United States)

    Razak, Norizan Abdul; Zaini, Nuramirah

    2014-01-01

    Many researches have shown that different approach needed in analysing linear and non-linear reading comprehension texts and different cognitive skills are required. This research attempts to discover the relationship between Science Stream students' reading competency on linear and non-linear texts in Malaysian University English Test (MUET) with…

  19. Advances of Air Pollution Science: From Forest Decline to Multiple-Stress Effects on Forest Ecosystem Services

    Science.gov (United States)

    E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil

    2010-01-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...

  20. Multiple choice questions are superior to extended matching questions to identify medicine and biomedical sciences students who perform poorly.

    NARCIS (Netherlands)

    Eijsvogels, T.M.H.; Brand, T.L. van den; Hopman, M.T.E.

    2013-01-01

    In recent years, medical faculties at Dutch universities have implemented a legally binding study advice to students of medicine and biomedical sciences during their propaedeutic phase. Appropriate examination is essential to discriminate between poor (grade <6), moderate (grade 6-8) and excellent

  1. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  2. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  3. Citation Patterns of Engineering, Statistics, and Computer Science Researchers: An Internal and External Citation Analysis across Multiple Engineering Subfields

    Science.gov (United States)

    Kelly, Madeline

    2015-01-01

    This study takes a multidimensional approach to citation analysis, examining citations in multiple subfields of engineering, from both scholarly journals and doctoral dissertations. The three major goals of the study are to determine whether there are differences between citations drawn from dissertations and those drawn from journal articles; to…

  4. Optical instrumentation engineering in science, technology and society; Proceedings of the Sixteenth Annual Technical Meeting, San Mateo, Calif., October 16-18, 1972

    Science.gov (United States)

    Katz, Y. H.

    1973-01-01

    Visual tracking performance in instrumentation is discussed together with photographic pyrometry in an aeroballistic range, optical characteristics of spherical vapor bubbles in liquids, and the automatic detection and control of surface roughness by coherent diffraction patterns. Other subjects explored are related to instruments, sensors, systems, holography, and pattern recognition. Questions of data handling are also investigated, taking into account minicomputer image storage for holographic interferometry analysis, the design of a video amplifier for a 90 MHz bandwidth, and autostereoscopic screens. Individual items are announced in this issue.

  5. Transgressive or Instrumental?

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2018-01-01

    Contemporary practices that connect the arts with learning are widespread at all level of educational systems and in organisations, but they include very diverse approaches, multiple methods and background values. Regardless of explicit learning benefits, the arts/learning partnerships bring about...... creativity and the other on practices of arts-integration. My final point rests on the belief that the opposition of transgression and instrumentality is a deceiving perspective on the arts, against the background of the aesthetic plurality and hybridity....

  6. Multiple choice questions are superior to extended matching questions to identify medicine and biomedical sciences students who perform poorly.

    Science.gov (United States)

    Eijsvogels, Thijs M H; van den Brand, Tessa L; Hopman, Maria T E

    2013-11-01

    In recent years, medical faculties at Dutch universities have implemented a legally binding study advice to students of medicine and biomedical sciences during their propaedeutic phase. Appropriate examination is essential to discriminate between poor (grade age and examination preference on this score. Data were collected for 452 first-year medical and biomedical science students during three distinct course examinations: one examination with EMQ only, one with MCQ only and one mixed examination (including EMQ and MCQ). Logistic regression analysis revealed that MCQ examination was 3 times better in identifying poor students compared with EMQ (RR 3.0, CI 2.0-4.5), whereas EMQ better detected excellent students (average grade ≥8) (RR 1.93, CI 1.47-2.53). Mixed examination had comparable characteristics to MCQ. Sex and examination preference did not impact the score of the student. Students ≥20 years had a 4-fold higher risk ratio of obtaining a poor grade (<6) compared with students ≤18 years old (RR 4.1, CI 2.1-8.0). Given the strong discriminative capacity of MCQ examinations to identify poor students, we recommend the use of this type of examination during the propaedeutic phase of medicine and biomedical science study programmes, in the light of the binding study advice.

  7. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-01-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During…

  8. Management of science policy, sociology of science policy and economics of science policy

    CERN Document Server

    Ruivo, Beatriz

    2017-01-01

    'Management of science policy, sociology of science policy and economics of science policy' is a theoretical essay on the scientific foundation of science policy (formulation, implementation, instruments and procedures). It can be also used as a textbook.

  9. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  10. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  11. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  12. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  13. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases.

    Science.gov (United States)

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-07-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org.

  15. Evaluation of instrumental parameters for obtaining acceptable analytical results of the Dosimetry Laboratory of Chemistry of the Regional Center of Nuclear Sciences, CNEN-NE, Recife, Brazil

    International Nuclear Information System (INIS)

    Souza, V.L.B.; Figueiredo, M.D.C.; Cunha, M.S.

    2008-01-01

    Instrumental parameters need to be evaluated for obtaining acceptable analytical results for a specific instrument. The performance of the UV-VIS spectrophotometer can be verified for wavelengths and absorbances with appropriate materials (solutions of different concentrations of K 2 CrO 4 , for example). The aim of this work was to demonstrate the results of the procedures to control the quality of the measurements carried out in the laboratory in the last four years. The samples were analyzed in the spectrophotometer and control graphics were obtained for K 2 CrO 4 and Fe 3+ absorbance values. The variation in the results obtained for the stability of the spectrophotometer and for the control of its calibration did not exceed 2%. (author)

  16. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    Science.gov (United States)

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Integrating Nephelometer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  18. Toward Customer-Centric Organizational Science: A Common Language Effect Size Indicator for Multiple Linear Regressions and Regressions With Higher-Order Terms.

    Science.gov (United States)

    Krasikova, Dina V; Le, Huy; Bachura, Eric

    2018-01-22

    To address a long-standing concern regarding a gap between organizational science and practice, scholars called for more intuitive and meaningful ways of communicating research results to users of academic research. In this article, we develop a common language effect size index (CLβ) that can help translate research results to practice. We demonstrate how CLβ can be computed and used to interpret the effects of continuous and categorical predictors in multiple linear regression models. We also elaborate on how the proposed CLβ index is computed and used to interpret interactions and nonlinear effects in regression models. In addition, we test the robustness of the proposed index to violations of normality and provide means for computing standard errors and constructing confidence intervals around its estimates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Exploring problem solving strategies on multiple-choice science items: Comparing native Spanish-speaking English Language Learners and mainstream monolinguals

    Science.gov (United States)

    Kachchaf, Rachel Rae

    The purpose of this study was to compare how English language learners (ELLs) and monolingual English speakers solved multiple-choice items administered with and without a new form of testing accommodation---vignette illustration (VI). By incorporating theories from second language acquisition, bilingualism, and sociolinguistics, this study was able to gain more accurate and comprehensive input into the ways students interacted with items. This mixed methods study used verbal protocols to elicit the thinking processes of thirty-six native Spanish-speaking English language learners (ELLs), and 36 native-English speaking non-ELLs when solving multiple-choice science items. Results from both qualitative and quantitative analyses show that ELLs used a wider variety of actions oriented to making sense of the items than non-ELLs. In contrast, non-ELLs used more problem solving strategies than ELLs. There were no statistically significant differences in student performance based on the interaction of presence of illustration and linguistic status or the main effect of presence of illustration. However, there were significant differences based on the main effect of linguistic status. An interaction between the characteristics of the students, the items, and the illustrations indicates considerable heterogeneity in the ways in which students from both linguistic groups think about and respond to science test items. The results of this study speak to the need for more research involving ELLs in the process of test development to create test items that do not require ELLs to carry out significantly more actions to make sense of the item than monolingual students.

  20. Investigating 6th graders' use of a tablet-based app supporting synchronous use of multiple tools designed to promote collaborative knowledge building in science

    Science.gov (United States)

    Sherwood, Carrie-Anne

    At this pivotal moment in time, when the proliferation of mobile technologies in our daily lives is influencing the relatively fast integration of these technologies into classrooms, there is little known about the process of student learning, and the role of collaboration, with app-based learning environments on mobile devices. To address this gap, this dissertation, comprised of three manuscripts, investigated three pairs of sixth grade students' synchronous collaborative use of a tablet-based science app called WeInvestigate . The first paper illustrated the methodological decisions necessary to conduct the study of student synchronous and face-to-face collaboration and knowledge building within the complex WeInvestigate and classroom learning environments. The second paper provided the theory of collaboration that guided the design of supports in WeInvestigate, and described its subsequent development. The third paper detailed the interactions between pairs of students as they engaged collaboratively in model construction and explanation tasks using WeInvestigate, hypothesizing connections between these interactions and the designed supports for collaboration. Together, these manuscripts provide encouraging evidence regarding the potential of teaching and learning with WeInvestigate. Findings demonstrated that the students in this study learned science through WeInvestigate , and were supported by the app - particularly the collabrification - to engage in collaborative modeling of phenomena. The findings also highlight the potential of the multiple methods used in this study to understand students' face-to-face and technology-based interactions within the "messy" context of an app-based learning environment and a traditional K-12 classroom. However, as the third manuscript most clearly illustrates, there are still a number of modifications to be made to the WeInvestigate technology before it can be optimally used in classrooms to support students' collaborative

  1. Evaluating Secondary Students' Scientific Reasoning in Genetics Using a Two-Tier Diagnostic Instrument

    Science.gov (United States)

    Tsui, Chi-Yan; Treagust, David

    2010-05-01

    While genetics has remained as one key topic in school science, it continues to be conceptually and linguistically difficult for students with the concomitant debates as to what should be taught in the age of biotechnology. This article documents the development and implementation of a two-tier multiple-choice instrument for diagnosing grades 10 and 12 students' understanding of genetics in terms of reasoning. The pretest and posttest forms of the diagnostic instrument were used alongside other methods in evaluating students' understanding of genetics in a case-based qualitative study on teaching and learning with multiple representations in three Western Australian secondary schools. Previous studies have shown that a two-tier diagnostic instrument is useful in probing students' understanding or misunderstanding of scientific concepts and ideas. The diagnostic instrument in this study was designed and then progressively refined, improved, and implemented to evaluate student understanding of genetics in three case schools. The final version of the instrument had Cronbach's alpha reliability of 0.75 and 0.64, respectively, for its pretest and the posttest forms when it was administered to a group of grade 12 students (n = 17). This two-tier diagnostic instrument complemented other qualitative data collection methods in this research in generating a more holistic picture of student conceptual learning of genetics in terms of scientific reasoning. Implications of the findings of this study using the diagnostic instrument are discussed.

  2. A Robust Two-Phase Pumped Loop With Multiple Evaporators and Multiple Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future spacecraft require advanced thermal management technologies to provide effective cooling for multiple instruments and reject heat through multiple...

  3. Instruments to assess integrated care

    DEFF Research Database (Denmark)

    Lyngsø, Anne Marie; Godtfredsen, Nina Skavlan; Høst, Dorte

    2014-01-01

    INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how to mea...... was prevalent. It is uncertain whether development of a single 'all-inclusive' model for assessing integrated care is desirable. We emphasise the continuing need for validated instruments embedded in theoretical contexts.......INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how...... to measure the level of integration across health-care sectors and to assess and evaluate the organisational elements within the instruments identified. METHODS: An extensive, systematic literature review in PubMed, CINAHL, PsycINFO, Cochrane Library, Web of Science for the years 1980-2011. Selected...

