WorldWideScience

Sample records for multiple restriction enzymes

  1. Evaluation of simultaneous binding of Chromomycin A3 to the multiple sites of DNA by the new restriction enzyme assay.

    Science.gov (United States)

    Murase, Hirotaka; Noguchi, Tomoharu; Sasaki, Shigeki

    2018-06-01

    Chromomycin A3 (CMA3) is an aureolic acid-type antitumor antibiotic. CMA3 forms dimeric complexes with divalent cations, such as Mg 2+ , which strongly binds to the GC rich sequence of DNA to inhibit DNA replication and transcription. In this study, the binding property of CMA3 to the DNA sequence containing multiple GC-rich binding sites was investigated by measuring the protection from hydrolysis by the restriction enzymes, AccII and Fnu4HI, for the center of the CGCG site and the 5'-GC↓GGC site, respectively. In contrast to the standard DNase I footprinting method, the DNA substrates are fully hydrolyzed by the restriction enzymes, therefore, the full protection of DNA at all the cleavable sites indicates that CMA3 simultaneously binds to all the binding sites. The restriction enzyme assay has suggested that CMA3 has a high tendency to bind the successive CGCG sites and the CGG repeat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. distribution, abundance and properties of restriction enzymes

    African Journals Online (AJOL)

    DNA of granule-bound starch synthase (GBSS) I and II with a view to ... properties for manipulation of the genes for production of modified starch. .... procurement, storage and handling of the ..... been made on restriction enzymes of potato,.

  3. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA

    DEFF Research Database (Denmark)

    Nielsen, P.E.; Egholm, M.; Berg, R.H.

    1993-01-01

    Plasmids containing double-stranded 10-mer PNA (peptide nucleic acid chimera) targets proximally flanked by two restriction enzyme sites were challenged with the complementary PNA or PNAs having one or two mismatches, and the effect on the restriction enzyme cleavage of the flanking sites was ass...

  4. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    Science.gov (United States)

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  5. Site-specific DNA transesterification catalyzed by a restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the t...

  6. Partial digestion with restriction enzymes of ultraviolet-irradiated human genomic DNA: a method for identifying restriction site polymorphisms

    International Nuclear Information System (INIS)

    Nobile, C.; Romeo, G.

    1988-01-01

    A method for partial digestion of total human DNA with restriction enzymes has been developed on the basis of a principle already utilized by P.A. Whittaker and E. Southern for the analysis of phage lambda recombinants. Total human DNA irradiated with uv light of 254 nm is partially digested by restriction enzymes that recognize sequences containing adjacent thymidines because of TT dimer formation. The products resulting from partial digestion of specific genomic regions are detected in Southern blots by genomic-unique DNA probes with high reproducibility. This procedure is rapid and simple to perform because the same conditions of uv irradiation are used for different enzymes and probes. It is shown that restriction site polymorphisms occurring in the genomic regions analyzed are recognized by the allelic partial digest patterns they determine

  7. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    Science.gov (United States)

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512

  8. CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.

    Science.gov (United States)

    Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo

    2017-06-25

    Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.

  9. msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.

    Science.gov (United States)

    Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James

    2018-02-01

    Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).

  10. Highlights of the DNA cutters: a short history of the restriction enzymes.

    Science.gov (United States)

    Loenen, Wil A M; Dryden, David T F; Raleigh, Elisabeth A; Wilson, Geoffrey G; Murray, Noreen E

    2014-01-01

    In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.

  11. DNA synapsis through transient tetramerization triggers cleavage by Ecl18kI restriction enzyme

    NARCIS (Netherlands)

    Zaremba, M.; Lyubchenko, Y.L.; Laurens, N.; van den Broek, B.; Wuite, G.J.L.; Siksnys, V.

    2010-01-01

    To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or

  12. DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway

    NARCIS (Netherlands)

    van den Broek, B.; Noom, M.C.; Wuite, G.J.L.

    2005-01-01

    Type II restriction endonucleases protect bacteria against phage infections by cleaving recognition sites on foreign double-stranded DNA (dsDNA) with extraordinary specificity. This capability arises primarily from large conformational changes in enzyme and/or DNA upon target sequence recognition.

  13. Correspondence between radioactive and functional methods in the quality control of DNA restriction and modifying enzymes

    DEFF Research Database (Denmark)

    Trujillo, L E; Pupo, E; Miranda, F

    1996-01-01

    We evaluated the use of two radiolabeled lambda DNA/Hpa II substrates to detect 5'-->3', 3'-->5' single and double stranded DNA dependent exonuclease and phosphatase activities found as contaminants in restriction and modifying enzyme preparations. Looking for the meaning of the radioactive assay...

  14. Model for how type I restriction enzymes select cleavage sites in DNA

    International Nuclear Information System (INIS)

    Studier, F.W.; Bandyopadhyay, P.K.

    1988-01-01

    Under appropriate conditions, digestion of phage T7 DNA by the type I restriction enzyme EcoK produces an orderly progression of discrete DNA fragments. All details of the fragmentation pattern can be explained on the basis of the known properties of type I enzymes, together with two further assumptions: (i) in the ATP-stimulated translocation reaction, the enzyme bound at the recognition sequence translocates DNA toward itself from both directions simultaneously; and (ii) when translocation causes neighboring enzymes to meet, they cut the DNA between them. The kinetics of digestion at 37 degree C indicates that the rate of translocation of DNA from each side of a bound enzyme is about 200 base pairs per second, and the cuts are completed within 15-25 sec of the time neighboring enzymes meet. The resulting DNA fragments each contain a single recognition site with an enzyme (or subunit) remaining bound to it. At high enzyme concentrations, such fragments can bu further degraded, apparently by cooperation between the specifically bound and excess enzymes. This model is consistent with a substantial body of previous work on the nuclease activity of EcoB and EcoK, and it explains in a simple way how cleavage sites are selected

  15. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    Science.gov (United States)

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Sequence dependent DNA conformations: Raman spectroscopic studies and a model of action of restriction enzymes

    International Nuclear Information System (INIS)

    Nishimura, Y.

    1985-01-01

    Raman spectra have been examined to clarify the polymorphic forms of DNA, A, B, and Z forms. From an analysis the authors found that the guanine ring breathing vibration is sensitive to its local conformation. Examination of nine crystals of guanosine residues in which the local conformations are well established revealed that a guanosine residue with a C3'endo-anti gives a strong line at 666+-2 cm/sup -1/, O4'endo-anti at 682 cm/sup -1/, C1'exo-anti at 673 cm/sup -1/, C2'endo-anti at 677 cm/sup -1/ and syn-forms around 625 cm/sup -1/. Using this characteristic line, they were able to obtain the local conformations of guanosine moieties in poly(dG-dC). Such a sequence derived variation is suggested to be recognized by sequence specific proteins such as restriction enzymes. The authors found a correlation between sequence dependent DNA conformation and a mode of action of restriction enzymes. The cutting mode of restriction enzymes is classified into three groups. The classification of whether the products have blunt ends, two-base-long cohesive ends, or four-base-long cohesive ends depends primarily on the substrate, not on the enzyme. It is suggested that sequence dependent DNA conformation causes such a classification by the use of the Calladine-Dickerson analysis. In the recognition of restriction enzymes, the methyl group in a certain sequence is considered to play an important role by changing the local conformation of DNA

  17. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes.

    Science.gov (United States)

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D

    2015-12-15

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This 'DNA sliding' is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Comprehensive evaluation of SNP identification with the Restriction Enzyme-based Reduced Representation Library (RRL method

    Directory of Open Access Journals (Sweden)

    Du Ye

    2012-02-01

    Full Text Available Abstract Background Restriction Enzyme-based Reduced Representation Library (RRL method represents a relatively feasible and flexible strategy used for Single Nucleotide Polymorphism (SNP identification in different species. It has remarkable advantage of reducing the complexity of the genome by orders of magnitude. However, comprehensive evaluation for actual efficacy of SNP identification by this method is still unavailable. Results In order to evaluate the efficacy of Restriction Enzyme-based RRL method, we selected Tsp 45I enzyme which covers 266 Mb flanking region of the enzyme recognition site according to in silico simulation on human reference genome, then we sequenced YH RRL after Tsp 45I treatment and obtained reads of which 80.8% were mapped to target region with an 20-fold average coverage, about 96.8% of target region was covered by at least one read and 257 K SNPs were identified in the region using SOAPsnp software. Compared with whole genome resequencing data, we observed false discovery rate (FDR of 13.95% and false negative rate (FNR of 25.90%. The concordance rate of homozygote loci was over 99.8%, but that of heterozygote were only 92.56%. Repeat sequences and bases quality were proved to have a great effect on the accuracy of SNP calling, SNPs in recognition sites contributed evidently to the high FNR and the low concordance rate of heterozygote. Our results indicated that repeat masking and high stringent filter criteria could significantly decrease both FDR and FNR. Conclusions This study demonstrates that Restriction Enzyme-based RRL method was effective for SNP identification. The results highlight the important role of bias and the method-derived defects represented in this method and emphasize the special attentions noteworthy.

  19. Polyphosphate present in DNA preparations from fungal species of Collectotrichum inhibits restriction endonucleases and other enzymes

    Science.gov (United States)

    Rodriguez, R.J.

    1993-01-01

    During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.

  20. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    International Nuclear Information System (INIS)

    Distefano, M.D.; Au, K.G.; Walsh, C.T.

    1989-01-01

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys 135 Cys 140 , catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys 135 (Ala 135 Cys 140 ), Cys 14 (Cys 135 Ala 140 ), or both (Ala 135 Ala 140 ). Additionally, they have made double mutants that lack Cys 135 (Ala 135 Cys 139 Cys 140 ) or Cys 140 (Cys 135 Cys 139 Ala 140 ) but introduce a new Cys in place of Gly 139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH 2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala 135 Cys 139 Cys 14 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala 135 Cys 140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys 135 and Cys 140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate

  1. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    International Nuclear Information System (INIS)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M.

    2013-01-01

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g -1 ·min -1 ) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g -1 ·min -1 ) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring

  2. Cloning and restriction enzyme mapping of ribosomal DNA of Giardia duodenalis, Giardia ardeae and Giardia muris.

    Science.gov (United States)

    van Keulen, H; Campbell, S R; Erlandsen, S L; Jarroll, E L

    1991-06-01

    In an attempt to study Giardia at the DNA sequence level, the rRNA genes of three species, Giardia duodenalis, Giardia ardeae and Giardia muris were cloned and restriction enzyme maps were constructed. The rDNA repeats of these Giardia show completely different restriction enzyme recognition patterns. The size of the rDNA repeat ranges from approximately 5.6 kb in G. duodenalis to 7.6 kb in both G. muris and G. ardeae. These size differences are mainly attributable to the variation in length of the spacer. Minor differences exist among these Giardia in the sizes of their small subunit rRNA and the internal transcribed spacer between small and large subunit rRNA. The genetic maps were constructed by sequence analysis of the DNA around the 5' and 3' ends of the mature rRNA genes and between the rRNA covering the 5.8S rRNA gene and internal transcribed spacer. Comparison of the 5.8S rDNA and 3' end of large subunit rDNA from these three Giardia species showed considerable sequence variation, but the rDNA sequences of G. duodenalis and G. ardeae appear more closely related to each other than to G. muris.

  3. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M. [Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2013-03-15

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g{sup -1}·min{sup -1}) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g{sup -1}·min{sup -1}) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  4. Restriction genes for retroviruses influence the risk of multiple sclerosis

    DEFF Research Database (Denmark)

    Nexø, Bjørn A; Hansen, Bettina; Nissen, Kari K

    2013-01-01

    known for a long time. Today human restriction genes for retroviruses include amongst others TRIMs, APOBEC3s, BST2 and TREXs. We have therefore looked for a role of these retroviral restriction genes in MS using genetic epidemiology. We here report that markers in two TRIMs, TRIM5 and TRIM22...... and a marker in BST2, associated statistically with the risk of getting MS, while markers in or near APOBEC3s and TREXs showed little or no effect. This indicates that the two TRIMs and BST2 influence the risk of disease and thus supports the hypothesis of a viral involvement....

  5. Pattern analysis approach reveals restriction enzyme cutting abnormalities and other cDNA library construction artifacts using raw EST data

    Directory of Open Access Journals (Sweden)

    Zhou Sun

    2012-05-01

    Full Text Available Abstract Background Expressed Sequence Tag (EST sequences are widely used in applications such as genome annotation, gene discovery and gene expression studies. However, some of GenBank dbEST sequences have proven to be “unclean”. Identification of cDNA termini/ends and their structures in raw ESTs not only facilitates data quality control and accurate delineation of transcription ends, but also furthers our understanding of the potential sources of data abnormalities/errors present in the wet-lab procedures for cDNA library construction. Results After analyzing a total of 309,976 raw Pinus taeda ESTs, we uncovered many distinct variations of cDNA termini, some of which prove to be good indicators of wet-lab artifacts, and characterized each raw EST by its cDNA terminus structure patterns. In contrast to the expected patterns, many ESTs displayed complex and/or abnormal patterns that represent potential wet-lab errors such as: a failure of one or both of the restriction enzymes to cut the plasmid vector; a failure of the restriction enzymes to cut the vector at the correct positions; the insertion of two cDNA inserts into a single vector; the insertion of multiple and/or concatenated adapters/linkers; the presence of 3′-end terminal structures in designated 5′-end sequences or vice versa; and so on. With a close examination of these artifacts, many problematic ESTs that have been deposited into public databases by conventional bioinformatics pipelines or tools could be cleaned or filtered by our methodology. We developed a software tool for Abnormality Filtering and Sequence Trimming for ESTs (AFST, http://code.google.com/p/afst/ using a pattern analysis approach. To compare AFST with other pipelines that submitted ESTs into dbEST, we reprocessed 230,783 Pinus taeda and 38,709 Arachis hypogaea GenBank ESTs. We found 7.4% of Pinus taeda and 29.2% of Arachis hypogaea GenBank ESTs are “unclean” or abnormal, all of which could be cleaned

  6. Exogenous DNA internalisation by sperm cells is improved by combining lipofection and restriction enzyme mediated integration.

    Science.gov (United States)

    Churchil, R R; Gupta, J; Singh, A; Sharma, D

    2011-06-01

    1. Three types of exogenous DNA inserts, i.e. complete linearised pVIVO2-GFP/LacZ vector (9620 bp), the LacZ gene (5317 bp) and the GFP gene (2152 bp) were used to transfect chicken spermatozoa through simple incubation of sperm cells with insert. 2. PCR assay, Dot Blot hybridisation and Southern hybridisation showed the successful internalisation of exogenous DNA by chicken sperm cells. 3. Lipofection and Restriction Enzyme Mediated Integration (REMI) were used to improve the rate of internalisation of exogenous DNA by sperm cells. 4. Results from dot blot as well as Southern hybridisation were semi-quantified and improved exogenous DNA uptake by sperm cells through lipofection and REMI. Stronger signals were observed from hybridisation of LacZ as well as GFP specific probe with the DNA from lipofected exogenous DNA transfected sperm DNA in comparison with those transfected with nude exogenous DNA.

  7. Restriction enzyme cleavage of ultraviolet-damaged Simian virus 40 and pBR322 DNA

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1983-01-01

    Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases. (author)

  8. An Additive-Multiplicative Restricted Mean Residual Life Model

    DEFF Research Database (Denmark)

    Mansourvar, Zahra; Martinussen, Torben; Scheike, Thomas H.

    2016-01-01

    mean residual life model to study the association between the restricted mean residual life function and potential regression covariates in the presence of right censoring. This model extends the proportional mean residual life model using an additive model as its covariate dependent baseline....... For the suggested model, some covariate effects are allowed to be time-varying. To estimate the model parameters, martingale estimating equations are developed, and the large sample properties of the resulting estimators are established. In addition, to assess the adequacy of the model, we investigate a goodness...

  9. Characterizing restriction enzyme-associated loci in historic ragweed (Ambrosia artemisiifolia) voucher specimens using custom-designed RNA probes

    DEFF Research Database (Denmark)

    Sanchez Barreiro, Fatima; Garrett Vieira, Filipe Jorge; Martin, Michael David

    2017-01-01

    Population genetic studies of non-model organisms frequently employ reduced representation library (RRL) methodologies, many of which rely on protocols in which genomic DNA is digested by one or more restriction enzymes. However, because high molecular weight DNA is recommended for these protocols......, samples with degraded DNA are generally unsuitable for RRL methods. Given that ancient and historic specimens can provide key temporal perspectives to evolutionary questions, we explored how custom-designed RNA probes could enrich for RRL loci (Restriction Enzyme-Associated Loci baits, or REALbaits...

  10. Interdomain communication in the endonuclease/motor subunit of type I restriction-modification enzyme EcoR124I

    Czech Academy of Sciences Publication Activity Database

    Sinha, Dhiraj; Shamayeva, Katerina; Ramasubramani, V.; Řeha, David; Bialevich, V.; Khabiri, Morteza; Guzanová, Alena; Milbar, N.; Weiserová, Marie; Cséfalvay, Eva; Carey, J.; Ettrich, Rüdiger

    2014-01-01

    Roč. 20, č. 7 (2014), s. 2334 ISSN 1610-2940 R&D Projects: GA ČR GAP207/12/2323 Institutional support: RVO:67179843 ; RVO:61388971 Keywords : DNA restriction enzymes * Molecular modeling * QM/MM calculations * principal components analysis * E. coli * Multisubunit enzyme complex * Correlated loop motions Subject RIV: EH - Ecology, Behaviour; EE - Microbiology, Virology (MBU-M) Impact factor: 1.736, year: 2014

  11. Endothelial progenitor cells display clonal restriction in multiple myeloma

    International Nuclear Information System (INIS)

    Braunstein, Marc; Özçelik, Tayfun; Bağişlar, Sevgi; Vakil, Varsha; Smith, Eric LP; Dai, Kezhi; Akyerli, Cemaliye B; Batuman, Olcay A

    2006-01-01

    In multiple myeloma (MM), increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs) contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI) patterns in female patients by a human androgen receptor assay (HUMARA). In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH) gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (V H ). In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele) in 64% (n = 7). In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele). In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with V H primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5) of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status, unlike patients whose EPCs had random XCI

  12. Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes.

    Science.gov (United States)

    Fu, Yong-Bi; Peterson, Gregory W; Dong, Yibo

    2016-04-07

    Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for exploring genome-wide genetic variation. However, GBS commonly samples a genome unevenly and can generate a substantial amount of missing data. These technical features would limit the power of various GBS-based genetic and genomic analyses. Here we present software called IgCoverage for in silico evaluation of genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced genome, and report a new set of 21 restriction enzyme combinations that can be applied to enhance GBS applications. These enzyme combinations were developed through an application of IgCoverage on 22 plant, animal, and fungus species with sequenced genomes, and some of them were empirically evaluated with different runs of Illumina MiSeq sequencing in 12 plant species. The in silico analysis of 22 organisms revealed up to eight times more genome coverage for the new combinations consisted of pairing four- or five-cutter restriction enzymes than the commonly used enzyme combination PstI + MspI. The empirical evaluation of the new enzyme combination (HinfI + HpyCH4IV) in 12 plant species showed 1.7-6 times more genome coverage than PstI + MspI, and 2.3 times more genome coverage in dicots than monocots. Also, the SNP genotyping in 12 Arabidopsis and 12 rice plants revealed that HinfI + HpyCH4IV generated 7 and 1.3 times more SNPs (with 0-16.7% missing observations) than PstI + MspI, respectively. These findings demonstrate that these novel enzyme combinations can be utilized to increase genome sampling and improve SNP genotyping in various GBS applications. Copyright © 2016 Fu et al.

  13. Reference genome-independent assessment of mutation density using restriction enzyme-phased sequencing

    Directory of Open Access Journals (Sweden)

    Monson-Miller Jennifer

    2012-02-01

    Full Text Available Abstract Background The availability of low cost sequencing has spurred its application to discovery and typing of variation, including variation induced by mutagenesis. Mutation discovery is challenging as it requires a substantial amount of sequencing and analysis to detect very rare changes and distinguish them from noise. Also challenging are the cases when the organism of interest has not been sequenced or is highly divergent from the reference. Results We describe the development of a simple method for reduced representation sequencing. Input DNA was digested with a single restriction enzyme and ligated to Y adapters modified to contain a sequence barcode and to provide a compatible overhang for ligation. We demonstrated the efficiency of this method at SNP discovery using rice and arabidopsis. To test its suitability for the discovery of very rare SNP, one control and three mutagenized rice individuals (1, 5 and 10 mM sodium azide were used to prepare genomic libraries for Illumina sequencers by ligating barcoded adapters to NlaIII restriction sites. For genome-dependent discovery 15-30 million of 80 base reads per individual were aligned to the reference sequence achieving individual sequencing coverage from 7 to 15×. We identified high-confidence base changes by comparing sequences across individuals and identified instances consistent with mutations, i.e. changes that were found in a single treated individual and were solely GC to AT transitions. For genome-independent discovery 70-mers were extracted from the sequence of the control individual and single-copy sequence was identified by comparing the 70-mers across samples to evaluate copy number and variation. This de novo "genome" was used to align the reads and identify mutations as above. Covering approximately 1/5 of the 380 Mb genome of rice we detected mutation densities ranging from 0.6 to 4 per Mb of diploid DNA depending on the mutagenic treatment. Conclusions The

  14. Measurements of the charged particle multiplicity distribution in restricted rapidity intervals

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1995-01-01

    Charged particle multiplicity distributions have been measured with the ALEPH detector in restricted rapidity intervals |Y| \\leq 0.5,1.0, 1.5,2.0\\/ along the thrust axis and also without restriction on rapidity. The distribution for the full range can be parametrized by a log-normal distribution. For smaller windows one finds a more complicated structure, which is understood to arise from perturbative effects. The negative-binomial distribution fails to describe the data both with and without the restriction on rapidity. The JETSET model is found to describe all aspects of the data while the width predicted by HERWIG is in significant disagreement.

  15. Random Tagging Genotyping by Sequencing (rtGBS, an Unbiased Approach to Locate Restriction Enzyme Sites across the Target Genome.

    Directory of Open Access Journals (Sweden)

    Elena Hilario

    Full Text Available Genotyping by sequencing (GBS is a restriction enzyme based targeted approach developed to reduce the genome complexity and discover genetic markers when a priori sequence information is unavailable. Sufficient coverage at each locus is essential to distinguish heterozygous from homozygous sites accurately. The number of GBS samples able to be pooled in one sequencing lane is limited by the number of restriction sites present in the genome and the read depth required at each site per sample for accurate calling of single-nucleotide polymorphisms. Loci bias was observed using a slight modification of the Elshire et al.some restriction enzyme sites were represented in higher proportions while others were poorly represented or absent. This bias could be due to the quality of genomic DNA, the endonuclease and ligase reaction efficiency, the distance between restriction sites, the preferential amplification of small library restriction fragments, or bias towards cluster formation of small amplicons during the sequencing process. To overcome these issues, we have developed a GBS method based on randomly tagging genomic DNA (rtGBS. By randomly landing on the genome, we can, with less bias, find restriction sites that are far apart, and undetected by the standard GBS (stdGBS method. The study comprises two types of biological replicates: six different kiwifruit plants and two independent DNA extractions per plant; and three types of technical replicates: four samples of each DNA extraction, stdGBS vs. rtGBS methods, and two independent library amplifications, each sequenced in separate lanes. A statistically significant unbiased distribution of restriction fragment size by rtGBS showed that this method targeted 49% (39,145 of BamH I sites shared with the reference genome, compared to only 14% (11,513 by stdGBS.

  16. ICRPfinder: a fast pattern design algorithm for coding sequences and its application in finding potential restriction enzyme recognition sites

    Directory of Open Access Journals (Sweden)

    Stafford Phillip

    2009-09-01

    Full Text Available Abstract Background Restriction enzymes can produce easily definable segments from DNA sequences by using a variety of cut patterns. There are, however, no software tools that can aid in gene building -- that is, modifying wild-type DNA sequences to express the same wild-type amino acid sequences but with enhanced codons, specific cut sites, unique post-translational modifications, and other engineered-in components for recombinant applications. A fast DNA pattern design algorithm, ICRPfinder, is provided in this paper and applied to find or create potential recognition sites in target coding sequences. Results ICRPfinder is applied to find or create restriction enzyme recognition sites by introducing silent mutations. The algorithm is shown capable of mapping existing cut-sites but importantly it also can generate specified new unique cut-sites within a specified region that are guaranteed not to be present elsewhere in the DNA sequence. Conclusion ICRPfinder is a powerful tool for finding or creating specific DNA patterns in a given target coding sequence. ICRPfinder finds or creates patterns, which can include restriction enzyme recognition sites, without changing the translated protein sequence. ICRPfinder is a browser-based JavaScript application and it can run on any platform, in on-line or off-line mode.

  17. The effect of an angiotensin-converting enzyme inhibitor on water and electrolyte balance in water-restricted sheep

    Directory of Open Access Journals (Sweden)

    R.A. Meintjies

    1999-07-01

    Full Text Available The importance of angiotensin II in the regulation of water and electrolyte balance in sheep is questionable. In this trial the effects of an angiotensin-converting enzyme (ACE inhibitor were quantified in sheep on restricted water intake. Comparing the phase of water restriction only with that of water restriction plus ACE inhibition, significant increases were observed during the latter phase in urine volume, sodium and potassium excretion via the urine, sodium concentration in the plasma and osmolar clearance. Urine osmolarity decreased with inhibition of angiotensin II formation while variables such as water, sodium and potassium loss via the faeces were unaffected. Most of the renal effects of ACE inhibition, except the increase in urinary potassium excretion, were explicable in terms of the established functions of angiotensin II. Furthermore, results of this trial indicate that angiotensin II has no significant effect on the intestine in regulating water and electrolyte excretion via the faeces.

  18. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  19. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    Directory of Open Access Journals (Sweden)

    Yoko Kimata-Ariga

    Full Text Available Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT, nitrite reductase (NiR and glutamine synthetase (GS, separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE. GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa and multiple sizes (>120 kDa, respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  20. Rational Design of Thermally Stable Novel Biocatalytic Nanomaterials: Enzyme Stability in Restricted Spatial Dimensions

    Science.gov (United States)

    Mudhivarthi, Vamsi K.

    Enzyme stability is of intense interest in bio-materials science as biocatalysts, and as sensing platforms. This is essentially because the unique properties of DNA, RNA, PAA can be coupled with the interesting and novel properties of proteins to produce systems with unprecedented control over their properties. In this article, the very first examples of enzyme/NA/inorganic hybrid nanomaterials and enzyme-Polyacrylic acid conjugates will be presented. The basic principles of design, synthesis and control of properties of these hybrid materials will be presented first, and this will be followed by a discussion of selected examples from our recent research findings. Data show that key properties of biological catalysts are improved by the inorganic framework especially when the catalyst is co-embedded with DNA. Several examples of such studies with various enzymes and proteins, including horseradish peroxidase (HRP), glucose oxidase (GO), cytochrome c (Cyt c), met-hemoglobin (Hb) and met-myoglobin (Mb) will be discussed. Additionally, key insights obtained by the standard methods of materials science including XRD, SEM and TEM as well as biochemical, calorimetric and spectroscopic methods will be discussed. Furthermore, improved structure and enhanced activities of the biocatalysts in specific cases will be demonstrated along with the potential stabilization mechanisms. Our hypothesis is that nucleic acids provide an excellent control over the enzyme-solid interactions as well as rational assembly of nanomaterials. These novel nanobiohybrid materials may aid in engineering more effective synthetic materials for gene-delivery, RNA-delivery and drug delivery applications.

  1. Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs

    DEFF Research Database (Denmark)

    Izvolsky, K I; Demidov, V V; Nielsen, P E

    2000-01-01

    I restriction endonuclease and dam methylase. The pcPNA-assisted protection against enzymatic methylation is more efficient when the PNA-binding site embodies the methylase-recognition site rather than overlaps it. We conclude that pcPNAs may provide the robust tools allowing to sequence-specifically manipulate...... DNA duplexes in a virtually sequence-unrestricted manner....

  2. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  3. Functional Coupling of Duplex Translocation to DNA Cleavage in a Type I Restriction Enzyme

    Czech Academy of Sciences Publication Activity Database

    Cséfalvay, Eva; Lapkouski, Mikalai; Guzanová, Alena; Cséfalvay, Ladislav; Baikova, T.; Shevelev, Igor; Bialevich, V.; Shamayeva, Katerina; Janščák, Pavel; Kutá-Smatanová, Ivana; Panjikar, S.; Carey, J.; Weiserová, Marie; Ettrich, Rüdiger

    2015-01-01

    Roč. 10, č. 6 (2015), e0128700 E-ISSN 1932-6203 R&D Projects: GA ČR GAP207/12/2323; GA ČR GAP305/10/0281 Institutional support: RVO:67179843 ; RVO:61388971 ; RVO:68378050 Keywords : Escherichia-Coli * Endonuclease ecor1241 * HSDR subunit * RECBCD enzyme * proteins * genes * helicase * sequence * family * domain Subject RIV: CE - Biochemistry Impact factor: 3.057, year: 2015

  4. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    Science.gov (United States)

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  5. Template-directed addition of nucleosides to DNA by the BfiI restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2008-01-01

    Restriction endonucleases catalyse DNA cleavage at specific sites. The BfiI endonuclease cuts DNA to give staggered ends with 1-nt 3′-extensions. We show here that BfiI can also fill in the staggered ends: while cleaving DNA, it can add a 2′-deoxynucleoside to the reaction product to yield directly a blunt-ended DNA. We propose that nucleoside incorporation proceeds through a two-step reaction, in which BfiI first cleaves the DNA to make a covalent enzyme–DNA intermediate and then resolves it...

  6. Caloric restriction counteracts age-related changes in the activities of sorbitol metabolizing enzymes from mouse liver

    Science.gov (United States)

    Hagopian, Kevork; Ramsey, Jon J.; Weindruch, Richard

    2009-01-01

    The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactae/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing. PMID:18953666

  7. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection.

    Science.gov (United States)

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-21

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn(2+) and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.

  8. Induction of DNA double-strand breaks by restriction enzymes in X-ray-sensitive mutant Chinese hamster ovary cells measured by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Nagasawa, Hatsumi; Little, J.B.; Okayasu, Ryuichi; Iliakis, G.E.

    1995-01-01

    This investigation was designed to determine whether the cytotoxic effects of different restriction endonucleases are related to the number and type of DNA double-strand breaks (DSBs) they produce. Chinese hamster ovary (CHO) K1 and xrs-5 cells, a radiosensitive mutant of CHO K1, were exposed to restriction endonucleases HaeIII, HinfI, PvuII and BamHI by electroporation. These enzymes represent both blunt and sticky end cutters with differing recognition sequence lengths. The number of DSBs was measured by pulsed-field gel electrophoresis (PFGE). Two forms of PFGE were employed: asymmetric field-inversion gel electrophoresis (AFIGE) for measuring the kinetics of DNA breaks by enzyme digestion and clamped homogeneous gel electrophoresis (CHEF) for examining the size distributions of damaged DNA. The amount of DNA damage induced by exposure to all four restriction enzymes was significantly greater in xrs-5 compared to CHO K1 cells, consistent with the reported DSB repair deficiency in these cells. Since restriction endonucleases produce DSBs alone as opposed to the various types of DNA damage induced by X rays, these results confirm that the repair defect in this mutant involves the rejoining of DSBs. Although the cutting frequency was directly related to the length of the recognition sequence for four restriction enzymes, there was no simple correlation between the cytotoxic effect and the amount of DNA damage produced by each enzyme in either cell line. This finding suggests that the type or nature of the cutting sequence itself may play a role in restriction enzyme-induced cell killing. 32 refs., 6 figs., 3 tabs

  9. Genomic-based restriction enzyme selection for specific detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP

    Directory of Open Access Journals (Sweden)

    Dinka eMandakovic

    2016-05-01

    Full Text Available The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS, a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination and fish samples (coinfection, aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction - Restriction Fragment Length Polymorphism assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants. Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies.

  10. Charged particle multiplicity distributions in restricted rapidity intervals in Z0 hadronic decays

    International Nuclear Information System (INIS)

    Uvarov, V.

    1991-01-01

    The multiplicity distributions of charged particles in restricted rapidity intervals in Z 0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3- and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, 'clans', fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies. (author) 11 refs., 3 figs

  11. Enzyme catalysis captured using multiple structures from one crystal at varying temperatures

    Directory of Open Access Journals (Sweden)

    Sam Horrell

    2018-05-01

    Full Text Available High-resolution crystal structures of enzymes in relevant redox states have transformed our understanding of enzyme catalysis. Recent developments have demonstrated that X-rays can be used, via the generation of solvated electrons, to drive reactions in crystals at cryogenic temperatures (100 K to generate `structural movies' of enzyme reactions. However, a serious limitation at these temperatures is that protein conformational motion can be significantly supressed. Here, the recently developed MSOX (multiple serial structures from one crystal approach has been applied to nitrite-bound copper nitrite reductase at room temperature and at 190 K, close to the glass transition. During both series of multiple structures, nitrite was initially observed in a `top-hat' geometry, which was rapidly transformed to a `side-on' configuration before conversion to side-on NO, followed by dissociation of NO and substitution by water to reform the resting state. Density functional theory calculations indicate that the top-hat orientation corresponds to the oxidized type 2 copper site, while the side-on orientation is consistent with the reduced state. It is demonstrated that substrate-to-product conversion within the crystal occurs at a lower radiation dose at 190 K, allowing more of the enzyme catalytic cycle to be captured at high resolution than in the previous 100 K experiment. At room temperature the reaction was very rapid, but it remained possible to generate and characterize several structural states. These experiments open up the possibility of obtaining MSOX structural movies at multiple temperatures (MSOX-VT, providing an unparallelled level of structural information during catalysis for redox enzymes.

  12. Overexpression of CYB5R3 and NQO1, two NAD+ -producing enzymes, mimics aspects of caloric restriction.

    Science.gov (United States)

    Diaz-Ruiz, Alberto; Lanasa, Michael; Garcia, Joseph; Mora, Hector; Fan, Frances; Martin-Montalvo, Alejandro; Di Francesco, Andrea; Calvo-Rubio, Miguel; Salvador-Pascual, Andrea; Aon, Miguel A; Fishbein, Kenneth W; Pearson, Kevin J; Villalba, Jose Manuel; Navas, Placido; Bernier, Michel; de Cabo, Rafael

    2018-04-28

    Calorie restriction (CR) is one of the most robust means to improve health and survival in model organisms. CR imposes a metabolic program that leads to increased stress resistance and delayed onset of chronic diseases, including cancer. In rodents, CR induces the upregulation of two NADH-dehydrogenases, namely NAD(P)H:quinone oxidoreductase 1 (Nqo1) and cytochrome b 5 reductase 3 (Cyb5r3), which provide electrons for energy metabolism. It has been proposed that this upregulation may be responsible for some of the beneficial effects of CR, and defects in their activity are linked to aging and several age-associated diseases. However, it is unclear whether changes in metabolic homeostasis solely through upregulation of these NADH-dehydrogenases have a positive impact on health and survival. We generated a mouse that overexpresses both metabolic enzymes leading to phenotypes that resemble aspects of CR including a modest increase in lifespan, greater physical performance, a decrease in chronic inflammation, and, importantly, protection against carcinogenesis, one of the main hallmarks of CR. Furthermore, these animals showed an enhancement of metabolic flexibility and a significant upregulation of the NAD + /sirtuin pathway. The results highlight the importance of these NAD + producers for the promotion of health and extended lifespan. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  14. A coarse-grained model for synergistic action of multiple enzymes on cellulose

    Directory of Open Access Journals (Sweden)

    Asztalos Andrea

    2012-08-01

    Full Text Available Abstract Background Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. Results We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. Conclusions Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures

  15. Multiple Restrictions of Human Immunodeficiency Virus Type 1 in Feline Cells▿

    Science.gov (United States)

    Münk, Carsten; Zielonka, Jörg; Constabel, Hannelore; Kloke, Björn-Philipp; Rengstl, Benjamin; Battenberg, Marion; Bonci, Francesca; Pistello, Mauro; Löchelt, Martin; Cichutek, Klaus

    2007-01-01

    The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity ∼10- to ∼40-fold. PMID:17459941

  16. Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes

    Directory of Open Access Journals (Sweden)

    Jinlong Jian

    2017-09-01

    Full Text Available Multifunctional factor progranulin (PGRN plays an important role in lysosomes, and its mutations and insufficiency are associated with lysosomal storage diseases, including neuronal ceroid lipofuscinosis and Gaucher disease (GD. The first breakthrough in understanding the molecular mechanisms of PGRN as regulator of lysosomal storage diseases came unexpectedly while investigating the role of PGRN in inflammation. Challenged PGRN null mice displayed typical features of GD. In addition, GRN gene variants were identified in GD patients and the serum levels of PGRN were significantly lower in GD patients. PGRN directly binds to and functions as a chaperone of the lysosomal enzyme β-glucocerebrosidase (GCaase, whose mutations cause GD. In addition, its C-terminus containing granulin E domain, termed Pcgin (PGRN C-terminus for GCase Interaction, is required for the association between PGRN and GCase. The concept that PGRN acts as a chaperone of lysosomal enzymes was further supported and extended by a recent article showing that PGRN acts as a chaperone molecule of lysosomal enzyme cathepsin D (CSTD, and the association between PGRN and CSTD is also mediated by PGRN's C-terminal granulin E domain. Collectively, these reports suggest that PGRN may act as a shared chaperone and regulates multiple lysosomal enzymes.