  4. A review of instruments to measure interprofessional collaboration for chronic disease management for community-living older adults.

    Science.gov (United States)

    Bookey-Bassett, Sue; Markle-Reid, Maureen; McKey, Colleen; Akhtar-Danesh, Noori

    2016-01-01

    It is acknowledged internationally that chronic disease management (CDM) for community-living older adults (CLOA) is an increasingly complex process. CDM for older adults, who are often living with multiple chronic conditions, requires coordination of various health and social services. Coordination is enabled through interprofessional collaboration (IPC) among individual providers, community organizations, and health sectors. Measuring IPC is complicated given there are multiple conceptualisations and measures of IPC. A literature review of several healthcare, psychological, and social science electronic databases was conducted to locate instruments that measure IPC at the team level and have published evidence of their reliability and validity. Five instruments met the criteria and were critically reviewed to determine their strengths and limitations as they relate to CDM for CLOA. A comparison of the characteristics, psychometric properties, and overall concordance of each instrument with salient attributes of IPC found the Collaborative Practice Assessment Tool to be the most appropriate instrument for measuring IPC for CDM in CLOA.

  5. Scientific Instruments and Epistemology Engines

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Tomáš

    2012-01-01

    Roč. 34, č. 4 (2012), s. 529-540 ISSN 1210-0250 R&D Projects: GA ČR(CZ) GAP401/11/2338 Institutional support: RVO:67985955 Keywords : material culture of science * scientific instruments * epistemology engines * experimental systems Subject RIV: AA - Philosophy ; Religion

  6. Increasing Robotic Science Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The principal objectives are to demonstrate robotic-based scientific investigations and resource prospecting, and develop and demonstrate modular science instrument...

  7. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  8. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  9. Combined Raman/Infrared Reflectance Instrument for In Situ Mineral Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Science Instruments, Observatories, and Sensor Systems Roadmap calls for instruments capable of in situ mineralogical analysis in support of planetary...

  10. Development of the Test Of Astronomy STandards (TOAST) Assessment Instrument

    Science.gov (United States)

    Slater, Timothy F.; Slater, S. J.

    2008-05-01

    Considerable effort in the astronomy education research (AER) community over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing the AER discipline so that researchers could establish the initial knowledge state of students as well as to attempt measure some of the impacts of innovative instructional interventions. Unfortunately, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. This was not done in oversight, but rather as a result of the relative youth of AER as a discipline. Now that several important science education reform documents exist and are generally accepted by the AER community, we are in a position to develop, validate, and disseminate a new assessment instrument which is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. In response, researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science & Math Teaching Center (UWYO SMTC) have designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for courses with learning goals tightly aligned to the consensus goals of our community.

  11. Radiological instrument

    International Nuclear Information System (INIS)

    Kronenberg, S.; McLaughlin, W.L.; Seibentritt, C.R. Jr.

    1986-01-01

    An instrument is described for measuring radiation, particularly nuclear radiation, comprising: a radiation sensitive structure pivoted toward one end and including a pair of elongated solid members contiguously joined together along their length dimensions and having a common planar interface therebetween. One of the pairs of members is comprised of radiochromic material whose index of refraction changes due to anomolous dispersion as a result of being exposed to nuclear radiation. The pair of members further has mutually different indices of refraction with the member having the larger index of refraction further being transparent for the passage of light and of energy therethrough; means located toward the other end of the structure for varying the angle of longitudinal elevation of the pair of members; means for generating and projecting a beam of light into one end of the member having the larger index of refraction. The beam of light is projected toward the planar interface where it is reflected out of the other end of the same member as a first output beam; means projecting a portion of the beam of light into one end of the member having the larger index of refraction where it traverses therethrough without reflection and out of the other end of the same member as a second output beam; and means adjacent the structure for receiving the first and second output beams, whereby a calibrated change in the angle of elevation of the structure between positions of equal intensity of the first and second output beams prior to and following exposure provides a measure of the radiation sensed due to a change of refraction of the radiochromic material

  12. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.; Eng., P.J.; Jaski, Y.R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M. [CARS, 5640 S. Ellis Avenue, University of Chicago, Chicago, IL (United States)

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P{approx_gt}360 GPa and T{approximately}6000 K with the diamond anvil cell and P{approximately}25 GPa and T{approximately}2500{degree}C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers. {copyright} {ital 1996 American Institute of Physics.}

  13. A Thermal Imaging Instrument with Uncooled Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed work, we will perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We will define the science and...

  14. Instruments and accessories for neutron scattering research

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu; Morii, Yukio

    2000-04-01

    This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)

  15. IAEA programme on maintenance of nuclear instruments

    International Nuclear Information System (INIS)

    Vuister, P.H.

    1986-01-01

    The Medical Applications Section in the Division of Life Sciences of the International Atomic Energy Agency has been engaged since 1975 in activities aimed at the more effective use of nuclear instruments. Activities and achievements are described concerning the conditioning of laboratories, preventive maintenance and repair of instruments, the management thereof, space parts and the promotion of local training in these subjects. (author)

  16. Differences between Homicides Committed by Lone and Multiple Offenders in Korea.

    Science.gov (United States)

    Park, Jisun; Cho, Joon Tag

    2018-05-16

    The aim of this study was to differentiate between homicides committed by multiple offenders and homicides committed by lone offenders. Using data on homicide incidents that occurred in South Korea between 1985 and 2008, we compared 134 homicides committed by multiple offenders, with 369 homicides committed by lone offenders. A greater proportion of homicides committed by multiple offenders involved injuries to the victim's head compared to homicides by lone offenders. Homicides committed by multiple offenders were more likely to involve blunt instruments and ligatures, whereas homicides by lone offenders were more likely to involve sharp instruments. In addition, a majority of the homicides committed by multiple offenders were planned. The results of this study have practical implications for homicide investigations, as well as theoretical implications for homicide research on the difference in offense behaviors based on the number of offenders. © 2018 American Academy of Forensic Sciences.

  17. Description of the supporting factors of final project in Mathematics and Natural Sciences Faculty of Syiah Kuala University with multiple correspondence analysis

    Science.gov (United States)

    Rusyana, Asep; Nurhasanah; Maulizasari

    2018-05-01

    Syiah Kuala University (Unsyiah) is hoped to have graduates who are qualified for working or creating a field of work. A final project course implementation process must be effective. This research uses data from the evaluation conducted by Mathematics and Natural Sciences Faculty (FMIPA) of Unsyiah. Some of the factors that support the completion of the final project are duration, guidance, the final project seminars, facility, public impact, and quality. This research aims to know the factors that have a relationship with the completion of the final project and identify similarities among variables. The factors that support the completion of the final project at every study program in FMIPA are (1) duration, (2) guidance and (3) facilities. These factors are examined for the correlations by chi-square test. After that, the variables are analyzed with multiple correspondence analysis. Based on the plot of correspondence, the activities of the guidance and facilities in Informatics Study Program are included in the fair category, while the guidance and facilities in the Chemistry are included in the best category. Besides that, students in Physics can finish the final project with the fastest completion duration, while students in Pharmacy finish for the longest time.

  18. Neutron beam instruments at Harwell

    International Nuclear Information System (INIS)

    Baston, A.H.; Harris, D.H.C.

    1978-11-01

    A list and brief descriptions are given of the neutron beam facilities for U.K. scientists at Harwell and in academic institutions, available under an agreement between the Science Research Council and AERE (Harwell). The list falls under the following headings: reactor instruments (single crystal diffractometers, powder diffractometers, triple axis spectrometers, time-of-flight cold neutron twin rotor spectrometer, beryllium filter spectrometer, MARX spectrometer, Harwell small-angle scattering spectrometer); LINAC instruments (total scattering spectrometer, back scattering spectrometer, active sample spectrometer, inelastic rotor spectrometer, constant Q spectrometer); ancillary equipment (cryostats, superconducting magnets, electromagnets, furnaces). (U.K.)

  19. Evaluation of robotically controlled advanced endoscopic instruments

    NARCIS (Netherlands)

    Reilink, Rob; Kappers, Astrid M.L.; Stramigioli, Stefano; Misra, Sarthak

    Background Advanced flexible endoscopes and instruments with multiple degrees of freedom enable physicians to perform challenging procedures such as the removal of large sections of mucosal tissue. However, these advanced endoscopes are difficult to control and require several physicians to

  20. Is It Working? Distractor Analysis Results from the Test Of Astronomy STandards (TOAST) Assessment Instrument

    Science.gov (United States)

    Slater, Stephanie

    2009-05-01

    The Test Of Astronomy STandards (TOAST) assessment instrument is a multiple-choice survey tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. Researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science and Math Teaching Center (UWYO SMTC) have been conducting a question-by-question distractor analysis procedure to determine the sensitivity and effectiveness of each item. In brief, the frequency each possible answer choice, known as a foil or distractor on a multiple-choice test, is determined and compared to the existing literature on the teaching and learning of astronomy. In addition to having statistical difficulty and discrimination values, a well functioning assessment item will show students selecting distractors in the relative proportions to how we expect them to respond based on known misconceptions and reasoning difficulties. In all cases, our distractor analysis suggests that all items are functioning as expected. These results add weight to the validity of the Test Of Astronomy STandards (TOAST) assessment instrument, which is designed to help instructors and researchers measure the impact of course-length duration instructional strategies for undergraduate science survey courses with learning goals tightly aligned to the consensus goals of the astronomy education community.

  1. THOR Ion Mass Spectrometer instrument - IMS

    Science.gov (United States)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  2. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  3. The Instrumentation Program for the Thirty Meter Telescope

    OpenAIRE

    Simard, Luc; Crampton, David; Ellerbroek, Brent; Boyer, Corinne

    2012-01-01

    An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Science cases and operational concepts as well as their links to the instruments are continually revisited and updated through a series of workshops and conferences. Work on the three first-light instruments (WFOS IRIS, and IRMS) has made significant progress, and many groups in TMT partner communities are developing future instrument concepts. Other instrument-related subsystems are al...

  4. Improving pupils’ conceptual understanding by a connected in-school and out-of-school science program: a multiple case study

    NARCIS (Netherlands)

    Geveke, Carla; Steenbeek, Henderien; Doornenbal, Jeannette; van Geert, Paul

    2016-01-01

    The number of out-of-school science programs, which refers to science education at outside school environments, is gradually increasing. Although out-of-school programs are generally considered to be important for the development of pupils’ science knowledge and skills, more evidence concerning the

  5. Introduction to instrumentation and measurements

    CERN Document Server

    Northrop, Robert B

    2014-01-01

    Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describ...

  6. Soil analysis. Modern instrumental technique

    International Nuclear Information System (INIS)

    Smith, K.A.

    1993-01-01

    This book covers traditional methods of analysis and specialist monographs on individual instrumental techniques, which are usually not written with soil or plant analysis specifically in mind. The principles of the techniques are combined with discussions of sample preparation and matrix problems, and critical reviews of applications in soil science and related disciplines. Individual chapters are processed separately for inclusion in the appropriate data bases

  7. Evaluating musical instruments

    International Nuclear Information System (INIS)

    Campbell, D. Murray

    2014-01-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians

  8. Instrumental traditions and theories of light the uses of instruments in the optical revolution

    CERN Document Server

    Chen, Xiang

    2000-01-01

    An analysis of the optical revolution in the context of early 19th century Britain. Far from merely involving the replacement of one optical theory by another, the revolution also involved substantial changes in instruments and the practices that surrounded them. People's judgements about classification, explanation and evaluation were affected by the way they used such optical instruments as spectroscopes, telescopes, polarisers, photometers, gratings, prisms and apertures. There were two instrumental traditions in this historical period, each of which nurtured a body of practice that exemplified how optical instruments should be operated, and especially how the eye should be used. These traditions functioned just like paradigms, shaping perspectives and even world views. Readership: Scholars and graduate students in the history of science, history of instrument, philosophy of science and science studies. Can also be used as a textbook in graduate courses on 19th century physics.

  9. Development of a Biological Science Quantitative Reasoning Exam (BioSQuaRE)

    Science.gov (United States)

    Stanhope, Liz; Ziegler, Laura; Haque, Tabassum; Le, Laura; Vinces, Marcelo; Davis, Gregory K.; Zieffler, Andrew; Brodfuehrer, Peter; Preest, Marion; Belitsky, Jason M.; Umbanhowar, Charles, Jr.; Overvoorde, Paul J.

    2017-01-01

    Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative…

  10. The quality of instruments to assess the process of shared decision making: A systematic review

    Science.gov (United States)

    Bomhof-Roordink, Hanna; Smith, Ian P.; Scholl, Isabelle; Stiggelbout, Anne M.; Pieterse, Arwen H.

    2018-01-01

    Objective To inventory instruments assessing the process of shared decision making and appraise their measurement quality, taking into account the methodological quality of their validation studies. Methods In a systematic review we searched seven databases (PubMed, Embase, Emcare, Cochrane, PsycINFO, Web of Science, Academic Search Premier) for studies investigating instruments measuring the process of shared decision making. Per identified instrument, we assessed the level of evidence separately for 10 measurement properties following a three-step procedure: 1) appraisal of the methodological quality using the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist, 2) appraisal of the psychometric quality of the measurement property using three possible quality scores, 3) best-evidence synthesis based on the number of studies, their methodological and psychometrical quality, and the direction and consistency of the results. The study protocol was registered at PROSPERO: CRD42015023397. Results We included 51 articles describing the development and/or evaluation of 40 shared decision-making process instruments: 16 patient questionnaires, 4 provider questionnaires, 18 coding schemes and 2 instruments measuring multiple perspectives. There is an overall lack of evidence for their measurement quality, either because validation is missing or methods are poor. The best-evidence synthesis indicated positive results for a major part of instruments for content validity (50%) and structural validity (53%) if these were evaluated, but negative results for a major part of instruments when inter-rater reliability (47%) and hypotheses testing (59%) were evaluated. Conclusions Due to the lack of evidence on measurement quality, the choice for the most appropriate instrument can best be based on the instrument’s content and characteristics such as the perspective that they assess. We recommend refinement and validation of

  11. Musical Sound, Instruments, and Equipment

    Science.gov (United States)

    Photinos, Panos

    2017-12-01

    'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.

  12. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  13. An overview of instrumentation for the Large Binocular Telescope

    Science.gov (United States)

    Wagner, R. Mark

    2012-09-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The

  14. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    Science.gov (United States)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  15. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  16. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  17. Troubleshooting in nuclear instruments

    International Nuclear Information System (INIS)

    1987-06-01

    This report on troubleshooting of nuclear instruments is the product of several scientists and engineers, who are closely associated with nuclear instrumentation and with the IAEA activities in the field. The text covers the following topics: Preamplifiers, amplifiers, scalers, timers, ratemeters, multichannel analyzers, dedicated instruments, tools, instruments, accessories, components, skills, interfaces, power supplies, preventive maintenance, troubleshooting in systems, radiation detectors. The troubleshooting and repair of instruments is illustrated by some real examples

  18. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  19. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design

    Science.gov (United States)

    France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason

    2017-08-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2

  20. First Results from the Test Of Astronomy STandards (TOAST) Assessment Instrument

    Science.gov (United States)

    Slater, Stephanie

    2009-01-01

    Considerable effort in the astronomy education research over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing astronomy as a sub-discipline of physics education research, allowing researchers to establish the initial knowledge state of students as well as to attempt to measure some of the impacts of innovative instructional interventions. Before now, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. Moving beyond the 10-year old Astronomy Diagnostics Test, we have developed and validated a new assessment instrument that is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. Researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science and Math Teaching Center (UWYO SMTC) designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this multiple-choice instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for undergraduate science survey courses with learning goals tightly aligned to the consensus goals of the astronomy education community.

  1. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  2. Education and training in the field of nuclear instrumentation and measurement: CEA/INSTN (National Institute for Nuclear Sciences and Technologies) strategy to improve and develop new pedagogical tools and methods

    International Nuclear Information System (INIS)

    Vitart, Xavier; Foulon, Francois; Bodineau, Jean Christophe; Lescop, Bernard; Massiot, Philippe

    2015-01-01

    Part of the French Alternative Energies and Atomic Energy Commission (CEA), the National Institute for Nuclear Science and Technology (INSTN) is a higher education institution whose mission is to provide students and professionals a high level of scientific and technological qualification in all disciplines related to nuclear energy applications. In this frame, INSTN carries out education and training (E and T) programs in nuclear instrumentation and radioprotection. Its strategy has always been to complete theoretical courses by training courses and laboratory works carried out on an extensive range of training tools that includes a large panel of nuclear instrumentation as well as software applications. Since its creation in 1956, the INSTN has conducted both education and vocational programs on ionizing radiation detection. An extensive range of techniques have commonly been used during practical works with students and employees of companies who need to get the knowledge and specialization in this field. Today, the INSTN is mainly equipped with usual detectors and electronics in large numbers in order to be able to accommodate up to 48 trainees at the same time in two classrooms, with only two trainees for one workstation in order to optimize their learning. In the field of the neutron detection systems, the INSTN has strongly developed its offer taking advantage of the use of research reactors, such as ISIS reactor (700 kW) at Saclay. The implementation of neutron detection systems specific to the courses offers a unique way of observing and analysing the signal coming from neutron detectors, as well as learning how to set the parameters of the detection system in real conditions. Providing the trainees with an extensive overview of each part of the neutron monitoring instrumentation apply to a nuclear reactor, hands-on measurements on the ISIS reactor play a major role in ensuring a practical and comprehensive understanding of the neutron detection system and

  3. Education and training in the field of nuclear instrumentation and measurement: CEA/INSTN (National Institute for Nuclear Sciences and Technologies) strategy to improve and develop new pedagogical tools and methods

    Energy Technology Data Exchange (ETDEWEB)

    Vitart, Xavier; Foulon, Francois; Bodineau, Jean Christophe; Lescop, Bernard; Massiot, Philippe [CEA/INSTN Centre des Saclay 91191 Gif sur Yvette (France)

    2015-07-01

    Part of the French Alternative Energies and Atomic Energy Commission (CEA), the National Institute for Nuclear Science and Technology (INSTN) is a higher education institution whose mission is to provide students and professionals a high level of scientific and technological qualification in all disciplines related to nuclear energy applications. In this frame, INSTN carries out education and training (E and T) programs in nuclear instrumentation and radioprotection. Its strategy has always been to complete theoretical courses by training courses and laboratory works carried out on an extensive range of training tools that includes a large panel of nuclear instrumentation as well as software applications. Since its creation in 1956, the INSTN has conducted both education and vocational programs on ionizing radiation detection. An extensive range of techniques have commonly been used during practical works with students and employees of companies who need to get the knowledge and specialization in this field. Today, the INSTN is mainly equipped with usual detectors and electronics in large numbers in order to be able to accommodate up to 48 trainees at the same time in two classrooms, with only two trainees for one workstation in order to optimize their learning. In the field of the neutron detection systems, the INSTN has strongly developed its offer taking advantage of the use of research reactors, such as ISIS reactor (700 kW) at Saclay. The implementation of neutron detection systems specific to the courses offers a unique way of observing and analysing the signal coming from neutron detectors, as well as learning how to set the parameters of the detection system in real conditions. Providing the trainees with an extensive overview of each part of the neutron monitoring instrumentation apply to a nuclear reactor, hands-on measurements on the ISIS reactor play a major role in ensuring a practical and comprehensive understanding of the neutron detection system and

  4. Climate Science's Globally Distributed Infrastructure

    Science.gov (United States)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  5. Multiple Ships and Multiple Media: A Flexible Telepresence Program

    Science.gov (United States)

    Pelz, M.; Hoeberechts, M.; Riddell, D. J.; Ewing, N.

    2016-02-01

    Ocean Networks Canada (ONC) uses a number of research and exploration vessels equipped with remotely operated vehicles (ROVs) to maintain the NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia, Canada. Maintenance expeditions range from several days to multiple weeks and encompass a range of activities including deploying new instruments, laying cable, recovering platforms, scientific sampling and conducting multibeam and visual surveys. In order to engage the widest possible participation in at-sea work, ONC uses telepresence technology to communicate from ship to shore and back with scientists, students, teachers and online viewers. In this presentation, we explore the challenge of designing a sustainable and flexible telepresence program which can be supported across multiple ship and ROV platforms, sometimes simultaneously. To meet outreach and education objectives, onboard educators conduct presentations to K-12 and post-secondary classrooms, museums and science centres on a daily basis. Online commentary by the educators, dive chief and ROV pilots accompanies the ROV dive footage and is streamed online 24/7 during underwater operations. Sharing the sights and sounds of the expeditions with students and educators ashore, including those in remote and inland communities, creates a unique learning environment for both formal and informal education audiences. As space is always a limiting factor on expeditions, the use of telepresence and other communication media enables ONC to simultaneously achieve engineering and science priorities at sea while communicating the successes and challenges of the expedition back to shore. Scientists and engineers provide guidance for operations from shore using a variety of communication technologies. We give examples from Ocean Networks Canada's most recent expedition, Fall 2015, which involved co-ordinated operations with three vessels - the R/V Thompson, the E/V Nautilus and the C/S Wave

  6. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  7. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  8. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  9. Design requirements for the SWIFT instrument

    International Nuclear Information System (INIS)

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2013-01-01

    The Stratospheric Wind Interferometer for Transport studies (SWIFT) instrument is a proposed limb-viewing satellite instrument that employs the method of Doppler Michelson interferometry to measure stratospheric wind velocities and ozone densities in the altitude range of 15–45 km. The values of the main instrument parameters including filter system parameters and Michelson interferometer parameters are derived using simulations and analyses. The system design requirements for the instrument and spacecraft are presented and discussed. Some of the retrieval-imposed design requirements are also discussed. Critical design issues are identified. The design optimization process is described. The sensitivity of wind measurements to instrument characteristics is investigated including the impact on critical design issues. Using sensitivity analyses, the instrument parameters were iteratively optimized in order to meet the science objectives. It is shown that wind measurements are sensitive to the thermal sensitivity of the instrument components, especially the narrow filter and the Michelson interferometer. The optimized values of the main system parameters including Michelson interferometer optical path difference, instrument visibility, instrument responsivity and knowledge of spacecraft velocity are reported. This work also shows that the filter thermal drift and the Michelson thermal drift are two main technical risks. (paper)

  10. Monte Carlo simulations of neutron scattering instruments

    International Nuclear Information System (INIS)

    Aestrand, Per-Olof; Copenhagen Univ.; Lefmann, K.; Nielsen, K.