  17. Development of Colletotrichum gloeosporioides Restriction Enzyme-Mediated Integration Mutants as Biocontrol Agents Against Anthracnose Disease in Avocado Fruits.

    Science.gov (United States)

    Yakoby, N; Zhou, R; Kobiler, I; Dinoor, A; Prusky, D

    2001-02-01

    ABSTRACT Reduced-pathogenicity mutants of the avocado fruit pathogen Colletotrichum gloeosporioides isolate Cg-14 (teleomorph: Glomerella cingulata) were generated by insertional mutagenesis by restriction enzyme-mediated integration (REMI) transformation. Following seven transformations, 3,500 hygromycin-resistant isolates were subjected to a virulence assay by inoculation on mesocarp and pericarp of cv. Fuerte avocado fruits. Fourteen isolates showed a reduced degree of virulence relative compared with wild-type Cg-14. Two isolates, Cg-M-142 and Cg-M-1150, were further characterized. Cg-M-142 produced appressoria on avocado pericarp similar to Cg-14, but caused reduced symptom development on the fruit's pericarp and mesocarp. Isolate Cg-M-1150 did not produce appressoria; it caused much reduced maceration on the mesocarp and no symptoms on the pericarp. Southern blot analysis of Cg-M-142 and Cg-M-1150 showed REMI at different XbaI sites of the fungal genome. Pre-inoculation of avocado fruit with Cg-M-142 delayed symptom development by the wild-type isolate. Induced resistance was accompanied by an increase in the levels of preformed antifungal diene, from 760 to 1,200 mug/g fresh weight 9 days after inoculation, whereas pre-inoculation with Cg-M-1150 did not affect the level of antifungal diene, nor did it delay the appearance of decay symptoms. The results presented here show that reduced-pathogenicity isolates can be used for the biological control of anthracnose caused by C. gloeosporioides attack.

  18. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    Directory of Open Access Journals (Sweden)

    Zylicz-Stachula Agnieszka

    2009-05-01

    Full Text Available Abstract Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases, however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase and methyltransferase (MTase activities of wild type (wt TspGWI (either recombinant or isolated from Thermus sp. are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/EXK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module

  19. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells

    DEFF Research Database (Denmark)

    Blomqvist, Maria; Rhost, Sara; Teneberg, Susann

    2009-01-01

    The glycosphingolipid sulfatide (SO(3)-3Galbeta1Cer) is a demonstrated ligand for a subset of CD1d-restricted NKT cells, which could regulate experimental autoimmune encephalomyelitis, a murine model for multiple sclerosis, as well as tumor immunity and experimental hepatitis. Native sulfatide...

  20. Effect of intermittent versus daily calorie restriction on changes in weight and patient reported outcomes in people with multiple sclerosis

    Science.gov (United States)

    An intermittent fasting or calorie restriction diet has favorable effects in the mouse forms of multiple sclerosis (MS) and may provide additional anti-inflammatory and neuroprotective advantages beyond benefits obtained from weight loss alone. We conducted a pilot randomized controlled feeding stud...

  1. Characterization of Biomphalaria orbignyi, Biomphalaria peregrina and Biomphalaria oligoza by polymerase chain reaction and restriction enzyme digestion of the internal transcribed spacer region of the RNA ribosomal gene

    Directory of Open Access Journals (Sweden)

    Spatz Linus

    2000-01-01

    Full Text Available The correct identification of Biomphalaria oligoza, B. orbignyi and B. peregrina species is difficult due to the morphological similarities among them. B. peregrina is widely distributed in South America and is considered a potential intermediate host of Schistosoma mansoni. We have reported the use of the polymerase chain reaction and restriction fragment length polymorphism analysis of the internal transcribed spacer region of the ribosomal DNA for the molecular identification of these snails. The snails were obtained from different localities of Argentina, Brazil and Uruguay. The restriction patterns obtained with MvaI enzyme presented the best profile to identify the three species. The profiles obtained with all enzymes were used to estimate genetic similarities among B. oligoza, B. peregrina and B. orbignyi. This is also the first report of B. orbignyi in Uruguay.

  2. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    OpenAIRE

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand brea...

  3. Effect of a standardised dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Richard C Grandison

    Full Text Available Outcomes of lifespan studies in model organisms are particularly susceptible to variations in technical procedures. This is especially true of dietary restriction, which is implemented in many different ways among laboratories.In this study, we have examined the effect of laboratory stock maintenance, genotype differences and microbial infection on the ability of dietary restriction (DR to extend life in the fruit fly Drosophila melanogaster. None of these factors block the DR effect.These data lend support to the idea that nutrient restriction genuinely extends lifespan in flies, and that any mechanistic discoveries made with this model are of potential relevance to the determinants of lifespan in other organisms.

  4. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    Science.gov (United States)

    Lu, Yi [Champaign, IL; Liu, Juewen [Albuquerque, NM

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  5. Influence of nutrient restriction and melatonin supplementation of pregnant ewes on maternal and fetal pancreatic digestive enzymes and insulin-containing clusters.

    Science.gov (United States)

    Keomanivong, F E; Lemley, C O; Camacho, L E; Yunusova, R; Borowicz, P P; Caton, J S; Meyer, A M; Vonnahme, K A; Swanson, K C

    2016-03-01

    Primiparous ewes (n=32) were assigned to dietary treatments in a 2×2 factorial arrangement to determine effects of nutrient restriction and melatonin supplementation on maternal and fetal pancreatic weight, digestive enzyme activity, concentration of insulin-containing clusters and plasma insulin concentrations. Treatments consisted of nutrient intake with 60% (RES) or 100% (ADQ) of requirements and melatonin supplementation at 0 (CON) or 5 mg/day (MEL). Treatments began on day 50 of gestation and continued until day 130. On day 130, blood was collected under general anesthesia from the uterine artery, uterine vein, umbilical artery and umbilical vein for plasma insulin analysis. Ewes were then euthanized and the pancreas removed from the ewe and fetus, trimmed of mesentery and fat, weighed and snap-frozen until enzyme analysis. In addition, samples of pancreatic tissue were fixed in 10% formalin solution for histological examination including quantitative characterization of size and distribution of insulin-containing cell clusters. Nutrient restriction decreased (P⩽0.001) maternal pancreatic mass (g) and α-amylase activity (U/g, kU/pancreas, U/kg BW). Ewes supplemented with melatonin had increased pancreatic mass (P=0.03) and α-amylase content (kU/pancreas and U/kg BW). Melatonin supplementation decreased (P=0.002) maternal pancreatic insulin-positive tissue area (relative to section of tissue), and size of the largest insulin-containing cell cluster (P=0.04). Nutrient restriction decreased pancreatic insulin-positive tissue area (P=0.03) and percent of large (32 001 to 512 000 µm2) and giant (⩾512 001 µm2) insulin-containing cell clusters (P=0.04) in the fetus. Insulin concentrations in plasma from the uterine vein, umbilical artery and umbilical vein were greater (P⩽0.01) in animals receiving 100% requirements. When comparing ewes to fetuses, ewes had a greater percentage of medium insulin-containing cell clusters (2001 to 32 000 µm2) while fetuses

  6. DNA double-strand break measurement in mammalian cells by pulsed-field gel electrophoresis: an approach using restriction enzymes and gene probing

    International Nuclear Information System (INIS)

    Loebrich, M.; Ikpeme, S.; Kiefer, J.

    1994-01-01

    DNA samples prepared from human SP 3 cells, which had not been exposed to various doses of X-ray, were treated with NotI restriction endonuclease before being run in a contour-clamped homogeneous electrophoresis system. The restriction enzyme cuts the DNA at defined positions delivering DNA sizes which can be resolved by pulsed-field gel electrophoresis (PFGE). In order to investigate only one of the DNA fragments, a human lactoferrin cDNA, pHL-41, was hybridized to the DNA separated by PFGE. As a result, only the DNA fragment which contains the hybridized gene was detected resulting in a one-band pattern. The decrease of this band was found to be exponential with increasing radiation dose. From the slope, a double-strand break induction rate of (6.3±0.7) x 10 -3 /Mbp/Gy was deduced for 80 kV X-rays. (Author)

  7. Systematic comparison of co-expression of multiple recombinant thermophilic enzymes in Escherichia coli BL21(DE3).

    Science.gov (United States)

    Chen, Hui; Huang, Rui; Zhang, Y-H Percival

    2017-06-01

    The precise control of multiple heterologous enzyme expression levels in one Escherichia coli strain is important for cascade biocatalysis, metabolic engineering, synthetic biology, natural product synthesis, and studies of complexed proteins. We systematically investigated the co-expression of up to four thermophilic enzymes (i.e., α-glucan phosphorylase (αGP), phosphoglucomutase (PGM), glucose 6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGDH)) in E. coli BL21(DE3) by adding T7 promoter or T7 terminator of each gene for multiple genes in tandem, changing gene alignment, and comparing one or two plasmid systems. It was found that the addition of T7 terminator after each gene was useful to decrease the influence of the upstream gene. The co-expression of the four enzymes in E. coli BL21(DE3) was demonstrated to generate two NADPH molecules from one glucose unit of maltodextrin, where NADPH was oxidized to convert xylose to xylitol. The best four-gene co-expression system was based on two plasmids (pET and pACYC) which harbored two genes. As a result, apparent enzymatic activities of the four enzymes were regulated to be at similar levels and the overall four-enzyme activity was the highest based on the formation of xylitol. This study provides useful information for the precise control of multi-enzyme-coordinated expression in E. coli BL21(DE3).

  8. Restricted active space spin-flip configuration interaction: theory and examples for multiple spin flips with odd numbers of electrons.

    Science.gov (United States)

    Zimmerman, Paul M; Bell, Franziska; Goldey, Matthew; Bell, Alexis T; Head-Gordon, Martin

    2012-10-28

    The restricted active space spin flip (RAS-SF) method is extended to allow ground and excited states of molecular radicals to be described at low cost (for small numbers of spin flips). RAS-SF allows for any number of spin flips and a flexible active space while maintaining pure spin eigenfunctions for all states by maintaining a spin complete set of determinants and using spin-restricted orbitals. The implementation supports both even and odd numbers of electrons, while use of resolution of the identity integrals and a shared memory parallel implementation allow for fast computation. Examples of multiple-bond dissociation, excited states in triradicals, spin conversions in organic multi-radicals, and mixed-valence metal coordination complexes demonstrate the broad usefulness of RAS-SF.

  9. Propagator formalism and computer simulation of restricted diffusion behaviors of inter-molecular multiple-quantum coherences

    International Nuclear Information System (INIS)

    Cai Congbo; Chen Zhong; Cai Shuhui; Zhong Jianhui

    2005-01-01

    In this paper, behaviors of single-quantum coherences and inter-molecular multiple-quantum coherences under restricted diffusion in nuclear magnetic resonance experiments were investigated. The propagator formalism based on the loss of spin phase memory during random motion was applied to describe the diffusion-induced signal attenuation. The exact expression of the signal attenuation under the short gradient pulse approximation for restricted diffusion between two parallel plates was obtained using this propagator method. For long gradient pulses, a modified formalism was proposed. The simulated signal attenuation under the effects of gradient pulses of different width based on the Monte Carlo method agrees with the theoretical predictions. The propagator formalism and computer simulation can provide convenient, intuitive and precise methods for the study of the diffusion behaviors

  10. A dicyanotriterpenoid induces cytoprotective enzymes and reduces multiplicity of skin tumors in UV-irradiated mice

    International Nuclear Information System (INIS)

    Dinkova-Kostova, Albena T.; Jenkins, Stephanie N.; Wehage, Scott L.; Huso, David L.; Benedict, Andrea L.; Stephenson, Katherine K.; Fahey, Jed W.; Liu Hua; Liby, Karen T.; Honda, Tadashi; Gribble, Gordon W.; Sporn, Michael B.; Talalay, Paul

    2008-01-01

    Inducible phase 2 enzymes constitute a primary line of cellular defense. The oleanane dicyanotriterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-onitrile (TP-225) is a very potent inducer of these systems. Topical application of TP-225 to SKH-1 hairless mice increases the levels of NAD(P)H-quinone acceptor oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO-1) and protects against UV radiation-induced dermal thickening. Daily topical treatments of 10 nmol of TP-225 to the backs of mice that were previously subjected to low-level chronic UVB radiation (30 mJ/cm 2 /session, twice a week for 17 weeks), led to 50% reduction in multiplicity of skin tumors. In addition, the total tumor burden of squamous cell carcinomas was reduced by 5.5-fold. The identification of new agents for protection against UV radiation-induced skin cancer and understanding of their mechanism(s) of action is especially important in view of the fact that human skin cancers represent a significant source of increasing morbidity and mortality

  11. EEG Changes across Multiple Nights of Sleep Restriction and Recovery in Adolescents: The Need for Sleep Study.

    Science.gov (United States)

    Ong, Ju Lynn; Lo, June C; Gooley, Joshua J; Chee, Michael W L

    2016-06-01

    To investigate sleep EEG changes in adolescents across 7 nights of sleep restriction to 5 h time in bed [TIB]) and 3 recovery nights of 9 h TIB. A parallel-group design, quasi-laboratory study was conducted in a boarding school. Fifty-five healthy adolescents (25 males, age = 15-19 y) who reported habitual TIBs of approximately 6 h on week nights (group average) but extended their sleep on weekends were randomly assigned to Sleep Restriction (SR) or Control groups. Participants underwent a 2-week protocol comprising 3 baseline nights (TIB = 9 h), 7 nights of sleep opportunity manipulation (TIB = 5 h for the SR and 9 h for the Control group), and 3 nights of recovery sleep (TIB = 9 h). Polysomnography was obtained on two baseline, three manipulation, and two recovery nights. Across the sleep restriction nights, total SWS duration was preserved relative to the 9 h baseline sleep opportunity, while other sleep stages were reduced. Considering only the first 5 h of sleep opportunity, SR participants had reduced N1 duration and wake after sleep onset (WASO), and increased total sleep time (TST), rapid eye movement (REM) sleep, and slow wave sleep (SWS) relative to baseline. Total REM sleep, N2, and TST duration remained above baseline levels by the third recovery sleep episode. In spite of preservation of SWS duration over multiple nights of sleep restriction, adolescents accustomed to curtailing nocturnal sleep on school day nights evidence residual effects on sleep macro-structure, even after three nights of recovery sleep. Older teenagers may not be as resilient to successive nights of sleep restriction as is commonly believed. © 2016 Associated Professional Sleep Societies, LLC.

  12. A personal tourism navigation system to support traveling multiple destinations with time restrictions

    OpenAIRE

    Maruyama, Atsushi; Shibata, Naoki; Murata, Yoshihiro; Yasumoto, Keiichi; Ito, Minoru

    2004-01-01

    We propose a personal navigation system (called PNS) which navigates a tourist through multiple destinations efficiently. In our PNS, a tourist can specify multiple destinations with desired arrival/stay time and preference degree. The system calculates the route including part of the destinations satisfying tourist's requirements and navigates him/her. For the above route search problem, we have developed an efficient route search algorithm using a genetic algorithm. We have designed and imp...

  13. Comparison of time-restricted and ad libitum self-feeding on the growth, feeding behavior and daily digestive enzyme profiles of Atlantic salmon

    Science.gov (United States)

    Shi, Ce; Liu, Ying; Yi, Mengmeng; Zheng, Jimeng; Tian, Huiqin; Du, Yishuai; Li, Xian; Sun, Guoxiang

    2017-07-01

    Although it has been hypothesized that a predictable feeding regime in animals allows physiological variables to be adjusted to maximize nutrient utilization and, hence, better growth performance, the assumption has rarely been tested. This study compares the effects of time-restricted versus free access self-feeding on the growth, feeding behavior and daily digestive enzyme rhythms of Atlantic salmon ( Salmo salar). In an experiment that lasted 6 weeks, fish (109.9 g) were divided into two groups: group 1 had free access to a self-feeder (FA); group 2 received three meals per day (2 h per meal) at dawn, midday and dusk via a time-restricted self-feeder (TR). At the end of the experiment, the fish were sampled every 3 h over a 24-h period. The results showed that the TR fish quickly synchronized their feeding behavior to the feeding window and their blood glucose showed a significant postprandial increase, while FA fish displayed no statistically significant rhythms ( P>0.05). Pepsin activity of TR fish also showed a significant daily rhythm ( P0.05). In conclusion, the study failed to confirm a link between the entrainment of daily digestive enzyme profiles and growth performance, with the TR group showing comparatively poor blood glucose regulation.

  14. Hemolysis, Elevated Liver Enzymes, and Low Platelets, Severe Fetal Growth Restriction, Postpartum Subarachnoid Hemorrhage, and Craniotomy: A Rare Case Report and Systematic Review

    Directory of Open Access Journals (Sweden)

    Shadi Rezai

    2017-01-01

    Full Text Available Introduction. Hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome is a relatively uncommon but traumatic condition occurring in the later stage of pregnancy as a complication of severe preeclampsia or eclampsia. Prompt brain computed tomography (CT or magnetic resonance imaging (MRI and a multidisciplinary management approach are required to improve perinatal outcome. Case. A 37-year-old, Gravida 6, Para 1-0-4-1, Hispanic female with a history of chronic hypertension presented at 26 weeks and 6 days of gestational age. She was noted to have hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome accompanied by fetal growth restriction (FGR, during ultrasound evaluation, warranting premature delivery. The infant was delivered in stable condition suffering no permanent neurological deficit. Conclusion. HELLP syndrome is an uncommon and traumatic obstetric event which can lead to neurological deficits if not managed in a responsive and rapid manner. The central aggravating factor seems to be hypertension induced preeclamptic or eclamptic episode and complications thereof. The syndrome itself is manifested by hemolytic anemia, increased liver enzymes, and decreasing platelet counts with a majority of neurological defects resulting from hemorrhagic stroke or subarachnoid hemorrhage (SAH. To minimize adverse perinatal outcomes, obstetric management of this medical complication must include rapid clinical assessment, diagnostic examination, and neurosurgery consultation.

  15. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    International Nuclear Information System (INIS)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.; Cooper, Laurie P.; White, John H.; Dryden, David T.F.

    2010-01-01

    Research highlights: → Successful fusion of GFP to M.EcoKI DNA methyltransferase. → GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. → FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  16. Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies.

    Science.gov (United States)

    Rukhin, Andrew L

    2011-01-01

    A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed.

  17. A multiple-choice knapsack based algorithm for CDMA downlink rate differentiation under uplink coverage restrictions

    NARCIS (Netherlands)

    Endrayanto, A.I.; Bumb, A.F.; Boucherie, Richardus J.

    2004-01-01

    This paper presents an analytical model for downlink rate allocation in Code Division Multiple Access (CDMA) mobile networks. By discretizing the coverage area into small segments, the transmit power requirements are characterized via a matrix representation that separates user and system

  18. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes.

    Science.gov (United States)

    Zhang, Yixi; Yang, Yuanxue; Sun, Huahua; Liu, Zewen

    2016-12-01

    Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice.

    Science.gov (United States)

    Fu, Zidong Donna; Klaassen, Curtis D

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  1. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    Science.gov (United States)

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  2. Computer Simulations Reveal Multiple Functions for Aromatic Residues in Cellulase Enzymes (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    NREL researchers use high-performance computing to demonstrate fundamental roles of aromatic residues in cellulase enzyme tunnels. National Renewable Energy Laboratory (NREL) computer simulations of a key industrial enzyme, the Trichoderma reesei Family 6 cellulase (Cel6A), predict that aromatic residues near the enzyme's active site and at the entrance and exit tunnel perform different functions in substrate binding and catalysis, depending on their location in the enzyme. These results suggest that nature employs aromatic-carbohydrate interactions with a wide variety of binding affinities for diverse functions. Outcomes also suggest that protein engineering strategies in which mutations are made around the binding sites may require tailoring specific to the enzyme family. Cellulase enzymes ubiquitously exhibit tunnels or clefts lined with aromatic residues for processing carbohydrate polymers to monomers, but the molecular-level role of these aromatic residues remains unknown. In silico mutation of the aromatic residues near the catalytic site of Cel6A has little impact on the binding affinity, but simulation suggests that these residues play a major role in the glucopyranose ring distortion necessary for cleaving glycosidic bonds to produce fermentable sugars. Removal of aromatic residues at the entrance and exit of the cellulase tunnel, however, dramatically impacts the binding affinity. This suggests that these residues play a role in acquiring cellulose chains from the cellulose crystal and stabilizing the reaction product, respectively. These results illustrate that the role of aromatic-carbohydrate interactions varies dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, the results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering

  3. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.

    Science.gov (United States)

    Iakiviak, Michael; Mackie, Roderick I; Cann, Isaac K O

    2011-11-01

    Ruminococcus albus 8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of R. albus revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demonstrate the capacity of four glycoside hydrolases (GHs), derived from R. albus, to hydrolyze lichenin. Two of the genes encoded GH family 5 enzymes (Ra0453 and Ra2830), one gene encoded a GH family 16 enzyme (Ra0505), and the last gene encoded a GH family 3 enzyme (Ra1595). Each gene was expressed in Escherichia coli, and the recombinant protein was purified to near homogeneity. Upon screening on a wide range of substrates, Ra0453, Ra2830, and Ra0505 displayed different hydrolytic properties, as they released unique product profiles. The Ra1595 protein, predicted to function as a β-glucosidase, preferred cleavage of a nonreducing end glucose when linked by a β-1,3 glycosidic bond to the next glucose residue. The major product of Ra0505 hydrolysis of lichenin was predicted to be a glucotriose that was degraded only by Ra0453 to glucose and cellobiose. Most importantly, the four enzymes functioned synergistically to hydrolyze lichenin to glucose, cellobiose, and cellotriose. This lichenin-degrading enzyme mix should be of utility as an additive to feeds administered to monogastric animals, especially those high in fiber.

  4. Genetic relationships between clinical and non-clinical strains of Yersinia enterocolitica biovar 1A as revealed by multilocus enzyme electrophoresis and multilocus restriction typing

    Directory of Open Access Journals (Sweden)

    Virdi Jugsharan S

    2010-05-01

    Full Text Available Abstract Background Genetic relationships among 81 strains of Y. enterocolitica biovar 1A isolated from clinical and non-clinical sources were discerned by multilocus enzyme electrophoresis (MLEE and multilocus restriction typing (MLRT using six loci each. Such studies may reveal associations between the genotypes of the strains and their sources of isolation. Results All loci were polymorphic and generated 62 electrophoretic types (ETs and 12 restriction types (RTs. The mean genetic diversity (H of the strains by MLEE and MLRT was 0.566 and 0.441 respectively. MLEE (DI = 0.98 was more discriminatory and clustered Y. enterocolitica biovar 1A strains into four groups, while MLRT (DI = 0.77 identified two distinct groups. BURST (Based Upon Related Sequence Types analysis of the MLRT data suggested aquatic serotype O:6,30-6,31 isolates to be the ancestral strains from which, clinical O:6,30-6,31 strains might have originated by host adaptation and genetic change. Conclusion MLEE revealed greater genetic diversity among strains of Y. enterocolitica biovar 1A and clustered strains in four groups, while MLRT grouped the strains into two groups. BURST analysis of MLRT data nevertheless provided newer insights into the probable evolution of clinical strains from aquatic strains.

  5. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    International Nuclear Information System (INIS)

    Fu, Zidong Donna; Klaassen, Curtis D.

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs

  6. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zidong Donna [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs.

  7. Facile synthesis of new carbon-11 labeled conformationally restricted rivastigmine analogues as potential PET agents for imaging AChE and BChE enzymes

    International Nuclear Information System (INIS)

    Wang Min; Wang Jiquan; Gao Mingzhang; Zheng Qihuang

    2008-01-01

    Rivastigmine is a newer-generation inhibitor with a dual inhibitory action on both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes, and is used for the treatment of AChE- and BChE-related diseases such as brain Alzheimer's disease and cardiovascular disease. New carbon-11 labeled conformationally restricted rivastigmine analogues radiolabeled quaternary ammonium triflate salts, (3aR,9bS)-1-[ 11 C]methyl-1-methyl-6-(methylcarbamoyloxy)-2,3,3a,4,5, 9b-hexahy dro-1H-benzo[g]indolium triflate ([ 11 C]8) and (3aR,9bS)-1-[ 11 C]methyl-1-methyl-6-(heptylcarbamoyloxy)-2,3,3a,4,5, 9b-hexahy dro-1H-benzo[g]indolium triflate ([ 11 C]9), were designed and synthesized as potential positron emission tomography (PET) agents for imaging AChE and BChE enzymes. The appropriate precursors were labeled with [ 11 C]CH 3 OTf through N-[ 11 C]methylation, and the target tracers were isolated by solid-phase extraction (SPE) using a cation-exchange CM Sep-Pak cartridge in 40-50% radiochemical yields decay corrected to end of bombardment (EOB), 15-20 min overall synthesis time, and 148-222 GBq/μmol specific activity at EOB

  8. Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells.

    Science.gov (United States)

    Chen, Jing; Hu, Xun; Cui, Jingjie

    2018-05-01

    Glycolysis is the most important source of energy for the production of anabolic building blocks in cancer cells. Therefore, glycolytic enzymes are regarded as potential targets for cancer treatment. Previously, naphthaquinones, including shikonin, vitamin K 3 and vitamin K 5 , have been proven to decrease the rate of glycolysis in cancer cells, which is partly due to suppressed pyruvate kinase activity. In the present study, enzymatic assays were performed using MCF-7 cell lysate in order to screen the profile of glycolytic enzymes in cancer cells inhibited by shikonin, vitamin K 3 and vitamin K 5 , in addition to pyruvate kinase. Results revealed that hexokinase, phosphofructokinase-1, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase produced in the process of glycolysis were inhibited by shikonin, vitamin K 3 and vitamin K 5 . The results indicated that shikonin, vitamin K 3 and vitamin K 5 are chemical inhibitors of glycolytic enzymes in cancer cells and have potential uses in translational medical applications.

  9. Detection of the Single Nucleotide Polymorphism at Position rs2735940 in the Human Telomerase Reverse Transcriptase Gene by the Introduction of a New Restriction Enzyme Site for the PCR-RFLP Assay.

    Science.gov (United States)

    Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei

    2017-09-01

    It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.

  10. Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments

    KAUST Repository

    Demurtas, Olivia Costantina; Frusciante, Sarah; Ferrante, Paola; Diretto, Gianfranco; Azad, Noraddin Hosseinpour; Pietrella, Marco; Aprea, Giuseppe; Taddei, Anna Rita; Romano, Elena; Mi, Jianing; Al-Babili, Salim; Frigerio, Lorenzo; Giuliano, Giovanni

    2018-01-01

    Saffron is composed of the dried stigmas of Crocus sativus and is the most expensive spice on Earth. Its red color is due to the apocarotenoid glycosides, crocins, which accumulate in the vacuole and reach up to 10% of the stigma dry weight. We have previously characterized the first dedicated enzyme in crocin biosynthesis, CsCCD2, which cleaves zeaxanthin to yield crocetin dialdehyde. In this work, we identified six putative aldehyde dehydrogenase (ALDH) transcripts expressed in saffron stigmas. When expressed in E. coli, only one of corresponding proteins (CsALDH3I1), was able to convert crocetin dialdehyde into the crocin precursor, crocetin. CsALDH3I1 carries a C-terminal hydrophobic domain, similar to that of a Neurospora membrane-associated apocarotenoid dehydrogenase, YLO-1. We also characterized a UDP-glycosyltransferase enzyme, CsUGT74AD1, able to convert crocetin to crocins 1 and 2'. In vitro assays showed high specificity of CsALDH3I1 for crocetin dialdehyde and long chain apocarotenals, and of CsUGT74AD1 for crocetin. Upon extract fractionation, the CsCCD2, CsALDH3I1 and CsUGT74AD1 enzymes partitioned in the insoluble fraction, suggesting that they are associated to membranes or to large insoluble complexes. Immunogold labeling of saffron stigmas and confocal microscopy of fusions to Green Fluorescent Protein expressed in N. benthamiana leaves revealed that CsCCD2 localizes to plastids, CsALDH3I1 to the endoplasmic reticulum (ER) and CsUGT74AD1 to the cytoplasm, in association with cytoskeletal-like structures. Based on our and on literature data, we propose that the ER and cytoplasm function as

  11. Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments

    KAUST Repository

    Demurtas, Olivia Costantina

    2018-05-29

    Saffron is composed of the dried stigmas of Crocus sativus and is the most expensive spice on Earth. Its red color is due to the apocarotenoid glycosides, crocins, which accumulate in the vacuole and reach up to 10% of the stigma dry weight. We have previously characterized the first dedicated enzyme in crocin biosynthesis, CsCCD2, which cleaves zeaxanthin to yield crocetin dialdehyde. In this work, we identified six putative aldehyde dehydrogenase (ALDH) transcripts expressed in saffron stigmas. When expressed in E. coli, only one of corresponding proteins (CsALDH3I1), was able to convert crocetin dialdehyde into the crocin precursor, crocetin. CsALDH3I1 carries a C-terminal hydrophobic domain, similar to that of a Neurospora membrane-associated apocarotenoid dehydrogenase, YLO-1. We also characterized a UDP-glycosyltransferase enzyme, CsUGT74AD1, able to convert crocetin to crocins 1 and 2\\'. In vitro assays showed high specificity of CsALDH3I1 for crocetin dialdehyde and long chain apocarotenals, and of CsUGT74AD1 for crocetin. Upon extract fractionation, the CsCCD2, CsALDH3I1 and CsUGT74AD1 enzymes partitioned in the insoluble fraction, suggesting that they are associated to membranes or to large insoluble complexes. Immunogold labeling of saffron stigmas and confocal microscopy of fusions to Green Fluorescent Protein expressed in N. benthamiana leaves revealed that CsCCD2 localizes to plastids, CsALDH3I1 to the endoplasmic reticulum (ER) and CsUGT74AD1 to the cytoplasm, in association with cytoskeletal-like structures. Based on our and on literature data, we propose that the ER and cytoplasm function as

  12. Postexercise blood flow restriction does not enhance muscle hypertrophy induced by multiple-set high-load resistance exercise.

    Science.gov (United States)

    Madarame, Haruhiko; Nakada, Satoshi; Ohta, Takahisa; Ishii, Naokata

    2018-05-01

    To test the applicability of postexercise blood flow restriction (PEBFR) in practical training programmes, we investigated whether PEBFR enhances muscle hypertrophy induced by multiple-set high-load resistance exercise (RE). Seven men completed an eight-week RE programme for knee extensor muscles. Employing a within-subject design, one leg was subjected to RE + PEBFR, whereas contralateral leg to RE only. On each exercise session, participants performed three sets of unilateral knee extension exercise at approximately 70% of their one-repetition maximum for RE leg first, and then performed three sets for RE + PEBFR leg. Immediately after completion of the third set, the proximal portion of the RE + PEBFR leg was compressed with an air-pressure cuff for 5 min at a pressure ranging from 100 to 150 mmHg. If participants could perform 10 repetitions for three sets in two consecutive exercise sessions, the work load was increased by 5% at the next exercise session. Muscle thickness and strength of knee extensor muscles were measured before and after the eight-week training period and after the subsequent eight-week detraining period. There was a main effect of time but no condition × time interaction or main effect of condition for muscle thickness and strength. Both muscle thickness and strength increased after the training period independent of the condition. This result suggests that PEBFR would not be an effective training method at least in an early phase of adaptation to high-load resistance exercise. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  13. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones.

    Science.gov (United States)

    Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H; Kleiner, Ralph E; Du, Xiu Quan; Leissring, Malcolm A; Tang, Wei-Jen; Charron, Maureen J; Seeliger, Markus A; Saghatelian, Alan; Liu, David R

    2014-07-03

    Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation.

  14. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    International Nuclear Information System (INIS)

    Malik, Radhika; Viola, Ronald E.

    2010-01-01

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 (angstrom) resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg 2+ and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.

  15. Geraniol Pharmacokinetics, Bioavailability and Its Multiple Effects on the Liver Antioxidant and Xenobiotic-Metabolizing Enzymes

    Directory of Open Access Journals (Sweden)

    Barbara Pavan

    2018-01-01

    Full Text Available Geraniol is a natural monoterpene showing anti-inflammatory, antioxidant, neuroprotective and anticancer effects. No pharmacokinetic and bioavailability data on geraniol are currently available. We therefore performed a systematic study to identify the permeation properties of geraniol across intestinal cells, and its pharmacokinetics and bioavailability after intravenous and oral administration to rats. In addition, we systematically investigated the potential hepatotoxic effects of high doses of geraniol on hepatic phase I, phase II and antioxidant enzymatic activities and undertook a hematochemical analysis on mice. Permeation studies performed via HPLC evidenced geraniol permeability coefficients across an in vitro model of the human intestinal wall for apical to basolateral and basolateral to apical transport of 13.10 ± 2.3 × 10-3 and 2.1 ± 0.1⋅× 10-3 cm/min, respectively. After intravenous administration of geraniol to rats (50 mg/kg, its concentration in whole blood (detected via HPLC decreased following an apparent pseudo-first order kinetics with a half-life of 12.5 ± 1.5 min. The absolute bioavailability values of oral formulations (50 mg/kg of emulsified geraniol or fiber-adsorbed geraniol were 92 and 16%, respectively. Following emulsified oral administration, geraniol amounts in the cerebrospinal fluid of rats ranged between 0.72 ± 0.08 μg/mL and 2.6 ± 0.2 μg/mL within 60 min. Mice treated with 120 mg/kg of geraniol for 4 weeks showed increased anti-oxidative defenses with no signs of liver toxicity. CYP450 enzyme activities appeared only slightly affected by the high dosage of geraniol.

  16. Methodology for the selection of routes for international cross-border line projects involving multiple objectives and decision-makers in the analyses of restrictions and environmental possibilities

    International Nuclear Information System (INIS)

    Angel S, Enrique; Cadena, Luis Fernando

    2005-01-01

    A scheme was developed and applied to select the optimum environmental route for international cross-border line projects, in a decision making context involving multiple objectives and multiple decision-makers, the project studied was the electricity interconnection for central America (SIEPAC) for which a prospective assessment was carried out regarding the restrictions and possibilities in the light of the Colombian environmental dimensions management model. The methodology proposed followed these stages: Definition and approval of the structure of environmental restriction and criticality variables, sectorization and selection of complex sections, definition of decision-makers for multi-objective analysis; design and application of consultation tool; definition and modeling of options applying SIG; sensitivity analysis of alternative routes and project's environment management. Different options were identified for insertion and permanence of the project according to the criteria of various interest groups and actors consulted: environmental authorities, electricity companies, scientific community and civil society

  17. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    Science.gov (United States)

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  18. Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Seo, E.S.; Dilokpimol, Adiphol

    2008-01-01

    Germinating barley seeds contain multiple forms of alpha-amylase, which are subject to both differential gene expression and differential degradation as part of the repertoire of starch-degrading enzymes. The alpha-amylases are endo-acting and possess a long substrate binding cleft with a charact......Germinating barley seeds contain multiple forms of alpha-amylase, which are subject to both differential gene expression and differential degradation as part of the repertoire of starch-degrading enzymes. The alpha-amylases are endo-acting and possess a long substrate binding cleft...... will address surface sites in both barley alpha-amylase 1 and in the related isozyme 2....

  19. Sodium restriction potentiates the renoprotective effects of combined vitamin D receptor activation and angiotensin-converting enzyme inhibition in established proteinuric nephropathy.

    NARCIS (Netherlands)

    Mirkovic, K.; Frenay, A.S.; Born, J. van den; Goor, H van; Navis, G.; Borst, M.H. de; Bindels, R.J.M.; Hoenderop, J.G.J.; Hillebrands, J.L.

    2017-01-01

    BACKGROUND: Renin-angiotensin-aldosterone system (RAAS) blockade provides renoprotective effects in chronic kidney disease (CKD); yet progressive renal function loss remains common. Dietary sodium restriction potentiates the renoprotective effects of RAAS blockade. Vitamin D receptor activator

  20. Multiplex, rapid and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification

    Directory of Open Access Journals (Sweden)

    Yi eWang

    2016-05-01

    Full Text Available We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA, which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5’ end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labelled at the 5’ end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5’ end short sequences and their complementary sequences, which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 minutes, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  1. Effect of dietary protein restriction on renal ammonia metabolism

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  2. Comparative analysis of human cytomegalovirus a-sequence in multiple clinical isolates by using polymerase chain reaction and restriction fragment length polymorphism assays.

    Science.gov (United States)

    Zaia, J A; Gallez-Hawkins, G; Churchill, M A; Morton-Blackshere, A; Pande, H; Adler, S P; Schmidt, G M; Forman, S J

    1990-01-01

    The human cytomegalovirus (HCMV) a-sequence (a-seq) is located in the joining region between the long (L) and short (S) unique sequences of the virus (L-S junction), and this hypervariable junction has been used to differentiate HCMV strains. The purpose of this study was to investigate whether there are differences among strains of human cytomegalovirus which could be characterized by polymerase chain reaction (PCR) amplification of the a-seq of HCMV DNA and to compare a PCR method of strain differentiation with conventional restriction fragment length polymorphism (RFLP) methodology by using HCMV junction probes. Laboratory strains of HCMV and viral isolates from individuals with HCMV infection were characterized by using both RFLPs and PCR. The PCR assay amplified regions in the major immediate-early gene (IE-1), the 64/65-kDa matrix phosphoprotein (pp65), and the a-seq of the L-S junction region. HCMV laboratory strains Towne, AD169, and Davis were distinguishable, in terms of size of the amplified product, when analyzed by PCR with primers specific for the a-seq but were indistinguishable by using PCR targeted to IE-1 and pp65 sequences. When this technique was applied to a characterization of isolates from individuals with HCMV infection, selected isolates could be readily distinguished. In addition, when the a-seq PCR product was analyzed with restriction enzyme digestion for the presence of specific sequences, these DNA differences were confirmed. PCR analysis across the variable a-seq of HCMV demonstrated differences among strains which were confirmed by RFLP in 38 of 40 isolates analyzed. The most informative restriction enzyme sites in the a-seq for distinguishing HCMV isolates were those of MnlI and BssHII. This indicates that the a-seq of HCMV is heterogeneous among wild strains, and PCR of the a-seq of HCMV is a practical way to characterize differences in strains of HCMV. Images PMID:1980680

  3. Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone.

    Science.gov (United States)

    Harel-Markowitz, Eliane; Gurevich, Michael; Shore, Laurence S; Katz, Adi; Stram, Yehuda; Shemesh, Mordechai

    2009-05-01

    Linearized p-eGFP (plasmid-enhanced green fluorescent protein) or p-hFSH (plasmid human FSH) sequences with the corresponding restriction enzyme were lipofected into sperm genomic DNA. Sperm transfected with p-eGFP were used for artificial insemination in hens, and in 17 out of 19 of the resultant chicks, the exogenous DNA was detected in their lymphocytes as determined by PCR and expressed in tissues as determined by (a) PCR, (b) specific emission of green fluorescence by the eGFP, and (c) Southern blot analysis. A complete homology was found between the Aequorea Victoria eGFP DNA and a 313-bp PCR product of extracted DNA from chick blood cells. Following insemination with sperm lipofected with p-hFSH, transgenic offspring were obtained for two generations as determined by detection of the transgene for human FSH (PCR) and expression of the gene (RT-PCR and quantitative real-time PCR) and the presence of the protein in blood (radioimmunoassay). Data demonstrate that lipofection of plasmid DNA with restriction enzyme is a highly efficient method for the production of transfected sperm to produce transgenic offspring by direct artificial insemination.

  4. Multiplicity of 3-Ketosteroid-9 alpha-Hydroxylase Enzymes in Rhodococcus rhodochrous DSM43269 for Specific Degradation of Different Classes of Steroids

    OpenAIRE

    Petrusma, Mirjan; Hessels, Gerda; Dijkhuizen, Lubbert; van der Geize, Robert

    2011-01-01

    The well-known large catabolic potential of rhodococci is greatly facilitated by an impressive gene multiplicity. This study reports on the multiplicity of kshA, encoding the oxygenase component of 3-ketosteroid 9 alpha-hydroxylase, a key enzyme in steroid catabolism. Five kshA homologues (kshA1 to kshA5) were previously identified in Rhodococcus rhodochrous DSM43269. These KshA(DSM43269) homologues are distributed over several phylogenetic groups. The involvement of these KshA homologues in ...

  5. An approach to determine multiple enzyme activities in the same soil sample for soil health-biogeochemical indexes

    Science.gov (United States)

    Enzyme activities (EAs) are soil health indicators of changes in decomposition processes due to management and the crop(s) affecting the quantity and quality of plant residues and nutrients entering the soil. More commonly assessed soil EAs can provide information of reactions where plant available ...

  6. Restriction enzyme analysis of the human cytomegalovirus genome in specimens collected from immunodeficient patients in Belém, State of Pará, Brazil

    Directory of Open Access Journals (Sweden)

    Dorotéa Lobato da Silva

    2011-10-01

    Full Text Available INTRODUCTION: Human cytomegalovirus is an opportunistic betaherpesvirus that causes persistent and serious infections in immunodeficient patients. Recurrent infections occur due to the presence of the virus in a latent state in some cell types. It is possible to examine the virus using molecular methods to aid in the immunological diagnosis and to generate a molecular viral profile in immunodeficient patients. The objective of this study was to characterize cytomegalovirus genotypes and to generate the epidemiological and molecular viral profile in immunodeficient patients. METHODS: A total of 105 samples were collected from immunodeficient patients from the City of Belém, including newborns, hemodialysis patients, transplant recipients and HIV+ patients. An IgG and IgM antibody study was completed using ELISA, and enzymatic analysis by restriction fragment length polymorphism (RFLP was performed to characterize viral genotypes. RESULTS: It was observed that 100% of the patients had IgG antibodies, 87% of which were IgG+/IgM-, consistent with a prior infection profile, 13% were IgG+/IgM+, suggestive of recent infection. The newborn group had the highest frequency (27% of the IgG+/IgM+ profile. By RFLP analysis, only one genotype was observed, gB2, which corresponded to the standard AD169 strain. CONCLUSIONS: The presence of IgM antibodies in new borns indicates that HCMV continues to be an important cause of congenital infection. The low observed genotypic diversity could be attributed to the small sample size because newborns were excluded from the RFLP analysis. This study will be continued including samples from newborns to extend the knowledge of the general and molecular epidemiology of HCMV in immunodeficient patients.

  7. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5′-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Kim

    2017-03-01

    Full Text Available AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP or uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4 and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7 enzymes in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.

  8. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.

    Directory of Open Access Journals (Sweden)

    Wenbin Zhou

    Full Text Available Transfer RNA (tRNA precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P. While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs. The plant organellar PRORP (PRORP1 has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi. PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA and tRNA-Arg(ACG suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.

  9. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanyan; Ran, Xiang; Lin, Youhui [Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Graduate School of University of Chinese Academy of Sciences, Beijing 100039 (China); Ren, Jinsong, E-mail: jren@ciac.ac.cn [Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Qu, Xiaogang [Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2015-04-22

    Highlights: • A colorimetric and multistage biological network has been developed. • This system was on the basis of the enzyme-regulated changes of pH values. • This enzyme-based system could assemble large biological circuit. • Two signal transducers (DNA/AuNPs and acid–base indicators) were used. • The compositions of samples could be detected through visual output signals. - Abstract: Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid–base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications.

  10. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts

    International Nuclear Information System (INIS)

    Huang, Yanyan; Ran, Xiang; Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2015-01-01

    Highlights: • A colorimetric and multistage biological network has been developed. • This system was on the basis of the enzyme-regulated changes of pH values. • This enzyme-based system could assemble large biological circuit. • Two signal transducers (DNA/AuNPs and acid–base indicators) were used. • The compositions of samples could be detected through visual output signals. - Abstract: Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid–base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications

  11. Evolution of the proportions of two sigma viral types in experimental populations of Drosophila melanogaster in the absence of the allele that is restrictive of viral multiplication.

    Science.gov (United States)

    Fleuriet, A

    1999-12-01

    A minority of flies in natural populations of Drosophila melanogaster are endemically infected by a rhabdovirus, sigma. The virus is vertically transmitted through male and female gametes. Two alleles of a fly locus, the ref(2)P locus, are present as a polymorphism in all populations: O permissive, and P restrictive for viral multiplication and transmission. Two viral types are known, Type I, which is very sensitive to the P allele, and Type II, which is more resistant. Previous observations have shown that, in presence of the P allele, viral Type II is selected for, in both natural and experimental populations. The aim of the present study was to determine whether, in the absence of P, Type I is selected for, or whether the two types are equivalent. For this purpose, experimental populations deprived of the P allele and differing in the initial proportions of the two viral types were established. After several generations, and despite a possible bias toward Type I, the frequencies of Type I and Type II clones differed in the various populations, depending on their initial values. These findings do not rule out selective advantage of viral Type I in the absence of P, but suggest that, if any, this advantage is in no way comparable to that displayed by viral Type II in the presence of P.

  12. Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes

    Directory of Open Access Journals (Sweden)

    Gorman Kevin

    2011-01-01

    Full Text Available Abstract Background The whitefly Trialeurodes vaporariorum is an economically important crop pest in temperate regions that has developed resistance to most classes of insecticides. However, the molecular mechanisms underlying resistance have not been characterised and, to date, progress has been hampered by a lack of nucleotide sequence data for this species. Here, we use pyrosequencing on the Roche 454-FLX platform to produce a substantial and annotated EST dataset. This 'unigene set' will form a critical reference point for quantitation of over-expressed messages via digital transcriptomics. Results Pyrosequencing produced around a million sequencing reads that assembled into 54,748 contigs, with an average length of 965 bp, representing a dramatic expansion of existing cDNA sequences available for T. vaporariorum (only 43 entries in GenBank at the time of this publication. BLAST searching of non-redundant databases returned 20,333 significant matches and those gene families potentially encoding gene products involved in insecticide resistance were manually curated and annotated. These include, enzymes potentially involved in the detoxification of xenobiotics and those encoding the targets of the major chemical classes of insecticides. A total of 57 P450s, 17 GSTs and 27 CCEs were identified along with 30 contigs encoding the target proteins of six different insecticide classes. Conclusion Here, we have developed new transcriptomic resources for T. vaporariorum. These include a substantial and annotated EST dataset that will serve the community studying this important crop pest and will elucidate further the molecular mechanisms underlying insecticide resistance.

  13. Restriction enzyme analysis of the chloroplast DNA of Phaseolus vulgaris L. vr. Rio Negro Análise de restrição do DNA cloroplástico de Phaseolus vulgaris vr. Rio Negro

    Directory of Open Access Journals (Sweden)

    Sergio Echeverrigaray

    1996-12-01

    Full Text Available The chloroplast DNA of Phaseolus vulgaris L. vr. Rio Negro was isola ted from chloroplasts obtained by descontiuous sucrose gradient centrifugation. The restriction analysis with the enzymes HindIII, EcoRI and BamHI and their combination, allowed to identified more than 20 fragments of 18 to 0.65kb. The size of Phaseolus vulgaris L. cp DNA was estimated in 140kb with the presence of a repeat sequence of about 22kb.O DNA cloroplástico do cultivar Rio Negro (Phaseolus vulgaris L. foi isolado a partir de cloroplastos obtidos por gradiente descontínuo de sacarose. A análise de restrição com as enzimas HindIII, EcoRI e BamHI e a combinação destas, permitiu a identificação de mais de 20 fragmentos na faixa de 18 a 0.65kb. O tamanho do cp DNA de Phaseolus vulgaris L. foi estimado em 140kb com a existência de sequências repetidas de aproximadamente 22kb.

  14. DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites.

    Science.gov (United States)

    Wang, Xiong; Zheng, Kai; Zheng, Huayu; Nie, Hongli; Yang, Zujun; Tang, Lixia

    2014-12-20

    Iterative saturation mutagenesis (ISM) has been shown to be a powerful method for directed evolution. In this study, the approach was modified (termed M-ISM) by combining the single-site saturation mutagenesis method with a DC-Analyzer-facilitated combinatorial strategy, aiming to evolve novel biocatalysts efficiently in the case where multiple sites are targeted simultaneously. Initially, all target sites were explored individually by constructing single-site saturation mutagenesis libraries. Next, the top two to four variants in each library were selected and combined using the DC-Analyzer-facilitated combinatorial strategy. In addition to site-saturation mutagenesis, iterative saturation mutagenesis also needed to be performed. The advantages of M-ISM over ISM were that the screening effort is greatly reduced, and the entire M-ISM procedure was less time-consuming. The M-ISM strategy was successfully applied to the randomization of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) when five interesting sites were targeted simultaneously. After screening 900 clones in total, six positive mutants were obtained. These mutants exhibited 4.0- to 9.3-fold higher k(cat) values than did the wild-type HheC toward 1,3-dichloro-2-propanol. However, with the ISM strategy, the best hit showed a 5.9-fold higher k(cat) value toward 1,3-DCP than the wild-type HheC, which was obtained after screening 4000 clones from four rounds of mutagenesis. Therefore, M-ISM could serve as a simple and efficient version of ISM for the randomization of target genes with multiple positions of interest.

  15. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts.

    Science.gov (United States)

    Huang, Yanyan; Ran, Xiang; Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2015-04-22

    Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid-base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals

    Directory of Open Access Journals (Sweden)

    Clare Pridans

    2014-01-01

    Full Text Available The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE. We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large “cargo” for applications in gene therapy and vaccine delivery.

  17. Restrictive cardiomyopathy

    Science.gov (United States)

    ... People with restrictive cardiomyopathy may be heart transplant candidates. The outlook depends on the cause of the ... www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. ...

  18. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.

    Directory of Open Access Journals (Sweden)

    Adam Alexander Thil Smith

    2012-05-01

    Full Text Available Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes, a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short. The first step locates "genomic metabolons", i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12.

  19. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  20. Multiple-enzyme supplementation on digestive traits, carcass characteristics, blood lipid parameters and growth performance of broilers fed a wheat-based diet

    Directory of Open Access Journals (Sweden)

    Hamid Reza Taheri

    2017-09-01

    Full Text Available Objective A trial was conducted from 11 to 42 d post-hatch to investigate the effectiveness of the supplementation of a multiple-enzyme preparation (Natuzyme Plus in a wheat-based diet on digesta viscosity, pH and microbial population, villus morphology, feed passage time, nutrient retention, carcass characteristics, blood lipid parameters and growth performance of broiler chickens. Methods Three hundreds 10-d-old male Ross 308 chicks were allocated to three diets with five replicates of 20 birds per replicate. Dietary treatments were i a wheat-based diet (W, ii W+Natuzyme Plus (WN; 500 mg/kg of the diet, and iii a corn-based diet (C. Results Birds fed on the C diet had higher average daily gain (ADG, p0.05 difference compared to those of the C diet. Compared to those of the W diet, the WN diet showed the higher count of Lactobacilli and lower count of coliforms (p<0.01 and digesta viscosity (p<0.01. Conclusion In general, the results of this study showed that Natuzyme Plus supplementation in a wheat-based diet can be appropriate to achieve a comparable growth performance in broiler chickens to those given the C diet probably through improving digesta viscosity, VH, ET, TTAR of NT and EE, AMEn, count of Lactobacilli and coliforms.

  1. Restrictive Cardiomyopathy

    Science.gov (United States)

    ... up in the circulatory system. In time, the heart fails. What causes it? Restrictive cardiomyopathy is often caused by diseases in other parts of the body. One known cause is cardiac ... build up in the heart tissue, making the tissue stiff and thickened. Cardiac ...

  2. Diagnostic use of angiotensin converting enzyme (ACE)-inhibited renal scintigraphy in the identification of selective renal artery stenosis in the presence of multiple renal arteries: A case report

    International Nuclear Information System (INIS)

    Morton, K.A.; Rose, S.C.; Haakenstad, A.O.; Handy, J.E.; Scuderi, A.J.; Datz, F.L.

    1990-01-01

    In patients with renovascular hypertension, it is unknown whether the angiotensin converting enzyme-(ACE) inhibited renal scan will identify stenosis of a segmental branch of a single renal artery or of an accessory artery where multiple renal arteries are present. Since multiple renal arteries may be present in approximately 25% of all individuals, it will be important to establish whether the ACE-inhibited renal scan is useful in this population. We report a case of stenosis involving a renal artery in a patient with multiple renal arteries, successfully identified by ACE-inhibited renal scintigraphy

  3. Novel host restriction factors implicated in HIV-1 replication.

    Science.gov (United States)

    Ghimire, Dibya; Rai, Madhu; Gaur, Ritu

    2018-04-01

    Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

  4. Restricted Mobilities

    DEFF Research Database (Denmark)

    Nielsen, Mette; Lassen, Claus

    2012-01-01

    communities and shopping centres through mobility lenses. The article shows how different mobility systems enable and restrict the public access to private-public spaces, and it points out that proprietary communities create an unequal potential for human movement and access in the city. The main argument......Privatisation of public spaces in the contemporary city has increased during the last decades but only few studies have approached this field from a mobility perspective. Therefore the article seeks to rectify this by exploring two Australian examples of private spaces in the city; gated...... and stratification mechanisms. In conclusion the article therefore suggests that future urban research and planning also needs a mobile understanding of spaces in the cities and how different mobility systems play an important role to sustain the exclusiveness that often characterises the private/public spaces...

  5. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Edi, Constant V; Djogbénou, Luc; Jenkins, Adam M; Regna, Kimberly; Muskavitch, Marc A T; Poupardin, Rodolphe; Jones, Christopher M; Essandoh, John; Kétoh, Guillaume K; Paine, Mark J I; Koudou, Benjamin G; Donnelly, Martin J; Ranson, Hilary; Weetman, David

    2014-03-01

    Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with

  6. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  7. Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme.

    Science.gov (United States)

    Nascimento, Alessandro S; Muniz, Joao Renato C; Aparício, Ricardo; Golubev, Alexander M; Polikarpov, Igor

    2014-09-01

    Hemicellulose is an important part of the plant cell wall biomass, and is relevant to cellulosic ethanol technologies. β-Mannosidases are enzymes capable of cleaving nonreducing residues of β-d-mannose from β-d-mannosides and hemicellulose mannose-containing polysaccharides, such as mannans and galactomannans. β-Mannosidases are distributed between glycoside hydrolase (GH) families 1, 2, and 5, and only a handful of the enzymes have been structurally characterized to date. The only published X-ray structure of a GH family 2 mannosidase is that of the bacterial Bacteroides thetaiotaomicron enzyme. No structures of eukaryotic mannosidases of this family are currently available. To fill this gap, we set out to solve the structure of Trichoderma harzianum GH family 2 β-mannosidase and to refine it to 1.9-Å resolution. Structural comparisons of the T. harzianum GH2 β-mannosidase highlight similarities in its structural architecture with other members of GH family 2, reveal the molecular mechanism of β-mannoside binding and recognition, and shed light on its putative galactomannan-binding site. Coordinates and observed structure factor amplitudes have been deposited with the Protein Data Bank (4CVU and 4UOJ). The T. harzianum β-mannosidase 2A nucleotide sequence has GenBank accession number BankIt1712036 GeneMark.hmm KJ624918. © 2014 FEBS.

  8. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes.

    Science.gov (United States)

    Köllner, Tobias G; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg

    2004-05-01

    The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes.

  9. Telomere Restriction Fragment (TRF) Analysis.

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    restriction enzyme recognition sites within TTAGGG tandem telomeric repeats, therefore digestion of genomic DNA, not telomeric DNA, with a combination of 6 base restriction endonucleases reduces genomic DNA size to less than 800 bp.

  10. Determination of genotype differences through restriction ...

    African Journals Online (AJOL)

    Tyrosinase gene or C locus has long been implicated in the coat colour determination. This gene a copper-containing enzyme located on chromosome 11q14.3 is expressed in melanocytes and controls the major steps in pigment production. In camel, C locus a restriction site provoked by the T variant of the mutation was ...

  11. A new restriction endonuclease from Citrobacter freundii

    Science.gov (United States)

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC. Images PMID:6294607

  12. A new restriction endonuclease from Citrobacter freundii

    OpenAIRE

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC.

  13. Optimizing Restriction Site Placement for Synthetic Genomes

    Science.gov (United States)

    Montes, Pablo; Memelli, Heraldo; Ward, Charles; Kim, Joondong; Mitchell, Joseph S. B.; Skiena, Steven

    Restriction enzymes are the workhorses of molecular biology. We introduce a new problem that arises in the course of our project to design virus variants to serve as potential vaccines: we wish to modify virus-length genomes to introduce large numbers of unique restriction enzyme recognition sites while preserving wild-type function by substitution of synonymous codons. We show that the resulting problem is NP-Complete, give an exponential-time algorithm, and propose effective heuristics, which we show give excellent results for five sample viral genomes. Our resulting modified genomes have several times more unique restriction sites and reduce the maximum gap between adjacent sites by three to nine-fold.

  14. DP IV/CD26, APN/CD13 and related enzymes as regulators of T cell immunity: implications for experimental encephalomyelitis and multiple sclerosis.

    Science.gov (United States)

    Reinhold, Dirk; Bank, Ute; Täger, Michael; Ansorge, Siegfried; Wrenger, Sabine; Thielitz, Anja; Lendeckel, Uwe; Faust, Jürgen; Neubert, Klaus; Brocke, Stefan

    2008-01-01

    Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system. Peptidases like dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) play a regulatory role in T cell activation and represent potential targets for the treatment of inflammatory disorders. Synthetic inhibitors of DP IV and/or APN enzymatic activity induce production of the immunosuppressive cytokine TGF-beta1 and subsequently suppress DNA synthesis and Th1 cytokine production of activated human T cells. Compelling evidence has demonstrated that IL-17-producing CD4 cells (Th17) are a major contributor to the pathogenesis of autoimmune inflammation. Here, we report that inhibitors of DP IV-like activity as well as of APN activity inhibit IL-17 production in activated human and mouse T cells. Combining inhibitors of DP IV and APN increases the suppressive effect on T cell specific IL-17 production in vitro compared to a single peptidase inhibitor. In the following, we summarize the evidence for the role of both ectoenzymes in T cell activation in vitro and in vivo and provide a rationale for the use of combined or dual ectopeptidase inhibitors to treat autoimmune diseases like MS.

  15. The cold adapted and temperature sensitive influenza A/Ann Arbor/6/60 virus, the master donor virus for live attenuated influenza vaccines, has multiple defects in replication at the restrictive temperature

    International Nuclear Information System (INIS)

    Chan, Winnie; Zhou, Helen; Kemble, George; Jin Hong

    2008-01-01

    We have previously determined that the temperature sensitive (ts) and attenuated (att) phenotypes of the cold adapted influenza A/Ann Arbor/6/60 strain (MDV-A), the master donor virus for the live attenuated influenza A vaccines (FluMist), are specified by the five amino acids in the PB1, PB2 and NP gene segments. To understand how these loci control the ts phenotype of MDV-A, replication of MDV-A at the non-permissive temperature (39 deg. C) was compared with recombinant wild-type A/Ann Arbor/6/60 (rWt). The mRNA and protein synthesis of MDV-A in the infected MDCK cells were not significantly reduced at 39 deg. C during a single-step replication, however, vRNA synthesis was reduced and the nuclear-cytoplasmic export of viral RNP (vRNP) was blocked. In addition, the virions released from MDV-A infected cells at 39 deg. C exhibited irregular morphology and had a greatly reduced amount of the M1 protein incorporated. The reduced M1 protein incorporation and vRNP export blockage correlated well with the virus ts phenotype because these defects could be partially alleviated by removing the three ts loci from the PB1 gene. The virions and vRNPs isolated from the MDV-A infected cells contained a higher level of heat shock protein 70 (Hsp70) than those of rWt, however, whether Hsp70 is involved in thermal inhibition of MDV-A replication remains to be determined. Our studies demonstrate that restrictive replication of MDV-A at the non-permissive temperature occurs in multiple steps of the virus replication cycle

  16. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer.

    Science.gov (United States)

    Mohamed, Mark F; Hollfelder, Florian

    2013-01-01

    The observation that one enzyme can accelerate several chemically distinct reactions was at one time surprising because the enormous efficiency of catalysis was often seen as inextricably linked to specialization for one reaction. Originally underreported, and considered a quirk rather than a fundamental property, enzyme promiscuity is now understood to be important as a springboard for adaptive evolution. Owing to the large number of promiscuous enzymes that have been identified over the last decade, and the increased appreciation for promiscuity's evolutionary importance, the focus of research has shifted to developing a better understanding of the mechanistic basis for promiscuity and the origins of tolerant or restrictive specificity. We review the evidence for widespread crosswise promiscuity amongst enzymes that catalyze phosphoryl transfer, including several members of the alkaline phosphatase superfamily, where large rate accelerations between 10(6) and 10(17) are observed for both native and multiple promiscuous reactions. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    Science.gov (United States)

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  19. A new restriction endonuclease-based method for highly-specific detection of DNA targets from methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Maria W Smith

    Full Text Available PCR multiplexing has proven to be challenging, and thus has provided limited means for pathogen genotyping. We developed a new approach for analysis of PCR amplicons based on restriction endonuclease digestion. The first stage of the restriction enzyme assay is hybridization of a target DNA to immobilized complementary oligonucleotide probes that carry a molecular marker, horseradish peroxidase (HRP. At the second stage, a target-specific restriction enzyme is added, cleaving the target-probe duplex at the corresponding restriction site and releasing the HRP marker into solution, where it is quantified colorimetrically. The assay was tested for detection of the methicillin-resistant Staphylococcus aureus (MRSA pathogen, using the mecA gene as a target. Calibration curves indicated that the limit of detection for both target oligonucleotide and PCR amplicon was approximately 1 nM. Sequences of target oligonucleotides were altered to demonstrate that (i any mutation of the restriction site reduced the signal to zero; (ii double and triple point mutations of sequences flanking the restriction site reduced restriction to 50-80% of the positive control; and (iii a minimum of a 16-bp target-probe dsDNA hybrid was required for significant cleavage. Further experiments showed that the assay could detect the mecA amplicon from an unpurified PCR mixture with detection limits similar to those with standard fluorescence-based qPCR. Furthermore, addition of a large excess of heterologous genomic DNA did not affect amplicon detection. Specificity of the assay is very high because it involves two biorecognition steps. The proposed assay is low-cost and can be completed in less than 1 hour. Thus, we have demonstrated an efficient new approach for pathogen detection and amplicon genotyping in conjunction with various end-point and qPCR applications. The restriction enzyme assay may also be used for parallel analysis of multiple different amplicons from the same

  20. CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites.

    Directory of Open Access Journals (Sweden)

    Richard M Sharpe

    Full Text Available High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated to enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERS enable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3'UTR sequencing, and cleaved amplified polymorphic sequence (CAPS molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERS and results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.

  1. CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites.

    Science.gov (United States)

    Sharpe, Richard M; Koepke, Tyson; Harper, Artemus; Grimes, John; Galli, Marco; Satoh-Cruz, Mio; Kalyanaraman, Ananth; Evans, Katherine; Kramer, David; Dhingra, Amit

    2016-01-01

    High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated to enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERS enable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3'UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERS and results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.

  2. Restrictions and Proportionality

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2009-01-01

    The article discusses three central aspects of the freedoms under European Community law, namely 1) the prohibition against restrictions as an important extension of the prohibition against discrimination, 2) a prohibition against exit restrictions which is just as important as the prohibition...... against host country restrictions, but which is often not recognised to the same extent by national law, and 3) the importance of also identifying and recognising an exit restriction, so that it is possible to achieve the required test of appropriateness and proportionality in relation to the rule...

  3. Survival of Saccharomyces cerevisiae after treatment with the restriction endonuclease Alu I

    International Nuclear Information System (INIS)

    Winckler, K.; Bach, B.; Obe, G.

    1988-01-01

    Treatment of yeast cells proficient in the repair of radiation damage (Saccharomyces cervisiae) with the restriction endonuclease Alu I leads to a positive dose-effect relationship between inactivation level and enzyme concentration. The data suggest an uptake of the active restriction enzyme into the cells and a relationship between induction of DNA double-strand breaks and cell killing. (author)

  4. Restricting wolves risks escape

    Science.gov (United States)

    Mech, L. David; Ballard, Warren; Bangs, Ed; Ream, Bob

    2010-01-01

    Implementing the proposal set forth by Licht and colleagues (BioScience 60: 147–153) requires restricting wolves to tiny "islands," areas that are magnitudes smaller than the ranges of most wolf populations. Wolves naturally have large ranges; restricting their spatial needs increases the risk of wolves escaping, exacerbating public relations and political and legal problems.

  5. Multi-enzyme catalyzed processes: Next generation biocatalysis

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia; Sin, Gürkan; Gernaey, Krist

    2011-01-01

    Biocatalysis has been attracting increasing interest in recent years. Nevertheless, most studies concerning biocatalysis have been carried out using single enzymes (soluble or immobilized). Currently, multiple enzyme mixtures are attractive for the production of many compounds at an industrial...

  6. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  7. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  8. Restriction fragment length polymorphism of the major histocompatibility complex of the dog.

    Science.gov (United States)

    Sarmiento, U M; Storb, R F

    1988-01-01

    Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D-homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (Bam HI, Eco RI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I, and Bgl II), separated by agarose gel electrophoresis, and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabeled HLA cDNA probes corresponding to DR, DQ, DP, and DO beta genes. The autoradiograms for all nine enzyme digests displayed multiple bands with the DRb, DQb, and DPb probes while the DOb probe hybridized with one to two bands. The RFLP patterns were highly polymorphic but consistent within each DLA-D type. Standard RFLP patterns were established for nine DLA-D types which could be discriminated from each other by using two enzymes (Rsa I and Pst I) and the HLA-DPb probe. Cluster analysis of the polymorphic restriction fragments detected by the DRb probe revealed four closely related supertypic groups or DLA-DR families: Dw3 + Dw4 + D1, Dw8 + D10, D7 + D16 + D9, and Dw1. This study provides the basis for DLA-D genotyping at a population level by RFLP analysis. These results also suggest that the genetic organization of the DLA-D region may closely resemble that of the HLA complex.

  9. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  10. Protein restriction and cancer.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Huang, Xingguo; Li, Tiejun; Yin, Yulong

    2018-03-26

    Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Caracterization of Aujeszky's disease virus isolated from South Brazil in the last twenty years by restriction enzyme analysis Caracterização de amostras do vírus de Aujeszky isoladas na região Sul do Brasil nos últimos vinte anos através de análise de restrição enzimática

    Directory of Open Access Journals (Sweden)

    Rejane Schaefer

    2006-09-01

    Full Text Available Aujeszky's disease virus (ADV belongs to Herpesviridae family and is an important etiological agent which infects pigs causing economic losses in swine producing countries worldwide and international trade restrictions to products of swine origin. An eradication program for ADV was established in Santa Catarina State since 2001. The last outbreak was reported in July 2004 and since then none has been reported. The disease has been controlled with the use of a genetic modified vaccine and elimination of seropositives. Aiming the characterization of ADV isolated in the South of Brazil in the last twenty years (1983-2003, a retrospective study based on the genomic analysis of the isolates through a digestion of viral genomic DNA with restriction enzyme Bam HI was done. Thirty-seven ADV samples isolated from swine from the States of Santa Catarina, Parana and Rio Grande do Sul were analyzed. These isolates were compared to the reference strains NIA-4, Bartha and Begonia. The most predominant genomic arrangement was type II found in 33 samples isolated in Santa Catarina State and in one isolate from Rio Grande do Sul State. Genomic arrangement type I, characteristic of vaccine strains was identified in 2 isolates from Parana State and in 1 isolate from Rio Grande do Sul State.O vírus da doença de Aujeszky (VDA pertencente à família Herpesviridae é um importante agente etiológico que infecta suínos causando perdas na produção de suínos no mundo inteiro e restrições para o comércio internacional de suínos ou de seus subprodutos. No estado de Santa Catarina, Brasil, foi instituído em 2001 um programa de erradicação da doença de Aujeszky (DA. O último surto da DA foi reportado em julho de 2004 e desde então não foram notificados mais casos. A doença tem sido controlada com o uso de uma vacina geneticamente modificada e eliminação de animais soropositivos para o VDA. Visando caracterizar amostras do VDA isoladas nos últimos vinte

  12. Intrauterine growth restriction

    Directory of Open Access Journals (Sweden)

    Bernardita Donoso Bernales

    2012-07-01

    Full Text Available It is estimated that the true prevalence of intrauterine growth restriction is 3-10% of all pregnancies, making this fetal condition one of the most frequent obstetric problems, together with premature labor and premature rupture of membranes. The article stresses the importance of early diagnosis because of the associated risks.

  13. Late gestational nutrient restriction

    DEFF Research Database (Denmark)

    Tygesen, Malin Plumhoff; Nielsen, Mette Olaf; Nørgaard, Peder

    2008-01-01

    We investigated the effect of 50% nutrient restriction during the last 6 weeks of gestation on twin-pregnant ewes' plasma glucose, non-esterified fatty acid, ß-hydroxybutyrate, insulin, IGF-1 and leptin concentrations and the effects on lamb birth weight and ewes' lactation performance. Plasma...

  14. Restricted Variance Interaction Effects

    DEFF Research Database (Denmark)

    Cortina, Jose M.; Köhler, Tine; Keeler, Kathleen R.

    2018-01-01

    Although interaction hypotheses are increasingly common in our field, many recent articles point out that authors often have difficulty justifying them. The purpose of this article is to describe a particular type of interaction: the restricted variance (RV) interaction. The essence of the RV int...

  15. Development of the Enzyme-Substrate Interactions Concept Inventory

    Science.gov (United States)

    Bretz, Stacey Lowery; Linenberger, Kimberly J.

    2012-01-01

    Enzyme function is central to student understanding of multiple topics within the biochemistry curriculum. In particular, students must understand how enzymes and substrates interact with one another. This manuscript describes the development of a 15-item Enzyme-Substrate Interactions Concept Inventory (ESICI) that measures student understanding…

  16. Human cellular restriction factors that target HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Jeang Kuan-Teh

    2009-09-01

    Full Text Available Abstract Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, bone marrow stromal cell antigen 2 (BST-2, cyclophilin A, tripartite motif protein 5 alpha (Trim5α, and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.

  17. Negative binomial distribution fits to multiplicity distributions is restricted δη intervals from central O+Cu collisions at 14.6A GeV/c and their implication for open-quotes Intermittencyclose quotes

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1993-01-01

    Experience in analyzing the data from Light and Heavy Ion Collisions in terms of distributions rather than moments suggests that conventional fluctuations of multiplicity and transverse energy can be well described by Gamma or Negative Binomial Distributions (NBD). Multiplicity distributions were obtained for central 16 O+Cu collisions in bins of δη= 0.1,0.2, 0.3 .... 0.5,1.0, where the bin of 1.0 covers 1.2 < η < 2.2 in the laboratory. NBD fits were performed to these distributions with excellent results in all δη bins. The κ parameter of the NBD fit increases linearly with the δη interval, which is a totally unexpected and particularly striking result. Due to the well known property of the NBD under convolution, this result indicates that the multiplicity distributions in adjacent bins of pseudorapidity δη ∼ 0.1 are largely statistically independent. The relationship to 2-particle correlations and open-quotes Intermittencyclose quotes will be discussed

  18. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  19. Expanding specificity of class I restricted CD8+ T cells for viral epitopes following multiple inoculations of swine with a human adenovirus vectored foot-and-mouth disease virus (FMDV) vaccine

    DEFF Research Database (Denmark)

    Pedersen, Lasse E.; Patch, Jared R; Kenney, Mary

    2016-01-01

    The immune response to the highly acute foot-and-mouth disease virus (FMDV) is routinely reported as a measure of serum antibody. However, a critical effector function of immune responses combating viral infection of mammals is the cytotoxic T lymphocyte (CTL) response mediated by virus specific CD...... show that the specificity of the CD8(+) T cell response to Ad5-FMDV-T varies between cohorts of genetically identical animals. Further, we demonstrate epitope specificity of CD8(+) T cells expands following multiple immunizations with this vaccine....