    2001-01-01

    A Monte Carlo simulation is an important computational tool used in many areas of science and engineering. The use of Monte Carlo techniques for simulating neutron scattering instruments is discussed. The basic ideas, techniques and approximations are presented. Since the construction of a neutron scattering instrument is very expensive, Monte Carlo software used for design of instruments have to be validated and tested extensively. The McStas software was designed with these aspects in mind and some of the basic principles of the McStas software will be discussed. Finally, some future prospects are discussed for using Monte Carlo simulations in optimizing neutron scattering experiments. (R.P.)

  11. Aeroacoustics of Musical Instruments

    NARCIS (Netherlands)

    Fabre, B.; Gilbert, J.; Hirschberg, Abraham; Pelorson, X.

    2012-01-01

    We are interested in the quality of sound produced by musical instruments and their playability. In wind instruments, a hydrodynamic source of sound is coupled to an acoustic resonator. Linear acoustics can predict the pitch of an instrument. This can significantly reduce the trial-and-error process

  12. Influence of social cognitive and ethnic variables on academic goals of underrepresented students in science and engineering: a multiple-groups analysis.

    Science.gov (United States)

    Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan

    2010-04-01

    This study investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in two groups: biological science and engineering (S/E) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive variables (math/science academic self-efficacy, math/science outcome expectations), along with the influence of ethnic variables (ethnic identity, other-group orientation) and perceptions of campus climate to their math/science interests and goal commitment to earn an S/E degree. Path analysis revealed that the hypothesized model provided good overall fit to the data, revealing significant relationships from outcome expectations to interests and to goals. Paths from academic self-efficacy to S/E goals and from interests to S/E goals varied for students in engineering and biological science. For both groups, other-group orientation was positively related to self-efficacy and support was found for an efficacy-mediated relationship between perceived campus climate and goals. Theoretical and practical implications of the study's findings are considered as well as future research directions.

  13. Status of safeguards instrumentation

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    The International Atomic Energy Agency is performing safeguards at some nuclear power reactors, 50 bulk processing facilities, and 170 research facilities. Its verification activities require the use of instruments to measure nuclear materials and of surveillance instruments to maintain continuity of knowledge of the locations of nuclear materials. Instruments that are in use and under development to measure weight, volume, concentration, and isotopic composition of nuclear materials, and the major surveillance instruments, are described in connection with their uses at representative nuclear facilities. The current status of safeguards instrumentation and the needs for future development are discussed

  14. Science on a space elevator

    Energy Technology Data Exchange (ETDEWEB)

    Laubscher, B. E. (Bryan E.); Jorgensen, A. M. (Anders M.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. If the SE's promise of low cost access can be realized, everything becomes economically more feasible to accomplish in space. In this paper we describe in-situ science stations mounted on a science-dedicated space elevator tether. The concept presented here involves a carbon nanotube ribbon that is constructed by an existing space elevator and then science sensors are stationed along the ribbon at differing altitudes. The finished ribbon can be moved across the earth to the position at which its scientific measurements are to be taken. The ability to station scientific, in-situ instrumentation at different altitudes for round-the-clock observations is a unique capability of the SE. The environments that the science packages sense range from the troposphere out beyond the magnetopause of the magnetosphere on the solar side of the earth. Therefore, the very end of the SE can sense the solar wind. The measurements at various points along its length include temperature, pressure, density, sampling, chemical analyses, wind speed, turbulence, free oxygen, electromagnetic radiation, cosmic rays, energetic particles and plasmas in the earth's magnetosphere and the solar wind. There exist some altitudes that are difficult to access with aircraft or balloons or rockets and so remain relatively unexplored. The space elevator solves these problems and opens these regions up to in-situ measurements. Without the need for propulsion, the SE provides a more benign and pristine environment for atmospheric measurements than available with powered aircraft. Moreover, replacing and upgrading instrumentation is expected to be very cost effective with the SE. Moving and stationing the science SE affords the opportunity to sense multiple regions of the atmosphere. The SE's geosynchronous, orbital motion through the magnetosphere, albeit nominally with Earth's magnetic field, will trace a plane

  15. New Contemporary Criterion-Referenced Assessment Instruments for Astronomy & Geology: TOAST & EGGS

    Science.gov (United States)

    Guffey, Sarah Katie; Slater, Stephanie J.; Slater, Timothy F.

    2015-08-01

    Considerable effort in the astronomy and Earth sciences education research over the past decade has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing discipline-based education research allowing scholar to establish the initial, incoming knowledge state of students as well as to attempt to measure some of the impacts of innovative instructional interventions. Before now, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. Whereas first-generation assessment tools, such as the Astronomy Diagnostics Test ADT2) were based primarily upon further identifying documented astronomy misconceptions, scholars from the CAPER Center for Astronomy & Physics Education Research team are creating contemporary instruments based instead by developing items using modern test construction techniques and tightly aligned to the consensus learning goals identified by the American Association of the Advancement of Science’s Project 2061 Benchmarks, and the National Research Council’s National Science Education Standards, and the National Research Council’s Frameworks for A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. These consensus learning goals are further enhanced guiding documents from the American Astronomical Society - Chair’s Conference on ASTRO 101 and the NSF-funded Earth Science Literacy Initiative. Two of the resulting criterion-referenced assessment tools widely used by researchers are the Test Of Astronomy STandards (TOAST) and the Exam of GeoloGy StandardS (EGGS). These easy-to-use and easy-to-score multiple-choice instruments have a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to

  16. Proceedings of national symposium on advanced instrumentation for nuclear research

    International Nuclear Information System (INIS)

    1993-01-01

    The National Symposium on Advanced Instrumentation for Nuclear Research was held in Bombay during January 27-29, 1993 at BARC. Progress of modern nuclear research is closely related to the availability of state of the art instruments and systems. With the advancements in experimental techniques and sophisticated detector developments, the performance specifications have become more stringent. State of the art techniques and diverse applications of sophisticated nuclear instrumentation systems are discussed along with indigenous efforts to meet the specific instrumentation needs of research programs in nuclear sciences. Papers of relevance to nuclear science and technology are indexed separately. (original)

  17. Science, Technology, Engineering, and Mathematics Education: Strategic Planning Needed to Better Manage Overlapping Programs across Multiple Agencies. Report to Congressional Requesters. GAO-12-108

    Science.gov (United States)

    Scott, George A.

    2012-01-01

    Science, technology, engineering, and mathematics (STEM) education programs help to enhance the nation's global competitiveness. Many federal agencies have been involved in administering these programs. Concerns have been raised about the overall effectiveness and efficiency of STEM education programs. GAO examined (1) the number of federal…

  18. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  19. Multiple Perspectives / Multiple Readings

    Directory of Open Access Journals (Sweden)

    Simon Biggs

    2005-01-01

    Full Text Available People experience things from their own physical point of view. What they see is usually a function of where they are and what physical attitude they adopt relative to the subject. With augmented vision (periscopes, mirrors, remote cameras, etc we are able to see things from places where we are not present. With time-shifting technologies, such as the video recorder, we can also see things from the past; a time and a place we may never have visited.In recent artistic work I have been exploring the implications of digital technology, interactivity and internet connectivity that allow people to not so much space/time-shift their visual experience of things but rather see what happens when everybody is simultaneously able to see what everybody else can see. This is extrapolated through the remote networking of sites that are actual installation spaces; where the physical movements of viewers in the space generate multiple perspectives, linked to other similar sites at remote locations or to other viewers entering the shared data-space through a web based version of the work.This text explores the processes involved in such a practice and reflects on related questions regarding the non-singularity of being and the sense of self as linked to time and place.

  20. Report of the 1983 NSAC Instrumentation Subcommittee

    International Nuclear Information System (INIS)

    1984-05-01

    This report deals with the present state and future opportunities in instrumentation available to nuclear scientists in the United States to further probe the nature of nuclear matter. The report was written by a group convened by DOE/NSF as a subcommittee of the Nuclear Science Advisory Committee (NSAC). Findings and recommendations of the subcommittee are detailed

  1. CAMAC instrumentation system: introduction and general description

    International Nuclear Information System (INIS)

    Costrell, L.

    1976-01-01

    The CAMAC instrumentation system is described in a general way in this introductory paper which is followed by papers that discuss the system in greater detail. This paper is an updated version of the introductory paper that appeared in the April 1973 IEEE Transactions on Nuclear Science

  2. Advanced Instrumentation for Positron Emission Tomography [PET

    Science.gov (United States)

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  3. Affordances of Instrumentation in General Chemistry Laboratories

    Science.gov (United States)

    Sherman, Kristin Mary Daniels

    2010-01-01

    The purpose of this study is to find out what students in the first chemistry course at the undergraduate level (general chemistry for science majors) know about the affordances of instrumentation used in the general chemistry laboratory and how their knowledge develops over time. Overall, students see the PASCO(TM) system as a useful and accurate…

  4. Instrumentation a reader

    CERN Document Server

    Pope, P

    1990-01-01

    This book contains a selection of papers and articles in instrumentation previously pub­ lished in technical periodicals and journals of learned societies. Our selection has been made to illustrate aspects of current practice and applications of instrumentation. The book does not attempt to be encyclopaedic in its coverage of the subject, but to provide some examples of general transduction techniques, of the sensing of particular measurands, of components of instrumentation systems and of instrumentation practice in two very different environments, the food industry and the nuclear power industry. We have made the selection particularly to provide papers appropriate to the study of the Open University course T292 Instrumentation. The papers have been chosen so that the book covers a wide spectrum of instrumentation techniques. Because of this, the book should be of value not only to students of instrumen­ tation, but also to practising engineers and scientists wishing to glean ideas from areas of instrumen...

  5. Instrumentation for Nuclear Applications

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards

  6. VIRUS instrument enclosures

    Science.gov (United States)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  7. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  8. Networked Instrumentation Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have developed a networked instrumentation system that connects modern experimental payloads to existing analog and digital communications...

  9. Instrument validation project

    International Nuclear Information System (INIS)

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells

  10. Instrument performance evaluation

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program

  11. [Controlling instruments in radiology].