  20. Impact of Autoantibodies against Glycolytic Enzymes on Pathogenicity of Autoimmune Retinopathy and Other Autoimmune Disorders

    Directory of Open Access Journals (Sweden)

    Grazyna Adamus

    2017-04-01

    Full Text Available Autoantibodies (AAbs against glycolytic enzymes: aldolase, α-enolase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase are prevalent in sera of patients with blinding retinal diseases, such as paraneoplastic [cancer-associated retinopathy (CAR] and non-paraneoplastic autoimmune retinopathies, as well as in many other autoimmune diseases. CAR is a degenerative disease of the retina characterized by sudden vision loss in patients with cancer and serum anti-retinal AAbs. In this review, we discuss the widespread serum presence of anti-glycolytic enzyme AAbs and their significance in autoimmune diseases. There are multiple mechanisms responsible for antibody generation, including the innate anti-microbial response, anti-tumor response, or autoimmune response against released self-antigens from damaged, inflamed tissue. AAbs against enolase, GADPH, and aldolase exist in a single patient in elevated titers, suggesting their participation in pathogenicity. The lack of restriction of AAbs to one disease may be related to an increased expression of glycolytic enzymes in various metabolically active tissues that triggers an autoimmune response and generation of AAbs with the same specificity in several chronic and autoimmune conditions. In CAR, the importance of serum anti-glycolytic enzyme AAbs had been previously dismissed, but the retina may be without pathological consequence until a failure of the blood–retinal barrier function, which would then allow pathogenic AAbs access to their retinal targets, ultimately leading to damaging effects.

  1. Sizing of high-pressure restriction orifices

    International Nuclear Information System (INIS)

    Casado Flores, E.

    1995-01-01

    Constant up-grading of power plants sometimes requires the modification of components which form part of suppliers' packages. In order to protect technology they have developed, however, the suppliers do not supply their calculation criteria. In order to reduce the costs of such improvements, and so as to be able to undertake the modification without having to rely on the original supplier, this paper describes the basic criteria applicable to the study of high-pressure restriction orifices, which can be considered to be representative of the components in question. The restriction orifices discussed are: - Insert - Multiplates in series with one perforation in each plate - Multiplates in series with several perforations in each plate For each type, an explanation of their sizing is given, together with the equations relating the corresponding flow and pressure drop. (Author)

  2. Intrauterine growth restriction

    Science.gov (United States)

    ... a baby while in the mother's womb during pregnancy. Causes Many different things can lead to IUGR. An unborn baby may not get enough oxygen and nutrition from the placenta during pregnancy because of: High altitudes Multiple pregnancy, such as ...

  3. A Mimicking-of-DNA-Methylation-Patterns Pipeline for Overcoming the Restriction Barrier of Bacteria

    Science.gov (United States)

    Zhang, Guoqiang; Wang, Wenzhao; Deng, Aihua; Sun, Zhaopeng; Zhang, Yun; Liang, Yong; Che, Yongsheng; Wen, Tingyi

    2012-01-01

    Genetic transformation of bacteria harboring multiple Restriction-Modification (R-M) systems is often difficult using conventional methods. Here, we describe a mimicking-of-DNA-methylation-patterns (MoDMP) pipeline to address this problem in three difficult-to-transform bacterial strains. Twenty-four putative DNA methyltransferases (MTases) from these difficult-to-transform strains were cloned and expressed in an Escherichia coli strain lacking all of the known R-M systems and orphan MTases. Thirteen of these MTases exhibited DNA modification activity in Southwestern dot blot or Liquid Chromatography–Mass Spectrometry (LC–MS) assays. The active MTase genes were assembled into three operons using the Saccharomyces cerevisiae DNA assembler and were co-expressed in the E. coli strain lacking known R-M systems and orphan MTases. Thereafter, results from the dot blot and restriction enzyme digestion assays indicated that the DNA methylation patterns of the difficult-to-transform strains are mimicked in these E. coli hosts. The transformation of the Gram-positive Bacillus amyloliquefaciens TA208 and B. cereus ATCC 10987 strains with the shuttle plasmids prepared from MoDMP hosts showed increased efficiencies (up to four orders of magnitude) compared to those using the plasmids prepared from the E. coli strain lacking known R-M systems and orphan MTases or its parental strain. Additionally, the gene coding for uracil phosphoribosyltransferase (upp) was directly inactivated using non-replicative plasmids prepared from the MoDMP host in B. amyloliquefaciens TA208. Moreover, the Gram-negative chemoautotrophic Nitrobacter hamburgensis strain X14 was transformed and expressed Green Fluorescent Protein (GFP). Finally, the sequence specificities of active MTases were identified by restriction enzyme digestion, making the MoDMP system potentially useful for other strains. The effectiveness of the MoDMP pipeline in different bacterial groups suggests a universal potential

  4. Origins and Consequences of Religious Restrictions: A Global Overview

    Science.gov (United States)

    Finke, Roger

    2014-01-01

    Despite the international controversies surrounding religious restrictions and freedoms, the topic has only recently received substantial research attention. Drawing on this new body of research, and multiple research projects in progress, this address explores both the origins and consequences of religious restrictions in the global arena. To understand the motives for restrictions, I propose hypotheses in three areas: the relationship or lack of relationship between institutional religion and the state, the willingness and capacity of the state to ensure freedoms, and the larger social and cultural pressures restricting freedoms, including social and political movements targeting minority religions. Turning to the consequences of religious restrictions, I explore how and why restrictions alter the religious economy (i.e., formation, supply and operation of religions) and are associated with higher levels of religious persecution, religious violence and intrastate conflict in general. Finally, I review additional areas where research is needed. PMID:25364225

  5. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  6. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  7. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  8. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    relies on sampling based approximations of the log-likelihood gradient. I will present an empirical and theoretical analysis of the bias of these approximations and show that the approximation error can lead to a distortion of the learning process. The bias decreases with increasing mixing rate......Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...... of the applied sampling procedure and I will introduce a transition operator that leads to faster mixing. Finally, a different parametrisation of RBMs will be discussed that leads to better learning results and more robustness against changes in the data representation....

  9. Análise de restrição enzimática do gene hsp65 de isolados clínicos de pacientes com suspeita de tuberculose pulmonar em Teresina, Piauí Restriction enzyme analysis of the hsp65 gene in clinical isolates from patients suspected of having pulmonary tuberculosis in Teresina, Brazil

    Directory of Open Access Journals (Sweden)

    Maria das Graças Motta e Bona

    2011-10-01

    suspected of having pulmonary tuberculosis and to determine the impact that the acquisition of this knowledge has on the therapeutic approach. METHODS: We evaluated 106 patients suspected of having pulmonary tuberculosis and referred to the pulmonology department of a public hospital in the city of Teresina, Brazil. Morning sputum specimens were evaluated for the presence of mycobacteria by sputum smear microscopy and culture. We used PCR and restriction enzyme analysis of the hsp65 gene (PRA-hsp65 to identify the strains of mycobacteria isolated in culture. RESULTS: A total of 206 sputum samples were analyzed. Patient ages ranged from 15 to 87 years, and 67% were male. There was cough in 100% of the cases. The predominant radiographic pattern was moderate disease, observed in 70%. Smear positivity was 76%, and isolation in culture occurred in 91% of the cultures. Traditional tests identified nontuberculous mycobacteria (NTM in 9% of the isolates. The PRA-hsp65 method confirmed these data, showing seven band patterns that were able to identify the isolated species of NTM: Mycobacterium kansasii; M. abscessus 1; M. abscessus 2; M. smegmatis; M. flavescens 1; M. gordonae 5; and M. gordonae 7. All of the patients with NTM were over 60 years of age, and bronchiectasis was seen in 88% of the X-rays. There were two cases of reinfection, initially attributed to M. abscessus and M. kansasii. CONCLUSIONS: In immunocompetent patients, NTM can infect the lungs. It is important to identify the specific NTM in order to establish the correct diagnosis and choose the most appropriate therapeutic regimen. The PRA-hsp65 method is useful in identifying NTM species and can be implemented in molecular biology laboratories that do not specialize in the identification of mycobacteria.

  10. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  11. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  12. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  13. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  14. Restrictive Dermopathy: Molecular diagnosis of restrictive dermopathy in a stillborn fetus from a consanguineous Iranian family

    International Nuclear Information System (INIS)

    Karaminejad, A.; Goodarzi, P.; Huong, Le Thi Thanh; Wehnert, Manfred S.

    2009-01-01

    Restrictive dermopathy (RD) is an autosomal recessive lethal human genetic disorder. It is characterized by intrauterine growth retardation, tight and rigid skin with erosions, multiple joint contractures, lung hypoplasia, prominent superficial vasculature and epidermal hyperkeratosis. In the present report, we describe the first case of restrictive dermopathy in a stillborn fetus of Iranian origin, confirmed by molecular genetic diagnosis. In the index case (G-30159), a homozygous one base insertion in ZMPSTE24exon 9 (c.1085-1086insT) was identified. We believe that by increasing awareness of this disease in clinicians, gynecologists and pathologists, we may be able to help families who have had suspected cases of restrictive dermopathy be diagnosed and offer molecular testing in carriers and prenatal diagnosis to prevent the occurrence of further affected cases. (author)

  15. A fluorescent cassette-based strategy for engineering multiple domain fusion proteins

    Directory of Open Access Journals (Sweden)

    Khorchid Ahmad

    2003-07-01

    Full Text Available Abstract Background The engineering of fusion proteins has become increasingly important and most recently has formed the basis of many biosensors, protein purification systems, and classes of new drugs. Currently, most fusion proteins consist of three or fewer domains, however, more sophisticated designs could easily involve three or more domains. Using traditional subcloning strategies, this requires micromanagement of restriction enzymes sites that results in complex workaround solutions, if any at all. Results Therefore, to aid in the efficient construction of fusion proteins involving multiple domains, we have created a new expression vector that allows us to rapidly generate a library of cassettes. Cassettes have a standard vector structure based on four specific restriction endonuclease sites and using a subtle property of blunt or compatible cohesive end restriction enzymes, they can be fused in any order and number of times. Furthermore, the insertion of PCR products into our expression vector or the recombination of cassettes can be dramatically simplified by screening for the presence or absence of fluorescence. Conclusions Finally, the utility of this new strategy was demonstrated by the creation of basic cassettes for protein targeting to subcellular organelles and for protein purification using multiple affinity tags.

  16. Property Rights, Restrictions and Responsibilities

    DEFF Research Database (Denmark)

    Enemark, Stig

    more to a social, ethical commitment or attitude to environmental sustainability and good husbandry. This paper provides an overall understanding of the concept of land administration systems for dealing with rights, restrictions and responsibilities in future spatially enabled government. Finally......Land Administration Systems are the basis for conceptualizing rights, restrictions and responsibilities related to people, policies and places. Property rights are normally concerned with ownership and tenure whereas restrictions usually control use and activities on land. Responsibilities relate...

  17. About 'restriction', 'justified' and 'necessary'

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2016-01-01

    The article is an academic fairy tale about why and how all national corporate tax protection legislation should undergo a 3-part test to ensure its consistency with EU law. Each Member State introduce a compulsory 3-step test for each new (corporate) tax provision. The test is simple: (1) Does...... the tax provision constitute a restriction in the sense of EU law? (2) If the answer is yes: Is the restriction justified? (3) If the answer is yes: Is the restriction necessary?"...

  18. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    Directory of Open Access Journals (Sweden)

    Roberts Richard J

    2008-05-01

    Full Text Available Abstract Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360, cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases.

  19. NcoI restriction fragment length polymorphism (RFLP) of the tumour necrosis factor (TNF alpha) region in primary biliary cirrhosis and in healthy Danes

    DEFF Research Database (Denmark)

    Fugger, L; Morling, N; Ryder, L P

    1989-01-01

    The restriction fragment length polymorphism of the human tumour necrosis factor (TNF alpha) region was investigated by means of 20 different restriction enzymes and a human TNF alpha cDNA probe. Only one of the enzymes, NcoI, revealed a polymorphic pattern consisting of fragments of 10.5 and 5.5...

  20. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  1. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  2. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzymes are biocatalytic protein molecules that enhance the rates of ... to physical forces (hydrogen bonds, hydrophobic 1, electrostatic and Van der ... conformation. In 1995 ... surface against 14.7% in Klenow poll (some of the hydrophobic.

  3. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  4. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

  5. Modeling metabolic response to changes of enzyme amount in ...

    African Journals Online (AJOL)

    Based on the work of Hynne et al. (2001), in an in silico model of glycolysis, Saccharomyces cerevisiae is established by introducing an enzyme amount multiple factor (.) into the kinetic equations. The model is aimed to predict the metabolic response to the change of enzyme amount. With the help of .α, the amounts of ...

  6. Instability restricts signaling of multiple fibroblast growth factors

    Czech Academy of Sciences Publication Activity Database

    Buchtová, Marcela; Chaloupková, R.; Zakrzewska, M.; Veselá, I.; Celá, Petra; Barathová, J.; Gudernová, I.; Zajíčková, R.; Trantírek, L.; Martin, J.; Kostas, M.; Otlewski, J.; Damborský, J.; Kozubík, Alois; Wiedlocha, A.; Krejčí, P.

    2015-01-01

    Roč. 72, č. 12 (2015), s. 2445-2459 ISSN 1420-682X R&D Projects: GA ČR(CZ) GA14-31540S; GA ČR GBP302/12/G157 Institutional support: RVO:67985904 ; RVO:68081707 Keywords : fibroblast growth factor * FGF * unstable Subject RIV: EA - Cell Biology Impact factor: 5.694, year: 2015

  7. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    Directory of Open Access Journals (Sweden)

    Raphael Johannes Morscher

    Full Text Available Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system.Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content.Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention.Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens

  8. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    Science.gov (United States)

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system. Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose

  9. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  10. Aging, adiposity, and calorie restriction.

    Science.gov (United States)

    Fontana, Luigi; Klein, Samuel

    2007-03-07

    Excessive calorie intake and subsequent obesity increases the risk of developing chronic disease and decreases life expectancy. In rodent models, calorie restriction with adequate nutrient intake decreases the risk of developing chronic disease and extends maximum life span. To evaluate the physiological and clinical implications of calorie restriction with adequate nutrient intake. Search of PubMed (1966-December 2006) using terms encompassing various aspects of calorie restriction, dietary restriction, aging, longevity, life span, adiposity, and obesity; hand search of journals that focus on obesity, geriatrics, or aging; and search of reference lists of pertinent research and review articles and books. Reviewed reports (both basic science and clinical) included epidemiologic studies, case-control studies, and randomized controlled trials, with quality of data assessed by taking into account publication in a peer-reviewed journal, number of animals or individuals studied, objectivity of measurements, and techniques used to minimize bias. It is not known whether calorie restriction extends maximum life span or life expectancy in lean humans. However, calorie restriction in adult men and women causes many of the same metabolic adaptations that occur in calorie-restricted rodents and monkeys, including decreased metabolic, hormonal, and inflammatory risk factors for diabetes, cardiovascular disease, and possibly cancer. Excessive calorie restriction causes malnutrition and has adverse clinical effects. Calorie restriction in adult men and women causes beneficial metabolic, hormonal, and functional changes, but the precise amount of calorie intake or body fat mass associated with optimal health and maximum longevity in humans is not known. In addition, it is possible that even moderate calorie restriction may be harmful in specific patient populations, such as lean persons who have minimal amounts of body fat.

  11. Frequent and recent retrotransposition of orthologous genes plays a role in the evolution of sperm glycolytic enzymes

    Directory of Open Access Journals (Sweden)

    de Villena Fernando

    2010-05-01

    Full Text Available Abstract Background The central metabolic pathway of glycolysis converts glucose to pyruvate, with the net production of 2 ATP and 2 NADH per glucose molecule. Each of the ten reactions in this pathway is typically catalyzed by multiple isozymes encoded by a multigene family. Several isozymes in this pathway are expressed only during spermatogenesis, and gene targeting studies indicate that they are essential for sperm function and male fertility in mouse. At least three of the novel glycolytic isozymes are encoded by retrogenes (Pgk2, Aldoart1, and Aldoart2. Their restricted expression profile suggests that retrotransposition may play a significant role in the evolution of sperm glycolytic enzymes. Results We conducted a comprehensive genomic analysis of glycolytic enzymes in the human and mouse genomes and identified several intronless copies for all enzymes in the pathway, except Pfk. Within each gene family, a single orthologous gene was typically retrotransposed frequently and independently in both species. Several retroposed sequences maintained open reading frames (ORFs and/or provided evidence of alternatively spliced exons. We analyzed expression of sequences with ORFs and Gpi1 transcript in mouse spermatogenic cells. Conclusions Our analysis detected frequent, recent, and lineage-specific retrotransposition of orthologous glycolytic enzymes in the human and mouse genomes. Retrotransposition events are associated with LINE/LTR and genomic integration is random. We found evidence for the alternative splicing of parent genes. Many retroposed sequences have maintained ORFs, suggesting a functional role for these genes.

  12. Comparison of two 3ABC enzyme-linked immunosorbent assays for diagnosis of multiple-serotype foot-and-mouth disease in a cattle population in an area of endemicity

    DEFF Research Database (Denmark)

    Bronsvoort, B.M.D.; Sørensen, K.J.; Anderson, J.

    2004-01-01

    The development of a serological test for foot-and-mouth disease virus (FMDV) which is quick and easy to use, which can identify all seven serotypes, and which can differentiate vaccinated from convalescing or potential virus carriers would be a major advance in the epidemiological toolkit for FMDV....... The nonstructural polyprotein 3ABC has recently been proposed as such an antigen, and a number of diagnostic tests are being developed. This paper evaluates the performance of two FMDV tests for antibodies to nonstructural proteins in an unvaccinated cattle population from a region of Cameroon with endemic multiple...

  13. Directed evolution of enzymes using microfluidic chips

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel

    2016-12-01

    Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.

  14. Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity.

    Science.gov (United States)

    Fan, Pengxiang; Miller, Abigail M; Liu, Xiaoxiao; Jones, A Daniel; Last, Robert L

    2017-12-12

    Plants produce hundreds of thousands of structurally diverse specialized metabolites via multistep biosynthetic networks, including compounds of ecological and therapeutic importance. These pathways are restricted to specific plant groups, and are excellent systems for understanding metabolic evolution. Tomato and other plants in the nightshade family synthesize protective acylated sugars in the tip cells of glandular trichomes on stems and leaves. We describe a metabolic innovation in wild tomato species that contributes to acylsucrose structural diversity. A small number of amino acid changes in two acylsucrose acyltransferases alter their acyl acceptor preferences, resulting in reversal of their order of reaction and increased product diversity. This study demonstrates how small numbers of amino acid changes in multiple pathway enzymes can lead to diversification of specialized metabolites in plants. It also highlights the power of a combined genetic, genomic and in vitro biochemical approach to identify the evolutionary mechanisms leading to metabolic novelty.

  15. Restriction-modification systems in Mycoplasma spp

    Directory of Open Access Journals (Sweden)

    Marcelo Brocchi

    2007-01-01

    Full Text Available Restriction and Modification (R-M systems are present in all Mycoplasma species sequenced so far. The presence of these genes poses barriers to gene transfer and could protect the cell against phage infections. The number and types of R-M genes between different Mycoplasma species are variable, which is characteristic of a polymorphism. The majority of the CDSs code for Type III R-M systems and particularly for methyltransferase enzymes, which suggests that functions other than the protection against the invasion of heterologous DNA may exist. A possible function of these enzymes could be the protection against the invasion of other but similar R-M systems. In Mycoplasma hyopneumoniae strain J, three of the putative methyltransferase genes were clustered in a region forming a genomic island. Many R-M CDSs were mapped in the vicinity of transposable elements suggesting an association between these genes and reinforcing the idea of R-M systems as mobile selfish DNA. Also, many R-M genes present repeats within their coding sequences, indicating that their expression is under the control of phase variation mechanisms. Altogether, these data suggest that R-M systems are a remarkable characteristic of Mycoplasma species and are probably involved in the adaptation of these bacteria to different environmental conditions.

  16. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  17. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  18. How Harmful are Adaptation Restrictions

    OpenAIRE

    Bruin, de, K.C.; Dellink, R.B.

    2009-01-01

    The dominant assumption in economic models of climate policy remains that adaptation will be implemented in an optimal manner. There are, however, several reasons why optimal levels of adaptation may not be attainable. This paper investigates the effects of suboptimal levels of adaptation, i.e. adaptation restrictions, on the composition and level of climate change costs and on welfare. Several adaptation restrictions are identified and then simulated in a revised DICE model, extended with ad...

  19. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  20. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  1. Enzyme with rhamnogalacturonase activity.

    NARCIS (Netherlands)

    Kofod, L.V.; Andersen, L.N.; Dalboge, H.; Kauppinen, M.S.; Christgau, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A.G.J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet

  2. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  3. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  4. Embedded enzymes catalyse capture

    Science.gov (United States)

    Kentish, Sandra

    2018-05-01

    Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.

  5. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  6. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  7. The Enzyme Function Initiative†

    Science.gov (United States)

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  8. The Enzyme Function Initiative.

    Science.gov (United States)

    Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V

    2011-11-22

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.

  9. A Sensitive and Robust Enzyme Kinetic Experiment Using Microplates and Fluorogenic Ester Substrates

    Science.gov (United States)

    Johnson, R. Jeremy; Hoops, Geoffrey C.; Savas, Christopher J.; Kartje, Zachary; Lavis, Luke D.

    2015-01-01

    Enzyme kinetics measurements are a standard component of undergraduate biochemistry laboratories. The combination of serine hydrolases and fluorogenic enzyme substrates provides a rapid, sensitive, and general method for measuring enzyme kinetics in an undergraduate biochemistry laboratory. In this method, the kinetic activity of multiple protein…

  10. Biochemistry Students' Ideas about How an Enzyme Interacts with a Substrate

    Science.gov (United States)

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an…

  11. Effects of Lactobacillus plantarum and hydrolytic enzymes on fermentation and ruminal degradability of orange pulp silage

    DEFF Research Database (Denmark)

    Taghizadeh, Akbar; Paya, Hamid; Lashkari, Saman

    2015-01-01

    The current study was carried out to examine the effect of inoculants, enzymes and mixtures of them on the fermentation, degradability and nutrient value of orange pulp silage. Orange pulp was treated with water (control), inoculant (Lactobacillus plantarum), enzymes (multiple enzyme) or inoculants...

  12. HIV restriction by APOBEC3 in humanized mice.

    Directory of Open Access Journals (Sweden)

    John F Krisko

    2013-03-01

    Full Text Available Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3 family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV, Hepatitis B virus (HBV, Human Papilloma virus (HPV, and Human T Cell Leukemia virus (HTLV. The best characterized members of this family are APOBEC3G (A3G and APOBEC3F (A3F and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif. Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.

  13. Goiter and Multiple Food Allergies

    Directory of Open Access Journals (Sweden)

    Stefanie Leniszewski

    2009-01-01

    Full Text Available Severe iodine deficiency results in impaired thyroid hormone synthesis and thyroid enlargement. In the United States, adequate iodine intake is a concern for women of childbearing age and pregnant women. Beyond this high risk group iodine deficiency is not considered to be a significant problem. This case report describes a 12-year-old male with severe iodine deficiency disorder (IDD resulting from restricted dietary intake due to multiple food allergies. We describe iodine replacement for this patient and continued monitoring for iodine sufficiency. Children with multiple food allergies, in particular those with restrictions to iodized salt and seafood, should be considered high risk for severe iodine deficiency.

  14. Design of novel nano-carriers for multi-enzyme co-localization

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Feng [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The main objective of this project is to design novel nano-structured carriers and strategies to co-localize multiple enzymes to mimic the functionalities of MECs. In order to achieve this goal, distinct approaches for enzyme co-localization were developed and evaluated. Specifically, we investigated different polymeric nano-carriers, both flexible and rigid, as platforms for co-localization, as well as distinct enzyme attachment techniques using model enzyme systems using glucose oxidase and horseradish peroxidase to control the spatial arrangement of the multiple enzymes on the nanocarriers. This platform technology can be potentially used to co-localize various enzyme systems and its broad applicability will be tested using the sclareol biosynthesis process to control the formation of products through the formation of MECs with multiple enzymes NgCPS and sSsSS to regulate the pathway of reactive intermediate to enhance the final product conversion rate.

  15. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  16. Cellulase enzyme and biomass utilization

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... human population grows and economic development. However, the current .... conditions and the production cost of the related enzyme system. Therefore ... Given the importance of this enzyme to these so many industries,.

  17. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    In a recent paper (Tran et al, Ann. Phys. 311, 204 (2004)), some asymptotic number theoretical results on the partitioning of an integer were derived exploiting its connection to the quantum density of states of a many-particle system. We generalise these results to obtain an asymptotic formula for the restricted or coloured ...

  18. Physiogenomic analysis of weight loss induced by dietary carbohydrate restriction

    Directory of Open Access Journals (Sweden)

    Wood Richard J

    2006-05-01

    Full Text Available Abstract Background Diets that restrict carbohydrate (CHO have proven to be a successful dietary treatment of obesity for many people, but the degree of weight loss varies across individuals. The extent to which genetic factors associate with the magnitude of weight loss induced by CHO restriction is unknown. We examined associations among polymorphisms in candidate genes and weight loss in order to understand the physiological factors influencing body weight responses to CHO restriction. Methods We screened for genetic associations with weight loss in 86 healthy adults who were instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total energy. A total of 27 single nucleotide polymorphisms (SNPs were selected from 15 candidate genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. Results Mean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF, hepatic glycogen synthase (GYS2, cholesteryl ester transfer protein (CETP and galanin (GAL genes were significantly associated with weight loss. Conclusion A strong association between weight loss induced by dietary CHO restriction and variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein remodeling, and appetite were detected. These discoveries could provide clues to important physiologic adaptations underlying the body mass response to CHO restriction.

  19. Computational enzyme design approaches with significant biological outcomes: progress and challenges

    OpenAIRE

    Li, Xiaoman; Zhang, Ziding; Song, Jiangning

    2012-01-01

    Enzymes are powerful biocatalysts, however, so far there is still a large gap between the number of enzyme-based practical applications and that of naturally occurring enzymes. Multiple experimental approaches have been applied to generate nearly all possible mutations of target enzymes, allowing the identification of desirable variants with improved properties to meet the practical needs. Meanwhile, an increasing number of computational methods have been developed to assist in the modificati...

  20. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    Science.gov (United States)

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  1. 49 CFR 215.203 - Restricted cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Restricted cars. 215.203 Section 215.203..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Restricted Equipment § 215.203 Restricted cars. (a) This section restricts the operation of any railroad freight car that is— (1) More than 50...

  2. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice

    NARCIS (Netherlands)

    J.R. Mitchell (James); M. Verweij (Marielle); K. Brand (Karl); H.W.M. van de Ven (Marieke); N.N.T. Goemaere (Natascha); S. van den Engel (Sandra); T. Chu (Timothy); F. Forrer (Flavio); C. Müller (Cristina); M. de Jong (Marion); W.F.J. van IJcken (Wilfred); J.N.M. IJzermans (Jan); J.H.J. Hoeijmakers (Jan); R.W.F. de Bruin (Ron)

    2010-01-01

    textabstractDietary restriction (DR) extends lifespan and increases resistance to multiple forms of stress, including ischemia reperfusion injury to the brain and heart in rodents. While maximal effects on lifespan require long-term restriction, the kinetics of onset of benefits against acute stress

  3. Multiple Perspectives / Multiple Readings

    Directory of Open Access Journals (Sweden)

    Simon Biggs

    2005-01-01

    Full Text Available People experience things from their own physical point of view. What they see is usually a function of where they are and what physical attitude they adopt relative to the subject. With augmented vision (periscopes, mirrors, remote cameras, etc we are able to see things from places where we are not present. With time-shifting technologies, such as the video recorder, we can also see things from the past; a time and a place we may never have visited.In recent artistic work I have been exploring the implications of digital technology, interactivity and internet connectivity that allow people to not so much space/time-shift their visual experience of things but rather see what happens when everybody is simultaneously able to see what everybody else can see. This is extrapolated through the remote networking of sites that are actual installation spaces; where the physical movements of viewers in the space generate multiple perspectives, linked to other similar sites at remote locations or to other viewers entering the shared data-space through a web based version of the work.This text explores the processes involved in such a practice and reflects on related questions regarding the non-singularity of being and the sense of self as linked to time and place.

  4. Molecular mechanisms of intrauterine growth restriction.

    Science.gov (United States)

    Gurugubelli Krishna, Rao; Vishnu Bhat, B

    2017-07-10

    Intrauterine growth restriction (IUGR) is a pregnancy specific disease characterized by decreased growth rate of fetus than the normal growth potential at particular gestational age. In the current scenario it is a leading cause of fetal and neonatal morbidity and mortality. In the last decade exhilarating experimental studies from several laboratories have provided fascinating proof for comprehension of molecular basis of IUGR. Atypical expression of enzymes governed by TGFβ causes the placental apoptosis and altered expression of TGFβ due to hyper alimentation causes impairment of lung function. Crosstalk of cAMP with protein kinases plays a prominent role in the regulation of cortisol levels. Increasing levels of NOD1 proteins leads to development of IUGR by increasing the levels of inflammatory mediators. Increase in leptin synthesis in placental trophoblast cells is associated with IUGR. In this review, we emphasize on the regulatory mechanisms of IUGR and its associated diseases. They may help improve the in-utero fetal growth and provide a better therapeutic intervention for prevention and treatment of IUGR.

  5. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Katz, M.S.

    1988-01-01

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  6. A whole genome screen for HIV restriction factors

    Directory of Open Access Journals (Sweden)

    Liu Li

    2011-11-01

    Full Text Available Abstract Background Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme, p21 and tetherin are well characterised. Results To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line. Conclusions We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.

  7. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  8. Characterising Complex Enzyme Reaction Data.

    Directory of Open Access Journals (Sweden)

    Handan Melike Dönertaş

    Full Text Available The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG. Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  9. Cleavage and protection of locked nucleic acid-modified DNA by restriction endonucleases

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Wengel, Jesper

    2012-01-01

    Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far. We herein for the first time report cleavage by restriction endonuclease of LNA-modified DNA oligonucleotides. The experiments revealed that RsaI is an efficient enzyme capable of recognizing and cleaving...

  10. enzyme-linked

    African Journals Online (AJOL)

    The precipitate was redissolved in 500 ml 0,05M tris-O, IM NaCI buffer, pH 8,0 ... Sheep were immunized by intramuscular injection at multiple sites with 50 J.. ..... Holubar K, \\X'ick G, eds.lmmunofluorescence und Refuted Swilling Techniques.

  11. Discovering novel enzymes by functional screening of plurigenomic libraries from alga-associated Flavobacteriia and Gammaproteobacteria.

    Science.gov (United States)

    Martin, Marjolaine; Vandermies, Marie; Joyeux, Coline; Martin, Renée; Barbeyron, Tristan; Michel, Gurvan; Vandenbol, Micheline

    2016-01-01

    Alga-associated microorganisms, in the context of their numerous interactions with the host and the complexity of the marine environment, are known to produce diverse hydrolytic enzymes with original biochemistry. We recently isolated several macroalgal-polysaccharide-degrading bacteria from the surface of the brown alga Ascophyllum nodosum. These active isolates belong to two classes: the Flavobacteriia and the Gammaproteobacteria. In the present study, we constructed two "plurigenomic" (with multiple bacterial genomes) libraries with the 5 most interesting isolates (regarding their phylogeny and their enzymatic activities) of each class (Fv and Gm libraries). Both libraries were screened for diverse hydrolytic activities. Five activities, out of the 48 previously identified in the natural polysaccharolytic isolates, were recovered by functional screening: a xylanase (GmXyl7), a beta-glucosidase (GmBg1), an esterase (GmEst7) and two iota-carrageenases (Fvi2.5 and Gmi1.3). We discuss here the potential role of the used host-cell, the average DNA insert-sizes and the used restriction enzymes on the divergent screening yields obtained for both libraries and get deeper inside the "great screen anomaly". Interestingly, the discovered esterase probably stands for a novel family of homoserine o-acetyltransferase-like-esterases, while the two iota-carrageenases represent new members of the poorly known GH82 family (containing only 19 proteins since its description in 2000). These original results demonstrate the efficiency of our uncommon "plurigenomic" library approach and the underexplored potential of alga-associated cultivable microbiota for the identification of novel and algal-specific enzymes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Multiple sclerosis

    Science.gov (United States)

    ... indwelling catheter Osteoporosis or thinning of the bones Pressure sores Side effects of medicines used to treat the ... Daily bowel care program Multiple sclerosis - discharge Preventing pressure ulcers Swallowing problems Images Multiple sclerosis MRI of the ...

  13. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity and biofilm synthesis as direct-fed microbials candidates for poultry

    Directory of Open Access Journals (Sweden)

    Juan D Latorre

    2016-10-01

    Full Text Available Social concern about misuse of antibiotics as growth promoters (AGP and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly-resistant endospores, production of antimicrobial compounds and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity and pathogen-inhibition activity. Thirty one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as B. subtilis (1/3, and B. amyloliquefaciens (2/3 based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31, Escherichia coli (28/31 and Clostridioides difficile (29/31. Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds may contribute to enhanced performance through improving nutrient digestibility

  14. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  15. Caloric restriction and intermittent fasting: Two potential diets for successful brain aging

    Science.gov (United States)

    Martin, Bronwen; Mattson, Mark P.; Maudsley, Stuart

    2008-01-01

    The vulnerability of the nervous system to advancing age is all too often manifest in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review article we describe evidence suggesting that two dietary interventions, caloric restriction (CR) and intermittent fasting (IF), can prolong the health-span of the nervous system by impinging upon fundamental metabolic and cellular signaling pathways that regulate life-span. CR and IF affect energy and oxygen radical metabolism, and cellular stress response systems, in ways that protect neurons against genetic and environmental factors to which they would otherwise succumb during aging. There are multiple interactive pathways and molecular mechanisms by which CR and IF benefit neurons including those involving insulin-like signaling, FoxO transcription factors, sirtuins and peroxisome proliferator-activated receptors. These pathways stimulate the production of protein chaperones, neurotrophic factors and antioxidant enzymes, all of which help cells cope with stress and resist disease. A better understanding of the impact of CR and IF on the aging nervous system will likely lead to novel approaches for preventing and treating neurodegenerative disorders. PMID:16899414

  16. The Effects of Calorie Restriction in Depression and Potential Mechanisms.

    Science.gov (United States)

    Zhang, Yifan; Liu, Changhong; Zhao, Yinghao; Zhang, Xingyi; Li, Bingjin; Cui, Ranji

    2015-01-01

    Depression, also called major depressive disorder, is a neuropsychiatric disorder jeopardizing an increasing number of the population worldwide. To date, a large number of studies have devoted great attention to this problematic condition and raised several hypotheses of depression. Based on these theories, many antidepressant drugs were developed for the treatment of depression. Yet, the depressed patients are often refractory to the antidepressant therapies. Recently, increasing experimental evidences demonstrated the effects of calorie restriction in neuroendocrine system and in depression. Both basic and clinical investigations indicated that short-term calorie restriction might induce an antidepressant efficacy in depression, providing a novel avenue for treatment. Molecular basis underlying the antidepressant actions of calorie restriction might involve multiple physiological processes, primarily including orexin signaling activation, increased CREB phosphorylation and neurotrophic effects, release of endorphin and ketone production. However, the effects of chronic calorie restriction were quite controversial, in the cases that it often resulted in the long-term detrimental effects via inhibiting the function of 5-HT system and decreasing leptin levels. Here we review such dual effects of calorie restriction in depression and potential molecular basis behind these effects, especially focusing on antidepressant effects.

  17. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  18. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  19. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  20. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif

    Directory of Open Access Journals (Sweden)

    Yuqing eFeng

    2014-08-01

    Full Text Available The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-DNA APOBEC3 enzymes deaminate cytosines to forms uracils in single-stranded (- DNA regions. Upon replication of the (-DNA to (+DNA, the HIV-1 reverse transcriptase incorporates adenines opposite the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but by several degradation-independent mechanisms such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.