    Science.gov (United States)

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  12. Ocean Optics Instrumentation Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  13. A critical hermeneutic study: Third grade elementary African American students' views of the nature of science

    Science.gov (United States)

    Walls, Leon

    Nature of Science is one of the most fundamental aspects of understanding science. How different cultures, races and ethnicities see and interpret science differently is critical. However, the NOS views specific to African American teachers and learners have gone largely unresearched. The views of a purposeful sample of African American third grade children reported in this study contribute to efforts to make science equitable for all students. Conducted in two Midwest urban settings, within the students' regular classrooms, three instruments were employed: Views of Nature of Science Elementary (an interview protocol), Elementary Draw a Scientist Test (a drawing activity supplemented by an explicating narrative), and Identify a Scientist (a simple select-a-photo technique supported by Likert-measured sureness). The responses provided by twenty-three students were coded using qualitative content analysis. The findings are represented in three main categories: Science - is governed by experimentation, invention and discovery teach us about the natural world, school is not the only setting for learning science; Scientists - intelligent, happy, studious men and women playing multiple roles, with distinct physical traits working in laboratories; Students - capable users and producers of science and who view science as fun. This study advocates for: use of such instruments for constant monitoring of student views, using the knowledge of these views to construct inquiry based science lessons, and increased research about students of color.

  14. Development of Interactive Monitoring System for Neutron Scattering Instrument

    Energy Technology Data Exchange (ETDEWEB)

    So, Ji Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Neutron scattering instruments in HANARO research reactor have been contributed to various fields of basic science and material engineering. These instruments are open to publics and researchers can apply beam-time and do experiments with instrument scientists. In most cases, these instruments run for several weeks without stopping, and therefore instrument scientist wants to see the instrument status and receive information if the instruments have some problem. This is important for the safety. However, it is very hard to get instrument information outside of instruments. Access from external site is strongly forbidden in the institute due to the network safety, I developed another way to send instrument status information using commercial short messaging service(SMS). In this presentation, detailed features of this system will be shown. As a prototype, this system is being developed for the single instrument: Disk-chopper time-of-flight instruments (DC-TOF). I have successfully developed instruments and operate for several years. This information messaging system can be used for other neutron scattering instruments.

  15. Musical instruments in the 21st century identities, configurations, practices

    CERN Document Server

    Campo, Alberto; Egermann, Hauke; Hardjowirogo, Sarah-Indriyati; Weinzierl, Stefan

    2017-01-01

    By exploring the many different types and forms of contemporary musical instruments, this book contributes to a better understanding of the conditions of instrumentality in the 21st century. Providing insights from science, humanities and the arts, authors from a wide range of disciplines discuss the following questions: · What are the conditions under which an object is recognized as a musical instrument? · What are the actions and procedures typically associated with musical instruments? · What kind of (mental and physical) knowledge do we access in order to recognize or use something as a musical instrument? · How is this knowledge being shaped by cultural conventions and temporal conditions? · How do algorithmic processes 'change the game' of musical performance, and as a result, how do they affect notions of instrumentality? · How do we address the question of instrumental identity within an instrument's design process? · What properties can be used to differentiate successful and unsuccessful ins...

  16. Management Approach for Earth Venture Instrument

    Science.gov (United States)

    Hope, Diane L.; Dutta, Sanghamitra

    2013-01-01

    The Earth Venture Instrument (EVI) element of the Earth Venture Program calls for developing instruments for participation on a NASA-arranged spaceflight mission of opportunity to conduct innovative, integrated, hypothesis or scientific question-driven approaches to pressing Earth system science issues. This paper discusses the EVI element and the management approach being used to manage both an instrument development activity as well as the host accommodations activity. In particular the focus will be on the approach being used for the first EVI (EVI-1) selected instrument, Tropospheric Emissions: Monitoring of Pollution (TEMPO), which will be hosted on a commercial GEO satellite and some of the challenges encountered to date and corresponding mitigations that are associated with the management structure for the TEMPO Mission and the architecture of EVI.

  17. Scientific instruments, scientific progress and the cyclotron

    International Nuclear Information System (INIS)

    Baird, David; Faust, Thomas

    1990-01-01

    Philosophers speak of science in terms of theory and experiment, yet when they speak of the progress of scientific knowledge they speak in terms of theory alone. In this article it is claimed that scientific knowledge consists of, among other things, scientific instruments and instrumental techniques and not simply of some kind of justified beliefs. It is argued that one aspect of scientific progress can be characterized relatively straightforwardly - the accumulation of new scientific instruments. The development of the cyclotron is taken to illustrate this point. Eight different activities which promoted the successful completion of the cyclotron are recognised. The importance is in the machine rather than the experiments which could be run on it and the focus is on how the cyclotron came into being, not how it was subsequently used. The completed instrument is seen as a useful unit of scientific progress in its own right. (UK)

  18. Long Term Analysis of Adaptive Low-Power Instrument Platform Power and Battery Performance

    Science.gov (United States)

    Edwards, T.; Bowman, J. R.; Clauer, C. R.

    2017-12-01

    Operation of the Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) by the Magnetosphere-Ionosphere Science Team (MIST) at Virginia Tech has been ongoing for about 10 years. These instrument platforms are deployed on the East Antarctic Plateau in remote locations that are difficult to access regularly. The systems have been designed to operate unattended for at least 5 years. During the Austral summer, the systems charge batteries using solar panels and power is provided by the batteries during the winter months. If the voltage goes below a critical level, the systems go into hibernation and wait for voltage from the solar panels to initiate a restart sequence to begin operation and battery charging. Our first system was deployed on the East Antarctic Plateau in 2008 and we report here on an analysis of the power and battery performance over multiple years and provide an estimate for how long these systems can operate before major battery maintenance must be performed.

  19. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  20. Optimising the effect of policy instruments

    DEFF Research Database (Denmark)

    Pedersen, Anders Branth; Nielsen, Helle Ørsted; Christensen, Tove

    2012-01-01

    Economic modelling generally assumes that businesses are profit maximisers. However, behavioural economics holds that businesses pursue multiple objectives and may even sacrifice some profit. This has implications for the effectiveness of incentive-based environmental policies. Using Danish farme...... to policy instruments; farmers who focus on yield indicate less responsiveness to economic policy instruments. The results imply that it is important to implement a broad array of policy instruments to match different farmer rationales.......Economic modelling generally assumes that businesses are profit maximisers. However, behavioural economics holds that businesses pursue multiple objectives and may even sacrifice some profit. This has implications for the effectiveness of incentive-based environmental policies. Using Danish farmers...... as a case, this paper examines whether non-economic rationales may trump economic ones in farmer decisions, and, unlike previous research, we quantify how widespread non-economic values are compared to more economic values. Data derive from a survey (1164 responses) of Danish conventional farmers' decision...

  1. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, low power instrumentation for the real-time direct measurement of carbonyl sulfide (OCS) in the atmosphere, especially...

  2. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR program, Southwest Sciences will continue the development of small, low power instrumentation for real-time direct measurement of carbonyl...

  3. Emotionally Intense Science Activities

    Science.gov (United States)

    King, Donna; Ritchie, Stephen; Sandhu, Maryam; Henderson, Senka

    2015-01-01

    Science activities that evoke positive emotional responses make a difference to students' emotional experience of science. In this study, we explored 8th Grade students' discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of…

  4. Overview of LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed

  5. Multiple sclerosis

    Science.gov (United States)

    ... indwelling catheter Osteoporosis or thinning of the bones Pressure sores Side effects of medicines used to treat the ... Daily bowel care program Multiple sclerosis - discharge Preventing pressure ulcers Swallowing problems Images Multiple sclerosis MRI of the ...

  6. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  7. The Development of Student’s Activity Sheets (SAS) Based on Multiple Intelligences and Problem-Solving Skills Using Simple Science Tools

    Science.gov (United States)

    Wardani, D. S.; Kirana, T.; Ibrahim, M.

    2018-01-01

    The aim of this research is to produce SAS based on MI and problem-solving skills using simple science tools that are suitable to be used by elementary school students. The feasibility of SAS is evaluated based on its validity, practicality, and effectiveness. The completion Lesson Plan (LP) implementation and student’s activities are the indicators of SAS practicality. The effectiveness of SAS is measured by indicators of increased learning outcomes and problem-solving skills. The development of SAS follows the 4-D (define, design, develop, and disseminate) phase. However, this study was done until the third stage (develop). The written SAS was then validated through expert evaluation done by two experts of science, before its is tested to the target students. The try-out of SAS used one group with pre-test and post-test design. The result of this research shows that SAS is valid with “good” category. In addition, SAS is considered practical as seen from the increase of student activity at each meeting and LP implementation. Moreover, it was considered effective due to the significant difference between pre-test and post-test result of the learning outcomes and problem-solving skill test. Therefore, SAS is feasible to be used in learning.

  8. Development of preservice elementary teachers' science self- efficacy beliefs and its relation to science conceptual understanding

    Science.gov (United States)

    Menon, Deepika

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self

  9. BES Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Biocca, Alan; Carlson, Rich; Chen, Jackie; Cotter, Steve; Tierney, Brian; Dattoria, Vince; Davenport, Jim; Gaenko, Alexander; Kent, Paul; Lamm, Monica; Miller, Stephen; Mundy, Chris; Ndousse, Thomas; Pederson, Mark; Perazzo, Amedeo; Popescu, Razvan; Rouson, Damian; Sekine, Yukiko; Sumpter, Bobby; Dart, Eli; Wang, Cai-Zhuang -Z; Whitelam, Steve; Zurawski, Jason

    2011-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivityfor the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office ofScience programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  10. BES Science Network Requirements

    International Nuclear Information System (INIS)

    Dart, Eli; Tierney, Brian; Biocca, A.; Carlson, R.; Chen, J.; Cotter, S.; Dattoria, V.; Davenport, J.; Gaenko, A.; Kent, P.; Lamm, M.; Miller, S.; Mundy, C.; Ndousse, T.; Pederson, M.; Perazzo, A.; Popescu, R.; Rouson, D.; Sekine, Y.; Sumpter, B.; Wang, C.-Z.; Whitelam, S.; Zurawski, J.

    2011-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  11. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  12. Instrumentation reference book

    CERN Document Server

    Boyes, Walt

    2002-01-01

    Instrumentation is not a clearly defined subject, having a 'fuzzy' boundary with a number of other disciplines. Often categorized as either 'techniques' or 'applications' this book addresses the various applications that may be needed with reference to the practical techniques that are available for the instrumentation or measurement of a specific physical quantity or quality. This makes it of direct interest to anyone working in the process, control and instrumentation fields where these measurements are essential.* Comprehensive and authoritative collection of technical information* Writte

  13. The latest radiation instrument

    International Nuclear Information System (INIS)

    Kang, Se Sik; Gwon, Dal Gwan; Kim, Gyeong Geum

    2008-08-01

    This book deals with the latest radiation instrument, which is comprised of eight chapters. It explains X rays instrument for medial treatment, X-ray tube instrument and permissible burden with its history, structure and characteristic high voltage apparatus with high voltage rectifier circuit, X-ray control apparatus for medical treatment, X-ray image equipment X-ray television apparatus and CCD 205, X-ray apparatus of install and types, Digital X-ray apparatus with CR 261 and DR 269, performance management on X-ray for medical treatment with its history, necessity and management in the radiation field.