  1. LD2SNPing: linkage disequilibrium plotter and RFLP enzyme mining for tag SNPs

    Directory of Open Access Journals (Sweden)

    Cheng Yu-Huei

    2009-06-01

    Full Text Available Abstract Background Linkage disequilibrium (LD mapping is commonly used to evaluate markers for genome-wide association studies. Most types of LD software focus strictly on LD analysis and visualization, but lack supporting services for genotyping. Results We developed a freeware called LD2SNPing, which provides a complete package of mining tools for genotyping and LD analysis environments. The software provides SNP ID- and gene-centric online retrievals for SNP information and tag SNP selection from dbSNP/NCBI and HapMap, respectively. Restriction fragment length polymorphism (RFLP enzyme information for SNP genotype is available to all SNP IDs and tag SNPs. Single and multiple SNP inputs are possible in order to perform LD analysis by online retrieval from HapMap and NCBI. An LD statistics section provides D, D', r2, δQ, ρ, and the P values of the Hardy-Weinberg Equilibrium for each SNP marker, and Chi-square and likelihood-ratio tests for the pair-wise association of two SNPs in LD calculation. Finally, 2D and 3D plots, as well as plain-text output of the results, can be selected. Conclusion LD2SNPing thus provides a novel visualization environment for multiple SNP input, which facilitates SNP association studies. The software, user manual, and tutorial are freely available at http://bio.kuas.edu.tw/LD2NPing.

  2. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  3. Generating Cognitive Dissonance in Student Interviews through Multiple Representations

    Science.gov (United States)

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2012-01-01

    This study explores what students understand about enzyme-substrate interactions, using multiple representations of the phenomenon. In this paper we describe our use of the 3 Phase-Single Interview Technique with multiple representations to generate cognitive dissonance within students in order to uncover misconceptions of enzyme-substrate…

  4. Rurality study of restricted areas

    Directory of Open Access Journals (Sweden)

    Sergio Rivaroli

    2011-02-01

    Full Text Available Two main perspectives of investigation emerge from the study of a territory’s rurality: a geographical approach and a sociological approach. The research examines the sub-regional study case of ‘Nuovo circondario imolese’. The analysis shows that the combination of traditional institutional criteria with detailed informations about the territory, generates more accurate results which determine a better comprehension of the characteristics of restricted areas’ rurality. Over the period 1991-2001, the study highlights an increase in rural areas. This result could be interpreted as an effect of urban sprawl’s intensification, that increases the competition between non-farm residences and agricultural activities.

  5. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  7. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  8. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  9. Parenting and restrictions in childhood epilepsy

    NARCIS (Netherlands)

    Rodenburg, R.; Meijer, A.M.; Scherphof, C.; Carpay, J.A.; Augustijn, P.; Aldenkamp, A.P.; Deković, M.

    2013-01-01

    Purpose: From the overprotection literature, the predictive and interactional (moderation) effects of controlling and indulgent parenting on restrictions in children with epilepsy were examined. Methods: Parents of 73 children with epilepsy completed questionnaires on parenting, restrictions, and

  10. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  11. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  12. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  13. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  14. Enzymes in Human Milk.

    Science.gov (United States)

    Dallas, David C; German, J Bruce

    2017-01-01

    Milk proteins are a complex and diverse source of biological activities. Beyond their function, intact milk proteins also act as carriers of encrypted functional sequences that, when released as peptides, exert biological functions, including antimicrobial and immunomodulatory activity, which could contribute to the infant's competitive success. Research has now revealed that the release of these functional peptides begins within the mammary gland itself. A complex array of proteases produced in mother's milk has been shown to be active in the milk, releasing these peptides. Moreover, our recent research demonstrates that these milk proteases continue to digest milk proteins within the infant's stomach, possibly even to a larger extent than the infant's own proteases. As the neonate has relatively low digestive capacity, the activity of milk proteases in the infant may provide important assistance to digesting milk proteins. The coordinated release of these encrypted sequences is accomplished by selective proteolytic action provided by an array of native milk proteases and infant-produced enzymes. The task for scientists is now to discover the selective advantages of this protein-protease-based peptide release system. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  15. 49 CFR 383.95 - Restrictions.

    Science.gov (United States)

    2010-10-01

    ... the skills test and the restriction, air brakes shall include any braking system operating fully or...; REQUIREMENTS AND PENALTIES Vehicle Groups and Endorsements § 383.95 Restrictions. (a) Air brake restrictions... skills test in a vehicle not equipped with air brakes, the State must indicate on the CDL, if issued...

  16. 9 CFR 92.3 - Movement restrictions.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Movement restrictions. 92.3 Section 92... ANIMAL PRODUCTS: PROCEDURES FOR REQUESTING RECOGNITION OF REGIONS § 92.3 Movement restrictions. Whenever... exist and the EC imposes prohibitions or other restrictions on the movement of animals or animal...

  17. 21 CFR 203.20 - Sales restrictions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Sales restrictions. 203.20 Section 203.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL PRESCRIPTION DRUG MARKETING Sales Restrictions § 203.20 Sales restrictions. Except as provided in § 203.22 or...

  18. Digestive enzymes of some earthworms.

    Science.gov (United States)

    Mishra, P C; Dash, M C

    1980-10-15

    4 species of tropical earthworms differed with regard to enzyme activity. The maximum activity of protease and of cellulase occurred in the posterior region of the gut of the earthworms. On the average Octochaetona surensis shows maximum activity and Drawida calebi shows minimum activity for all the enzymes studied.

  19. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.

    Directory of Open Access Journals (Sweden)

    Ranyee A Chiang

    2008-08-01

    Full Text Available The evolution of enzymes affects how well a species can adapt to new environmental conditions. During enzyme evolution, certain aspects of molecular function are conserved while other aspects can vary. Aspects of function that are more difficult to change or that need to be reused in multiple contexts are often conserved, while those that vary may indicate functions that are more easily changed or that are no longer required. In analogy to the study of conservation patterns in enzyme sequences and structures, we have examined the patterns of conservation and variation in enzyme function by analyzing graph isomorphisms among enzyme substrates of a large number of enzyme superfamilies. This systematic analysis of substrate substructures establishes the conservation patterns that typify individual superfamilies. Specifically, we determined the chemical substructures that are conserved among all known substrates of a superfamily and the substructures that are reacting in these substrates and then examined the relationship between the two. Across the 42 superfamilies that were analyzed, substantial variation was found in how much of the conserved substructure is reacting, suggesting that superfamilies may not be easily grouped into discrete and separable categories. Instead, our results suggest that many superfamilies may need to be treated individually for analyses of evolution, function prediction, and guiding enzyme engineering strategies. Annotating superfamilies with these conserved and reacting substructure patterns provides information that is orthogonal to information provided by studies of conservation in superfamily sequences and structures, thereby improving the precision with which we can predict the functions of enzymes of unknown function and direct studies in enzyme engineering. Because the method is automated, it is suitable for large-scale characterization and comparison of fundamental functional capabilities of both characterized

  20. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.

    Science.gov (United States)

    Chiang, Ranyee A; Sali, Andrej; Babbitt, Patricia C

    2008-08-01

    The evolution of enzymes affects how well a species can adapt to new environmental conditions. During enzyme evolution, certain aspects of molecular function are conserved while other aspects can vary. Aspects of function that are more difficult to change or that need to be reused in multiple contexts are often conserved, while those that vary may indicate functions that are more easily changed or that are no longer required. In analogy to the study of conservation patterns in enzyme sequences and structures, we have examined the patterns of conservation and variation in enzyme function by analyzing graph isomorphisms among enzyme substrates of a large number of enzyme superfamilies. This systematic analysis of substrate substructures establishes the conservation patterns that typify individual superfamilies. Specifically, we determined the chemical substructures that are conserved among all known substrates of a superfamily and the substructures that are reacting in these substrates and then examined the relationship between the two. Across the 42 superfamilies that were analyzed, substantial variation was found in how much of the conserved substructure is reacting, suggesting that superfamilies may not be easily grouped into discrete and separable categories. Instead, our results suggest that many superfamilies may need to be treated individually for analyses of evolution, function prediction, and guiding enzyme engineering strategies. Annotating superfamilies with these conserved and reacting substructure patterns provides information that is orthogonal to information provided by studies of conservation in superfamily sequences and structures, thereby improving the precision with which we can predict the functions of enzymes of unknown function and direct studies in enzyme engineering. Because the method is automated, it is suitable for large-scale characterization and comparison of fundamental functional capabilities of both characterized and uncharacterized

  1. Analysis of mutation/rearrangement frequencies and methylation patterns at a given DNA locus using restriction fragment length polymorphism.

    Science.gov (United States)

    Boyko, Alex; Kovalchuk, Igor

    2010-01-01

    Restriction fragment length polymorphism (RFLP) is a difference in DNA sequences of organisms belonging to the same species. RFLPs are typically detected as DNA fragments of different lengths after digestion with various restriction endonucleases. The comparison of RFLPs allows investigators to analyze the frequency of occurrence of mutations, such as point mutations, deletions, insertions, and gross chromosomal rearrangements, in the progeny of stressed plants. The assay involves restriction enzyme digestion of DNA followed by hybridization of digested DNA using a radioactively or enzymatically labeled probe. Since DNA can be digested with methylation sensitive enzymes, the assay can also be used to analyze a methylation pattern of a particular locus. Here, we describe RFLP analysis using methylation-insensitive and methylation-sensitive enzymes.

  2. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  3. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  4. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  5. THE HUMAN FUMARYLACETOACETATE GENE : CHARACTERIZATION OF RESTRICTION-FRAGMENT-LENGTH-POLYMORPHISMS AND IDENTIFICATION OF HAPLOTYPES IN TYROSINEMIA TYPE-1 AND PSEUDODEFICIENCY

    NARCIS (Netherlands)

    ROOTWELT, H; KVITTINGEN, EA; HOIE, K; AGSTERIBBE, E; HARTOG, M; BERGER, R

    Deficiency of human fumarylacetoacetase (FAH) activity results in hereditary tyrosinemia type I. Using the restriction enzymes BglII, KpnI and StuI and a 1.3-kb cDNA probe for the FAH gene, we have found 6 restriction fragment length polymorphisms (RFLPs). These RFLPs were utilised in 3 tyrosinemia

  6. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    Science.gov (United States)

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  7. Restricted Predicates for Hypothetical Datalog

    Directory of Open Access Journals (Sweden)

    Fernando Sáenz-Pérez

    2015-12-01

    Full Text Available Hypothetical Datalog is based on an intuitionistic semantics rather than on a classical logic semantics, and embedded implications are allowed in rule bodies. While the usual implication (i.e., the neck of a Horn clause stands for inferring facts, an embedded implication plays the role of assuming its premise for deriving its consequence. A former work introduced both a formal framework and a goal-oriented tabled implementation, allowing negation in rule bodies. While in that work positive assumptions for both facts and rules can occur in the premise, negative assumptions are not allowed. In this work, we cover this subject by introducing a new concept: a restricted predicate, which allows negative assumptions by pruning the usual semantics of a predicate. This new setting has been implemented in the deductive system DES.

  8. Updating rDNA restriction enzyme maps of Tetrahymena reveals four new intron-containing species

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Simon, E M; Engberg, J

    1985-01-01

    an intron in the 26s rRNA coding region. The evolutionary relationship among the species of the T. pyriformis complex was examined on the basis of the rDNA maps with emphasis on similarities between two of the new species and the widely studied T. thermophila and T. pigmentosa. Examination of a large number...

  9. Oncogenic transformation of rat lung epithelioid cells by SV40 DNA and restriction enzyme fragments

    International Nuclear Information System (INIS)

    Daya-Grosjean, L.; Lasne, C.; Nardeux, P.; Chouroulinkov, I.; Monier, R.

    1979-01-01

    Rat epithelioid lung cells were transformed with various preparations of SV40 DNA using the Ca 2+ -precipitation technique. The amount of SV40 genetic information integrated into transformed clones was evaluated by DNA-DNA renaturation kinetics. The growth properties on plastic and in soft-agar were examined, as well as the ability to induce tumors in syngeneic newborn animals or in adult nude mice. One particular transformed line, which had received the HpaII/BamHIA (59 per cent) fragment, was found to contain about 3 integrated copies of this fragment per cell and no significant amount of the HpaII/BamHIB (41 per cent fragment). This line which grew to high saturatio densities and efficiently formed clones in low serum on plastic, produced tumors in both syngeneic rats and nude mice. Thus the HpaII/BamHIA fragment, which mainly includes early viral information, was sufficient to impart these properties to rat epithelioid lung cells. (author)

  10. Development of restriction enzyme analyses to distinguish winter moth from bruce spanworm and hybrids between them

    Science.gov (United States)

    Marinko Sremac; Joseph Elkinton; Adam. Porter

    2011-01-01

    Elkinton et. al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which consists of a single compound also used by Bruce spanworm, O. bruceata (Hulst), the North American congener of winter moth. Our...

  11. A Traffic Restriction Scheme for Enhancing Carpooling

    Directory of Open Access Journals (Sweden)

    Dong Ding

    2017-01-01

    Full Text Available For the purpose of alleviating traffic congestion, this paper proposes a scheme to encourage travelers to carpool by traffic restriction. By a variational inequity we describe travelers’ mode (solo driving and carpooling and route choice under user equilibrium principle in the context of fixed demand and detect the performance of a simple network with various restriction links, restriction proportions, and carpooling costs. Then the optimal traffic restriction scheme aiming at minimal total travel cost is designed through a bilevel program and applied to a Sioux Fall network example with genetic algorithm. According to various requirements, optimal restriction regions and proportions for restricted automobiles are captured. From the results it is found that traffic restriction scheme is possible to enhance carpooling and alleviate congestion. However, higher carpooling demand is not always helpful to the whole network. The topology of network, OD demand, and carpooling cost are included in the factors influencing the performance of the traffic system.

  12. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  13. The influence of cognitive impairment with no dementia on driving restriction and cessation in older adults.

    Science.gov (United States)

    Kowalski, Kristina; Love, Janet; Tuokko, Holly; MacDonald, Stuart; Hultsch, David; Strauss, Esther

    2012-11-01

    Cognitively impaired older adults may be at increased risk of unsafe driving. Individuals with insight into their own impairments may minimize their risk by restricting or stopping driving. The purpose of this study was to examine the influence of cognitive impairment on driving status and driving habits and intentions. Participants were classified as cognitively impaired, no dementia single (CIND-single), CIND-multiple, or not cognitively impaired (NCI) and compared on their self-reported driving status, habits, and intentions to restrict or quit driving in the future. The groups differed significantly in driving status, but not in whether they restricted their driving or reduced their driving frequency. CIND-multiple group also had significantly higher intention to restrict/stop driving than the NCI group. Reasons for restricting and quitting driving were varied and many individuals reported multiple reasons, both external and internal, for their driving habits and intentions. Regardless of cognitive status, none of the current drivers were seriously thinking of restricting or quitting driving in the next 6 months. It will be important to determine, in future research, how driving practices change over time and what factors influence decisions to restrict or stop driving for people with cognitive impairment. Copyright © 2011. Published by Elsevier Ltd.

  14. Choosing the Best Enzyme Complex Structure Made Easy.

    Science.gov (United States)

    Das, Sayoni; Orengo, Christine

    2018-04-03

    In this issue of Structure, Tyzack et al. (2018) present a study of enzyme-ligand complexes in the PDB and show that the molecular similarity of bound and cognate ligands can be used to choose the most biologically appropriate complex structure for analysis when multiple structures are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.

    Science.gov (United States)

    Zhang, Qi; Chen, Shuo; Wang, Hua; Yu, Hongtao

    2018-03-14

    Hydrogen peroxide (H 2 O 2 ) is a key reactant in the Fenton process. As a byproduct of enzymatic reaction, H 2 O 2 can be obtained via catalytical oxidation of glucose using glucose oxidase in the presence of O 2 . Another oxidation product (gluconic acid) can suitably adjust the microenvironmental pH contributing to the Fe 3+ /Fe 2+ cycle in the Fenton reaction. Enzymes are extremely efficient at catalyzing a variety of reactions with high catalytic activity, substrate specificity, and yields in living organisms. Inspired by the multiple functions of natural multienzyme systems, an exquisite nanozyme-modified α-FeOOH/porous carbon (PC) biomimetic catalyst constructed by in situ growth of glucose oxidase-mimicking Au nanoparticles and crystallization of adsorbed ferric ions within carboxyl into hierarchically PC is developed as an efficient enzyme-Fenton catalyst. The products (H 2 O 2 , ∼4.07 mmol·L -1 ) of the first enzymatic reaction are immediately used as substrates for the second Fenton-like reaction to generate the valuable • OH (∼96.84 μmol·L -1 ), thus mimicking an enzyme cascade pathway. α-FeOOH nanocrystals, attached by C-O-Fe bondings, are encapsulated into the mesoporous PC frameworks, facilitating the electron transfer between α-FeOOH and the PC support and greatly suppressing iron leaching. This study paves a new avenue for designing biomimetic enzyme-based Fenton catalysts mimicking a natural system for • OH production.

  16. Multiple sclerosis

    International Nuclear Information System (INIS)

    Grunwald, I.Q.; Kuehn, A.L.; Backens, M.; Papanagiotou, P.; Shariat, K.; Kostopoulos, P.

    2008-01-01

    Multiple sclerosis is the most common chronic inflammatory disease of myelin with interspersed lesions in the white matter of the central nervous system. Magnetic resonance imaging (MRI) plays a key role in the diagnosis and monitoring of white matter diseases. This article focuses on key findings in multiple sclerosis as detected by MRI. (orig.) [de

  17. Restricted Interval Valued Neutrosophic Sets and Restricted Interval Valued Neutrosophic Topological Spaces

    Directory of Open Access Journals (Sweden)

    Anjan Mukherjee

    2016-08-01

    Full Text Available In this paper we introduce the concept of restricted interval valued neutrosophic sets (RIVNS in short. Some basic operations and properties of RIVNS are discussed. The concept of restricted interval valued neutrosophic topology is also introduced together with restricted interval valued neutrosophic finer and restricted interval valued neutrosophic coarser topology. We also define restricted interval valued neutrosophic interior and closer of a restricted interval valued neutrosophic set. Some theorems and examples are cites. Restricted interval valued neutrosophic subspace topology is also studied.

  18. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  19. Mature neurons dynamically restrict apoptosis via redundant premitochondrial brakes.

    Science.gov (United States)

    Annis, Ryan P; Swahari, Vijay; Nakamura, Ayumi; Xie, Alison X; Hammond, Scott M; Deshmukh, Mohanish

    2016-12-01

    Apoptotic cell death is critical for the early development of the nervous system, but once the nervous system is established, the apoptotic pathway becomes highly restricted in mature neurons. However, the mechanisms underlying this increased resistance to apoptosis in these mature neurons are not completely understood. We have previously found that members of the miR-29 family of microRNAs (miRNAs) are induced with neuronal maturation and that overexpression of miR-29 was sufficient to restrict apoptosis in neurons. To determine whether endogenous miR-29 alone was responsible for the inhibition of cytochrome c release in mature neurons, we examined the status of the apoptotic pathway in sympathetic neurons deficient for all three miR-29 family members. Unexpectedly, we found that the apoptotic pathway remained largely restricted in miR-29-deficient mature neurons. We therefore probed for additional mechanisms by which mature neurons resist apoptosis. We identify miR-24 as another miRNA that is upregulated in the maturing cerebellum and sympathetic neurons that can act redundantly with miR-29 by targeting a similar repertoire of prodeath BH3-only genes. Overall, our results reveal that mature neurons engage multiple redundant brakes to restrict the apoptotic pathway and ensure their long-term survival. © 2016 Federation of European Biochemical Societies.

  20. [Automated analyzer of enzyme immunoassay].

    Science.gov (United States)

    Osawa, S

    1995-09-01

    Automated analyzers for enzyme immunoassay can be classified by several points of view: the kind of labeled antibodies or enzymes, detection methods, the number of tests per unit time, analytical time and speed per run. In practice, it is important for us consider the several points such as detection limits, the number of tests per unit time, analytical range, and precision. Most of the automated analyzers on the market can randomly access and measure samples. I will describe the recent advance of automated analyzers reviewing their labeling antibodies and enzymes, the detection methods, the number of test per unit time and analytical time and speed per test.

  1. Aging, neurogenesis, and caloric restriction in different model organisms.

    Science.gov (United States)

    Arslan-Ergul, Ayca; Ozdemir, A Tugrul; Adams, Michelle M

    2013-08-01

    Brain aging is a multifactorial process that is occurring across multiple cognitive domains. A significant complaint that occurs in the elderly is a decrement in learning and memory ability. Both rodents and zebrafish exhibit a similar problem with memory during aging. The neurobiological changes that underlie this cognitive decline are complex and undoubtedly influenced by many factors. Alterations in the birth of new neurons and neuron turnover may contribute to age-related cognitive problems. Caloric restriction is the only non-genetic intervention that reliably increases life span and healthspan across multiple organisms although the molecular mechanisms are not well-understood. Recently the zebrafish has become a popular model organism for understanding the neurobiological consequences but to date very little work has been performed. Similarly, few studies have examined the effects of dietary restriction in zebrafish. Here we review the literature related to memory decline, neurogenesis, and caloric restriction across model organisms and suggest that zebrafish has the potential to be an important animal model for understanding the complex interactions between age, neurobiological changes in the brain, and dietary regimens or their mimetics as interventions.

  2. Multiple homicides.

    Science.gov (United States)

    Copeland, A R

    1989-09-01

    A study of multiple homicides or multiple deaths involving a solitary incident of violence by another individual was performed on the case files of the Office of the Medical Examiner of Metropolitan Dade County in Miami, Florida, during 1983-1987. A total of 107 multiple homicides were studied: 88 double, 17 triple, one quadruple, and one quintuple. The 236 victims were analyzed regarding age, race, sex, cause of death, toxicologic data, perpetrator, locale of the incident, and reason for the incident. This article compares this type of slaying with other types of homicide including those perpetrated by serial killers. Suggestions for future research in this field are offered.

  3. Update on riboflavin and multiple sclerosis: a systematic review

    Directory of Open Access Journals (Sweden)

    Mahshid Naghashpour

    2017-09-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease of the central nervous system (CNS. Riboflavin plays an important role in myelin formation, and its deficiency is implicated as a risk factor for multiple sclerosis. Here, we systematically reviewed the literature concerning the health benefits of riboflavin on MS. The literature recorded within four main databases, including relevant clinical trials, experimental, and case-control studies from 1976 to 2017 were considered. Both human and animal studies were included for review, with no restrictions on age, gender, or ethnicity.  Experimental studies demonstrated that riboflavin deficiency triggers neurologic abnormalities related to peripheral neuropathies such as demyelinating neuropathy. Moreover, randomized controlled trials (RCT and case-control studies in which MS patients received riboflavin supplementation or had higher dietary riboflavin intake showed improvements in neurological motor disability. Riboflavin is a cofactor of xanthine oxidase and its deficiency exacerbates low uric acid caused by high copper levels, leading to myelin degeneration. The vitamin additionally plays a significant role in the normal functioning of glutathione reductase (GR as an antioxidant enzyme, and conditions of riboflavin deficiency lead to oxidative damage. Riboflavin promotes the gene and protein levels of brain-derived neurotrophic factor (BDNF in the CNS of an animal model of MS, suggesting that BDNF mediates the beneficial effect of riboflavin on neurological motor disability. Research to date generally supports the role of riboflavin in MS outcomes. However, further observational and interventional studies on human populations are warranted to validate the effects of riboflavin.

  4. Update on riboflavin and multiple sclerosis: a systematic review

    Science.gov (United States)

    Naghashpour, Mahshid; Jafarirad, Sima; Amani, Reza; Sarkaki, Alireza; Saedisomeolia, Ahmad

    2017-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Riboflavin plays an important role in myelin formation, and its deficiency is implicated as a risk factor for multiple sclerosis. Here, we systematically reviewed the literature concerning the health benefits of riboflavin on MS. The literature recorded within four main databases, including relevant clinical trials, experimental, and case-control studies from 1976 to 2017 were considered. Both human and animal studies were included for review, with no restrictions on age, gender, or ethnicity. Experimental studies demonstrated that riboflavin deficiency triggers neurologic abnormalities related to peripheral neuropathies such as demyelinating neuropathy. Moreover, randomized controlled trials (RCT) and case-control studies in which MS patients received riboflavin supplementation or had higher dietary riboflavin intake showed improvements in neurological motor disability. Riboflavin is a cofactor of xanthine oxidase and its deficiency exacerbates low uric acid caused by high copper levels, leading to myelin degeneration. The vitamin additionally plays a significant role in the normal functioning of glutathione reductase (GR) as an antioxidant enzyme, and conditions of riboflavin deficiency lead to oxidative damage. Riboflavin promotes the gene and protein levels of brain-derived neurotrophic factor (BDNF) in the CNS of an animal model of MS, suggesting that BDNF mediates the beneficial effect of riboflavin on neurological motor disability. Research to date generally supports the role of riboflavin in MS outcomes. However, further observational and interventional studies on human populations are warranted to validate the effects of riboflavin. PMID:29085589

  5. The Effects of Exercise on Abdominal Fat and Liver Enzymes in Pediatric Obesity: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    González-Ruiz, Katherine; Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; Peterson, Mark D; García-Hermoso, Antonio

    2017-08-01

    Despite the prevalence of obesity and the multiple position stands promoting exercise for the treatment of obesity and hepatic function, a meta-analytic approach has not previously been used to examine the effects in the pediatric population. The aim of the study was to determine the effectiveness of exercise interventions on abdominal fat, liver enzymes, and intrahepatic fat in overweight and obese youth. A computerized search was made using three databases. The analysis was restricted to studies that examined the effect of supervised exercise interventions on abdominal fat (visceral and subcutaneous fat), liver enzymes (alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase), and intrahepatic fat. Fourteen clinical trials (1231 youths) were eligible for inclusion in this systematic review and meta-analysis. Standardized mean difference [SMD] and 95% confidence intervals (CIs) were calculated. Exercise was associated with a significant reduction in visceral (SMD = -0.661; 95% CI, -0.976 to -0.346; p exercise programs that involve aerobic exercise longer than three sessions per week. This meta-analysis supports current recommendation for physical exercise, mainly aerobic, as an effective intervention for nonalcoholic fatty liver disease progression by targeting hepatic lipid composition, visceral and subcutaneous adipose tissue. Systematic review registration: PROSPERO CRD42016042163.

  6. Intrauterine growth restriction - part 2.

    Science.gov (United States)

    Sharma, Deepak; Farahbakhsh, Nazanin; Shastri, Sweta; Sharma, Pradeep

    2016-12-01

    Small for gestational age (SGA) infants have been classically defined as having birth weight less than two standard deviations below the mean or less than the 10th percentile of a population-specific birth weight for specific gestational age, whereas intrauterine growth restriction (IUGR) has been defined as a rate of foetal growth that is less than normal for the population and for the growth potential of a specific infant. SGA infants have more frequent problems such as perinatal asphyxia, hypothermia, hypoglycaemia, polycythaemia and many more when compared with their appropriate for gestational age counterpart. They too have growth retardation and various major and subtle neurodevelopmental handicaps, with higher rates of perinatal and neonatal mortality. With the advent of newer technologies, even though the perinatal diagnosis of these SGA/IUGR foetuses has increased, but still perinatal morbidity and mortality rates are higher than normal foetuses and infants. In this part, we have covered neonatal IUGR classification, postnatal diagnosis, short-term and long-term complications faced by these IUGR infants.

  7. Placental Adaptations in Growth Restriction

    Science.gov (United States)

    Zhang, Song; Regnault, Timothy R.H.; Barker, Paige L.; Botting, Kimberley J.; McMillen, Isabella C.; McMillan, Christine M.; Roberts, Claire T.; Morrison, Janna L.

    2015-01-01

    The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions. PMID:25580812

  8. Cardiac MRI in restrictive cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Singh Gulati, G., E-mail: gulatigurpreet@rediffmail.com [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Seth, S. [Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Sharma, S. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India)

    2012-02-15

    Restrictive cardiomyopathy (RCM) is a specific group of heart muscle disorders characterized by inadequate ventricular relaxation during diastole. This leads to diastolic dysfunction with relative preservation of systolic function. Although short axis systolic function is usually preserved in RCM, the long axis systolic function may be severely impaired. Confirmation of diagnosis and information regarding aetiology, extent of myocardial damage, and response to treatment requires imaging. Importantly, differentiation from constrictive pericarditis (CCP) is needed, as only the latter is managed surgically. Echocardiography is the initial cardiac imaging technique but cannot reliably suggest a tissue diagnosis; although recent advances, especially tissue Doppler imaging and spectral tracking, have improved its ability to differentiate RCM from CCP. Cardiac catheterization is the reference standard, but is invasive, two-dimensional, and does not aid myocardial characterization. Cardiac magnetic resonance (CMR) is a versatile technique providing anatomical, morphological and functional information. In recent years, it has been shown to provide important information regarding disease mechanisms, and also been found useful to guide treatment, assess its outcome and predict patient prognosis. This review describes the CMR features of RCM, appearances in various diseases, its overall role in patient management, and how it compares with other imaging techniques.

  9. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  10. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  11. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  12. Watching Individual Enzymes at Work

    Science.gov (United States)

    Blank, Kerstin; Rocha, Susana; De Cremer, Gert; Roeffaers, Maarten B. J.; Uji-i, Hiroshi; Hofkens, Johan

    Single-molecule fluorescence experiments are a powerful tool to analyze reaction mechanisms of enzymes. Because of their unique potential to detect heterogeneities in space and time, they have provided unprecedented insights into the nature and mechanisms of conformational changes related to the catalytic reaction. The most important finding from experiments with single enzymes is the generally observed phenomenon that the catalytic rate constants fluctuate over time (dynamic disorder). These fluctuations originate from conformational changes occurring on time scales, which are similar to or slower than that of the catalytic reaction. Here, we summarize experiments with enzymes that show dynamic disorder and introduce new experimental strategies showing how single-molecule fluorescence experiments can be applied to address other open questions in medical and industrial enzymology, such as enzyme inactivation processes, reactant transfer in cascade reactions, and the mechanisms of interfacial catalysis.

  13. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  14. Assessing restrictiveness of national alcohol marketing policies.

    Science.gov (United States)

    Esser, Marissa B; Jernigan, David H

    2014-01-01

    To develop an approach for monitoring national alcohol marketing policies globally, an area of the World Health Organization's (WHO) Global Alcohol Strategy. Data on restrictiveness of alcohol marketing policies came from the 2002 and 2008 WHO Global Surveys on Alcohol and Health. We included four scales in a sensitivity analysis to determine optimal weights to score countries on their marketing policies and applied the selected scale to assess national marketing policy restrictiveness. Nearly, 36% of countries had no marketing restrictions. The overall restrictiveness levels were not significantly different between 2002 and 2008. The number of countries with strict marketing regulations did not differ across years. This method of monitoring alcohol marketing restrictiveness helps track progress towards implementing WHO'S Global Alcohol Strategy. Findings indicate a consistent lack of restrictive policies over time, making this a priority area for national and global action. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  15. Multiple Sclerosis

    Science.gov (United States)

    Multiple sclerosis (MS) is a nervous system disease that affects your brain and spinal cord. It damages the myelin sheath, the material that surrounds and protects your nerve cells. This damage slows down ...

  16. Multiple myeloma.

    LENUS (Irish Health Repository)

    Collins, Conor D

    2012-02-01

    Advances in the imaging and treatment of multiple myeloma have occurred over the past decade. This article summarises the current status and highlights how an understanding of both is necessary for optimum management.

  17. Multiple mononeuropathy

    Science.gov (United States)

    ... with multiple mononeuropathy are prone to new nerve injuries at pressure points such as the knees and elbows. They should avoid putting pressure on these areas, for example, by not leaning on the elbows, crossing the knees, ...

  18. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  19. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  20. Restriction fragment polymorphisms in the major histocompatibility complex of diabetic BB rats

    DEFF Research Database (Denmark)

    Kastern, W.; Dyrberg, T.; Scholler, J.

    1984-01-01

    DNA isolated from diabetic BB (BB/Hagedorn) rats was examined for restriction fragment length differences within the major histocompatibility complex (MHC) as compared with nondiabetic (W-subline) BB rats. Polymorphisms were detected using a mouse class I MHC gene as probe. Specifically, a 2-kb Bam......HI fragment was present in all the nondiabetic rats examined, but absent in the diabetic rats. Similar polymorphisms were observed with various other restriction enzymes, particularly XbaI, HindII, and SacI. There were no polymorphisms detected using either a human DR-alpha (class II antigen heavy chain...

  1. de novo computational enzyme design.

    Science.gov (United States)

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Rational redesign of the biodegradative enzyme cytochrome P450 cam:

    International Nuclear Information System (INIS)

    Ornstein, R.; Paulsen, M.; Bass, M.; Arnold, G.

    1991-03-01

    Cytochromes P450, a superfamily of monooxygenase enzymes present in all kingdoms of living organisms, are very versatile with respect to substrate range and catalytic functionality. Many recalcitrant halogenated hydrocarbons, on DOE sites and throughout the nation, result in serious environmental impact. Cytochromes P450 have been shown to be catalytically capable of, at least partial, dehalogenation of some such compounds. Clearly, however, their active site stereochemistry and related functional components are not well suited for this role because the rates of dehalogenation are generally rather modest. The evolution of modified active site and access channel structures may proceed very slowly if multiple genetic changes are simultaneously required for enzyme adaptation. Since each mutational event is by itself a rare event, a basic premise of our research is that designing multiple changes into an enzyme may be more timely than waiting for them to occur biologically either via natural selection or under laboratory-controlled conditions. Starting with available high-resolution x-ray crystal structures, molecular modeling and molecular dynamics simulations have been used to probe the basic structure/function principles and conformational fluctuations of the biodegradative enzyme, cytochrome P450cam (camphor hydroxylase from Pseudomonas putida) and active site mutants, to provide the fundamental understanding necessary for rational engineering of the enzyme for modified substrate specificity. In the present paper, we review our progress to data, in the area of molecular dynamics simulations and active site redesign of P450cam. 36 refs., 2 figs

  3. Fasting, circadian rhythms, and time restricted feeding in healthy lifespan

    Science.gov (United States)

    Longo, Valter D.; Panda, Satchidananda

    2016-01-01

    Summary Feeding in most animals is confined to a defined period, leaving short periods of fasting that coincide with sleep. Fasting enables organisms to enter alternative metabolic phases, which rely less on glucose and more on ketone body-like carbon sources. Both intermittent and periodic fasting result in benefits ranging from prevention to the enhanced treatment of diseases. Similarly, time-restricted feeding (TRF), in which feeding time is restricted to certain hours of the day, allows the daily fasting period to last >12 h, thus imparting pleiotropic benefits in multiple organisms. Understanding the mechanistic link between nutrients and the fasting benefits is leading to the identification of fasting mimicking diets (FMDs) that achieve changes similar to those caused by fasting. Given the pleiotropic and sustained benefits of TRF and FMD, both basic science and translational research are warranted to develop fasting-associated interventions into effective and inexpensive treatments with the potential to improve healthspan. PMID:27304506

  4. Deubiquitylating enzyme UBP64 controls cell fate through stabilization of the transcriptional repressor tramtrack

    NARCIS (Netherlands)

    P.K. Bajpe (Prashanth Kumar); J.A. van der Knaap (Jan); J.A.A. Demmers (Jeroen); K. Bezstarosti (Karel); A. Bassett (Andrew); H.M.M. van Beusekom (Heleen); A.A. Travers (Andrew); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractProtein ubiquitylation plays a central role in multiple signal transduction pathways. However, the substrate specificity and potential developmental roles of deubiquitylating enzymes remain poorly understood. Here, we show that the Drosophila ubiquitin protease UBP64 controls cell fate

  5. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    Science.gov (United States)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  6. Curves of restricted type in euclidean spaces

    Directory of Open Access Journals (Sweden)

    Bengü Kılıç Bayram

    2014-01-01

    Full Text Available Submanifolds of restricted type were introduced in [7]. In the present study we consider restricted type of curves in Em. We give some special examples. We also show that spherical curve in S2(r C E3 is of restricted type if and only if either ƒ(s is constant or a linear function of s of the form ƒ(s = ±s + b and every closed W - curve of rank k and of length 2(r in E2k is of restricted type.

  7. Activity restriction induced by fear of falling and objective and subjective measures of physical function: a prospective cohort study.

    Science.gov (United States)

    Deshpande, Nandini; Metter, E Jeffrey; Lauretani, Fulvio; Bandinelli, Stefania; Guralnik, Jack; Ferrucci, Luigi

    2008-04-01

    To examine whether activity restriction specifically induced by fear of falling (FF) contributes to greater risk of disability and decline in physical function. Prospective cohort study. Population-based older cohort. Six hundred seventy-three community-living elderly (> or = 65) participants in the Invecchiare in Chianti Study who reported FF. FF, fear-induced activity restriction, cognition, depressive symptoms, comorbidities, smoking history, and demographic factors were assessed at baseline. Disability in activities of daily living (ADLs) and instrumental activities of daily living (IADLs) and performance on the Short Performance Physical Battery (SPPB) were evaluated at baseline and at the 3-year follow-up. One-quarter (25.5%) of participants did not report any activity restriction, 59.6% reported moderate activity restriction (restriction or avoidance of or = 3 activities). The severe restriction group reported significantly higher IADL disability and worse SPPB scores than the no restriction and moderate restriction groups. Severe activity restriction was a significant independent predictor of worsening ADL disability and accelerated decline in lower extremity performance on SPPB over the 3-year follow-up. Severe and moderate activity restriction were independent predictors of worsening IADL disability. Results were consistent even after adjusting for multiple potential confounders. In an elderly population, activity restriction associated with FF is an independent predictor of decline in physical function. Future intervention studies in geriatric preventive care should directly address risk factors associated with FF and activity restriction to substantiate long-term effects on physical abilities and autonomy of older persons.

  8. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies.

    Science.gov (United States)

    McKay, Alexa Fritzsche; Ezenwa, Vanessa O; Altizer, Sonia

    2016-01-01

    Organisms have a finite pool of resources to allocate toward multiple competing needs, such as development, reproduction, and enemy defense. Abundant resources can support investment in multiple traits simultaneously, but limited resources might promote trade-offs between fitness-related traits and immune defenses. We asked how food restriction at both larval and adult life stages of the monarch butterfly (Danaus plexippus) affected measures of immunity, fitness, and immune-fitness interactions. We experimentally infected a subset of monarchs with a specialist protozoan parasite to determine whether parasitism further affected these relationships and whether food restriction influenced the outcome of infection. Larval food restriction reduced monarch fitness measures both within the same life stage (e.g., pupal mass) as well as later in life (e.g., adult lifespan); adult food restriction further reduced adult lifespan. Larval food restriction lowered both hemocyte concentration and phenoloxidase activity at the larval stage, and the effects of larval food restriction on phenoloxidase activity persisted when immunity was sampled at the adult stage. Adult food restriction reduced only adult phenoloxidase activity but not hemocyte concentration. Parasite spore load decreased with one measure of larval immunity, but food restriction did not increase the probability of parasite infection. Across monarchs, we found a negative relationship between larval hemocyte concentration and pupal mass, and a trade-off between adult hemocyte concentration and adult life span was evident in parasitized female monarchs. Adult life span increased with phenoloxidase activity in some subsets of monarchs. Our results emphasize that food restriction can alter fitness and immunity across multiple life stages. Understanding the consequences of resource limitation for immune defense is therefore important for predicting how increasing constraints on wildlife resources will affect fitness and

  9. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  10. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  11. 'Trade-off' in Antarctic bacteria: limnetic psychrotrophs concede multiple enzyme expressions for multiple metal resistance

    Digital Repository Service at National Institute of Oceanography (India)

    De; LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    The present study examines the metal and antibiotic resistant bacteria in ice and water from lakes east and west of the Indian base camp (Maitri) in Antarctica. The isolates from western and eastern lakes showed distinct geographical differences...

  12. [Multiple meningiomas].

    Science.gov (United States)

    Terrier, L-M; François, P

    2016-06-01

    Multiple meningiomas (MMs) or meningiomatosis are defined by the presence of at least 2 lesions that appear simultaneously or not, at different intracranial locations, without the association of neurofibromatosis. They present 1-9 % of meningiomas with a female predominance. The occurrence of multiple meningiomas is not clear. There are 2 main hypotheses for their development, one that supports the independent evolution of these tumors and the other, completely opposite, that suggests the propagation of tumor cells of a unique clone transformation, through cerebrospinal fluid. NF2 gene mutation is an important intrinsic risk factor in the etiology of multiple meningiomas and some exogenous risk factors have been suspected but only ionizing radiation exposure has been proven. These tumors can grow anywhere in the skull but they are more frequently observed in supratentorial locations. Their histologic types are similar to unique meningiomas of psammomatous, fibroblastic, meningothelial or transitional type and in most cases are benign tumors. The prognosis of these tumors is eventually good and does not differ from the unique tumors except for the cases of radiation-induced multiple meningiomas, in the context of NF2 or when diagnosed in children where the outcome is less favorable. Each meningioma lesion should be dealt with individually and their multiple character should not justify their resection at all costs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  14. Actinomycete enzymes and activities involved in straw saccharification

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, A J; Ball, A S [Liverpool Univ. (UK). Dept. of Genetics and Microbiology

    1990-01-01

    This research programme has been directed towards the analysis of actinomycete enzyme systems involved in the degradation of plant biomass (lignocellulose.) The programme was innovative in that a novel source of enzymes was systematically screened and wheat straw saccharifying activity was the test criterion. Over 200 actinomycete strains representing a broad taxonomic range were screened. A range of specific enzyme activities were involved and included cellulase, xylanase, arabinofuranosidase, acetylesterase, {beta}-xylosidase and {beta}-glucosidase. Since hemicellulose (arabinoxylan) was the primary source of sugar, xylanases were characterized. The xylan-degrading systems of actinomycetes were complex and nonuniform, with up to six separate endoxylanases identified in active strains. Except for microbispora bispora, actinomycetes were found to be a poor source of cellulase activity. Evidence for activity against the lignin fraction of straw was produced for a range of actinomycete strains. While modification reactions were common, cleavage of inter-monomer bonds, and utilization of complex polyphenolic compounds were restricted to two strains: Thermomonospora mesophila and Streptomyces badius. Crude enzyme preparations from actinomycetes can be used to generate sugar, particularly pentoses, directly from cereal straw. The potential for improvements in yield rests with the formulation to cooperative enzyme combinations from different strains. The stability properties of enzymes from thermophilic strains and the general neutral to alkali pH optima offer advantages in certain process situations. Actinomycetes are a particularly rich source of xylanases for commercial application and can rapidly solubilise a lignocarbohydrate fraction of straw which may have both product and pretreatment potential. 31 refs., 4 figs., 5 tabs.

  15. Universal Cycles of Restricted Classes of Words

    OpenAIRE

    Leitner, Arielle; Godbole, Anant

    2008-01-01

    It is well known that Universal Cycles of $k$-letter words on an $n$-letter alphabet exist for all $k$ and $n$. In this paper, we prove that Universal Cycles exist for restricted classes of words, including: non-bijections, equitable words (under suitable restrictions), ranked permutations, and "passwords".

  16. Freedom and Restrictions in Language Use.

    Science.gov (United States)

    O'Donnell, Roy C.

    Since freedom of thought and expression is essential in a democracy, censorship of language is rightly regarded as a threat to all other freedoms. Still, it is inevitable that certain restrictions will occasionally be imposed on language in America and in other societies. Restrictions on language date back to the Ten Commandments, which condemned…

  17. Protein restriction in chronic renal failure

    NARCIS (Netherlands)

    ECHTEN, JEKT; NAUTA, J; HOP, WCJ; de Jong, MCJ; REITSMABIERENS, WCC; VANAMSTEL, SLBP; VANACKER, KJ; NOORDZIJ, CM; WOLFF, ED

    The aim of the study was to investigate the effect of a protein restricted diet on renal function and growth of children with chronic renal failure. In a multicentre prospective study 56 children (aged 2-18 years) with chronic renal failure were randomly assigned to the protein restricted (0.8-1.1

  18. Relationship Between Calorie Restriction, Lipid Peroxidation ...

    African Journals Online (AJOL)

    In the brain of the caloric restricted rats, there was little or no change in the tGSH and GSH, although the GSSG and GSSG/GSH% ratio were increased significantly. These results suggest that aging of rats had been decelerated by caloric restriction due to the decrease in the peroxidative damage in the lungs and brain.

  19. Eclampsia despite strict dietary sodium restriction.

    NARCIS (Netherlands)

    Delemarre, F.M.C.; Steegers, E.A.P.; Berendes, J.N.

    2001-01-01

    The classic indication for prescribing dietary sodium restriction in pregnancy has been the prevention of eclampsia. We describe a case of intrapartum eclampsia in a 24-year-old nulliparous woman. A strongly sodium restricted diet was prescribed because of pre-eclampsia. Compliance to the diet was

  20. 7 CFR 3430.205 - Funding restrictions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Funding restrictions. 3430.205 Section 3430.205... Funding restrictions. (a) Prohibition against construction. Funds made available under this subpart shall not be used for the construction of a new building or facility or the acquisition, expansion...

  1. 28 CFR 804.3 - Restrictions.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Restrictions. 804.3 Section 804.3 Judicial Administration COURT SERVICES AND OFFENDER SUPERVISION AGENCY FOR THE DISTRICT OF COLUMBIA ACCEPTANCE OF GIFTS § 804.3 Restrictions. (a) The Agency is not authorized to accept gifts of money, stock...

  2. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, Egon; Stenager, E N; Knudsen, Lone

    1994-01-01

    In a cross-sectional study of 117 randomly selected patients (52 men, 65 women) with definite multiple sclerosis, it was found that 76 percent were married or cohabitant, 8 percent divorced. Social contacts remained unchanged for 70 percent, but outgoing social contacts were reduced for 45 percent......, need for structural changes in home and need for pension became greater with increasing physical handicap. No significant differences between gender were found. It is concluded that patients and relatives are under increased social strain, when multiple sclerosis progresses to a moderate handicap...

  3. PCR-RFLP Using BseDI Enzyme for Pork Authentication in Sausage and Nugget Products

    Directory of Open Access Journals (Sweden)

    Y. Erwanto

    2011-04-01

    Full Text Available A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP using BseDI restriction enzyme had been applied for identifying the presence of pork in processed meat (beef sausage and chicken nugget including before and after frying. Pork sample in various levels (1%, 3%, 5%, 10%, and 25 % was prepared in a mixture with beef and chicken meats and processed for sausage and nugget. The primers CYTb1 and CYTb2 were designed in the mitochondrial cytochrome b (cyt b gene and PCR successfully amplified fragments of 359 bp. To distinguish existence of porcine species, the amplified PCR products of mitochondrial DNA were cut by BseDI restriction enzyme. The result showed pig mitochondrial DNA was cut into 131 and 228 bp fragments. The PCR-RFLP species identification assay yielded excellent results for identification of porcine species. It is a potentially reliable technique for pork detection in animal food processed products for Halal authentication.

  4. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  5. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  6. Restricted gravity: Abelian projection of Einstein's theory

    International Nuclear Information System (INIS)

    Cho, Y.M.

    2013-01-01

    Treating Einstein's theory as a gauge theory of Lorentz group, we decompose the gravitational connection Γμ into the restricted connection made of the potential of the maximal Abelian subgroup H of Lorentz group G and the valence connection made of G/H part of the potential which transforms covariantly under Lorentz gauge transformation. With this we show that Einstein's theory can be decomposed into the restricted gravity made of the restricted connection which has the full Lorentz gauge invariance which has the valence connection as gravitational source. The decomposition shows the existence of a restricted theory of gravitation which has the full general invariance but is much simpler than Einstein's theory. Moreover, it tells that the restricted gravity can be written as an Abelian gauge theory,

  7. Chondroitin / dermatan sulfate modification enzymes in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Judith Habicher

    Full Text Available Chondroitin/dermatan sulfate (CS/DS proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS. Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.

  8. Comparison of canine parvovirus with mink enteritis virus by restriction site mapping.

    OpenAIRE

    McMaster, G K; Tratschin, J D; Siegl, G

    1981-01-01

    The genomes of canine parvovirus and mink enteritis virus were compared by restriction enzyme analysis of their replicative-form DNAs. Of 79 mapped sites, 68, or 86%, were found to be common for both types of DNA, indicating that canine parvovirus and mink enteritis virus are closely related viruses. Whether they evolved from a common precursor or whether canine parvovirus is derived from mink enteritis virus, however, cannot be deduced from our present data.

  9. R Factor-Controlled Restriction and Modification of Deoxyribonucleic Acid: Restriction Mutants

    Science.gov (United States)

    Yoshimori, Robert; Roulland-Dussoix, Daisy; Boyer, Herbert W.

    1972-01-01

    Restriction mutants of two different R factor-controlled host specificities (RI and RII) were isolated. All of the restriction mutants examined had a normal modification phenotype. No complementation was observed between the RI and RII host specificities. It is concluded that for each host specificity no protein subunit is shared by the restriction endonuclease and modification methylase. PMID:4565538

  10. Measuring the Restrictiveness of Living Environments for Children and Youth: Reconceptualizing Restriction

    Science.gov (United States)

    Rauktis, Mary E.; Huefner, Jonathan C.; O'Brien, Kirk; Pecora, Peter J.; Doucette, Ann; Thompson, Ronald W.

    2009-01-01

    The "Restrictiveness of Living Environment Scale" has long been the primary way to conceptualize the "restrictiveness" of a child's living situation. However, changes in systems of care and other factors have created a need to revisit how restrictiveness is conceptualized and measured. A measure was created to assess an environment's level of…

  11. Multiple myeloma

    International Nuclear Information System (INIS)

    Sohn, Jeong Ick; Ha, Choon Ho; Choi, Karp Shik

    1994-01-01

    Multiple myeloma is a malignant plasma cell tumor that is thought to originate proliferation of a single clone of abnormal plasma cell resulting production of a whole monoclonal paraprotein. The authors experienced a case of multiple myeloma with severe mandibular osteolytic lesions in 46-year-old female. As a result of careful analysis of clinical, radiological, histopathological features, and laboratory findings, we diagnosed it as multiple myeloma, and the following results were obtained. 1. Main clinical symptoms were intermittent dull pain on the mandibular body area, abnormal sensation of lip and pain due to the fracture on the right clavicle. 2. Laboratory findings revealed M-spike, reversed serum albumin-globulin ratio, markedly elevated ESR and hypercalcemia. 3. Radiographically, multiple osteolytic punched-out radiolucencies were evident on the skull, zygoma, jaw bones, ribs, clavicle and upper extremities. Enlarged liver and increased uptakes on the lesional sites in RN scan were also observed. 4. Histopathologically, markedly hypercellular marrow with sheets of plasmoblasts and megakaryocytes were also observed.

  12. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1988-01-01

    Forty-two (12%) of a total of 366 patients with multiple sclerosis (MS) had psychiatric admissions. Of these, 34 (81%) had their first psychiatric admission in conjunction with or after the onset of MS. Classification by psychiatric diagnosis showed that there was a significant positive correlation...

  13. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Knudsen, L; Jensen, K

    1991-01-01

    In a cross-sectional investigation of 116 patients with multiple sclerosis, the social and sparetime activities of the patient were assessed by both patient and his/her family. The assessments were correlated to physical disability which showed that particularly those who were moderately disabled...

  14. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1990-01-01

    An investigation on the correlation between ability to read TV subtitles and the duration of visual evoked potential (VEP) latency in 14 patients with definite multiple sclerosis (MS), indicated that VEP latency in patients unable to read the TV subtitles was significantly delayed in comparison...

  15. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Knudsen, L; Jensen, K

    1994-01-01

    In a cross-sectional study of 94 patients (42 males, 52 females) with definite multiple sclerosis (MS) in the age range 25-55 years, the correlation of neuropsychological tests with the ability to read TV-subtitles and with the use of sedatives is examined. A logistic regression analysis reveals...

  16. Multiple Sclerosis.

    Science.gov (United States)

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on multiple sclerosis is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  17. Parenting Multiples

    Science.gov (United States)

    ... when your babies do. Though it can be hard to let go of the thousand other things you need to do, remember that your well-being is key to your ability to take care of your babies. What Problems Can Happen? It may be hard to tell multiple babies apart when they first ...

  18. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.

    Directory of Open Access Journals (Sweden)

    Anthony E Civitarese

    2007-03-01

    Full Text Available Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 +/- 1.0 y, overweight (body mass index, 27.8 +/- 0.7 kg/m(2 individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX, 12.5% CR + 12.5% increased energy expenditure (EE. In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, -135 +/- 42 kcal/d, p = 0.002 and CREX, -117 +/- 52 kcal/d, p = 0.008. Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05. In parallel, mitochondrial DNA content increased by 35% +/- 5% in the CR group (p = 0.005 and 21% +/- 4% in the CREX group (p < 0.004, with no change in the control group (2% +/- 2%. However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid cycle (citrate synthase, beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase, and electron transport chain (cytochrome C oxidase II was unchanged. DNA damage was reduced from baseline in the CR (-0.56 +/- 0.11 arbitrary units, p = 0.003 and CREX (-0.45 +/- 0.12 arbitrary units, p = 0.011, but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.The observed increase in

  19. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  20. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  1. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  2. NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity

    Directory of Open Access Journals (Sweden)

    Song Peng

    2010-02-01

    Full Text Available Abstract Background NAD+ is a coenzyme for hydride transfer enzymes and a substrate for sirtuins and other NAD+-dependent ADPribose transfer enzymes. In wild-type Saccharomyces cerevisiae, calorie restriction accomplished by glucose limitation extends replicative lifespan in a manner that depends on Sir2 and the NAD+ salvage enzymes, nicotinic acid phosphoribosyl transferase and nicotinamidase. Though alterations in the NAD+ to nicotinamide ratio and the NAD+ to NADH ratio are anticipated by models to account for the effects of calorie restriction, the nature of a putative change in NAD+ metabolism requires analytical definition and quantification of the key metabolites. Results Hydrophilic interaction chromatography followed by tandem electrospray mass spectrometry were used to identify the 12 compounds that constitute the core NAD+ metabolome and 6 related nucleosides and nucleotides. Whereas yeast extract and nicotinic acid increase net NAD+ synthesis in a manner that can account for extended lifespan, glucose restriction does not alter NAD+ or nicotinamide levels in ways that would increase Sir2 activity. Conclusions The results constrain the possible mechanisms by which calorie restriction may regulate Sir2 and suggest that provision of vitamins and calorie restriction extend lifespan by different mechanisms.

  3. Urban water restrictions: Attitudes and avoidance

    Science.gov (United States)

    Cooper, Bethany; Burton, Michael; Crase, Lin

    2011-12-01

    In most urban cities across Australia, water restrictions remain the dominant policy mechanism to restrict urban water consumption. The extensive adoption of water restrictions as a means to limit demand, over several years, means that Australian urban water prices have consistently not reflected the opportunity cost of water. Given the generally strong political support for water restrictions and the likelihood that they will persist for some time, there is value in understanding households' attitudes in this context. More specifically, identifying the welfare gains associated with avoiding urban water restrictions entirely would be a nontrivial contribution to our knowledge and offer insights into the benefits of alternative policy responses. This paper describes the results from a contingent valuation study that investigates consumers' willingness to pay to avoid urban water restrictions. Importantly, the research also investigates the influence of cognitive and exogenous dimensions on the utility gain associated with avoiding water restrictions. The results provide insights into the impact of the current policy mechanism on economic welfare.

  4. Decoding restricted participation in sequential electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Knaut, Andreas; Paschmann, Martin

    2017-06-15

    Restricted participation in sequential markets may cause high price volatility and welfare losses. In this paper we therefore analyze the drivers of restricted participation in the German intraday auction which is a short-term electricity market with quarter-hourly products. Applying a fundamental electricity market model with 15-minute temporal resolution, we identify the lack of sub-hourly market coupling being the most relevant driver of restricted participation. We derive a proxy for price volatility and find that full market coupling may trigger quarter-hourly price volatility to decrease by a factor close to four.

  5. Investigation of restricted baby Skyrme models

    International Nuclear Information System (INIS)

    Adam, C.; Romanczukiewicz, T.; Wereszczynski, A.; Sanchez-Guillen, J.

    2010-01-01

    A restriction of the baby Skyrme model consisting of the quartic and potential terms only is investigated in detail for a wide range of potentials. Further, its properties are compared with those of the corresponding full baby Skyrme models. We find that topological (charge) as well as geometrical (nucleus/shell shape) features of baby Skyrmions are captured already by the soliton solutions of the restricted model. Further, we find a coincidence between the compact or noncompact nature of solitons in the restricted model, on the one hand, and the existence or nonexistence of multi-Skyrmions in the full baby Skyrme model, on the other hand.

  6. Simple and sensitive fluorescence assay of restriction endonuclease on graphene oxide

    International Nuclear Information System (INIS)

    Gang, Jong Back

    2015-01-01

    Restriction endonucleases hydrolyze internal phosphodiester bonds at specific sites in a DNA sequence. These enzymes are essential in a variety of fields, such as biotechnology and clinical diagnostics. It is of great importance and necessity for the scientific and biomedical use of enzymes to measure endonuclease activity. In this study, graphene oxide (GO) has been used as a platform to measure enzyme activity with high sensitivity. To increase the detection sensitivity of Hinf I, the endonuclease-digested reaction was treated with exonuclease III (Exo III) and a fluorescence assay was conducted to measure the emission. Results showed that Exo III treatment enhanced 2.7-fold signal-to-background ratio for the detection of Hinf I compared with that done without Exo III in the presence of GO

  7. Mechanisms leading to increased risk of preterm birth in growth-restricted guinea pig pregnancies.

    Science.gov (United States)

    Palliser, Hannah K; Kelleher, Meredith A; Welsh, Toni N; Zakar, Tamas; Hirst, Jonathan J

    2014-02-01

    Intrauterine growth restriction (IUGR) is a risk factor for preterm labor; however, the mechanisms of the relationship remain unknown. Prostaglandin (PG), key stimulants of labor, availability is regulated by the synthetic enzymes, prostaglandin endoperoxidases 1 and 2 (PTGS1 and 2), and the metabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (HPGD). We hypothesized that IUGR increases susceptibility to preterm labor due to the changing balance of synthetic and metabolizing enzymes and hence greater PG availability. We have tested this hypothesis using a surgically induced IUGR model in guinea pigs, which results in significantly shorter gestation. Myometrium, amnion, chorion, and placentas were collected from sham operated or IUGR pregnancies, and PTGS1 and HPGD protein expression were quantified throughout late gestation (>62 days) and labor. The PTGS1 expression was significantly upregulated in the myometrium of IUGR animals, and chorionic HPGD expression was markedly decreased (P production over metabolism in IUGR pregnancies leads to a greater susceptibility to preterm birth.

  8. Multiple sclerosis

    International Nuclear Information System (INIS)

    Sadashima, Hiromichi; Kusaka, Hirofumi; Imai, Terukuni; Takahashi, Ryosuke; Matsumoto, Sadayuki; Yamamoto, Toru; Yamasaki, Masahiro; Maya, Kiyomi

    1986-01-01

    Eleven patients with a definite diagnosis of multiple sclerosis were examined in terms of correlations between the clinical features and the results of cranial computed tomography (CT), and magnetic resonance imaging (MRI). Results: In 5 of the 11 patients, both CT and MRI demonstrated lesions consistent with a finding of multiple sclerosis. In 3 patients, only MRI demonstrated lesions. In the remaining 3 patients, neither CT nor MRI revealed any lesion in the brain. All 5 patients who showed abnormal findings on both CT and MRI had clinical signs either of cerebral or brainstem - cerebellar lesions. On the other hand, two of the 3 patients with normal CT and MRI findings had optic-nerve and spinal-cord signs. Therefore, our results suggested relatively good correlations between the clinical features, CT, and MRI. MRI revealed cerebral lesions in two of the four patients with clinical signs of only optic-nerve and spinal-cord lesions. MRI demonstrated sclerotic lesions in 3 of the 6 patients whose plaques were not detected by CT. In conclusion, MRI proved to be more helpful in the demonstration of lesions attributable to chronic multiple sclerosis. (author)

  9. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  10. Curious Cases of the Enzymes.

    Science.gov (United States)

    Ulusu, Nuriye Nuray

    2015-07-01

    Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts… Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This paper is dedicated to these early moments of this remarkable science that touched our lives in the past and will make life a lot more efficient for humanity in the future. There was almost always a delicate, fundamentally essential relationship between mankind and the enzymes. Challenged by a very alien and hostile Nature full of predators, prehistoric men soon discovered the medicinal properties of the plants, through trial and error. In fact, they accidently discovered the enzyme inhibitors and thus, in crude terms, kindled a sparkling area of research. These plant-derivatives that acted as enzyme inhibitors helped prehistoric men in their pursuit of survival and protection from predators; in hunting and fishing… Later in history, while the underlying purposes of survival and increasing the quality of life stayed intact, the ways and means of enzymology experienced a massive transformation, as the 'trial and error' methodology of the ancients is now replaced with rational scientific theories.

  11. Enzymes with activity toward Xyloglucan

    NARCIS (Netherlands)

    Vincken, J.P.

    2003-01-01

    Xyloglucans are plant cell wall polysaccharides, which belong to the hemicellulose class. Here the structural variations of xyloglucans will be reviewed. Subsequently, the anchoring of xyloglucan in the plant cell wall will be discussed. Enzymes involved in degradation or modification of xyloglucan

  12. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism.

    Science.gov (United States)

    Shi, Yuguang; Cheng, Dong

    2009-07-01

    Monoacyglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze two consecutive steps of enzyme reactions in the synthesis of triacylglycerols (TAGs). The metabolic complexity of TAG synthesis is reflected by the presence of multiple isoforms of MGAT and DGAT enzymes that differ in catalytic properties, subcellular localization, tissue distribution, and physiological functions. MGAT and DGAT enzymes play fundamental roles in the metabolism of monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) that are involved in many aspects of physiological functions, such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, signal transduction, satiety, and lactation. The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity. Consequently, selective inhibition of MGAT or DGAT enzymes by synthetic compounds may provide novel treatment for obesity and its related metabolic complications.

  13. Maternal determinants of intrauterine growth restriction in Goa, India: a case-control study

    Directory of Open Access Journals (Sweden)

    DD Motghare

    2014-01-01

    Full Text Available Objective: To study the maternal determinants of intrauterine growth restriction. Methods: A case-control study was conducted at a tertiary care Hospital in the year 2009. Ninety eight cases of intrauterine growth restriction were compared to 98 controls, matched for newborns sex and type of delivery. Data was collected by interviewing the mother using a structured pretested schedule and perusal of antenatal records. Intrauterine growth restriction was defined as occurring if birth weight of the newborn is below 10th percentile for gestational age on the intrauterine growth curve. Data was analyzed using SPSS software version 17 package. Percentages, odds ratios with 95% CI and multiple logistic regression analysis were used wherever appropriate. Results: Maternal age, education, socioeconomic status and number of antenatal visits were found to be the significant socio-demographic factors associated with Intrauterine growth restriction while, maternal height, parity, previous spontaneous abortion, direct obstetric morbidity, indirect obstetric morbidity and anemia were the maternal biological factors found to be significantly associated on bivariate analysis. Multiple logistic regression analysis identified parity, previous spontaneous abortion, direct obstetric morbidity, indirect obstetric morbidity and antenatal visits as significant maternal determinants of intrauterine growth restriction. Conclusions: A focus on good antenatal care, especially on high risk pregnancies would go a long way in reducing the problem of intrauterine growth restriction in the community thereby ensuring a safe and healthy future for our youngest generation.

  14. Reconstitution of a thermostable xylan-degrading enzyme mixture from the bacterium Caldicellulosiruptor bescii.

    Science.gov (United States)

    Su, Xiaoyun; Han, Yejun; Dodd, Dylan; Moon, Young Hwan; Yoshida, Shosuke; Mackie, Roderick I; Cann, Isaac K O

    2013-03-01

    Xylose, the major constituent of xylans, as well as the side chain sugars, such as arabinose, can be metabolized by engineered yeasts into ethanol. Therefore, xylan-degrading enzymes that efficiently hydrolyze xylans will add value to cellulases used in hydrolysis of plant cell wall polysaccharides for conversion to biofuels. Heterogeneous xylan is a complex substrate, and it requires multiple enzymes to release its constituent sugars. However, the components of xylan-degrading enzymes are often individually characterized, leading to a dearth of research that analyzes synergistic actions of the components of xylan-degrading enzymes. In the present report, six genes predicted to encode components of the xylan-degrading enzymes of the thermophilic bacterium Caldicellulosiruptor bescii were expressed in Escherichia coli, and the recombinant proteins were investigated as individual enzymes and also as a xylan-degrading enzyme cocktail. Most of the component enzymes of the xylan-degrading enzyme mixture had similar optimal pH (5.5 to ∼6.5) and temperature (75 to ∼90°C), and this facilitated their investigation as an enzyme cocktail for deconstruction of xylans. The core enzymes (two endoxylanases and a β-xylosidase) exhibited high turnover numbers during catalysis, with the two endoxylanases yielding estimated k(cat) values of ∼8,000 and ∼4,500 s(-1), respectively, on soluble wheat arabinoxylan. Addition of side chain-cleaving enzymes to the core enzymes increased depolymerization of a more complex model substrate, oat spelt xylan. The C. bescii xylan-degrading enzyme mixture effectively hydrolyzes xylan at 65 to 80°C and can serve as a basal mixture for deconstruction of xylans in bioenergy feedstock at high temperatures.

  15. Health Benefits of Fasting and Caloric Restriction.

    Science.gov (United States)

    Golbidi, Saeid; Daiber, Andreas; Korac, Bato; Li, Huige; Essop, M Faadiel; Laher, Ismail

    2017-10-23

    Obesity and obesity-related diseases, largely resulting from urbanization and behavioral changes, are now of global importance. Energy restriction, though, is associated with health improvements and increased longevity. We review some important mechanisms related to calorie limitation aimed at controlling of metabolic diseases, particularly diabetes. Calorie restriction triggers a complex series of intricate events, including activation of cellular stress response elements, improved autophagy, modification of apoptosis, and alteration in hormonal balance. Intermittent fasting is not only more acceptable to patients, but it also prevents some of the adverse effects of chronic calorie restriction, especially malnutrition. There are many somatic and potentially psychologic benefits of fasting or intermittent calorie restriction. However, some behavioral modifications related to abstinence of binge eating following a fasting period are crucial in maintaining the desired favorable outcomes.

  16. Compensatory mechanisms activated with intermittent energy restriction

    DEFF Research Database (Denmark)

    Coutinho, Sílvia Ribeiro; Halset, Eline Holli; Gåsbakk, Sigrid

    2018-01-01

    Background & aims: Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy...... restriction (IER), where short spells of energy restriction are interspaced by periods of habitual energy intake, may offer some protection in minimizing those responses. We aimed to compare the effect of IER versus CER on body composition and the compensatory responses induced by WL. Methods: 35 adults (age......: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m2) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting...

  17. Restricted Coherent Risk Measures and Actuarial Solvency

    Directory of Open Access Journals (Sweden)

    Christos E. Kountzakis

    2012-01-01

    Full Text Available We prove a general dual representation form for restricted coherent risk measures, and we apply it to a minimization problem of the required solvency capital for an insurance company.

  18. Evolutionary genomics and HIV restriction factors.

    Science.gov (United States)

    Pyndiah, Nitisha; Telenti, Amalio; Rausell, Antonio

    2015-03-01

    To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.

  19. Avoidant/Restrictive Food Intake Disorder

    Science.gov (United States)

    ... Eating Disorder Bulimia Nervosa Pica Rumination Disorder Avoidant/restrictive food intake disorder is characterized by eating very little food and/or avoiding eating certain foods. People with this disorder eat ...

  20. The welfare effects of mobility restrictions

    Czech Academy of Sciences Publication Activity Database

    Jeong, Byeongju

    2003-01-01

    Roč. 6, č. 3 (2003), s. 685-696 ISSN 1094-2025 Institutional research plan: CEZ:AV0Z7085904 Keywords : mobility restriction * partnership * search Subject RIV: AH - Economics Impact factor: 0.600, year: 2003

  1. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) functions in the localization and translational regulation of grk mRNA. The purpose of this project is to identify factors that function with Sqd to produce spatially-restricted Egfr activation...

  2. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) functions in the localization and translational regulation of grk mRNA. The purpose of this project is to identify factors that function with Squid to produce spatially-restricted EGFR activation...

  3. A topological insight into restricted Boltzmann machines

    NARCIS (Netherlands)

    Mocanu, D.C.; Mocanu, E.; Nguyen, H.P.; Gibescu, M.; Liotta, A.

    Restricted Boltzmann Machines (RBMs) and models derived from them have been successfully used as basic building blocks in deep artificial neural networks for automatic features extraction, unsupervised weights initialization, but also as density estimators. Thus, their generative and discriminative

  4. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During cogenesis in Drosophila melanogaster local Egfr activation by the spatially-restricted TGFalpha-like ligand Gurken (Grk...

  5. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During oogenesis in Drosophila melanogaster, local EGFR activation by the spatially restricted TGF alpha-like ligand, Gurken (Grk...

  6. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  7. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Statistical properties of multistep enzyme-mediated reactions

    OpenAIRE

    de Ronde, Wiet H.; Daniels, Bryan C.; Mugler, Andrew; Sinitsyn, Nikolai A.; Nemenman, Ilya

    2008-01-01

    Enzyme-mediated reactions may proceed through multiple intermediate conformational states before creating a final product molecule, and one often wishes to identify such intermediate structures from observations of the product creation. In this paper, we address this problem by solving the chemical master equations for various enzymatic reactions. We devise a perturbation theory analogous to that used in quantum mechanics that allows us to determine the first () and the second (variance) cumu...

  9. Parental Restriction of Mature-rated Media and Its Association with Substance Use among Argentinian Adolescents

    Science.gov (United States)

    Mejia, Raul; Pérez, Adriana; Peña, Lorena; Morello, Paola; Kollath-Cattano, Christy; Braun, Sandra; Thrashe, James F.; Sargent, James D.

    2016-01-01

    Objective To assess the independent relation between parental restrictions on mature-rated media (M-RM) and substance use among South American adolescents. Methods Cross-sectional school-based youth survey of n=3,172 students (mean age 12.8 years; 57.6% boys) in three large Argentinian cities. The anonymous survey queried tobacco, alcohol, and drug use using items adapted from global youth surveys. Adolescents reported M-RM restriction for internet and videogames use, television programming and movies rated for adults. Multivariate logistic regression models assessed the association between parental M-RM restriction and substance use after adjusting for hourly media use, measures of authoritative parenting style, sociodemographics, and sensation seeking. Results Substance use rates were 10% for current smoking, 32% for current drinking alcohol, 17% for past 30-day binge drinking, and 8% for illicit drug use (marijuana or cocaine). Half of respondents reported parental M-RM restriction (internet 52%, TV 43%, adult movies 34%, videogame 25%). Parental M-RM restriction was only modestly correlated with authoritative parenting measures. In multivariate analyses M-RM restriction on all four venues was strongly protective for all substance use outcomes. Compared with no restriction, odds ratios for substance use for full restrictions were 0.32 (0.18–0.59), 0.53 (0.38–0.07), 0.36 (0.22–0.59), and 0.49 (0.26–0.92) for current smoking, drinking, binge drinking, and illicit drug use respectively. The most important single M-RM venue was movies. Conclusion This study confirms the protective association between parental M-RM restriction during adolescence and multiple substance use outcomes, including illicit drugs. M-RM restriction is independent of traditional parenting measures. The preponderance of the evidence supports intervention development. PMID:26615087

  10. Parental Restriction of Mature-rated Media and Its Association With Substance Use Among Argentinean Adolescents.

    Science.gov (United States)

    Mejia, Raul; Pérez, Adriana; Peña, Lorena; Morello, Paola; Kollath-Cattano, Christy; Braun, Sandra; Thrasher, James F; Sargent, James D

    2016-04-01

    To assess the independent relation between parental restrictions on mature-rated media (M-RM) and substance use among South American adolescents. Cross-sectional school-based youth survey of 3,172 students (mean age, 12.8 years; 57.6% boys) in 3 large Argentinean cities. The anonymous survey queried tobacco, alcohol, and drug use using items adapted from global youth surveys. Adolescents reported M-RM restriction for internet and video game use, television programming, and movies rated for adults. Multivariate logistic regression models were used to assess the association between parental M-RM restriction and substance use after adjustment for hourly media use, measures of authoritative parenting style, sociodemographic characteristics, and sensation-seeking. Substance use rates were 10% for current smoking, 32% for current drinking alcohol, 17% for past 30-day binge drinking, and 8% for illicit drug use (marijuana or cocaine). Half of the respondents reported parental M-RM restriction (internet 52%, TV 43%, adult movies 34%, video game 25%). Parental M-RM restriction was only modestly correlated with authoritative parenting measures. In multivariate analyses M-RM restriction on all 4 venues was strongly protective for all substance use outcomes. Compared with no restriction, odds ratios for substance use for full restrictions were 0.32 (0.18-0.59), 0.53 (0.38-0.07), 0.36 (0.22-0.59), and 0.49 (0.26-0.92) for current smoking, drinking, binge drinking, and illicit drug use, respectively. The most important single M-RM venue was movies. Results of this study confirmed the protective association between parental M-RM restriction during adolescence and multiple substance use outcomes, including illicit drugs. M-RM restriction is independent of traditional parenting measures. The preponderance of the evidence supports intervention development. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  11. Public Investment, Revenue Shocks, and Borrowing Restrictions

    OpenAIRE

    Büttner, Thiess; Wildasin, David E.