  14. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities as well as wastes from old waste burial ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. Because of the topic of this workshop, only the assay instrumentation applied specifically to soil monitoring will be discussed here. Four types of soil monitors are described

  15. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1981-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities, as well as from old waste-burial-ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. The assay instrumentation that is applied specifically to soil monitoring is discussed

  16. Jones' instrument technology

    CERN Document Server

    Jones, Ernest Beachcroft; Kingham, Edward G; Radnai, Rudolf

    1985-01-01

    Jones' Instrument Technology, Volume 5: Automatic Instruments and Measuring Systems deals with general trends in automatic instruments and measuring systems. Specific examples are provided to illustrate the principles of such devices. A brief review of a considerable number of standards is undertaken, with emphasis on the IEC625 Interface System. Other relevant standards are reviewed, including the interface and backplane bus standards. This volume is comprised of seven chapters and begins with a short introduction to the principles of automatic measurements, classification of measuring system

  17. Medical instruments in museums

    DEFF Research Database (Denmark)

    Söderqvist, Thomas; Arnold, Ken

    2011-01-01

    This essay proposes that our understanding of medical instruments might benefit from adding a more forthright concern with their immediate presence to the current historical focus on simply decoding their meanings and context. This approach is applied to the intriguingly tricky question of what...... actually is meant by a "medical instrument." It is suggested that a pragmatic part of the answer might lie simply in reconsidering the holdings of medical museums, where the significance of the physical actuality of instruments comes readily to hand....

  18. Regional cooperation on nuclear instrument maintenance

    International Nuclear Information System (INIS)

    1991-04-01

    Proper nuclear instrument maintenance is the essential precondition for any experimental work in nuclear sciences and technology. With the rapidly increasing sophistication of nuclear instrumentation, and considering the rather specific conditions that prevail in many IAEA Member States, this topic is gaining in importance, and has a strong economic implication. There is a general opinion that a regional, and possibly interregional cooperation in the field might be advantageous, and economically beneficial to all participating parties. The experience in such cooperation is limited, but sufficient that some reliable observations can be made, some conclusion can be drawn, and some recommendation for the possible future development can be presented

  19. Environment for the instruments

    International Nuclear Information System (INIS)

    Ambro, P.

    1992-01-01

    A properly conditioned AC power supply is necessary for reliable functioning of instruments. Electric mains power is produced primarily for industry, workshops, lighting and household uses. Its quality is adjusted to these uses. In areas sand countries with a fast growing demand for electric power, these requirements are far from being met. Electronic instruments and computers, especially in these countries, need protection against disturbances of the mains supply. A clean and dry environment is needed for reliable functioning and long life of instruments. High humidity, specially at higher temperatures, changes the characteristics of electronic components. Moreover, under these conditions fungal growth causes leakage of currents and corrosion causes poor contacts. The presence of dust enhances these effects. They give rise to malfunction of instruments, particularly of high voltage equipment

  20. CCAT Heterodyne Instrument Development

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will extend and proof-out the design concept for a high pixel count (128 pixels in 2 bands) submillimeter-wave heterodyne receiver array instrument for the...

  1. Environment for the instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ambro, P

    1993-12-31

    A properly conditioned AC power supply is necessary for reliable functioning of instruments. Electric mains power is produced primarily for industry, workshops, lighting and household uses. Its quality is adjusted to these uses. In areas sand countries with a fast growing demand for electric power, these requirements are far from being met. Electronic instruments and computers, especially in these countries, need protection against disturbances of the mains supply. A clean and dry environment is needed for reliable functioning and long life of instruments. High humidity, specially at higher temperatures, changes the characteristics of electronic components. Moreover, under these conditions fungal growth causes leakage of currents and corrosion causes poor contacts. The presence of dust enhances these effects. They give rise to malfunction of instruments, particularly of high voltage equipment

  2. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  3. Nuclear instrument technician training

    International Nuclear Information System (INIS)

    Wollesen, E.S.

    1991-01-01

    This paper reports on Nuclear Instrument Technician (NIT) training that has developed at an accelerated rate over the past three decades. During the 1960's commercial nuclear power plants were in their infancy. For that reason, there is little wonder that NIT training had little structure and little creditability. NIT training, in many early plants, was little more than On-The Job Training (OJT). The seventies brought changes in Instrumentation and Controls as well as emphasis on the requirements for more in depth training and documentation. As in the seventies, the eighties saw not only changes in technologies but tighter requirements, standardized training and the development of accredited Nuclear Instrument Training; thus the conclusion: Nuclear Instrument Training Isn't What It Used To Be

  4. Carbon Footprint Reduction Instruments

    Science.gov (United States)

    This page outlines the major differences between Renewable Energy Certificates (REC) and Project Offsets and what types of claims each instrument allows the organization to make in regards to environmental emissions claims.

  5. Instrument care: everyone's responsibility

    Directory of Open Access Journals (Sweden)

    Renée du Toit

    2011-12-01

    Full Text Available Everyone working in an ophthalmic operating theatre must be competent in the care, handling, storage, and maintenance of instruments. This will help to improve surgical outcomes, maintain an economic and affordable service for patients, and provide a safe environment for the wellbeing of patients and staff.Including instrument care in theatre courses and in-service training is one way of ensuring staff competence.

  6. Instrument uncertainty predictions

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1991-07-01

    The accuracy of measurements and correlations should normally be provided for most experimental activities. The uncertainty is a measure of the accuracy of a stated value or equation. The uncertainty term reflects a combination of instrument errors, modeling limitations, and phenomena understanding deficiencies. This report provides several methodologies to estimate an instrument's uncertainty when used in experimental work. Methods are shown to predict both the pretest and post-test uncertainty

  7. Experimenting with woodwind instruments

    Science.gov (United States)

    Lo Presto, Michael C.

    2007-05-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects of holes in the tubing and other factors that make simple tubes useful as musical instruments.

  8. Maintenance of scientific instruments

    International Nuclear Information System (INIS)

    Lucero, E.

    1986-01-01

    During the last years Colombia has increased the use of nuclear techniques, instruments and equipment in ambitious health programs, as well as in research centers, industry and education; this has resulted in numerous maintenance problems. As an alternative solution IAN has established a Central Maintenance Laboratory for nuclear instruments within an International Atomic Energy Agency program for eight Latin American and nine Asian Countries. Established strategies and some results are detailed in this writing

  9. From Science Reserves to Sustainable Multiple Uses beyond Earth orbit: Evaluating Issues on the Path towards Balanced Environmental Management on Planetary Bodies

    Science.gov (United States)

    Race, Margaret

    Over the past five decades, our understanding of space beyond Earth orbit has been shaped by a succession of mainly robotic missions whose technologies have enabled scientists to answer diverse science questions about celestial bodies across the solar system. For all that time, exploration has been guided by planetary protection policies and principles promulgated by COSPAR and based on provisions in Article IX of the Outer Space Treaty of 1967. Over time, implementation of the various COSPAR planetary protection policies have sought to avoid harmful forward and backward contamination in order to ensure the integrity of science findings, guide activities on different celestial bodies, and appropriately protect Earth whenever extraterrestrial materials have been returned. The recent increased interest in extending both human missions and commercial activities beyond Earth orbit have prompted discussions in various quarters about the need for updating policies and guidelines to ensure responsible, balanced space exploration and use by all parties, regardless whether activities are undertaken by governmental or non-governmental entities. Already, numerous researchers and workgroups have suggested a range of different ways to manage activities on celestial environments (e.g, wilderness parks, exclusion zones, special regions, claims, national research bases, environmental impact assessments, etc.). While the suggestions are useful in thinking about how to manage future space activities, they are not based on any systematically applied or commonly accepted criteria (scientific or otherwise). In addition, they are borrowed from terrestrial approaches for environmental protection, which may or may not have direct applications to space environments. As noted in a recent COSPAR-PEX workshop (GWU 2012), there are no clear definitions of issues such as harmful contamination, the environment to be protected, or what are considered reasonable activity or impacts for particular

  10. Single-chip microcomputer application in nuclear radiation monitoring instruments

    International Nuclear Information System (INIS)

    Zhang Songshou

    1994-01-01

    The single-chip microcomputer has advantage in many respects i.e. multiple function, small size, low-power consumption,reliability etc. It is widely used now in industry, instrumentation, communication and machinery. The author introduced usage of single-chip microcomputer in nuclear radiation monitoring instruments for control, linear compensation, calculation, changeable parameter presetting and military training

  11. The Bering Target Tracking Instrumentation

    DEFF Research Database (Denmark)

    Denver, Troelz; Jørgensen, John Leif; Betto, Maurizio

    2003-01-01

    The key science instrument on the Bering satellite mission is a relative small telescope with an entrance aperture of 300 mm and a focal length between 500 and 1000 mm. The detection of potential targets is performed by one of the target scanning advanced stellar compasses (ASCs). This procedure...... results in a simple prioritized list of right ascension, declination, proper motion and intensity of each prospective target. The telescope itself has a dedicated ASC Camera Head Unit (CHU) mounted on the secondary mirror, largely co-aligned with the telescope. This CHU accurately determines the telescope......'s pointing direction. To achieve fast tracking over a large solid angle, the telescope pointing is achieved by means of a folding mirror in the optical pathway. When a prospective target approaches the telescope FOV, the ASC on the secondary will guide the folding mirror into position such that the target...

  12. Problems with radiological surveillance instrumentation

    International Nuclear Information System (INIS)

    Swinth, K.L.; Tanner, J.E.; Fleming, D.M.

    1984-09-01

    Many radiological surveillance instruments are in use at DOE facilities throughout the country. These instruments are an essential part of all health physics programs, and poor instrument performance can increase program costs or compromise program effectiveness. Generic data from simple tests on newly purchased instruments shows that many instruments will not meet requirements due to manufacturing defects. In other cases, lack of consideration of instrument use has resulted in poor acceptance of instruments and poor reliability. The performance of instruments is highly variable for electronic and mechanical performance, radiation response, susceptibility to interferences and response to environmental factors. Poor instrument performance in these areas can lead to errors or poor accuracy in measurements

  13. Problems with radiological surveillance instrumentation

    International Nuclear Information System (INIS)

    Swinth, K.L.; Tanner, J.E.; Fleming, D.M.

    1985-01-01

    Many radiological surveillance instruments are in use at DOE facilities throughout the country. These instruments are an essential part of all health physics programs, and poor instrument performance can increase program costs or compromise program effectiveness. Generic data from simple tests on newly purchased instruments shows that many instruments will not meet requirements due to manufacturing defects. In other cases, lack of consideration of instrument use has resulted in poor acceptance of instruments and poor reliability. The performance of instruments is highly variable for electronic and mechanical performance, radiation response, susceptibility to interferences and response to environmental factors. Poor instrument performance in these areas can lead to errors or poor accuracy in measurements

  14. Development and use of an instrument to measure scientific inquiry and related factors

    Science.gov (United States)

    Dunbar, Terry Frank

    The use of the scientific inquiry method of teaching science was investigated in one district's elementary schools. The study generated data directly from Albuquerque Public Schools fourth- and fifth-grade teachers through a mail-out survey and through observation. Two forms of an inquiry evaluation research instrument (Elementary Science Inquiry Survey - ESIS) were created. The ESIS-A is a classroom observation tool. The ESIS-B is a survey questionnaire designed to collect information from teachers. The study was designed first to establish reliability and validity for both forms of the instrument. The study made use of multiple regression and exploratory factor analysis. Sources used to establish the instruments' reliability and validity included: (1) Input from an international panel (qualitative analysis of comments sent by raters and quantitative analysis of numerical ratings sent by raters); (2) Cronbach's alpha; (3) Results of factor analysis; (4) Survey respondents' comments (qualitative analysis); (5) Teacher observation data. Cronbach's alpha for the data set was .8955. Inquiry practices were reported to occur between twice per week and three times per week. Teachers' comments regarding inquiry were reported. The ESIS was used to collect inquiry self-report data and teacher background data. The teacher background data included teacher science knowledge and information about their standards awareness and implementation. The following teacher knowledge factors were positively correlated with inquiry use: semesters of college science, science workshops taken, conducted scientific research, and SIMSE (NSF institute) participation. The following standards awareness and implementation factors were positively correlated with inquiry use: familiarity with the National Science Education Standards, familiarity with New Mexico science standards, state or national standards as a curriculum selection factor, student interest as a curriculum selection factor, and "no

  15. Build of virtual instrument laboratory related to nuclear species specialized

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Guizhi; Zhao Xiuliang; Tang Lingzhi

    2009-01-01

    As rapid development of specialized related to nuclear science,the requirement of laboratory construct is analyzed in this article at first, One total conceive, One scheme deploy soft and hardware,three concrete characteristics targets and five different phases of put in practice of virtual instrument laboratory of specialized related to nuclear science are suggest in the paper,the concrete hardware structure and the headway of build of virtual instrument laboratory are described,and the first step effect is introduced.Lastly,the forward target and the further deliberateness that the virtual instrument laboratory construct are set forth in the thesis. (authors)

  16. Building the BIKE: Development and Testing of the Biotechnology Instrument for Knowledge Elicitation (BIKE)

    Science.gov (United States)

    Witzig, Stephen B.; Rebello, Carina M.; Siegel, Marcelle A.; Freyermuth, Sharyn K.; Izci, Kemal; McClure, Bruce

    2014-10-01

    Identifying students' conceptual scientific understanding is difficult if the appropriate tools are not available for educators. Concept inventories have become a popular tool to assess student understanding; however, traditionally, they are multiple choice tests. International science education standard documents advocate that assessments should be reform based, contain diverse question types, and should align with instructional approaches. To date, no instrument of this type targeting student conceptions in biotechnology has been developed. We report here the development, testing, and validation of a 35-item Biotechnology Instrument for Knowledge Elicitation (BIKE) that includes a mix of question types. The BIKE was designed to elicit student thinking and a variety of conceptual understandings, as opposed to testing closed-ended responses. The design phase contained nine steps including a literature search for content, student interviews, a pilot test, as well as expert review. Data from 175 students over two semesters, including 16 student interviews and six expert reviewers (professors from six different institutions), were used to validate the instrument. Cronbach's alpha on the pre/posttest was 0.664 and 0.668, respectively, indicating the BIKE has internal consistency. Cohen's kappa for inter-rater reliability among the 6,525 total items was 0.684 indicating substantial agreement among scorers. Item analysis demonstrated that the items were challenging, there was discrimination among the individual items, and there was alignment with research-based design principles for construct validity. This study provides a reliable and valid conceptual understanding instrument in the understudied area of biotechnology.

  17. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    Science.gov (United States)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)

    2002-01-01

    Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.

  18. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  19. Instrumentation for mass spectrometry: 1997

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  20. Computer sciences

    Science.gov (United States)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  1. Absorption coefficient instrument for turbid natural waters

    Science.gov (United States)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  2. Thermo Scientific Ozone Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The primary measurement output from the Thermo Scientific Ozone Analyzer is the concentration of the analyte (O3) reported at 1-s resolution in units of ppbv in ambient air. Note that because of internal pneumatic switching limitations the instrument only makes an independent measurement every 4 seconds. Thus, the same concentration number is repeated roughly 4 times at the uniform, monotonic 1-s time base used in the AOS systems. Accompanying instrument outputs include sample temperatures, flows, chamber pressure, lamp intensities and a multiplicity of housekeeping information. There is also a field for operator comments made at any time while data is being collected.

  3. Surveillance instrumentation for spent-fuel safeguards

    International Nuclear Information System (INIS)

    McKenzie, J.M.; Holmes, J.P.; Gillman, L.K.; Schmitz, J.A.; McDaniel, P.J.

    1978-01-01

    The movement, in a facility, of spent reactor fuel may be tracked using simple instrumentation together with a real time unfolding algorithm. Experimental measurements, from multiple radiation monitors and crane weight and position monitors, were obtained during spent fuel movements at the G.E. Morris Spent-Fuel Storage Facility. These data and a preliminary version of an unfolding algorithm were used to estimate the position of the centroid and the magnitude of the spent fuel radiation source. Spatial location was estimated to +-1.5 m and source magnitude to +-10% of their true values. Application of this surveillance instrumentation to spent-fuel safeguards is discussed

  4. Serious Learning with Science Comics: "Antarctic Log" as a Tool for Understanding Climate Research in AntarcticaScience comics open doors, providing multiple entry points for diverse learners. Karen Romano Young, award-winning author, presents "Antarctic Log", a comic about her spring 2018 Palmer Station tour, a tool for teaching and inspiration.

    Science.gov (United States)

    Young, K. R.

    2017-12-01

    Graphic nonfiction: what is it? Some call these books and articles science comics, but they're no joke: created through research and direct experience by artists invested in creating multiple entry points for new learners, comics can open doors for discovery as introduction, enrichment, or as a vital center point to teaching. Find out what educational pedagogists, scientists, and - yes! - students themselves think about reading, viewing, learning from, and creating science comics in the classroom. Karen Romano Young is the award-winning author of traditional and graphic fiction and nonfiction for children, including Doodlebug, the forthcoming Diving for Deep-Sea Dragons, and the Odyssey/Muse magazine comics feature Humanimal Doodles. In spring 2018 (Antarctic autumn) Young will work as part of a Bigelow Laboratory team studying the production of DMSP by phytoplankton, and the resulting cloud formation. This is invisible stuff, difficult for lay audiences to envision and comprehend. But the audience is already forming around "Antarctic Log," a science comic that tells the story of the science and the experience of doing climate research at Palmer Station as winter draws near. Science comics aren't just for enrichment. They're an invitation, providing multiple entry points for diverse learners. I have received unanticipated support from education groups (including NSTA and IRA), parenting groups, and special educators because these highly visual presentations of middle grade and middle school level material makes the stories and concepts accessible to atypical fiction- and science-reading audiences. As a result, I've learned a great deal about the underlying differences between my material and traditional, text-oriented materials in which visuals may be highly coordinated but are still ancillary. An article that might seem forbidding as text appears open to interpretation in my format, so that readers can pick where to begin reading and how to proceed through the

  5. Some emergency instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, P H

    1986-10-01

    The widespread release of activity and the resultant spread of contamination after the Chernobyl accident resulted in requests to NRPB to provide instruments for, and expertise in, the measurement of radiation. The most common request was for advice on the usefulness of existing instruments, but Board staff were also involved in their adaptation or in the development of new instruments specially to meet the circumstances of the accident. The accident occurred on 26 April. On 1 May, NRPB was involved at Heathrow Airport in the monitoring of the British students who had returned from Kiev and Minsk. The main purpose was to reassure the students by checking that their persons and belongings did not have significant surface contamination. Additional measurements were also made of iodine activity in thyroid using hand-held detectors or a mobile body monitor. This operation was arranged with the Foreign and Commonwealth Office, which had also received numerous requests for instruments from embassies and consulates in countries close to the scene of the accident. There was concern for the well-being of staff and other United Kingdom nationals who resided in or intended to visit the most affected countries. The board supplied suitable instruments, and the FCO distributed them to embassies. The frequency of environmental monitoring was increased from 29 April in anticipation of contamination and appropriate Board instrumentation was deployed. After the Chernobyl cloud arrived in the UK on 2 May, there were numerous requests from local government, public authorities, private companies and members of the public for information and advice on monitoring equipment and procedures. Some of these requirements could be met with existing equipment but members of the public were usually advised not to proceed. At a later stage, the contamination of foodstuffs and livestock required the development of an instrument capable of detecting low levels of {sup 137}Cs and {sup 134}Cs in food

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 1. Anthraquinone-based demultiplexer and other multiple operations at the molecular level ... to show pH-dependent multiple coordinationmodes towards differentmetal ions ...

  7. Divergence and convergence in nutrition science

    NARCIS (Netherlands)

    Penders, Bart; Spruit, Shannon L.; Sikkema, Jan; Maat, Jan; Schuurbiers, Daan

    2015-01-01

    Nutrigenomics diverged from mainstream nutrition science, ideologically, instrumentally and culturally, due to the establishment of a protective niche. That protection is fading. This article chronicles a case in which convergence between nutrigenomics and nutrition science is pursued. Here we

  8. Multiple sclerosis

    International Nuclear Information System (INIS)

    Grunwald, I.Q.; Kuehn, A.L.; Backens, M.; Papanagiotou, P.; Shariat, K.; Kostopoulos, P.

    2008-01-01

    Multiple sclerosis is the most common chronic inflammatory disease of myelin with interspersed lesions in the white matter of the central nervous system. Magnetic resonance imaging (MRI) plays a key role in the diagnosis and monitoring of white matter diseases. This article focuses on key findings in multiple sclerosis as detected by MRI. (orig.) [de

  9. Instrumentation and quantitative methods of evaluation

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1991-01-01

    This report summarizes goals and accomplishments of the research program entitled Instrumentation and Quantitative Methods of Evaluation, during the period January 15, 1989 through July 15, 1991. This program is very closely integrated with the radiopharmaceutical program entitled Quantitative Studies in Radiopharmaceutical Science. Together, they constitute the PROGRAM OF NUCLEAR MEDICINE AND QUANTITATIVE IMAGING RESEARCH within The Franklin McLean Memorial Research Institute (FMI). The program addresses problems involving the basic science and technology that underlie the physical and conceptual tools of radiotracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 234 refs., 11 figs., 2 tabs

  10. Bicep2. III. INSTRUMENTAL SYSTEMATICS

    International Nuclear Information System (INIS)

    Ade, P. A. R.; Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Buder, I.; Karkare, K. S.; Bullock, E.; Dowell, C. D.; Duband, L.; Fliescher, S.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Irwin, K. D.

    2015-01-01

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call “deprojection,” for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ∼10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10 −3

  11. Bicep2. III. INSTRUMENTAL SYSTEMATICS

    Energy Technology Data Exchange (ETDEWEB)

    Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R. [Department of Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Barkats, D. [Joint ALMA Observatory, ESO, Santiago (Chile); Benton, S. J. [Department of Physics, University of Toronto, Toronto, ON (Canada); Bischoff, C. A.; Buder, I.; Karkare, K. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge, MA 02138 (United States); Bullock, E. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Dowell, C. D. [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Duband, L. [SBT, Commissariat à l’Energie Atomique, Grenoble (France); Fliescher, S. [Department of Physics, University of Minnesota, Minneapolis, MN 55455 (United States); Halpern, M.; Hasselfield, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC (Canada); Hilton, G. C.; Irwin, K. D., E-mail: csheehy@uchicago.edu [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Collaboration: Bicep2 Collaboration; and others

    2015-12-01

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call “deprojection,” for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ∼10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10{sup −3}.