    2010-01-01

    This paper lays out a theory of taxation and public investment in an intertemporal setting under conditions of revenue shocks. Without borrowing restrictions, the optimal policy is characterized by smooth time paths of taxes and public investment. While the introduction of formal borrowing restrictions leads to some precautionary savings, it gives rise to fluctuations in public investment in response to adverse but also favorable revenue shocks. This theoretical result is tested empirically u...

  12. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  13. A criterion of orthogonality on the assumption and restrictions in subgrid-scale modelling of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Fang, L. [LMP, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beihang University, Beijing 100191 (China); Sun, X.Y. [LMP, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Liu, Y.W., E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beihang University, Beijing 100191 (China)

    2016-12-09

    In order to shed light on understanding the subgrid-scale (SGS) modelling methodology, we analyze and define the concepts of assumption and restriction in the modelling procedure, then show by a generalized derivation that if there are multiple stationary restrictions in a modelling, the corresponding assumption function must satisfy a criterion of orthogonality. Numerical tests using one-dimensional nonlinear advection equation are performed to validate this criterion. This study is expected to inspire future research on generally guiding the SGS modelling methodology. - Highlights: • The concepts of assumption and restriction in the SGS modelling procedure are defined. • A criterion of orthogonality on the assumption and restrictions is derived. • Numerical tests using one-dimensional nonlinear advection equation are performed to validate this criterion.

  14. Factors associated with prescribing restriction on oncology formulary drugs in Malaysia.

    Science.gov (United States)

    Fatokun, Omotayo; Olawepo, Michael N

    2016-10-01

    Background Drugs listed on formularies are often subjected to a variety of utilization restriction measures. However, the degree of restriction is influenced by multiple factors, including the characteristics and attributes of the listed drugs. Objective To identify the factors that are associated with the levels of prescribing restriction on oncology formulary drugs in Malaysia. Setting Oncology formulary in Malaysia. Method The Malaysia Drug Code assigned to each of the drug products on the Malaysia Ministry of Health (MOH) drug formulary was used to identify oncology drugs belonging to WHO ATC class L (antineoplastic and immunomodulating agents). Main outcome measures Categories of prescribing restrictions, therapeutic class, drug type, administration mode, number of sources and the post-approval use period. Results Oncology drugs having a shorter post-approval use period (p Malaysia MOH drug formulary.

  15. Multiple inflation

    International Nuclear Information System (INIS)

    Murphy, P.J.

    1987-01-01

    The Theory of Inflation, namely, that at some point the entropy content of the universe was greatly increased, has much promise. It may solve the puzzles of homogeneity and the creation of structure. However, no particle physics model has yet been found that can successfully drive inflation. The difficulty in satisfying the constraint that the isotropy of the microwave background places on the effective potential of prospective models is immense. In this work we have codified the requirements of such models in a most general form. We have carefully calculated the amounts of inflation the various problems of the Standard Model need for their solution. We have derived a completely model independent upper bond on the inflationary Hubble parameter. We have developed a general notation with which to probe the possibilities of Multiple Inflation. We have shown that only in very unlikely circumstances will any evidence of an earlier inflation, survive the de Sitter period of its successor. In particular, it is demonstrated that it is most unlikely that two bouts of inflation will yield high amplitudes of density perturbations on small scales and low amplitudes on large. We conclude that, while multiple inflation will be of great theoretical interest, it is unlikely to have any observational impact

  16. Dietary restriction with and without caloric restriction for healthy aging [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Changhan Lee

    2016-01-01

    Full Text Available Caloric restriction is the most effective and reproducible dietary intervention known to regulate aging and increase the healthy lifespan in various model organisms, ranging from the unicellular yeast to worms, flies, rodents, and primates. However, caloric restriction, which in most cases entails a 20–40% reduction of food consumption relative to normal intake, is a severe intervention that results in both beneficial and detrimental effects. Specific types of chronic, intermittent, or periodic dietary restrictions without chronic caloric restriction have instead the potential to provide a significant healthspan increase while minimizing adverse effects. Improved periodic or targeted dietary restriction regimens that uncouple the challenge of food deprivation from the beneficial effects will allow a safe intervention feasible for a major portion of the population. Here we focus on healthspan interventions that are not chronic or do not require calorie restriction.

  17. Study of DNA reconstruction enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, M [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1976-12-01

    Description was made of the characteristics and mechanism of 3 reconstructive enzymes which received from M. luteus or E. coli or T4, and of which natures were clarified as reconstructive enzymes of DNA irradiated with ultraviolet rays. As characteristics, the site of breaking, reaction, molecular weight, electric charge in the neutrality and a specific adhesion to DNA irradiated with ultraviolet rays were mentioned. As to mutant of ultraviolet ray sensitivity, hereditary control mechanism of removal and reconstruction by endo-nuclease activation was described, and suggestion was referred to removal and reconstruction of cells of xedoderma pigmentosum which is a hereditary disease of human. Description was also made as to the mechanism of exonuclease activation which separates dimer selectively from irradiated DNA.

  18. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  19. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods....

  20. Research progress of nanoparticles as enzyme mimetics

    Science.gov (United States)

    Hu, XiaoNa; Liu, JianBo; Hou, Shuai; Wen, Tao; Liu, WenQi; Zhang, Ke; He, WeiWei; Ji, YingLu; Ren, HongXuan; Wang, Qi; Wu, XiaoChun

    2011-10-01

    Natural enzymes as biological catalysts possess remarkable advantages, especially their highly efficient and selective catalysis under mild conditions. However, most natural enzymes are proteins, thus exhibiting an inherent low durability to harsh reaction conditions. Artificial enzyme mimetics have been pursued extensively to avoid this drawback. Quite recently, some inorganic nanoparticles (NPs) have been found to exhibit unique enzyme mimetics. In addition, their much higher stability overcomes the inherent disadvantage of natural enzymes. Furthermore, easy mass-production and low cost endow them more benefits. As a new member of artificial enzyme mimetics, they have received intense attention. In this review article, major progress in this field is summarized and future perspectives are highlighted.

  1. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Dietary restriction of rodents decreases aging rate without affecting initial mortality rate a meta-analysis

    NARCIS (Netherlands)

    Simons, Mirre J. P.; Koch, Wouter; Verhulst, Simon

    Dietary restriction (DR) extends lifespan in multiple species from various taxa. This effect can arise via two distinct but not mutually exclusive ways: a change in aging rate and/or vulnerability to the aging process (i.e. initial mortality rate). When DR affects vulnerability, this lowers

  3. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  4. Immobilised enzymes in biorenewable production

    OpenAIRE

    Franssen, M.C.R.; Steunenberg, P.; Scott, E.L.; Zuilhof, H.; Sanders, J.P.M.

    2013-01-01

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, ...

  5. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  6. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  7. Immobilised enzymes in biorenewables production.

    Science.gov (United States)

    Franssen, Maurice C R; Steunenberg, Peter; Scott, Elinor L; Zuilhof, Han; Sanders, Johan P M

    2013-08-07

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, such as the production of High-Fructose Corn Syrup, but these are still rather rare. Fortunately, there is a rapid expansion in the research efforts that try to improve this, driven by a combination of economic and ecological reasons. This review focusses on those efforts, by looking at attempts to use fatty acids, carbohydrates, proteins and lignin (and their building blocks), as substrates in the synthesis of biorenewables using immobilised enzymes. Therefore, many examples (390 references) from the recent literature are discussed, in which we look both at the specific reactions as well as to the methods of immobilisation of the enzymes, as the latter are shown to be a crucial factor with respect to stability and reuse. The applications of the renewables produced in this way range from building blocks for the pharmaceutical and polymer industry, transport fuels, to additives for the food industry. A critical evaluation of the relevant factors that need to be improved for large-scale use of these examples is presented in the outlook of this review.

  8. Self-powered enzyme micropumps

    Science.gov (United States)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  9. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  10. Biochemistry students' ideas about how an enzyme interacts with a substrate.

    Science.gov (United States)

    Linenberger, Kimberly J; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an enzyme and be able to reason from simplistic lock and key or induced fit models to the more complex energetics model of transition state theory. Learning to understand these many facets of enzyme-substrate interactions and reasoning from multiple models present challenges where students incorrectly make connections between concepts or make no connection at all. This study investigated biochemistry students' understanding of enzyme-substrate interactions through the use of clinical interviews and a national administration (N = 707) of the Enzyme-Substrate Interactions Concept Inventory. Findings include misconceptions regarding the nature of enzyme-substrate interactions, naïve ideas about the active site, a lack of energetically driven interactions, and an incomplete understanding of the specificity pocket. © 2015 by the International Union of Biochemistry and Molecular Biology.

  11. Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity.

    Science.gov (United States)

    Li, Chunyan; Feng, Feihu; Xiong, Xiaoling; Li, Rui; Chen, Ning

    2017-04-01

    The increased oxidative stress is usually observed in obese population, but the control of body weight by calorie restriction and/or exercise training can ameliorate oxidative stress. In order to evaluate oxidative stress in response to exercise and dietary restriction in obese adolescents, a total of 20 obese volunteers were enrolled in a 4-week intervention program including exercise training and dietary restriction. Body compositions and blood samples were analysed before and after 4-week intervention, and biomarkers associated with oxidative stress were examined. After 4-week exercise training coupled with dietary restriction, physical composition parameters including body mass, body mass index (BMI), lean body mass, body fat mass and fat mass ratio had obvious reduction by 12.43%, 13.51%, 5.83%, 25.05% and 14.52%, respectively. In addition, the activities of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) revealed a remarkable enhancement. On the other hand, protein carbonyls (PC) exhibited an obvious reduction. Moreover, total thiols and nitrites with respect to baseline revealed a reducing trend although no significant difference was observed. Therefore, the 4-week exercise intervention coupled with dietary restriction is benefit for the loss of body weight and the mitigation of oxidative stress in obese population so that it can be a recommendable intervention prescription for the loss of body weight.

  12. Predicting drug-target interactions using restricted Boltzmann machines.

    Science.gov (United States)

    Wang, Yuhao; Zeng, Jianyang

    2013-07-01

    In silico prediction of drug-target interactions plays an important role toward identifying and developing new uses of existing or abandoned drugs. Network-based approaches have recently become a popular tool for discovering new drug-target interactions (DTIs). Unfortunately, most of these network-based approaches can only predict binary interactions between drugs and targets, and information about different types of interactions has not been well exploited for DTI prediction in previous studies. On the other hand, incorporating additional information about drug-target relationships or drug modes of action can improve prediction of DTIs. Furthermore, the predicted types of DTIs can broaden our understanding about the molecular basis of drug action. We propose a first machine learning approach to integrate multiple types of DTIs and predict unknown drug-target relationships or drug modes of action. We cast the new DTI prediction problem into a two-layer graphical model, called restricted Boltzmann machine, and apply a practical learning algorithm to train our model and make predictions. Tests on two public databases show that our restricted Boltzmann machine model can effectively capture the latent features of a DTI network and achieve excellent performance on predicting different types of DTIs, with the area under precision-recall curve up to 89.6. In addition, we demonstrate that integrating multiple types of DTIs can significantly outperform other predictions either by simply mixing multiple types of interactions without distinction or using only a single interaction type. Further tests show that our approach can infer a high fraction of novel DTIs that has been validated by known experiments in the literature or other databases. These results indicate that our approach can have highly practical relevance to DTI prediction and drug repositioning, and hence advance the drug discovery process. Software and datasets are available on request. Supplementary data are

  13. Fasting or caloric restriction for healthy aging.

    Science.gov (United States)

    Anton, Stephen; Leeuwenburgh, Christiaan

    2013-10-01

    Aging is associated with a host of biological changes that contribute to a progressive decline in cognitive and physical function, ultimately leading to a loss of independence, and increased risk of mortality. To date, prolonged caloric restriction (i.e., a reduction in caloric intake without malnutrition) is the only non-genetic intervention that has consistently been found to extend both mean and maximal life span across a variety of species. Most individuals have difficulty sustaining prolonged caloric restriction, which has led to a search for alternative approaches that can produce similar to benefits as caloric restriction. A growing body of evidence indicates that fasting periods and intermittent fasting regimens in particular can trigger similar biological pathways as caloric restriction. For this reason, there is increasing scientific interest in further exploring the biological and metabolic effects of intermittent fasting periods, as well as whether long-term compliance may be improved by this type of dietary approach. This special will highlight the latest scientific findings related to the effects of both caloric restriction and intermittent fasting across various species including yeast, fruit flies, worms, rodents, primates, and humans. A specific emphasis is placed on translational research with findings from basic bench to bedside reviewed and practical clinical implications discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Cellular Restriction Factors of Feline Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Carsten Münk

    2011-10-01

    Full Text Available Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors or inhibit viral replication (restriction factors. Similar to Human immunodeficiency virus type 1 (HIV-1, the cat lentivirus Feline immunodeficiency virus (FIV is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors.

  15. Cellular Restriction Factors of Feline Immunodeficiency Virus

    Science.gov (United States)

    Zielonka, Jörg; Münk, Carsten

    2011-01-01

    Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors) or inhibit viral replication (restriction factors). Similar to Human immunodeficiency virus type 1 (HIV-1), the cat lentivirus Feline immunodeficiency virus (FIV) is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors. PMID:22069525

  16. Newer antidiabetic drugs and calorie restriction mimicry

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available De-acceleration of aging and delayed development of age-related morbidity accompanies the restriction of calories (without malnutrition in laboratory mice, nematodes, yeast, fish, and dogs. Recent results from long-term longitudinal studies conducted on primates have suggested longevity benefits of a 30% restriction of calories in rhesus monkeys as well. Among calorie restricted rhesus monkeys one of the mechanisms for the improvement in lifespan was the reduction in the development of glucose intolerance and cardiovascular disease. Although there are no comparable human studies, it is likely that metabolic and longevity benefits will accompany a reduction in calories in humans as well. However, considering the difficulties in getting healthy adults to limit food intake science has focused on understanding the biochemical processes that accompany calorie restriction (CR to formulate drugs that would mimic the effects of CR without the need to actually restrict calories. Drugs in this emerging therapeutic field are called CR mimetics. Some of the currently used anti-diabetic agents may have some CR mimetic like effects. This review focuses on the CR mimetic properties of the currently available anti-diabetic agents.

  17. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    Science.gov (United States)

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  19. Biochemical characterization of thermostable cellulase enzyme from ...

    African Journals Online (AJOL)

    user

    2012-05-29

    May 29, 2012 ... tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well ... In the current industrial processes, cellulolytic enzymes ... energy sources such as glucose, ethanol, hydrogen and.

  20. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  1. Castor Oil Transesterification Catalysed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    In the present work, biodiesel production by reaction of non-edible castor oil with methanol under enzymatic catalysis is investigated. Two liquid enzymes were tested: Eversa Transform and Resinase HT. Reactions were performed at 35 °C and with a molar ratio of methanol to oil of 6:1. The reaction...... time was 8 hours. Stepwise addition of methanol was necessary to avoid enzyme inhibition by methanol. In order to minimize the enzyme costs, the influence of enzyme activity loss during reuse of both enzymes was evaluated under two distinct conditions. In the former, the enzymes were recovered...... and fully reused; in the latter, a mixture of 50 % reused and 50 % fresh enzymes was tested. In the case of total reuse after three cycles, both enzymes achieved only low conversions. The biodiesel content in the oil-phase using Eversa Transform was 94.21 % for the first cycle, 68.39 % in the second, and 33...

  2. Study on detection of mutation DNA fragment in gastric cancer by restriction endonuclease fingerprinting with capillary electrophoresis.

    Science.gov (United States)

    Wang, Rong; Xie, Hua; Xu, Yue-Bing; Jia, Zheng-Ping; Meng, Xian-Dong; Zhang, Juan-Hong; Ma, Jun; Wang, Juan; Wang, Xian-Hua

    2012-03-01

    The DNA fragment detection focusing technique has further enhanced the sensitivity and information of DNA targets. The DNA fragment detection method was established by capillary electrophoresis with laser-induced fluorescence detection and restriction endonuclease chromatographic fingerprinting (CE-LIF-REF) in our experiment. The silica capillary column was coated with short linear polyarclarylamide (SLPA) using nongel sieving technology. The excision product of various restricted enzymes of DNA fragments was obtained by REF with the molecular biology software Primer Premier 5. The PBR322/BsuRI DNA marker was used to establish the optimization method. The markers were focused electrophoretically and detected by CE-LIF. The results demonstrate that the CE-LIF-REF with SLPA can improve separation, sensitivity and speed of analysis. This technique may be applied to analysis of the excision product of various restricted enzymes of prokaryotic plasmid (pIRES2), eukaryote plasmid (pcDNA3.1) and the PCR product of codon 248 region of gastric cancer tissue. The results suggest that this method could very sensitively separate the excision products of various restricted enzymes at a much better resolution than the traditional agarose electrophoresis. Copyright © 2011 John Wiley & Sons, Ltd.

  3. EFFECT OF MARINATION WITH PROTEOLYTIC ENZYMES ON QUALITY OF BEEF MUSCLE

    Directory of Open Access Journals (Sweden)

    Daniela Istrati

    2012-03-01

    Full Text Available During storage and thermal treatment meat suffers a number of biochemical and physical-chemical changes in the substrate protein, changes that take place with varying intensity depending on the method of preservation utilized and temperature of thermal treatment applied. Application of different treatments aimed to influence the proteolytic activity as is the case of enzymatic tenderization of beef.Improving the meat tenderness with proteolytic enzymes is promising, but current legislation restricting the use of proteolytic enzymes from bacterial origin and recommended tenderizers salts containing papain, ficin and bromelain. Recent research revealed that meat marinating before grilling results in a reduction of heterocyclic amine content after thermal treatment. Also, the addition of fruit pulp, garlic or other spices contributes to decreased production of heterocyclic amines because of their antioxidant activity. In the present study was aimed influence of exogenous proteolytic enzymes on adult beef tenderness. To increase the tenderness of adult beef were used exogenous enzymes preparations (papain and bromelain and natural sources of enzymes using pineapple and papaya fruit. It was intended to establish the correlation between enzymatic activity of enzymes used in the study, the processing technology and changes in the physical-chemical and biochemical characteristics that occur during storage in refrigerated conditions (evolution of the rigidity index and water holding capacity, cooking losses and cooking yield of the samples injected/marinated with enzymes.

  4. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution.

    Science.gov (United States)

    Kobayashi, I

    2001-09-15

    Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and

  5. A new versatile microarray-based method for high-throughput screening of carbohydrate-active enzymes

    DEFF Research Database (Denmark)

    Vidal Melgosa, Silvia; Pedersen, Henriette Lodberg; Schückel, Julia

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing, together with associated bioinformatic tools have identified vast numbers of putative carbohydrate degrading and modifying enzymes including glycoside hydrolases...... that the technique can be used to analyse both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified un-characterised enzymes...

  6. Zymography methods for visualizing hydrolytic enzymes

    OpenAIRE

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E.; Opdenakker, Ghislain

    2013-01-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful., but often misinterpreted, tool. yielding information on potential. hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tis...

  7. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  8. Enzyme Treatment-Free and Ligation-Independent Cloning Using Caged Primers in Polymerase Chain Reactions

    Directory of Open Access Journals (Sweden)

    Akinori Kuzuya

    2011-12-01

    Full Text Available A new simple scheme for constructing recombinant vectors that does not require any restriction enzyme, ligase, or any other special enzyme treatment has been developed. By using caged primers in PCR, unnatural sticky-ends of any sequence, which are sufficiently long for ligation-independent cloning (LIC, are directly prepared on the product after a brief UVA irradiation. Target genes and vectors amplified by this light-assisted cohesive-ending (LACE PCR join together in the desired arrangement in a simple mixture of them, tightly enough to be repaired and ligated in competent cells.

  9. Rapid intranasal delivery of chloramphenicol acetyltransferase in the active form to different brain regions as a model for enzyme therapy in the CNS.

    Science.gov (United States)

    Appu, Abhilash P; Arun, Peethambaran; Krishnan, Jishnu K S; Moffett, John R; Namboodiri, Aryan M A

    2016-02-01

    The blood brain barrier (BBB) is critical for maintaining central nervous system (CNS) homeostasis by restricting entry of potentially toxic substances. However, the BBB is a major obstacle in the treatment of neurotoxicity and neurological disorders due to the restrictive nature of the barrier to many medications. Intranasal delivery of active enzymes to the brain has therapeutic potential for the treatment of numerous CNS enzyme deficiency disorders and CNS toxicity caused by chemical threat agents. The aim of this work is to provide a sensitive model system for analyzing the rapid delivery of active enzymes into various regions of the brain with therapeutic bioavailability. We tested intranasal delivery of chloramphenicol acetyltransferase (CAT), a relatively large (75kD) enzyme, in its active form into different regions of the brain. CAT was delivered intranasally to anaesthetized rats and enzyme activity was measured in different regions using a highly specific High Performance Thin Layer Chromatography (HP-TLC)-radiometry coupled assay. Active enzyme reached all examined areas of the brain within 15min (the earliest time point tested). In addition, the yield of enzyme activity in the brain was almost doubled in the brains of rats pre-treated with matrix metalloproteinase-9 (MMP-9). Intranasal administration of active enzymes in conjunction with MMP-9 to the CNS is both rapid and effective. The present results suggest that intranasal enzyme therapy is a promising method for counteracting CNS chemical threat poisoning, as well as for treating CNS enzyme deficiency disorders. Published by Elsevier B.V.

  10. Explaining an Unusually Fast Parasitic Enzyme: Folate Tail-Binding Residues Dictate Substrate Positioning and Catalysis in Cryptosporidium hominis Thymidylate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Martucci,W.; Vargo, M.; Anderson, K.

    2008-01-01

    The essential enzyme TS-DHFR from Cryptosporidium hominis undergoes an unusually rapid rate of catalysis at the conserved TS domain, facilitated by two nonconserved residues, Ala287 and Ser290, in the folate tail-binding region. Mutation of these two residues to their conserved counterparts drastically affects multiple steps of the TS catalytic cycle. We have determined the crystal structures of all three mutants (A287F, S290G, and A287F/S290G) in complex with active site ligands dUMP and CB3717. The structural data show two effects of the mutations: an increased distance between the ligands in the active site and increased flexibility of the folate ligand in the partially open enzyme state that precedes conformational change to the active catalytic state. The latter effect is able to be rescued by the mutants containing the A287F mutation. In addition, the conserved water network of TS is altered in each of the mutants. The structural results point to a role of the folate tail-binding residues in closely positioning ChTS ligands and restricting ligand flexibility in the partially open state to allow for a rapid transition to the active closed state and enhanced rate of catalysis. These results provide an explanation on how folate tail-binding residues at one end of the active site affect long-range interactions throughout the TS active site and validate these residues as targets for species-specific drug design.

  11. Metabolic Regulation of Methionine Restriction in Diabetes.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Chen, Shuai; Li, Yuying; Han, Hui; Gao, Jing; Liu, Gang; Wu, Xin; Li, Tiejun; Kim, Sung Woo; Yin, Yulong

    2018-03-30

    Although the effects of dietary methionine restriction have been investigated in the physiology of aging and diseases related to oxidative stress, the relationship between methionine restriction and the development of metabolic disorders has not been explored extensively. This review summarizes studies of the possible involvement of dietary methionine restriction in improving insulin resistance, glucose homeostasis, oxidative stress, lipid metabolism, the pentose phosphate pathway, and inflammation, with an emphasis on the fibroblast growth factor 21 and protein phosphatase 2A signals and autophagy in diabetes. Diets deficient in methionine may be a useful nutritional strategy in patients with diabetes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Sight Restrictions in Maghrib Muslim Architecture

    Directory of Open Access Journals (Sweden)

    Mustapha Ben Hamouche

    1999-12-01

    Full Text Available Sight in Islamic culture is subject to legal restrictions that aim at preserving moral consciousness in Muslim societies. These restrictions have a direct impact on architecture in traditional Muslim cities. Details such as placement of doors and windows, the use of balconies and rooftops, and building heights were shaped by legal reasoning based on sight restrictions. The present study aims at highlighting this legal reasoning system by analyzing legal opinions that were continuously advocated by jurists in response to daily practices, and the legal principles on which these opinions were based. This is expected to contribute in developing a new intellectual discourse on Muslim architecture that could go beyond the present design theories.

  13. Cellulolytic enzyme compositions and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James; Binder, Thomas P.

    2017-07-25

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  14. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  15. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)

    In the present study, the amylase enzyme producing potential of four different Aspergillus species was analyzed. The extracted amylase enzyme was purified by diethyl amino ethyl (DEAE) cellulose and Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch.

  16. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  17. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  18. Effect of ionizing radiation on the activity of restriction nucleases PvuII and HindIII

    International Nuclear Information System (INIS)

    Luzova, M.; Michaelidesova, A.; Davidkova, M.

    2014-01-01

    The research is focused on the influence of the ionizing radiation on the activity of the restriction enzymes PvuII and HindIII. Enzymes PvuII and HindIII are restriction endonucleases of type II. These enzymes can be found in bacteria and they have a significant role in defense mechanisms of bacteria against viruses. They cleave DNA double helix at specific recognition palindromic sequences in the presence of cofactor Mg 2+ . PvuII cleaves the sequence CAG↓CTG and HindIII cleaves the sequence A↓AGCTT in marked places. Plasmid pcDNA3 has been used as the DNA substrate for the whole experimental study. It is 5446 base pairs (bp) long, circular DNA molecule and it contains three recognition sites for enzyme PvuII and one recognition site for enzyme HindIII. After the correct interaction of pcDNA3 with PvuII, we thus have three plasmid fragments with lengths 1069, 1097 and 3280 bp. When HindIII is incubated with this plasmid, we shall obtain the linear form of the DNA plasmid.The method for processing the cleaved DNA samples is the agarose gel electrophoresis. The activity of the irradiated enzymes decreases with increasing dose of radiation, because a part of the enzymes is deactivated due to induced radiation damage. To determine effect of radiation quality, samples were irradiated using proton and gamma sources. The results of our experimental study will be presented and discussed with respect to molecular structure of both enzymes and particular sites of radical damage influencing their function. (authors)

  19. Predictive factors for intrauterine growth restriction.

    Science.gov (United States)

    Albu, A R; Anca, A F; Horhoianu, V V; Horhoianu, I A

    2014-06-15

    Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies.

  20. Optimal Policy under Restricted Government Spending

    DEFF Research Database (Denmark)

    Sørensen, Anders

    2006-01-01

    Welfare ranking of policy instruments is addressed in a two-sector Ramsey model with monopoly pricing in one sector as the only distortion. When government spending is restricted, i.e. when a government is unable or unwilling to finance the required costs for implementing the optimum policy...... effectiveness canexceed the welfare loss from introducing new distortions. Moreover, it is found that the investment subsidy is gradually phased out of the welfare maximizing policy, which may be a policy combining the two subsidies, when the level of government spending is increased.Keywords: welfare ranking......, indirect and direct policy instruments, restricted government spending JEL: E61, O21, O41...

  1. Effects of restricted and free suckling

    OpenAIRE

    Fröberg, Sofie

    2008-01-01

    The aim of this thesis was to study the effects of restricted and free suckling in comparison with non-suckling on production and behaviour of cow and calf in dairy production systems. In the first and second study cows of Zebu × Holstein (n=24) and Holstein breed (n=27) and their calves were allocated to two treatments, restricted suckling (RS) and artificial rearing (AR) and studied during eight weeks. In the first study calves were present during milking and RS calves suckled after milking...

  2. Screening the ToxCast Phase I Chemical Library for inhibition of Deiodinase Type I enzyme activity

    Science.gov (United States)

    Thyroid hormone (TH) signaling in vertebrates is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism and elimination, to maintain proper homeostasis of the hormones. Deiodinase enzymes interconvert THs between less active and...

  3. Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes.

    Science.gov (United States)

    Duval, Simon; Ducluzeau, Anne-Lise; Nitschke, Wolfgang; Schoepp-Cothenet, Barbara

    2008-07-16

    Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis.

  4. Physiological Responses, Growth Rate and Blood Metabolites Under Feed Restriction and Thermal Exposure in Kids

    Directory of Open Access Journals (Sweden)

    O.K. Hooda

    2014-05-01

    Full Text Available The study was carried out to study the cumulative effect of thermal stress and feed restriction in kids. Twelve kids of Alpine x Beetle cross were divided into two groups. Group 1 served as control and group 2 was put on restricted feeding and exposed at 40, 42 and 44oC. Body weights of both groups were similar before thermal exposure and feed restriction. Body weight of group 1 increased significantly and were higher than group 2 throughout the experiment. Body weight gain, average daily gain and feed conversion efficiency were comparable in both groups after removal of thermal stress and switching over to ad libitum feeding (42-63 days. Body weights of group 2 remained lower than group 1, the losses in body weights of group 2 could not be compensated and there was approximately 25% loss in body weight at the end of experiment. Physiological responses of group 2 were significantly lower before exposure to high temperature but increased significantly after exposure at temperature 40, 42 and 44oC and the increase was in commensurate with the increase in exposure temperature. Blood glucose, total protein, albumin and serum enzymes decreased significantly on exposure at higher temperature and differences were higher in feed restricted group. T3, T4 and cortisol concentration were similar in both groups before feed restriction and thermal stress. T3, T4 concentration decreased while cortisol concentration increased significantly after exposure to high temperature. Variations in plasma enzymes, acid phosphatase, alkaline phosphatase, SGOT and SGPT were not significant before feed restriction and thermal stress. The activities of acid phosphatase and alkaline phosphatase decreased whereas that of SGOT and SGPT increased significantly on exposure at temperature 40oC and subsequent changes at temperature 42 and 44oC were not significant. The study indicated that animals of group 2 experienced more stress as observed by significant alteration in body

  5. Restriction enzyme analysis of the human cytomegalovirus genome in specimens collected from immunodeficient patients in Belém, State of Pará, Brazil Análise de restrição enzimática do genoma viral do citomegalovírus humano em espécimes clínicos de pacientes imunodeficientes, Belém, Estado do Pará

    Directory of Open Access Journals (Sweden)

    Dorotéa Lobato da Silva

    2011-10-01

    Full Text Available INTRODUCTION: Human cytomegalovirus is an opportunistic betaherpesvirus that causes persistent and serious infections in immunodeficient patients. Recurrent infections occur due to the presence of the virus in a latent state in some cell types. It is possible to examine the virus using molecular methods to aid in the immunological diagnosis and to generate a molecular viral profile in immunodeficient patients. The objective of this study was to characterize cytomegalovirus genotypes and to generate the epidemiological and molecular viral profile in immunodeficient patients. METHODS: A total of 105 samples were collected from immunodeficient patients from the City of Belém, including newborns, hemodialysis patients, transplant recipients and HIV+ patients. An IgG and IgM antibody study was completed using ELISA, and enzymatic analysis by restriction fragment length polymorphism (RFLP was performed to characterize viral genotypes. RESULTS: It was observed that 100% of the patients had IgG antibodies, 87% of which were IgG+/IgM-, consistent with a prior infection profile, 13% were IgG+/IgM+, suggestive of recent infection. The newborn group had the highest frequency (27% of the IgG+/IgM+ profile. By RFLP analysis, only one genotype was observed, gB2, which corresponded to the standard AD169 strain. CONCLUSIONS: The presence of IgM antibodies in new borns indicates that HCMV continues to be an important cause of congenital infection. The low observed genotypic diversity could be attributed to the small sample size because newborns were excluded from the RFLP analysis. This study will be continued including samples from newborns to extend the knowledge of the general and molecular epidemiology of HCMV in immunodeficient patients.INTRODUÇÃO: O citomegalovírus é um betaherpesvírus oportunista, causador de infecções persistentes e graves em pacientes imunodeficientes. As infecções recorrentes ocorrem devido à presença do vírus em estado de

  6. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  7. 47 CFR 64.1200 - Delivery restrictions.

    Science.gov (United States)

    2010-10-01

    ... Advertising § 64.1200 Delivery restrictions. (a) No person or entity may: (1) Initiate any telephone call... telephone service, specialized mobile radio service, or other radio common carrier service, or any service... expect them to be included given the identification of the caller and the product being advertised. (6...

  8. Review: Neuroinflammation in intrauterine growth restriction.

    Science.gov (United States)

    Wixey, Julie A; Chand, Kirat K; Colditz, Paul B; Bjorkman, S Tracey

    2017-06-01

    Disruption to the maternal environment during pregnancy from events such as hypoxia, stress, toxins, inflammation, and reduced placental blood flow can affect fetal development. Intrauterine growth restriction (IUGR) is commonly caused by chronic placental insufficiency, interrupting supply of oxygen and nutrients to the fetus resulting in abnormal fetal growth. IUGR is a major cause of perinatal morbidity and mortality, occurring in approximately 5-10% of pregnancies. The fetal brain is particularly vulnerable in IUGR and there is an increased risk of long-term neurological disorders including cerebral palsy, epilepsy, learning difficulties, behavioural difficulties and psychiatric diagnoses. Few studies have focused on how growth restriction interferes with normal brain development in the IUGR neonate but recent studies in growth restricted animal models demonstrate increased neuroinflammation. This review describes the role of neuroinflammation in the progression of brain injury in growth restricted neonates. Identifying the mediators responsible for alterations in brain development in the IUGR infant is key to prevention and treatment of brain injury in these infants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 7 CFR 3430.905 - Funding restrictions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Funding restrictions. 3430.905 Section 3430.905 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL...

  10. On restricted context-free grammars

    Czech Academy of Sciences Publication Activity Database

    Dassow, J.; Masopust, Tomáš

    2012-01-01

    Roč. 78, č. 1 (2012), s. 293-304 ISSN 0022-0000 Institutional research plan: CEZ:AV0Z10190503 Keywords : context-free grammars * derivation restriction * normal forms Subject RIV: BA - General Mathematics Impact factor: 1.000, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022000011000572

  11. 9 CFR 166.2 - General restrictions.

    Science.gov (United States)

    2010-01-01

    ... of any of the following: Processed products; rendered products; bakery waste; candy waste; eggs... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false General restrictions. 166.2 Section 166.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  12. Epigenetic regulation of caloric restriction in aging

    Directory of Open Access Journals (Sweden)

    Daniel Michael

    2011-08-01

    Full Text Available Abstract The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases.

  13. Strategies in intrauterine growth restriction at term

    NARCIS (Netherlands)

    Boers, Kim Esther

    2012-01-01

    To establish consensus and to collect evidence on the best management policy in intrauterine growth restriction (IUGR) at term, the DIGITAT-trial (Disproportionate Intrauterine Growth Intervention Trial At Term) was designed. The aim of the DIGITAT study was to compare the effect of induction of

  14. Sleep restriction progress to cardiac autonomic imbalance ...

    African Journals Online (AJOL)

    Since it's more difficult to maintain adequate sleep duration among night watchmen during their working schedule, hence the purpose of our present study was to investigate whether mental stress or fatigue over restricted sleep period in night shift, affects HRV, in order to elucidate on cardiac autonomic modulation among ...

  15. 18 CFR 35.39 - Affiliate restrictions.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Affiliate restrictions. 35.39 Section 35.39 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Sales of Electric Energy, Capacity and Ancillary Services at Market-Based Rates § 35.39 Affiliate...

  16. An Adjustment Restriction on Fish Quota

    NARCIS (Netherlands)

    Dijk, van Diana; Hendrix, E.M.T.; Haijema, Rene; Groeneveld, R.A.; Ierland, van E.C.

    2017-01-01

    Management objectives of the European Union for North Sea fish stocks are shifting towards considering both biological sustainability and economic benefits. As part of multiannual management plans, an adjustment restriction on fish quota has been introduced. Its objective is to obtain an

  17. Periodic Solutions for Circular Restricted -Body Problems

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Zhao

    2013-01-01

    Full Text Available For circular restricted -body problems, we study the motion of a sufficiently small mass point (called the zero mass point in the plane of equal masses located at the vertices of a regular polygon. By using variational minimizing methods, for some , we prove the existence of the noncollision periodic solution for the zero mass point with some fixed wingding number.