  12. Evaluation of multivariate calibration models transferred between spectroscopic instruments

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae; Hansen, Per W.; Skov, Thomas

    2016-01-01

    In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions for the ......In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions...... for the same samples using the transferred model. However, sometimes the success of a model transfer is evaluated by comparing the transferred model predictions with the reference values. This is not optimal, as uncertainties in the reference method will impact the evaluation. This paper proposes a new method...... for calibration model transfer evaluation. The new method is based on comparing predictions from different instruments, rather than comparing predictions and reference values. A total of 75 flour samples were available for the study. All samples were measured on ten near infrared (NIR) instruments from two...

  13. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  14. Instrumental analysis, second edition

    International Nuclear Information System (INIS)

    Christian, G.D.; O'Reilly, J.E.

    1988-01-01

    The second edition of Instrumental Analysis is a survey of the major instrument-based methods of chemical analysis. It appears to be aimed at undergraduates but would be equally useful in a graduate course. The volume explores all of the classical quantitative methods and contains sections on techniques that usually are not included in a semester course in instrumentation (such as electron spectroscopy and the kinetic methods). Adequate coverage of all of the methods contained in this book would require several semesters of focused study. The 25 chapters were written by different authors, yet the style throughout the book is more uniform than in the earlier edition. With the exception of a two-chapter course in analog and digital circuits, the book purports to de-emphasize instrumentation, focusing more on the theory behind the methods and the application of the methods to analytical problems. However, a detailed analysis of the instruments used in each method is by no means absent. The book has the favor of a user's guide to analysis

  15. Instrumentation to Enhance Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  16. Instrumentation to Enhance Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Daw, J.E.; Taylor, S.C.

    2009-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  17. Biochemistry Instrumentation Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — The UCLA-DOE Biochemistry Instrumentation Core Facility provides the UCLA biochemistry community with easy access to sophisticated instrumentation for a wide variety...

  18. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  19. Characteristics of protective instrumentation

    International Nuclear Information System (INIS)

    Reichart, G.

    1982-01-01

    Protective Instrumentation (PI) for Nuclear Power Plants (NPP) is a general term for an highly reliable instrumentation, which provides information for keeping the system within safe limits, for initation of countermeasures in the case of an incident or for mitigation of consequences of an accident. In German NPPs one can find a hierarchical structure of protective instrumentation, wherein the Reactor Protection System (RPS) has the highest priority. To meet the reliability requirements different design principles are used, like - redundancy - diversity - fail safe - decoupling. The presentation gives an overview about the different design principles and characterizes their reliability aspects. As an example for the technical realization the RPS of a German NPP is discussed in some detail. Furthermore some information about other type of PI is given and reliability aspects of the interaction of operating personell with these systems are mentioned. (orig.)

  20. Aethalometer™ Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and a “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.

  1. The IKARUS instrument

    International Nuclear Information System (INIS)

    Gerster, H.J.; Stein, G.

    1994-01-01

    When the Federal Government decided on a 25% reduction of CO 2 emissions till 2005 in 1990 the necessity resulted that an instrument has to be developed for the analysis and assessment of the ecological, economic and energetic impact of different reduction strategies. The development task was awarded by the BMFT to the Research Centre Juelich in cooperation with well-known institutions of energy system research. The total instrument is scheduled to be finished by the end of 1994. For the decentral use of the instrument by a wide specialist public the developed models and data banks which are equipped with a user-friendly surface are suited for larger PCs (486, 16 MB RAM/500-1000 MB ROM). (orig.) [de

  2. ISSUERS OF FINANCIAL INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Cristian GHEORGHE

    2016-05-01

    Full Text Available The rules laid down by Romanian Capital Market Law and the regulations put in force for its implementation apply to issuers of financial instruments admitted to trading on the regulated market established in Romania. But the issuers remain companies incorporated under Company Law of 1990. Such dual regulations need increased attention in order to observe the legal status of the issuers/companies and financial instruments/shares. Romanian legislator has chosen to implement in Capital Market Law special rules regarding the administration of the issuers of financial instruments, not only rules regarding admitting and maintaining to a regulated market. Thus issuers are, in Romanian Law perspective, special company that should comply special rule regarding board of administration and general shareholders meeting.

  3. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  4. A Merging Algorithm for Aerosol Size Distribution from Multiple Instruments

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Jakub; Ždímal, Vladimír; Smolík, Jiří; Lazaridis, M.

    2009-01-01

    Roč. 199, 1-4 (2009), s. 219-233 ISSN 0049-6979 Grant - others:MTKD(XE) CT-2004-513849 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosols * merging particle size distribution * multilognormal model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.676, year: 2009

  5. ICFA: Instrumentation school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-10-15

    74 students, including 45 from developing countries, ten lecturers and nine laboratory instructors participated in the novel instrumentation school held in June at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, sponsored by ICTP and arranged through the Instrumentation Panel of the International Committee for Future Accelerators (ICF). During the two weeks of the course, students had the chance to construct and test a proportional chamber, measure the lifetime of cosmic ray muons, operate and analyse the performance of an 8-wire imaging drift chamber, or study noise and signal processing using a silicon photodiode.

  6. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    Shea, T.J.

    1995-01-01

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  7. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  8. Standard NIM instrumentation system

    International Nuclear Information System (INIS)

    1990-05-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev. 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice

  9. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...

  10. ICFA: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    74 students, including 45 from developing countries, ten lecturers and nine laboratory instructors participated in the novel instrumentation school held in June at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, sponsored by ICTP and arranged through the Instrumentation Panel of the International Committee for Future Accelerators (ICF). During the two weeks of the course, students had the chance to construct and test a proportional chamber, measure the lifetime of cosmic ray muons, operate and analyse the performance of an 8-wire imaging drift chamber, or study noise and signal processing using a silicon photodiode

  11. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  12. Celadon Figurines Play Instruments

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    This group of figurines, each 0.15m tall, were unearthed from a Tang Dynasty tomb in Changsha in 1977. Music was very developed in the Tang Dynasty. Colorful musical instruments and dances were popular both among the people and in the palace. These vivid-looking figurines wear pleated skirts with small sleeves and open chest, a style influenced by the non-Han nationalities living in the north and west of China. Some of the musical instruments were brought from the Western Regions. The figurines are playing the xiao (a vertical bamboo flute), the konghou (an

  13. Multiple homicides.

    Science.gov (United States)

    Copeland, A R

    1989-09-01

    A study of multiple homicides or multiple deaths involving a solitary incident of violence by another individual was performed on the case files of the Office of the Medical Examiner of Metropolitan Dade County in Miami, Florida, during 1983-1987. A total of 107 multiple homicides were studied: 88 double, 17 triple, one quadruple, and one quintuple. The 236 victims were analyzed regarding age, race, sex, cause of death, toxicologic data, perpetrator, locale of the incident, and reason for the incident. This article compares this type of slaying with other types of homicide including those perpetrated by serial killers. Suggestions for future research in this field are offered.

  14. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. An inspector-instrument interface design that allows communication of procedures, responses, and results between the instrument and user is presented. This capability has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  15. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. This report describes an inspector-instrument interface design which allows communication of procedures, responses, and results between the instrument and user. The interface has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  16. On the Nature of Science

    OpenAIRE

    Jennings, B. K.

    2006-01-01

    A 21st century view of the nature of science is presented. It attempts to show how a consistent description of science and scientific progress can be given. Science advances through a sequence of models with progressively greater predictive power. The philosophical and metaphysical implications of the models change in unpredictable ways as the predictive power increases. The view of science arrived at is one based on instrumentalism. Philosophical realism can only be recovered by a subtle use...

  17. Pre-service secondary school science teachers science teaching ...

    African Journals Online (AJOL)

    PROF.MIREKU

    pre-service secondary science teachers' self-efficacy beliefs with regard to gender and educational .... outcome. As a consequence, instruments for the determination of self-efficacy ...... Sex Roles: A Journal of Research, 42, 119–31. Bursal, M.

  18. Validation of an Instrument for Assessing Conceptual Change with Respect to the Theory of Evolution by Secondary Biology Students

    Science.gov (United States)

    Goff, Kevin David

    This pilot study evaluated the validity of a new quantitative, closed-response instrument for assessing student conceptual change regarding the theory of evolution. The instrument has two distinguishing design features. First, it is designed not only to gauge student mastery of the scientific model of evolution, but also to elicit a trio of deeply intuitive tendencies that are known to compromise many students' understanding: the projection of intentional agency, teleological directionality, and immutable essences onto biological phenomena. Second, in addition to a section of conventional multiple choice questions, the instrument contains a series of items where students may simultaneously endorse both scientifically normative propositions and intuitively appealing yet unscientific propositions, without having to choose between them. These features allow for the hypothesized possibility that the three intuitions are partly innate, themselves products of cognitive evolution in our hominin ancestors, and thus may continue to inform students' thinking even after instruction and conceptual change. The test was piloted with 340 high school students from diverse schools and communities. Confirmatory factor analysis and other statistical methods provided evidence that the instrument already has strong potential for validly distinguishing students who hold a correct scientific understanding from those who do not, but that revision and retesting are needed to render it valid for gauging students' adherence to intuitive misconceptions. Ultimately the instrument holds promise as a tool for classroom intervention studies by conceptual change researchers, for diagnostic testing and data gathering by instructional leaders, and for provoking classroom dialogue and debate by science teachers.

  19. Visual tracking of da Vinci instruments for laparoscopic surgery

    Science.gov (United States)

    Speidel, S.; Kuhn, E.; Bodenstedt, S.; Röhl, S.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.

    2014-03-01

    Intraoperative tracking of laparoscopic instruments is a prerequisite to realize further assistance functions. Since endoscopic images are always available, this sensor input can be used to localize the instruments without special devices or robot kinematics. In this paper, we present an image-based markerless 3D tracking of different da Vinci instruments in near real-time without an explicit model. The method is based on different visual cues to segment the instrument tip, calculates a tip point and uses a multiple object particle filter for tracking. The accuracy and robustness is evaluated with in vivo data.

  20. EFFECTS OF SCIENTIFIC INQUIRY LEARNING MODEL AND LOGICAL THINKING ABILITY OF HIGH SCHOOL STUDENTS SCIENCE PROCESS SKILLS

    Directory of Open Access Journals (Sweden)

    M. Akhyar Lubis

    2017-09-01

    Full Text Available This study aimed to analyze whether the results of science process skills of students. Who are taught by the teaching model scientific inquiry better than conventional learning, to analyze whether the results of science process skills of students? Who can think logically high is better than the students who have the potential to think logically low, analyze whether there is an interaction between scientific inquiry learning model with logical thinking skills to students' science process skills. This research is a quasi-experimental design with the two-group pretest-posttest design. The study population is all students of class X SMA Negeri 4 Padangsidimpuan semester II academic year 2016/2017. The The research instrument consists of two types: science process skills instrument consists of 10 questions in essay form which has been declared valid and reliable, and the instrument ability to think logically in the form of multiple choice is entirely groundless and complements (combination. The resulting data, analyzed by using two path Anava. The results showed that science process skills of students who are taught by the teaching model scientific inquiry better than conventional learning. Science process skills of students who can think logically high are better than the students who can think logically low, and there is an interaction between learning model scientific inquiry and conventional learning with the ability to think logically to improve students' science process skills.