  18. Sleep restriction progress to cardiac autonomic imbalance

    African Journals Online (AJOL)

    Arbind Kumar Choudhary

    2017-05-31

    May 31, 2017 ... and inadequate sleep is a common feature of night shift work. ... night watchmen during their working schedule, hence the purpose of our ... whether mental stress or fatigue over restricted sleep period in night ... 10 Hence, the variability in heart rate, (with reduced ..... Long-term cardiovascular outcomes.

  19. Nutrigenetics and nutrigenomics of caloric restriction.

    Science.gov (United States)

    Abete, Itziar; Navas-Carretero, Santiago; Marti, Amelia; Martinez, J Alfredo

    2012-01-01

    Obesity is a complex disease resulting from a chronic and long-term positive energy balance in which both genetic and environmental factors are involved. Weight-reduction methods are mainly focused on dietary changes and increased physical activity. However, responses to nutritional intervention programs show a wide range of interindividual variation, which is importantly influenced by genetic determinants. In this sense, subjects carrying several obesity-related single-nucleotide polymorphisms (SNPs) show differences in the response to calorie-restriction programs. Furthermore, there is evidence indicating that dietary components not only fuel the body but also participate in the modulation of gene expression. Thus, the expression pattern and nutritional regulation of several obesity-related genes have been studied, as well as those that are differentially expressed by caloric restriction. The responses to caloric restriction linked to the presence of SNPs in obesity-related genes are reviewed in this chapter. Also, the influence of energy restriction on gene expression pattern in different tissues is addressed. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Rat Neutrophil Phagocytosis Following Feed Restriction

    Czech Academy of Sciences Publication Activity Database

    Slapničková, Martina; Berger, J.

    2002-01-01

    Roč. 11, č. 3 (2002), s. 172-177 ISSN 0938-7714 Institutional research plan: CEZ:AV0Z5052915 Keywords : circulating neutrophil * diet restriction * phagocytosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.167, year: 2001

  1. Employees, Trade Secrets and Restrictive Covenants

    NARCIS (Netherlands)

    Kamperman Sanders, Anselm; Heath, C.

    2017-01-01

    The book covers the protection of trade secrets and the law on post-contractual non-compete clauses (restrictive covenants) in an employment context. The topic is approached on an international and comparative level (chapters 1–3 and 10), and by way of country reports covering several European and

  2. Restricted Choice in the Management of Change.

    Science.gov (United States)

    North, R. F. J.

    1988-01-01

    Instances from case studies of comprehensive schools in the United Kingdom show that cultural influences restrict possibilities of "rational" action by educational leaders. This article warns against business theory and concludes that we need to know more about how people in schools make choices. (Author/TE)

  3. 32 CFR 701.44 - Restrictions.

    Science.gov (United States)

    2010-07-01

    ... OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Fees § 701.44 Restrictions. (a) No fees may be charged by any DON activity if the costs of routine collection and processing of the fee are likely to equal or exceed the...

  4. 50 CFR 648.164 - Possession restrictions.

    Science.gov (United States)

    2010-10-01

    ... Atlantic Bluefish Fishery § 648.164 Possession restrictions. (a) No person shall possess more than 15 bluefish in, or harvested from, the EEZ unless that person is the owner or operator of a fishing vessel issued a bluefish commercial permit or is issued a bluefish dealer permit. Persons aboard a vessel that...

  5. 38 CFR 1.462 - Confidentiality restrictions.

    Science.gov (United States)

    2010-07-01

    ... Sickle Cell Anemia § 1.462 Confidentiality restrictions. (a) General. The patient records to which §§ 1..., infection with the HIV, or sickle cell anemia may be acknowledged only if the patient's written consent is... with the HIV, or sickle cell anemia. (2) Any answer to a request for a disclosure of patient records...

  6. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.

    Science.gov (United States)

    Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids, cofactors and

  7. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism

    Science.gov (United States)

    2015-01-01

    Background Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. Results ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids

  8. Low-resolution remeshing using the localized restricted voronoi diagram

    KAUST Repository

    Yan, Dongming; Bao, Guanbo; Zhang, Xiaopeng; Wonka, Peter

    2014-01-01

    A big problem in triangular remeshing is to generate meshes when the triangle size approaches the feature size in the mesh. The main obstacle for Centroidal Voronoi Tessellation (CVT)-based remeshing is to compute a suitable Voronoi diagram. In this paper, we introduce the localized restricted Voronoi diagram (LRVD) on mesh surfaces. The LRVD is an extension of the restricted Voronoi diagram (RVD), but it addresses the problem that the RVD can contain Voronoi regions that consist of multiple disjoint surface patches. Our definition ensures that each Voronoi cell in the LRVD is a single connected region. We show that the LRVD is a useful extension to improve several existing mesh-processing techniques, most importantly surface remeshing with a low number of vertices. While the LRVD and RVD are identical in most simple configurations, the LRVD is essential when sampling a mesh with a small number of points and for sampling surface areas that are in close proximity to other surface areas, e.g., nearby sheets. To compute the LRVD, we combine local discrete clustering with a global exact computation. © 1995-2012 IEEE.

  9. Low-resolution remeshing using the localized restricted voronoi diagram

    KAUST Repository

    Yan, Dongming

    2014-10-01

    A big problem in triangular remeshing is to generate meshes when the triangle size approaches the feature size in the mesh. The main obstacle for Centroidal Voronoi Tessellation (CVT)-based remeshing is to compute a suitable Voronoi diagram. In this paper, we introduce the localized restricted Voronoi diagram (LRVD) on mesh surfaces. The LRVD is an extension of the restricted Voronoi diagram (RVD), but it addresses the problem that the RVD can contain Voronoi regions that consist of multiple disjoint surface patches. Our definition ensures that each Voronoi cell in the LRVD is a single connected region. We show that the LRVD is a useful extension to improve several existing mesh-processing techniques, most importantly surface remeshing with a low number of vertices. While the LRVD and RVD are identical in most simple configurations, the LRVD is essential when sampling a mesh with a small number of points and for sampling surface areas that are in close proximity to other surface areas, e.g., nearby sheets. To compute the LRVD, we combine local discrete clustering with a global exact computation. © 1995-2012 IEEE.

  10. Patterns of intraspecific variability in the response to caloric restriction

    Science.gov (United States)

    Gribble, Kristin E.; Kaido, Oksana; Jarvis, George; Mark Welch, David B.

    2014-01-01

    Caloric restriction (CR) is cited as the most robust means of increasing lifespan across a range of taxa, yet there is a high degree of variability in the response to CR, both within and between species. To examine the intraspecific evolutionary conservation of lifespan extension by CR, we tested the effects of chronic caloric restriction (CCR) at multiple food levels and of intermittent fasting (IF) in twelve isolates from the Brachionus plicatilis species complex of monogonont rotifers. While CCR generally increased or did not change lifespan and total fecundity, IF caused increased, unchanged, or decreased lifespan, depending upon the isolate, and decreased total fecundity in all but one isolate. Lifespan under ad libitum (AL) feeding varied among isolates and predicted the lifespan response to CR: longer-lived isolates under AL were less likely to have a significant increase in lifespan under CCR and were more likely to have a significantly shortened lifespan under IF. Lifespan under AL conditions and the response to CR were not correlated with hydroperiodicity of native habitat or with time in culture. Lack of trade-off between lifespan and fecundity under CCR, and differences in lifespan and fecundity under CCR and IF, even when average food intake was similar, suggest that longevity changes are not always directly determined by energy intake and that CCR and IF regimens extend lifespan through diverse genetic mechanisms. PMID:24384399

  11. Optimization of offshore wind farm layout in restricted zones

    International Nuclear Information System (INIS)

    Hou, Peng; Hu, Weihao; Chen, Cong; Soltani, Mohsen; Chen, Zhe

    2016-01-01

    In this research, an optimization method for offshore wind farm layout design is proposed. With the purpose of maximizing the energy production of the wind farm, the wind turbine (WT) positions are optimized. Due to the limitations of seabed conditions, marine traffic limitations or shipwrecks, etc., the WTs are expected to be placed outside specific areas. Based on this fact, a restriction zone concept is proposed in this paper and implemented with the penalty function method. In order to find a feasible solution, a recent proposed stochastic algorithm, particle swarm optimization algorithm with multiple adaptive methods (PSO-MAM) is adopted. The simulation results indicate that the proposed method can find a layout which outperforms a baseline layout of a reference wind farm (RWF) by increasing the energy yield by 3.84%. - Highlights: • The offshore restricted area concept is proposed. • The recent developed PSO-MAM algorithm is arranged to optimize the layout. • The penalty function method is adopted to help find the feasible solution. • The optimized layout increases energy yields 3.84% than reference wind farm.

  12. Mammary sensitivity to protein restriction and re-alimentation.

    Science.gov (United States)

    Goodwill, M G; Jessop, N S; Oldham, J D

    1996-09-01

    The present study tested the influence of protein undernutrition and re-alimentation on mammary gland size and secretory cell activity in lactating rats. During gestation, female Sprague-Dawley rats were offered a high-protein diet (215 g crude protein (N x 6.25; CP)/kg DM; H); litters were standardized to twelve pups at parturition. During lactation, two diets were offered ad libitum, diet H and a low-protein diet (90 g CP/kg DM; L). Lactational dietary treatments were the supply ad libitum of either diet H (HHH) or diet L (LLL) for the first 12 d of lactation, or diet L transferring to diet H on either day 6 (LHH) or 9 (LLH) of lactation. On days 1, 6, 9 and 12 of lactation, rats from each group (n > or = 6) were used to estimate mammary dry mass, fat, protein, DNA and RNA; the activities of lactose synthetase (EC 2.4.1.22) enzyme and Na+,K(+)-ATPase (EC 3.6.1.37) were also measured. Rats offered a diet considered protein sufficient (H) from day 1 of lactation showed a decrease in mammary dry mass and fat but an increase in DNA, RNA and protein on day 6, after which there was no further change, except for mammary protein which continued to increase. However, rats offered diet L showed a steady loss in mammary mass and fat throughout the 12 d lactation period and no change in mammary DNA, RNA or protein. Rats previously protein restricted for either the first 6 or 9 d of lactation had their mammary dry mass and mammary fat loss halted and showed a rapid increase in mammary DNA, RNA and protein on re-alimentation. Lactose production in group HHH, as measured by lactose synthetase activity, was similar on days 1 and 6 of lactation, after which a significant increase was seen. Protein-restricted rats showed no change in lactose synthetase activity during the 12 d experimental period. Changing from diet L to diet H led to a significant increase in lactose synthetase activity to levels comparable with those offered diet H from day 1. These results show that rats

  13. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  14. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  15. Perspective food addiction, caloric restriction, and dopaminergic neurotransmission

    DEFF Research Database (Denmark)

    Stankowska, Arwen Urrsula Malgorzata; Gjedde, Albert

    2013-01-01

    People attempt to change their lifestyle when obesity impairs their quality of life. The attempts often fail when multiple habits must be changed in unison. Here we explore relations among food addiction, the neurobiology of habits, and caloric restriction, when people seek to return to normal......, and reduced activity in prefrontal regions of the cerebral cortex. The neurobiological characteristics suggest that obese people also have a pathological dependence in common with addicts, in the form of food addiction. Malnutrition and dieting both relate to binge eating, possibly as a compensation...... of uncontrolled eating increases dopamine release in the nucleus accumbens. This and other evidence suggests that abuse of food is a habit learned by means of mechanisms centred in the basal ganglia, with an increased risk of relapse in the presence of associative amplifiers. This risk is predicted...

  16. Luminal progenitors restrict their lineage potential during mammary gland development.

    Science.gov (United States)

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  17. Microarray analysis of subcutaneous adipose tissue from mature cows with divergent body weight gain after feed restriction and realimentation

    Directory of Open Access Journals (Sweden)

    H.C. Cunningham

    2018-02-01

    Full Text Available Body weight response to periods of feed restriction and realimentation is critical and relevant to the agricultural industry. The purpose of this study was to evaluate differentially expressed genes identified in subcutaneous adipose tissue collected from cows divergent in body weight (BW gain after feed restriction and realimentation. We compared adipose samples from cows with greater gain based on average daily gain (ADG during realimentation with samples from cows with lesser gain. Specifically, there were four comparisons including two comparing the high and low gain animals across each feeding period (feed restriction and realimentation and two that compared differences in feed restriction and realimentation across high or low gain classifications. Using microarray analysis, we provide a set of differentially expressed genes identified between the high and low gain at both periods of nutrient restriction and realimentation. These data identify multiple differentially expressed genes between these two phenotypes across both nutritional environments. Keywords: Beef cows, Subcutaneous fat, Transcriptome

  18. Restricted open-shell Kohn-Sham theory: N unpaired electrons

    International Nuclear Information System (INIS)

    Schulte, Marius; Frank, Irmgard

    2010-01-01

    Graphical abstract: High-spin or low-spin? The lowest-lying states for different multiplicities of iron complexes are described with a combination of restricted open-shell Kohn-Sham theory and Car-Parrinello molecular dynamics. - Abstract: We present an energy expression for restricted open-shell Kohn-Sham theory for N unpaired electrons. It is shown that it is possible to derive an explicit energy expression for all low-spin multiplets of systems that exhibit neither radial nor cylindrical symmetry. The approach was implemented in the CPMD code and tested for iron complexes.

  19. Intrauterine growth restriction: screening, diagnosis, and management.

    Science.gov (United States)

    Lausman, Andrea; Kingdom, John

    2013-08-01

    Intrauterine growth restriction (IUGR) is an obstetrical complication, which by definition would screen in 10% of fetuses in the general population. The challenge is to identify the subset of pregnancies affected with pathological growth restriction in order to allow intervention that would decrease morbidity and mortality. The purpose of this guideline is to provide summary statements and recommendations and to establish a framework for screening, diagnosis, and management of pregnancies affected with IUGR. Affected pregnancies are compared with pregnancies in which the fetus is at an appropriate weight for its gestational age. History, physical examination, and laboratory investigations including biochemical markers and ultrasound characteristics of IUGR are reviewed, and a management strategy is suggested. Published literature in English was retrieved through searches of PubMed or MEDLINE, CINAHL, and The Cochrane Library in January 2013 using appropriate controlled vocabulary via MeSH terms (fetal growth restriction and small for gestational age) and key words (fetal growth, restriction, growth retardation, IUGR, low birth weight, small for gestational age). Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table). Implementation of the recommendations in this guideline should increase clinician recognition of IUGR and guide intervention where appropriate. Optimal long-term follow-up of neonates diagnosed as IUGR may improve their long-term health.

  20. A Biotin Biosynthesis Gene Restricted to Helicobacter

    Science.gov (United States)

    Bi, Hongkai; Zhu, Lei; Jia, Jia; Cronan, John E.

    2016-01-01

    In most bacteria the last step in synthesis of the pimelate moiety of biotin is cleavage of the ester bond of pimeloyl-acyl carrier protein (ACP) methyl ester. The paradigm cleavage enzyme is Escherichia coli BioH which together with the BioC methyltransferase allows synthesis of the pimelate moiety by a modified fatty acid biosynthetic pathway. Analyses of the extant bacterial genomes showed that bioH is absent from many bioC-containing bacteria and is replaced by other genes. Helicobacter pylori lacks a gene encoding a homologue of the known pimeloyl-ACP methyl ester cleavage enzymes suggesting that it encodes a novel enzyme that cleaves this intermediate. We isolated the H. pylori gene encoding this enzyme, bioV, by complementation of an E. coli bioH deletion strain. Purified BioV cleaved the physiological substrate, pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a catalytic triad, each member of which was essential for activity. The role of BioV in biotin biosynthesis was demonstrated using a reconstituted in vitro desthiobiotin synthesis system. BioV homologues seem the sole pimeloyl-ACP methyl ester esterase present in the Helicobacter species and their occurrence only in H. pylori and close relatives provide a target for development of drugs to specifically treat Helicobacter infections. PMID:26868423

  1. Mucopolysaccharidosis enzyme production by bone marrow and dental pulp derived human mesenchymal stem cells.

    Science.gov (United States)

    Jackson, Matilda; Derrick Roberts, Ainslie; Martin, Ellenore; Rout-Pitt, Nathan; Gronthos, Stan; Byers, Sharon

    2015-04-01

    Mucopolysaccharidoses (MPS) are inherited metabolic disorders that arise from a complete loss or a reduction in one of eleven specific lysosomal enzymes. MPS children display pathology in multiple cell types leading to tissue and organ failure and early death. Mesenchymal stem cells (MSCs) give rise to many of the cell types affected in MPS, including those that are refractory to current treatment protocols such as hematopoietic stem cell (HSC) based therapy. In this study we compared multiple MPS enzyme production by bone marrow derived (hBM) and dental pulp derived (hDP) MSCs to enzyme production by HSCs. hBM MSCs produce significantly higher levels of MPS I, II, IIIA, IVA, VI and VII enzyme than HSCs, while hDP MSCs produce significantly higher levels of MPS I, IIIA, IVA, VI and VII enzymes. Higher transfection efficiency was observed in MSCs (89%) compared to HSCs (23%) using a lentiviral vector. Over-expression of four different lysosomal enzymes resulted in up to 9303-fold and up to 5559-fold greater levels in MSC cell layer and media respectively. Stable, persistent transduction of MSCs and sustained over-expression of MPS VII enzyme was observed in vitro. Transduction of MSCs did not affect the ability of the cells to differentiate down osteogenic, adipogenic or chondrogenic lineages, but did partially delay differentiation down the non-mesodermal neurogenic lineage. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. 7 CFR 322.28 - General requirements; restricted articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false General requirements; restricted articles. 322.28... EQUIPMENT Importation and Transit of Restricted Articles § 322.28 General requirements; restricted articles. (a) The following articles from any region are restricted articles: (1) Dead bees of any genus; (2...

  3. 7 CFR 319.75-2 - Restricted articles. 1

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Restricted articles. 1 319.75-2 Section 319.75-2... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Khapra Beetle § 319.75-2 Restricted articles. 1 1 The importation of restricted articles may be subject to prohibitions or restrictions under...

  4. Effect of Various Diets on the Expression of Phase-I Drug Metabolizing Enzymes in Livers of Mice

    Science.gov (United States)

    Guo, Ying; Cui, Julia Yue; Lu, Hong; Klaassen, Curtis D.

    2017-01-01

    Previous studies have shown that diets can alter the metabolism of drugs; however, it is difficult to compare the effects of multiple diets on drug metabolism among different experimental settings. Phase-I related genes play a major role in the biotransformation of pro-drugs and drugs.In the current study, effects of nine diets on the mRNA expression of phase-I drug-metabolizing enzymes in livers of mice were simultaneously investigated. Compared to the AIN-93M purified diet (control), 73 of the 132 critical phase-I drug metabolizing genes were differentially regulated by at least one diet. Diet restriction produced the most number of changed genes (51), followed by the atherogenic diet (27), high-fat diet (25), standard rodent chow (21), western diet (20), high-fructose diet (5), EFA deficient diet (3), and low n-3 FA diet (1). The mRNAs of the Fmo family changed most, followed by Cyp2b and 4a subfamilies, as well as Por (From 1121 to 21-fold increase of theses mRNAs). There were 59 genes not altered by any of these diets.The present results may improve the interpretation of studies with mice and aid in determining effective and safe doses for individuals with different nutritional diets. PMID:25733028

  5. Type II restriction endonucleases--a historical perspective and more.

    Science.gov (United States)

    Pingoud, Alfred; Wilson, Geoffrey G; Wende, Wolfgang

    2014-07-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Type II restriction endonucleases—a historical perspective and more

    Science.gov (United States)

    Pingoud, Alfred; Wilson, Geoffrey G.; Wende, Wolfgang

    2014-01-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss ‘Type II’ REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures. PMID:24878924

  7. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  8. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  9. Restriction analysis of genetic variability of Polish isolates of Tomato black ring virus.

    Science.gov (United States)

    Jończyk, Magdalena; Borodynko, Natasza; Pospieszny, Henryk

    2004-01-01

    Several different isolates of Tomato black ring virus (TBRV) have been collected in Poland from cucumber, tomato, potato and black locust plants. Biological tests showed some differences in the range of infected plants and the type of symptoms, which was the basis for selection of seven the most biologically different TBRV isolates. According to the sequence of TBRV-MJ, several primer pairs were designed and almost the entire sequence of both genomic RNAs was amplified. The RT-PCR products derived from all tested TBRV isolates were digested by restriction enzymes. On the basis of the restriction patterns, the variable and the conserved regions of the TBRV genome were defined and the relationships between the Polish TBRV isolates established.

  10. Enzyme replacement and substrate reduction therapy for Gaucher disease.

    Science.gov (United States)

    Shemesh, Elad; Deroma, Laura; Bembi, Bruno; Deegan, Patrick; Hollak, Carla; Weinreb, Neal J; Cox, Timothy M

    2015-03-27

    Gaucher disease, a rare disorder, is caused by inherited deficiency of the enzyme glucocerebrosidase. It is unique among the ultra-orphan disorders in that four treatments are currently approved by various regulatory authorities for use in routine clinical practice. Hitherto, because of the relatively few people affected worldwide, many of whom started therapy during a prolonged period when there were essentially no alternatives to imiglucerase, these treatments have not been systematically evaluated in studies such as randomized controlled trials now considered necessary to generate the highest level of clinical evidence. To summarize all available randomized controlled study data on the efficacy and safety of enzyme replacement therapies and substrate reduction therapy for treating Gaucher disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Trials Register. Additional searches were conducted on ClinicalTrials.gov for any ongoing studies with potential interim results, and through PubMed. We also searched the reference lists of relevant articles and reviews.Date of last search: 07 August 2014. All randomized and quasi-randomized controlled studies (including open-label studies and cross-over studies) assessing enzyme replacement therapy or substrate reduction therapy, or both, in all types of Gaucher disease were included. Two authors independently assessed the risk of bias in the included studies, and extracted relevant data. Of the 488 studies retrieved by the electronic searches, eight met the inclusion criteria and were analysed (300 participants). Response parameters were restricted to haemoglobin concentration, platelet count, spleen and liver volume and serum biomarkers (chitotriosidase and CCL18). Only one publication reported a 'low risk of bias' score in all parameters assessed, and all studies included were randomized.Four studies reported the responses to enzyme replacement therapy of previously

  11. A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells

    Science.gov (United States)

    Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.

    2018-03-01

    Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.

  12. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae.

    Science.gov (United States)

    Anderson, Rozalyn M; Bitterman, Kevin J; Wood, Jason G; Medvedik, Oliver; Sinclair, David A

    2003-05-08

    Calorie restriction extends lifespan in a broad range of organisms, from yeasts to mammals. Numerous hypotheses have been proposed to explain this phenomenon, including decreased oxidative damage and altered energy metabolism. In Saccharomyces cerevisiae, lifespan extension by calorie restriction requires the NAD+-dependent histone deacetylase, Sir2 (ref. 1). We have recently shown that Sir2 and its closest human homologue SIRT1, a p53 deacetylase, are strongly inhibited by the vitamin B3 precursor nicotinamide. Here we show that increased expression of PNC1 (pyrazinamidase/nicotinamidase 1), which encodes an enzyme that deaminates nicotinamide, is both necessary and sufficient for lifespan extension by calorie restriction and low-intensity stress. We also identify PNC1 as a longevity gene that is responsive to all stimuli that extend lifespan. We provide evidence that nicotinamide depletion is sufficient to activate Sir2 and that this is the mechanism by which PNC1 regulates longevity. We conclude that yeast lifespan extension by calorie restriction is the consequence of an active cellular response to a low-intensity stress and speculate that nicotinamide might regulate critical cellular processes in higher organisms.

  13. Calorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous

    Science.gov (United States)

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. PMID:25633578

  14. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    Directory of Open Access Journals (Sweden)

    Szu-Chieh Mei

    2015-01-01

    Full Text Available In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA, are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  15. Alignment of Escherichia coli K12 DNA sequences to a genomic restriction map.

    Science.gov (United States)

    Rudd, K E; Miller, W; Ostell, J; Benson, D A

    1990-01-25

    We use the extensive published information describing the genome of Escherichia coli and new restriction map alignment software to align DNA sequence, genetic, and physical maps. Restriction map alignment software is used which considers restriction maps as strings analogous to DNA or protein sequences except that two values, enzyme name and DNA base address, are associated with each position on the string. The resulting alignments reveal a nearly linear relationship between the physical and genetic maps of the E. coli chromosome. Physical map comparisons with the 1976, 1980, and 1983 genetic maps demonstrate a better fit with the more recent maps. The results of these alignments are genomic kilobase coordinates, orientation and rank of the alignment that best fits the genetic data. A statistical measure based on extreme value distribution is applied to the alignments. Additional computer analyses allow us to estimate the accuracy of the published E. coli genomic restriction map, simulate rearrangements of the bacterial chromosome, and search for repetitive DNA. The procedures we used are general enough to be applicable to other genome mapping projects.

  16. Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G.

    Directory of Open Access Journals (Sweden)

    David J Stanley

    2012-12-01

    Full Text Available Cellular restriction factors help to defend humans against human immunodeficiency virus (HIV. HIV accessory proteins hijack at least three different Cullin-RING ubiquitin ligases, which must be activated by the small ubiquitin-like protein NEDD8, in order to counteract host cellular restriction factors. We found that conjugation of NEDD8 to Cullin-5 by the NEDD8-conjugating enzyme UBE2F is required for HIV Vif-mediated degradation of the host restriction factor APOBEC3G (A3G. Pharmacological inhibition of the NEDD8 E1 by MLN4924 or knockdown of either UBE2F or its RING-protein binding partner RBX2 bypasses the effect of Vif, restoring the restriction of HIV by A3G. NMR mapping and mutational analyses define specificity determinants of the UBE2F NEDD8 cascade. These studies demonstrate that disrupting host NEDD8 cascades presents a novel antiretroviral therapeutic approach enhancing the ability of the immune system to combat HIV.

  17. Cellulolytic and xylanolytic enzymes from thermophilic Aspergillus terreus RWY.

    Science.gov (United States)

    Sharma, Reetika; Kocher, Gurvinder Singh; Bhogal, Ravinder Singh; Oberoi, Harinder Singh

    2014-12-01

    Thermophilic Aspergillus terreus RWY produced cellulases and xylanases in optimal concentrations at 45 °C in solid state fermentation process, though enzyme production was also observed at 50 and 55 °C. Filter paper cellulase (FP), endoglucanase (EG), β-glucosidase (BGL), cellobiohydrolase (CBH), xylanase, β-xylosidase, α-L-arabinofuranosidase and xylan esterase activities for A. terreus RWY at 45 °C in 72 h were 11.3 ± 0.65, 103 ± 6.4, 122.5 ± 8.7, 10.3 ± 0.66, 872 ± 22.5, 22.1 ± 0.75, 126.4 ± 8.4 and 907 ± 15.5 U (g-ds)(-1) , respectively. Enzyme was optimally active at temperatures and pH ranging between 50-60 °C and 4.0-6.0, respectively. The half life (T1/2 ) of 270 and 240 min at 70 and 75 °C, respectively for the enzyme indicates its stability at higher temperatures. The addition of MnCl2 , CoCl2 , and FeCl3 significantly enhanced cellulase activity. Enzyme demonstrated multiplicity by having seven, one and three isoform(s) for EG, CBH and BGL, respectively. Significant production of functionally active consortium of cellulolytic and xylanolytic enzymes from A. terreus RWY makes it a potential candidate in bioprocessing applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    International Nuclear Information System (INIS)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-01-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  19. In silico prediction of potential chemical reactions mediated by human enzymes.

    Science.gov (United States)

    Yu, Myeong-Sang; Lee, Hyang-Mi; Park, Aaron; Park, Chungoo; Ceong, Hyithaek; Rhee, Ki-Hyeong; Na, Dokyun

    2018-06-13

    Administered drugs are often converted into an ineffective or activated form by enzymes in our body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450. However, there are more than thousands of different cellular enzymes that potentially convert administered drug into other forms. We developed an in silico model to predict which of human enzymes including metabolic enzymes as well as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly, evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug conversion and enzyme inhibition. Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by enabling the prediction of the potential conversion of administered drugs into active or inactive forms.

  20. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti, E-mail: arti@iitm.ac.in [Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036 (India)

    2016-08-28

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  1. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Science.gov (United States)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-08-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  2. Avoidant/Restrictive Food Intake Disorder (ARFID).

    Science.gov (United States)

    Zimmerman, Jacqueline; Fisher, Martin

    2017-04-01

    Avoidant/restrictive food intake disorder (ARFID) is an entirely new diagnosis in the DSM-5. ARFID replaces "feeding disorder of infancy or early childhood," which was a diagnosis in the DSM-IV restricted to children 6 years of age or younger; ARFID has no such age limitations and it is distinct from anorexia nervosa and bulimia nervosa in that there is no body image disturbance. ARFID involves a complex and heterogenous etiology, which is reviewed herein. What is known to date regarding the characteristics and medical and psychiatric comorbidities of this patient population are described and compared to other eating disorders. Evaluation and management strategies are also discussed. No data yet exist regarding ARFID׳s prognosis and prevention; however, recommendations to guide parents in establishing appropriate infant and child feeding practices are provided. Copyright © 2017 Mosby, Inc. All rights reserved.

  3. Octreotide therapy and restricted fetal growth

    DEFF Research Database (Denmark)

    Geilswijk, Marianne; Andersen, Lise Lotte Torvin; Frost, Morten

    2017-01-01

    that octreotide treatment in pregnancy, as well as hypoglycemia in itself, may pose a risk of fetal growth restriction. During pregnancy, management of blood glucose levels in familial hyperinsulinemic hypoglycemia thus forms a medical dilemma. We report on pregnancy outcomes in a woman with symptomatic familial...... hyperinsulinemic hypoglycemia, type 3. During the patient's first pregnancy with a viable fetus octreotide treatment was instituted in gestational age 23 weeks to prevent severe hypoglycemic incidences. Fetal growth velocity declined, and at 37 weeks of gestation, intrauterine growth retardation was evident...... growth velocity was normal. We conclude that octreotide treatment during pregnancy may pose a risk of fetal growth restriction and warrants careful consideration. In some cases of familial hyperinsulinemic hypoglycemia, blood glucose levels can be successfully managed through diet only, also during...

  4. Investment Restrictions and Contagion in Emerging Markets

    OpenAIRE

    Anna Ilyina

    2005-01-01

    The objectives of this paper are: (1) to analyze an optimal portfolio rebalancing by a fund manager in response to a "volatility shock" in one of the asset markets, under sufficiently realistic assumptions about the fund manager's performance criteria and investment restrictions; and (2) to analyze the sensitivity of the equilibrium price of an asset to shocks originating in other fundamentally unrelated asset markets for a given mix of common investors. The analysis confirms that certain com...

  5. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  6. Toward mechanistic classification of enzyme functions.

    Science.gov (United States)

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  9. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  10. Growth restriction in gastroschisis: quantification of its severity and exploration of a placental cause

    Directory of Open Access Journals (Sweden)

    Olsen Sam

    2011-10-01

    Full Text Available Abstract Background Gastroschisis patients are commonly small for gestational age (SGA, birth weight [BW] th centile. However, the extent, symmetry and causes of that growth restriction remain controversial. Methods We compared BW, crown-heel length (LT, occipitofrontal circumference (OFC and ponderal index (PI in 179 gastroschisis cases and 895 matched controls by univariate and multiple regression. Fetal ultrasounds (N = 80 were reviewed to determine onset of growth restriction. Placental histology was examined in 31 gastroschisis patients whose placental tissue was available and in 29 controls. Results Gastroschisis cases weighed less than controls (BW = 2400 ± 502 g vs. 2750 ± 532 g, p Conclusions Marked, relatively symmetric intrauterine growth restriction is an intrinsic part of gastroschisis. It begins early in the second trimester, and is associated with placental chorangiosis.

  11. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  12. Optimal Detection under the Restricted Bayesian Criterion

    Directory of Open Access Journals (Sweden)

    Shujun Liu

    2017-07-01

    Full Text Available This paper aims to find a suitable decision rule for a binary composite hypothesis-testing problem with a partial or coarse prior distribution. To alleviate the negative impact of the information uncertainty, a constraint is considered that the maximum conditional risk cannot be greater than a predefined value. Therefore, the objective of this paper becomes to find the optimal decision rule to minimize the Bayes risk under the constraint. By applying the Lagrange duality, the constrained optimization problem is transformed to an unconstrained optimization problem. In doing so, the restricted Bayesian decision rule is obtained as a classical Bayesian decision rule corresponding to a modified prior distribution. Based on this transformation, the optimal restricted Bayesian decision rule is analyzed and the corresponding algorithm is developed. Furthermore, the relation between the Bayes risk and the predefined value of the constraint is also discussed. The Bayes risk obtained via the restricted Bayesian decision rule is a strictly decreasing and convex function of the constraint on the maximum conditional risk. Finally, the numerical results including a detection example are presented and agree with the theoretical results.

  13. Meeting licensing restrictions from a regulator's perspective

    International Nuclear Information System (INIS)

    Autry, V.R.; Ragan, F.A.

    1990-01-01

    The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low level waste has experienced many changes necessitated by technical advancements which led to stricter controls and restrictions for shallow land disposal. Low level waste has evolved from simple contaminated items with minimal radioactivity, to complex waste streams requiring elaborate processing and containment of high quantities of radionuclides. Waste streams also require extensive analysis and qualification to meet many of the restrictions imposed at the burial facility and comply with national standards and regulations for classification. This paper presents a chronological history of many of these restrictions, the rationale for them, and the waste generators' abilities and inabilities to comply. In addition, case histories of some examples are discussed

  14. Emergency building temperature restrictions. Final evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    On July 5, 1979, DOE promulgated final regulations of the Emergency Building Temperature Restrictions program, placing emergency restrictions on thermostat settings for space heating, space cooling, and hot water in commercial, industrial, and nonresidential public buildings. The final regulations restricted space heating to a maximum of 65/sup 0/F, hot water temperature to a maximum of 105/sup 0/F, and cooling temperature to a minimum of 78/sup 0/F. A comprehensive evaluation of the entire EBTF program for a nine-month period from July 16, 1979 is presented. In Chapter 1, an estimate of the population of buildings covered by EBTR is presented. In Chapter 2, EBTR compliance by building type and region is reported. Exemptions are also discussed. In Chapter 3, the simulations of building energy use are explained and the relative impact of various building characteristics and effectiveness of different control strategies are estimated. Finally, in Chapter 4, the methodology for scaling the individual building energy savings to the national level is described, and estimated national energy savings are presented.

  15. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  16. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  17. Does feed restriction and re-alimentation differently affect lipid content and metabolism according to muscle type in pigs (Sus scrofa)?

    Science.gov (United States)

    Gondret, Florence; Lebret, Bénédicte

    2007-06-01

    This study aimed to investigate whether feed restriction and re-alimentation differently affect lipid content and activities of lipogenic or catabolic enzymes according to muscle types in pigs. At around 28 kg body mass (BW), sixty pigs (n=30 per group) were allocated to either ad libitum (AL) or restricted/re-feeding (RA) regimens. After feed restriction (80 kg BW), lipid content was reduced (P<0.01) in the oxidative rhomboideus (RH) as in the glycolytic biceps femoris (BF) muscles of RA pigs compared with AL pigs. Lower activities (P<0.05) of the lipogenic enzymes fatty acid synthase (FAS) and malic enzyme (ME) were observed in the RH but not in the BF of RA vs. AL pigs. After re-feeding (110 kg BW), lipid content was restored in the RH, but was still 12% lower (P<0.05) in the BF of RA compared with AL pigs. In the RH, the trend for an enhanced FAS activity and for a smaller weight-related decrease of ME activity in RA pigs than AL pigs during re-feeding, may have contributed to the muscle fat recovery observed in the RA pigs. In the BF, higher oxidative enzyme activities (P<0.10) in RA pigs compared to AL pigs might explain the incomplete lipid recovery observed after re-feeding in the former animals. In conclusion, metabolic activities in response to restriction and re-feeding differed according to muscle metabolic type.

  18. Zymography methods for visualizing hydrolytic enzymes.

    Science.gov (United States)

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E; Opdenakker, Ghislain

    2013-03-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.

  19. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  20. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected