WorldWideScience

Sample records for multiple pip binding

  1. DNA-binding proteins regulating pIP501 transfer and replication

    Directory of Open Access Journals (Sweden)

    Elisabeth Grohmann

    2016-08-01

    Full Text Available pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual role: It acts as transcriptional repressor at the repR promoter and prevents convergent transcription of RNAIII and repR mRNA (RNAII, thereby indirectly increasing RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII. Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including filamentous streptomycetes and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter, which overlaps with the origin of transfer (oriT. The T4SS operon encodes the DNA-binding proteins TraJ (VirD4

  2. A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels

    Directory of Open Access Journals (Sweden)

    Cerrone Cabanos

    2017-08-01

    Full Text Available Lipid regulation of ion channels by low-abundance signaling lipids phosphatidylinositol 4,5-bisphosphate (PIP2 and phosphatidic acid (PA has emerged as a central cellular mechanism for controlling ion channels and the excitability of nerves. A lack of robust assays suitable for facile detection of a lipid bound to a channel has hampered the probing of the lipid binding sites and measuring the pharmacology of putative lipid agonists for ion channels. Here, we show a fluorescent PIP2 competition assay for detergent-purified potassium channels, including TWIK-1-related K+-channel (TREK-1. Anionic lipids PA and phosphatidylglycerol (PG bind dose dependently (9.1 and 96 μM, respectively and agonize the channel. Our assay shows PIP2 binds with high affinity (0.87 μM but surprisingly can directly antagonize TREK-1 in liposomes. We propose a model for TREK-1 lipid regulation where PIP2 can compete with PA and PG agonism based on the affinity of the lipid for a site within the channel.

  3. PipY, a Member of the Conserved COG0325 Family of PLP-Binding Proteins, Expands the Cyanobacterial Nitrogen Regulatory Network

    Directory of Open Access Journals (Sweden)

    José I. Labella

    2017-07-01

    Full Text Available Synechococcus elongatus PCC 7942 is a paradigmatic model organism for nitrogen regulation in cyanobacteria. Expression of genes involved in nitrogen assimilation is positively regulated by the 2-oxoglutarate receptor and global transcriptional regulator NtcA. Maximal activation requires the subsequent binding of the co-activator PipX. PII, a protein found in all three domains of life as an integrator of signals of the nitrogen and carbon balance, binds to PipX to counteract NtcA activity at low 2-oxoglutarate levels. PII-PipX complexes can also bind to the transcriptional regulator PlmA, whose regulon remains unknown. Here we expand the nitrogen regulatory network to PipY, encoded by the bicistronic operon pipXY in S. elongatus. Work with PipY, the cyanobacterial member of the widespread family of COG0325 proteins, confirms the conserved roles in vitamin B6 and amino/keto acid homeostasis and reveals new PLP-related phenotypes, including sensitivity to antibiotics targeting essential PLP-holoenzymes or synthetic lethality with cysK. In addition, the related phenotypes of pipY and pipX mutants are consistent with genetic interactions in the contexts of survival to PLP-targeting antibiotics and transcriptional regulation. We also showed that PipY overexpression increased the length of S. elongatus cells. Taken together, our results support a universal regulatory role for COG0325 proteins, paving the way to a better understanding of these proteins and of their connections with other biological processes.

  4. Activation of moesin, a protein that links actin cytoskeleton to the plasma membrane, occurs by phosphatidylinositol 4,5-bisphosphate (PIP2) binding sequentially to two sites and releasing an autoinhibitory linker.

    Science.gov (United States)

    Ben-Aissa, Khadija; Patino-Lopez, Genaro; Belkina, Natalya V; Maniti, Ofelia; Rosales, Tilman; Hao, Jian-Jiang; Kruhlak, Michael J; Knutson, Jay R; Picart, Catherine; Shaw, Stephen

    2012-05-11

    Many cellular processes depend on ERM (ezrin, moesin, and radixin) proteins mediating regulated linkage between plasma membrane and actin cytoskeleton. Although conformational activation of the ERM protein is mediated by the membrane PIP2, the known properties of the two described PIP2-binding sites do not explain activation. To elucidate the structural basis of possible mechanisms, we generated informative moesin mutations and tested three attributes: membrane localization of the expressed moesin, moesin binding to PIP2, and PIP2-induced release of moesin autoinhibition. The results demonstrate for the first time that the POCKET containing inositol 1,4,5-trisphosphate on crystal structure (the "POCKET" Lys-63, Lys-278 residues) mediates all three functions. Furthermore the second described PIP2-binding site (the "PATCH," Lys-253/Lys-254, Lys-262/Lys-263) is also essential for all three functions. In native autoinhibited ERM proteins, the POCKET is a cavity masked by an acidic linker, which we designate the "FLAP." Analysis of three mutant moesin constructs predicted to influence FLAP function demonstrated that the FLAP is a functional autoinhibitory region. Moreover, analysis of the cooperativity and stoichiometry demonstrate that the PATCH and POCKET do not bind PIP2 simultaneously. Based on our data and supporting published data, we propose a model of progressive activation of autoinhibited moesin by a single PIP2 molecule in the membrane. Initial transient binding of PIP2 to the PATCH initiates release of the FLAP, which enables transition of the same PIP2 molecule into the newly exposed POCKET where it binds stably and completes the conformational activation.

  5. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    Science.gov (United States)

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization of the part of N-terminal PIP2 binding site of the TRPM1 channel

    Czech Academy of Sciences Publication Activity Database

    Jirků, Michaela; Bumba, Ladislav; Bednárová, Lucie; Kubala, M.; Šulc, Miroslav; Franěk, M.; Vyklický ml., Ladislav; Vondrášek, Jiří; Teisinger, Jan; Boušová, Kristýna

    2015-01-01

    Roč. 207, Dec (2015), s. 135-142 ISSN 0301-4622 R&D Projects: GA ČR(CZ) GAP207/11/0717; GA ČR(CZ) GA15-11851S; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 ; RVO:61388971 ; RVO:61388963 Keywords : TRPM1 channel * binding site * PIP2 * surface plasmon resonance * FRET * circular dichroism Subject RIV: CE - Biochemistry Impact factor: 2.363, year: 2015

  7. Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function

    Science.gov (United States)

    Bienert, Manuela D.; Diehn, Till A.; Richet, Nicolas; Chaumont, François; Bienert, Gerd P.

    2018-01-01

    Aquaporins (AQPs) are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP) AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2) of the lycophyte Selaginella moellendorffii upon (co-)expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the characteristics known for

  8. Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function

    Directory of Open Access Journals (Sweden)

    Manuela D. Bienert

    2018-03-01

    Full Text Available Aquaporins (AQPs are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2 of the lycophyte Selaginella moellendorffii upon (co-expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the

  9. Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function.

    Science.gov (United States)

    Bienert, Manuela D; Diehn, Till A; Richet, Nicolas; Chaumont, François; Bienert, Gerd P

    2018-01-01

    Aquaporins (AQPs) are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP) AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2) of the lycophyte Selaginella moellendorffii upon (co-)expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the characteristics known for

  10. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage.

    Science.gov (United States)

    Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico

    2014-04-01

    Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4(Cdt2). Here we provide evidence that CRL4(Cdt2)-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4(Cdt2) as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4(Cdt2) pathway in the switch of PCNA partners on DNA damage.

  11. Uncoupling PIP2-calmodulin regulation of Kv7.2 channels by an assembly destabilizing epileptogenic mutation.

    Science.gov (United States)

    Alberdi, Araitz; Gomis-Perez, Carolina; Bernardo-Seisdedos, Ganeko; Alaimo, Alessandro; Malo, Covadonga; Aldaregia, Juncal; Lopez-Robles, Carlos; Areso, Pilar; Butz, Elisabeth; Wahl-Schott, Christian; Villarroel, Alvaro

    2015-11-01

    We show that the combination of an intracellular bi-partite calmodulin (CaM)-binding site and a distant assembly region affect how an ion channel is regulated by a membrane lipid. Our data reveal that regulation by phosphatidylinositol(4,5)bisphosphate (PIP2) and stabilization of assembled Kv7.2 subunits by intracellular coiled-coil regions far from the membrane are coupled molecular processes. Live-cell fluorescence energy transfer measurements and direct binding studies indicate that remote coiled-coil formation creates conditions for different CaM interaction modes, each conferring different PIP2 dependency to Kv7.2 channels. Disruption of coiled-coil formation by epilepsy-causing mutation decreases apparent CaM-binding affinity and interrupts CaM influence on PIP2 sensitivity. © 2015. Published by The Company of Biologists Ltd.

  12. PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels

    DEFF Research Database (Denmark)

    Kim, Robin Y; Pless, Stephan A; Kurata, Harley T

    2017-01-01

    Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation. To elucid......Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation....... These findings reveal an important role for PIP2 in coupling retigabine binding to altered VSD function. We identify a polybasic motif in the proximal C terminus of retigabine-sensitive KCNQ channels that contributes to VSD-pore coupling via PIP2, and thereby influences the unique gating effects of retigabine....

  13. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    Science.gov (United States)

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  14. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development.

    Science.gov (United States)

    Bots, Marc; Feron, Richard; Uehlein, Norbert; Weterings, Koen; Kaldenhoff, Ralf; Mariani, Titti

    2005-01-01

    Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues, such as occurs during dehiscence of the anther and hydration of the pollen grain after it is deposited on a stigma. To get more insight in these processes, a set of putative aquaporins was cloned and it was found that at least 15 are expressed in reproductive organs, which indicates that the control of water flow is important for reproduction. Functional studies in Xenopus laevis oocytes using two of the cDNAs showed that NtPIP2;1 is an efficient aquaporin, whereas NtPIP1;1 is not. Expression studies on RNA and protein levels showed that PIP1 and PIP2 genes are differently expressed in reproductive organs: PIP1 RNA accumulates in the stigma, and PIP1 and PIP2 RNA can be detected in most tissues of the anther.

  15. Multiscale Simulations Suggest a Mechanism for the Association of the Dok7 PH Domain with PIP-Containing Membranes.

    Directory of Open Access Journals (Sweden)

    Amanda Buyan

    2016-07-01

    Full Text Available Dok7 is a peripheral membrane protein that is associated with the MuSK receptor tyrosine kinase. Formation of the Dok7/MuSK/membrane complex is required for the activation of MuSK. This is a key step in the complex exchange of signals between neuron and muscle, which lead to neuromuscular junction formation, dysfunction of which is associated with congenital myasthenic syndromes. The Dok7 structure consists of a Pleckstrin Homology (PH domain and a Phosphotyrosine Binding (PTB domain. The mechanism of the Dok7 association with the membrane remains largely unknown. Using multi-scale molecular dynamics simulations we have explored the formation of the Dok7 PH/membrane complex. Our simulations indicate that the PH domain of Dok7 associates with membranes containing phosphatidylinositol phosphates (PIPs via interactions of the β1/β2, β3/β4, and β5/β6 loops, which together form a positively charged surface on the PH domain and interact with the negatively charged headgroups of PIP molecules. The initial encounter of the Dok7 PH domain is followed by formation of additional interactions with the lipid bilayer, and especially with PIP molecules, which stabilizes the Dok7 PH/membrane complex. We have quantified the binding of the PH domain to the model bilayers by calculating a density landscape for protein/membrane interactions. Detailed analysis of the PH/PIP interactions reveal both a canonical and an atypical site to be occupied by the anionic lipid. PH domain binding leads to local clustering of PIP molecules in the bilayer. Association of the Dok7 PH domain with PIP lipids is therefore seen as a key step in localization of Dok7 to the membrane and formation of a complex with MuSK.

  16. Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide.

    Science.gov (United States)

    Bienert, Gerd P; Heinen, Robert B; Berny, Marie C; Chaumont, François

    2014-01-01

    Plant aquaporins play important roles in transmembrane water transport processes, but some also facilitate the diffusion of other small uncharged solutes ranging from gases to metalloids. Recent evidence suggests that the transmembrane movement of hydrogen peroxide, an intra- and intercellular multifunctional signaling and defense compound, can be regulated by aquaporins. We addressed the question whether maize aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily facilitate hydrogen peroxide diffusion using heterologous expression in the yeast Saccharomyces cerevisiae. We showed that ZmPIP proteins belonging to the PIP1 and PIP2 groups were significantly expressed in yeast cells only after codon optimization of their cDNA. In accordance with previous localization studies in oocytes and plants, ZmPIP1;2 was mainly retained in intracellular membranes, while ZmPIP2;5 was localized to the plasma membrane. However, upon co-expression with ZmPIP2;5, ZmPIP1;2 was re-localized to the plasma membrane. Using a non-functional plasma membrane-localized ZmPIP2;5 mutant to deliver ZmPIP1;2 to the plasma membrane, we demonstrated that, in contrast to wild type ZmPIP2;5, ZmPIP1;2 was not permeable to hydrogen peroxide. Our study further highlighted the fact that, when using the yeast system, which is widely employed to study substrates for plant aquaporins and other transporters, although positive transport assay results allow direct conclusions to be drawn regarding solute permeability, negative results require additional control experiments to show that the protein is expressed and localized correctly before concluding on the lack of transport activity. © 2013.

  17. The PP1 binding code: a molecular-lego strategy that governs specificity.

    Science.gov (United States)

    Heroes, Ewald; Lesage, Bart; Görnemann, Janina; Beullens, Monique; Van Meervelt, Luc; Bollen, Mathieu

    2013-01-01

    Ser/Thr protein phosphatase 1 (PP1) is a single-domain hub protein with nearly 200 validated interactors in vertebrates. PP1-interacting proteins (PIPs) are ubiquitously expressed but show an exceptional diversity in brain, testis and white blood cells. The binding of PIPs is mainly mediated by short motifs that dock to surface grooves of PP1. Although PIPs often contain variants of the same PP1 binding motifs, they differ in the number and combination of docking sites. This molecular-lego strategy for binding to PP1 creates holoenzymes with unique properties. The PP1 binding code can be described as specific, universal, degenerate, nonexclusive and dynamic. PIPs control associated PP1 by interference with substrate recruitment or access to the active site. In addition, some PIPs have a subcellular targeting domain that promotes dephosphorylation by increasing the local concentration of PP1. The diversity of the PP1 interactome and the properties of the PP1 binding code account for the exquisite specificity of PP1 in vivo. © 2012 The Authors Journal compilation © 2012 FEBS.

  18. The PIP-II Reference Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Valeri, [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); et al.

    2015-06-01

    The Proton Improvement Plan-II (PIP-II) is a high-intensity proton facility being developed to support a world-leading neutrino program over the next two decades at Fermilab. PIP-II is an integral part of the U.S. Intensity Frontier Roadmap as described in the Particle Physics Project Prioritization Panel (P5) report of May 2014 [1]. As an immediate goal PIP-II is focused on upgrades to the Fermilab accelerator complex capable of providing a beam power in excess of 1 MW on target at the initiation of LBNF [1,2] operations. PIP-II is a part of a longer-term concept for a sustained campaign of upgrades and improvements to achieve multi-MW capabilities at Fermilab. PIP-II is based on three major thrusts. They are (1) the recently completed upgrades to the Recycler and Main Injector (MI) for the NOvA experiment, (2) the Proton Improvement Plan [3] currently underway, and (3) the Project X Reference Design [4]. Note that: The Proton Improvement Plan (PIP) consolidates a set of improvements to the existing Linac, Booster, and Main Injector (MI) aimed at supporting 15 Hz Booster beam operation. In combination, the NOvA upgrades and PIP create a capability of delivering 700 kW beam power from the Main Injector at 120 GeV; The scope of the Project X Reference Design Report was aimed well beyond PIP. It described a complete concept for a multi-MW proton facility that could support a broad particle physics program based on neutrino, kaon, muon, and nucleon experiments [5,6]. The Project X conceptual design has evolved over a number of years, incorporating continuous input on physics research goals and advances in the underlying technology development programs [7,8,9]. PIP-II, to high degree, inherits these goals as the goals for future developments and upgrades. This document (PIP-II Reference Design Report) describes an initial step in the development of the Fermilab accelerating complex. The plan described in this Report balances the far-term goals of the Laboratory

  19. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2

    Directory of Open Access Journals (Sweden)

    Wang Zheng

    2018-02-01

    Full Text Available Transient receptor potential (TRP channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2, with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels.

  20. Biological constraints limit the use of rapamycin-inducible FKBP12-Inp54p for depleting PIP2 in dorsal root ganglia neurons.

    Science.gov (United States)

    Coutinho-Budd, Jaeda C; Snider, Samuel B; Fitzpatrick, Brendan J; Rittiner, Joseph E; Zylka, Mark J

    2013-09-08

    Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons. We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12. Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.

  1. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (-) deficiency in transgenic tobacco plants.

    Science.gov (United States)

    Zhuo, Chunliu; Wang, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-06-14

    Plasma membrane intrinsic proteins (PIPs), which belong to aquaporins (AQPs) superfamily, are subdivided into two groups, PIP1 and PIP2, based on sequence similarity. Several PIP2s function as water channels, while PIP1s have low or no water channel activity, but have a role in water permeability through interacting with PIP2. A cold responsive PIP2 named as MfPIP2-7 was isolated from Medicago falcata (hereafter falcata), a forage legume with great cold tolerance, and transgenic tobacco plants overexpressing MfPIP2-7 were analyzed in tolerance to multiple stresses including freezing, chilling, and nitrate reduction in this study. MfPIP2-7 transcript was induced by 4 to 12 h of cold treatment and 2 h of abscisic acid (ABA) treatment. Pretreatment with inhibitor of ABA synthesis blocked the cold induced MfPIP2-7 transcript, indicating that ABA was involved in cold induced transcription of MfPIP2-7 in falcata. Overexpression of MfPIP2-7 resulted in enhanced tolerance to freezing, chilling and NO3 (-) deficiency in transgenic tobacco (Nicotiana tabacum L.) plants as compared with the wild type. Moreover, MfPIP2-7 was demonstrated to facilitate H2O2 diffusion in yeast. Higher transcript levels of several stress responsive genes, such as NtERD10B, NtERD10C, NtDREB1, and 2, and nitrate reductase (NR) encoding genes (NtNIA1, and NtNIA2) were observed in transgenic plants as compared with the wild type with dependence upon H2O2. In addition, NR activity was increased in transgenic plants, which led to alterations in free amino acid components and concentrations. The results suggest that MfPIP2-7 plays an important role in plant tolerance to freezing, chilling, and NO3 (-) deficiency by promoted H2O2 diffusion that in turn up-regulates expression of NIAs and multiple stress responsive genes.

  2. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2.

    Science.gov (United States)

    Zheng, Wang; Cai, Ruiqi; Hofmann, Laura; Nesin, Vasyl; Hu, Qiaolin; Long, Wentong; Fatehi, Mohammad; Liu, Xiong; Hussein, Shaimaa; Kong, Tim; Li, Jingru; Light, Peter E; Tang, Jingfeng; Flockerzi, Veit; Tsiokas, Leonidas; Chen, Xing-Zhen

    2018-02-06

    Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity.

    Science.gov (United States)

    Kumar, Kundan; Mosa, Kareem A; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2014-01-01

    Boron (B) toxicity is responsible for low cereal crop production in a number of regions worldwide. In this report, we characterized two rice genes, OsPIP2;4 and OsPIP2;7, for their involvement in B permeability and tolerance. Transcript analysis demonstrated that the expression of OsPIP2;4 and OsPIP2;7 were downregulated in shoots and strongly upregulated in rice roots by high B treatment. Expression of both OsPIP2;4 and OsPIP2;7 in yeast HD9 strain lacking Fps1, ACR3, and Ycf1 resulted in an increased B sensitivity. Furthermore, yeast HD9 strain expressing OsPIP2;4 and OsPIP2;7 accumulated significantly higher B as compared to empty vector control, which suggests their involvement in B transport. Overexpression of OsPIP2;4 and OsPIP2;7 in Arabidopsis imparted higher tolerance under B toxicity. Arabidopsis lines overexpressing OsPIP2;4 and OsPIP2;7 showed significantly higher biomass production and greater root length, however there was no difference in B accumulation in long term uptake assay. Short-term uptake assay using tracer B (¹⁰B) in shoots and roots demonstrated increased ¹⁰B accumulation in Arabidopsis lines expressing OsPIP2;4 and OsPIP2;7, compare to wild type control plants. Efflux assay of B in the roots showed that ¹⁰B was effluxed from the Arabidopsis transgenic plants overexpressing OsPIP2;4 or OsPIP2;7 during the initial 1-h of assay. These data indicate that OsPIP2;4 and OsPIP2;7 are involved in mediating B transport in rice and provide tolerance via efflux of excess B from roots and shoot tissues. These genes will be highly useful in developing B tolerant crops for enhanced yield in the areas affected by high B toxicity.

  4. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry

    DEFF Research Database (Denmark)

    Jungmichel, Stephanie; Sylvestersen, Kathrine B; Choudhary, Chuna Ram

    2014-01-01

    than the total number of phospho- or ubiquitin-binding domains. Translocation and inhibitor assays of identified PIP-binding proteins confirmed that our methodology targets direct interactors. The PIP interactome encompasses proteins from diverse cellular compartments, prominently including the nucleus...

  5. Installing Python Modules with pip

    OpenAIRE

    Fred Gibbs

    2013-01-01

    This lesson shows you how to download and install Python modules. There are many ways to install external modules, but for the purposes of this lesson, we’re going to use a program called pip. As of Python 2.7.9 and newer, pip is installed by default. This tutorial will be helpful for anyone using older versions of Python (which are still quite common).

  6. The PIP-II Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ball, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Burov, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chase, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chakravarty, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chen, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dixon, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Edelen, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holmes, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kazakov, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Klebaner, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kourbanis, I. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leveling, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Melnychuk, O. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nicol, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ostiguy, J. -F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pasquinelli, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Passarelli, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ristori, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pellico, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Patrick, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rakhno, I. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Saini, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schappert, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Steimel, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Scarpine, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vivoli, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Warner, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yakovlev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ostroumov, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Conway, Z. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    The Proton Improvement Plan-II (PIP-II) encompasses a set of upgrades and improvements to the Fermilab accelerator complex aimed at supporting a world-leading neutrino program over the next several decades. PIP-II is an integral part of the strategic plan for U.S. High Energy Physics as described in the Particle Physics Project Prioritization Panel (P5) report of May 2014 and formalized through the Mission Need Statement approved in November 2015. As an immediate goal, PIP-II is focused on upgrades to the Fermilab accelerator complex capable of providing proton beam power in excess of 1 MW on target at the initiation of the Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) program, currently anticipated for the mid- 2020s. PIP-II is a part of a longer-term goal of establishing a high-intensity proton facility that is unique within the world, ultimately leading to multi-MW capabilities at Fermilab....

  7. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals.

    Directory of Open Access Journals (Sweden)

    Sayaka Akieda-Asai

    Full Text Available BACKGROUND: SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5Kgamma was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268 in PIP5Kgamma and enhanced PIP5Kgamma enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kgamma knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kgamma, PI(4,5P(2, and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice. CONCLUSIONS/SIGNIFICANCE: Our findings indicated that the control of TSH release by the SIRT1-PIP5Kgamma pathway is important for regulating the metabolism of the whole body.

  8. Specific role of the cyanobacterial PipX factor in the heterocysts of Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Valladares, Ana; Rodríguez, Virginia; Camargo, Sergio; Martínez-Noël, Giselle M A; Herrero, Antonia; Luque, Ignacio

    2011-03-01

    The PipX factor is a regulatory protein that seems to occur only in cyanobacteria. In the filamentous, heterocyst-forming Anabaena sp. strain PCC 7120, open reading frame (ORF) asr0485, identified as the pipX gene, is expressed mainly under conditions of combined-nitrogen deprivation dependent on the global N regulator NtcA and the heterocyst-specific regulator HetR. Primer extension and 5' rapid amplification of cDNA ends (RACE) analyses detected three transcription start points corresponding to a canonical NtcA-activated promoter (to which direct binding of NtcA was observed), an NtcA- and HetR-dependent promoter, and a consensus-type promoter, the last with putative -35 and -10 determinants. Activation of pipX took place in cells differentiating into heterocysts at intermediate to late stages of the process. Accordingly, disruption of pipX led to impaired diazotrophic growth, reduced nitrogenase activity, and impaired activation of the nitrogenase structural genes. The nitrogenase activity of the mutant was low under oxic conditions, likely resulting from inefficient protection against oxygen. In line with this, the activation of the coxB2A2C2 and coxB3A3C3 operons, encoding heterocyst-specific terminal respiratory oxidases responsible for internal oxygen removal, was deficient in the pipX mutant. Therefore, the Anabaena PipX factor shows a spatiotemporal specificity contributing to normal heterocyst function, including full activation of the nitrogenase structural genes and genes of the nitrogenase-protective features of the heterocyst.

  9. Correlated waves of actin filaments and PIP3 in Dictyostelium cells.

    Science.gov (United States)

    Asano, Yukako; Nagasaki, Akira; Uyeda, Taro Q P

    2008-12-01

    Chemotaxis-deficient amiB-null mutant Dictyostelium cells show two distinct movements: (1) they extend protrusions randomly without net displacements; (2) they migrate persistently and unidirectionally in a keratocyte-like manner. Here, we monitored the intracellular distribution of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) to gain insight into roles PIP(3) plays in those spontaneous motilities. In keratocyte-like cells, PIP(3) showed convex distribution over the basal membrane, with no anterior enrichment. In stalled cells, as well as in wild type cells, PIP(3) repeated wave-like changes, including emergence, expansion and disappearance, on the basal membrane. The waves induced lamellipodia when they approached the cell edge, and the advancing speed of the waves was comparable to the migration speed of the keratocyte-like cells. LY294002, an inhibitor of PI3 kinase, abolished PIP(3) waves in stalled cells and stopped keratocyte-like cells. These results together suggested that keratocyte-like cells are "surfing" on the PIP(3) waves by coupling steady lamellipodial protrusions to the PIP(3) waves. Simultaneous live observation of actin filaments and PIP(3) in wild type or stalled amiB(-) cells indicated that the PIP(3) waves were correlated with wave-like distributions of actin filaments. Most notably, PIP(3) waves often followed actin waves, suggesting that PIP(3) induces local depolymerization of actin filaments. Consistent with this idea, cortical accumulation of PIP(3) was often correlated with local retraction of the periphery. We propose that the waves of PIP(3) and actin filaments are loosely coupled with each other and play important roles in generating spontaneous cell polarity. Copyright 2008 Wiley-Liss, Inc.

  10. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7.

    Directory of Open Access Journals (Sweden)

    Shuguo Hou

    2014-09-01

    Full Text Available In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs and endogenous damage-associated molecular patterns (DAMPs. Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding precursors of PAMP-induced secreted peptides (prePIPs through an in-silico approach. The expression of some members of the family, including prePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is cleaved at the C-terminus. Overexpression of prePIP1 and prePIP2, or exogenous application of PIP1 and PIP2 synthetic peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7 functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsis endogenous secreted peptides.

  11. Split degenerate states and stable p+ip phases from holography

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Zhang-Yu; Zeng, Hui [Kunming University of Science and Technology, Kunming (China); Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China); Pan, Qiyuan [Hunan Normal Univ., Key Lab. of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Dept. of Physics, Changsha (China); Zeng, Hua-Bi [Yangzhou University, College of Physics Science and Technology, Yangzhou, Jiangsu (China); National Central University, Department of Physics, Chungli (China)

    2017-02-15

    In this paper, we investigate the p+ip superfluid phases in the complex vector field holographic p-wave model. We find that in the probe limit, the p+ip phase and the p-wave phase are equally stable, hence the p and ip orders can be mixed with an arbitrary ratio to form more general p+λip phases, which are also equally stable with the p-wave and p+ip phases. As a result, the system possesses a degenerate thermal state in the superfluid region. We further study the case on considering the back-reaction on the metric, and we find that the degenerate ground states will be separated into p-wave and p+ip phases, and the p-wave phase is more stable. Finally, due to the different critical temperature of the zeroth order phase transitions from p-wave and p+ip phases to the normal phase, there is a temperature region where the p+ip phase exists but the p-wave phase does not. In this region we find the stable holographic p+ip phase for the first time. (orig.)

  12. Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

    Directory of Open Access Journals (Sweden)

    Aldo A Rodríguez Menchaca

    2012-09-01

    Full Text Available Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidilinositol 4,5-bisphosphate (PIP2. Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav channels were shown to be regulated bidirectionally by PIP2. On one hand, PIP2 stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv channels PIP2 was first shown to prevent N-type inactivation. Careful examination of the effects of PIP2 on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP2 and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP2 is the hyperpolarization-activated cyclic nucleotide-gated (HCN channel. PIP2 has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP2-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP2 dual effects on SpIH channels. The dual regulation of these very different ion channels, all of which are voltage dependent, points to conserved mechanisms of regulation of these channels by PIP2.

  13. PIP breast implants: rupture rate and correlation with breast cancer.

    Science.gov (United States)

    Moschetta, M; Telegrafo, M; Cornacchia, I; Vincenti, L; Ranieri, V; Cirili, A; Rella, L; Stabile Ianora, A A; Angelelli, G

    2014-01-01

    To evaluate the incidence of Poly Implant Prosthése (PIP) rupture as assessed by magnetic resonance imaging (MRI), the prevalence of the detected signs and the potential correlation with breast carcinoma. 67 patients with silicone breast implants and clinical indications for breast MRI were evaluated for a total of 125 implants: 40 (32%) PIP in 21 patients and 85 non-PIP in 46 patients (68%), the latest considered as control group. A 1.5-T MR imaging device was used in order to assess implant integrity with dedicated sequences and in 6 cases a dynamic study was performed for characterizing breast lesions. Two radiologists with more than 5 years' experience in the field of MRI evaluated in consensus all MR images searching for the presence of clear signs of intra or extra-capsular implant rupture. 20/40 (50%) PIP implants presented signs of intra-capsular rupture: linguine sign in 20 cases (100%), tear-drop sign in 6 (30%). In 12/20 cases (60%), MRI signs of extra-capsular rupture were detected. In the control group, an intra-capsular rupture was diagnosed in 12/85 cases (14%) associated with extra-capsular one in 5/12 cases (42%). Among the six cases with suspected breast lesions, in 2/21 patients with PIP implants (10%) a breast carcinoma was diagnosed (mucinous carcinoma, n=1; invasive ductal carcinoma, n=1). In 4/46 patients (9%) with non-PIP implants, an invasive ductal carcinoma was diagnosed. The rupture rate of PIP breast implants is significantly higher than non-PIP (50% vs 14%). MRI represents the most accurate imaging tool for evaluating breast prostheses and the linguine sign is the most common MRI sign to be searched. The incidence of breast carcinoma does not significantly differ between the PIP and non-PIP implants and a direct correlation with breast cancer can not been demonstrated.

  14. A PIP chart for nuclear plant safety

    International Nuclear Information System (INIS)

    Suzuki, Tatsujiro; Yamaoka, Taiji

    1992-01-01

    While it is known that social and political aspects of nuclear safety issues are important, little study has been done on identifying the breadth of stakeholders whose policies have important influences over nuclear plant safety in a comprehensive way. The objectives of this study are to develop a chart that visually identifies important stakeholders and their policies and illustrates these influences in a hierarchical representation so that the relationship between stakeholders and nuclear safety will be better understood. This study is based on a series of extensive interviews with major stakeholders, such as nuclear plant managers, corporate planning vice presidents, state regulators, news media, and public interest groups, and focuses on one US nuclear power plant. Based on the interview results, the authors developed a conceptual policy influence paths (PIP) chart. The PIP chart illustrates the hierarchy of influence among stakeholders. The PIP chart is also useful in identifying possible stakeholders who can be easily overlooked without the PIP chart. In addition, it shows that influence flow is circular rather than linear in one direction

  15. PIP2 modulation of slick and slack K+ channels

    DEFF Research Database (Denmark)

    Tejada, Maria de los Angeles; Jensen, Lars Jørn; Klærke, Dan Arne

    2012-01-01

    Slick and Slack are members of the Slo family of high-conductance potassium channels. These channels are activated by Na(+) and Cl(-) and are highly expressed in the CNS, where they are believed to contribute to the resting membrane potential of neurons and the control of excitability. Herein, we...... provide evidence that Slick and Slack channels are regulated by the phosphoinositide PIP(2). Two stereoisomers of PIP(2) were able to exogenously activate Slick and Slack channels expressed in Xenopus oocytes, and in addition, it is shown that Slick and Slack channels are modulated by endogenous PIP(2......). The activating effect of PIP(2) appears to occur by direct interaction with lysine 306 in Slick and lysine 339 in Slack, located at the proximal C-termini of both channels. Overall, our data suggest that PIP(2) is an important regulator of Slick and Slack channels, yet it is not involved in the recently...

  16. Mechanisms of recognition and binding of α-TTP to the plasma membrane by multi-scale molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Christos eLamprakis

    2015-07-01

    Full Text Available We used multiple sets of simulations both at the atomistic and coarse-grained level of resolution, to investigate interaction and binding of α-tochoperol transfer protein (α-TTP to phosphatidylinositol phosphate lipids (PIPs. Our calculations indicate that enrichment of membranes with such lipids facilitate membrane anchoring. Atomistic models suggest that PIP can be incorporated into the binding cavity of α-TTP and therefore confirm that such protein can work as lipid exchanger between the endosome and the plasma membrane. Comparison of the atomistic models of the α-TTP / PIPs complex with membrane-bound α-TTP revealed different roles for the various basic residues composing the basic patch that is key for the protein / ligand interaction. Such residues are of critical importance as several point mutations at their position lead to severe forms of ataxia with vitamin E deficiency (AVED phenotypes. Specifically, R221 is main residue responsible for the stabilisation of the complex. R68 and R192 exchange strong interactions in the protein or in the membrane complex only, suggesting that the two residues alternate contact formation, thus facilitating lipid flipping from the membrane into the protein cavity during the lipid exchange process. Finally, R59 shows weaker interactions with PIPs anyway with a clear preference for specific phosphorylation positions, hinting a role in early membrane selectivity for the protein. Altogether, our simulations reveal significant aspects at the atomistic scale of interactions of α-TTP with the plasma membrane and with PIP, providing clarifications on the mechanism of intracellular vitamin E trafficking and helping establishing the role of key residue for the functionality of α-TTP.

  17. Large-scale development of PIP and SSR markers and their complementary applied in Nicotiana.

    Science.gov (United States)

    Huang, L; Cao, H; Yang, L; Yu, Yu; Wang, Yu

    2013-08-01

    PIP (Potential Intron Polymorphism) and SSR (Simple Sequence Repeats) were used in many species, but large-scale development and combined use of these two markers have not been reported in tobacco. In this study, a total of 12,388 PIP and 76,848 SSR markers were designed and uploaded to a web-accessible database (http://yancao.sdau.edu.cn/tgb/). E-PCR analysis showed that PIP and SSR rarely overlapped and were strongly complementary in the tobacco genome. The density was 3.07 PIP and 1.72 SSR markers per 10 kb of the known sequences. A total of 153 and 166 alleles were detectedby 22 PIP and 22 SSR markers in 64 Nicotiana accessions. SSR produced higher PIC (polymorphism information content) values and identified more alleles than PIP, whereas PIP could identify larger numbers of rare alleles. Mantel testing demonstrated a high correlation coefficient (r = 0.949, P SSR. The UPGMA dendrogram created from the combined PIP and SSR markers was clearer and more reliable than the individual PIP or SSR dendrograms. It suggested that PIP and SSR can make up the deficiency of molecular markers not only in tobacco but other plant.

  18. Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G-Proteins, PIP2 and Sodium

    Science.gov (United States)

    Whorton, Matthew R.; MacKinnon, Roderick

    2011-01-01

    Summary G-protein-gated K+ channels (Kir3.1–Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here we present the first crystal structures of a G-protein-gated K+ channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G-proteins could open a G-loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP2 show that G-proteins open only the G-loop gate in the absence of PIP2, but in the presence of PIP2 the G-loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na+ ion-binding site, which would allow intracellular Na+ to modulate GIRK channel activity. These data provide a mechanistic description of multi-ligand regulation of GIRK channel gating. PMID:21962516

  19. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage

    OpenAIRE

    Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico

    2014-01-01

    Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. Here we provide evidence...

  20. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages.

    Directory of Open Access Journals (Sweden)

    Brian P Ziemba

    Full Text Available The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while

  1. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages.

    Science.gov (United States)

    Ziemba, Brian P; Falke, Joseph J

    2018-01-01

    The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors

  2. In silico Coding Sequence Analysis of Walnut GAI and PIP2 Genes and Comparison with Different Plant Species

    Directory of Open Access Journals (Sweden)

    Mahdi Mohseniazar

    2017-02-01

    Full Text Available Introduction: Dwarfism is one of the important traits in breeding of crops and horticulture plants. A dwarfing rootstock will produce trees with 15-50% of standard trees size. In modern intensive fruit tree orchards, dwarfing rootstocks are commonly used to reduce trees size, enabling high-density planting and easy management, thus achieving higher yield. Trees on dwarfing rootstocks can also exhibit other economically important traits, such as precocious flowering, increased yield and increased disease resistance. Dwarf rootstocks have been extensively studied and released in stone and pome fruits, because of presence of genetic materials and the simplicity of budding methods. Control of tree size using genetically dwarf rootstocks for achievement to higher density and mechanized orchard systems is now very important for walnut production in the world especially in Iran. Many different genes can be involved in appear of this. Mutations in GAI and PIP2 genes cause dwarf trait by two different mechanisms in some plant species. In this case, we study in silico analysis of GAI and PIP2 genes consist of conserved sequences and domains, exon and intron number, function of their proteins, targeting, secondary and tertiary structure, and post translational modification. Materials and methods: The GAI and PIP2 mRNA and protein sequences (FASTA format belonging to 17 monocotyledon and dicotyledon were downloaded from NCBI (http://www.ncbi.nlm.nih.gov accessed, on September 2014. Several online web services and software were used for analysis of GAI and PIP2 mRNA and Proteins in plants. Comparative and bioinformatics analyses of PIP2 and GAI proteins were performed online at two websites NCBI (http://www.ncbi.nih.gov and EXPASY (http://expasy.org/tools. Molecular Evolutionary Genetics Analysis (MEGA; version 4 program and CLUSTAL-W with default parameters were used for multiple alignments of sequences. The phylogenetic analysis of GAI and PIP2 protein was

  3. In silico Coding Sequence Analysis of Walnut GAI and PIP2 Genes and Comparison with Different Plant Species

    Directory of Open Access Journals (Sweden)

    Mahdi Mohseniazar

    2017-09-01

    Full Text Available Introduction: Dwarfism is one of the important traits in breeding of crops and horticulture plants. A dwarfing rootstock will produce trees with 15-50% of standard trees size. In modern intensive fruit tree orchards, dwarfing rootstocks are commonly used to reduce trees size, enabling high-density planting and easy management, thus achieving higher yield. Trees on dwarfing rootstocks can also exhibit other economically important traits, such as precocious flowering, increased yield and increased disease resistance. Dwarf rootstocks have been extensively studied and released in stone and pome fruits, because of presence of genetic materials and the simplicity of budding methods. Control of tree size using genetically dwarf rootstocks for achievement to higher density and mechanized orchard systems is now very important for walnut production in the world especially in Iran. Many different genes can be involved in appear of this. Mutations in GAI and PIP2 genes cause dwarf trait by two different mechanisms in some plant species. In this case, we study in silico analysis of GAI and PIP2 genes consist of conserved sequences and domains, exon and intron number, function of their proteins, targeting, secondary and tertiary structure, and post translational modification. Materials and methods: The GAI and PIP2 mRNA and protein sequences (FASTA format belonging to 17 monocotyledon and dicotyledon were downloaded from NCBI (http://www.ncbi.nlm.nih.gov accessed, on September 2014. Several online web services and software were used for analysis of GAI and PIP2 mRNA and Proteins in plants. Comparative and bioinformatics analyses of PIP2 and GAI proteins were performed online at two websites NCBI (http://www.ncbi.nih.gov and EXPASY (http://expasy.org/tools. Molecular Evolutionary Genetics Analysis (MEGA; version 4 program and CLUSTAL-W with default parameters were used for multiple alignments of sequences. The phylogenetic analysis of GAI and PIP2 protein was

  4. Low PIP4K2B expression in human breast tumors correlates with reduced patient survival: A role for PIP4K2B in the regulation of E-cadherin expression.

    Science.gov (United States)

    Keune, Willem-Jan; Sims, Andrew H; Jones, David R; Bultsma, Yvette; Lynch, James T; Jirström, Karin; Landberg, Goran; Divecha, Nullin

    2013-12-01

    Phosphatidylinositol-5-phosphate (PtdIns5P) 4-kinase β (PIP4K2B) directly regulates the levels of two important phosphoinositide second messengers, PtdIns5P and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P2]. PIP4K2B has been linked to the regulation of gene transcription, to TP53 and AKT activation, and to the regulation of cellular reactive oxygen accumulation. However, its role in human tumor development and on patient survival is not known. Here, we have interrogated the expression of PIP4K2B in a cohort (489) of patients with breast tumor using immunohistochemical staining and by a meta-analysis of gene expression profiles from 2,999 breast tumors, both with associated clinical outcome data. Low PIP4K2B expression was associated with increased tumor size, high Nottingham histological grade, Ki67 expression, and distant metastasis, whereas high PIP4K2B expression strongly associated with ERBB2 expression. Kaplan-Meier curves showed that both high and low PIP4K2B expression correlated with poorer patient survival compared with intermediate expression. In normal (MCF10A) and tumor (MCF7) breast epithelial cell lines, mimicking low PIP4K2B expression, using short hairpin RNA interference-mediated knockdown, led to a decrease in the transcription and expression of the tumor suppressor protein E-cadherin (CDH1). In MCF10A cells, knockdown of PIP4K2B enhanced TGF-β-induced epithelial to mesenchymal transition (EMT), a process required during the development of metastasis. Analysis of gene expression datasets confirmed the association between low PIP4K2B and low CDH1expression. Decreased CDH1 expression and enhancement of TGF-β-induced EMT by reduced PIP4K2B expression might, in part, explain the association between low PIP4K2B expression and poor patient survival.

  5. Roles of Soybean Plasma Membrane Intrinsic Protein GmPIP2;9 in Drought Tolerance and Seed Development

    Directory of Open Access Journals (Sweden)

    Linghong Lu

    2018-04-01

    Full Text Available Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9-overexpressing transgenic plants were less stressed than wild-type (WT plants. Furthermore, field experiments showed that GmPIP2;9-overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9-overexpressing plants in drought stress tolerance and seed development.

  6. Cloning and expression analysis of CaPIP1-1 gene in pepper (Capsicum annuum L.).

    Science.gov (United States)

    Yin, Yan-Xu; Wang, Shu-Bin; Zhang, Huai-Xia; Xiao, Huai-Juan; Jin, Jing-Hao; Ji, Jiao-Jiao; Jing, Hua; Chen, Ru-Gang; Arisha, Mohamed Hamed; Gong, Zhen-Hui

    2015-05-25

    Plant aquaporins are responsible for water transmembrane transport, which play an important role on abiotic and biotic stresses. A novel plasma membrane intrinsic protein of CaPIP1-1 was isolated from the pepper P70 according to transcriptome databases of Phytophthora capsici inoculation and chilling stress library. CaPIP1-1, which is 1155 bp in length with an open reading frame of 861 bp, encoded 286 amino acids. Three introns, exhibited CT/AC splice junctions, were observed in CaPIP1-1. The numbers and location of introns in CaPIP1-1 were the same as observed in tomato and potato. CaPIP1-1 was abundantly expressed in pepper fruit. Increased transcription levels of CaPIP1-1 were found in the different stresses, including chilling stress, salt stress, mannitol stress, salicylic acid, ABA treatment and Phytophthora capsici infection. The expression of CaPIP1-1 was downregulated by 50 μM HgCl2 and 100 μM fluridone. The pepper plants silenced CaPIP1-1 in cv. Qiemen showed growth inhibition and decreased tolerance to salt and mannitol stresses using detached leaf method. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Improved C/SiC Ceramic Composites Made Using PIP

    Science.gov (United States)

    Easler, Timothy

    2007-01-01

    Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber

  8. Separation of the Stern and diffuse layer in coarse-grained models: the cases of phosphatidyl serine, phosphatidic acid, and PIP2 monolayers.

    Science.gov (United States)

    Vangaveti, S; Travesset, A

    2014-12-28

    We present here a method to separate the Stern and diffuse layer in general systems into two regions that can be analyzed separately. The Stern layer can be described in terms of Bjerrum pairing and the diffuse layer in terms of Poisson-Boltzmann theory (monovalent) or strong coupling theory plus a slowly decaying tail (divalent). We consider three anionic phospholipids: phosphatidyl serine, phosphatidic acid, and phosphatidylinositol(4,5)bisphosphate (PIP2), which we describe within a minimal coarse-grained model as a function of ionic concentration. The case of mixed lipid systems is also considered, which shows a high level of binding cooperativity as a function of PIP2 localization. Implications for existing experimental systems of lipid heterogeneities are also discussed.

  9. Contribution of PIP-5 kinase Iα to raft-based FcγRIIA signaling

    International Nuclear Information System (INIS)

    Szymanska, Ewelina; Korzeniowski, Marek; Raynal, Patrick; Sobota, Andrzej; Kwiatkowska, Katarzyna

    2009-01-01

    Receptor FcγIIA (FcγRIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P 2 and PI(4,5)P 2 -synthesizing PIP5-kinase Iα to rafts contributes to FcγRIIA signaling. A fraction of PIP5-kinase Iα was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P 2 . PIP5-kinase Iα bound PI(4,5)P 2 , and depletion of the lipid displaced PIP5-kinase Iα from the DRM. Activation of FcγRIIA in BHK transfectants led to recruitment of the kinase to the plasma membrane and enrichment of DRM in PI(4,5)P 2 . Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After FcγRIIA activation, PIP5-kinase Iα and PI(4,5)P 2 co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase Iα and PI(4,5)P 2 were present at the edges of electron-dense assemblies containing activated FcγRIIA in their core. The data suggest that activation of FcγRIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase Iα and PI(4,5)P 2

  10. Prediction of acute pancreatitis risk based on PIP score in children with cystic fibrosis.

    Science.gov (United States)

    Terlizzi, V; Tosco, A; Tomaiuolo, R; Sepe, A; Amato, N; Casale, A; Mercogliano, C; De Gregorio, F; Improta, F; Elce, A; Castaldo, G; Raia, V

    2014-09-01

    Currently no tools to predict risk of acute (AP) and recurrent pancreatitis (ARP) in children with cystic fibrosis (CF) are available. We assessed the prevalence of AP/ARP and tested the potential role of Pancreatic Insufficiency Prevalence (PIP) score in a cohort of children with CF. We identified two groups of children, on the basis of presence/absence of AP/ARP, who were compared for age at diagnosis, clinical features, genotypes and sweat chloride level. PIP score was calculated for each patient. 10/167 (5.9%) experienced at least one episode of AP during follow up; 10/10 were pancreatic sufficient (PS). Patients with AP/ARP showed a PIP score ≤0.25 more frequently (6/10) than patients without AP/ARP. The odds ratio (95% CI) of developing pancreatitis was 4.54 (1.22-16.92) for patients with PIP 0.25 (p 0.0151). PIP score was correlated with sweat chloride test (p < 0.01). PIP score, PS status and normal/borderline sweat chloride levels could be applied to predict pancreatitis development in children with CF. ARP could lead to pancreatic insufficiency. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  11. Modes of Interaction of Pleckstrin Homology Domains with Membranes: Toward a Computational Biochemistry of Membrane Recognition.

    Science.gov (United States)

    Naughton, Fiona B; Kalli, Antreas C; Sansom, Mark S P

    2018-02-02

    Pleckstrin homology (PH) domains mediate protein-membrane interactions by binding to phosphatidylinositol phosphate (PIP) molecules. The structural and energetic basis of selective PH-PIP interactions is central to understanding many cellular processes, yet the molecular complexities of the PH-PIP interactions are largely unknown. Molecular dynamics simulations using a coarse-grained model enables estimation of free-energy landscapes for the interactions of 12 different PH domains with membranes containing PIP 2 or PIP 3 , allowing us to obtain a detailed molecular energetic understanding of the complexities of the interactions of the PH domains with PIP molecules in membranes. Distinct binding modes, corresponding to different distributions of cationic residues on the PH domain, were observed, involving PIP interactions at either the "canonical" (C) and/or "alternate" (A) sites. PH domains can be grouped by the relative strength of their C- and A-site interactions, revealing that a higher affinity correlates with increased C-site interactions. These simulations demonstrate that simultaneous binding of multiple PIP molecules by PH domains contributes to high-affinity membrane interactions, informing our understanding of membrane recognition by PH domains in vivo. Copyright © 2017. Published by Elsevier Ltd.

  12. Significance of thymosin β4 and implication of PINCH-1-ILK-α-parvin (PIP complex in human dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Nikolai Sopko

    Full Text Available Myocardial remodeling is a major contributor in the development of heart failure (HF after myocardial infarction (MI. Integrin-linked kinase (ILK, LIM-only adaptor PINCH-1, and α-parvin are essential components of focal adhesions (FAs, which are highly expressed in the heart. ILK binds tightly to PINCH-1 and α-parvin, which regulates FA assembly and promotes cell survival via the activation of the kinase Akt. Mice lacking ILK, PINCH or α-parvin have been shown to develop severe defects in the heart, suggesting that these proteins play a critical role in heart function. Utilizing failing human heart tissues (dilated cardiomyopathy, DCM, we found a 2.27-fold (p<0.001 enhanced expression of PINCH, 4 fold for α-parvin, and 10.5 fold (p<0.001 for ILK as compared to non-failing (NF counterparts. No significant enhancements were found for the PINCH isoform PINCH-2 and parvin isoform β-parvin. Using a co-immunoprecipitation method, we also found that the PINCH-1-ILK-α-parvin (PIP complex and Akt activation were significantly up-regulated. These observations were further corroborated with the mouse myocardial infarction (MI and transaortic constriction (TAC model. Thymosin beta4 (Tβ4, an effective cell penetrating peptide for treating MI, was found to further enhance the level of PIP components and Akt activation, while substantially suppressing NF-κB activation and collagen expression--the hallmarks of cardiac fibrosis. In the presence of an Akt inhibitor, wortmannin, we show that Tβ4 had a decreased effect in protecting the heart from MI. These data suggest that the PIP complex and activation of Akt play critical roles in HF development. Tβ4 treatment likely improves cardiac function by enhancing PIP mediated Akt activation and suppressing NF-κB activation and collagen-mediated fibrosis. These data provide significant insight into the role of the PIP-Akt pathway and its regulation by Tβ4 treatment in post-MI.

  13. [Dislocation of the PIP-Joint - Treatment of a common (ball)sports injury].

    Science.gov (United States)

    Müller-Seubert, Wibke; Bührer, Gregor; Horch, Raymund E

    2017-09-01

    Background  Fractures or fracture dislocations of the proximal interphalangeal joint often occur during sports or accidents. Dislocations of the PIP-joint are the most common ligamentary injuries of the hand. As this kind of injury is so frequent, hand surgeons and other physicians should be aware of the correct treatment. Objectives  This paper summarises the most common injury patterns and the correct treatment of PIP-joint dislocations. Materials and Methods  This paper reviews the current literature and describes the standardised treatment of PIP-joint dislocations. Results  What is most important is that reposition is anatomically correct, and this should be controlled by X-ray examination. Depending on the instability and possible combination with other injuries (e. g. injury to the palmar plate), early functional physiotherapy of the joint or a short immobilisation period is indicated. Conclusions  Early functional treatment of the injured PIP-joint, initially using buddy taping, is important to restore PIP-joint movement and function. Depending on the injury, joint immobilisation using a K-wire may be indicated. Detailed informed consent is necessary to explain to the patient the severity of the injury and possible complications, such as chronic functional disorders or development of arthrosis. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco.

    Science.gov (United States)

    Bots, Marc; Vergeldt, Frank; Wolters-Arts, Mieke; Weterings, Koen; van As, Henk; Mariani, Celestina

    2005-03-01

    Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues. Before flower anthesis, anther and pollen dehydration takes place before the release of mature pollen at dehiscence. Aquaporins represent a class of proteins that mediates the movement of water over cellular membranes. Aquaporins of the plasmamembrane PIP2 family are expressed in tobacco (Nicotiana tabacum) anthers and may therefore be involved in the movement of water in this organ. To gain more insight into the role these proteins may play in this process, we have analyzed their localization using immunolocalizations and generated plants displaying RNA interference of PIP2 aquaporins. Our results indicate that PIP2 protein expression is modulated during anther development. Furthermore, in tobacco PIP2 RNA interference plants, anther dehydration was slower, and dehiscence occurred later when compared with control plants. Together, our results suggest that aquaporins of the PIP2 class are required for efficient anther dehydration prior to dehiscence.

  15. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum.

    Science.gov (United States)

    Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing

    2016-12-01

    Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lp r ), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lp rc ), and leaf cell hydraulic conductivity (Lp lc ) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lp r and K leaf were reduced by 29 %, and Lp rc and Lp lc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.

  16. Low PIP2 molar fractions induce nanometer size clustering in giant unilamellar vesicles containing POPC

    DEFF Research Database (Denmark)

    Salvemini, Iyrri; Gaua, D.; Reid, J.

    2014-01-01

    generalized polarization function (GP) with unlabeled PIP2 and single point fluorescence correlation spectroscopy and brightness analysis of various BODIPY labeled PIP2 to determine the presence of clusters in the membrane of giant unilamellar vesicles (GUVs) made of 1-palmitoyl-2-oleoyl-sn-glycero-3......-phosphocholine (POPC) or a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), sphingomyelin and cholesterol. We determined the number of freely diffusing fluorescent BODIPY molecules in the membrane and found that in GUVs containing various amounts of labeled PIP2, this number was significantly lower...... than in GUVs made with the control BODIPY labeled hexadecyl phosphatidylcholine (BODIPY-HPC). Also, we noted an increase in brightness of the labeled PIP2 particles with increasing labeled PIP2 molar fraction. Together with the observed change in LAURDAN GP with increasing molar fraction of unlabeled...

  17. Phospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Simon Ji Hau Wang

    2014-11-01

    Full Text Available Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS-homology domain by protein kinase C (PKC. We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts, plays a role in larval neuromuscular junction (NMJ growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg and phosphatidylinositol 4,5-bisphosphate (PIP2. Through the use of Proximity Ligation Assay (PLA, we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.

  18. Phosphoinositolphosphate (PIP) cascade induction by hypertonic stress of plant tissue

    International Nuclear Information System (INIS)

    Srivastava, A.; Jacoby, B.

    1989-01-01

    Inositol 1,4,5-trisphosphate (IP 3 ) was determined by competition with [ 3 H]-IP 3 for binding to an IP 3 specific protein. A hypertonic mannitol, sorbitol or lactose shock induced an increase in the rate of K + uptake and raised the IP 3 content of Beta vulgaris slices, excised Vigna mungo and Sorghum bicolor roots, as well as attached V. mungo roots. Increased K + uptake could also be induced by compounds that artificially induce the PIP cascade, or mimic it's products. A hypertonic shock, administered to intact B. vulgaris slices, further enhanced the phosphorylation of a 20 kD protein in the plasmalemma. Maximal IP 3 content was found 10 min after hypertonic induction and maximal K + uptake was obtained 10 min later. The effect of a continuous hypertonic treatment on IP 3 content, but not on K + uptake, was transient. Li + decreased the rate of IP 3 metabolism

  19. PIP breast implant removal: a study of 828 cases.

    Science.gov (United States)

    Oulharj, S; Pauchot, J; Tropet, Y

    2014-03-01

    In March, 2010, the French Health Products Safety Agency suspended the sale of prefilled silicone breast implants manufactured by Poly Implants Prosthèse Prothese (PIP) because of a high failure rate and the use of an inappropriate silicone gel that did not comply with CE marking. These findings led to an international medical crisis. In France, 30,000 female patients had PIP implants. In our Department, 1150 PIP breast implants had been implanted in 630 patients since 2001. A retrospective study was conducted to define the rupture rate of these implants and the complications that arise. The women included in the study underwent implant removal from May 2010 to September 2012 for preventive or curative reasons. Data were collected from medical records that included: results of clinical examination, breast ultrasound before removal, rates of implant rupture, results of biopsy of periprosthetic capsule and pericapsule tissue and postoperative complications. A total of 828 PIP breast implants were removed in 455 patients. The rate of ruptured implants was 7.73% (64/828), corresponding to 11.6% of patients. A periprosthetic effusion was associated with rupture in 44% of cases. Breast ultrasound indicated a rupture for 87 implants; 32% were true positives and 3% were false negatives. Periprosthetic capsule biopsy demonstrated the presence of a foreign body, which seemed to be silicone, in 26% of cases and the presence of inflammation in 13% of cases. No siliconoma-type lesion was identified in the pericapsular tissue at biopsy. A total of 14 implants presented perspiration at removal. A statistically significant difference was found between the rates of rupture for texturised implants as compared to the smooth-surfaced implants. There were eight post-revisional-surgery complications (1%) and three cases of breast adenocarcinoma. The preventive explantation of PIP breast implants is justified given the high failure rate (7.73%) and given patients' exposure to silicone

  20. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    Science.gov (United States)

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  1. How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations

    Science.gov (United States)

    2016-01-01

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  2. Inhibition of PIP4Kγ ameliorates the pathological effects of mutant huntingtin protein.

    Science.gov (United States)

    Al-Ramahi, Ismael; Panapakkam Giridharan, Sai Srinivas; Chen, Yu-Chi; Patnaik, Samarjit; Safren, Nathaniel; Hasegawa, Junya; de Haro, Maria; Wagner Gee, Amanda K; Titus, Steven A; Jeong, Hyunkyung; Clarke, Jonathan; Krainc, Dimitri; Zheng, Wei; Irvine, Robin F; Barmada, Sami; Ferrer, Marc; Southall, Noel; Weisman, Lois S; Botas, Juan; Marugan, Juan Jose

    2017-12-26

    The discovery of the causative gene for Huntington's disease (HD) has promoted numerous efforts to uncover cellular pathways that lower levels of mutant huntingtin protein (mHtt) and potentially forestall the appearance of HD-related neurological defects. Using a cell-based model of pathogenic huntingtin expression, we identified a class of compounds that protect cells through selective inhibition of a lipid kinase, PIP4Kγ. Pharmacological inhibition or knock-down of PIP4Kγ modulates the equilibrium between phosphatidylinositide (PI) species within the cell and increases basal autophagy, reducing the total amount of mHtt protein in human patient fibroblasts and aggregates in neurons. In two Drosophila models of Huntington's disease, genetic knockdown of PIP4K ameliorated neuronal dysfunction and degeneration as assessed using motor performance and retinal degeneration assays respectively. Together, these results suggest that PIP4Kγ is a druggable target whose inhibition enhances productive autophagy and mHtt proteolysis, revealing a useful pharmacological point of intervention for the treatment of Huntington's disease, and potentially for other neurodegenerative disorders.

  3. The loss of plasma membrane lysopip and an increase of PIP2 result from treatment of carrot cells with fungal enzymes

    International Nuclear Information System (INIS)

    Chen, Q.; Boss, W.F.

    1989-01-01

    The plasma membranes of carrot cells grown in suspension culture are enriched with PIP, lysoPIP, and PIP 2 . To determine whether or not these lipids are involved in signal transduction, we have challenged the cells with a mixture of fungal cellulases, Driselase, and monitored the changes in the phosphoinositides and in the phosphoinositide kinase activity. With cell prelabeled with [ 3 H]inositol, two major changes are observed: (1) lysoPIP decreases 30% compared to the sorbitol control and (2) PIP 2 doubles. There is no increase in IP, IP 2 , or IP 3 . In vitro phosphorylation studies using [γ- 32 P]ATP indicate that the increase in PIP 2 is due in part to activation of the PIP kinase. These data suggest that the role of the polyphosphoinositides in signal transduction in plants may involve activation of the PIP kinase and/or activation of A type phospholipases rather than C type phospholipases

  4. Identification of human Phosphatidyl Inositol 5-Phosphate 4-Kinase as an RNA binding protein that is imported into Plasmodium falciparum.

    Science.gov (United States)

    Vindu, Arya; Dandewad, Vishal; Seshadri, Vasudevan

    2018-04-06

    Plasmodium falciparum is a causative agent for malaria and has a complex life cycle in human and mosquito hosts. Translation repression of specific set of mRNA has been reported in gametocyte stages of this parasite. A conserved element present in the 3'UTR of some of these transcripts was identified. Biochemical studies have identified components of the RNA storage and/or translation inhibitor complex but it is not yet clear how the complex is specifically recruited on the RNA targeted for translation regulation. We used the 3'UTR region of translationally regulated transcripts to identify Phosphatidyl-inositol 5-phosphate 4-kinase (PIP4K2A) as the protein that associates with these RNAs. We further show that recombinant PIP4K2A has the RNA binding activity and can associate specifically with Plasmodium 3'UTR RNAs. Immunostainings show that hPIP4K2A is imported into the Plasmodium parasite from RBC. These results identify a novel RNA binding role for PIP4K2A that may play a role in Plasmodium propagation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. HiPIP oxido-reductase activity in membranes from aerobically grown cells of the facultative phototroph Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Hochkoeppler, Alejandro; Kofod, Pauli; Zannoni, Davide

    1995-01-01

    The role of the periplasmically located, water-soluble, HiPIP (high-potential iron-sulfur protein) in the respiratory chain of the facultative phototroph Rhodoferax fermentans has been examined. The oxidized HiPIP is reduced by succinate-dependent respiration via the bc 1 complex, this reaction...... being inhibited by myxothiazol and/or stigmatellin. The reduced HiPIP can be oxidized by the membrane-bound cytochrome oxidase, this reaction being inhibited by 0.1 mM cyanide. We conclude that aerobically grown Rf. fermentans contains a redox chain in which HiPIP mediates electron transfer between...... the bc 1 complex and the cb-type cytochrome oxidase....

  6. Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale.

    Science.gov (United States)

    van Rheenen, Jacco; Jalink, Kees

    2002-09-01

    Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) at the inner leaflet of the plasma membrane has been proposed to locally regulate the actin cytoskeleton. Indeed, recent studies that use GFP-tagged pleckstrin homology domains (GFP-PH) as fluorescent PIP(2) sensors suggest that this lipid is enriched in membrane microdomains. Here we report that this concept needs revision. Using three distinct fluorescent GFP-tagged pleckstrin homology domains, we show that highly mobile GFP-PH patches colocalize perfectly with various lipophilic membrane dyes and, hence, represent increased lipid content rather than PIP(2)-enriched microdomains. We show that bright patches are caused by submicroscopical folds and ruffles in the membrane that can be directly visualized at approximately 15 nm axial resolution with a novel numerically enhanced imaging method. F-actin motility is inhibited significantly by agonist-induced PIP(2) breakdown, and it resumes as soon as PIP(2) levels are back to normal. Thus, our data support a role for PIP(2) in the regulation of cortical actin, but they challenge a model in which spatial differences in PIP(2) regulation of the cytoskeleton exist at a micrometer scale.

  7. PIP-II Injector Test: Challenges and Status

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, P. F. [Fermilab; Carneiro, J. P. [Fermilab; Edelen, J. [Fermilab; Lebedev, V. [Fermilab; Prost, L. [Fermilab; Saini, A. [Fermilab; Shemyakin, A. [Fermilab; Steimel, J. [Fermilab

    2016-10-04

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H- superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the Injector Test warm front end, including results of the beam commissioning through the installed components, and progress with SRF cryomodules and other systems.

  8. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2018-01-01

    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  9. Preliminary Modelling of Radiation Levels at the Fermilab PIP-II Linac

    Energy Technology Data Exchange (ETDEWEB)

    Lari, L. [CERN; Cerutti, F. [CERN; Esposito, L. S. [CERN; Baffes, C. [Fermilab; Dixon, S. J. [Fermilab; Mokhov, N. V. [Fermilab; Rakhno, I. [Fermilab; Tropin, I. S. [Fermilab

    2018-04-01

    PIP-II is the Fermilab's flagship project for providing powerful, high-intensity proton beams to the laboratory's experiments. The heart of PIP-II is an 800-MeV superconducting linac accelerator. It will be located in a new tunnel with new service buildings and connected to the present Booster through a new transfer line. To support the design of civil engineering and mechanical integration, this paper provides preliminary estimation of radiation level in the gallery at an operational beam loss limit of 0.1 W/m, by means of Monte Carlo calculations with FLUKA and MARS15 codes.

  10. Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV).

    Science.gov (United States)

    Koch, Jon D; Jaramillo, David E; DiVito, Enrico; Peters, Ove A

    2016-03-01

    This study aimed to compare fluid movements generated from photon-induced photoacoustic streaming (PIPS) and passive ultrasonic irrigation (PUI). Particle Image Velocimetry (PIV) was performed using 6-μm melamine spheres in water. Measurement areas were 3-mm-long sections of the canal in the coronal, midroot and apical regions for PIPS (erbium/yttrium-aluminium garnet (Er:YAG) laser set at 15 Hz with 20 mJ), or passive ultrasonic irrigation (PUI, non-cutting insert at 30% unit power) was performed in simulated root canals prepared to an apical size #30/0.04 taper. Fluid movement was analysed directly subjacent to the apical ends of ultrasonic insert or fiber optic tips as well as at midroot and apically. During PUI, measured average velocities were around 0.03 m/s in the immediate vicinity of the sides and tip of the ultrasonic file. Speeds decayed to non-measureable values at a distance of about 2 mm from the sides and tip. During PIPS, typical average speeds were about ten times higher than those measured for PUI, and they were measured throughout the length of the canal, at distances up to 20 mm away. PIPS caused higher average fluid speeds when compared to PUI, both close and distant from the instrument. The findings of this study could be relevant to the debriding and disinfecting stage of endodontic therapy. Irrigation enhancement beyond needle irrigation is relevant to more effectively eradicate microorganisms from root canal systems. PIPS may be an alternative approach due to its ability to create high streaming velocities further away from the activation source compared to ultrasonic activation.

  11. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2

    OpenAIRE

    Wang Zheng; Ruiqi Cai; Laura Hofmann; Vasyl Nesin; Qiaolin Hu; Wentong Long; Mohammad Fatehi; Xiong Liu; Shaimaa Hussein; Tim Kong; Jingru Li; Peter E. Light; Jingfeng Tang; Veit Flockerzi; Leonidas Tsiokas

    2018-01-01

    Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function ...

  12. Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes.

    Directory of Open Access Journals (Sweden)

    Inés Plasencia

    Full Text Available BACKGROUND: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. METHODOLOGY/PRINCIPAL FINDING: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC, or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE, 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE, 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS, and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. CONCLUSION/SIGNIFICANCE: The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.

  13. Intra-arterial port implantation for intra-arterial chemotherapy : comparison between PIPS(Percutaneously Implantable Port System) and port system

    International Nuclear Information System (INIS)

    Yoon, Sang Jin; Shim, Hyung Jin; Jung, Hun Young; Choi, Yong Ho; Kim, Yang Soo; Song, In Sup; Kwak, Byung Kook

    1999-01-01

    To compare the techniques and complications of intra-arterial port implantation for intra-arterial chemotherapy between PIPS and the port system. For intra-arterial port implantation, 27 cases in 27 patients were retrospectively evaluated using PIPS(PIPS-200, William Cook Europe, Denmark) while for 21 cases in 19 patients a pediatric venous port system(Port-A-Cath, 5.8F, SIMS Deltec, U. S. A.) was used. All intra-arterial port implantation was performed percuteneously in an angiographic ward. Hepatocellular carcinoma was diagnosed in 18 patients and hepatic metastasis in 16. Peripheral cholangiocarcinoma, and pancreatic gastric, ovarian, renal cell and colon carcinoma were included. We compared the techniques and complications between PIPS and the port system. The follow up period ranged from 23 to 494(mean, 163) days in PIPS and from 12 to 431(mean, 150) days in the port system. In all cases, intra-arterial port implantations were technically successful. Port catheter tips were located in the common hepatic artery(n=8), proper hepatic artery(n=7), right hepatic artery(n=5), gastroduodenal artery(n=2), left hepatic artery(n=1), pancreaticoduodenal artery(n=1), inferior mesenteric artery(n=1), lumbar artery(n=1), and renal artery(n=1) in PIPS, and in the proper hepatic artery(n=6), gastroduodenal artery(n=6), common hepatic artery(n=3), right hepatic artery(n=4), inferior mesenteric artery(n=1), and internal iliac artery(n=1) in the port system. Port chambers were buried in infrainguinal subcutaneous tissue. Using PIPS, complications developed in seven cases(25.9%) and of these, four (57.1%) were catheter or chamber related. In the port system, catheter or chamber related complications developed in four cases(19.0%). Because PIPS and the port system have relative merits and demetrits, successful intra-arterial port implantation is possible if equipment is properly selected

  14. Multiple binding of bilirubin to human serum albumin and cobinding with laurate

    DEFF Research Database (Denmark)

    Sato, H; Honoré, B; Brodersen, R

    1988-01-01

    Numerical analysis of multiple binding of two ligands to one carrier has been accomplished, using the principle of several sets of acceptable binding constants, with bilirubin-laurate-albumin as an example. Binding of bilirubin to defatted human serum albumin was investigated by a spectroscopic...

  15. Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    DEFF Research Database (Denmark)

    Plasencia, Ines; Survery, Sabeen; Ibragimova, Sania

    2011-01-01

    Background: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize...... reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles...... and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-beta-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPh...

  16. Influence of incubation management on pipping position, hatching ...

    African Journals Online (AJOL)

    Influence of incubation management on pipping position, hatching ability and survival of ostrich chicks. Z Brand, SWP Cloete, IA Malecki, CR Brown. Abstract. Despite numerous studies, the effect of artificial incubation on the hatchability and survival of near-term ostrich chicks is still not well understood. Records from 13 975 ...

  17. Predicted Interval Plots (PIPS): A Graphical Tool for Data Monitoring of Clinical Trials.

    Science.gov (United States)

    Li, Lingling; Evans, Scott R; Uno, Hajime; Wei, L J

    2009-11-01

    Group sequential designs are often used in clinical trials to evaluate efficacy and/or futility. Many methods have been developed for different types of endpoints and scenarios. However, few of these methods convey information regarding effect sizes (e.g., treatment differences) and none uses prediction to convey information regarding potential effect size estimates and associated precision, with trial continuation. To address these limitations, Evans et al. (2007) proposed to use prediction and predicted intervals as a flexible and practical tool for quantitative monitoring of clinical trials. In this article, we reaffirm the importance and usefulness of this innovative approach and introduce a graphical summary, predicted interval plots (PIPS), to display the information obtained in the prediction process in a straightforward yet comprehensive manner. We outline the construction of PIPS and apply this method in two examples. The results and the interpretations of the PIPS are discussed.

  18. Installation Progress at the PIP-II Injector Test at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C. [Fermilab; Alvarez, M. [Fermilab; Andrews, R. [Fermilab; Chen, A. [Fermilab; Czajkowski, J. [Fermilab; Derwent, P. [Fermilab; Edelen, J. [Fermilab; Hanna, B. [Fermilab; Hartsell, B. [Fermilab; Kendziora, K. [Fermilab; Mitchell, D. [Fermilab; Prost, L. [Fermilab; Scarpine, V. [Fermilab; Shemyakin, A. [Fermilab; Steimel, J. [Fermilab; Zuchnik, T. [Fermilab; Edelen, A. [Colorado State U.

    2016-10-04

    A CW-compatible, pulsed H- superconducting linac “PIP-II” is being planned to upgrade Fermilab's injection complex. To validate the front-end concept, a test acceler-ator (The PIP-II Injector Test, formerly known as "PXIE") is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV Radio Frequency Quadrupole (RFQ) capable of operation in Con-tinuous Wave (CW) mode, and a 10 m-long Medium En-ergy Beam Transport (MEBT). The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.

  19. Non-basic amino acids in the ROMK1 channels via an appropriate distance modulate PIP2 regulated pHi-gating.

    Science.gov (United States)

    Lee, Chien-Hsing; Huang, Po-Tsang; Liou, Horng-Huei; Lin, Mei-Ying; Lou, Kuo-Long; Chen, Chung-Yi

    2016-04-22

    The ROMK1 (Kir1.1) channel activity is predominantly regulated by intracellular pH (pHi) and phosphatidylinositol 4,5-bisphosphate (PIP2). Although several residues were reported to be involved in the regulation of pHi associated with PIP2 interaction, the detailed molecular mechanism remains unclear. We perform experiments in ROMK1 pHi-gating with electrophysiology combined with mutational and structural analysis. In the present study, non basic residues of C-terminal region (S219, N215, I192, L216 and L220) in ROMK1 channels have been found to mediate channel-PIP2 interaction and pHi gating. Further, our structural results show these residues with an appropriate distance to interact with membrane PIP2. Meanwhile, a cluster of basic residues (R188, R217 and K218), which was previously discovered regarding the interaction with PIP2, exists in this appropriate distance to discriminate the regulation of channel-PIP2 interaction and pHi-gating. This appropriate distance can be observed with high conservation in the Kir channel family. Our results provide insight that an appropriate distance cooperates with the electrostatics interaction of channel-PIP2 to regulate pHi-gating. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Opposite effects of the S4-S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels

    Directory of Open Access Journals (Sweden)

    Frank S Choveau

    2012-07-01

    Full Text Available Voltage-gated potassium (Kv channels are tetramers, each subunit presenting six transmembrane segments (S1-S6, with each S1-S4 segments forming a voltage-sensing domain (VSD and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5L and of the S6 C-terminal part (S6T in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5L is acting like a ligand binding to S6T to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5L, the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2, stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated require PIP2 to function properly, confirming its crucial importance as an ion channel co-factor. This is highlighted in cases in which an altered regulation of ion channels by PIP2 leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP2 and S4-S5L, and assesses their potential physiological and pathophysiological roles.

  1. Asymmetric Hydrogenation of Quinoxalines Catalyzed by Iridium/PipPhos

    NARCIS (Netherlands)

    Mrsic, Natasa; Jerphagnon, Thomas; Minnaard, Adriaan J.; Feringa, Ben L.; de Vries, Johannes G.

    2009-01-01

    A catalyst made in situ from the (cyclooctadiene)iridium chloride dimer, [Ir(COD)Cl](2), and the monodentate phosphoramidite ligand (S)-PipPhos was used in the enantioselective hydrogenation of 2- and 2,6-substituted quinoxalines. In the presence of piperidine hydrochloride as additive full

  2. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4

    Science.gov (United States)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua

    2014-01-01

    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  3. Energy response and compensation filters for pips detector

    International Nuclear Information System (INIS)

    Wang Lin; Ye Zhiyao; Dong Binjiang

    2007-01-01

    This paper introduces the analysis of energy response and the choice of proper compensation filters for PIPS detector. With PRESTA-CG program, filters conformed to the national standard of PRC were picked out by calculation. Then the chosen filters were tested through experiments. Good agreement was obtained between measured results and calculated values by Monte Carlo method. (authors)

  4. Isolation, Characterization, and Functional Role of the High-Potential Iron-Sulfur Protein (HiPIP) from Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Hochkoeppler, A.; Kofod, P.; Ferro, G.

    1995-01-01

    A new high-potential iron-sulfur protein (HiPIP) has been isolated and purified to homogeneity from the soluble fraction obtained from light-grown cells of the facultative photoheterotrophic bacterium Rhodoferax fermentans. The new protein was identified as a HiPIP by virtue of its molecular...... other sources and, in particular, the iron content is consistent with the presence of one [Fe4S4] cubane cluster per molecule. The isoelectric pH values of the two redox forms are consistent with a basic protein. Kinetic studies of HiPIP oxidation, performed by monitoring the absorbance changes induced...

  5. Multiple growth hormone-binding proteins are expressed on insulin-producing cells

    DEFF Research Database (Denmark)

    Møldrup, A; Billestrup, N; Thorn, N A

    1989-01-01

    The insulin-producing rat islet tumor cell line, RIN-5AH, expresses somatogen binding sites and responds to GH by increased proliferation and insulin production. Affinity cross-linking shows that RIN-5AH cells contain two major GH-binding subunits of Mr 100-130K (110K), which appear to exist as d....... It is concluded that the RIN-5AH cells have multiple GH-binding proteins which may mediate signals for either proliferation and/or insulin production....

  6. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania

    2016-11-10

    Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow\\'s drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.

  7. Preliminary Modeling Of Radiation Levels At The Fermilab PIP-II Linac arXiv

    CERN Document Server

    Lari, L.; Esposito, L.S.; Baffes, C.; Dixon, S.J.; Mokhov, N.V.; Rakhno, I.; Tropin, I.S.

    PIP-II is the Fermilab's flagship project for providing powerful, high-intensity proton beams to the laboratory's experiments. The heart of PIP-II is an 800-MeV superconducting linac accelerator. It will be located in a new tunnel with new service buildings and connected to the present Booster through a new transfer line. To support the design of civil engineering and mechanical integration, this paper provides preliminary estimation of radiation level in the gallery at an operational beam loss limit of 0.1 W/m, by means of Monte Carlo calculations with FLUKA and MARS15 codes.

  8. Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C 2 A domain in asynchronous neurotransmitter release

    Energy Technology Data Exchange (ETDEWEB)

    Voleti, Rashmi; Tomchick, Diana R.; Südhof, Thomas C.; Rizo, Josep

    2017-09-18

    Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturating conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of L-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.

  9. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study.

    Directory of Open Access Journals (Sweden)

    Huai-Chun Chen

    Full Text Available The second messenger lipid PIP(3 (phosphatidylinositol-3,4,5-trisphosphate is generated by the lipid kinase PI3K (phosphoinositide-3-kinase in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3-specific pleckstrin homology (PH domains to the membrane surface. Despite the broad importance of PIP(3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i PIP(3 target lipid that provides specificity and affinity, and (ii PS facilitator lipid that enhances the PIP(3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral

  10. Cloning of cDNA for a prolactin-inducible protein (PIP) and studies on the hormonal control of PIP gene expression in T47D human breast cancer cells

    International Nuclear Information System (INIS)

    Murphy, L.; Myal, Y.; Tsuyuki, D.; Shiu, R.

    1986-01-01

    Recently in this laboratory it was shown that in the human breast cancer cell line T47D, human prolactin of human growth hormone in the presence of hydrocortisone induced the synthesis and secretion of PIP's, a family of proteins which differed only in their degree of glycosylation. This finding represented the first demonstration of an inductin of specific proteins by prolactin in human target cells and has provided us with a unique model in which to study the molecular mechanism of multihormonal actions as well as the possible significance of prolactin in human breast cancer. In order to facilitate their studies the authors cloned PIP cDNA. The strategy chosen and the methods used are described in this article

  11. PIC Simulations in Low Energy Part of PIP-II Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Gennady

    2014-07-01

    The front end of PIP-II linac is composed of a 30 keV ion source, low energy beam transport line (LEBT), 2.1 MeV radio frequency quadrupole (RFQ), and medium energy beam transport line (MEBT). This configuration is currently being assembled at Fermilab to support a complete systems test. The front end represents the primary technical risk with PIP-II, and so this step will validate the concept and demonstrate that the hardware can meet the specified requirements. SC accelerating cavities right after MEBT require high quality and well defined beam after RFQ to avoid excessive particle losses. In this paper we will present recent progress of beam dynamic study, using CST PIC simulation code, to investigate partial neutralization effect in LEBT, halo and tail formation in RFQ, total emittance growth and beam losses along low energy part of the linac.

  12. Multiple [3H]-nemonapride binding sites in calf brain.

    Science.gov (United States)

    Helmeste, D M; Tang, S W; Li, M; Fang, H

    1997-07-01

    [3H]-Nemonapride has been the ligand of choice to label D4 dopamine receptors. Its specificity was questioned when it was discovered that sigma (sigma) sites were also labeled by [3H]-nemonapride. To further characterize the binding of [3H]-nemonapride, three areas of calf brain (striatum, frontal cortex and cerebellum) were examined. In all three areas, [3H]-nemonapride labeled multiple sites. Dopaminergic and sigma sites were the most prominent. The sigma binding profile was sigma-1 like with a Ki binding profile as follows (in order of decreasing potency): haloperidol, PPAP, pentazocine, DTG, U-50488, R(+)-3-PPP. Experiments using sulpiride and pentazocine to block striatal dopaminergic and sigma sites, respectively, revealed additional, not previously characterized binding sites for [3H]-nemonapride. One component which was present in striatum but not in frontal cortex or cerebellum, had affinity for some neuroleptics and WB-4101, but not for typical serotonergic agents. Thus, [3H]-nemonapride has no selectivity for dopamine receptors unless stringent experimental conditions are met.

  13. Harpin Hpa1 Interacts with Aquaporin PIP1;4 to Promote the Substrate Transport and Photosynthesis in Arabidopsis.

    Science.gov (United States)

    Li, Liang; Wang, Hao; Gago, Jorge; Cui, Haiying; Qian, Zhengjiang; Kodama, Naomi; Ji, Hongtao; Tian, Shan; Shen, Dan; Chen, Yanjuan; Sun, Fengli; Xia, Zhonglan; Ye, Qing; Sun, Wei; Flexas, Jaume; Dong, Hansong

    2015-11-26

    Harpin proteins produced by plant-pathogenic Gram-negative bacteria are the venerable player in regulating bacterial virulence and inducing plant growth and defenses. A major gap in these effects is plant sensing linked to cellular responses, and plant sensor for harpin Hpa1 from rice bacterial blight pathogen points to plasma membrane intrinsic protein (PIP). Here we show that Arabidopsis AtPIP1;4 is a plasma membrane sensor of Hpa1 and plays a dual role in plasma membrane permeability of CO2 and H2O. In particular, AtPIP1;4 mediates CO2 transport with a substantial contribute to photosynthesis and further increases this function upon interacting with Hpa1 at the plasma membrane. As a result, leaf photosynthesis rates are increased and the plant growth is enhanced in contrast to the normal process without Hpa1-AtPIP1;4 interaction. Our findings demonstrate the first case that plant sensing of a bacterial harpin protein is connected with photosynthetic physiology to regulate plant growth.

  14. PRN 2007-2: Guidance on Small-Scale Field Testing and Low-level Presence in Food of Plant-Incorporated Protectants (PIPs)

    Science.gov (United States)

    This notice clarifies how EPA ensures the safety of residues of PIPs possibly present in food or feed and when a tolerance or tolerance exemption would be required for field tests for biotechnology-derived food and feed crop plants containing PIPs.

  15. The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress.

    Science.gov (United States)

    Perrone, Irene; Gambino, Giorgio; Chitarra, Walter; Vitali, Marco; Pagliarani, Chiara; Riccomagno, Nadia; Balestrini, Raffaella; Kaldenhoff, Ralf; Uehlein, Norbert; Gribaudo, Ivana; Schubert, Andrea; Lovisolo, Claudio

    2012-10-01

    We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.

  16. Cloning, Expression, and Chromosomal Stabilization of the Propionibacterium shermanii Proline Iminopeptidase Gene (pip) for Food-Grade Application in Lactococcus lactis

    NARCIS (Netherlands)

    Leenhouts, Kees; Bolhuis, Albert; Boot, Johan; Deutz, Inge; Toonen, Marjolein; Venema, Gerard; Kok, Jan; Ledeboer, Aat

    1998-01-01

    Proline iminopeptidase produced by Propionibacterium shermanii plays an essential role in the flavor development of Swiss-type cheeses. The enzyme (Pip) was purified and characterized, and the gene (pip) was cloned and expressed in Escherichia coli and Lactococcus lactis, the latter species being an

  17. Digital Radiography and Computed Tomography (DRCT) Product Improvement Plan (PIP)

    Energy Technology Data Exchange (ETDEWEB)

    Tim Roney; Bob Pink; Karen Wendt; Robert Seifert; Mike Smith

    2010-12-01

    The Idaho National Laboratory (INL) has been developing and deploying x-ray inspection systems for chemical weapons containers for the past 12 years under the direction of the Project Manager for Non-Stockpile Chemical Materiel (PMNSCM). In FY-10 funding was provided to advance the capabilities of these systems through the DRCT (Digital Radiography and Computed Tomography) Product Improvement Plan (PIP), funded by the PMNSCM. The DRCT PIP identified three research tasks; end user study, detector evaluation and DRCT/PINS integration. Work commenced in February, 2010. Due to the late start and the schedule for field inspection of munitions at various sites, it was not possible to spend sufficient field time with operators to develop a complete end user study. We were able to interact with several operators, principally Mr. Mike Rowan who provided substantial useful input through several discussions and development of a set of field notes from the Pueblo, CO field mission. We will be pursuing ongoing interactions with field personnel as opportunities arise in FY-11.

  18. Pip and pop : Non-spatial auditory signals improve spatial visual search

    NARCIS (Netherlands)

    Burg, E. van der; Olivers, C.N.L.; Bronkhorst, A.W.; Theeuwes, J.

    2008-01-01

    Searching for an object within a cluttered, continuously changing environment can be a very time-consuming process. The authors show that a simple auditory pip drastically decreases search times for a synchronized visual object that is normally very difficult to find. This effect occurs even though

  19. Status of the Warm Front End of PIP-II Injector Test

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, Alexander [Fermilab; Alvarez, Matthew [Fermilab; Andrews, Richard [Fermilab; Baffes, Curtis [Fermilab; Carneiro, Jean-Paul [Fermilab; Chen, Alex [Fermilab; Derwent, Paul [Fermilab; Edelen, Jonathan [Fermilab; Frolov, Daniil [Fermilab; Hanna, Bruce [Fermilab; Prost, Lionel [Fermilab; Saewert, Gregory [Fermilab; Saini, Arun [Fermilab; Scarpine, Victor [Fermilab; Sista, V. Lalitha [Fermilab; Steimel, Jim [Fermilab; Sun, Ding [Fermilab; Warner, Arden [Fermilab

    2017-05-01

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H⁻ SRF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10 mA DC, 30 keV H⁻ ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the warm front end.

  20. Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance.

    Science.gov (United States)

    Sreedharan, Shareena; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R

    2015-05-01

    High soil salinity constitutes a major abiotic stress and an important limiting factor in cultivation of crop plants worldwide. Here, we report the identification and characterization of a aquaporin gene, MusaPIP2;6 which is involved in salt stress signaling in banana. MusaPIP2;6 was firstly identified based on comparative analysis of stressed and non-stressed banana tissue derived EST data sets and later overexpression in transgenic banana plants was performed to study its tangible functions in banana plants. The overexpression of MusaPIP2;6 in transgenic banana plants using constitutive or inducible promoter led to higher salt tolerance as compared to equivalent untransformed control plants. Cellular localization assay performed using transiently transformed onion peel cells indicated that MusaPIP2;6 protein tagged with green fluorescent protein was translocated to the plasma membrane. MusaPIP2;6-overexpressing banana plants displayed better photosynthetic efficiency and lower membrane damage under salt stress conditions. Our results suggest that MusaPIP2;6 is involved in salt stress signaling and tolerance in banana.

  1. Effects of acetylcholine (ACh) and norepinephrine (NE) on phosphatidylinositol 4,5-bisphosphate (PIP2) turnover in rabbit cornea

    International Nuclear Information System (INIS)

    Akhtar, R.A.; Abdel-Latif, A.A.

    1986-01-01

    Muscarinic cholinergic and α 1 -adrenergic agonists provoke hydrolysis of PIP 2 into diacylglycerol (DG) and inositol trisphosphate (IP 3 ) in a wide variety of tissue. Recently, IP 3 has been shown to mobilize Ca 2+ from ER in several permeabilized tissue preparations. Although rabbit cornea is enriched in ACh and NE, the physiological function of these neurotransmitters is unclear. The present studies were initiated to determine the effects of cholinergic and adrenergic agonists on PIP 2 turnover in the cornea. Addition of ACh or NE (50 μM each) to the 32 P-labeled corneas for 10 min decreased the radioactivity in PIP 2 by 33 and 36%, and increased the radioactivity in phosphatidic acid by 72 and 52%, respectively. When the corneas were labeled with myo-[ 3 H]inositol, ACh and NE increased the accumulation of IP 3 by 92 and 48%, respectively. The effects of ACh and NE on phospholipid labeling and IP 3 accumulation were specifically inhibited by atropine (10 μM) and prazosin (10 μM), respectively. The data suggest the presence of muscarinic cholinergic and α 1 -adrenergic receptors in the rabbit cornea. Furthermore, activation of these receptors leads to cleavage of PIP 2 into DG and IP 3 which may function as second messengers in this tissue

  2. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    Science.gov (United States)

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  3. An integrated model of multiple-condition ChIP-Seq data reveals predeterminants of Cdx2 binding.

    Directory of Open Access Journals (Sweden)

    Shaun Mahony

    2014-03-01

    Full Text Available Regulatory proteins can bind to different sets of genomic targets in various cell types or conditions. To reliably characterize such condition-specific regulatory binding we introduce MultiGPS, an integrated machine learning approach for the analysis of multiple related ChIP-seq experiments. MultiGPS is based on a generalized Expectation Maximization framework that shares information across multiple experiments for binding event discovery. We demonstrate that our framework enables the simultaneous modeling of sparse condition-specific binding changes, sequence dependence, and replicate-specific noise sources. MultiGPS encourages consistency in reported binding event locations across multiple-condition ChIP-seq datasets and provides accurate estimation of ChIP enrichment levels at each event. MultiGPS's multi-experiment modeling approach thus provides a reliable platform for detecting differential binding enrichment across experimental conditions. We demonstrate the advantages of MultiGPS with an analysis of Cdx2 binding in three distinct developmental contexts. By accurately characterizing condition-specific Cdx2 binding, MultiGPS enables novel insight into the mechanistic basis of Cdx2 site selectivity. Specifically, the condition-specific Cdx2 sites characterized by MultiGPS are highly associated with pre-existing genomic context, suggesting that such sites are pre-determined by cell-specific regulatory architecture. However, MultiGPS-defined condition-independent sites are not predicted by pre-existing regulatory signals, suggesting that Cdx2 can bind to a subset of locations regardless of genomic environment. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.

  4. Genetic variations of PIP4K2A confer vulnerability to poor antipsychotic response in severely ill schizophrenia patients.

    Directory of Open Access Journals (Sweden)

    Harpreet Kaur

    Full Text Available Literature suggests that disease severity and neurotransmitter signaling pathway genes can accurately identify antipsychotic response in schizophrenia patients. However, putative role of signaling molecules has not been tested in schizophrenia patients based on severity of illness, despite its biological plausibility. In the present study we investigated the possible association of polymorphisms from five candidate genes RGS4, SLC6A3, PIP4K2A, BDNF, PI4KA with response to antipsychotic in variably ill schizophrenia patients. Thus in present study, a total 53 SNPs on the basis of previous reports and functional grounds were examined for their association with antipsychotic response in 423 schizophrenia patients segregated into low and high severity groups. Additionally, haplotype, diplotype, multivariate logistic regression and multifactor-dimensionality reduction (MDR analyses were performed. Furthermore, observed associations were investigated in atypical monotherapy (n = 355 and risperidone (n = 260 treated subgroups. All associations were estimated as odds ratio (OR and 95% confidence interval (CI and test for multiple corrections was applied. Single locus analysis showed significant association of nine variants from SLC6A3, PIP4K2A and BDNF genes with incomplete antipsychotic response in schizophrenia patients with high severity. We identified significant association of six marker diplotype ATTGCT/ATTGCT (rs746203-rs10828317-rs7094131-rs2296624-rs11013052-rs1409396 of PIP4K2A gene in incomplete responders (corrected p-value = 0.001; adjusted-OR = 3.19, 95%-CI = 1.46-6.98 with high severity. These associations were further observed in atypical monotherapy and risperidone sub-groups. MDR approach identified gene-gene interaction among BDNF_rs7103411-BDNF_rs1491851-SLC6A3_rs40184 in severely ill incomplete responders (OR = 7.91, 95%-CI = 4.08-15.36. While RGS4_rs2842026-SLC6A3_rs2975226 interacted synergistically in

  5. Diversity of Wolbachia pipientis strain wPip in a genetically admixtured, above-ground Culex pipiens (Diptera: Culicidae) population: association with form molestus ancestry and host selection patterns.

    Science.gov (United States)

    Morningstar, Rebecca J; Hamer, Gabriel L; Goldberg, Tony L; Huang, Shaoming; Andreadis, Theodore G; Walker, Edward D

    2012-05-01

    Analysis of molecular genetic diversity in nine marker regions of five genes within the bacteriophage WO genomic region revealed high diversity of the Wolbachia pipentis strain wPip in a population of Culex pipiens L. sampled in metropolitan Chicago, IL. From 166 blood fed females, 50 distinct genetic profiles of wPip were identified. Rarefaction analysis suggested a maximum of 110 profiles out of a possible 512 predicted by combinations of the nine markers. A rank-abundance curve showed that few strains were common and most were rare. Multiple regression showed that markers associated with gene Gp2d, encoding a partial putative capsid protein, were significantly associated with ancestry of individuals either to form molestus or form pipiens, as determined by prior microsatellite allele frequency analysis. None of the other eight markers was associated with ancestry to either form, nor to ancestry to Cx. quinquefasciatus Say. Logistic regression of host choice (mammal vs. avian) as determined by bloodmeal analysis revealed that significantly fewer individuals that had fed on mammals had the Gp9a genetic marker (58.5%) compared with avian-fed individuals (88.1%). These data suggest that certain wPip molecular genetic types are associated with genetic admixturing in the Cx. pipiens complex of metropolitan Chicago, IL, and that the association extends to phenotypic variation related to host preference.

  6. Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Seo, E.S.; Dilokpimol, Adiphol

    2008-01-01

    Germinating barley seeds contain multiple forms of alpha-amylase, which are subject to both differential gene expression and differential degradation as part of the repertoire of starch-degrading enzymes. The alpha-amylases are endo-acting and possess a long substrate binding cleft with a charact......Germinating barley seeds contain multiple forms of alpha-amylase, which are subject to both differential gene expression and differential degradation as part of the repertoire of starch-degrading enzymes. The alpha-amylases are endo-acting and possess a long substrate binding cleft...... will address surface sites in both barley alpha-amylase 1 and in the related isozyme 2....

  7. Insight into Phosphatidylinositol-Dependent Membrane Localization of the Innate Immune Adaptor Protein Toll/Interleukin 1 Receptor Domain-Containing Adaptor Protein

    Directory of Open Access Journals (Sweden)

    Mahesh Chandra Patra

    2018-01-01

    Full Text Available The toll/interleukin 1 receptor (TIR domain-containing adaptor protein (TIRAP plays an important role in the toll-like receptor (TLR 2, TLR4, TLR7, and TLR9 signaling pathways. TIRAP anchors to phosphatidylinositol (PI 4,5-bisphosphate (PIP2 on the plasma membrane and PI (3,4,5-trisphosphate (PIP3 on the endosomal membrane and assists in recruitment of the myeloid differentiation primary response 88 protein to activated TLRs. To date, the structure and mechanism of TIRAP’s membrane association are only partially understood. Here, we modeled an all-residue TIRAP dimer using homology modeling, threading, and protein–protein docking strategies. Molecular dynamics simulations revealed that PIP2 creates a stable microdomain in a dipalmitoylphosphatidylcholine bilayer, providing TIRAP with its physiologically relevant orientation. Computed binding free energy values suggest that the affinity of PI-binding domain (PBD for PIP2 is stronger than that of TIRAP as a whole for PIP2 and that the short PI-binding motif (PBM contributes to the affinity between PBD and PIP2. Four PIP2 molecules can be accommodated by distinct lysine-rich surfaces on the dimeric PBM. Along with the known PI-binding residues (K15, K16, K31, and K32, additional positively charged residues (K34, K35, and R36 showed strong affinity toward PIP2. Lysine-to-alanine mutations at the PI-binding residues abolished TIRAP’s affinity for PIP2; however, K34, K35, and R36 consistently interacted with PIP2 headgroups through hydrogen bond (H-bond and electrostatic interactions. TIRAP exhibited a PIP2-analogous intermolecular contact and binding affinity toward PIP3, aided by an H-bond network involving K34, K35, and R36. The present study extends our understanding of TIRAP’s membrane association, which could be helpful in designing peptide decoys to block TLR2-, TLR4-, TLR7-, and TLR9-mediated autoimmune diseases.

  8. Mu2e-II Injection from PIP-II

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab

    2018-04-26

    We discuss injection of 800 MeV proton beam from PIP-II into the production target for Mu2e-II, assuming a targeting and μ production scenario similar to mu2e. The incoming beam trajectory must be modified from the mu2e parameters to match the focusing fields. Adding a vertical deflection at injection enables the injected beam to reach the target. Other differences from the mu2e system must be considered, including changes in the target structure, the radiation shielding and beam dump/absorber. H- beam should be stripped to p+. Other variations are discussed.

  9. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor

    Science.gov (United States)

    Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F.; Schroeder, Julian I.

    2016-01-01

    Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3− enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375

  10. Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability.

    Science.gov (United States)

    Hachez, Charles; Laloux, Timothée; Reinhardt, Hagen; Cavez, Damien; Degand, Hervé; Grefen, Christopher; De Rycke, Riet; Inzé, Dirk; Blatt, Michael R; Russinova, Eugenia; Chaumont, François

    2014-07-01

    Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane. © 2014 American Society of Plant Biologists. All rights reserved.

  11. PIP-II Injector Test’s Low Energy Beam Transport: Commissioning and Selected Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermilab; Alvarez, M. [Fermilab; Andrews, R. [Fermilab; Carneiro, J.-P. [Fermilab; Chen, A. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Scarpine, V. [Fermilab; D' Arcy, R. [University Coll. London; Wiesner, C. [Goethe U., Frankfurt (main)

    2016-09-16

    The PIP2IT test accelerator is under construction at Fermilab. Its ion source and Low Energy Beam Transport (LEBT) in its initial (straight) configuration have been commissioned to full specification parameters. This paper introduces the LEBT design and summarizes the outcome of the commissioning activities.

  12. Chracterization of the beam from the RFQ of the PIP-II Injector Test

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermilab; Carneiro. J.-P., Carneiro. J.-P. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Saini, A. [Fermilab; Scarpine, V. [Fermilab; Sista, V. L.S. [Bhabha Atomic Res. Ctr.; Steimel, J. [Fermilab

    2017-05-01

    A 2.1 MeV, 10 mA CW RFQ has been installed and commissioned at the Fermilab’s test accelerator known as PIP-II Injector Test. This report describes the measure-ments of the beam properties after acceleration in the RFQ, including the energy and emittance.

  13. PipPhos and MorfPhos : Privileged monodentate phosphoramidite ligands for rhodium-catalyzed asymmetric hydrogenation

    NARCIS (Netherlands)

    Bernsmann, Heiko; van den Berg, M; Hoen, Robert; Minnaard, AJ; Mehler, G; Reetz, MT; De Vries, JG; Feringa, BL

    2005-01-01

    A library of 20 monodentate phosphoramidite ligands has been prepared and applied in rhodium-catalyzed asymmetric hydrogenation. This resulted in the identification of two ligands, PipPhos and MorfPhos, that afford excellent and in several cases unprecedented enantioselectivities in the

  14. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David

    2017-07-01

    Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. BeHealthy Charities Aid Foundation Program, Russia: a Program Impact Pathways (PIP) analysis.

    Science.gov (United States)

    Mukhina, Marina; Novikova, Irina

    2014-09-01

    In 2007, the Charities Aid Foundation Branch in Russia, under the initiative of and with financial support from the Mondelēz International Foundation and Mondelēz International, launched the charitable BeHealthy Program. The program's main focus is the implementation of four interrelated activities: conducting lessons for schoolchildren on healthy nutrition, with an emphasis on breakfast; healthy cooking lessons with children; cultivating nutritional plants; and providing conditions to encourage children to engage in more physical activity. The program serves more than 13,000 children attending public schools in the Leningrad (Lomonosovskii District), Vladimir, and Novgorod regions. BeHealthy provides funding for schools and comprehensive educational materials to help schoolchildren develop habits of healthy nutrition and physical activity, as well as consulting and expert support for school staff and other key stakeholders. The program brings in experts on program implementation and training for teachers. Curriculum support also includes printed and Web-based healthy lifestyle educational materials on best practices and positive experience, as well as meetings and conferences with school representatives and local authorities. One of the biggest challenges for program managers is to fully understand the complexities of the program, and why and how it is expected to induce changes in healthy lifestyle behaviors of the schoolchildren. For more comprehensive understanding, we performed a Program Impact Pathways (PIP) analysis to identify Critical Quality Control Points (CCPs) and a suite of core indicators of the program's impact on healthy lifestyles. The findings were presented at the Healthy Life-styles Program Evaluation Workshop held in Granada, Spain, 13-14 September 2013, under the auspices of the Mondelēz International Foundation. First, we developed an updated logic model based on how the program was executed. We then translated the logic model into a PIP

  16. Aquaporins in the wild: natural genetic diversity and selective pressure in the PIP gene family in five Neotropical tree species

    Directory of Open Access Journals (Sweden)

    Vendramin Giovanni G

    2010-06-01

    Full Text Available Abstract Background Tropical trees undergo severe stress through seasonal drought and flooding, and the ability of these species to respond may be a major factor in their survival in tropical ecosystems, particularly in relation to global climate change. Aquaporins are involved in the regulation of water flow and have been shown to be involved in drought response; they may therefore play a major adaptive role in these species. We describe genetic diversity in the PIP sub-family of the widespread gene family of Aquaporins in five Neotropical tree species covering four botanical families. Results PIP Aquaporin subfamily genes were isolated, and their DNA sequence polymorphisms characterised in natural populations. Sequence data were analysed with statistical tests of standard neutral equilibrium and demographic scenarios simulated to compare with the observed results. Chloroplast SSRs were also used to test demographic transitions. Most gene fragments are highly polymorphic and display signatures of balancing selection or bottlenecks; chloroplast SSR markers have significant statistics that do not conform to expectations for population bottlenecks. Although not incompatible with a purely demographic scenario, the combination of all tests tends to favour a selective interpretation of extant gene diversity. Conclusions Tropical tree PIP genes may generally undergo balancing selection, which may maintain high levels of genetic diversity at these loci. Genetic variation at PIP genes may represent a response to variable environmental conditions.

  17. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  18. Intake, digestibility and toxic effects of vine husks and pips fed to ...

    African Journals Online (AJOL)

    Veekunde

    Abstract. The potential of red vine husks and pips as a component of animal feed was investigated. Twenty-five. Dohne Merino ram lambs (mean live weight ± s.d. = 41.4 ± 2.3 kg) were used. A completely randomised design was used and the animals were assigned to five diets including 0, 12.5, 25.0, 37.5 and 50% vine ...

  19. NON-TARGET AND ECOSYSTEM IMPACTS FROM GENETICALLY MODIFIED CROPS CONTAINING PLANT INCORPORATED PROTECTANTS (PIPS)

    Science.gov (United States)

    The risk of unintended and unexpected adverse impacts on non-target organisms and ecosystems is a key issue in environmental risk assessment of PIP crop plants. While there has been considerable examination of the effects of insect resistant crops on certain non-target organisms...

  20. Measuring What Students Entering School Know and Can Do: PIPS Australia 2006-2007

    Science.gov (United States)

    Wildy, Helen; Styles, Irene

    2008-01-01

    This paper reports analysis of 2006-2007 on-entry assessment data from the Performance Indicators in Primary Schools Baseline Assessment (PIPS-BLA) of random samples of students in England, Scotland, New Zealand and Australia. The analysis aimed, first, to investigate the validity and reliability of that instrument across countries and sexes, and,…

  1. DNA-Binding Studies of Some Potential Antitumor 2,2'-bipyridine Pt(II)/Pd(II) Complexes of piperidinedithiocarbamate. Their Synthesis, Spectroscopy and Cytotoxicity.

    Science.gov (United States)

    Mansouri-Torshizi, Hassan; Eslami-Moghadam, Mahboube; Divsalar, Adeleh; Saboury, Ali-Akbar

    2011-12-01

    In this study two platinum(II) and palladium(II) complexes of the type [M(bpy)(pip-dtc)]NO3 (where M=Pt(II) or Pd(II), bpy=2,2'-bipyridine, pip-dtc=piperidinedithiocarbamate) were synthesized by reaction between diaquo-2,2'-bipyridine Pt(II)/Pd(II) nitrate and sodium salt of dithiocarbamate. These cationic water soluble complexes were characterized by elemental analysis, molar conductance, IR, electronic and 1H NMR spectroscopic studies. The cyclic dithiocarbamate was found to coordinate as bidentate fasion with Pt(II) or Pd(II) center. Their biological activities were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The obtained cytotoxic concentration (IC50) values were much lower than cisplatin. The interaction of these complexes with highly polymerized calf thymus DNA (ct-DNA) was extensively studied by means of electronic absorption, fluorescence, circular dichroism and other measurements. The experimental results, thermodynamic and binding parameters, suggested that these complexes cooperatively bind to DNA presumably via intercalation. Moreover, the tendency of the Pt(II) complex to interact with DNA was more than that of Pd(II) complex.

  2. The insulin/IGF signaling regulators cytohesin/GRP-1 and PIP5K/PPK-1 modulate susceptibility to excitotoxicity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Nazila Tehrani

    Full Text Available During ischemic stroke, malfunction of excitatory amino acid transporters and reduced synaptic clearance causes accumulation of Glutamate (Glu and excessive stimulation of postsynaptic neurons, which can lead to their degeneration by excitotoxicity. The balance between cell death-promoting (neurotoxic and survival-promoting (neuroprotective signaling cascades determines the fate of neurons exposed to the excitotoxic insult. The evolutionary conserved Insulin/IGF Signaling (IIS cascade can participate in this balance, as it controls cell stress resistance in nematodes and mammals. Blocking the IIS cascade allows the transcription factor FoxO3/DAF-16 to accumulate in the nucleus and activate a transcriptional program that protects cells from a range of insults. We study the effect of IIS cascade on neurodegeneration in a C. elegans model of excitotoxicity, where a mutation in a central Glu transporter (glt-3 in a sensitizing background causes Glu-Receptor -dependent neuronal necrosis. We expand our studies on the role of the IIS cascade in determining susceptibility to excitotoxic necrosis by either blocking IIS at the level of PI3K/AGE-1 or stimulating it by removing the inhibitory effect of ZFP-1 on the expression of PDK-1. We further show that the components of the Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex, known to regulate PIP2 production and the IIS cascade, modulate nematode excitotoxicity: mutations that are expected to reduce the complex's ability to produce PIP2 and inhibit the IIS cascade protect from excitotoxicity, while overstimulation of PIP2 production enhances neurodegeneration. Our observations therefore affirm the importance of the IIS cascade in determining the susceptibility to necrotic neurodegeneration in nematode excitotoxicity, and demonstrate the ability of Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex to modulate neuroprotection.

  3. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses.

    Science.gov (United States)

    Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2013-10-01

    Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons

  4. HPV8-E6 Interferes with Syntenin-2 Expression through Deregulation of Differentiation, Methylation and Phosphatidylinositide-Kinase Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Benjamin Marx

    2017-09-01

    Full Text Available The E6 oncoproteins of high-risk human papillomaviruses (HPV of genus alpha contain a short peptide sequence at the carboxy-terminus, the PDZ binding domain, with which they interact with the corresponding PDZ domain of cellular proteins. Interestingly, E6 proteins from papillomaviruses of genus beta (betaPV do not encode a comparable PDZ binding domain. Irrespective of this fact, we previously showed that the E6 protein of HPV8 (betaPV type could circumvent this deficit by targeting the PDZ protein Syntenin-2 through transcriptional repression (Lazic et al., 2012. Despite its high binding affinity to phosphatidylinositol-4,5-bisphosphate (PI(4,5P2, very little is known about Syntenin-2. This study aimed to extend the knowledge on Syntenin-2 and how its expression is controlled. We now identified that Syntenin-2 is expressed at high levels in differentiating and in lower amounts in keratinocytes cultured in serum-free media containing low calcium concentration. HPV8-E6 led to a further reduction of Syntenin-2 expression only in cells cultured in low calcium. In the skin of patients suffering from Epidermodysplasia verruciformis, who are predisposed to betaPV infection, Syntenin-2 was expressed in differentiating keratinocytes of non-lesional skin, but was absent in virus positive squamous tumors. Using 5-Aza-2′-deoxycytidine, which causes DNA demethylation, Syntenin-2 transcription was profoundly activated and fully restored in the absence and presence of HPV8-E6, implicating that E6 mediated repression of Syntenin-2 transcription is due to promoter hypermethylation. Since Syntenin-2 binds to PI(4,5P2, we further tested whether the PI(4,5P2 metabolic pathway might govern Syntenin-2 expression. PI(4,5P2 is generated by the activity of phosphatidylinositol-4-phosphate-5-kinase type I (PIP5KI or phosphatidylinositol-5-phosphate-4-kinase type II (PIP4KII isoforms α, β and γ. Phosphatidylinositide kinases have recently been identified as

  5. IGF binding protein alterations on periplaque oligodendrocytes in multiple sclerosis : Implications for remyelination

    NARCIS (Netherlands)

    Wilczak, Nadine; Chesik, Daniel; Hoekstra, Dick; De Keyser, Jacques

    Why myelin repair greatly fails in multiple sclerosis (MS) is unclear. The insulin-like growth factor (IGF) system plays vital roles in oligodendrocyte development, survival, and myelin synthesis. We used immunohistochemistry to study IGF-I, IGF-I receptors and IGF binding proteins (IGFBPs) 1-6 on

  6. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8

    Czech Academy of Sciences Publication Activity Database

    Uličná, Lívia; Kalendová, Alžběta; Kalasová, Ilona; Vacík, Tomáš; Hozák, Pavel

    2018-01-01

    Roč. 1863, č. 3 (2018), s. 266-275 ISSN 1388-1981 R&D Projects: GA ČR GA15-08738S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LM2015062 Institutional support: RVO:68378050 Keywords : pip2 * phf8 * rDNA transcription * H3K9me2 * Nucleus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.547, year: 2016

  7. Software Design Description for the Polar Ice Prediction System (PIPS) Version 3.0

    Science.gov (United States)

    2008-11-05

    ice area with respect to x and y real trc- tracer at geometric center of cell real trx , try- limited derivative of tracer with respect to x and y...yp1 real xp2, yp2 real xp3, yp3 integer iflux, jflux real aic, aix, aiy real aiflx real trc, trx , try real atflx 95 PIPS 3.0 SDD Subroutine

  8. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.

    Science.gov (United States)

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G

    2016-09-01

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. © 2016 Lee et al.

  9. Australian Indigenous Students' Performance on the PIPS-BLA Reading and Mathematics Scales: 2011-2013

    Science.gov (United States)

    Styles, Irene; Wildy, Helen; Pepper, Vivienne; Faulkner, Joanne; Berman, Ye'Elah

    2014-01-01

    The assessment of literacy and numeracy skills of students as they enter school for the first time is not yet established nation-wide in Australia. However, a large proportion of primary schools have chosen to assess their starting students on the Performance Indicators in Primary Schools-Baseline Assessment (PIPS-BLA). This series of three…

  10. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8

    Czech Academy of Sciences Publication Activity Database

    Uličná, Lívia; Kalendová, Alžběta; Kalasová, Ilona; Vacík, Tomáš; Hozák, Pavel

    2018-01-01

    Roč. 1863, č. 3 (2018), s. 266-275 ISSN 1388-1981 R&D Projects: GA ČR GA15-08738S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LM2015062 Institutional support: RVO:68378050 Keywords : PIP2 * PHF8 * rDNA transcription * H3K9me2 * Nucleus Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 5.547, year: 2016

  11. Mondelēz Hope Kitchen Program, China: a Program Impact Pathways (PIP) analysis.

    Science.gov (United States)

    Li, Yanran; Yao, Xiaoxun; Gu, Lan

    2014-09-01

    Mondelēz Hope Kitchen is a community program initiated jointly in 2009 by Mondelēz International and the China Youth Development Foundation (CYDF). In response to the urgent needs of students, parents, and teachers at primary and middle schools in poverty-stricken rural areas of China, the program addresses the complex and intertwined issues of undernutrition and obesity. By funding both kitchen equipment and teacher training in health and nutrition, the Mondelēz Hope Kitchen Program improves the capacity of schools to supply healthy meals, helping students to access safe and nutritious foods and, ultimately, to improve their nutritional status and health. In 2011, the Mondelēz International Foundation awarded CYDF a grant to formally assess the impact of the original program design. The Mondelēz International Foundation encouraged CYDF and six other healthy lifestyles-focused community partners around the world to participate in this program evaluation workshop. The goals of this study were to describe the logic model of the Mondelēz Hope Kitchen Program, summarize a recent evaluation of the Mondelēz Hope Kitchen Program, and conduct a Program Impact Pathways (PIP) analysis to identify Critical Quality Control Points (CCPs) and a suite of impact indicators. The findings were presented at the Healthy Lifestyles Program Evaluation Workshop held in Granada, Spain, 13-14 September 2013, under the auspices of the Mondelēz International Foundation. The authors developed the program's PIP diagram based on deliberations involving the program managers and Director and consulting the "Hope Kitchen Management Rules "and "Hope Kitchen Inspection and Acceptance Report". The PIP analyses identified three CCPs: buy-in from schools, kitchen infrastructure, and changes in teachers' knowledge of nutrition after training. In addition, changes in children's knowledge of nutrition will be added to the core suite of impact evaluation indicators that also includes children

  12. Microwave-Assisted Synthesis of Arene Ru(II Complexes Induce Tumor Cell Apoptosis Through Selectively Binding and Stabilizing bcl-2 G-Quadruplex DNA

    Directory of Open Access Journals (Sweden)

    Yanhua Chen

    2016-05-01

    Full Text Available A series of arene Ru(II complexes coordinated with phenanthroimidazole derivatives, [(η6-C6H6Ru(lCl]Cl(1b L = p-ClPIP = 2-(4-Chlorophenylimidazole[4,5f] 1,10-phenanthroline; 2b L = m-ClPIP = 2-(3-Chlorophenylimidazole[4,5f] 1,10-phenanthroline; 3b L = p-NPIP = 2-(4-Nitrophenylimidazole[4,5f] 1,10-phenanthroline; 4b L = m-NPIP = 2-(3-Nitrophenyl imidazole [4,5f] 1,10-phenanthroline were synthesized in yields of 89.9%–92.7% under conditions of microwave irradiation heating for 30 min to liberate four arene Ru(II complexes (1b, 2b, 3b, 4b. The anti-tumor activity of 1b against various tumor cells was evaluated by MTT assay. The results indicated that this complex blocked the growth of human lung adenocarcinoma A549 cells with an IC50 of 16.59 μM. Flow cytometric analysis showed that apoptosis of A549 cells was observed following treatment with 1b. Furthermore, the in vitro DNA-binding behaviors that were confirmed by spectroscopy indicated that 1b could selectively bind and stabilize bcl-2 G-quadruplex DNA to induce apoptosis of A549 cells. Therefore, the synthesized 1b has impressive bcl-2 G-quadruplex DNA-binding and stabilizing activities with potential applications in cancer chemotherapy.

  13. The Wheat Bax Inhibitor-1 Protein Interacts with an Aquaporin TaPIP1 and Enhances Disease Resistance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Pan-Pan Lu

    2018-01-01

    Full Text Available Bax inhibitor-1 (BI-1 is an endoplasmic reticulum (ER-resident cell death suppressor evolutionarily conserved in eukaryotes. The ability of BI-1 to inhibit the biotic and abiotic stresses have been well-studied in Arabidopsis, while the functions of wheat BI-1 are largely unknown. In this study, the wheat BI-1 gene TaBI-1.1 was isolated by an RNA-seq analysis of Fusarium graminearum (Fg-treated wheat. TaBI-1.1 expression was induced by a salicylic acid (SA treatment and down-regulated by an abscisic acid (ABA treatment. Based on β-glucuronidase (GUS staining, TaBI-1.1 was expressed in mature leaves and roots but not in the hypocotyl or young leaves. Constitutive expression of TaBI-1.1 in Arabidopsis enhanced its resistance to Pseudomonas syringae pv. Tomato (Pst DC3000 infection and induced SA-related gene expression. Additionally, TaBI-1.1 transgenic Arabidopsis exhibited an alleviation of damage caused by high concentrations of SA and decreased the sensitivity to ABA. Consistent with the phenotype, the RNA-seq analysis of 35S::TaBI-1.1 and Col-0 plants showed that TaBI-1.1 was involved in biotic stresses. These results suggested that TaBI-1.1 positively regulates SA signals and plays important roles in the response to biotic stresses. In addition, TaBI-1.1 interacted with the aquaporin TaPIP1, and both them were localized to ER membrane. Furthermore, we demonstrated that TaPIP1 was up-regulated by SA treatment and TaPIP1 transgenic Arabidopsis enhanced the resistance to Pst DC3000 infection. Thus, the interaction between TaBI-1.1 and TaPIP1 on the ER membrane probably occurs in response to SA signals and defense response.

  14. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Science.gov (United States)

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  15. Health for Life in Primary Schools Program, United Kingdom: a Program Impact Pathways (PIP) analysis.

    Science.gov (United States)

    Passmore, Sandra; Donovan, Martin

    2014-09-01

    The Health for Life in Primary Schools Program helps schools promote healthy, active lifestyles through curriculum support related to healthy eating and cooking, growing food, physical activity, and family involvement. These interrelated strands are shown to have the greatest impact on healthy lifestyles, and the Health for Life in Primary Schools Program seeks to make these not one-off lessons, but a sustainable part of a school's culture. Each school involved with the program develops its own Action Plan in order to achieve program goals. Each school is assessed by an audit of facilities, skills, and curriculum at baseline and follow-up, and the pupils complete an on-line questionnaire at baseline and follow-up. Other impact measures are individual to the school and relate to its own Action Plan. Health for Life in Primary Schools sought to assess the cohesiveness and strength of the program using the Program Impact Pathways (PIP) model. The program was deconstructed to its individual parts, with each part assessed in terms of its contribution to the overall program and constraints upon its effectiveness. The PIP analysis helped clarify the logic and structure of the program, whether its objectives can be achieved, the Critical Quality Control Points (CCPs), and the impact measures required to demonstrate success. The core indicators identified for impact evaluation were knowledge, attitudes, and behaviors of pupils around healthy eating cooking, growing food, and physical activity. The PIP model confirmed that the Health for Life in Primary Schools Program is well structured and is well suited to achieve its goals. The findings were presented at the Healthy Lifestyles Program Evaluation Workshop held in Granada, Spain, 13-14 September 2013, under the auspices of the Mondelēz International Foundation.

  16. Rational design of a conformation-switchable Ca2+- and Tb3+-binding protein without the use of multiple coupled metal-binding sites.

    Science.gov (United States)

    Li, Shunyi; Yang, Wei; Maniccia, Anna W; Barrow, Doyle; Tjong, Harianto; Zhou, Huan-Xiang; Yang, Jenny J

    2008-10-01

    Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.

  17. Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro.

    Directory of Open Access Journals (Sweden)

    Rohini Shrivastava

    Full Text Available Ezrin, a member of the ERM (Ezrin/Radixin/Moesin protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2 or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well.

  18. Measuring What High-Achieving Students Know and Can Do on Entry to School: PIPS 2002-2008

    Science.gov (United States)

    Wildy, Helen; Styles, Irene

    2011-01-01

    Anecdotal evidence from teachers in Western Australia suggested that increasing numbers of on-entry students have been performing at high levels over recent years on the Performance Indicators in Primary Schools Baseline Assessment (PIPS-BLA). This paper reports the results of an investigation into the performance of high-scoring students. Data…

  19. Simultaneous Binding of Hybrid Molecules Constructed with Dual DNA-Binding Components to a G-Quadruplex and Its Proximal Duplex.

    Science.gov (United States)

    Asamitsu, Sefan; Obata, Shunsuke; Phan, Anh Tuân; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2018-03-20

    A G-quadruplex (quadruplex) is a nucleic acid secondary structure adopted by guanine-rich sequences and is considered to be relevant to various pharmacological and biological contexts. Although a number of researchers have endeavored to discover and develop quadruplex-interactive molecules, poor ligand designability originating from topological similarity of the skeleton of diverse quadruplexes has remained a bottleneck for gaining specificity for individual quadruplexes. This work reports on hybrid molecules that were constructed with dual DNA-binding components, a cyclic imidazole/lysine polyamide (cIKP), and a hairpin pyrrole/imidazole polyamide (hPIP), with the aim toward specific quadruplex targeting by reading out the local duplex DNA sequence adjacent to designated quadruplexes in the genome. By means of circular dichroism (CD), fluorescence resonance energy transfer (FRET), surface plasmon resonance (SPR), and NMR techniques, we showed the dual and simultaneous recognition of the respective segment via hybrid molecules, and the synergistic and mutual effect of each binding component that was appropriately linked on higher binding affinity and modest sequence specificity. Monitoring quadruplex and duplex imino protons of the quadruplex/duplex motif titrated with hybrid molecules clearly revealed distinct features of the binding of hybrid molecules to the respective segments upon their simultaneous recognition. A series of the systematic and detailed binding assays described here showed that the concept of simultaneous recognition of quadruplex and its proximal duplex by hybrid molecules constructed with the dual DNA-binding components may provide a new strategy for ligand design, enabling targeting of a large variety of designated quadruplexes at specific genome locations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    Science.gov (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.

  1. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase

    DEFF Research Database (Denmark)

    Kramhøft, Birte; Bak-Jensen, Kristian Sass; Mori, Haruhide

    2005-01-01

    Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1...... translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products...

  2. The hippocampus supports multiple cognitive processes through relational binding and comparison

    Directory of Open Access Journals (Sweden)

    Rosanna Kathleen Olsen

    2012-05-01

    Full Text Available It has been well established that the hippocampus plays a pivotal role in explicit long-term recognition memory. However, findings from amnesia, lesion and recording studies with non-human animals, eye-movement recording studies, and functional neuroimaging have recently converged upon a similar message: the functional reach of the hippocampus extends far beyond explicit recognition memory. Damage to the hippocampus affects performance on a number of cognitive tasks including recognition memory after short and long delays and visual discrimination. Additionally, with the advent of neuroimaging techniques that have fine spatial and temporal resolution, findings have emerged that show the elicitation of hippocampal responses within the first few hundred milliseconds of stimulus/task onset. These responses occur for novel and previously viewed information during a time when perceptual processing is traditionally thought to occur, and long before overt recognition responses are made. We propose that the hippocampus is obligatorily involved in the binding of disparate elements across both space and time, and in the comparison of such relational memory representations. Furthermore, the hippocampus supports relational binding and comparison with or without conscious awareness for the relational representations that are formed, retrieved and/or compared. It is by virtue of these basic binding and comparison functions that the reach of the hippocampus extends beyond long-term recognition memory and underlies task performance in multiple cognitive domains.

  3. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.

    Science.gov (United States)

    Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin

    2017-12-19

    Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will

  4. Creep/Stress Rupture Behavior and Failure Mechanisms of Full CVI and Full PIP SiC/SiC Composites at Elevated Temperatures in Air

    Science.gov (United States)

    Bhatt, R. T.; Kiser, J. D.

    2017-01-01

    SiC/SiC composites fabricated by melt infiltration are being considered as potential candidate materials for next generation turbine components. However these materials are limited to 2400 F application because of the presence of residual silicon in the SiC matrix. Currently there is an increasing interest in developing and using silicon free SiC/SiC composites for structural aerospace applications above 2400 F. Full PIP or full CVI or CVI + PIP hybrid SiC/SiC composites can be fabricated without excess silicon, but the upper temperature stress capabilities of these materials are not fully known. In this study, the on-axis creep and rupture properties of the state-of-the-art full CVI and full PIP SiC/SiC composites with Sylramic-iBN fibers were measured at temperatures to 2700 F in air and their failure modes examined. In this presentation creep rupture properties, failure mechanisms and upper temperature capabilities of these two systems will be discussed and compared with the literature data.

  5. Poly Implant Prothèse (PIP) incidence of rupture: a retrospective MR analysis in 64 patients.

    Science.gov (United States)

    Scotto di Santolo, Mariella; Cusati, Bianca; Ragozzino, Alfonso; Dell'Aprovitola, Nicoletta; Acquaviva, Alessandra; Altiero, Michele; Accurso, Antonello; Riccardi, Albina; Imbriaco, Massimo

    2014-12-01

    The purpose of this retrospective study was to describe the magnetic resonance imaging (MRI) features of Poly Implant Prothèse (PIP) hydrogel implants in a group of 64 patients and to assess the incidence of rupture, compared to other clinical trials. In this double-center study, we retrospectively reviewed the data sets of 64 consecutive patients (mean age, 43±9 years, age range, 27-65 years), who underwent breast MRI examinations, between January 2008 and October 2013, with suspected implant rupture on the basis of clinical assessment or after conventional imaging examination (either mammography or ultrasound). All patients had undergone breast operation with bilateral textured cohesive gel PIP implant insertion for aesthetic reasons. The mean time after operation was 8 years (range, 6-14 years). No patients reported history of direct trauma to their implants. At the time of clinical examination, 41 patients were asymptomatic, 16 complained of breast tenderness and 7 had clinical evidence of rupture. Normal findings were observed in 15 patients. In 26 patients there were signs of mild collapse, with associated not significant peri-capsular fluid collections and no evidence of implant rupture; in 23 patients there was suggestion of implant rupture, according to breast MRI leading to an indication for surgery. In particular, 14 patients showed intra-capsular rupture, with associated evidence of the linguine sign in all cases; the keyhole sign and the droplet signs were observed in 6 cases. In 9 patients there was evidence of extra-capsular rupture, with presence of axillary collections (siliconomas) in 7 cases and peri-prosthetic and mediastinal cavity siliconomas, in 5 cases. The results of this double center retrospective study, confirm the higher incidence (36%) of prosthesis rupture observed with the PIP implants, compared to other breast implants.

  6. Suppression of chemotaxis by SSeCKS via scaffolding of phosphoinositol phosphates and the recruitment of the Cdc42 GEF, Frabin, to the leading edge.

    Science.gov (United States)

    Ko, Hyun-Kyung; Guo, Li-wu; Su, Bing; Gao, Lingqiu; Gelman, Irwin H

    2014-01-01

    Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the

  7. A critical examination of the numerology of antigen-binding cells: evidence for multiple receptor specificities on single cells.

    Science.gov (United States)

    Miller, A

    1977-01-01

    The data available from other laboratories as well as our own on the frequency of cells recognizing major histocompatibility antigens or conventional protein and hapten antigens is critically evaluated. The frequency of specific binding for a large number of antigens is sufficiently high to support the idea that at least part of the antigen-binding cell population must have multiple specificities. Our results suggest that these multiple specific cells result from single cells synthesizing and displaying as many as 50-100 species of receptor, each at a frequency of 10(4) per cell. A model involving gene expansion of constant-region genes is suggested and some auxilliary evidence consistent with such C-gene expansion is presented.

  8. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    DEFF Research Database (Denmark)

    Wong, Mei Mei Jaslyn Elizabeth; Midtgaard, Søren Roi; Gysel, Kira

    2015-01-01

    of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering...

  9. Multiple POU-binding motifs, recognized by tissue-specific nuclear factors, are important for Dll1 gene expression in neural stem cells

    International Nuclear Information System (INIS)

    Nakayama, Kohzo; Nagase, Kazuko; Tokutake, Yuriko; Koh, Chang-Sung; Hiratochi, Masahiro; Ohkawara, Takeshi; Nakayama, Noriko

    2004-01-01

    We cloned the 5'-flanking region of the mouse homolog of the Delta gene (Dll1) and demonstrated that the sequence between nucleotide position -514 and -484 in the 5'-flanking region of Dll1 played a critical role in the regulation of its tissue-specific expression in neural stem cells (NSCs). Further, we showed that multiple POU-binding motifs, located within this short sequence of 30 bp, were essential for transcriptional activation of Dll1 and also that multiple tissue-specific nuclear factors recognized these POU-binding motifs in various combinations through differentiation of NSCs. Thus, POU-binding factors may play an important role in Dll1 expression in developing NSCs

  10. Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Okada

    Full Text Available In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4 is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.

  11. The programme PIP2 for lattice cell thermal calculations

    International Nuclear Information System (INIS)

    Clayton, A.J.

    1964-08-01

    The programme PIP2 solves the multigroup equations obtained by applying the method of collision probabilities to a fuel region (which may contain a cluster of fuel elements), and the SPECTROX flux assumption in a surrounding 'moderator'. The programme does not calculate collision probabilities for the fuel region and any geometry can be treated in the fuel region for which collision probabilities can be calculated. Lattice cell source problems may be treated and it is possible to include part of the physical moderator with the fuel region for treatment by the collision probability method. The programme is primarily intended for thermal fixed source problems, with the sources in the (physical moderator), but by including part of the moderator with the fuel it is possible to include fixed sources in the fuel for the study of fast effects. (author)

  12. Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought.

    Science.gov (United States)

    Alguacil, Maria Del Mar; Kohler, Josef; Caravaca, Fuensanta; Roldán, Antonio

    2009-11-01

    Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.

  13. PLCζ Induced Ca2+ Oscillations in Mouse Eggs Involve a Positive Feedback Cycle of Ca2+ Induced InsP3 Formation From Cytoplasmic PIP2

    Science.gov (United States)

    Sanders, Jessica R.; Ashley, Bethany; Moon, Anna; Woolley, Thomas E.; Swann, Karl

    2018-01-01

    Egg activation at fertilization in mammalian eggs is caused by a series of transient increases in the cytosolic free Ca2+ concentration, referred to as Ca2+ oscillations. It is widely accepted that these Ca2+ oscillations are initiated by a sperm derived phospholipase C isoform, PLCζ that hydrolyses its substrate PIP2 to produce the Ca2+ releasing messenger InsP3. However, it is not clear whether PLCζ induced InsP3 formation is periodic or monotonic, and whether the PIP2 source for generating InsP3 from PLCζ is in the plasma membrane or the cytoplasm. In this study we have uncaged InsP3 at different points of the Ca2+ oscillation cycle to show that PLCζ causes Ca2+ oscillations by a mechanism which requires Ca2+ induced InsP3 formation. In contrast, incubation in Sr2+ media, which also induces Ca2+ oscillations in mouse eggs, sensitizes InsP3-induced Ca2+ release. We also show that the cytosolic level Ca2+ is a key factor in setting the frequency of Ca2+ oscillations since low concentrations of the Ca2+ pump inhibitor, thapsigargin, accelerates the frequency of PLCζ induced Ca2+ oscillations in eggs, even in Ca2+ free media. Given that Ca2+ induced InsP3 formation causes a rapid wave during each Ca2+ rise, we use a mathematical model to show that InsP3 generation, and hence PLCζ's substate PIP2, has to be finely distributed throughout the egg cytoplasm. Evidence for PIP2 distribution in vesicles throughout the egg cytoplasm is provided with a rhodamine-peptide probe, PBP10. The apparent level of PIP2 in such vesicles could be reduced by incubating eggs in the drug propranolol which also reversibly inhibited PLCζ induced, but not Sr2+ induced, Ca2+ oscillations. These data suggest that the cytosolic Ca2+ level, rather than Ca2+ store content, is a key variable in setting the pace of PLCζ induced Ca2+ oscillations in eggs, and they imply that InsP3 oscillates in synchrony with Ca2+ oscillations. Furthermore, they support the hypothesis that PLCζ and sperm

  14. Proliferating cell nuclear antigen (PCNA interactions in solution studied by NMR.

    Directory of Open Access Journals (Sweden)

    Alfredo De Biasio

    Full Text Available PCNA is an essential factor for DNA replication and repair. It forms a ring shaped structure of 86 kDa by the symmetric association of three identical protomers. The ring encircles the DNA and acts as a docking platform for other proteins, most of them containing the PCNA Interaction Protein sequence (PIP-box. We have used NMR to characterize the interactions of PCNA with several other proteins and fragments in solution. The binding of the PIP-box peptide of the cell cycle inhibitor p21 to PCNA is consistent with the crystal structure of the complex. A shorter p21 peptide binds with reduced affinity but retains most of the molecular recognition determinants. However the binding of the corresponding peptide of the tumor suppressor ING1 is extremely weak, indicating that slight deviations from the consensus PIP-box sequence dramatically reduce the affinity for PCNA, in contrast with a proposed less stringent PIP-box sequence requirement. We could not detect any binding between PCNA and the MCL-1 or the CDK2 protein, reported to interact with PCNA in biochemical assays. This suggests that they do not bind directly to PCNA, or they do but very weakly, with additional unidentified factors stabilizing the interactions in the cell. Backbone dynamics measurements show three PCNA regions with high relative flexibility, including the interdomain connector loop (IDCL and the C-terminus, both of them involved in the interaction with the PIP-box. Our work provides the basis for high resolution studies of direct ligand binding to PCNA in solution.

  15. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    Science.gov (United States)

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-10-11

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis.

  16. Zero-leakage multiple key-binding scenarios for SRAM-PUF systems based on the XOR-method

    NARCIS (Netherlands)

    Kusters, C.J.; Ignatenko, T.; Willems, F.M.J.

    2016-01-01

    We show that the XOR-method based on linear error-correcting codes can be applied to achieve the secret-key capacity of binary-symmetric SRAM-PUFs. Then we focus on multiple key-bindings. We prove that no information is leaked by all the helper data about a single secret key both in the case where

  17. Zero-leakage multiple key-binding scenarios for SRAM-PUF systems based on the XOR-Method

    NARCIS (Netherlands)

    Kusters, C.J.; Ignatenko, T.; Willems, F.M.J.

    2016-01-01

    We show that the XOR-method based on linear error-correcting codes can be applied to achieve the secret-key capacity of binary-symmetric SRAM-PUFs. Then we focus on multiple key-bindings. We prove that no information is leaked by all the helper data about a single secret key both in the case where

  18. Automation through the PIP [Program Implementation Plan] concurrence system improves information sharing among DOE [Dept. of Energy] managers

    International Nuclear Information System (INIS)

    Imholz, R.M.; Berube, D.S.; Peterson, J.L.

    1990-01-01

    The Program Implementation Plan (PIP) Concurrence System is designed to improve information sharing within the U.S. Department of Energy (DOE) and between DOE and the Field. Effectively sharing information enables DOE managers to make more informed, effective decisions. The PIP Concurrence System improved information sharing among DOE managers by defining the automated process for concurring on a DOE document, thus reducing the time required to concur on the document by 75%. The first step in defining an automated process is to structure the process for concurring on a document. Only those DOE managers with approved access could review certain parts of a document on a concurrence system. Remember that the concurrence process is a sign off procedure unlike a commentary process in which comments may not be restricted to certain people. The commentary process is the beginning of the concurrence process. The commentary process builds a document; the concurrence process approves it. 6 refs., 7 figs

  19. Preliminary evidence that copper inhibits the degradation of DDT to DDE in pip and stonefruit orchard soils in the Auckland region, New Zealand

    International Nuclear Information System (INIS)

    Gaw, S.K.; Palmer, G.; Kim, N.D.; Wilkins, A.L.

    2003-01-01

    Studies in New Zealand orchard soils indicate that elevated Cu concentrations have reduced the ability of the indigenous soil microbial community to degrade DDT to DDE. - Orchards (n=13) were sampled as part of a larger survey investigating agrichemical residues (pesticides and trace elements) in cropping soils in the Auckland region, New Zealand. ΣDDT concentrations in orchard soils ranged from -1 . DDT (o,p'- and p,p'-) comprised at least 40% of the ΣDDT residues in 67% of orchards in which DDT residues were detected. There was a highly significant negative correlation (-0.924, P -1 ) and the ratio of DDE:DDT (0.4-5.2) in pip and stonefruit orchard soils. In further investigations involving five pip and stone fruit orchard sites and one grazing paddock it was found that soil respiration and the ratio of soil microbial carbon to soil carbon (%C mic /Org-C) in orchard soils decreased with increasing copper concentration. These findings are consistent with the conclusion that elevated soil copper concentrations in pip and stone fruit orchard soils in the Auckland region may have reduced the ability of the indigenous soil microbial community to degrade DDT to DDE

  20. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha; Bhar, Kaushik; Siddhanta, Anirban, E-mail: asiddhanto@yahoo.com

    2013-09-20

    Highlights: •Nuclear pool of PIP5K is SUMOylated. •Enhancement of SUMOylated nuclear PIP5K during apoptosis. •Nuclear PIP5K is modified by polySUMO-1 during apoptosis. •Nuclear PIP5K is modified by polySUMO-2 chain during apoptosis. -- Abstract: Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.

  1. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  2. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication.

    Directory of Open Access Journals (Sweden)

    Greicy H Goto

    2015-08-01

    Full Text Available Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage.

  3. Equilibrium expert: an add-in to Microsoft Excel for multiple binding equilibrium simulations and parameter estimations.

    Science.gov (United States)

    Raguin, Olivier; Gruaz-Guyon, Anne; Barbet, Jacques

    2002-11-01

    An add-in to Microsoft Excel was developed to simulate multiple binding equilibriums. A partition function, readily written even when the equilibrium is complex, describes the experimental system. It involves the concentrations of the different free molecular species and of the different complexes present in the experiment. As a result, the software is not restricted to a series of predefined experimental setups but can handle a large variety of problems involving up to nine independent molecular species. Binding parameters are estimated by nonlinear least-square fitting of experimental measurements as supplied by the user. The fitting process allows user-defined weighting of the experimental data. The flexibility of the software and the way it may be used to describe common experimental situations and to deal with usual problems such as tracer reactivity or nonspecific binding is demonstrated by a few examples. The software is available free of charge upon request.

  4. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.

    Science.gov (United States)

    Guo, Wei-Li; Huang, De-Shuang

    2017-08-22

    Transcription factors (TFs) are DNA-binding proteins that have a central role in regulating gene expression. Identification of DNA-binding sites of TFs is a key task in understanding transcriptional regulation, cellular processes and disease. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) enables genome-wide identification of in vivo TF binding sites. However, it is still difficult to map every TF in every cell line owing to cost and biological material availability, which poses an enormous obstacle for integrated analysis of gene regulation. To address this problem, we propose a novel computational approach, TFBSImpute, for predicting additional TF binding profiles by leveraging information from available ChIP-seq TF binding data. TFBSImpute fuses the dataset to a 3-mode tensor and imputes missing TF binding signals via simultaneous completion of multiple TF binding matrices with positional consistency. We show that signals predicted by our method achieve overall similarity with experimental data and that TFBSImpute significantly outperforms baseline approaches, by assessing the performance of imputation methods against observed ChIP-seq TF binding profiles. Besides, motif analysis shows that TFBSImpute preforms better in capturing binding motifs enriched in observed data compared with baselines, indicating that the higher performance of TFBSImpute is not simply due to averaging related samples. We anticipate that our approach will constitute a useful complement to experimental mapping of TF binding, which is beneficial for further study of regulation mechanisms and disease.

  5. First passage times for multiple particles with reversible target-binding kinetics

    Science.gov (United States)

    Grebenkov, Denis S.

    2017-10-01

    We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.

  6. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Schuetz, Erin G. [Department of Pharmaceutical Sciences, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Chen, Taosheng, E-mail: taosheng.chen@stjude.org [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States)

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  7. Evaluation of simultaneous binding of Chromomycin A3 to the multiple sites of DNA by the new restriction enzyme assay.

    Science.gov (United States)

    Murase, Hirotaka; Noguchi, Tomoharu; Sasaki, Shigeki

    2018-06-01

    Chromomycin A3 (CMA3) is an aureolic acid-type antitumor antibiotic. CMA3 forms dimeric complexes with divalent cations, such as Mg 2+ , which strongly binds to the GC rich sequence of DNA to inhibit DNA replication and transcription. In this study, the binding property of CMA3 to the DNA sequence containing multiple GC-rich binding sites was investigated by measuring the protection from hydrolysis by the restriction enzymes, AccII and Fnu4HI, for the center of the CGCG site and the 5'-GC↓GGC site, respectively. In contrast to the standard DNase I footprinting method, the DNA substrates are fully hydrolyzed by the restriction enzymes, therefore, the full protection of DNA at all the cleavable sites indicates that CMA3 simultaneously binds to all the binding sites. The restriction enzyme assay has suggested that CMA3 has a high tendency to bind the successive CGCG sites and the CGG repeat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Development of a β-spectrometer using PIPS technology

    International Nuclear Information System (INIS)

    Courti, A.; Goutelard, F.; Burger, P.; Blotin, E.

    2000-01-01

    Various anthropogenic sources contribute to the inventory of long live β-emitters in the environment. Studies have been carried out to obtain the 90 Sr distribution in environment in order to estimate its impact in terms of radiation exposure to humans. The Laboratory routinely measures 90 Sr by proportional counter after radiochemistry. An incomplete radiochemical separation leads to a deposit submitted to count polluted by natural β-emitters. In order to confirm the result, 90 Y (daughter of 90 Sr), is extracted from the final radiochemical fraction and counted. The 90 Y decreasing (T 1/2 = 2.67 days) is checked by successive counts over 64 h. The delay between the end of radiochemistry and the counting is imposed by 15 days to allow radioactive equilibrium between 90 Sr and 90 Y to be established. In order to remove this delay the purity of the 90 Sr fraction source can be verified by β-spectrometry. Thus, a β-spectrometer is under development in collaboration with Canberra Semi-Conductor and Canberra Electronic. It consists in a PIPS detector where several silicon layers are combined. Initial results will be presented in this paper

  9. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells.

    Science.gov (United States)

    Lucato, Christina M; Halls, Michelle L; Ooms, Lisa M; Liu, Heng-Jia; Mitchell, Christina A; Whisstock, James C; Ellisdon, Andrew M

    2015-08-21

    The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Heparin molecularly imprinted polymer thin flm on gold electrode by plasma-induced graft polymerization for label-free biosensor.

    Science.gov (United States)

    Orihara, Kouhei; Hikichi, Atsushi; Arita, Tomohiko; Muguruma, Hitoshi; Yoshimi, Yasuo

    2018-03-20

    Heparin, a highly sulfated glycosaminoglycan, is an important biomaterial having biological and therapeutic functionalities such as anticoagulation, regeneration, and protein stabilization. This study addresses a label-free quartz crystal microbalance (QCM) biosensor for heparin detection based on a macromolecularly imprinted polymer (MIP) as an artificial recognition element. We demonstrate the novel strategy for MIP in the form of thin film on a gold (Au) electrode with the plasma-induced graft polymerization (PIP) technique. The procedure of PIP is as follows: (i) Hexamethyldisiloxane plasma-polymerized thin film (PPF) as a pre-coating scaffold of active species for PIP (post-polymerization) is deposited on an Au electrode. (ii) The PPF/Au electrode is soaked in an water solution containing heparin (template), (2-(methacryloxy)-ethyl)trimethylammonium chloride acrylamide (functional monomer), acrylamide, and N,N-methylenebisacrylamide (crosslinker). Double bonds of monomer and crosslinker attacked by residually active species in pre-coating PPF cause radical chain reaction. Consequently, a growing polymer network of 20 nm thickness of PIP-MIP thin film is formed and grafted on the PPF/Au surface. (iii) The PIP-MIP/PPF/Au is washed by sodium chloride solution so as to remove the template. Non-imprinted polymer (NIP) is carried out like the same procedure without a template. The AFM, XPS, and QCM measurements show that the PIP process facilitates macromolecularly surface imprinting of template heparin where the template is easily removed and is rapidly rebound to PIP-MIP without a diffusional barrier. The heparin-PIP-MIP specifically binds to heparin compared with heparin analog chondroitin sulfate C (selective factor: 4.0) and a detectable range of heparin in the presence of CS (0.1 wt%) was 0.001-0.1 wt%. The PIP-NIP does not show selectivity between them. The evaluated binding kinetics are association (k a  = 350 ± 100 M -1  s -1

  11. Sequence analysis of the PIP5K locus in Eimeria maxima provides further evidence for eimerian genome plasticity and segmental organization.

    Science.gov (United States)

    Song, B K; Pan, M Z; Lau, Y L; Wan, K L

    2014-07-29

    Commercial flocks infected by Eimeria species parasites, including Eimeria maxima, have an increased risk of developing clinical or subclinical coccidiosis; an intestinal enteritis associated with increased mortality rates in poultry. Currently, infection control is largely based on chemotherapy or live vaccines; however, drug resistance is common and vaccines are relatively expensive. The development of new cost-effective intervention measures will benefit from unraveling the complex genetic mechanisms that underlie host-parasite interactions, including the identification and characterization of genes encoding proteins such as phosphatidylinositol 4-phosphate 5-kinase (PIP5K). We previously identified a PIP5K coding sequence within the E. maxima genome. In this study, we analyzed two bacterial artificial chromosome clones presenting a ~145-kb E. maxima (Weybridge strain) genomic region spanning the PIP5K gene locus. Sequence analysis revealed that ~95% of the simple sequence repeats detected were located within regions comparable to the previously described feature-rich segments of the Eimeria tenella genome. Comparative sequence analysis with the orthologous E. maxima (Houghton strain) region revealed a moderate level of conserved synteny. Unique segmental organizations and telomere-like repeats were also observed in both genomes. A number of incomplete transposable elements were detected and further scrutiny of these elements in both orthologous segments revealed interesting nesting events, which may play a role in facilitating genome plasticity in E. maxima. The current analysis provides more detailed information about the genome organization of E. maxima and may help to reveal genotypic differences that are important for expression of traits related to pathogenicity and virulence.

  12. Identification of an Arabidopsis thaliana protein that binds to tomato mosaic virus genomic RNA and inhibits its multiplication

    International Nuclear Information System (INIS)

    Fujisaki, Koki; Ishikawa, Masayuki

    2008-01-01

    The genomic RNAs of positive-strand RNA viruses carry RNA elements that play positive, or in some cases, negative roles in virus multiplication by interacting with viral and cellular proteins. In this study, we purified Arabidopsis thaliana proteins that specifically bind to 5' or 3' terminal regions of tomato mosaic virus (ToMV) genomic RNA, which contain important regulatory elements for translation and RNA replication, and identified these proteins by mass spectrometry analyses. One of these host proteins, named BTR1, harbored three heterogeneous nuclear ribonucleoprotein K-homology RNA-binding domains and preferentially bound to RNA fragments that contained a sequence around the initiation codon of the 130K and 180K replication protein genes. The knockout and overexpression of BTR1 specifically enhanced and inhibited, respectively, ToMV multiplication in inoculated A. thaliana leaves, while such effect was hardly detectable in protoplasts. These results suggest that BTR1 negatively regulates the local spread of ToMV

  13. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    International Nuclear Information System (INIS)

    Walker, G.; Bourguignon, L.Y.

    1990-01-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation

  14. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G.; Bourguignon, L.Y. (Univ. of Miami Medical School, FL (USA))

    1990-08-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.

  15. Nonimmune immunoglobulin binding and multiple adhesion characterize Plasmodium falciparum-infected erythrocytes of placental origin

    DEFF Research Database (Denmark)

    Rasti, Niloofar; Namusoke, Fatuma; Chêne, Arnaud

    2006-01-01

    The harmful effects of pregnancy-associated malaria (PAM) are engendered by the heavy sequestration of Plasmodium falciparum-parasitized RBCs in the placenta. It is well documented that this process is mediated by interactions of parasite-encoded variant surface antigens and placental receptors...... and adhesion to multiple receptors (IgG/IgM/HA/CSA) rather than the exclusive binding to CSA is a characteristic of fresh Ugandan placental isolates. These findings are of importance for the understanding of the pathogenesis of placental malaria and have implications for the ongoing efforts to develop a global...

  16. End-Effector Development for the PIP Puck Handling Robot

    International Nuclear Information System (INIS)

    Fowley, M.D.

    2001-01-01

    It has been decided that excess, weapons-grade plutonium shall be immobilized to prevent nuclear proliferation. The method of immobilization is to encapsulate the plutonium in a ceramic puck, roughly the size of a hockey puck, using a sintering process. This method has been officially identified as the Plutonium Immobilization Process (PIP). A Can-in-Canister storage method will be used to further immobilize the plutonium. The Can-in-Canister method uses the existing design of a Defense Waste Processing Facility (DWPF) canister to house the plutonium pucks. the process begins with several pucks being stacked in a stainless steel can. Several of the stainless steel cans are stacked in a cage-like magazine. Several of the magazines are then placed in a DWPF canister. The DWPF canister is then filled with molten glass containing high-level, radioactive waste from the DWPF vitrification process. The Can-in-Canister method makes reclamation of plutonium from the pucks technically difficult and highly undesirable. The mechanical requirements of the Can-in-Canister process, in conjunction with the amount of time required to immobilize the vast quantities of weapons-grade plutonium, will expose personnel to unnecessarily high levels of radiation if the processes were completed manually, in glove boxes. Therefore, automated equipment is designed into the process to reduce or eliminate personnel exposure. Robots are used whenever the automated handling operations become complicated. There are two such operations in the initial stages of the Can-in-Canister process, which required a six-axis robot. The first operation is a press unloading process. The second operation is a tray transfer process. To successfully accomplish the operational tasks described in the two operations, the end-effector of the robot must be versatile, lightweight, and rugged. As a result of these demands, an extensive development process was undertaken to design the optimum end-effector for these puck

  17. Screening Mixtures of Small Molecules for Binding to Multiple Sites on the Surface Tetanus Toxin C Fragment by Bioaffinity NMR

    International Nuclear Information System (INIS)

    Cosman, M; Zeller, L; Lightstone, F C; Krishnan, V V; Balhorn, R

    2002-01-01

    also contains 3-sialyllactose (another predicted site 1 binder) and bisbenzimide 33342 (non-binder). A series of five predicted Site-2 binders were then screened sequentially in the presence of the Site-1 binder doxorubicin. These experiments showed that the compounds lavendustin A and naphthofluorescein-di-(β-D-galactopyranoside) binds along with doxorubicin to TetC. Further experiments indicate that doxorubicin and lavendustin are potential candidates to use in preparing a bidendate inhibitor specific for TetC. The simultaneous binding of two different predicted Site-2 ligands to TetC suggests that they may bind multiple sites. Another possibility is that the conformations of the binding sites are dynamic and can bind multiple diverse ligands at a single site depending on the pre-existing conformation of the protein, especially when doxorubicin is already bound

  18. The PH domain of phosphoinositide-dependent kinase-1 exhibits a novel, phospho-regulated monomer-dimer equilibrium with important implications for kinase domain activation: single-molecule and ensemble studies.

    Science.gov (United States)

    Ziemba, Brian P; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J

    2013-07-16

    Phosphoinositide-dependent kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology, this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric states of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. This study investigates the binding of purified wild-type (WT) and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single-molecule and ensemble measurements. Single-molecule analysis of the brightness of the fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single-molecule analysis of two-dimensional (2D) diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate as a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little penetration of the protein into the bilayer as observed for other PH domains. The 2D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that allows

  19. The PH Domain of PDK1 Exhibits a Novel, Phospho-Regulated Monomer-Dimer Equilibrium With Important Implications for Kinase Domain Activation: Single Molecule and Ensemble Studies†

    Science.gov (United States)

    Ziemba, Brian P.; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J.

    2013-01-01

    Phosphoinositide-Dependent Kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4-5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric state(s) of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. The present study investigates the binding of purified WT and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single molecule and ensemble measurements. Single molecule analysis of the brightness of fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric, while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single molecule analysis of 2-D diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little protein penetration into the bilayer as observed for other PH domains. The 2-D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that enables greater protein insertion into

  20. Beta-spectroscopy of long lived nuclides with a PIPS detector-setup

    Directory of Open Access Journals (Sweden)

    Domula Alexander R.

    2017-01-01

    Full Text Available Several applications in modern nuclear physics, research and engineering are limited by a lack of precise knowledge in spectral shape data for beta-decays. Specifically the interest aims to study spectral data for forbidden decays with respectively long half-lives, which is one of the central activities of our group. For the investigation of those rare beta-decays the group operates a setup of six PIPS detectors in a vacuum chamber built out of low-radioactivity materials. In the long term the setup will be used as low-background-detector for the investigation of rare beta-decays. In order to reduce the measuring-background a muon veto was installed. The characterization of the setup in the energy-range from 20..1000 keV using conversion-electrons is described. A set of useful calibration-nuclides was established to determine energy calibration and efficiencies.

  1. Circulating vitamin D binding protein levels are not associated with relapses or with vitamin D status in multiple sclerosis

    NARCIS (Netherlands)

    Smolders, J; Peelen, Evelyn; Thewissen, Mariëlle; Menheere, Paul; Damoiseaux, Jan; Hupperts, Raymond

    BACKGROUND: A low vitamin D status has been associated with multiple sclerosis (MS). Most circulating vitamin D metabolites are bound to vitamin D binding protein (DBP). OBJECTIVES: The purpose of this study was to explore whether there is an association between MS and DBP. METHODS: We compared DBP

  2. Multiple protonation equilibria in electrostatics of protein-protein binding.

    Science.gov (United States)

    Piłat, Zofia; Antosiewicz, Jan M

    2008-11-27

    All proteins contain groups capable of exchanging protons with their environment. We present here an approach, based on a rigorous thermodynamic cycle and the partition functions for energy levels characterizing protonation states of the associating proteins and their complex, to compute the electrostatic pH-dependent contribution to the free energy of protein-protein binding. The computed electrostatic binding free energies include the pH of the solution as the variable of state, mutual "polarization" of associating proteins reflected as changes in the distribution of their protonation states upon binding and fluctuations between available protonation states. The only fixed property of both proteins is the conformation; the structure of the monomers is kept in the same conformation as they have in the complex structure. As a reference, we use the electrostatic binding free energies obtained from the traditional Poisson-Boltzmann model, computed for a single macromolecular conformation fixed in a given protonation state, appropriate for given solution conditions. The new approach was tested for 12 protein-protein complexes. It is shown that explicit inclusion of protonation degrees of freedom might lead to a substantially different estimation of the electrostatic contribution to the binding free energy than that based on the traditional Poisson-Boltzmann model. This has important implications for the balancing of different contributions to the energetics of protein-protein binding and other related problems, for example, the choice of protein models for Brownian dynamics simulations of their association. Our procedure can be generalized to include conformational degrees of freedom by combining it with molecular dynamics simulations at constant pH. Unfortunately, in practice, a prohibitive factor is an enormous requirement for computer time and power. However, there may be some hope for solving this problem by combining existing constant pH molecular dynamics

  3. Complementary biomarker-based methods for characterising Arctic sea ice conditions: A case study comparison between multivariate analysis and the PIP25 index

    Science.gov (United States)

    Köseoğlu, Denizcan; Belt, Simon T.; Smik, Lukas; Yao, Haoyi; Panieri, Giuliana; Knies, Jochen

    2018-02-01

    The discovery of IP25 as a qualitative biomarker proxy for Arctic sea ice and subsequent introduction of the so-called PIP25 index for semi-quantitative descriptions of sea ice conditions has significantly advanced our understanding of long-term paleo Arctic sea ice conditions over the past decade. We investigated the potential for classification tree (CT) models to provide a further approach to paleo Arctic sea ice reconstruction through analysis of a suite of highly branched isoprenoid (HBI) biomarkers in ca. 200 surface sediments from the Barents Sea. Four CT models constructed using different HBI assemblages revealed IP25 and an HBI triene as the most appropriate classifiers of sea ice conditions, achieving a >90% cross-validated classification rate. Additionally, lower model performance for locations in the Marginal Ice Zone (MIZ) highlighted difficulties in characterisation of this climatically-sensitive region. CT model classification and semi-quantitative PIP25-derived estimates of spring sea ice concentration (SpSIC) for four downcore records from the region were consistent, although agreement between proxy and satellite/observational records was weaker for a core from the west Svalbard margin, likely due to the highly variable sea ice conditions. The automatic selection of appropriate biomarkers for description of sea ice conditions, quantitative model assessment, and insensitivity to the c-factor used in the calculation of the PIP25 index are key attributes of the CT approach, and we provide an initial comparative assessment between these potentially complementary methods. The CT model should be capable of generating longer-term temporal shifts in sea ice conditions for the climatically sensitive Barents Sea.

  4. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals.

    Science.gov (United States)

    Chevalier, Adrien S; Chaumont, François

    2015-05-01

    Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. The Multiple Carbohydrate Binding Specificities of Helicobacter pylori

    Science.gov (United States)

    Teneberg, Susann

    Persistent colonization of the human stomach by Helicobacter pylori is a risk factor for the development of peptic ulcer disease and gastric cancer. Adhesion of microbes to the target tissue is an important determinant for successful initiation, establishment and maintenance of infection, and a variety of different candidate carbohydrate receptors for H. pylori have been identified. Here the different the binding specifities, and their potential role in adhesion to human gastric epithelium are described. Finally, recent findings on the roles of sialic acid binding SabA adhesin in interactions with human neutrophils and erythrocytes are discussed.

  6. Hardware device binding and mutual authentication

    Science.gov (United States)

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  7. A closed dorsolateral dislocation of PIP joint of the fourth toe-a case report and review of literature

    Directory of Open Access Journals (Sweden)

    Prof. Giris Kumar Singh

    2009-01-01

    Full Text Available Interphalangeal (IP joint dislocations of the toes are uncommon lesions. We present here a case of closed dorsolateral dislocation of proximal interphalangeal (PIP joint of the fourth toe. Closed reduction and buddy strapping have been done with middle toe for two weeks under digital block. There was painless full range of movement after 2 weeks. We propose that attempt of closed reduction must be given adequately under anesthesia before proceeding for open reduction.

  8. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    Science.gov (United States)

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  9. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Anindya [Fermilab; Rane, Tejas [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  10. Self-affine scaling from non-integer phase-space partition in $\\pi^{+}p$ and $K^{+}p$ collisions at 250 GeV/$c$

    CERN Document Server

    Agababian, N M

    1998-01-01

    A factorial-moment analysis with real (integer and non-integer) phase space partition is applied to $\\pi^+$p and K$^+$p collisions at 250 GeV/$c$. Clear evidence is shown for self-affine rather than self-similar power-law scaling in multiparticle production. The three-dimensional self-affine second-order scaling exponent is determined to be 0.061$\\pm$0.010.

  11. Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking.

    Directory of Open Access Journals (Sweden)

    Alice A Royal

    Full Text Available The slow delayed-rectifier potassium current (IKs is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1 channel requires phosphatidylinositol-4,5-bisphosphate (PIP2 binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel-phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4P at the plasma membrane (PM or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1. Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM.

  12. Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics.

    Directory of Open Access Journals (Sweden)

    Suryani Lukman

    Full Text Available The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD. In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs. Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3. Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart. Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1 a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2 possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site.

  13. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    International Nuclear Information System (INIS)

    James, I.F.; Goldstein, A.

    1984-01-01

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, [ 3 H] dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for [ 3 H] [D-Ala2, D-Leu5]enkephalin and [3H]ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites

  14. Relationships among cytochromes P450 and dioxin equivalents in pipping heron embryos from Virginia, the Great Lakes and San Francisco Bay

    Science.gov (United States)

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillett, D.E.

    1993-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from undisturbed (Chincoteague National Wildlife Refuge, VA) and industrialized (Cat Island, Green Bay, WI; San Francisco Bay, CA) locations. Hepatic P450 associated monooxygenases (AHH, EROD, BROD, ECOD) and P450 proteins (CYP1A, CYP2B) were induced up to 85-fold, and were associated with burdens of total PCBs and 11 AHH-active PCB congeners. Dioxin equivalents (TCDD-EQs) of sample extracts, derived by bioassay (H4I1E rat hepatoma cell) and mathematically (product of PCB congener concentration and relative TCDD potency), revealed greatest TCDD-EQs in Cat Island samples. TCDD-EQs were associated with P450s, especially BROD, EROD and CYP1A (r2 = 0.35 to 0.66). TCDD-EQs derived by bioassay were highly correlated with TCDD-EQs derived mathematically (r2 = 0.58 to 0.67) . Multiple regressions were also performed to investigate relationships among P450s and PCB congeners. In summary, these data demonstrate that hepatic P450s of heron embryos are biomarkers of exposure to dioxin-like compounds and provide further evidence that this species has considerable value for assessing wetland and estuarine contamination.

  15. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    Science.gov (United States)

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover

    Science.gov (United States)

    Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.

    2011-01-01

    RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178

  17. Large self-affine fractality in $\\pi^{+}p$ and $K^{+}p$ collisions at 250 GeV/c

    CERN Document Server

    Agababian, N M

    1996-01-01

    Taking into account the anisotropy of phase space in multiparticle production, a self-affine analysis of factorial moments was carried out on the NA22 data for $\\pi^{+}p$ and $K^{+}p$ collisions at 250 GeV/$c$. Within the transverse plane, the Hurst exponents measuring the anisotropy are consistent with unit value (i.e. no anisotropy). They are, however, only half that value when the longitudinal direction is compared to the transverse ones. Fractality, indeed, turns out to be self-affine rather than self-similar in multiparticle production. In three-dimensional phase space, power-law scaling is observed to be better realized in self-affine than in self-similar analysis.

  18. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Vowinckel, E; Reutens, D; Becher, B

    1997-01-01

    Activated glial cells are implicated in regulating and effecting the immune response that occurs within the CNS as part of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). The peripheral benzodiazepine receptor (PBR) is expressed in glial cells. We...... examined the utility of using in vitro and in vivo ligand binding to the PBR as a measure of lesion activity in autoimmune CNS demyelinating diseases. Applying a combined autoradiography and immunohistochemical approach to spinal cord and brain tissues from mice with EAE, we found a correlation at sites...... of inflammatory lesions between [3H]-PK11195 binding and immunoreactivity for the activated microglial/macrophage marker Mac-1/CD11b. In MS tissues, [3H]-PK11195 binding correlated with sites of immunoreactivity for the microglial/macrophage marker CD68, at the edges of chronic active plaques. Positron emission...

  19. Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats☆

    Science.gov (United States)

    Marzo, Mar; Liu, Danxu; Ruiz, Alfredo; Chalmers, Ronald

    2013-01-01

    Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity. PMID:23648487

  20. Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats.

    Science.gov (United States)

    Marzo, Mar; Liu, Danxu; Ruiz, Alfredo; Chalmers, Ronald

    2013-08-01

    Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites

    KAUST Repository

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2015-01-01

    With the prevalence of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) technology, massive ChIP-Seq data has been accumulated. The ChIP-Seq technology measures the genome-wide occupancy of DNA-binding proteins in vivo. It is well-known that different DNA-binding protein occupancies may result in a gene being regulated in different conditions (e.g. different cell types). To fully understand a gene's function, it is essential to develop probabilistic models on multiple ChIP-Seq profiles for deciphering the gene transcription causalities. In this work, we propose and describe two probabilistic models. Assuming the conditional independence of different DNA-binding proteins' occupancies, the first method (SignalRanker) is developed as an intuitive method for ChIP-Seq genome-wide signal profile inference. Unfortunately, such an assumption may not always hold in some gene regulation cases. Thus, we propose and describe another method (FullSignalRanker) which does not make the conditional independence assumption. The proposed methods are compared with other existing methods on ENCODE ChIP-Seq datasets, demonstrating its regression and classification ability. The results suggest that FullSignalRanker is the best-performing method for recovering the signal ranks on the promoter and enhancer regions. In addition, FullSignalRanker is also the best-performing method for peak sequence classification. We envision that SignalRanker and FullSignalRanker will become important in the era of next generation sequencing. FullSignalRanker program is available on the following website: http://www.cs.toronto.edu/∼wkc/FullSignalRanker/ © 2015 IEEE.

  2. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites

    KAUST Repository

    Wong, Ka-Chun

    2015-04-20

    With the prevalence of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) technology, massive ChIP-Seq data has been accumulated. The ChIP-Seq technology measures the genome-wide occupancy of DNA-binding proteins in vivo. It is well-known that different DNA-binding protein occupancies may result in a gene being regulated in different conditions (e.g. different cell types). To fully understand a gene\\'s function, it is essential to develop probabilistic models on multiple ChIP-Seq profiles for deciphering the gene transcription causalities. In this work, we propose and describe two probabilistic models. Assuming the conditional independence of different DNA-binding proteins\\' occupancies, the first method (SignalRanker) is developed as an intuitive method for ChIP-Seq genome-wide signal profile inference. Unfortunately, such an assumption may not always hold in some gene regulation cases. Thus, we propose and describe another method (FullSignalRanker) which does not make the conditional independence assumption. The proposed methods are compared with other existing methods on ENCODE ChIP-Seq datasets, demonstrating its regression and classification ability. The results suggest that FullSignalRanker is the best-performing method for recovering the signal ranks on the promoter and enhancer regions. In addition, FullSignalRanker is also the best-performing method for peak sequence classification. We envision that SignalRanker and FullSignalRanker will become important in the era of next generation sequencing. FullSignalRanker program is available on the following website: http://www.cs.toronto.edu/∼wkc/FullSignalRanker/ © 2015 IEEE.

  3. Changes in Air CO2 Concentration Differentially Alter Transcript Levels of NtAQP1 and NtPIP2;1 Aquaporin Genes in Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2016-04-01

    Full Text Available The aquaporin specific control on water versus carbon pathways in leaves is pivotal in controlling gas exchange and leaf hydraulics. We investigated whether Nicotiana tabacum aquaporin 1 (NtAQP1 and Nicotiana tabacum plasma membrane intrinsic protein 2;1 (NtPIP2;1 gene expression varies in tobacco leaves subjected to treatments with different CO2 concentrations (ranging from 0 to 800 ppm, inducing changes in photosynthesis, stomatal regulation and water evaporation from the leaf. Changes in air CO2 concentration ([CO2] affected net photosynthesis (Pn and leaf substomatal [CO2] (Ci. Pn was slightly negative at 0 ppm air CO2; it was one-third that of ambient controls at 200 ppm, and not different from controls at 800 ppm. Leaves fed with 800 ppm [CO2] showed one-third reduced stomatal conductance (gs and transpiration (E, and their gs was in turn slightly lower than in 200 ppm– and in 0 ppm–treated leaves. The 800 ppm air [CO2] strongly impaired both NtAQP1 and NtPIP2;1 gene expression, whereas 0 ppm air [CO2], a concentration below any in vivo possible conditions and specifically chosen to maximize the gene expression alteration, increased only the NtAQP1 transcript level. We propose that NtAQP1 expression, an aquaporin devoted to CO2 transport, positively responds to CO2 scarcity in the air in the whole range 0–800 ppm. On the contrary, expression of NtPIP2;1, an aquaporin not devoted to CO2 transport, is related to water balance in the leaf, and changes in parallel with gs. These observations fit in a model where upregulation of leaf aquaporins is activated at low Ci, while downregulation occurs when high Ci saturates photosynthesis and causes stomatal closure.

  4. Novel Kv7.1-phosphatidylinositol 4,5-bisphosphate interaction sites uncovered by charge neutralization scanning

    DEFF Research Database (Denmark)

    Eckey, Karina; Wrobel, Eva; Strutz-Seebohm, Nathalie

    2014-01-01

    Kv7.1 to Kv7.5 α-subunits belong to the family of voltage-gated potassium channels (Kv). Assembled with the β-subunit KCNE1, Kv7.1 conducts the slowly activating potassium current IKs, which is one of the major currents underlying repolarization of the cardiac action potential. A known regulator...... of corresponding long QT syndrome mutants suggested impaired PIP2 regulation as the cause for channel dysfunction. To clarify the underlying structural mechanism of PIP2 binding, molecular dynamics simulations of Kv7.1/KCNE1 complexes containing two PIP2 molecules in each subunit at specific sites were performed...

  5. Doctors' perspectives on the barriers to appropriate prescribing in older hospitalized patients: A qualitative study.

    LENUS (Irish Health Repository)

    Cullinan, S

    2014-11-18

    Older patients commonly suffer from multimorbidites and take multiple medications. As a result, these patients are more vulnerable to potentially inappropriate prescribing (PIP). PIP in older patients may result in adverse drug events and hospitalisations. However, little has been done to identify why PIP occurs. The objectives of this study were; (1) to identify hospital doctors\\' perceptions as to why PIP occurs, (2) to identify the barriers to addressing the issues identified, and (3) to determine which intervention types would be best suited to improving prescribing.

  6. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  7. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  8. Simultaneous Multiple MS Binding Assays Addressing D1 and D2 Dopamine Receptors.

    Science.gov (United States)

    Schuller, Marion; Höfner, Georg; Wanner, Klaus T

    2017-10-09

    MS Binding Assays are a label-free alternative to radioligand binding assays. They provide basically the same capabilities as the latter, but use a non-labeled reporter ligand instead of a radioligand. In contrast to radioligand binding assays, MS Binding Assays offer-owing to the selectivity of mass spectrometric detection-the opportunity to monitor the binding of different reporter ligands at different targets simultaneously. The present study shows a proof of concept for this strategy as exemplified for MS Binding Assays selectively addressing D 1 and D 2 dopamine receptors in a single binding experiment. A highly sensitive, rapid and robust LC-ESI-MS/MS quantification method capable of quantifying both SCH23390 and raclopride, selectively addressing D 1 and D 2 receptors, respectively, was established and validated for this purpose. Based thereon, simultaneous saturation and competition experiments with SCH23390 and raclopride in the presence of both D 1 and D 2 receptors were performed and analyzed by LC-MS/MS within a single chromatographic cycle. The present study thus demonstrates the feasibility of this strategy and the high versatility of MS Binding Assays that appears to surpass that common for conventional radioligand binding assays. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The flexible C-terminal arm of the Lassa arenavirus Z-protein mediates interactions with multiple binding partners.

    Science.gov (United States)

    May, Eric R; Armen, Roger S; Mannan, Aristotle M; Brooks, Charles L

    2010-08-01

    The arenavirus genome encodes for a Z-protein, which contains a RING domain that coordinates two zinc ions, and has been identified as having several functional roles at various stages of the virus life cycle. Z-protein binds to multiple host proteins and has been directly implicated in the promotion of viral budding, repression of mRNA translation, and apoptosis of infected cells. Using homology models of the Z-protein from Lassa strain arenavirus, replica exchange molecular dynamics (MD) was used to refine the structures, which were then subsequently clustered. Population-weighted ensembles of low-energy cluster representatives were predicted based upon optimal agreement of the chemical shifts computed with the SPARTA program with the experimental NMR chemical shifts. A member of the refined ensemble was identified to be a potential binder of budding factor Tsg101 based on its correspondence to the structure of the HIV-1 Gag late domain when bound to Tsg101. Members of these ensembles were docked against the crystal structure of human eIF4E translation initiation factor. Two plausible binding modes emerged based upon their agreement with experimental observation, favorable interaction energies and stability during MD trajectories. Mutations to Z are proposed that would either inhibit both binding mechanisms or selectively inhibit only one mode. The C-terminal domain conformation of the most populated member of the representative ensemble shielded protein-binding recognition motifs for Tsg101 and eIF4E and represents the most populated state free in solution. We propose that C-terminal flexibility is key for mediating the different functional states of the Z-protein. (c) 2010 Wiley-Liss, Inc.

  10. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jaslyn E. M. M. [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Midtgaard, Søren Roi [University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Gysel, Kira [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J. [University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Stougaard, Jens; Thirup, Søren; Blaise, Mickaël, E-mail: mickael.blaise@cpbs.cnrs.fr [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark)

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  11. Discovery of small molecules binding to the normal conformation of prion by combining virtual screening and multiple biological activity evaluation methods

    Science.gov (United States)

    Li, Lanlan; Wei, Wei; Jia, Wen-Juan; Zhu, Yongchang; Zhang, Yan; Chen, Jiang-Huai; Tian, Jiaqi; Liu, Huanxiang; He, Yong-Xing; Yao, Xiaojun

    2017-12-01

    Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by β1, β2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.

  12. Cavity Processing and Preparation of 650 MHz Elliptical Cell Cavities for PIP-II

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Allan [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Grassellino, Anna [Fermilab; Melnychuk, Oleksandr [Fermilab; Merio, Margherita [Fermilab; Reid, Thomas [Argonne (main); Sergatskov, Dmitri [Fermilab

    2017-05-01

    The PIP-II project at Fermilab requires fifteen 650 MHz SRF cryomodules as part of the 800 MeV LINAC that will provide a high intensity proton beam to the Fermilab neutrino program. A total of fifty-seven high-performance SRF cavities will populate the cryomodules and will operate in both pulsed and continuous wave modes. These cavities will be processed and prepared for performance testing utilizing adapted cavity processing infrastructure already in place at Fermilab and Argonne. The processing recipes implemented for these structures will incorporate state-of-the art processing and cleaning techniques developed for 1.3 GHz SRF cavities for the ILC, XFEL, and LCLS-II projects. This paper describes the details of the processing recipes and associated chemistry, heat treatment, and cleanroom processes at the Fermilab and Argonne cavity processing facilities. This paper also presents single and multi-cell cavity test results with quality factors above 5·10¹⁰ and accelerating gradients above 30 MV/m.

  13. Quality-aware media scheduling on MPSoC platforms

    DEFF Research Database (Denmark)

    Gangadharan, Deepak; Chakraborty, Samarjit; Zimmermann, Roger

    2013-01-01

    and personal computers by providing maximum quality of service to the multiple streams, it is a difficult task in devices with resource constraints. In order to efficiently utilize the resources, it is essential to derive the necessary processor cycles for multiple video streams such that they are displayed...... be scheduled such that a prespecified quality constraint is satisfied with the available service. We present this framework in the context of a PiP application, but it is applicable in general for multiple media streams. The results obtained using the formal framework were further verified using experiments......Applications that stream multiple video/audio or video+audio clips are being implemented in embedded devices. A Picture-in-Picture (PiP) application is one such application scenario, where two videos are played simultaneously. Although the PiP application is very efficiently handled in televisions...

  14. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils

    International Nuclear Information System (INIS)

    Traynor-Kaplan, A.E.; Thompson, B.L.; Harris, A.L.; Taylor, P.; Omann, G.M.; Sklar, L.A.

    1989-01-01

    We recently showed that phosphatidylinositol trisphosphate (PIP3) was present in a unique lipid fraction generated in neutrophils during activation. Here, we demonstrate that the band containing this fraction isolated from thin layer chromatography consists primarily of PIP3 and that only small amounts of radiolabeled PIP3 exist prior to activation. In addition, high performance liquid chromatography of deacylated phospholipids from stimulated cells reveals an increase in a fraction eluting ahead of glycerophosphoinositol 4,5-P2. After removal of the glycerol we found that it coeluted with inositol 1,3,4-P3 when resubjected to high performance liquid chromatography. Thus, we have detected a second, novel form of phosphatidylinositol bisphosphate in activated neutrophils, PI-(3,4)P2. The elevation of PIP3 through the formyl peptide receptor is blocked by pretreatment with pertussis toxin, implicating mediation of the increase in PIP3 by a guanosine triphosphate-binding (G) protein. The rise in PIP3 is not secondary to calcium elevation. Buffering the rise in intracellular calcium did not diminish the increase in PIP3. The elevation of PIP3 appears to occur during activation with physiological agonists, its level varying with the degree of activation. Leukotriene B4, which elicits many of the same responses as stimulation of the formyl peptide receptor but with minimal oxidant production, stimulates a much attenuated rise in PIP3. Isoproterenol, which inhibits oxidant production also reduces the rise in PIP3. Hence formation of PI(3,4)P2 and PIP3 (presumed to be PI(3,4,5)P3) correlates closely with the early events of neutrophil activation

  15. Root canals decontamination by coherent photons initiated photoacustic streaming (PIPS) of irrigants: an ex-vivo study

    Science.gov (United States)

    Pedullà, E.; Genovese, C.; Scolaro, C.; Cutroneo, M.; Tempera, G.; Rapisarda, E.; Torrisi, L.

    2014-04-01

    The aim of this ex vivo study was to assess the antibacterial effectiveness of coherent photon initiated photoacoustic streaming (PIPS) of irrigants using an Er:YAG laser equipped with a newly designed, stripped and tapered, tip in extracted teeth with infected root canals. One hundred-forty-eight single-rooted extracted teeth were prepared using a rotary abrasive instrument providing a root channel with a suitable size. The samples were sterilized and all teeth except ten (negative control group) were inoculated with Enterococcus faecalis and incubated in a CO2 chamber at 37°C for 15 days in Eppendorff tubes filled with trypticase soy broth medium changed every 2 days. Infected teeth were then randomly divided into 4 test groups (n=32 for each): pulsed erbium:YAG laser at non-ablative settings for 30 seconds with sterile bi-distilled water (Group A) or 5% sodium hypochlorite (NaOCl) (Group B); without laser activated sterile bi-distilled water irrigation for 30 seconds (Group C) or 5% NaOCl irrigation for 30 seconds (Group D); the positive control group received no treatment in infected teeth (n=10). Colony-forming units (CFUs) were counted from bacteriologic samples taken before (S1) and after treatment (S2). Data were analyzed by Kruskal-Wallis and post hoc Dunn's multiple comparison tests. CFU counts were significantly lower in groups B and D than in group C (P0.05). None of the four groups predictably generated negative samples. Under the conditions of this ex vivo study, statistically significant difference wasn't found in planktonic bacteria reduction between the laser and NaOCl or NaOCl alone groups.

  16. Multiple DNA binding proteins contribute to timing of chromosome replication in E. coli

    DEFF Research Database (Denmark)

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. Dna...... replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology...... in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on ori...

  17. A “turn-on” fluorescent microbead sensor for detecting nitric oxide

    Directory of Open Access Journals (Sweden)

    Yang LH

    2014-12-01

    Full Text Available Lan-Hee Yang,1,2 Dong June Ahn,3 Eunhae Koo1 1Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul, Republic of Korea; 2Department of Biomicrosystem Technology, Korea University, Seoul, Republic of Korea; 3Departments of Biomicrosystem Technology, Chemical & Biological Engineering, KU-KIST Graduate School, Korea University, Seoul, Republic of Korea Abstract: Nitric oxide (NO is a messenger molecule involved in numerous physical and pathological processes in biological systems. Therefore, the development of a highly sensitive material able to detect NO in vivo is a key step in treating cardiovascular and a number of types of cancer-related diseases, as well as neurological dysfunction. Here we describe the development of a fluorescent probe using microbeads to enhance the fluorescence signal. Microbeads are infused with the fluorophore, dansyl-piperazine (Ds-pip, and quenched when the fluorophore is coordinated with a rhodium (Rh-complex, ie, Rh2(AcO-4(Ds-pip. In contrast, they are able to fluoresce when the transition-metal complex is replaced by NO. To confirm the “on/off” mechanism for detecting NO, we investigated the structural molecular properties using the Fritz Haber Institute ab initio molecular simulations (FHI-AIMS package. According to the binding energy calculation, NO molecules bind more strongly and rapidly with the Rh-core of the Rh-complex than with Ds-pip. This suggests that NO can bond strongly with the Rh-core and replace Ds-pip, even though Ds-pip is already near the Rh-core. However, the recovery process takes longer than the quenching process because the recovery process needs to overcome the energy barrier for formation of the transition state complex, ie, NO-(AcO-4-(Ds-pip. Further, we confirm that the Rh-complex with the Ds-pip structure has too small an energy gap to give off visible light from the highest unoccupied molecular orbital/lowest unoccupied molecular

  18. Simultaneous Determination of Binding Constants for Multiple Carbohydrate Hosts in Complex Mixtures

    DEFF Research Database (Denmark)

    Meier, Sebastian; Beeren, Sophie

    2014-01-01

    We describe a simple method for the simultaneous determination of association constants for a guest binding to seven different hosts in a mixture of more than 20 different oligosaccharides. If the binding parameters are known for one component in the mixture, a single NMR titration suffices...

  19. Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2

    Directory of Open Access Journals (Sweden)

    Lennick Michael

    2003-01-01

    Full Text Available Abstract Background Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. Results Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75 into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. Conclusions To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity.

  20. Evaluation of glomerular filtration rate of 99mTc-DTPA using PIP software

    International Nuclear Information System (INIS)

    Opazo, C.; Troncoso, M.; Gutierrez, E.; Guerrero, B.; Mena, J.

    2002-01-01

    Aim: Our purpose is to compare the measurement of glomerular filtration rate by DTPA Renogram (DTPA-GFR) using PIP software with those by 24-hour creatinine clearance (CC) in order to evaluate the results provided for the procedure and the software we used. The need for using this method well known from earlier eighties raised from the practical difficulties in getting an accurate CC in pediatric population specially in out patients as well as the fact there is not radiation, time, morbidity or discomfort added to the renogram. Methods: In a prospective study running from Sep-2001, up to now 18 patients aged 1 to 18 years underwent DTPA Renogram. DTPA-GFR was calculated from the renogram in a computer and PIP software system developed for the IAEA to be attached to analogical gammacameras The procedure involves 30 minutes DTPA renogram, full and empty DTPA syringe activity measure, input patient height and weight, to make ROIs around kidneys and background ROIs drawn below and in the lateral side of both kidneys. The results are provided automatically for the software using a kidney uptake index with Gates method. The results are expressed in ml/min for both and each kidney separately. No blood samples were used. All patients had CC measurement done at most 48 hours from the renogram using 24 hours urine collection and serum creatinine level. We make sure patients were well hydrated orally before starting renogram acquisition. Results: The DTPA-GFR mean was 81.6 ml/min (22.5-153.6). The CC mean was 78.8 ml/min (14.8-132). The comparison between DTPA-GFR and CC measurements showed an acceptable R2 coefficient (0.9228), a slope close to identity line (0.9504). The intercept was 6.75 ml/min and the T value was 0.2983. Conclusion: We have found an acceptable correlation between DTPA-GFR and CC with results obtained up to now. DTPA-GFR is a very easy procedure adding no extra time or cost to the renogram. The information provided can be useful to be considered by the

  1. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania; Mobley, David L.; Guzzi, Rita; Rizzuti, Bruno

    2016-01-01

    experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S

  2. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  3. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    Science.gov (United States)

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  4. Wolbachia strain wPip yields a pattern of cytoplasmic incompatibility enhancing a Wolbachia-based suppression strategy against the disease vector Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Calvitti Maurizio

    2012-11-01

    Full Text Available Abstract Background Cytoplasmic incompatibility (CI is induced in nature by Wolbachia bacteria, resulting in conditional male sterility. Previous research demonstrated that the two Wolbachia strains (wAlbA and wAlbB that naturally co-infect the disease vector mosquito Aedes albopictus (Asian tiger mosquito can be replaced with the wPip Wolbachia strain from Culex pipiens. Since Wolbachia-based vector control strategies depend upon the strength and consistency of CI, a greater understanding is needed on the CI relationships between wPip, wAlbA and wAlbB Wolbachia in Ae. albopictus. Methods This work consisted of a collaborative series of crosses carried out in Italy and in US to study the CI relationships between the “wPip” infected Ae. albopictus strain (ARwP and the superinfected SR strain. The Ae. albopictus strains used in Italian tests are the wPip infected ARwP strain (ARwPIT, the superinfected SR strain and the aposymbiotic AR strain. To understand the observed pattern of CI, crossing experiments carried out in USA focused on the study of the CI relationships between ARwP (ARwPUS and artificially-generated single infected lines, in specific HTA and HTB, harbouring only wAlbA and wAlbB Wolbachia respectively. Results The paper reports an unusual pattern of CI observed in crossing experiments between ARwP and SR lines. Specifically, ARwP males are able to induce full sterility in wild type females throughout most of their lifetime, while crosses between SR males and ARwP females become partially fertile with male aging. We demonstrated that the observed decrease in CI penetrance with SR male age, is related to the previously described decrease in Wolbachia density, in particular of the wAlbA strain, occurring in aged superinfected males. Conclusions The results here reported support the use of the ARwP Ae. albopictus line as source of “ready-made sterile males”, as an alternative to gamma radiation sterilized males, for autocidal

  5. Multiple ligand-binding modes in bacterial R67 dihydrofolate reductase

    Science.gov (United States)

    Alonso, Hernán; Gillies, Malcolm B.; Cummins, Peter L.; Bliznyuk, Andrey A.; Gready, Jill E.

    2005-03-01

    R67 dihydrofolate reductase (DHFR), a bacterial plasmid-encoded enzyme associated with resistance to the drug trimethoprim, shows neither sequence nor structural homology with the chromosomal DHFR. It presents a highly symmetrical toroidal structure, where four identical monomers contribute to the unique central active-site pore. Two reactants (dihydrofolate, DHF), two cofactors (NADPH) or one of each (R67•DHF•NADPH) can be found simultaneously within the active site, the last one being the reactive ternary complex. As the positioning of the ligands has proven elusive to empirical determination, we addressed the problem from a theoretical perspective. Several potential structures of the ternary complex were generated using the docking programs AutoDock and FlexX. The variability among the final poses, many of which conformed to experimental data, prompted us to perform a comparative scoring analysis and molecular dynamics simulations to assess the stability of the complexes. Analysis of ligand-ligand and ligand-protein interactions along the 4 ns trajectories of eight different structures allowed us to identify important inter-ligand contacts and key protein residues. Our results, combined with published empirical data, clearly suggest that multipe binding modes of the ligands are possible within R67 DHFR. While the pterin ring of DHF and the nicotinamide ring of NADPH assume a stacked endo-conformation at the centre of the pore, probably assisted by V66, Q67 and I68, the tails of the molecules extend towards opposite ends of the cavity, adopting multiple configurations in a solvent rich-environment where hydrogen-bond interactions with K32 and Y69 may play important roles.

  6. Binding-energy distribution and dephasing of localized biexcitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Umlauff, M.

    1997-01-01

    We report on the binding energy and dephasing of localized biexciton states in narrow ZnSe multiple quantum wells. The measured binding-energy distribution of the localized biexcitons shows a width of 2.2 meV centered at 8.5 meV, and is fairly independent of the exciton localization energy. In fo...

  7. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  8. Palmitate and stearate binding to human serum albumin. Determination of relative binding constants

    DEFF Research Database (Denmark)

    Vorum, H; Fisker, K; Honoré, B

    1997-01-01

    Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions. The expe...

  9. The conserved Tarp actin binding domain is important for chlamydial invasion.

    Directory of Open Access Journals (Sweden)

    Travis J Jewett

    2010-07-01

    Full Text Available The translocated actin recruiting phosphoprotein (Tarp is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  10. Piperine attenuates UV-R induced cell damage in human keratinocytes via NF-kB, Bax/Bcl-2 pathway: An application for photoprotection.

    Science.gov (United States)

    Verma, Ankit; Kushwaha, Hari N; Srivastava, Ajeet K; Srivastava, Saumya; Jamal, Naseem; Srivastava, Kriti; Ray, Ratan Singh

    2017-07-01

    Chronic ultraviolet radiation (UV-R) exposure causes skin disorders like erythema, edema, hyperpigmentation, photoaging and photocarcinogenesis. Recent research trends of researchers have focused more attention on the identification and use of photo stable natural agents with photoprotective properties. Piperine (PIP), as a plant alkaloid, is an important constituent present in black pepper (Piper nigrum), used widely in ayurvedic and other traditional medicines and has broad pharmacological properties. The study was planned to photoprotective efficacy of PIP in human keratinocyte (HaCaT) cell line. We have assessed the UV-R induced activation of transcription factor NF-κB in coordination with cell death modulators (Bax/Bcl-2 and p21). The LC-MS/MS analysis revealed that PIP was photostable under UV-A/UV-B exposure. PIP (10μg/ml) attenuates the UV-R (A and B) induced phototoxicity of keratinocyte cell line through the restoration of cell viability, inhibition of ROS, and malondialdehyde generation. Further, PIP inhibited UV-R mediated DNA damage, prevented micronuclei formation, and reduced sub-G1 phase in cell cycle, which supported against photogenotoxicity. This study revealed that PIP pretreatment strongly suppressed UV-R induced photodamages. Molecular docking studies suggest that PIP binds at the active site of NF-κB, and thus, preventing its translocation to nucleus. In addition, transcriptional and translational analysis advocate the increased expression of NF-κB and concomitant decrease in IkB-α expression under UV-R exposed cells, favouring the apoptosis via Bax/Bcl-2 and p21 pathways. However, PIP induced expression of IkB-α suppress the NF-κB activity which resulted in suppression of apoptotic marker genes and proteins that involved in photoprotection. Therefore, we suggest the applicability of photostable PIP as photoprotective agent for human use. Copyright © 2017. Published by Elsevier B.V.

  11. Oxygen entry through multiple pathways in T-state human hemoglobin.

    Science.gov (United States)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2013-05-23

    The heme oxygen (O2) binding site of human hemoglobin (HbA) is buried in the interior of the protein, and there is a debate over the O2 entry pathways from solvent to the binding site. As a first step to understand HbA O2 binding process at the atomic level, we detected all significant multiple O2 entry pathways from solvent to the binding site in the α and β subunits of the T-state tetramer HbA by utilizing ensemble molecular dynamics (MD) simulation. By executing 128 independent 8 ns MD trajectories in O2-rich aqueous solvent, we simulated the O2 entry processes and obtained 141 and 425 O2 entry events in the α and β subunits of HbA, respectively. We developed the intrinsic pathway identification by clustering method to achieve a persuasive visualization of the multiple entry pathways including both the shapes and relative importance of each pathway. The rate constants of O2 entry estimated from the MD simulations correspond to the experimentally observed values, suggesting that O2 ligands enter the binding site through multiple pathways. The obtained multiple pathway map can be utilized for future detailed analysis of HbA O2 binding process.

  12. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  13. Differences in [99mTc]TRODAT-1 SPECT binding to dopamine transporters in patients with multiple system atrophy and Parkinson's disease

    International Nuclear Information System (INIS)

    Swanson, Randel L.; Newberg, Andrew B.; Acton, Paul D.; Siderowf, Andrew; Wintering, Nancy; Alavi, Abass; Mozley, P. David; Plossl, Karl; Udeshi, Michelle; Hurtig, Howard

    2005-01-01

    Multiple system atrophy (MSA), a disorder causing autonomic dysfunction, parkinsonism, and cerebellar dysfunction, is difficult to differentiate from other movement disorders, particularly early in the course of disease. This study evaluated whether [ 99m Tc]TRODAT-1 binding to the dopamine transporter differentiates MSA from other movement disorders. Single-photon emission computed tomographic brain scans were acquired in 25 MSA patients, 48 age-matched controls, and 130 PD patients, 3 h after the injection of 740 MBq (20 mCi) of [ 99m Tc]TRODAT-1. Regions of interest (ROIs) were placed manually on subregions of both basal ganglia and distribution volume ratios (DVRs) were calculated. Regional DVRs were compared between study groups in MSA patients. Student's ttests were used to compare MSA patients with other study groups. Spearman correlations were used to compare DVRs with NP measures. Based upon various motor scores, MSA and PD patients had comparable motor impairment, and were significantly impaired compared with controls. Mean DVRs in the basal ganglia of MSA patients were significantly less than those of controls, but generally higher (p 99m Tc]TRODAT-1 binding, particularly in the posterior putamen, compared with PD patients and significantly lower binding compared with controls. This may reflect different pathophysiological processes of the two neurodegenerative diseases. (orig.)

  14. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  15. Binding of tryptophan and iron by reptilion plasnna proteins

    African Journals Online (AJOL)

    transport functions. Albumin of the alligator (Alligator mississippiensis) and other reptiles binds, amongst other ions, tryptophan (McMenamy & Watson 1968) and transferrin binds iron (Barber & Sheeler 1963). Multiple transferrins are present in the plasma of many reptiles. (Dessauer et af 1962) and the albumin region of the.

  16. Vitamin D-Binding Protein Polymorphisms, 25-Hydroxyvitamin D, Sunshine and Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Annette Langer-Gould

    2018-02-01

    Full Text Available Blacks have different dominant polymorphisms in the vitamin D-binding protein (DBP gene that result in higher bioavailable vitamin D than whites. This study tested whether the lack of association between 25-hydroxyvitamin D (25OHD and multiple sclerosis (MS risk in blacks and Hispanics is due to differences in these common polymorphisms (rs7041, rs4588. We recruited incident MS cases and controls (blacks 116 cases/131 controls; Hispanics 183/197; whites 247/267 from Kaiser Permanente Southern California. AA is the dominant rs7041 genotype in blacks (70.0% whereas C is the dominant allele in whites (79.0% AC/CC and Hispanics (77.1%. Higher 25OHD levels were associated with a lower risk of MS in whites who carried at least one copy of the C allele but not AA carriers. No association was found in Hispanics or blacks regardless of genotype. Higher ultraviolet radiation exposure was associated with a lower risk of MS in blacks (OR = 0.06, Hispanics and whites who carried at least one copy of the C allele but not in others. Racial/ethnic variations in bioavailable vitamin D do not explain the lack of association between 25OHD and MS in blacks and Hispanics. These findings further challenge the biological plausibility of vitamin D deficiency as causal for MS.

  17. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  18. How much change is true change?: The smallest detectable difference of the Preschool Imitation and Praxis Scale (PIPS) in preschoolers with intellectual disabilities of heterogeneous aetiology

    OpenAIRE

    Vanvuchelen, Marleen; Vochten, Christine

    2011-01-01

    The teaching of imitation skills is often the first step in interventions for young learners with intellectual disabilities. The main goal of this study was to determine the smallest detectable difference (SDD) at 95% confidence of the Preschool Imitation and Praxis Scale(PIPS) in preschoolers with intellectual disabilities. Two raters independently scored videotapes of the imitation performance of 44 preschoolers (27 with Down syndrome, 10 with Non-Specific Mental Retardation and 7 with Low-...

  19. Submission to GenBank of the Plasma membrane intrinsic protein (PIP) Subfamily in Cotton – GenBank Accession No. GU998827-GU998830 and GenBank Accession TPA;inferential No. BK007045-BK007052

    Science.gov (United States)

    The plasma membrane intrinsic proteins (PIP) are one of the five aquaporin protein subfamilies. Aquaporin proteins are known to facilitate water transport through biological membranes. In order to identify NIP aquaporin gene candidates in cotton (Gossypium hirsutum L.), in silico and molecular clon...

  20. Ropizine concurrently enhances and inhibits [3H] dextromethorpan binding to different structures of the guinea pig brain: Autoradiographic evidence for multiple binding sites

    International Nuclear Information System (INIS)

    Canoll, P.D.; Smith, P.R.; and Musacchio, J.M.

    1990-01-01

    Ropizine produces a simultaneous enhancement and inhibition of [ 3 H] dextromethorphan (DM) high-affinity binding to different areas of the guinea pig brain. These results imply that there are two distinct types of high-affinity [ 3 H]DM binding sites, which are present in variable proportions in different brain structures. The ropizine-enhances [ 3 H]DM binding type was preferentially inhibited by (+)-pentazocine. This is consistent with the presumption that the (+)-pentazocine-sensitive site is identical with the common site for DM and 3-(-3-Hydroxphenyl)-N-(1-propyl)piperidine ((+)-3-PPP). The second binding type, which is inhibited by ropizine and is not so sensitive to (+)- pentazocine, has not been fully characterized. This study demonstrates that the biphasic effects to ropizine are due, at least in part, to the effects of ropizine on two different types of [ 3 H]DM binding sites. However, this study does not rule out that the common DM/(+)-3-PPP site also might be inhibited by higher concentrations of ropizine

  1. Effect of heat treatment on microstructure and mechanical properties of PIP-SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.com [Key Laboratory of Advanced Ceramic Fibres and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Key Laboratory of Advanced Ceramic Fibres and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-01-01

    Continuous SiC fibre reinforced SiC matrix composites (SiC/SiC) have been studied as materials for heat resistant and nuclear applications. Thermal stability is one of the key issues for SiC/SiC composites. In this study, 3D SiC/SiC composites are fabricated via the polymer impregnation and pyrolysis (PIP) process, and then heat treated at 1400 Degree-Sign C, 1600 Degree-Sign C and 1800 Degree-Sign C in an inert atmosphere for 1 h, respectively. The effect of heat treatment on microstructure and mechanical properties of the composites is investigated. The results indicate that the mechanical properties of the SiC/SiC composites are significantly improved after heat treatment at 1400 Degree-Sign C mainly because the mechanical properties of the matrix are greatly improved due to crystallisation. With the increasing of heat treatment temperature, the properties of the composites are conversely decreased because of severe damage of the fibres and the matrix.

  2. Resonant Frequency Control For the PIP-II Injector Test RFQ: Control Framework and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L. [Colorado State U.; Biedron, S. G.; Milton, S. V.; Bowring, D.; Chase, B. E.; Edelen, J. P.; Nicklaus, D.; Steimel, J.

    2016-12-16

    For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive control (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.

  3. Root canals decontamination by coherent photons initiated photoacustic streaming (PIPS) of irrigants: an ex-vivo study

    International Nuclear Information System (INIS)

    Pedullà, E; Rapisarda, E; Genovese, C; Tempera, G; Scolaro, C; Cutroneo, M; Torrisi, L

    2014-01-01

    The aim of this ex vivo study was to assess the antibacterial effectiveness of coherent photon initiated photoacoustic streaming (PIPS) of irrigants using an Er:YAG laser equipped with a newly designed, stripped and tapered, tip in extracted teeth with infected root canals. One hundred-forty-eight single-rooted extracted teeth were prepared using a rotary abrasive instrument providing a root channel with a suitable size. The samples were sterilized and all teeth except ten (negative control group) were inoculated with Enterococcus faecalis and incubated in a CO 2 chamber at 37°C for 15 days in Eppendorff tubes filled with trypticase soy broth medium changed every 2 days. Infected teeth were then randomly divided into 4 test groups (n=32 for each): pulsed erbium:YAG laser at non-ablative settings for 30 seconds with sterile bi-distilled water (Group A) or 5% sodium hypochlorite (NaOCl) (Group B); without laser activated sterile bi-distilled water irrigation for 30 seconds (Group C) or 5% NaOCl irrigation for 30 seconds (Group D); the positive control group received no treatment in infected teeth (n=10). Colony-forming units (CFUs) were counted from bacteriologic samples taken before (S1) and after treatment (S2). Data were analyzed by Kruskal-Wallis and post hoc Dunn's multiple comparison tests. CFU counts were significantly lower in groups B and D than in group C (P<0.001). Moreover, there was a significant difference between Group A and C (P<0.001). Group B showed the highest CFU reduction, which was significantly greater than that evident in groups A or C (P<0.001). There were no statistically significant differences between group B and D (P>0.05). None of the four groups predictably generated negative samples. Under the conditions of this ex vivo study, statistically significant difference wasn't found in planktonic bacteria reduction between the laser and NaOCl or NaOCl alone groups.

  4. Interpretation of Ocular Melanin Drug Binding Assays. Alternatives to the Model of Multiple Classes of Independent Sites.

    Science.gov (United States)

    Manzanares, José A; Rimpelä, Anna-Kaisa; Urtti, Arto

    2016-04-04

    Melanin has a high binding affinity for a wide range of drugs. The determination of the melanin binding capacity and its binding affinity are important, e.g., in the determination of the ocular drug distribution, the prediction of drug effects in the eye, and the trans-scleral drug delivery. The binding parameters estimated from a given data set vary significantly when using different isotherms or different nonlinear fitting methods. In this work, the commonly used bi-Langmuir isotherm, which assumes two classes of independent sites, is confronted with the Sips isotherm. Direct, log-log, and Scatchard plots are used, and the interpretation of the binding curves in the latter is critically analyzed. In addition to the goodness of fit, the emphasis is placed on the physical meaning of the binding parameters. The bi-Langmuir model imposes a bimodal distribution of binding energies for the sites on the melanin granules, but the actual distribution is most likely continuous and unimodal, as assumed by the Sips isotherm. Hence, the latter describes more accurately the distribution of binding energies and also the experimental results of melanin binding to drugs and metal ions. Simulations are used to show that the existence of two classes of sites cannot be confirmed on the sole basis of the shape of the binding curve in the Scatchard plot, and that serious doubts may appear on the meaning of the binding parameters of the bi-Langmuir model. Experimental results of melanin binding to chloroquine and metoprolol are used to illustrate the importance of the choice of the binding isotherm and of the method used to evaluate the binding parameters.

  5. Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study

    Directory of Open Access Journals (Sweden)

    Yoko Itakura

    2017-05-01

    Full Text Available Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine. Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations.

  6. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.

    Science.gov (United States)

    Zaydman, Mark A; Silva, Jonathan R; Delaloye, Kelli; Li, Yang; Liang, Hongwu; Larsson, H Peter; Shi, Jingyi; Cui, Jianmin

    2013-08-06

    Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.

  7. Aspirin and salicylate bind to immunoglobulin heavy chain binding protein (BiP) and inhibit its ATPase activity in human fibroblasts.

    Science.gov (United States)

    Deng, W G; Ruan, K H; Du, M; Saunders, M A; Wu, K K

    2001-11-01

    Salicylic acid (SA), an endogenous signaling molecule of plants, possesses anti-inflammatory and anti-neoplastic actions in human. Its derivative, aspirin, is the most commonly used anti-inflammatory and analgesic drug. Aspirin and sodium salicylate (salicylates) have been reported to have multiple pharmacological actions. However, it is unclear whether they bind to a cellular protein. Here, we report for the first time the purification from human fibroblasts of a approximately 78 kDa salicylate binding protein with sequence identity to immunoglobulin heavy chain binding protein (BiP). The Kd values of SA binding to crude extract and to recombinant BiP were 45.2 and 54.6 microM, respectively. BiP is a chaperone protein containing a polypeptide binding site recognizing specific heptapeptide sequence and an ATP binding site. A heptapeptide with the specific sequence displaced SA binding in a concentration-dependent manner whereas a control heptapeptide did not. Salicylates inhibited ATPase activity stimulated by this specific heptapeptide but did not block ATP binding or induce BiP expression. These results indicate that salicylates bind specifically to the polypeptide binding site of BiP in human cells that may interfere with folding and transport of proteins important in inflammation.

  8. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.

    Science.gov (United States)

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. © 2016 American Society of Plant Biologists. All rights reserved.

  9. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    Science.gov (United States)

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  10. Accurate and sensitive quantification of protein-DNA binding affinity.

    Science.gov (United States)

    Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F; Crocker, Justin; Loker, Ryan E; Martini, Gabriella D; Laptenko, Oleg; Freed-Pastor, William A; Prives, Carol; Stern, David L; Mann, Richard S; Bussemaker, Harmen J

    2018-04-17

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. Copyright © 2018 the Author(s). Published by PNAS.

  11. Binding of disordered peptides to kelch : insights from enhanced sampling simulations

    NARCIS (Netherlands)

    Do, T.N.; Choy, W.Y.; Karttunen, M.E.J.

    2016-01-01

    Keap1 protein plays an essential role in regulating cellular oxidative stress response and is a crucial binding hub for multiple proteins, several of which are intrinsically disordered proteins (IDP). Among Kelch's IDP binding partners, NRF2 and PTMA are the two most interesting cases. They share a

  12. Evaluation of a novel photo optical imaging (Lightscan) with musculoskeletal ultrasound and clinical examination in the assessment of inflammatory activity in PIP joints in patients with rheumatoid arthritis and osteoarthritis

    OpenAIRE

    Amitai, Isabella

    2016-01-01

    Objectives: Lightscan is a novel rapid, low cost and non-invasive imaging technology to assess inflammatory activity in proximal interphalangeal (PIP) joints, which can easily be performed. The results are calculated automatically. This is the first comparative study of photo optical imaging (POI), ‘Lightscan’, with musculoskeletal ultrasonography (US), clinical examination (CE) and DAS28 (only RA) in patients with rheumatoid arthritis (RA), osteoarthritis (OA) and in healthy subjects. Me...

  13. Essential role of conformational selection in ligand binding.

    Science.gov (United States)

    Vogt, Austin D; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico

    2014-02-01

    Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and

  14. Evidence for multiple major histocompatibility class II X-box binding proteins.

    OpenAIRE

    Celada, A; Maki, R

    1989-01-01

    The X box is a loosely conserved DNA sequence that is located upstream of all major histocompatibility class II genes and is one of the cis-acting regulatory elements. Despite the similarity between all X-box sequences, each promoter-proximal X box in the mouse appears to bind a separate nuclear factor.

  15. Parasites causing cerebral falciparum malaria bind multiple endothelial receptors and express EPCR and ICAM-1-binding PfEMP1

    DEFF Research Database (Denmark)

    Tuikue Ndam, Nicaise; Moussiliou, Azizath; Lavstsen, Thomas

    2017-01-01

    Background: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates the binding and accumulation of infected erythrocytes (IE) to blood vessels and tissues. Specific interactions have been described between PfEMP1 and human endothelial proteins CD36, intercellular adhesion molecule-1...

  16. A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Bing Su

    Full Text Available Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP, which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness.

  17. Multiple length peptide-pheromone variants produced by Streptococcus pyogenes directly bind Rgg proteins to confer transcriptional regulation.

    Science.gov (United States)

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Nanavati, Dhaval; Federle, Michael J

    2014-08-08

    Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Stereochemical determinants of C-terminal specificity in PDZ peptide-binding domains: a novel contribution of the carboxylate-binding loop.

    Science.gov (United States)

    Amacher, Jeanine F; Cushing, Patrick R; Bahl, Christopher D; Beck, Tobias; Madden, Dean R

    2013-02-15

    PDZ (PSD-95/Dlg/ZO-1) binding domains often serve as cellular traffic engineers, controlling the localization and activity of a wide variety of binding partners. As a result, they play important roles in both physiological and pathological processes. However, PDZ binding specificities overlap, allowing multiple PDZ proteins to mediate distinct effects on shared binding partners. For example, several PDZ domains bind the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), an epithelial ion channel mutated in CF. Among these binding partners, the CFTR-associated ligand (CAL) facilitates post-maturational degradation of the channel and is thus a potential therapeutic target. Using iterative optimization, we previously developed a selective CAL inhibitor peptide (iCAL36). Here, we investigate the stereochemical basis of iCAL36 specificity. The crystal structure of iCAL36 in complex with the CAL PDZ domain reveals stereochemical interactions distributed along the peptide-binding cleft, despite the apparent degeneracy of the CAL binding motif. A critical selectivity determinant that distinguishes CAL from other CFTR-binding PDZ domains is the accommodation of an isoleucine residue at the C-terminal position (P(0)), a characteristic shared with the Tax-interacting protein-1. Comparison of the structures of these two PDZ domains in complex with ligands containing P(0) Leu or Ile residues reveals two distinct modes of accommodation for β-branched C-terminal side chains. Access to each mode is controlled by distinct residues in the carboxylate-binding loop. These studies provide new insights into the primary sequence determinants of binding motifs, which in turn control the scope and evolution of PDZ interactomes.

  19. Binding of [125I] Concanavalin A to isolated Langerhans islets of rats

    International Nuclear Information System (INIS)

    Prey, N.

    1983-01-01

    Langerhans islets of rats were isolated using Lacy's collagenase technique and were incubated in vitro. The binding of iodine-labelled Concanavalin A to isolated Langerhans islets was investigated. We were unable to decide whether multiple Concanavalin A binding sites are located on the cell membrane, or whether the Concanavalin A binding sites are negatively influenced via a allosteric protein. Although the secretion mechanism induced by sulfony urea is not influenced by Concanavalin A, enhanced binding of Concanavalin A indicates that the region of identification cannot be identical for glucose and sulfonyl urea. (orig./MG) [de

  20. Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets

    Science.gov (United States)

    Singh, Anirudh K.; Woodiga, Shireen A.; Grau, Margaret A.

    2016-01-01

    ABSTRACT Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis, like Streptococcus gordonii and Streptococcus sanguinis, binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors. PMID:27993975

  1. PCR-based plasmid typing in Enterococcus faecium strains reveals widely distributed pRE25-, pRUM-, pIP501-and pHT beta-related replicons associated with glycopeptide resistance and stabilizing toxin-antitoxin systems

    DEFF Research Database (Denmark)

    Rosvoll, T.C.S.; Pedersen, T.; Sletvold, H.

    2010-01-01

    A PCR-based typing scheme was applied to identify plasmids in an epidemiologically and geographically diverse strain collection of Enterococcus faecium (n=93). Replicon types of pRE25 (n=56), pRUM (n=41), pIP501 (n=17) and pHT beta (n=14) were observed in 83% of the strains, while pS86, pCF10, pA...

  2. Detection of site-specific binding and co-binding of ligands to macromolecules using 19F NMR

    International Nuclear Information System (INIS)

    Jenkins, B.G.

    1991-01-01

    Study of ligand-macromolecular interactions by 19 F nuclear magnetic resonance (NMR) spectroscopy affords many opportunities for obtaining molecular biochemical and pharmaceutical information. This is due to the absence of a background fluorine signal, as well as the relatively high sensitivity of 19 F NMR. Use of fluorine-labeled ligands enables one to probe not only binding and co-binding phenomena to macromolecules, but also can provide data on binding constants, stoichiometries, kinetics, and conformational properties of these complexes. Under conditions of slow exchange and macromolecule-induced chemical shifts, multiple 19 F NMR resonances can be observed for free and bound ligands. These shifted resonances are a direct correlate of the concentration of ligand bound in a specific state rather than the global concentrations of bound or free ligand which are usually determined using other techniques such as absorption spectroscopy or equilibrium dialysis. Examples of these interactions are demonstrated both from the literature and from interactions of 5-fluorotryptophan, 5-fluorosalicylic acid, flurbiprofen, and sulindac sulfide with human serum albumin. Other applications of 19 F NMR to study of these interactions in vivo, as well for receptor binding and metabolic tracing of fluorinated drugs and proteins are discussed

  3. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    DEFF Research Database (Denmark)

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke

    2016-01-01

    ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced...

  4. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  5. PH Domain-Arf G Protein Interactions Localize the Arf-GEF Steppke for Cleavage Furrow Regulation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Donghoon M Lee

    Full Text Available The recruitment of GDP/GTP exchange factors (GEFs to specific subcellular sites dictates where they activate small G proteins for the regulation of various cellular processes. Cytohesins are a conserved family of plasma membrane GEFs for Arf small G proteins that regulate endocytosis. Analyses of mammalian cytohesins have identified a number of recruitment mechanisms for these multi-domain proteins, but the conservation and developmental roles for these mechanisms are unclear. Here, we report how the pleckstrin homology (PH domain of the Drosophila cytohesin Steppke affects its localization and activity at cleavage furrows of the early embryo. We found that the PH domain is necessary for Steppke furrow localization, and for it to regulate furrow structure. However, the PH domain was not sufficient for the localization. Next, we examined the role of conserved PH domain amino acid residues that are required for mammalian cytohesins to bind PIP3 or GTP-bound Arf G proteins. We confirmed that the Steppke PH domain preferentially binds PIP3 in vitro through a conserved mechanism. However, disruption of residues for PIP3 binding had no apparent effect on GFP-Steppke localization and effects. Rather, residues for binding to GTP-bound Arf G proteins made major contributions to this Steppke localization and activity. By analyzing GFP-tagged Arf and Arf-like small G proteins, we found that Arf1-GFP, Arf6-GFP and Arl4-GFP, but not Arf4-GFP, localized to furrows. However, analyses of embryos depleted of Arf1, Arf6 or Arl4 revealed either earlier defects than occur in embryos depleted of Steppke, or no detectable furrow defects, possibly because of redundancies, and thus it was difficult to assess how individual Arf small G proteins affect Steppke. Nonetheless, our data show that the Steppke PH domain and its conserved residues for binding to GTP-bound Arf G proteins have substantial effects on Steppke localization and activity in early Drosophila embryos.

  6. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.

    Science.gov (United States)

    Liu, Sheng; Zibetti, Cristina; Wan, Jun; Wang, Guohua; Blackshaw, Seth; Qian, Jiang

    2017-07-27

    Computational prediction of transcription factor (TF) binding sites in different cell types is challenging. Recent technology development allows us to determine the genome-wide chromatin accessibility in various cellular and developmental contexts. The chromatin accessibility profiles provide useful information in prediction of TF binding events in various physiological conditions. Furthermore, ChIP-Seq analysis was used to determine genome-wide binding sites for a range of different TFs in multiple cell types. Integration of these two types of genomic information can improve the prediction of TF binding events. We assessed to what extent a model built upon on other TFs and/or other cell types could be used to predict the binding sites of TFs of interest. A random forest model was built using a set of cell type-independent features such as specific sequences recognized by the TFs and evolutionary conservation, as well as cell type-specific features derived from chromatin accessibility data. Our analysis suggested that the models learned from other TFs and/or cell lines performed almost as well as the model learned from the target TF in the cell type of interest. Interestingly, models based on multiple TFs performed better than single-TF models. Finally, we proposed a universal model, BPAC, which was generated using ChIP-Seq data from multiple TFs in various cell types. Integrating chromatin accessibility information with sequence information improves prediction of TF binding.The prediction of TF binding is transferable across TFs and/or cell lines suggesting there are a set of universal "rules". A computational tool was developed to predict TF binding sites based on the universal "rules".

  7. Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease.

    Directory of Open Access Journals (Sweden)

    Shrestha Priyadarsini

    Full Text Available Keratoconus (KC is a bilateral degenerative disease of the cornea characterized by corneal bulging, stromal thinning, and scarring. The etiology of the disease is unknown. In this study, we identified a new biomarker for KC that is present in vivo and in vitro. In vivo, tear samples were collected from age-matched controls with no eye disease (n = 36 and KC diagnosed subjects (n = 17. Samples were processed for proteomics using LC-MS/MS. In vitro, cells were isolated from controls (Human Corneal Fibroblasts-HCF and KC subjects (Human Keratoconus Cells-HKC and stimulated with a Vitamin C (VitC derivative for 4 weeks, and with one of the three transforming growth factor-beta (TGF-β isoforms. Samples were analyzed using real-time PCR and Western Blots. By using proteomics analysis, the Gross cystic disease fluid protein-15 (GCDFP-15 or prolactin-inducible protein (PIP was found to be the best independent biomarker able to discriminate between KC and controls. The intensity of GCDFP-15/PIP was significantly higher in healthy subjects compared to KC-diagnosed. Similar findings were seen in vitro, using a 3D culture model. All three TGF-β isoforms significantly down-regulated the expression of GCDFP-15/PIP. Zinc-alpha-2-glycoprotein (AZGP1, a protein that binds to PIP, was identified by proteomics and cell culture to be highly regulated. In this study by different complementary techniques we confirmed the potential role of GCDFP-15/PIP as a novel biomarker for KC disease. It is likely that exploring the GCDFP-15/PIP-AZGP1 interactions will help better understand the mechanism of KC disease.

  8. Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets.

    Science.gov (United States)

    Singh, Anirudh K; Woodiga, Shireen A; Grau, Margaret A; King, Samantha J

    2017-03-01

    Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis , like Streptococcus gordonii and Streptococcus sanguinis , binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors. Copyright © 2017 American Society for Microbiology.

  9. Binding of kappa- and sigma-opiates in rat brain

    International Nuclear Information System (INIS)

    Wolozin, B.L.; Nishimura, S.; Pasternak, G.W.

    1982-01-01

    Detailed displacements of [ 3 H]dihydromorphine by ketocyclazocine and SKF 10,047, [ 3 H]ethylketocyclazocine by SKF 10,047, and [ 3 H]SKF 10,047 by ketocyclazocine are all multiphasic, suggesting multiple binding sites. After treating brain tissue in vitro with naloxazone, all displacements lose the initial inhibition of 3 H-ligand binding by low concentrations of unlabeled drugs. Together with Scatchard analysis of saturation experiments, these studies suggest a common site which binds mu-, kappa, and sigma-opiates and enkephalins equally well and with highest affinity (KD less than 1 nM). The ability of unlabeled drugs to displace the low affinity binding of [ 3 H]dihydromorphine (KD . 3 nM), [ 3 H]ethylketocyclazocine (KD . 4 nM), [ 3 H]SKF 10,047 (KD . 6 nM), and D-Ala2-D-Leu5-[ 3 H]enkephalin (KD . 5 nM) remaining after treating tissue with naloxazone demonstrates unique pharmacological profiles for each. These results suggest the existence of distinct binding sites for kappa- and sigma-opiates which differ from those sites which selectively bind morphine (mu) and enkephalin

  10. Characterization of the dextran-binding domain in the glucan-binding protein C of Streptococcus mutans.

    Science.gov (United States)

    Takashima, Y; Fujita, K; Ardin, A C; Nagayama, K; Nomura, R; Nakano, K; Matsumoto-Nakano, M

    2015-10-01

    Streptococcus mutans produces multiple glucan-binding proteins (Gbps), among which GbpC encoded by the gbpC gene is known to be a cell-surface-associated protein involved in dextran-induced aggregation. The purpose of the present study was to characterize the dextran-binding domain of GbpC using bioinformatics analysis and molecular techniques. Bioinformatics analysis specified five possible regions containing molecular binding sites termed GB1 through GB5. Next, truncated recombinant GbpC (rGbpC) encoding each region was produced using a protein expression vector and five deletion mutant strains were generated, termed CDGB1 through CDGB5 respectively. The dextran-binding rates of truncated rGbpC that included the GB1, GB3, GB4 and GB5 regions in the upstream sequences were higher than that of the construct containing GB2 in the downstream region. In addition, the rates of dextran-binding for strains CDGB4 and CD1, which was entire gbpC deletion mutant, were significantly lower than for the other strains, while those of all other deletion mutants were quite similar to that of the parental strain MT8148. Biofilm structures formed by CDGB4 and CD1 were not as pronounced as that of MT8148, while those formed by other strains had greater density as compared to that of CD1. Our results suggest that the dextran-binding domain may be located in the GB4 region in the interior of the gbpC gene. Bioinformatics analysis is useful for determination of functional domains in many bacterial species. © 2015 The Society for Applied Microbiology.

  11. Binding interaction between a queen pheromone component HOB and pheromone binding protein ASP1 of Apis cerana.

    Science.gov (United States)

    Weng, Chen; Fu, Yuxia; Jiang, Hongtao; Zhuang, Shulin; Li, Hongliang

    2015-01-01

    The honeybee's social behavior is closely related to the critical response to pheromone, while pheromone binding proteins (PBPs) play an important role in binding and transferring those pheromones. Here we report one known PBP, antennal special protein 1(ASP1), which has high affinity with a queen mandibular pheromone component, methyl-p-hydroxybenzoate (HOB). In this study, multiple fluorescent spectra, UV absorption spectra, circular dichroism (CD) spectra and molecular docking analysis were combined to clarify the binding process. Basically, fluorescence intensity of ASP1 could be considerably quenched by HOB with an appropriate interaction distance (3.1 nm), indicating that a complex, which is more stable in lower temperature, was formed. The fact ΔH < 0, ΔS < 0, by thermodynamic analysis, indicated the van der Waals and hydrogen bond as main driving force. Moreover, synchronous fluorescence spectra and CD spectra analysis showed the change of partial hydrophilicity of ASP1 and the increase of α-helix after HOB addition. In conclusion, ASP1 can strongly and spontaneously interact with HOB. But the binding ability decreases with the rise of temperature, which may be necessary for sufficient social stability of hives. This study provides elucidation of the detailed binding mechanism and potential physicochemical basis of thermal stability to the social behavior of honeybee. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Deleted in malignant brain tumors-1 protein (DMBT1): a pattern recognition receptor with multiple binding sites.

    Science.gov (United States)

    Ligtenberg, Antoon J M; Karlsson, Niclas G; Veerman, Enno C I

    2010-01-01

    Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1(SAG)), and lung glycoprotein-340 (DMBT1(GP340)) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  13. Deleted in Malignant Brain Tumors-1 Protein (DMBT1: A Pattern Recognition Receptor with Multiple Binding Sites

    Directory of Open Access Journals (Sweden)

    Enno C. I. Veerman

    2010-12-01

    Full Text Available Deleted in Malignant Brain Tumors-1 protein (DMBT1, salivary agglutinin (DMBT1SAG, and lung glycoprotein-340 (DMBT1GP340 are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW. Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  14. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  15. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  16. Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Arvaniti, Maria; Jensen, Majbrit M

    2016-01-01

    Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification....... Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal-regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 n...

  17. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  18. (/sup 3/H)Spiperone binding sites in brain: autoradiographic localization of multiple receptors

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, J M; Niehoff, D L; Kuhar, M J [Johns Hopkins Univ., Baltimore, MD (USA). School of Medicine

    1981-01-01

    (/sup 3/H)Spiperone ((/sup 3/H)SP) binding sites were localized by light microscopic autoradiography, after in vitro labelling. The kinetic and pharmacological characteristics of these binding sites were studied in slide-mounted sections of rat forebrain, and optimal labeling conditions were defined. Autoradiograms were obtained by apposing emulsion-coated coverslips to labeled sections. Differential drug sensitivity allowed the selective displacement of (/sup 3/H)SP from dopamine receptors by ADTN, from serotonin receptors by cinanserin, from both by haloperidol and from unique spiperone sites by unlabeled spiperone. The various sites presented a differential anatomical localization. For example, only dopaminergic sites were found in the glomerular layer of the olfactory bulb; only serotonergic sites were found in lamina IV of the neocortex, and a high concentration of unique spiperone sites were found in parts of the hippocampus.

  19. Computational scheme for pH-dependent binding free energy calculation with explicit solvent.

    Science.gov (United States)

    Lee, Juyong; Miller, Benjamin T; Brooks, Bernard R

    2016-01-01

    We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations. © 2015 The Protein Society.

  20. Competition increases binding errors in visual working memory.

    Science.gov (United States)

    Emrich, Stephen M; Ferber, Susanne

    2012-04-20

    When faced with maintaining multiple objects in visual working memory, item information must be bound to the correct object in order to be correctly recalled. Sometimes, however, binding errors occur, and participants report the feature (e.g., color) of an unprobed, non-target item. In the present study, we examine whether the configuration of sample stimuli affects the proportion of these binding errors. The results demonstrate that participants mistakenly report the identity of the unprobed item (i.e., they make a non-target response) when sample items are presented close together in space, suggesting that binding errors can increase independent of increases in memory load. Moreover, the proportion of these non-target responses is linearly related to the distance between sample items, suggesting that these errors are spatially specific. Finally, presenting sample items sequentially decreases non-target responses, suggesting that reducing competition between sample stimuli reduces the number of binding errors. Importantly, these effects all occurred without increases in the amount of error in the memory representation. These results suggest that competition during encoding can account for some of the binding errors made during VWM recall.

  1. Binding of intrinsic and extrinsic features in working memory.

    Science.gov (United States)

    Ecker, Ullrich K H; Maybery, Murray; Zimmer, Hubert D

    2013-02-01

    There is ongoing debate concerning the mechanisms of feature binding in working memory. In particular, there is controversy regarding the extent to which these binding processes are automatic. The present article demonstrates that binding mechanisms differ depending on whether the to-be-integrated features are perceived as forming a coherent object. We presented a series of experiments that investigated the binding of color and shape, whereby color was either an intrinsic feature of the shape or an extrinsic feature of the shape's background. Results show that intrinsic color affected shape recognition, even when it was incidentally studied and irrelevant for the recognition task. In contrast, extrinsic color did not affect shape recognition, even when the association of color and shape was encoded and retrievable on demand. This strongly suggests that binding of intrinsic intra-item information but not extrinsic contextual information is obligatory in visual working memory. We highlight links to perception as well as implicit and explicit long-term memory, which suggest that the intrinsic-extrinsic dimension is a principle relevant to multiple domains of human cognition. 2013 APA, all rights reserved

  2. Role of phosphatidylinositol 4,5-bisphosphate in regulating EHD2 plasma membrane localization.

    Directory of Open Access Journals (Sweden)

    Laura C Simone

    Full Text Available The four mammalian C-terminal Eps15 homology domain-containing proteins (EHD1-EHD4 play pivotal roles in endocytic membrane trafficking. While EHD1, EHD3 and EHD4 associate with intracellular tubular/vesicular membranes, EHD2 localizes to the inner leaflet of the plasma membrane. Currently, little is known about the regulation of EHD2. Thus, we sought to define the factors responsible for EHD2's association with the plasma membrane. The subcellular localization of endogenous EHD2 was examined in HeLa cells using confocal microscopy. Although EHD partner proteins typically mediate EHD membrane recruitment, EHD2 was targeted to the plasma membrane independent of two well-characterized binding proteins, syndapin2 and EHBP1. Additionally, the EH domain of EHD2, which facilitates canonical EHD protein interactions, was not required to direct overexpressed EHD2 to the cell surface. On the other hand, several lines of evidence indicate that the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 plays a crucial role in regulating EHD2 subcellular localization. Pharmacologic perturbation of PIP2 metabolism altered PIP2 plasma membrane distribution (as assessed by confocal microscopy, and caused EHD2 to redistribute away from the plasma membrane. Furthermore, overexpressed EHD2 localized to PIP2-enriched vacuoles generated by active Arf6. Finally, we show that although cytochalasin D caused actin microfilaments to collapse, EHD2 was nevertheless maintained at the plasma membrane. Intriguingly, cytochalasin D induced relocalization of both PIP2 and EHD2 to actin aggregates, supporting a role of PIP2 in controlling EHD2 subcellular localization. Altogether, these studies emphasize the significance of membrane lipid composition for EHD2 subcellular distribution and offer new insights into the regulation of this important endocytic protein.

  3. Impact of copper based fungicides on the degradation of 4,4 DDT to 4,4 DDE in PIP and stonefruit orchard soils in the Walkato Region, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Gaw, S. [Univ. of Waikato, Hamilton (New Zealand)]|[Environment Waikato, Hamilton (New Zealand); Palmer, G.; Wilkins, A. [Univ. of Waikato, Hamilton (New Zealand); Kim, N. [Environment Waikato, Hamilton (New Zealand)

    2003-07-01

    There is growing awareness in New Zealand that a proportion of horticultural land has been contaminated with trace elements (As, Cd, Cu, Pb, Zn) and organochlorine pesticides (e.g. DDT, DDD, DDE and dieldrin) as a result of historic applications of agrichemicals (including pesticides, fertilisers and soil amendments). We have recently reported a significant negative correlation between Cu concentrations and the ratio of DDE to DDT in Auckland pip and stonefruit orchard soils and provided evidence that elevated levels of Cu in orchard soils were impacting on microbial activity. The specific objective of the study reported here was to determine whether the DDE:DDT ratio and Cu were similarly correlated in another fruit growing region of New Zealand, namely the Waikato region. DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) was widely used in the New Zealand to control chewing insects. DDT is degraded in soil by biotic and abiotic processes to form DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane) and DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)etylene). Cu is the active ingredient in a wide range of current and historic fungicides. Elevated levels of copper in horticultural soils have been demonstrated to negatively impact on the soil microbial community. Orchards (n=7) were sampled as part of a larger survey investigating agrichemical residues (organochlorine pesticides and trace elements) in cropping soils in the Waikato region, New Zealand. ?DDT concentrations in orchard soils ranged from 0.37 to 34.5 mg kg{sup -1}. There was a significant negative correlation (-0.84, p<0.02) between Cu concentration (242 to 523 mg kg{sup -1}) and the ratio of p,p'-DDE to p,p'-DDT (0.8 to 3.6) in pip and stonefruit orchard soils. The ratio of soil microbial carbon to soil carbon (% C{sub mic}/Org-C) in orchard soils decreased compared to reference soils. The microbial metabolic quotient aCO2 increased in orchard soils compared to reference soils. These results indicate

  4. Genetic diversity of Wolbachia endosymbionts in Culex quinquefasciatus from Hawai`i, Midway Atoll, and Samoa

    Science.gov (United States)

    Atkinson, Carter T.; Watcher-Weatherwax, William; Lapointe, Dennis

    2016-01-01

    Incompatible insect techniques are potential methods for controlling Culex quinquefasciatus and avian disease transmission in Hawai‘i without the use of pesticides or genetically modified organisms. The approach is based on naturally occurring sperm-egg incompatibilities within the Culex pipiens complex that are controlled by different strains of the bacterial endosymbiont Wolbachia pipientis (wPip). Incompatibilities can be unidirectional (crosses between males infected with strain A and females infected with strain B are fertile, while reciprocal crosses are not) or bidirectional (reciprocal crosses between sexes with different wPip strains are infertile). The technique depends on release of sufficient numbers of male mosquitoes infected with an incompatible wPip strain to suppress mosquito populations and reduce transmission of introduced avian malaria (Plasmodium relictum) and Avipoxvirus in native forest bird habitats. Both diseases are difficult to manage using more traditional methods based on removal and treatment of larval habitats and coordination of multiple approaches may be needed to control this vector. We characterized the diversity of Wolbachia strains in C. quinquefasciatus from Hawai‘i, Kaua‘i, Midway Atoll, and American Samoa with a variety of genetic markers to identify compatibility groups and their distribution within and between islands. We confirmed the presence of wPip with multilocus sequence typing, tested for local genetic variability using 16 WO prophage genes, and identified similarities to strains from other parts of the world with a transposable element (tr1). We also tested for genetic differences in ankyrin motifs (ank2 and pk1) which have been used to classify wPip strains into five worldwide groups (wPip1–wPip5) that vary in compatibility with each other based on experimental crosses. We found a mixture of both widely distributed and site specific genotypes based on presence or absence of WO prophage and transposable

  5. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners.Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  6. Improved assay for measuring heparin binding to bull sperm

    International Nuclear Information System (INIS)

    Miller, D.J.; Ax, R.L.

    1988-01-01

    The binding of heparin to sperm has been used to study capacitation and to rank relative fertility of bulls. Previous binding assays were laborious, used 10 7 sperm per assay point, and required large amounts of radiolabeled heparin. A modified heparin-binding assay is described that used only 5 x 10 4 cells per incubation well and required reduced amounts of [ 3 H] heparin. The assay was performed in 96-well Millititer plates, enabling easy incubation and filtering. Dissociation constants and concentrations of binding sites did not differ if analyzed by Scatchard plots, Woolf plots, or by log-logit transformed weighted nonlinear least squares regression, except in the case of outliers. In such cases, Scatchard analysis was more sensitive to outliers. Nonspecific binding was insignificant using nonlinear logistic fit regression and a proportion graph. The effects were tested of multiple free-thawing of sperm in either a commercial egg yolk extender, 40 mM Tris buffer with 8% glycerol, or 40 mM Tris buffer without glycerol. Freeze-thawing in extender did not affect the dissociation constant or the concentration of binding sites. However, freeze-thawing three times in 40 mM Tris reduced the concentration of binding sites and lowered the dissociation constant (raised the affinity). The inclusion of glycerol in the 40 mM Tris did not significantly affect the estimated dissociation constant or the concentration of binding sites as compared to 40 mM Tris without glycerol

  7. Reversible and Irreversible Binding of Nanoparticles to Polymeric Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Binder

    2009-01-01

    Full Text Available Reversible and irreversible binding of CdSe-nanoparticles and nanorods to polymeric surfaces via a strong, multiple hydrogen bond (= Hamilton-receptor/barbituric acid is described. Based on ROMP-copolymers, the supramolecular interaction on a thin polymer film is controlled by living polymerization methods, attaching the Hamilton-receptor in various architectures, and concentrations. Strong binding is observed with CdSe-nanoparticles and CdSe-nanorods, whose surfaces are equipped with matching barbituric acid-moieties. Addition of polar solvents, able to break the hydrogen bonds leads to the detachment of the nanoparticles from the polymeric film. Irreversible binding is observed if an azide/alkine-“click”-reaction is conducted after supramolecular recognition of the nanoparticles on the polymeric surface. Thus reversible or irreversible attachment of the nanosized objects can be achieved.

  8. Extended hormone binding site of the human thyroid stimulating hormone receptor: distinctive acidic residues in the hinge region are involved in bovine thyroid stimulating hormone binding and receptor activation.

    Science.gov (United States)

    Mueller, Sandra; Kleinau, Gunnar; Jaeschke, Holger; Paschke, Ralf; Krause, Gerd

    2008-06-27

    The human thyroid stimulating hormone receptor (hTSHR) belongs to the glycoprotein hormone receptors that bind the hormones at their large extracellular domain. The extracellular hinge region of the TSHR connects the N-terminal leucine-rich repeat domain with the membrane-spanning serpentine domain. From previous studies we reasoned that apart from hormone binding at the leucine-rich repeat domain, additional multiple hormone contacts might exist at the hinge region of the TSHR by complementary charge-charge recognition. Here we investigated highly conserved charged residues in the hinge region of the TSHR by site-directed mutagenesis to identify amino acids interacting with bovine TSH (bTSH). Indeed, the residues Glu-297, Glu-303, and Asp-382 in the TSHR hinge region are essential for bTSH binding and partially for signal transduction. Side chain substitutions showed that the negative charge of Glu-297 and Asp-382 is necessary for recognition of bTSH by the hTSHR. Multiple combinations of alanine mutants of the identified positions revealed an increased negative effect on hormone binding. An assembled model suggests that the deciphered acidic residues form negatively charged patches at the hinge region resulting in an extended binding mode for bTSH on the hTSHR. Our data indicate that certain positively charged residues of bTSH might be involved in interaction with the identified negatively charged amino acids of the hTSHR hinge region. We demonstrate that the hinge region represents an extracellular intermediate connector for both hormone binding and signal transduction of the hTSHR.

  9. Integrating structural and mutagenesis data to elucidate GPCR ligand binding

    DEFF Research Database (Denmark)

    Munk, Christian; Harpsøe, Kasper; Hauser, Alexander S

    2016-01-01

    is reported that exhibit activity through multiple receptors, binding in allosteric sites, and bias towards different intracellular signalling pathways. Furthermore, a wealth of single point mutants has accumulated in literature and public databases. Integrating these structural and mutagenesis data will help...

  10. Dynamics of TBP binding to the TATA box

    Science.gov (United States)

    Schluesche, Peter; Heiss, Gregor; Meisterernst, Michael; Lamb, Don C.

    2008-02-01

    Gene expression is highly controlled and regulated in living cells. One of the first steps in gene transcription is recognition of the promoter site by the TATA box Binding Protein (TBP). TBP recruits other transcriptions factors and eventually the RNA polymerase II to transcribe the DNA in mRNA. We developed a single pair Förster Resonance Energy Transfer (spFRET) assay to investigate the mechanism of gene regulation. Here, we apply this assay to investigate the initial binding process of TBP to the adenovirus major late (AdML) promoter site. From the spFRET measurements, we were able to identify two conformations of the TBP-DNA complex that correspond to TBP bound in the correct and the opposite orientation. Increased incubation times or the presence of the transcription factor TFIIA improved the alignment of TBP on the promoter site. Binding of TBP to the TATA box shows a rich dynamics with abrupt transitions between multiple FRET states. A frame-wise histogram analysis revealed the presence of at least six discrete states, showing that TBP binding is more complicated than previously thought. Hence, the spFRET assay is very sensitive to the conformation of the TBP-DNA complex and is very promising tool for investigating the pathway of TBP binding in detail.

  11. Differential Binding Models for Direct and Reverse Isothermal Titration Calorimetry.

    Science.gov (United States)

    Herrera, Isaac; Winnik, Mitchell A

    2016-03-10

    Isothermal titration calorimetry (ITC) is a technique to measure the stoichiometry and thermodynamics from binding experiments. Identifying an appropriate mathematical model to evaluate titration curves of receptors with multiple sites is challenging, particularly when the stoichiometry or binding mechanism is not available. In a recent theoretical study, we presented a differential binding model (DBM) to study calorimetry titrations independently of the interaction among the binding sites (Herrera, I.; Winnik, M. A. J. Phys. Chem. B 2013, 117, 8659-8672). Here, we build upon our DBM and show its practical application to evaluate calorimetry titrations of receptors with multiple sites independently of the titration direction. Specifically, we present a set of ordinary differential equations (ODEs) with the general form d[S]/dV that can be integrated numerically to calculate the equilibrium concentrations of free and bound species S at every injection step and, subsequently, to evaluate the volume-normalized heat signal (δQ(V) = δq/dV) of direct and reverse calorimetry titrations. Additionally, we identify factors that influence the shape of the titration curve and can be used to optimize the initial concentrations of titrant and analyte. We demonstrate the flexibility of our updated DBM by applying these differentials and a global regression analysis to direct and reverse calorimetric titrations of gadolinium ions with multidentate ligands of increasing denticity, namely, diglycolic acid (DGA), citric acid (CIT), and nitrilotriacetic acid (NTA), and use statistical tests to validate the stoichiometries for the metal-ligand pairs studied.

  12. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  13. Using the fast fourier transform in binding free energy calculations.

    Science.gov (United States)

    Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

    2018-04-30

    According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. A simple and efficient method to enhance audiovisual binding tendencies

    Directory of Open Access Journals (Sweden)

    Brian Odegaard

    2017-04-01

    Full Text Available Individuals vary in their tendency to bind signals from multiple senses. For the same set of sights and sounds, one individual may frequently integrate multisensory signals and experience a unified percept, whereas another individual may rarely bind them and often experience two distinct sensations. Thus, while this binding/integration tendency is specific to each individual, it is not clear how plastic this tendency is in adulthood, and how sensory experiences may cause it to change. Here, we conducted an exploratory investigation which provides evidence that (1 the brain’s tendency to bind in spatial perception is plastic, (2 that it can change following brief exposure to simple audiovisual stimuli, and (3 that exposure to temporally synchronous, spatially discrepant stimuli provides the most effective method to modify it. These results can inform current theories about how the brain updates its internal model of the surrounding sensory world, as well as future investigations seeking to increase integration tendencies.

  15. Visually Relating Gene Expression and in vivo DNA Binding Data

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  16. A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway.

    Science.gov (United States)

    Salašová, Alena; Yokota, Chika; Potěšil, David; Zdráhal, Zbyněk; Bryja, Vítězslav; Arenas, Ernest

    2017-07-11

    /PCP signaling pathway through its interaction to multiple WNT/PCP components. We suggest that LRRK2 regulates the balance between WNT/β-catenin and WNT/PCP signaling, depending on the binding partners. Since this balance is crucial for homeostasis of midbrain dopaminergic neurons, we hypothesize that its alteration may contribute to the pathophysiology of Parkinson's disease.

  17. Multiple effects of the special AT-rich binding protein 1 (SATB1) in colon carcinoma.

    Science.gov (United States)

    Frömberg, Anja; Rabe, Michael; Aigner, Achim

    2014-12-01

    SATB1 (special AT-rich binding protein 1) is a global chromatin organizer regulating the expression of a large number of genes. Overexpression has been found in various solid tumors and positively correlated with prognostic and clinicopathological properties. In colorectal cancer (CRC), SATB1 overexpression and its correlation with poor differentiation, invasive depth, TNM (tumor, nodes, metastases) stage and prognosis have been demonstrated. However, more detailed studies on the SATB1 functions in CRC are warranted. In this article, we comprehensively analyze the cellular and molecular role of SATB1 in CRC cell lines with different SATB1 expression levels by using RNAi-mediated knockdown. Using siRNAs with different knockdown efficacies, we demonstrate antiproliferative, cell cycle-inhibitory and proapoptotic effects of SATB1 knockdown in a SATB1 gene dose-dependent manner. Tumor growth inhibition is confirmed in vivo in a subcutaneous tumor xenograft mouse model using stable knockdown cells. The in-depth analysis of cellular effects reveals increased activities of caspases-3, -7, -8, -9 and other mediators of apoptotic pathways. Similarly, the analysis of E- and N-cadherin, slug, twist, β-catenin and MMP7 indicates SATB1 effects on epithelial-mesenchymal transition (EMT) and matrix breakdown. Our results also establish SATB1 effects on receptor tyrosine kinases and (proto-)oncogenes such as HER receptors and Pim-1. Taken together, this suggests a more complex molecular interplay between tumor-promoting and possible inhibitory effects in CRC by affecting multiple pathways and molecules involved in proliferation, cell cycle, EMT, invasion and cell survival. © 2014 UICC.

  18. Statistical Profiling of One Promiscuous Protein Binding Site: Illustrated by Urokinase Catalytic Domain.

    Science.gov (United States)

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude

    2017-10-01

    While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Multiple [3H]imipramine binding sites in brains of male and female Fawn-Hooded and Long-Evans rats

    International Nuclear Information System (INIS)

    Ieni, J.R.; Zukin, S.R.; Praag, H.M. van; Tobach, E.; Barr, G.A.

    1985-01-01

    Comparisons of high- and low-affinity [ 3 H]imipramine binding to whole brain homogenates from adult male and female rats of the Fawn-Hooded and Long-Evans strains were performed. Most strikingly, no significant differences were observed between the two strains in any of the binding parameters, indicating that brain [ 3 H]imipramine binding sites, which may be related to the serotonergic uptake process, appear normal in a strain of rats with serotonin platelet storage pool disease. However, a significant sex difference in high- but not low-affinity whole brain [ 3 H]imipramine Bsub(max) values was observed, with females of both strains having higher densities than males. (Auth.)

  20. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA.

    Science.gov (United States)

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-07-27

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    Science.gov (United States)

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-07

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi.

    Science.gov (United States)

    Parker, Greg S; Maity, Tuhin Subhra; Bass, Brenda L

    2008-12-26

    Double-stranded RNA (dsRNA)-binding proteins facilitate Dicer functions in RNA interference. Caenorhabditis elegans RDE-4 facilitates cleavage of long dsRNA to small interfering RNA (siRNA), while human trans-activation response RNA-binding protein (TRBP) functions downstream to pass siRNA to the RNA-induced silencing complex. We show that these distinct in vivo roles are reflected in in vitro binding properties. RDE-4 preferentially binds long dsRNA, while TRBP binds siRNA with an affinity that is independent of dsRNA length. These properties are mechanistically based on the fact that RDE-4 binds cooperatively, via contributions from multiple domains, while TRBP binds noncooperatively. Our studies offer a paradigm for how dsRNA-binding proteins, which are not sequence specific, discern dsRNA length. Additionally, analyses of the ability of RDE-4 deletion constructs and RDE-4/TRBP chimeras to reconstitute Dicer activity suggest RDE-4 promotes activity using its dsRNA-binding motif 2 to bind dsRNA, its linker region to interact with Dicer, and its C-terminus for Dicer activation.

  3. Binding and assembly of actin filaments by plasma membranes from dictyostelium discoideum

    International Nuclear Information System (INIS)

    Schwartz, M.A.; Luna, E.J.

    1986-01-01

    The binding of native, 125 I-Bolton-Hunter-labeled actin to purified Dictyostelium discoideum plasma membranes was measured using a sedimentation assay. Binding was saturable only in the presence of the actin capping protein, gelsolin. The binding curves were sigmoidal, indicating positive cooperativity at low actin concentrations. This cooperativity appeared to be due to actin-actin associations during polymerization, since phalloidin converted the curve to a hyperbolic shape. This membrane-bound actin stained with rhodamine-phalloidin and was cross-linked by m-maleimidobenzoyl succinimide ester, a bifunctional cross-linker, into multimers with the same pattern observed for cross-linked F-actin. The authors conclude that D. discoideum plasma membranes bind actin specifically and saturably and that these membranes organize actin into filaments below the normal critical concentration for polymerization. This interaction probably occurs between multiple binding sites on the membrane and the side of the actin filament, and may be related to the clustering of membrane proteins

  4. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites.

    Science.gov (United States)

    Bhagavat, Raghu; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-09-01

    Nucleoside triphosphate (NTP) ligands are of high biological importance and are essential for all life forms. A pre-requisite for them to participate in diverse biochemical processes is their recognition by diverse proteins. It is thus of great interest to understand the basis for such recognition in different proteins. Towards this, we have used a structural bioinformatics approach and analyze structures of 4677 NTP complexes available in Protein Data Bank (PDB). Binding sites were extracted and compared exhaustively using PocketMatch, a sensitive in-house site comparison algorithm, which resulted in grouping the entire dataset into 27 site-types. Each of these site-types represent a structural motif comprised of two or more residue conservations, derived using another in-house tool for superposing binding sites, PocketAlign. The 27 site-types could be grouped further into 9 super-types by considering partial similarities in the sites, which indicated that the individual site-types comprise different combinations of one or more site features. A scan across PDB using the 27 structural motifs determined the motifs to be specific to NTP binding sites, and a computational alanine mutagenesis indicated that residues identified to be highly conserved in the motifs are also most contributing to binding. Alternate orientations of the ligand in several site-types were observed and rationalized, indicating the possibility of some residues serving as anchors for NTP recognition. The presence of multiple site-types and the grouping of multiple folds into each site-type is strongly suggestive of convergent evolution. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. Proteins 2017; 85:1699-1712. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  6. Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development.

    Directory of Open Access Journals (Sweden)

    Jonathan Göke

    2011-12-01

    Full Text Available Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-localization of the transcriptional co-activator Mediator, H3K27ac and increased expression of nearby genes in embryonic stem cells. We observe that the same loci bound by Oct4, Nanog and Sox2 in ES cells frequently drive expression in early embryonic development. Comparison of mouse and human ES cells shows that less than 5% of individual binding events for OCT4, SOX2 and NANOG are shared between species. In contrast, about 15% of combinatorial binding events and even between 53% and 63% of combinatorial binding events at enhancers active in early development are conserved. Our analysis suggests that the combination of OCT4, SOX2 and NANOG binding is critical for transcription in ES cells and likely plays an important role for embryogenesis by binding at conserved early developmental enhancers. Our data suggests that the fast evolutionary rewiring of regulatory networks mainly affects individual binding events, whereas "gene regulatory hotspots" which are bound by multiple factors and active in multiple tissues throughout early development are under stronger evolutionary constraints.

  7. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  8. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    International Nuclear Information System (INIS)

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H.

    2008-01-01

    A water network stabilizes the structure of cellular retionic acid binding protein II. The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the α2 helix at its entrance. This chain of interactions acts as a ‘pillar’ that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the α2 helix adopting an altered conformation compared with wild-type CRABPII

  9. A peek into tropomyosin binding and unfolding on the actin filament.

    Directory of Open Access Journals (Sweden)

    Abhishek Singh

    that local disorder is a property typical of coiled coil binding sites and proteins that have multiple binding partners, of which tropomyosin is one type.

  10. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya; Yu, Weili; Usman, Anwar; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Alarousu, Erkki; Takanabe, Kazuhiro; Mohammed, Omar F.

    2014-01-01

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  11. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya

    2014-02-20

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  12. (/sup 3/H)diprenorphine binding to kappa-sites in guinea-pig and rat brain: Evidence for apparent heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.S.; Traynor, J.R.

    1989-07-01

    The binding of the unselective opioid antagonist (/sup 3/H)diprenorphine to homogenates prepared from rat brain and from guinea-pig brain and cerebellum has been studied in HEPES buffer containing 10 mM Mg2+ ions. Sequential displacement of bound (/sup 3/H)diprenorphine by ligands with selectivity for mu-, delta-, and kappa-opioid receptors uncovers the multiple components of binding. In the presence of cold ligands that occupy all mu-, delta-, and kappa-sites, opioid binding still remains. This binding represents 20% of total specific sites and is displaced by naloxone. The nature of these undefined opioid binding sites is discussed.

  13. Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks

    DEFF Research Database (Denmark)

    Liberti, Sascha E; Andersen, Sofie Dabros; Wang, Jing

    2011-01-01

    (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues...

  14. Immunospecific red cell binding of iodine 125-labeled immunoglobulin G erythrocyte autoantibodies

    International Nuclear Information System (INIS)

    Masouredis, S.P.; Branks, M.J.; Garratty, G.; Victoria, E.J.

    1987-01-01

    The primary interaction of autoantibodies with red cells has been studied by using labeled autoantibodies. Immunoglobulin G red cell autoantibodies obtained from IgG antiglobulin-positive normal blood donors were labeled with radioactive iodine and compared with alloanti-D with respect to their properties and binding behavior. Iodine 125 -labeled IgG autoantibody migrated as a single homogeneous peak with the same relative mobility as human IgG on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric focusing pattern of labeled autoantibodies varied from donor to donor but was similar to that of alloanti-D, consisting of multiple IgG populations with isoelectric points in the neutral to alkaline range. 125 I-autoantibody bound to all human red cells of common Rh phenotypes. Evidence for immunospecific antibody binding of the labeled autoantibody was based on variation in equilibrium binding to nonhuman and human red cells of common and rare phenotypes, enhanced binding after red cell protease modification, antiglobulin reactivity of cell-bound IgG comparable to that of cell-bound anti-D, and saturation binding in autoantibody excess. Scatchard analysis of two 125 I-autoantibody preparations yielded site numbers of 41,500 and 53,300 with equilibrium constants of 3.7 and 2.1 X 10(8) L X mol-1. Dog, rabbit, rhesus monkey, and baboon red cells were antigen(s) negative by quantitative adsorption studies adsorbing less than 3% of the labeled autoantibody. Reduced ability of rare human D--red blood cells to adsorb the autoantibody and identification of donor autoantibodies that bind to Rh null red blood cells indicated that eluates contained multiple antibody populations of complex specificities in contrast to anti-D, which consists of a monospecific antibody population. Another difference is that less than 70% of the autoantibody IgG was adsorbed by maximum binding red blood cells as compared with greater than 85% for alloanti-D

  15. Binding of Multiple Features in Memory by High-Functioning Adults with Autism Spectrum Disorder

    Science.gov (United States)

    Bowler, Dermot M.; Gaigg, Sebastian B.; Gardiner, John M.

    2014-01-01

    Diminished episodic memory and diminished use of semantic information to aid recall by individuals with autism spectrum disorder (ASD) are both thought to result from diminished relational binding of elements of complex stimuli. To test this hypothesis, we asked high-functioning adults with ASD and typical comparison participants to study grids in…

  16. Enhancing Nanos expression via the bacterial TomO protein is a conserved strategy used by the symbiont Wolbachia to fuel germ stem cell maintenance in infected Drosophila females.

    Science.gov (United States)

    Ote, Manabu; Yamamoto, Daisuke

    2018-04-27

    The toxic manipulator of oogenesis (TomO) protein has been identified in the wMel strain of Wolbachia that symbioses with the vinegar fly Drosophila melanogaster, as a protein that affects host reproduction. TomO protects germ stem cells (GSCs) from degeneration, which otherwise occurs in ovaries of host females that are mutant for the gene Sex-lethal (Sxl). We isolated the TomO homologs from wPip, a Wolbachia strain from the mosquito Culex quinquefasciatus. One of the homologs, TomO w Pip 1, exerted the GSC rescue activity in fly Sxl mutants when lacking its hydrophobic stretches. The GSC-rescuing action of the TomO w Pip 1 variant was ascribable to its abilities to associate with Nanos (nos) mRNA and to enhance Nos protein expression. The analysis of structure-activity relationships with TomO homologs and TomO deletion variants revealed distinct modules in the protein that are each dedicated to different functions, i.e., subcellular localization, nos mRNA binding or Nos expression enhancement. We propose that modular reshuffling is the basis for structural and functional diversification of TomO protein members. © 2018 Wiley Periodicals, Inc.

  17. Calculation of protein-ligand binding affinities.

    Science.gov (United States)

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  18. A tool for calculating binding-site residues on proteins from PDB structures

    Directory of Open Access Journals (Sweden)

    Hu Jing

    2009-08-01

    Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.

  19. CARBOHYDRATE-CONTAINING COMPOUNDS WHICH BIND TO CARBOHYDRATE BINDING RECEPTORS

    DEFF Research Database (Denmark)

    1995-01-01

    Carbohydrate-containing compounds which contain saccharides or derivatives thereof and which bind to carbohydrate binding receptors are useful in pharmaceutical products for treatment of inflammatory diseases and other diseases.......Carbohydrate-containing compounds which contain saccharides or derivatives thereof and which bind to carbohydrate binding receptors are useful in pharmaceutical products for treatment of inflammatory diseases and other diseases....

  20. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    Science.gov (United States)

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  1. Benzo(a)pyrene metabolism, DNA-binding and UV-induced repair of DNA damage in cultured skin fibroblasts from a patient with unilateral multiple basal cell carcinoma

    International Nuclear Information System (INIS)

    Don, P.S.C.; Mukhtar, H.; Das, M.; Berger, N.A.; Bickers, D.R.

    1989-01-01

    The metabolism of benzo(a)pyrene (BP), and its subsequent binding to DNA, and the repair of UV-induced DNA damage were studied in fibroblasts cultured from the skin of a 61-year-old male who had multiple basal cell carcinoma (BCC) (>100) on his left upper trunk. Results suggest that BP metabolism and repair of DNA are altered in tumor-bearing site (TSB) cells and that patients with this type of metabolic profile may be at higher risk of the development of cutaneous neoplasms. It is also possible that fibroblasts from tumour bearing skin undergo some as yet unexplained alteration in carcinogen metabolism as a consequence of the induction of neoplasia. (author)

  2. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse; Zaher, Manal S.; Hamdan, Samir

    2018-01-01

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  3. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse

    2018-01-29

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  4. Simultaneous detection of multiple targets for ultrastructural immunocytochemistry

    Czech Academy of Sciences Publication Activity Database

    Philimonenko, Vlada; Filimonenko, Anatolij; Šloufová, I.; Hrubý, Martin; Novotný, F.; Halbhuber, Z.; Krivjanská, M.; Nebesářová, Jana; Šlouf, Miroslav; Hozák, Pavel

    2014-01-01

    Roč. 141, č. 3 (2014), s. 229-239 ISSN 0948-6143 R&D Projects: GA AV ČR KAN200520704; GA TA ČR TE01020118; GA ČR GAP305/11/2232; GA MŠk LD12063 Grant - others:Human Frontier Science Program(FR) RGP0017/2013 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:61389013 ; RVO:60077344 ; RVO:68378050 Keywords : Immunolabeling * Metal nanoparticles * Electron microscopy * Cell nucleus * Ultrastructure * Phosphatidylinositol-4,5-Bisphosphate (PIP2) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.927, year: 2013

  5. Iron Mineralogy and Uranium-Binding Environment in the Rhizosphere of a Wetland Soil

    Science.gov (United States)

    Wetlands mitigate the migration of groundwater contaminants through a series of biogeochemical gradients that enhance multiple contaminant-binding processes. The hypothesis of this study was that wetland plant roots contribute organic carbon and release O2 within the ...

  6. Comparison of crystal and solution hemoglobin binding of selected antigelling agents and allosteric modifiers

    International Nuclear Information System (INIS)

    Mehanna, A.S.; Abraham, D.J.

    1990-01-01

    This paper details comprehensive binding studies (solution and X-ray) of human hemoglobin A with a group of halogenated carboxylic acids that were investigated as potential antisickling agents. It is, to our knowledge, the first study to compare solution and crystal binding for a series of compounds under similar high-salt conditions used for cocrystallization. The compounds include [(3,4-dichlorobenzyl)oxy]acetic acid, [(p-bromobenzyl)oxy]acetic acid, clofibric acid, and bezafibrate. The location and stereochemistry of binding sites have been established by X-ray crystallography, while the number of binding sites and affinity constants were measured by using equilibrium dialysis. The observed crystal structures are consistent with the binding observed in solution and that the number of binding sites is independent of salt concentration, while the binding constant increases with increasing salt concentration. The studies also reveal that relatively small changes in the chemical structure of a drug molecule can result in entirely different binding sites on the protein. Moreover, the X-ray studies provide a possible explanation for the multiplicity in function exhibited by these compounds as allosteric modulators and/or antisickling agents. Finally, the studies indicate that these compounds bind differently to the R and T states of hemoglobin, and observation of special significance to the original design of these agents

  7. Avoidant coping moderates the relationship between paternal involvement in the child's type 1 diabetes (T1D) care and parenting stress.

    Science.gov (United States)

    Teasdale, Ashley; Limbers, Christine

    2018-01-01

    Fathers may experience greater parenting stress and anxiety when they are more involved in their child's type 1 diabetes (T1D) care. The present study evaluated whether seeking social support and avoidant coping strategies moderate the relationship between paternal involvement in the child's T1D care and parenting stress in an international sample. Two hundred forty-nine fathers of young children with T1D completed the Parenting Stress Index (PSI), Pediatric Inventory for Parents (PIP), Dads' Active Disease Support scale (DADS), COPE Inventory, Self-Care Inventory (SCI-R), and a demographic questionnaire online. Pearson's product moment correlations were computed, and multiple linear regression analysis was conducted with three separate models in which the PSI Child Domain, PIP Frequency, and PIP Difficulty scores represented different parenting stress outcomes. The interaction between use of denial coping and DADS Involvement was significantly correlated with general parenting stress ( p diabetes treatment regimen ( p management.

  8. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives.

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-15

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation.

    Science.gov (United States)

    Azad, Abul Kalam; Katsuhara, Maki; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2008-08-01

    We suggested previously that temperature-dependent tulip (Tulipa gesneriana) petal movement that is concomitant with water transport is regulated by reversible phosphorylation of an unidentified plasma membrane intrinsic protein (PIP). In this study, four full-length cDNAs of PIPs from tulip petals were identified and cloned. Two PIPs, namely TgPIP1;1 and TgPIP1;2, are members of the PIP1 subfamily, and the remaining two PIPs, namely TgPIP2;1 and TgPIP2;2, belong to the PIP2 subfamily of aquaporins and were named according to the nomenclature of PIP genes in plants. Of these four homologs, only TgPIP2;2 displayed significant water channel activity in the heterologous expression assay using Xenopus laevis oocytes. The water channel activity of this functional isoform was abolished by mercury and was affected by inhibitors of protein kinase and protein phosphatase. Using a site-directed mutagenesis approach to substitute several serine residues with alanine, and assessing water channel activity using the methylotrophic yeast Pichia pastoris expression assay, we showed that Ser35, Ser116 and Ser274 are the putative phosphorylation sites of TgPIP2;2. Real-time reverse transcription-PCR analysis revealed that the transcript levels of TgPIP1;1 and TgPIP1;2 in tulip petals, stems, leaves, bulbs and roots are very low when compared with those of TgPIP2;1 and TgPIP2;2. The transcript level of TgPIP2;1 is negligible in roots, and TgPIP2;2 is ubiquitously expressed in all organs with significant transcript levels. From the data reported herein, we suggest that TgPIP2;2 might be modulated by phosphorylation and dephosphorylation for regulating water channel activity, and may play a role in transcellular water transport in all tulip organs.

  10. Conceptualizing Mind and Consciousness: Using Constructivist Ideas to Transcend the Physical Bind

    Science.gov (United States)

    Becker, Joe

    2008-01-01

    Philosophers and scientists seeking to conceptualize consciousness, and subjective experience in particular, have focused on sensation and perception, and have emphasized binding--how a percept holds together. Building on a constructivist approach to conception centered on separistic-holistic complexes incorporating multiple levels of abstraction,…

  11. Positive cooperativity of the specific binding between Hg2+ ion and T:T mismatched base pairs in duplex DNA

    International Nuclear Information System (INIS)

    Torigoe, Hidetaka; Miyakawa, Yukako; Ono, Akira; Kozasa, Tetsuo

    2012-01-01

    Highlights: ► Hg 2+ specifically bound with the T:T mismatched base pair at 1:1 molar ratio. ► The binding constant between Hg 2+ and the T:T mismatched base pair was 10 6 M −1 . ► The binding constant was larger than those for nonspecific metal–DNA interactions. ► The binding constant for the second Hg 2+ was larger than that for the first Hg 2+ . ► The positive cooperative binding was observed between Hg 2+ and multiple T:T. - Abstract: Metal-mediated base pairs by the interaction between metal ions and artificial bases in oligonucleotides have been developed for their potential applications in nanotechnology. We recently found that a natural T:T mismatched base pair bound with Hg 2+ ion to form a novel T–Hg–T base pair. Here, we examined the thermodynamic properties of the binding between Hg 2+ and each of the single and double T:T mismatched base pair duplex DNAs by isothermal titration calorimetry. Hg 2+ specifically bound with the T:T mismatched base pair at 1:1 molar ratio with 10 6 M −1 binding constant, which was significantly larger than those for nonspecific metal ion–DNA interactions. In the Hg 2+ –double T:T mismatched base pair interaction, the affinity for the second Hg 2+ binding was significantly larger than that for the first Hg 2+ binding. The positively cooperative binding may be favorable to align multiple Hg 2+ in duplex DNA for the application of the metal-mediated base pairs in nanotechnology.

  12. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit.

    Science.gov (United States)

    Mulero, Maria Carmen; Shahabi, Shandy; Ko, Myung Soo; Schiffer, Jamie M; Huang, De-Bin; Wang, Vivien Ya-Fan; Amaro, Rommie E; Huxford, Tom; Ghosh, Gourisankar

    2018-05-22

    Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.

  13. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    International Nuclear Information System (INIS)

    Neto, J.L. Siqueira; Lira, C.B.B.; Giardini, M.A.; Khater, L.; Perez, A.M.; Peroni, L.A.; Reis, J.R.R. dos; Freitas-Junior, L.H.; Ramos, C.H.I.; Cano, M.I.N.

    2007-01-01

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres

  14. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    International Nuclear Information System (INIS)

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-01-01

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  15. 239pu alpha spectrum analysis based on PIPS detector response function and variations with vacuum and distance

    Institute of Scientific and Technical Information of China (English)

    Rui Shi; Xian-Guo Tuo; Huai-Liang Li; Jian-Bo Yang; Yi Cheng; Hong-Long Zheng

    2017-01-01

    Effect factors of the absorption of the source,air,entrance window,and dead layer of a detector must be considered in the measurement of monoenergetic alpha particles,along with statsfical noise and other factors that collectively cause the alpha spectrum to exhibit a well-known low-energy tail.Therefore,the establishment of an alpha spectrum detector response function from the perspective of a signaling system must consider the various factors mentioned above.The detector response function is the convolution of an alphaparticle pulse function,two exponential functions,and a Gaussian function,followed by calculation of the parameters of the detector response function using the weighted leastsquares fitting method as proposed in this paper.In our experiment,239pu alpha spectra were measured by a highresolution,passivated implanted planar silicon (PIPS)detector at 10 levels of vacuum and 10 source-detector distances.The spectrum-fitting results were excellent as evaluated by reduced Chi-square (x2) and correlation coefficients.Finally,the variation of parameters with vacuum level and source-detector distance was studied.Results demonstrate that ο,τ1,and τ2 exhibit no obvious trend of variation with vacuum in the range 2000-20,000 mTorr,and at a confidence level of 95%,the values of τ1 and τ2 decline in a similar fashion with source-detector distance by the power exponential function,while the value of ο declines linearly.

  16. Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Bak-Jensen, K.S.; André, G.; Gottschalk, T.E.

    2004-01-01

    and oligosaccharides, respectively. Bond cleavage analysis of oligosaccharide degradation by wild-type and mutant AMY1 supports that Tyr105 is critical for binding at subsite -6. Substrate binding is improved by T212(Y/W) introduced at subsite +4 and the [Y105A/ T212(Y/W)] AMY1 double mutants synergistically enhanced......The role in activity of outer regions in the substrate binding cleft in alpha-amylases is illustrated by mutational analysis of Tyr(105) and Thr(212) localized at subsites - 6 and +4 ( substrate cleavage occurs between subsites -1 and +1) in barley alpha-amylase 1 (AMY1). Tyr(105) is conserved...... in plant alpha-amylases whereas Thr(212) varies in these and related enzymes. Compared with wild-type AMY1, the subsite -6 mutant Y105A has 140, 15, and 1% activity (k(cat)/K-m) on starch, amylose DP17, and 2-chloro-4-nitrophenyl β-D-maltoheptaoside, whereas T212Y at subsite +4 has 32, 370, and 90...

  17. Structure of p15PAF-PCNA complex and implications for clamp sliding during DNA replication and repair

    DEFF Research Database (Denmark)

    De Biasio, Alfredo; de Opakua, Alain Ibáñez; Mortuza, Gulnahar B

    2015-01-01

    The intrinsically disordered protein p15(PAF) regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15(PAF)-PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP...... the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding....... free and PCNA-bound p15(PAF) binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15(PAF) acts as a flexible drag that regulates PCNA sliding along...

  18. Minor-Groove Binding Drugs: Where Is the Second Hoechst 33258 Molecule?

    KAUST Repository

    Fornander, Louise H.; Wu, Lisha; Billeter, Martin; Lincoln, Per; Nordé n, Bengt

    2013-01-01

    Hoechst 33258 binds with high affinity into the minor groove of AT-rich sequences of double-helical DNA. Despite extensive studies of this and analogous DNA binding molecules, there still remains uncertainty concerning the interactions when multiple ligand molecules are accommodated within close distance. Albeit not of direct concern for most biomedical applications, which are at low drug concentrations, interaction studies for higher drug binding are important as they can give fundamental insight into binding mechanisms and specificity, including drug self-stacking interactions that can provide base-sequence specificity. Using circular dichroism (CD), isothermal titration calorimetry (ITC), and proton nuclear magnetic resonance (1H NMR), we examine the binding of Hoechst 33258 to three oligonucleotide duplexes containing AT regions of different lengths: [d(CGCGAATTCGCG)]2 (A2T2), [d(CGCAAATTTGCG)]2 (A3T 3), and [d(CGAAAATTTTCG)]2 (A4T4). We find similar binding geometries in the minor groove for all oligonucleotides when the ligand-to-duplex ratio is less than 1:1. At higher ratios, a second ligand can be accommodated in the minor groove of A4T4 but not A2T2 or A3T3. We conclude that the binding of the second Hoechst to A4T4 is not cooperative and that the molecules are sitting with a small separation apart, one after the other, and not in a sandwich structure as previously proposed. © 2013 American Chemical Society.

  19. Minor-Groove Binding Drugs: Where Is the Second Hoechst 33258 Molecule?

    KAUST Repository

    Fornander, Louise H.

    2013-05-16

    Hoechst 33258 binds with high affinity into the minor groove of AT-rich sequences of double-helical DNA. Despite extensive studies of this and analogous DNA binding molecules, there still remains uncertainty concerning the interactions when multiple ligand molecules are accommodated within close distance. Albeit not of direct concern for most biomedical applications, which are at low drug concentrations, interaction studies for higher drug binding are important as they can give fundamental insight into binding mechanisms and specificity, including drug self-stacking interactions that can provide base-sequence specificity. Using circular dichroism (CD), isothermal titration calorimetry (ITC), and proton nuclear magnetic resonance (1H NMR), we examine the binding of Hoechst 33258 to three oligonucleotide duplexes containing AT regions of different lengths: [d(CGCGAATTCGCG)]2 (A2T2), [d(CGCAAATTTGCG)]2 (A3T 3), and [d(CGAAAATTTTCG)]2 (A4T4). We find similar binding geometries in the minor groove for all oligonucleotides when the ligand-to-duplex ratio is less than 1:1. At higher ratios, a second ligand can be accommodated in the minor groove of A4T4 but not A2T2 or A3T3. We conclude that the binding of the second Hoechst to A4T4 is not cooperative and that the molecules are sitting with a small separation apart, one after the other, and not in a sandwich structure as previously proposed. © 2013 American Chemical Society.

  20. Novel somatic single nucleotide variants within the RNA binding protein hnRNP A1 in multiple sclerosis patients [v2; ref status: indexed, http://f1000r.es/4dh

    Directory of Open Access Journals (Sweden)

    Sangmin Lee

    2014-09-01

    Full Text Available Some somatic single nucleotide variants (SNVs are thought to be pathogenic, leading to neurological disease. We hypothesized that heterogeneous nuclear ribonuclear protein A1 (hnRNP A1, an autoantigen associated with multiple sclerosis (MS would contain SNVs. MS patients develop antibodies to hnRNP A1293-304, an epitope within the M9 domain (AA268-305 of hnRNP A1. M9 is hnRNP A1’s nucleocytoplasmic transport domain, which binds transportin-1 (TPNO-1 and allows for hnRNP A1’s transport into and out of the nucleus. Genomic DNA sequencing of M9 revealed nine novel SNVs that resulted in an amino acid substitution in MS patients that were not present in controls. SNVs occurred within the TPNO-1 binding domain (hnRNP A1268-289 and the MS IgG epitope (hnRNP A1293-304, within M9.  In contrast to the nuclear localization of wild type (WT hnRNP A1, mutant hnRNP A1 mis-localized to the cytoplasm, co-localized with stress granules and caused cellular apoptosis. Whilst WT hnRNP A1 bound TPNO-1, mutant hnRNP A1 showed reduced TPNO-1 binding. These data suggest SNVs in hnRNP A1 might contribute to pathogenesis of MS.

  1. Novel somatic single nucleotide variants within the RNA binding protein hnRNP A1 in multiple sclerosis patients [v1; ref status: indexed, http://f1000r.es/3nv

    Directory of Open Access Journals (Sweden)

    Sangmin Lee

    2014-06-01

    Full Text Available Some somatic single nucleotide variants (SNVs are thought to be pathogenic, leading to neurological disease. We hypothesized that heterogeneous nuclear ribonuclear protein A1 (hnRNP A1, an autoantigen associated with multiple sclerosis (MS would contain SNVs. MS patients develop antibodies to hnRNP A1293-304, an epitope within the M9 domain (AA268-305 of hnRNP A1. M9 is hnRNP A1’s nucleocytoplasmic transport domain, which binds transportin-1 (TPNO-1 and allows for hnRNP A1’s transport into and out of the nucleus. Genomic DNA sequencing of M9 revealed nine novel SNVs that resulted in an amino acid substitution in MS patients that were not present in controls. SNVs occurred within the TPNO-1 binding domain (hnRNP A1268-289 and the MS IgG epitope (hnRNP A1293-304, within M9.  In contrast to the nuclear localization of wild type (WT hnRNP A1, mutant hnRNP A1 mis-localized to the cytoplasm, co-localized with stress granules and caused cellular apoptosis. Whilst WT hnRNP A1 bound TPNO-1, mutant hnRNP A1 showed reduced TPNO-1 binding. These data suggest SNVs in hnRNP A1 might contribute to pathogenesis of MS.

  2. Beauvericin synthetase contains a calmodulin binding motif in the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Kim, Jiyoung; Sung, Gi-Ho

    2018-03-19

    Beauvericin is a mycotoxin which has insecticidal, anti-microbial, anti-viral and anti-cancer activities. Beauvericin biosynthesis is rapidly catalyzed by the beauvericin synthetase (BEAS) in Beauveria bassiana. Ca 2+ plays crucial roles in multiple signaling pathways in eukaryotic cells. These Ca 2+ signals are partially decoded by Ca 2+ sensor calmodulin (CaM). In this report, we describe that B. bassiana BEAS (BbBEAS) can interact with CaM in a Ca 2+ -dependent manner. A synthetic BbBEAS peptide, corresponding to the putative CaM-binding motif, formed a stable complex with CaM in the presence of Ca 2+ . In addition, in vitro CaM-binding assay revealed that the His-tagged BbBEAS (amino acids 2421-2538) binds to CaM in a Ca 2+ -dependent manner. Therefore, this work suggests that BbBEAS is a novel CaM-binding protein in B. bassiana.

  3. Heterogeneous binding of sigma radioligands in the rat brain and liver

    International Nuclear Information System (INIS)

    Ross, S.B.

    1991-01-01

    The binding of four sigma receptor ligands, 3 H-(+)-N-allyl-N-normetazocine ( 3 H-(+)-SKF 10,047), 3 H-(+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ( 3 H-(+)-3-PPP), 3 H-haloperidol and 3 H-N,N'-di(o-totyl)guanidine ( 3 H-DTG), and the cytochrome P450IID6 ligand and dopamine uptake inhibitor 3 H-1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine ( 3 H-GBR 12935) to membranal preparations of rat liver or whole rat brain was examined regarding kinetical properties and inhibition by various compounds with affinity for sigma binding sites or cytochrome P-450. In rat brain the density of binding sites was increased in order (+)-SKF 10,047 3 H-(+)-SKF 10,047 there were quite marked differences between the ligands studied. Multiple binding sites were also indicated by the low Hill coefficients found for most of the compounds studied. It was found that the cytochrome P-450 inhibitor proadifen (SKF 525A), like haloperidol, was a potent inhibitor of the binding of 3 H-(+)-SKF 10,047, 3 H-(+)-3-PPP and 3 H-haloperidol to the liver and brain preparations, less active in inhibiting the binding of 3 H-DTG and least effective on the binding of 3 H-GBR 12935. Another cytochrome P-450 inhibitor, L-lobeline, was particularly potent in inhibiting the binding of 3 H-DTG but was also quite potent inhibitor of the binding of the other sigma ligands. It was less potent in inhibiting the binding of 3 H-GBR 12935. The binding of the latter ligand was potently inhibited by the analogous compound GBR 12909 but of the other compounds examined only L-lobeline, proadifen, haloperidol, DTG and (+)-3-PPP had IC50 values below 10 μM. The possibility that the sigma binding sites are identical with some subforms of cytochrome P-450 is discussed. (author)

  4. Insulin-like growth factor (IGF) binding protein from human decidua inhibits the binding and biological action of IGF-I in cultured choriocarcinoma cells

    International Nuclear Information System (INIS)

    Ritvos, O.; Ranta, T.; Jalkanen, J.; Suikkari, A.M.; Voutilainen, R.; Bohn, H.; Rutanen, E.M.

    1988-01-01

    The placenta expresses genes for insulin-like growth factors (IGFs) and possesses IGF-receptors, suggesting that placental growth is regulated by IGFs in an autocrine manner. We have previously shown that human decidua, but not placenta, synthesizes and secretes a 34 K IGF-binding protein (34 K IGF-BP) called placental protein 12. We now used human choriocarcinoma JEG-3 cell monolayer cultures and recombinant (Thr59)IGF-I as a model to study whether the decidual 34 K IGF-BP is able to modulate the receptor binding and biological activity of IGFs in trophoblasts. JEG-3 cells, which possess type I IGF receptors, were unable to produce IGF-BPs. Purified 34 K IGF-BP specifically bound [125I]iodo-(Thr59)IGF-I. Multiplication-stimulating activity had 2.5% the potency of (Thr59)IGF-I, and insulin had no effect on the binding of [125I] iodo-(Thr59)IGF-I. 34 K IGF-BP inhibited the binding of [125I] iodo-(Thr59)IGF-I to JEG-3 monolayers in a concentration-dependent manner by forming with the tracer a soluble complex that could not bind to the cell surface as demonstrated by competitive binding and cross-linking experiments. After incubating the cell monolayers with [125I]iodo-(Thr59)IGF-I in the presence of purified binding protein, followed by cross-linking, no affinity labeled bands were seen on autoradiography. In contrast, an intensely labeled band at 40 K was detected when the incubation medium was analyzed, suggesting that (Thr59)IGF-I and 34 K IGF-BP formed a complex in a 1:1 molar ratio. Also, 34 K IGF-BP inhibited both basal and IGF-I-stimulated uptake of alpha-[3H]aminoisobutyric acid in JEG-3 cells. RNA analysis revealed that IGF-II is expressed in JEG-3 cells

  5. Towards Automated Binding Affinity Prediction Using an Iterative Linear Interaction Energy Approach

    Directory of Open Access Journals (Sweden)

    C. Ruben Vosmeer

    2014-01-01

    Full Text Available Binding affinity prediction of potential drugs to target and off-target proteins is an essential asset in drug development. These predictions require the calculation of binding free energies. In such calculations, it is a major challenge to properly account for both the dynamic nature of the protein and the possible variety of ligand-binding orientations, while keeping computational costs tractable. Recently, an iterative Linear Interaction Energy (LIE approach was introduced, in which results from multiple simulations of a protein-ligand complex are combined into a single binding free energy using a Boltzmann weighting-based scheme. This method was shown to reach experimental accuracy for flexible proteins while retaining the computational efficiency of the general LIE approach. Here, we show that the iterative LIE approach can be used to predict binding affinities in an automated way. A workflow was designed using preselected protein conformations, automated ligand docking and clustering, and a (semi-automated molecular dynamics simulation setup. We show that using this workflow, binding affinities of aryloxypropanolamines to the malleable Cytochrome P450 2D6 enzyme can be predicted without a priori knowledge of dominant protein-ligand conformations. In addition, we provide an outlook for an approach to assess the quality of the LIE predictions, based on simulation outcomes only.

  6. Long-term music training tunes how the brain temporally binds signals from multiple senses

    OpenAIRE

    Lee, HweeLing; Noppeney, Uta

    2011-01-01

    Practicing a musical instrument is a rich multisensory experience involving the integration of visual, auditory, and tactile inputs with motor responses. This combined psychophysics–fMRI study used the musician's brain to investigate how sensory-motor experience molds temporal binding of auditory and visual signals. Behaviorally, musicians exhibited a narrower temporal integration window than nonmusicians for music but not for speech. At the neural level, musicians showed increased audiovisua...

  7. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays

    Science.gov (United States)

    Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk

    2013-01-01

    WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197

  8. Multi-binding site model-based curve-fitting program for the computation of RIA data

    International Nuclear Information System (INIS)

    Malan, P.G.; Ekins, R.P.; Cox, M.G.; Long, E.M.R.

    1977-01-01

    In this paper, a comparison will be made of model-based and empirical curve-fitting procedures. The implementation of a multiple binding-site curve-fitting model which will successfully fit a wide range of assay data, and which can be run on a mini-computer is described. The latter sophisticated model also provides estimates of binding site concentrations and the values of the respective equilibrium constants present: the latter have been used for refining assay conditions using computer optimisation techniques. (orig./AJ) [de

  9. MUSI: an integrated system for identifying multiple specificity from very large peptide or nucleic acid data sets.

    Science.gov (United States)

    Kim, Taehyung; Tyndel, Marc S; Huang, Haiming; Sidhu, Sachdev S; Bader, Gary D; Gfeller, David; Kim, Philip M

    2012-03-01

    Peptide recognition domains and transcription factors play crucial roles in cellular signaling. They bind linear stretches of amino acids or nucleotides, respectively, with high specificity. Experimental techniques that assess the binding specificity of these domains, such as microarrays or phage display, can retrieve thousands of distinct ligands, providing detailed insight into binding specificity. In particular, the advent of next-generation sequencing has recently increased the throughput of such methods by several orders of magnitude. These advances have helped reveal the presence of distinct binding specificity classes that co-exist within a set of ligands interacting with the same target. Here, we introduce a software system called MUSI that can rapidly analyze very large data sets of binding sequences to determine the relevant binding specificity patterns. Our pipeline provides two major advances. First, it can detect previously unrecognized multiple specificity patterns in any data set. Second, it offers integrated processing of very large data sets from next-generation sequencing machines. The results are visualized as multiple sequence logos describing the different binding preferences of the protein under investigation. We demonstrate the performance of MUSI by analyzing recent phage display data for human SH3 domains as well as microarray data for mouse transcription factors.

  10. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    Science.gov (United States)

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  11. Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.

    Science.gov (United States)

    Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin

    2017-09-14

    U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.

  12. Ties that bind: multiple relationships between clinical researchers and the pharmaceutical industry.

    Science.gov (United States)

    Henry, David; Doran, Evan; Kerridge, Ian; Hill, Suzanne; McNeill, Paul M; Day, Richard

    2005-11-28

    It is believed that pharmaceutical industry sponsorship of clinical research leads to the development of multiple ties between clinicians and the pharmaceutical industry. To quantify this relationship we conducted a survey of medical specialists listed in the Medical Directory of Australia in 2002 and 2003. A questionnaire was mailed that elicited information about all aspects of research relationships between clinicians and pharmaceutical companies. The odds of reporting multiple additional ties (financial and professional) with pharmaceutical companies by clinicians who had an active research relationship were compared with those who did not. All clinicians who returned a completed questionnaire about their research activities were included in the study. A questionnaire was mailed to 2120 medical specialists; 823 (39%) responded. Of these, 338 (41%) reported involvement in industry-sponsored research in the previous year. They were more likely than others to have been offered industry-sponsored items or activities valued at more than 500 AU dollars (>382 US dollars; odds ratio [OR], 3.5; 95% confidence interval [CI], 2.6-4.7) and support for attending international conferences (OR, 5.4; 95% CI, 3.9-7.4). The strongest associations were seen for acting as a paid consultant to industry (OR, 9.0; 95% CI, 3.9-20.4) and for membership on advisory boards (OR, 6.9; 95% CI, 5.1-9.6). There was a strong relationship between research collaboration and accumulation of industry ties. For 1 additional tie the OR was 2.2 (95% CI, 1.2-3.8) and rose to 6.3 (95% CI, 3.5-11.1) with 3 ties and 41.8 (95% CI, 14.5-143.4) with 6 or more ties. Medical specialists who have research relationships with the pharmaceutical industry are much more likely to have multiple additional ties than those who do not have research relationships. Institutional review should discourage clinical researchers from developing multiple ties.

  13. Binding of multiple features in memory by high-functioning adults with autism spectrum disorder

    OpenAIRE

    Bowler, D. M.; Gaigg, S. B.; Gardiner, J. M.

    2014-01-01

    Diminished episodic memory and diminished use of semantic information to aid recall by individuals with autism spectrum disorder (ASD) are both thought to result from diminished relational binding of elements of complex stimuli. To test this hypothesis, we asked high-functioning adults with ASD and typical comparison participants to study grids in which some cells contained drawings of objects in non-canonical colours. Participants were told at study which features (colour, item, location) wo...

  14. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity.

    Science.gov (United States)

    Jamin, Augusta; Wicklund, April; Wiebe, Matthew S

    2014-05-01

    Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways

  15. Novel multiple opioid ligands based on 4-aminobenzazepinone (Aba), azepinoindole (Aia) and tetrahydroisoquinoline (Tic) scaffolds

    Science.gov (United States)

    Ballet, Steven; Marczak, Ewa D.; Feytens, Debby; Salvadori, Severo; Sasaki, Yusuke; Abell, Andrew D.; Lazarus, Lawrence H.; Balboni, Gianfranco; Tourwé, Dirk

    2010-01-01

    The dimerization and trimerization of the Dmt-Tic, Dmt-Aia and Dmt-Aba pharmacophores provided multiple ligands which were evaluated in vitro for opioid receptor binding and functional activity. Whereas the Tic- and Aba multimers proved to be dual and balanced δ/μ antagonists, as determined by the functional [S35]GTPγS binding assay, the dimerization of potent Aia-based ‘parent’ ligands unexpectedly resulted in substantial less efficient receptor binding and non-active dimeric compounds. PMID:20137938

  16. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-01-01

    High (17 nM) and low (603 nM) affinity binding sites for [ 3 ]tetrahydrotrazodone ([ 3 ] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [ 3 ]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [ 3 ] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [ 3 ]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  17. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    Energy Technology Data Exchange (ETDEWEB)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W. (CIT); (NWU)

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  18. Multiple receptor conformers based molecular docking study of fluorine enhanced ethionamide with mycobacterium enoyl ACP reductase (InhA).

    Science.gov (United States)

    Khan, Akib Mahmud; Shawon, Jakaria; Halim, Mohammad A

    2017-10-01

    A major limitation in current molecular docking method is that of failure to account for receptor flexibility. Herein we report multiple receptor conformers based molecular docking as a practical alternative to account for the receptor flexibility. Multiple (forty) conformers of Mycobacterium Enoyl ACP Reductase (InhA) are generated from Molecular Dynamics simulation and twenty crystallographic structures of InhA bound to different inhibitors are obtained from the Protein Data Bank. Fluorine directed modifications are performed to currently available anti-tuberculosis drug ethionamide. The modified drugs are optimized using B3LYP 6-31G (d,p) level of theory. Dipole moment, frontier orbital gap and thermodynamical properties such as electronic energy, enthalpy and Gibbs free energy of these optimized drugs are investigated. These drugs are subsequently docked against the conformers of InhA. Molecular docking against multiple InhA conformations show variation in ligand binding affinity and suggest that Ser94, Gly96, Lys165 and Ile194 amino acids play critical role on strong drug-InhA interaction. Modified drug N1 showed greater binding affinity compared to EN in most conformations. Structure of PDB ID: 2NSD and snapshot conformer at 5.5ns show most favorable binding with N1 compared to other conformers. Fluorine participates in forming fluorine bonds and contributes significantly in increasing binding affinity. Our study reveal that addition of trifluoromethyl group explicitly shows promise in improving thermodynamic properties and in enhancing hydrogen bonding and non-bonded interactions. Molecular dynamics (MD) simulation show that EN and N1 remained in the binding pocket similar to the docked pose of EN-InhA and E1-InhA complexes and also suggested that InhA binds to its inhibitor in inhibitor-induced folding manner. ADMET calculations predict modified drugs to have improved pharmacokinetic properties. Our study concludes that multiple receptor conformers based

  19. The consequences of translational and rotational entropy lost by small molecules on binding to proteins

    Science.gov (United States)

    Murray, Christopher W.; Verdonk, Marcel L.

    2002-10-01

    When a small molecule binds to a protein, it loses a significant amount of rigid body translational and rotational entropy. Estimates of the associated energy barrier vary widely in the literature yet accurate estimates are important in the interpretation of results from fragment-based drug discovery techniques. This paper describes an analysis that allows the estimation of the rigid body entropy barrier from the increase in binding affinities that results when two fragments of known affinity and known binding mode are joined together. The paper reviews the relatively rare number of examples where good quality data is available. From the analysis of this data, we estimate that the barrier to binding, due to the loss of rigid-body entropy, is 15-20 kJ/mol, i.e. around 3 orders of magnitude in affinity at 298 K. This large barrier explains why it is comparatively rare to observe multiple fragments binding to non-overlapping adjacent sites in enzymes. The barrier is also consistent with medicinal chemistry experience where small changes in the critical binding regions of ligands are often poorly tolerated by enzymes.

  20. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse

    Directory of Open Access Journals (Sweden)

    Kimura Shioko

    2012-12-01

    Full Text Available Abstract Background The CCAAT/enhancer binding proteins (C/EBPs play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. Methods A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined. Results A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse. Conclusions The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.

  1. Predicting protein-ATP binding sites from primary sequence through fusing bi-profile sampling of multi-view features

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Nan

    2012-05-01

    Full Text Available Abstract Background Adenosine-5′-triphosphate (ATP is one of multifunctional nucleotides and plays an important role in cell biology as a coenzyme interacting with proteins. Revealing the binding sites between protein and ATP is significantly important to understand the functionality of the proteins and the mechanisms of protein-ATP complex. Results In this paper, we propose a novel framework for predicting the proteins’ functional residues, through which they can bind with ATP molecules. The new prediction protocol is achieved by combination of sequence evolutional information and bi-profile sampling of multi-view sequential features and the sequence derived structural features. The hypothesis for this strategy is single-view feature can only represent partial target’s knowledge and multiple sources of descriptors can be complementary. Conclusions Prediction performances evaluated by both 5-fold and leave-one-out jackknife cross-validation tests on two benchmark datasets consisting of 168 and 227 non-homologous ATP binding proteins respectively demonstrate the efficacy of the proposed protocol. Our experimental results also reveal that the residue structural characteristics of real protein-ATP binding sites are significant different from those normal ones, for example the binding residues do not show high solvent accessibility propensities, and the bindings prefer to occur at the conjoint points between different secondary structure segments. Furthermore, results also show that performance is affected by the imbalanced training datasets by testing multiple ratios between positive and negative samples in the experiments. Increasing the dataset scale is also demonstrated useful for improving the prediction performances.

  2. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels

    Science.gov (United States)

    Cui, Jianmin

    2016-01-01

    Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications. PMID:26745405

  3. [Radiological trap and oncological precautions in a patient who has undergone a permanent withdrawal of PIP breast implants].

    Science.gov (United States)

    Koutsomanis, A; Bruant-Rodier, C; Roedlich, M-N; Bretz-Grenier, M-F; Perrot, P; Bodin, F

    2015-12-01

    We report the case of a 57-year-old patient who presented radiological images similar to ruptured breast implants one year after the supposed withdrawal of the latter. This woman had benefited for the first time from cosmetic PIP breast implants in 2000. Early in 2014, she requested the removal of the implants without renewal because she was feeling pain and functional discomfort. A few months after the operation, she consulted for breast swelling in the upper pole of the breast. Radiological assessment showed liquid formations compatible with the presence of implants. At our request, the rereading of the MRI by the radiologist definitively concluded on a bilateral seroma within the persistent fibrous capsule. In the absence of symptoms, clinical monitoring had been decided. But at the recrudescence of anaplastic large cell lymphoma cases associated with breast implants, a cytological sampling was intended. In case of cytological abnormality or recurrence of the seroma, a surgical procedure should be performed. In conclusion, the removal of a breast implant without capsulectomy may result in the formation of a seroma whose images resemble those of an implant. It is always worthwhile to provide precise clinical data to the radiologist in order to help him to make informed interpretations. Every serous effusion in a breast lodge having contained a silicone implant must evoke the diagnosis of anaplastic large cell lymphoma. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Enhanced Boron Tolerance in Plants Mediated by Bidirectional Transport Through Plasma Membrane Intrinsic Proteins.

    Science.gov (United States)

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2016-02-23

    High boron (B) concentration is toxic to plants that limit plant productivity. Recent studies have shown the involvement of the members of major intrinsic protein (MIP) family in controlling B transport. Here, we have provided experimental evidences showing the bidirectional transport activity of rice OsPIP1;3 and OsPIP2;6. Boron transport ability of OsPIP1;3 and OsPIP2;6 were displayed in yeast HD9 mutant strain (∆fps1∆acr3∆ycf1) as a result of increased B sensitivity, influx and accumulation by OsPIP1;3, and rapid efflux activity by OsPIP2;6. RT-PCR analysis showed strong upregulation of OsPIP1;3 and OsPIP2;6 transcripts in roots by B toxicity. Transgenic Arabidopsis lines overexpressing OsPIP1;3 and OsPIP2;6 exhibited enhanced tolerance to B toxicity. Furthermore, B concentration was significantly increased after 2 and 3 hours of tracer boron ((10)B) treatment. Interestingly, a rapid efflux of (10)B from the roots of the transgenic plants was observed within 1 h of (10)B treatment. Boron tolerance in OsPIP1;3 and OsPIP2;6 lines was inhibited by aquaporin inhibitors, silver nitrate and sodium azide. Our data proved that OsPIP1;3 and OsPIP2;6 are indeed involved in both influx and efflux of boron transport. Manipulation of these PIPs could be highly useful in improving B tolerance in crops grown in high B containing soils.

  5. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis.

    Science.gov (United States)

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P; Cook, Gregory R; Balaz, Stefan

    2008-10-01

    Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.

  6. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  7. Multiple Plasmodium falciparum erythrocyte membrane protein 1 variants per genome can bind IgM via its Fc fragment Fcμ

    DEFF Research Database (Denmark)

    Jeppesen, Anine; Ditlev, Sisse Bolm; Soroka, Vladyslav

    2015-01-01

    with severe clinical manifestations, such as cerebral malaria in children and placental malaria in pregnant women. PfEMP1 that can bind the Fc part of IgM (Fcμ) characterizes one such type, although the functional significance of this IgM binding to PfEMP1 remains unclear. In this study, we report...... resemble the rosette-mediating and IgM-binding PfEMP1 HB3VAR06, but none of them mediated formation of rosettes. We could map the capacity for Fc-specific IgM binding to DBLε domains near the C terminus for three of the four PfEMP1 proteins tested. Our study provides new evidence regarding Fc...

  8. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Hugo de Almeida

    Full Text Available Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4, and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO, which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation, a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  9. Myosin-1A Targets to Microvilli Using Multiple Membrane Binding Motifs in the Tail Homology 1 (TH1) Domain*

    Science.gov (United States)

    Mazerik, Jessica N.; Tyska, Matthew J.

    2012-01-01

    One of the most abundant components of the enterocyte brush border is the actin-based monomeric motor, myosin-1a (Myo1a). Within brush border microvilli, Myo1a carries out a number of critical functions at the interface between membrane and actin cytoskeleton. Proper physiological function of Myo1a depends on its ability to bind to microvillar membrane, an interaction mediated by a C-terminal tail homology 1 (TH1) domain. However, little is known about the mechanistic details of the Myo1a-TH1/membrane interaction. Structure-function analysis of Myo1a-TH1 targeting in epithelial cells revealed that an N-terminal motif conserved among class I myosins and a C-terminal motif unique to Myo1a-TH1 are both required for steady state microvillar enrichment. Purified Myo1a bound to liposomes composed of phosphatidylserine and phosphoinositol 4,5-bisphosphate, with moderate affinity in a charge-dependent manner. Additionally, peptides of the N- and C-terminal regions required for targeting were able to compete with Myo1a for binding to highly charged liposomes in vitro. Single molecule total internal reflection fluorescence microscopy showed that these motifs are also necessary for slowing the membrane detachment rate in cells. Finally, Myo1a-TH1 co-localized with both lactadherin-C2 (a phosphatidylserine-binding protein) and PLCδ1-PH (a phosphoinositol 4,5-bisphosphate-binding protein) in microvilli, but only lactaderin-C2 expression reduced brush border targeting of Myo1a-TH1. Together, our results suggest that Myo1a targeting to microvilli is driven by membrane binding potential that is distributed throughout TH1 rather than localized to a single motif. These data highlight the diversity of mechanisms that enable different class I myosins to target membranes in distinct biological contexts. PMID:22367206

  10. Mannose-Binding Lectin Binds to Amyloid Protein and Modulates Inflammation

    Directory of Open Access Journals (Sweden)

    Mykol Larvie

    2012-01-01

    Full Text Available Mannose-binding lectin (MBL, a soluble factor of the innate immune system, is a pattern recognition molecule with a number of known ligands, including viruses, bacteria, and molecules from abnormal self tissues. In addition to its role in immunity, MBL also functions in the maintenance of tissue homeostasis. We present evidence here that MBL binds to amyloid β peptides. MBL binding to other known carbohydrate ligands is calcium-dependent and has been attributed to the carbohydrate-recognition domain, a common feature of other C-type lectins. In contrast, we find that the features of MBL binding to Aβ are more similar to the reported binding characteristics of the cysteine-rich domain of the unrelated mannose receptor and therefore may involve the MBL cysteine-rich domain. Differences in MBL ligand binding may contribute to modulation of inflammatory response and may correlate with the function of MBL in processes such as coagulation and tissue homeostasis.

  11. RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication.

    Science.gov (United States)

    Vannier, Jean-Baptiste; Sandhu, Sumit; Petalcorin, Mark I R; Wu, Xiaoli; Nabi, Zinnatun; Ding, Hao; Boulton, Simon J

    2013-10-11

    Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles telomere loops (T loops) and suppresses telomere fragility to maintain the integrity of chromosome ends. We established that RTEL1 also associates with the replisome through binding to proliferating cell nuclear antigen (PCNA). Mouse cells disrupted for the RTEL1-PCNA interaction (PIP mutant) exhibited accelerated senescence, replication fork instability, reduced replication fork extension rates, and increased origin usage. Although T-loop disassembly at telomeres was unaffected in the mutant cells, telomere replication was compromised, leading to fragile sites at telomeres. RTEL1-PIP mutant mice were viable, but loss of the RTEL1-PCNA interaction accelerated the onset of tumorigenesis in p53-deficient mice. We propose that RTEL1 plays a critical role in both telomere and genome-wide replication, which is crucial for genetic stability and tumor avoidance.

  12. [H-3]dihydroalprenolol binding to beta adrenergic receptors in multiple sclerosis brain

    NARCIS (Netherlands)

    Zeinstra, E; Wilczak, N; De Keyser, J

    2000-01-01

    By using immunocytochemistry we previously reported the absence of beta(2) adrenergic receptors on astrocytes in multiple sclerosis (MS) white matter. Here, we measured beta(1) and beta(2) adrenergic receptor concentrations in postmortem brain sections of six MS patients and six controls by using

  13. A multiple multicomponent approach to chimeric peptide-peptoid podands.

    Science.gov (United States)

    Rivera, Daniel G; León, Fredy; Concepción, Odette; Morales, Fidel E; Wessjohann, Ludger A

    2013-05-10

    The success of multi-armed, peptide-based receptors in supramolecular chemistry traditionally is not only based on the sequence but equally on an appropriate positioning of various peptidic chains to create a multivalent array of binding elements. As a faster, more versatile and alternative access toward (pseudo)peptidic receptors, a new approach based on multiple Ugi four-component reactions (Ugi-4CR) is proposed as a means of simultaneously incorporating several binding and catalytic elements into organizing scaffolds. By employing α-amino acids either as the amino or acid components of the Ugi-4CRs, this multiple multicomponent process allows for the one-pot assembly of podands bearing chimeric peptide-peptoid chains as appended arms. Tripodal, bowl-shaped, and concave polyfunctional skeletons are employed as topologically varied platforms for positioning the multiple peptidic chains formed by Ugi-4CRs. In a similar approach, steroidal building blocks with several axially-oriented isocyano groups are synthesized and utilized to align the chimeric chains with conformational constrains, thus providing an alternative to the classical peptido-steroidal receptors. The branched and hybrid peptide-peptoid appendages allow new possibilities for both rational design and combinatorial production of synthetic receptors. The concept is also expandable to other multicomponent reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Use of synthetic peptide libraries for the H-2Kd binding motif identification.

    Science.gov (United States)

    Quesnel, A; Casrouge, A; Kourilsky, P; Abastado, J P; Trudelle, Y

    1995-01-01

    To identify Kd-binding peptides, an approach based on small peptide libraries has been developed. These peptide libraries correspond to all possible single-amino acid variants of a particular Kd-binding peptide, SYIPSAEYI, an analog of the Plasmodium berghei 252-260 antigenic peptide SYIPSAEKI. In the parent sequence, each position is replaced by all the genetically encoded amino acids (except cysteine). The multiple analog syntheses are performed either by the Divide Couple and Recombine method or by the Single Resin method and generate mixtures containing 19 peptides. The present report deals with the synthesis, the purification, the chemical characterization by amino acid analysis and electrospray mass spectrometry (ES-MS), and the application of such mixtures in binding tests with a soluble, functionally empty, single-chain H-2Kd molecule denoted SC-Kd. For each mixture, bound peptides were eluted and analyzed by sequencing. Since the binding tests were realized in noncompetitive conditions, our results show that a much broader set of peptides bind to Kd than expected from previous studies. This may be of practical importance when looking for low affinity peptides such as tumor peptides capable of eliciting protective immune response.

  15. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses.

    Science.gov (United States)

    Barbosa, Inês C R; Shikata, Hiromasa; Zourelidou, Melina; Heilmann, Mareike; Heilmann, Ingo; Schwechheimer, Claus

    2016-12-15

    Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases. © 2016. Published by The Company of Biologists Ltd.

  16. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    Science.gov (United States)

    Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.

    2013-01-01

    Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093

  17. Finding a needle in a haystack: the role of electrostatics in target lipid recognition by PH domains.

    Directory of Open Access Journals (Sweden)

    Craig N Lumb

    Full Text Available Interactions between protein domains and lipid molecules play key roles in controlling cell membrane signalling and trafficking. The pleckstrin homology (PH domain is one of the most widespread, binding specifically to phosphatidylinositol phosphates (PIPs in cell membranes. PH domains must locate specific PIPs in the presence of a background of approximately 20% anionic lipids within the cytoplasmic leaflet of the plasma membrane. We investigate the mechanism of such recognition via a multiscale procedure combining Brownian dynamics (BD and molecular dynamics (MD simulations of the GRP1 PH domain interacting with phosphatidylinositol (3,4,5-trisphosphate (PI(3,4,5P₃. The interaction of GRP1-PH with PI(3,4,5P₃ in a zwitterionic bilayer is compared with the interaction in bilayers containing different levels of anionic 'decoy' lipids. BD simulations reveal both translational and orientational electrostatic steering of the PH domain towards the PI(3,4,5P₃-containing anionic bilayer surface. There is a payoff between non-PIP anionic lipids attracting the PH domain to the bilayer surface in a favourable orientation and their role as 'decoys', disrupting the interaction of GRP1-PH with the PI(3,4,5P₃ molecule. Significantly, approximately 20% anionic lipid in the cytoplasmic leaflet of the bilayer is nearly optimal to both enhance orientational steering and to localise GRP1-PH proximal to the surface of the membrane without sacrificing its ability to locate PI(3,4,5P₃ within the bilayer plane. Subsequent MD simulations reveal binding to PI(3,4,5P₃, forming protein-phosphate contacts comparable to those in X-ray structures. These studies demonstrate a computational framework which addresses lipid recognition within a cell membrane environment, offering a link between structural and cell biological characterisation.

  18. Binding thermodynamics of Diclofenac and Naproxen with human and bovine serum albumins: A calorimetric and spectroscopic study

    International Nuclear Information System (INIS)

    Bou-Abdallah, Fadi; Sprague, Samuel E.; Smith, Britannia M.; Giffune, Thomas R.

    2016-01-01

    Highlights: • The binding affinity of Diclofenac and Naproxen to BSA and HSA is on the order of 10 4 –10 6 M −1 . • Two Diclofenac molecules bind per BSA or HSA but only 0.75 and 3 Naproxen molecules bind to BSA and HSA, respectively. • Drugs binding to BSA is only enthalpically favored and both enthalpically and entropically favored for HSA. • Fluorescence quenching data suggest dynamic collisions and the formation of ground-state protein-drug complexes. • DSC data show multiple sequential unfolding events and strong drug stabilization effects. - Abstract: Serum albumins are ubiquitous proteins able to bind a variety of exogenous and endogenous ligands including hydrophobic pharmaceuticals. Most drugs bind to two very active binding regions located within sub-domains IIA and IIIA of the protein, also known as Sudlow’s sites. The drug binding mode of serum albumin provides important pharmacological information and influences drug solubility, efficacy, biological distribution, and excretion. Here, the binding thermodynamics of Diclofenac and Naproxen, two non-steroidal anti-inflammatory drugs (NSAIDs) to bovine and human serum albumins (BSA and HSA, respectively) were studied by isothermal titration calorimetry (ITC), fluorescence spectroscopy and differential scanning calorimetry (DSC). The ITC data show that the binding affinity (K) of Diclofenac to BSA and HSA is on the order of 10 4 M −1 with a binding stoichiometry (n) of 2 drug molecules per protein. Naproxen binding to the two proteins exhibits a different profile with K and n values on the order of 10 6 M −1 and 0.75 for BSA, and 10 5 M −1 and 3 for HSA, respectively. The binding of the two drugs to HSA is found to be both enthalpically and entropically favored suggesting the formation of hydrogen bonds and van der Waals hydrophobic effects. Binding of the two drugs to BSA is only enthalpically favored with an unfavorable entropy term. Significant enthalpy–entropy compensation

  19. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  20. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Experimental and theoretical study on the binding of 2-mercaptothiazoline to bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yue, E-mail: tengyue@jiangnan.edu.cn; Wang, Xiang; Zou, Luyi; Huang, Ming; Du, Xianzheng

    2015-05-15

    2-Mercaptothiazoline (MTZ) is widely utilized as a brightening and stabilization agent, corrosion inhibitor and antifungal reagent. The residue of MTZ in the environment is potentially hazardous to human health. In this study, the binding mode of MTZ with bovine serum albumin (BSA) was investigated using spectroscopic and molecular docking methods under physiological conditions. MTZ could spontaneously bind with BSA through hydrogen bond and van der Waals interactions with one binding site. The site marker displacement experiments and the molecular docking revealed that MTZ bound into site II (subdomain IIIA) of BSA, which further resulted in some backbone structures and microenvironmental changes of BSA. This work is helpful for understanding the transportation, distribution and toxicity effects of MTZ in blood. - Highlights: • The mechanism was explored by multiple spectroscopic and molecular docking methods. • MTZ can spontaneously bind with BSA at subdomain IIIA (site II). • MTZ can lead to some conformational changes of BSA.

  2. Trials for product's data management through RosettaNet using RosettaNet Technical Dictionary (RNTD) and Partner Interface Processes (PIP) 2A10

    Energy Technology Data Exchange (ETDEWEB)

    Shinya, H. [NEC Electronics Corp. (Japan); Katsumi, S. [Sony Corporation Corp. (Japan); Seigo, I. [Toshiba Corp. (Japan); Eita, I. [Fujitsu LTD. (Japan); Hisashi, F.; Mackin, J.W. [RosettaNet (Japan)

    2004-07-01

    We face a major challenge in identifying and tracking the amount of hazardous materials contained in electric and electronic products (EE) in accordance with various changing laws or customers' demands. Hence, the Material Composition Milestone Program (MatComp) was established in RosettaNet (USA) on Jan 2003. Many major electronics companies including NOKIA, Sony, NEC Electronics, Toshiba, Fujitsu, etc. are involved in the MatComp program. In addition, RosettaNet Japan has established an environmental information team to develop dictionaries for chemicals listed in the Joint Industry Guide (draft) which was published September, 2003. The RosettaNet RNTD and PIP 2A10 enable product material composition notification between trading partners. 2A10 allows us to describe the product in a hierarchical structure along with product itself in a method similar to IMDS's requirements. In this paper, we will demonstrate the advantage of using RosettaNet protocol for product data exchange between trading partners. Our goal is to complete a full-automated transaction to a design for environment (DfE). (orig.)

  3. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  4. Vitamin D binding protein: a multifunctional protein of clinical importance.

    Science.gov (United States)

    Speeckaert, Marijn M; Speeckaert, Reinhart; van Geel, Nanja; Delanghe, Joris R

    2014-01-01

    Since the discovery of group-specific component and its polymorphism by Hirschfeld in 1959, research has put spotlight on this multifunctional transport protein (vitamin D binding protein, DBP). Besides the transport of vitamin D metabolites, DBP is a plasma glycoprotein with many important functions, including sequestration of actin, modulation of immune and inflammatory responses, binding of fatty acids, and control of bone development. A considerable DBP polymorphism has been described with a specific allele distribution in different geographic area. Multiple studies have shed light on the interesting relationship between polymorphisms of the DBP gene and the susceptibility to diseases. In this review, we give an overview of the multifunctional character of DBP and describe the clinical importance of DBP and its polymorphisms. Finally, we discuss the possibilities to use DBP as a novel therapeutic agent.

  5. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  6. Comparing apples and oranges: fold-change detection of multiple simultaneous inputs.

    Directory of Open Access Journals (Sweden)

    Yuval Hart

    Full Text Available Sensory systems often detect multiple types of inputs. For example, a receptor in a cell-signaling system often binds multiple kinds of ligands, and sensory neurons can respond to different types of stimuli. How do sensory systems compare these different kinds of signals? Here, we consider this question in a class of sensory systems - including bacterial chemotaxis- which have a property known as fold-change detection: their output dynamics, including amplitude and response time, depends only on the relative changes in signal, rather than absolute changes, over a range of several decades of signal. We analyze how fold-change detection systems respond to multiple signals, using mathematical models. Suppose that a step of fold F1 is made in input 1, together with a step of F2 in input 2. What total response does the system provide? We show that when both input signals impact the same receptor with equal number of binding sites, the integrated response is multiplicative: the response dynamics depend only on the product of the two fold changes, F1F2. When the inputs bind the same receptor with different number of sites n1 and n2, the dynamics depend on a product of power laws, [Formula: see text]. Thus, two input signals which vary over time in an inverse way can lead to no response. When the two inputs affect two different receptors, other types of integration may be found and generally the system is not constrained to respond according to the product of the fold-change of each signal. These predictions can be readily tested experimentally, by providing cells with two simultaneously varying input signals. The present study suggests how cells can compare apples and oranges, namely by comparing each to its own background level, and then multiplying these two fold-changes.

  7. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets

    DEFF Research Database (Denmark)

    Nielsen, Morten; Andreatta, Massimo

    2016-01-01

    Background: Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells.Results: Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining informat...... specificities and ligand length scales, and demonstrated how this approach significantly improves the accuracy for prediction of peptide binding and identification of MHC ligands. The method is available at www.cbs.dtu.dk/services/NetMHCpan-3.0....

  8. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization

    NARCIS (Netherlands)

    Zelazny, E.; Borst, J.W.; Muylaert, M.; Batoko, H.; Hemminga, M.A.; Chaumont, F.

    2007-01-01

    Zea mays plasma membrane intrinsic proteins (ZmPIPs) fall into two groups, ZmPIP1s and ZmPIP2s, that exhibit different water channel activities when expressed in Xenopus oocytes. ZmPIP1s are inactive, whereas ZmPIP2s induce a marked increase in the membrane osmotic water permeability coefficient,

  9. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  10. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    Science.gov (United States)

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  11. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug-binding site

    OpenAIRE

    Handing, Katarzyna B.; Shabalin, Ivan G.; Szlachta, Karol; Majorek, Karolina A.; Minor, Wladek

    2016-01-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1 ?. Cetirizine is bound in two sites ? a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizi...

  12. Determinants of RNA binding and translational repression by the Bicaudal-C regulatory protein.

    Science.gov (United States)

    Zhang, Yan; Park, Sookhee; Blaser, Susanne; Sheets, Michael D

    2014-03-14

    Bicaudal-C (Bic-C) RNA binding proteins function as important translational repressors in multiple biological contexts within metazoans. However, their RNA binding sites are unknown. We recently demonstrated that Bic-C functions in spatially regulated translational repression of the xCR1 mRNA during Xenopus development. This repression contributes to normal development by confining the xCR1 protein, a regulator of key signaling pathways, to specific cells of the embryo. In this report, we combined biochemical approaches with in vivo mRNA reporter assays to define the minimal Bic-C target site within the xCR1 mRNA. This 32-nucleotide Bic-C target site is predicted to fold into a stem-loop secondary structure. Mutational analyses provided evidence that this stem-loop structure is important for Bic-C binding. The Bic-C target site was sufficient for Bic-C mediated repression in vivo. Thus, we describe the first RNA binding site for a Bic-C protein. This identification provides an important step toward understanding the mechanisms by which evolutionarily conserved Bic-C proteins control cellular function in metazoans.

  13. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing; Gurung, Buddha; Wan, Bingbing; Matkar, Smita; Veniaminova, Natalia A.; Wan, Ke; Merchant, Juanita L.; Hua, Xianxin; Lei, Ming (Michigan); (Michigan-Med); (UPENN-MED)

    2013-04-08

    Menin is a tumour suppressor protein whose loss or inactivation causes multiple endocrine neoplasia 1 (MEN1), a hereditary autosomal dominant tumour syndrome that is characterized by tumorigenesis in multiple endocrine organs. Menin interacts with many proteins and is involved in a variety of cellular processes. Menin binds the JUN family transcription factor JUND and inhibits its transcriptional activity. Several MEN1 missense mutations disrupt the menin-JUND interaction, suggesting a correlation between the tumour-suppressor function of menin and its suppression of JUND-activated transcription. Menin also interacts with mixed lineage leukaemia protein 1 (MLL1), a histone H3 lysine 4 methyltransferase, and functions as an oncogenic cofactor to upregulate gene transcription and promote MLL1-fusion-protein-induced leukaemogenesis. A recent report on the tethering of MLL1 to chromatin binding factor lens epithelium-derived growth factor (LEDGF) by menin indicates that menin is a molecular adaptor coordinating the functions of multiple proteins. Despite its importance, how menin interacts with many distinct partners and regulates their functions remains poorly understood. Here we present the crystal structures of human menin in its free form and in complexes with MLL1 or with JUND, or with an MLL1-LEDGF heterodimer. These structures show that menin contains a deep pocket that binds short peptides of MLL1 or JUND in the same manner, but that it can have opposite effects on transcription. The menin-JUND interaction blocks JUN N-terminal kinase (JNK)-mediated JUND phosphorylation and suppresses JUND-induced transcription. In contrast, menin promotes gene transcription by binding the transcription activator MLL1 through the peptide pocket while still interacting with the chromatin-anchoring protein LEDGF at a distinct surface formed by both menin and MLL1.

  14. Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy.

    Science.gov (United States)

    Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A

    2015-10-31

    Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicted dual binding modes across multiple bacterial species, our approach opens up new possibilities for understanding assembly and catalytic properties of a broad range of multi-enzyme complexes.

  15. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation.

    Science.gov (United States)

    Peng, Wenjie; Bouwman, Kim M; McBride, Ryan; Grant, Oliver C; Woods, Robert J; Verheije, Monique H; Paulson, James C; de Vries, Robert P

    2018-05-15

    All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses. IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret

  16. Distinct mechanisms of a phosphotyrosyl peptide binding to two SH2 domains.

    Science.gov (United States)

    Pang, Xiaodong; Zhou, Huan-Xiang

    2014-05-01

    Protein phosphorylation is very common post-translational modification, catalyzed by kinases, for signaling and regulation. Phosphotyrosines frequently target SH2 domains. The spleen tyrosine kinase (Syk) is critical for tyrosine phosphorylation of multiple proteins and for regulation of important pathways. Phosphorylation of both Y342 and Y346 in Syk linker B is required for optimal signaling. The SH2 domains of Vav1 and PLC-γ both bind this doubly phosphorylated motif. Here we used a recently developed method to calculate the effects of Y342 and Y346 phosphorylation on the rate constants of a peptide from Syk linker B binding to the SH2 domains of Vav1 and PLC-γ. The predicted effects agree well with experimental observations. Moreover, we found that the same doubly phosphorylated peptide binds the two SH2 domains via distinct mechanisms, with apparent rigid docking for Vav1 SH2 and dock-and-coalesce for PLC-γ SH2.

  17. Structural and binding studies of SAP-1 protein with heparin.

    Science.gov (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity. © 2014 John Wiley & Sons A/S.

  18. Multiplexed evaluation of capture agent binding kinetics using arrays of silicon photonic microring resonators.

    Science.gov (United States)

    Byeon, Ji-Yeon; Bailey, Ryan C

    2011-09-07

    High affinity capture agents recognizing biomolecular targets are essential in the performance of many proteomic detection methods. Herein, we report the application of a label-free silicon photonic biomolecular analysis platform for simultaneously determining kinetic association and dissociation constants for two representative protein capture agents: a thrombin-binding DNA aptamer and an anti-thrombin monoclonal antibody. The scalability and inherent multiplexing capability of the technology make it an attractive platform for simultaneously evaluating the binding characteristics of multiple capture agents recognizing the same target antigen, and thus a tool complementary to emerging high-throughput capture agent generation strategies.

  19. Competitive protein binding assay

    International Nuclear Information System (INIS)

    Kaneko, Toshio; Oka, Hiroshi

    1975-01-01

    The measurement of cyclic GMP (cGMP) by competitive protein binding assay was described and discussed. The principle of binding assay was represented briefly. Procedures of our method by binding protein consisted of preparation of cGMP binding protein, selection of 3 H-cyclic GMP on market, and measurement procedures. In our method, binding protein was isolated from the chrysalis of silk worm. This method was discussed from the points of incubation medium, specificity of binding protein, the separation of bound cGMP from free cGMP, and treatment of tissue from which cGMP was extracted. cGMP existing in the tissue was only one tenth or one scores of cGMP, and in addition, cGMP competed with cGMP in binding with binding protein. Therefore, Murad's technique was applied to the isolation of cGMP. This method provided the measurement with sufficient accuracy; the contamination by cAMP was within several per cent. (Kanao, N.)

  20. Cupryphans, metal-binding, redox-active, redesigned conopeptides.

    Science.gov (United States)

    Barba, Marco; Sobolev, Anatoli P; Romeo, Cristina; Schininà, M Eugenia; Pietraforte, Donatella; Mannina, Luisa; Musci, Giovanni; Polticelli, Fabio

    2009-03-01

    Contryphans are bioactive peptides, isolated from the venom of marine snails of the genus Conus, which are characterized by the short length of the polypeptide chain and the high degree of unusual post-translational modifications. The cyclization of the polypeptide chain through a single disulphide bond, the presence of two conserved Pro residues, and the epimerization of a Trp/Leu residue confer to Contryphans a stable and well-defined structure in solution, conserved in all members of the family, and tolerant to multiple substitutions. The potential of Contryphans as scaffolds for the design of redox-active (macro)molecules was tested by engineering a copper-binding site on two different variants of the natural peptide Contryphan-Vn. The binding site was designed by computational modeling, and the redesigned peptides were synthesized and characterized by optical, fluorescence, electron spin resonance, and nuclear magnetic resonance spectroscopy. The novel peptides, named Cupryphan and Arg-Cupryphan, bind Cu(2+) ions with a 1:1 stoichiometry and a K(d) in the 100 nM range. Other divalent metals (e.g., Zn(2+) and Mg(2+)) are bound with much lower affinity. In addition, Cupryphans catalyze the dismutation of superoxide anions with an activity comparable to other nonpeptidic superoxide dismutase mimics. We conclude that the Contryphan motif represents a natural robust scaffold which can be engineered to perform different functions, providing additional means for the design of catalytically active mini metalloproteins.

  1. In-vitro DNA binding and cleavage studies with pBR322 of N,N-Bis(3{beta}-acetoxy-5{alpha}-cholest-6-yl-idene)hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Zishan [School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Muddassir, Mohd [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India); Sulaiman, Othman [School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Arjmand, Farukh [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2012-08-15

    The DNA binding studies of the triterpenoid derivative, cholesterol, N,N-Bis(3{beta}-acetoxy-5{alpha}-cholest-6-yl-idene)hydrazine (L) with CT DNA were carried out by employing different optical methods viz, UV-vis and fluorescence spectroscopy. The ligand binds to DNA through hydrophobic interaction with K{sub b} value found to be 4.7 Multiplication-Sign 10{sup 3} M{sup -1}. These observations have been validated also by fluorescence spectroscopy. (L) exhibits a remarkable DNA cleavage activity with pBR322 DNA in the presence of different activators and the DNA is probably cleaved by an other than oxidative mechanism, possibly by a discernable hydrolytic pathway. In the presence of major and minor groove binding agents, (L) prefers major groove binding of the DNA. - Highlights: Black-Right-Pointing-Pointer DNA binding studies of the triterpenoid derivative, cholesterol, N,N-Bis(3{beta}-acetoxy-5{alpha}-cholest-6-yl-idene)hydrazine. Black-Right-Pointing-Pointer The ligand binds to DNA through hydrophobic interaction with K{sub b} value found to be 4.7 Multiplication-Sign 10{sup 3} M{sup -1}. Black-Right-Pointing-Pointer DNA is probably cleaved by an other than oxidative mechanism, possibly by a discernable hydrolytic pathway. Black-Right-Pointing-Pointer In the presence of major and minor groove binding agents, the (L) prefers major groove binding of the DNA.

  2. A Heparin Binding Motif Rich in Arginine and Lysine is the Functional Domain of YKL-40

    Directory of Open Access Journals (Sweden)

    Nipaporn Ngernyuang

    2018-02-01

    Full Text Available The heparin-binding glycoprotein YKL-40 (CHI3L1 is intimately associated with microvascularization in multiple human diseases including cancer and inflammation. However, the heparin-binding domain(s pertinent to the angiogenic activity have yet been identified. YKL-40 harbors a consensus heparin-binding motif that consists of positively charged arginine (R and lysine (K (RRDK; residues 144–147; but they don't bind to heparin. Intriguingly, we identified a separate KR-rich domain (residues 334–345 that does display strong heparin binding affinity. A short synthetic peptide spanning this KR-rich domain successfully competed with YKL-40 and blocked its ability to bind heparin. Three individual point mutations, where alanine (A substituted for K or R (K337A, K342A, R344A, led to remarkable decreases in heparin-binding ability and angiogenic activity. In addition, a neutralizing anti-YKL-40 antibody that targets these residues and prevents heparin binding impeded angiogenesis in vitro. MDA-MB-231 breast cancer cells engineered to express ectopic K337A, K342A or R344A mutants displayed reduced tumor development and compromised tumor vessel formation in mice relative to control cells expressing wild-type YKL-40. These data reveal that the KR-rich heparin-binding motif is the functional heparin-binding domain of YKL-40. Our findings shed light on novel molecular mechanisms underlying endothelial cell angiogenesis promoted by YKL-40 in a variety of diseases.

  3. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.

    Science.gov (United States)

    Kim, Sunmi; Kang, Jung-Youn; Cho, Dong-Im; Park, Ji Hye; Kim, Soo Young

    2004-10-01

    Phytohormone abscisic acid (ABA) regulates stress-responsive gene expression during vegetative growth, which is mediated largely by cis-elements sharing the ACGTGGC consensus. Although many transcription factors are known to bind the elements in vitro, only a few have been demonstrated to have in vivo functions and their specific roles in ABA/stress responses are mostly unknown. Here, we report that ABF2, an ABF subfamily member of bZIP proteins interacting with the ABA-responsive elements, is involved in ABA/stress responses. Its overexpression altered ABA sensitivity, dehydration tolerance, and the expression levels of ABA/stress-regulated genes. Furthermore, ABF2 overexpression promoted glucose-induced inhibition of seedling development, whereas its mutation impaired glucose response. The reduced sugar sensitivity was not observed with mutants of two other ABF family members, ABF3 and ABF4. Instead, these mutants displayed defects in ABA, salt, and dehydration responses, which were not observed with the abf2 mutant. Our data indicate distinct roles of ABF family members: whereas ABF3 and ABF4 play essential roles in ABA/stress responses, ABF2 is required for normal glucose response. We also show that ABF2 overexpression affects multiple stress tolerance.

  4. Inositol lipid turnover and compartmentation in canine trachealis smooth muscle

    International Nuclear Information System (INIS)

    Baron, C.B.; Pring, M.; Coburn, R.F.

    1989-01-01

    We established conditions for the study of metabolism and compartmentation of inositol phospholipids in canine trachealis muscle. Unstimulated muscle was incubated with myo-[3H]inositol for 30 min at 37 degrees C which resulted in labeling of the tissue free myo-inositol pool, whereas only a small amount of radioactivity was incorporated into inositol phospholipids or inositol phosphates. After addition of 5.5 microM carbachol, phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2), specific radioactivities increased exponentially, reaching apparent constant values in 180-240 min. Initial rates of increases in PI, PIP, and PIP2 specific radioactivities were 39, 32, and 66 times that measured in unstimulated muscle. Metabolic flux rates (nmol.100 nmol total lipid Pi-1.min-1) during development of force averaged 0.42 +/- 0.09 and during force maintenance averaged 0.14 +/- 0.01. Fractions of total PI, PIP, and PIP2 pools that were linked to muscarinic cholinergic activation were estimated to be 0.97, 0.85, and 0.65, respectively. Initial rates of increase in specific radioactivities and specific radioactivities during carbachol activation were similar in PI, PIP, and PIP2 fast active compartments, suggesting metabolic flux from PI to PIP to PIP2 was in near chemical equilibrium. Turnover times for PI, PIP, and PIP2 fast active compartments were estimated to be 21, 1.6, and 4.0 min, respectively

  5. CCL2 binding is CCR2 independent in primary adult human astrocytes.

    Science.gov (United States)

    Fouillet, A; Mawson, J; Suliman, O; Sharrack, B; Romero, I A; Woodroofe, M N

    2012-02-09

    Chemokines are low relative molecular mass proteins, which have chemoattractant actions on many cell types. The chemokine, CCL2, has been shown to play a major role in the recruitment of monocytes in central nervous system (CNS) lesions in multiple sclerosis (MS). Since resident astrocytes constitute a major source of chemokine synthesis including CCL2, we were interested to assess the regulation of CCL2 by astrocytes. We showed that CCL2 bound to the cell surface of astrocytes and binding was not modulated by inflammatory conditions. However, CCR2 protein was not detected nor was activation of the classical CCR2 downstream signaling pathways. Recent studies have shown that non-signaling decoy chemokine receptors bind and modulate the expression of chemokines at site of inflammation. Here, we show that the D6 chemokine decoy receptor is constitutively expressed by primary human adult astrocytes at both mRNA and protein level. In addition, CCL3, which binds to D6, but not CCL19, which does not bind to D6, displaced CCL2 binding to astrocytes; indicating that CCL2 may bind to this cell type via the D6 receptor. Our results suggest that CCL2 binding to primary adult human astrocytes is CCR2-independent and is likely to be mediated via the D6 decoy chemokine receptor. Therefore we propose that astrocytes are implicated in both the establishment of chemokine gradients for the migration of leukocytes into and within the CNS and in the regulation of CCL2 levels at inflammatory sites in the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Rab11-family of interacting protein 2 associates with chlamydial inclusions through its Rab-binding domain and promotes bacterial multiplication.

    Science.gov (United States)

    Leiva, Natalia; Capmany, Anahí; Damiani, María Teresa

    2013-01-01

    Chlamydia trachomatis, an obligate intracellular pathogen, survives within host cells in a special compartment named 'inclusion' and takes advantage of host vesicular transport pathways for its growth and replication. Rab GTPases are key regulatory proteins of intracellular trafficking. Several Rabs, among them Rab11 and Rab14, are implicated in chlamydial development. FIP2, a member of the Rab11-Family of Interacting Proteins, presents at the C-terminus a Rab-binding domain that interacts with both Rab11 and Rab14. In this study, we determined and characterized the recruitment of endogenous and GFP-tagged FIP2 to the chlamydial inclusions. The recruitment of FIP2 is specific since other members of the Rab11-Family of Interacting Proteins do not associate with the chlamydial inclusions. The Rab-binding domain of FIP2 is essential for its association. Our results indicate that FIP2 binds to Rab11 at the chlamydial inclusion membrane through its Rab-binding domain. The presence of FIP2 at the chlamydial inclusion favours the recruitment of Rab14. Furthermore, our results show that FIP2 promotes inclusion development and bacterial replication. In agreement, the silencing of FIP2 decreases the bacterial progeny. C. trachomatis likely recruits FIP2 to hijack host intracellular trafficking to redirect vesicles full of nutrients towards the inclusion. © 2012 Blackwell Publishing Ltd.

  7. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    International Nuclear Information System (INIS)

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-01

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP 2 and PIP 3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  8. Cytoplasmic binding and disposition kinetics of diclofenac in the isolated perfused rat liver

    Science.gov (United States)

    Weiss, Michael; Kuhlmann, Olaf; Hung, Daniel Y; Roberts, Michael S

    2000-01-01

    The binding kinetics of diclofenac to hepatocellular structures were evaluated in the perfused rat liver using the multiple indicator dilution technique and a stochastic model of organ transit time density.The single-pass, in situ rat liver preparation was perfused with buffer solution (containing 2% albumin) at 30 ml min−1. Diclofenac and [14C]-sucrose (extracellular reference) were injected simultaneously as a bolus dose into the portal vein (six experiments in three rats). An analogous series of experiments was performed with [14C]-diclofenac and [3H]-sucrose.The diclofenac outflow data were analysed using three models of intracellular distribution kinetics, assuming (1) instantaneous distribution and binding (well-mixed model), (2) ‘slow' binding at specific intracellular sites after instantaneous distribution throughout the cytosol (slow binding model), and (3) ‘slowing' of cytoplasmic diffusion due to instantaneous binding (slow diffusion model).The slow binding model provided the best description of the data. The rate constants for cellular influx and sequestration were 0.126±0.026 and 0.013±0.009 s−1, respectively. The estimated ratio of cellular initial distribution volume to extracellular volume of 2.82 indicates an almost instantaneous distribution in the cellular water space, while the corresponding ratio of 5.54 estimated for the apparent tissue distribution volume suggests a relatively high hepatocellular binding. The non-instantaneous intracellular equilibration process was characterized by time constants of the binding and unbinding process of 53.8 and 49.5 s, respectively. The single-pass availability of diclofenac was 86%. The results obtained with [14C]-diclofenac and [3H]-sucrose were not statistically different. PMID:10903973

  9. The molecular mechanisms of plant plasma membrane intrinsic proteins trafficking and stress response.

    Science.gov (United States)

    Wang, Xing; Zhang, Ji-long; Feng, Xiu-xiu; Li, Hong-jie; Zhang, Gen-fa

    2017-04-20

    Plasma membrane intrinsic proteins (PIPs) are plant channel proteins located on the plasma membrane. PIPs transfer water, CO 2 and small uncharged solutes through the plasma membrane. PIPs have high selectivity to substrates, suggestive of a central role in maintaining cellular water balance. The expression, activity and localization of PIPs are regulated at the transcriptional and post-translational levels, and also affected by environmental factors. Numerous studies indicate that the expression patterns and localizations of PIPs can change in response to abiotic stresses. In this review, we summarize the mechanisms of PIP trafficking, transcriptional and post-translational regulations, and abiotic stress responses. Moreover, we also discuss the current research trends and future directions on PIPs.

  10. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    Science.gov (United States)

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  11. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    Science.gov (United States)

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Application of quantitative structure-activity relationship to the determination of binding constant based on fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Wen Yingying [Department of Applied Chemistry, Yantai University, Yantai 264005 (China); Liu Huitao, E-mail: liuht-ytu@163.co [Department of Applied Chemistry, Yantai University, Yantai 264005 (China); Luan Feng; Gao Yuan [Department of Applied Chemistry, Yantai University, Yantai 264005 (China)

    2011-01-15

    Quantitative structure-activity relationship (QSAR) model was used to predict and explain binding constant (log K) determined by fluorescence quenching. This method allowed us to predict binding constants of a variety of compounds with human serum albumin (HSA) based on their structures alone. Stepwise multiple linear regression (MLR) and nonlinear radial basis function neural network (RBFNN) were performed to build the models. The statistical parameters provided by the MLR model (R{sup 2}=0.8521, RMS=0.2678) indicated satisfactory stability and predictive ability while the RBFNN predictive ability is somewhat superior (R{sup 2}=0.9245, RMS=0.1736). The proposed models were used to predict the binding constants of two bioactive components in traditional Chinese medicines (isoimperatorin and chrysophanol) whose experimental results were obtained in our laboratory and the predicted results were in good agreement with the experimental results. This QSAR approach can contribute to a better understanding of structural factors of the compounds responsible for drug-protein interactions, and can be useful in predicting the binding constants of other compounds. - Research Highlights: QSAR models for binding constants of some compounds to HSA were developed. The models provide a simple and straightforward way to predict binding constant. QSAR can give some insight into structural features related to binding behavior.

  13. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  14. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Wong, Man-Hon; Ballester, Pedro J

    2014-08-27

    State-of-the-art protein-ligand docking methods are generally limited by the traditionally low accuracy of their scoring functions, which are used to predict binding affinity and thus vital for discriminating between active and inactive compounds. Despite intensive research over the years, classical scoring functions have reached a plateau in their predictive performance. These assume a predetermined additive functional form for some sophisticated numerical features, and use standard multivariate linear regression (MLR) on experimental data to derive the coefficients. In this study we show that such a simple functional form is detrimental for the prediction performance of a scoring function, and replacing linear regression by machine learning techniques like random forest (RF) can improve prediction performance. We investigate the conditions of applying RF under various contexts and find that given sufficient training samples RF manages to comprehensively capture the non-linearity between structural features and measured binding affinities. Incorporating more structural features and training with more samples can both boost RF performance. In addition, we analyze the importance of structural features to binding affinity prediction using the RF variable importance tool. Lastly, we use Cyscore, a top performing empirical scoring function, as a baseline for comparison study. Machine-learning scoring functions are fundamentally different from classical scoring functions because the former circumvents the fixed functional form relating structural features with binding affinities. RF, but not MLR, can effectively exploit more structural features and more training samples, leading to higher prediction performance. The future availability of more X-ray crystal structures will further widen the performance gap between RF-based and MLR-based scoring functions. This further stresses the importance of substituting RF for MLR in scoring function development.

  15. To bind or not to bind? Different temporal binding effects from voluntary pressing and releasing actions.

    Science.gov (United States)

    Zhao, Ke; Chen, Yu-Hsin; Yan, Wen-Jing; Fu, Xiaolan

    2013-01-01

    Binding effect refers to the perceptual attraction between an action and an outcome leading to a subjective compression of time. Most studies investigating binding effects exclusively employ the "pressing" action without exploring other types of actions. The present study addresses this issue by introducing another action, releasing action or the voluntary lifting of the finger/wrist, to investigate the differences between voluntary pressing and releasing actions. Results reveal that releasing actions led to robust yet short-lived temporal binding effects, whereas pressing condition had steady temporal binding effects up to super-seconds. The two actions also differ in sensitivity to changes in temporal contiguity and contingency, which could be attributed to the difference in awareness of action. Extending upon current models of "willed action," our results provide insights from a temporal point of view and support the concept of a dual system consisting of predictive motor control and top-down mechanisms.

  16. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    International Nuclear Information System (INIS)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von

    2007-01-01

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand (α/β-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available

  17. Detecting the limits of regulatory element conservation anddivergence estimation using pairwise and multiple alignments

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, Daniel A.; Moses, Alan M.; Iyer, Venky N.; Eisen,Michael B.

    2006-08-14

    Background: Molecular evolutionary studies of noncodingsequences rely on multiple alignments. Yet how multiple alignmentaccuracy varies across sequence types, tree topologies, divergences andtools, and further how this variation impacts specific inferences,remains unclear. Results: Here we develop a molecular evolutionsimulation platform, CisEvolver, with models of background noncoding andtranscription factor binding site evolution, and use simulated alignmentsto systematically examine multiple alignment accuracy and its impact ontwo key molecular evolutionary inferences: transcription factor bindingsite conservation and divergence estimation. We find that the accuracy ofmultiple alignments is determined almost exclusively by the pairwisedivergence distance of the two most diverged species and that additionalspecies have a negligible influence on alignment accuracy. Conservedtranscription factor binding sites align better than surroundingnoncoding DNA yet are often found to be misaligned at relatively shortdivergence distances, such that studies of binding site gain and losscould easily be confounded by alignment error. Divergence estimates frommultiple alignments tend to be overestimated at short divergencedistances but reach a tool specific divergence at which they cease toincrease, leading to underestimation at long divergences. Our moststriking finding was that overall alignment accuracy, binding sitealignment accuracy and divergence estimation accuracy vary greatly acrossbranches in a tree and are most accurate for terminal branches connectingsister taxa and least accurate for internal branches connectingsub-alignments. Conclusions: Our results suggest that variation inalignment accuracy can lead to errors in molecular evolutionaryinferences that could be construed as biological variation. Thesefindings have implications for which species to choose for analyses, whatkind of errors would be expected for a given set of species and howmultiple alignment tools and

  18. Structural properties of the intrinsically disordered, multiple calcium ion-binding otolith matrix macromolecule-64 (OMM-64).

    Science.gov (United States)

    Poznar, Monika; Hołubowicz, Rafał; Wojtas, Magdalena; Gapiński, Jacek; Banachowicz, Ewa; Patkowski, Adam; Ożyhar, Andrzej; Dobryszycki, Piotr

    2017-11-01

    Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Community pharmacists' evaluation of potentially inappropriate prescribing in older community-dwelling patients with polypharmacy: observational research based on the GheOP³S tool.

    Science.gov (United States)

    Tommelein, Eline; Mehuys, Els; Van Tongelen, Inge; Petrovic, Mirko; Somers, Annemie; Colin, Pieter; Demarche, Sophie; Van Hees, Thierry; Christiaens, Thierry; Boussery, Koen

    2017-09-01

    In this study, we aimed to (i) determine the prevalence of potentially inappropriate prescribing (PIP) in community-dwelling older polypharmacy patients using the Ghent Older People's Prescriptions community-Pharmacy Screening (GheOP³S) tool, (ii) identify the items that account for the highest proportion of PIP and (iii) identify the patient variables that may influence the occurrence of PIP. Additionally, pharmacist-physician contacts emerging from PIP screening with the GheOP³S tool and feasibility of the GheOP³S tool in daily practice were evaluated. A prospective observational study was carried out between December 2013 and July 2014 in 204 community pharmacies in Belgium. Patients were eligible if they were (i) ≥70 years, (ii) community-dwelling, (iii) using ≥5 chronic drugs, (iv) a regular visitor of the pharmacy and (v) understanding Dutch or French. Community pharmacists used a structured interview to obtain demographic data and medication use and subsequently screened for PIP using the GheOP³S tool. A Poisson regression was used to investigate the association between different covariates and the number of PIP. In 987 (97%) of 1016 included patients, 3721 PIP items were detected (median of 3 per patient; inter quartile range: 2-5). Most frequently involved with PIP are drugs for the central nervous system such as hypnosedatives, antipsychotics and antidepressants. Risk factors for a higher PIP prevalence appeared to be a higher number of drugs (30% extra PIPs per 5 extra drugs), female gender (20% extra PIPs), higher body mass index (BMI, 20% extra PIPs per 10-unit increase in BMI) and poorer functional status (30% extra PIPs with 6-point increase). The feasibility of the GheOP³S tool was acceptable although digitalization of the tool would improve implementation. Despite detecting at least one PIP in 987 patients, only 39 physicians were contacted by the community pharmacists to discuss the items. A high prevalence of PIP in community

  20. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  1. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    Science.gov (United States)

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The ligand-binding profile of HARE: hyaluronan and chondroitin sulfates A, C, and D bind to overlapping sites distinct from the sites for heparin, acetylated low-density lipoprotein, dermatan sulfate, and CS-E.

    Science.gov (United States)

    Harris, Edward N; Weigel, Paul H

    2008-08-01

    The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341-17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. (125)I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE.

  3. An intact sequence-specific DNA-binding domain is required for human cytomegalovirus-mediated sequestration of p53 and may promote in vivo binding to the viral genome during infection

    International Nuclear Information System (INIS)

    Rosenke, Kyle; Samuel, Melanie A.; McDowell, Eric T.; Toerne, Melissa A.; Fortunato, Elizabeth A.

    2006-01-01

    The p53 protein is stabilized during infection of primary human fibroblasts with human cytomegalovirus (HCMV). However, the p53 in HCMV-infected cells is unable to activate its downstream targets. HCMV accomplishes this inactivation, at least in part, by sequestering p53 into viral replication centers within the cell's nucleus soon after they are established. In order to better understand the interplay between HCMV and p53 and the mechanism of sequestration, we constructed a panel of mutant p53-GFP fusion constructs for use in transfection/infection experiments. These mutants affected several post-translational modification sites and several sites within the central sequence-specific DNA-binding domain of the protein. Two categories of p53 sequestration were observed when the mutant constructs were transfected into primary fibroblasts and then infected at either high or low multiplicity. The first category, including all of the post-translational modification mutants, showed sequestration comparable to a wild-type (wt) control, while the second category, mutants affecting the DNA-binding core, were not specifically sequestered above control GFP levels. This suggested that the DNA-binding ability of the protein was required for sequestration. When the HCMV genome was analyzed for p53 consensus binding sites, 21 matches were found, which localized either to the promoters or the coding regions of viral proteins involved in DNA replication and processing as well as structural proteins. An analysis of in vivo binding to these identified sites via chromatin immunoprecipitation assays revealed differential binding to several of the sites over the course of infection

  4. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  5. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    International Nuclear Information System (INIS)

    Hopkins, Mark A.; King, Lyon B.

    2014-01-01

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations

  6. Feature Binding of Common Everyday Items Is Not Affected by Age

    Directory of Open Access Journals (Sweden)

    Serge Hoefeijzers

    2017-05-01

    Full Text Available There is a surge of studies confirming that old age spares the ability to bind in visual working memory (VWM multiple features within singular object representations. Furthermore, it has been suggested that such ability may also be independent of the cultural background of the assessed individual. However, this evidence has been gathered with tasks that use arbitrary bindings of unfamiliar features. Whether age spares memory binding functions when the memoranda are features of everyday life objects remains less well explored. The present study investigated the influence of age, memory delay, and education, on conjunctive binding functions responsible for representing everyday items in VWM. We asked 32 healthy young and 41 healthy older adults to perform a memory binding task. During the task, participants saw visual arrays of objects, colours, or coloured objects presented for 6 s. Immediately after they were asked either to select the objects or the colours that were presented during the study display from larger sets of objects or colours, or to recombine them by selecting from such sets the objects and their corresponding colours. This procedure was repeated immediately after but this time providing a 30 s unfiled delay. We manipulated familiarity by presenting congruent and incongruent object-colour pairings. The results showed that the ability to bind intrinsic features in VWM does not decline with age even when these features belong to everyday items and form novel or well-known associations. Such preserved memory binding abilities held across memory delays. The impact of feature congruency on item-recognition appears to be greater in older than in younger adults. This suggests that long-term memory (LTM supports binding functions carried out in VWM for familiar everyday items and older adults still benefit from this LTM support. We have expanded the evidence supporting the lack of age effects on VWM binding functions to new feature and

  7. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    Science.gov (United States)

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  8. In silico studies on structure-function of DNA GCC- box binding domain of brassica napus DREB1 protein

    International Nuclear Information System (INIS)

    Qamarunnisa, S.; Hussain, M.

    2012-01-01

    DREB1 is a transcriptional factor, which selectively binds with the promoters of the genes involved in stress response in the plants. Homology of DREB protein and its binding element have been detected in the genome of many plants. However, only a few reports exist that discusses the binding properties of this protein with the gene (s) promoter. In the present study, we have undertaken studies exploring the structure-function relationship of Brassica napus DREB1. Multiple sequence alignment, protein homology modeling and intermolecular docking of GCC-box binding domain (GBD) of the said protein was carried out using atomic coordinates of GBD from Arabdiopsis thaliana and GCC-box containing DNA respectively. Similarities and/or identities in multiple, sequence alignment, particularly at the functionally important amino acids, strongly suggested the binding specificity of B. napus DREB1 to GCC-box. Similarly, despite 56% sequence homology, tertiary structures of both template and modeled protein were found to be extremely similar as indicated by root mean square deviation of 0.34 A. More similarities were established between GBD of both A. thaliana and B. napus DREB1 by conducting protein docking with the DNA containing GCC-box. It appears that both proteins interact through their beta-sheet with the major DNA groove including both nitrogen bases and phosphate and sugar moieties. Additionally, in most cases the interacting residues were also found to be identical. Briefly, this study attempts to elucidate the molecular basis of DREB1 interaction with its target sequence in the promoter. (author)

  9. Nanoparticles with high payloads of pipemidic acid, a poorly soluble crystalline drug: drug-initiated polymerization and self-assembly approach

    Directory of Open Access Journals (Sweden)

    Elisabetta Pancani

    2018-05-01

    Full Text Available Nowadays, biodegradable polymers such as poly(lactic acid (PLA, poly(D,L-lactic-co-glycolic acid (PLGA and poly(ε-caprolactone (PCL remain the most common biomaterials to produce drug-loaded nanoparticles (NPs. Pipemidic acid (PIP is a poorly soluble antibiotic with a strong tendency to crystallize. PIP incorporation in PLA/PLGA NPs was challenging because of PIP crystals formation and burst release. As PIP had a poor affinity for the NPs, an alternative approach to encapsulation was used, consisting in coupling PIP to PCL. Thus, a PCL–PIP conjugate was successfully synthesized by an original drug-initiated polymerization in a single step without the need of catalyst. PCL–PIP was characterized by NMR, IR, SEC and mass spectrometry. PCL–PIP was used to prepare self-assembled NPs with PIP contents as high as 27% (w/w. The NPs were characterized by microscopy, DLS, NTA and TRPS. This study paves the way towards the production of NPs with high antibiotic payloads by drug-initiated polymerization. Further studies will deal with the synthesis of novel polymer–PIP conjugates with ester bonds between the drug and PCL. PIP can be considered as a model drug and the strategy developed here could be extended to other challenging antibiotics or anticancer drugs and employed to efficiently incorporate them in NPs. KEY WORDS: Pipemidic acid, Nanoparticle, Antibiotic, Nanoprecipitation, Crystalline drug, Drug-initiated   polymerization

  10. Internal Associations of the Acidic Region of Upstream Binding Factor Control Its Nucleolar Localization.

    Science.gov (United States)

    Ueshima, Shuhei; Nagata, Kyosuke; Okuwaki, Mitsuru

    2017-11-15

    Upstream binding factor (UBF) is a member of the high-mobility group (HMG) box protein family, characterized by multiple HMG boxes and a C-terminal acidic region (AR). UBF is an essential transcription factor for rRNA genes and mediates the formation of transcriptionally active chromatin in the nucleolus. However, it remains unknown how UBF is specifically localized to the nucleolus. Here, we examined the molecular mechanisms that localize UBF to the nucleolus. We found that the first HMG box (HMG box 1), the linker region (LR), and the AR cooperatively regulate the nucleolar localization of UBF1. We demonstrated that the AR intramolecularly associates with and attenuates the DNA binding activity of HMG boxes and confers the structured DNA preference to HMG box 1. In contrast, the LR was found to serve as a nuclear localization signal and compete with HMG boxes to bind the AR, permitting nucleolar localization of UBF1. The LR sequence binds DNA and assists the stable chromatin binding of UBF. We also showed that the phosphorylation status of the AR does not clearly affect the localization of UBF1. Our results strongly suggest that associations of the AR with HMG boxes and the LR regulate UBF nucleolar localization. Copyright © 2017 American Society for Microbiology.

  11. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    International Nuclear Information System (INIS)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E.

    1991-01-01

    Tritium-labeled α- and β-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10 degrees C, MBP bound α-maltose with 2.7 ± 0.5-fold higher affinity than β-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound α-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound β-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the β-maltodextrin is bound by its reducing end, and, in the other complex, the β-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins

  12. Operating experience feedback report -- Pressure locking and thermal binding of gate valves

    International Nuclear Information System (INIS)

    Hsu, C.

    1993-03-01

    The potential for valve inoperability caused by pressure locking and thermal binding has been known for many years in the nuclear industry. Pressure locking or thermal binding is a common-mode failure mechanism that can prevent a gate valve from opening, and could render redundant trains of safety systems or multiple safety systems inoperable. In spite of numerous generic communications issued in the past by the Nuclear Regulatory Commission (NRC) and industry, pressure locking and thermal binding continues to occur to gate valves installed in safety-related systems of both boding water reactors (BWRs) and pressurized water reactors (PWRs). The generic communications to date have not led to effective industry action to fully identify, evaluate, and correct the problem. This report provides a review of operating events involving these failure mechanisms. As a result of this review this report: (1) identifies conditions when the failure mechanisms have occurred, (2) identifies the spectrum of safety systems that have been subjected to the failure mechanisms, and (3) identifies conditions that may introduce the failure mechanisms under both normal and accident conditions. On the basis of the evaluation of the operating events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the NRC concludes that the binding problems with gate valves are an important safety issue that needs priority NRC and industry attention. This report also provides AEOD's recommendation for actions to effectively prevent the occurrence of valve binding failures

  13. Na-K pump site density and ouabain binding affinity in cultured chick heart cells

    International Nuclear Information System (INIS)

    Lobaugh, L.A.; Lieberman, M.

    1987-01-01

    The possible existence of multiple [ 3 H]ouabain binding sites and the relationship between ouabain binding and Na-K pump inhibition in cardiac muscle were studied using cultured embryonic chick heart cells. [ 3 H]ouabain bound to a single class of sites in 0.5 mM K (0.5 Ko) with an association rate constant (k+1) of 3.4 X 10(4) M-1.s-1 and a dissociation rate constant (k-1) of 0.0095 s. Maximal specific [ 3 H]ouabain binding RT to myocyte-enriched cultures is 11.7 pmol/mg protein and Kd is 0.43 microM in 0.5 Ko, whereas Kd,apparent is 6.6 microM in 5.4 Ko. The number of binding sites per myocyte was calculated by correcting for the contribution of fibroblasts in myocyte-enriched cultures using data from homogeneous fibroblast cultures (RT = 3.3 pmol/mg protein; Kd = 0.19 microM in 0.5 Ko). Equivalence of [ 3 H]ouabain binding sites and Na-K pumps was implied by agreement between maximal specific binding of [ 3 H]ouabain and 125 I-labeled monoclonal antibody directed against Na+-K+-ATPase (approximately 2 X 10(6) sites/cell). However, [ 3 H]ouabain binding occurred at lower concentrations than inhibition of ouabain-sensitive 42 K uptake in 0.5 Ko. Further studies in both 0.5 K and 5.4 Ko showed that ouabain caused cell Na content Nai to increase over the same range of concentrations that binding occurred, implying that increased Nai may stimulate unbound Na-K pumps and prevent a proportional decrease in 42 K uptake rate. The results show that Na-K pump inhibition occurs as a functional consequence of specific ouabain binding and indicate that the Na-K pump is the cardiac glycoside receptor in cultured heart cells

  14. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding protein 2.

    Science.gov (United States)

    Patil, Hemangi; Cho, Kyoung-in; Lee, James; Yang, Yi; Orry, Andrew; Ferreira, Paulo A

    2013-03-27

    The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein-protein and protein-phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBD(n = 1-4)) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure-function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260,000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.

  15. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan

    2005-01-01

    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited...

  16. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    International Nuclear Information System (INIS)

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-01-01

    The crystal structure of a phosphatidylethanolamine-binding protein from P. vivax, a homolog of Raf-kinase inhibitor protein (RKIP), has been solved to a resolution of 1.3 Å. The inferred interaction surface near the anion-binding site is found to include a distinctive left-handed α-helix. The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family

  17. Solute-vacancy binding in aluminum

    International Nuclear Information System (INIS)

    Wolverton, C.

    2007-01-01

    Previous efforts to understand solute-vacancy binding in aluminum alloys have been hampered by a scarcity of reliable, quantitative experimental measurements. Here, we report a large database of solute-vacancy binding energies determined from first-principles density functional calculations. The calculated binding energies agree well with accurate measurements where available, and provide an accurate predictor of solute-vacancy binding in other systems. We find: (i) some common solutes in commercial Al alloys (e.g., Cu and Mg) possess either very weak (Cu), or even repulsive (Mg), binding energies. Hence, we assert that some previously reported large binding energies for these solutes are erroneous. (ii) Large binding energies are found for Sn, Cd and In, confirming the proposed mechanism for the reduced natural aging in Al-Cu alloys containing microalloying additions of these solutes. (iii) In addition, we predict that similar reduction in natural aging should occur with additions of Si, Ge and Au. (iv) Even larger binding energies are found for other solutes (e.g., Pb, Bi, Sr, Ba), but these solutes possess essentially no solubility in Al. (v) We have explored the physical effects controlling solute-vacancy binding in Al. We find that there is a strong correlation between binding energy and solute size, with larger solute atoms possessing a stronger binding with vacancies. (vi) Most transition-metal 3d solutes do not bind strongly with vacancies, and some are even energetically strongly repelled from vacancies, particularly for the early 3d solutes, Ti and V

  18. Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding.

    Science.gov (United States)

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R; Stevens, Raymond C

    2010-04-16

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-A X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent. Copyright (c) 2010. Published by Elsevier Ltd.

  19. Heterologous Expression of Tulip Petal Plasma Membrane Aquaporins in Pichia pastoris for Water Channel Analysis▿

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-01-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs. PMID:19251885

  20. Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis.

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-05-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.

  1. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    International Nuclear Information System (INIS)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-01

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription

  2. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun, E-mail: hirayama.dbio@mri.tmd.ac.jp; Nishina, Hiroshi, E-mail: nishina.dbio@mri.tmd.ac.jp

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  3. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G.; Mortensen, Erik L.; Nielsen, Finn Årup

    2008-01-01

    Background: Serotonergic dysfunction has been associated with affective disorders. High trait neuroticism, as measured on personality inventories, is a risk factor for major depression. In this study we investigated whether neuroticism is associated with serotonin 2A receptor binding in brain...... regions of relevance for affective disorders. Methods: Eighty-three healthy volunteers completed the standardized personality questionnaire NEO-PI-R (Revised NEO Personality Inventory) and underwent [F-18]altanserin positron emission tomography imaging for assessment of serotonin 2A receptor binding...... remained significant after correction for multiple comparisons (r = .35, p = .009). Conclusions: In healthy subjects the personality dimension neuroticism and particularly its constituent trait, vulnerability, are positively associated with frontolimbic serotonin 2A binding. Our findings point...

  4. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS

    Energy Technology Data Exchange (ETDEWEB)

    Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas; Patel, Dinshaw J.

    2015-09-08

    Abstract

    RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. These studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutationsin vivo.

  5. Binding sites for 3H-LTC4 in membranes from guinea pig ileal longitudinal muscle

    International Nuclear Information System (INIS)

    Nicosia, S.; Crowley, H.J.; Oliva, D.; Welton, A.F.

    1984-01-01

    Leutriene (LTC4) is one of the components of Slow Reacting Substance of Anaphylaxis (SRS-A) and is a potent constrictor of guinea pig ilea. The contraction is likely to be a receptor-mediated process. Here the authors report the existence of specific binding sites for 3 H-LTC4 in a crude membrane preparation from guinea pig ileal longitudinal muscle. At 4 degrees C in the presence of 20 mM Serine-borate, binding increases linearly with protein concentration, reaches equilibrium in 10 minutes, and is reversible upon addition of 3 x 10(-5) M unlabelled LTC4. The dissociation curve is consistent with the existence of more than one class of binding site. Ca++ and Mg++ greatly enhance the binding of 3 H-LTC4 at equilibrium. In the presence of 5 mM CaCl 2 and MgCl 2 not only LTC4 (IC50 10(-7)M), but also LTD4 and the SRS-A antagonist FPL 55712 can compete with 3 H-LTC4 for its binding sites. FPL 55712 only displaces 60-70% of the total amount bound, while LTC4 displaces 90-95%. These studies indicate that multiple classes of binding sites exist for 3 H-LTC4 in guinea pig ileal longitudinal muscle, and that at least part of these binding sites might be related to the ability of LTC4 to contract guinea pig ilea

  6. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.

    Science.gov (United States)

    Pan, Xiaoyong; Shen, Hong-Bin

    2017-02-28

    RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins (RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the RBPs correctly recognize the target RNAs and why they bind specific positions is still far from clear. Machine learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing multi-resource data, e.g. sequence, structure, their domain specific features and formats have posed significant computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data across domains. The other difficulty is how to interpret the prediction results. Existing approaches tend to terminate after outputting the potential discrete binding sites on the sequences, but how to assemble them into the meaningful binding motifs is a topic worth of further investigation. In viewing of these challenges, we propose a deep learning-based framework (iDeep) by using a novel hybrid convolutional neural network and deep belief network to predict the RBP interaction sites and motifs on RNAs. This new protocol is featured by transforming the original observed data into a high-level abstraction feature space using multiple layers of learning blocks, where the shared representations across different domains are integrated. To validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that by integrating multiple sources of data, the average AUC can be improved by 8% compared to the best single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms the state-of-the-art predictors by 6

  7. Recent improvements to Binding MOAD: a resource for protein–ligand binding affinities and structures

    Science.gov (United States)

    Ahmed, Aqeel; Smith, Richard D.; Clark, Jordan J.; Dunbar, James B.; Carlson, Heather A.

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein–ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23 269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  8. [99mTc]MAG3-mannosyl-dextran: a receptor-binding radiopharmaceutical for sentinel node detection

    International Nuclear Information System (INIS)

    Vera, David R.; Wallace, Anne M.; Hoh, Carl K.

    2001-01-01

    Technetium-99m-labeled benzoyl-mercaptoacetylglycylglycyl-glycine-mannosyl-dextran ([ 99m Tc]MAG 3 -mannosyl-dextran) is a receptor-binding radiotracer that binds to mannose-binding protein, a receptor expressed by reticuloendothelial tissue. This agent is composed of a 10.5-kilodalton molecule of dextran and multiple units of mannose, and benzoyl-mercaptoacetylglycylglycyl-glycine (BzMAG 3 ). The tetraflorophenol-activated ester of BzMAG 3 and the imidate of thiomannose were used to covalently attach BzMAG 3 and mannose to an amino-terminated conjugate of dextran. This yielded a 19-kilodalton macromolecule consisting of 3 BzMAG 3 and 21 mannose units per dextran. Dynamic light scattering was used to measure a mean diameter of 5.5 nanometers for BzMAG 3 -mannosyl-dextran and 0.28 microns for filtered Tc-99m sulfur colloid. A preliminary sentinel node detection study employing right fore and hind footpad injections of [ 99m Tc]MAG 3 -mannosyl-dextran and left fore and hind footpad injections of filtered Tc-99m sulfur colloid demonstrated greater sentinel lymph node uptake by the receptor-binding agent

  9. Synthetic LPS-Binding Polymer Nanoparticles

    Science.gov (United States)

    Jiang, Tian

    Lipopolysaccharide (LPS), one of the principal components of most gram-negative bacteria's outer membrane, is a type of contaminant that can be frequently found in recombinant DNA products. Because of its strong and even lethal biological effects, selective LPS removal from bioproducts solution is of particular importance in the pharmaceutical and health care industries. In this thesis, for the first time, a proof-of-concept study on preparing LPS-binding hydrogel-like NPs through facile one-step free-radical polymerization was presented. With the incorporation of various hydrophobic (TBAm), cationic (APM, GUA) monomers and cross-linkers (BIS, PEG), a small library of NPs was constructed. Their FITC-LPS binding behaviors were investigated and compared with those of commercially available LPS-binding products. Moreover, the LPS binding selectivity of the NPs was also explored by studying the NPs-BSA interactions. The results showed that all NPs obtained generally presented higher FITC-LPS binding capacity in lower ionic strength buffer than higher ionic strength. However, unlike commercial poly-lysine cellulose and polymyxin B agarose beads' nearly linear increase of FITC-LPS binding with particle concentration, NPs exhibited serious aggregation and the binding quickly saturated or even decreased at high particle concentration. Among various types of NPs, higher FITC-LPS binding capacity was observed for those containing more hydrophobic monomers (TBAm). However, surprisingly, more cationic NPs with higher content of APM exhibited decreased FITC-LPS binding in high ionic strength conditions. Additionally, when new cationic monomer and cross-linker, GUA and PEG, were applied to replace APM and BIS, the obtained NPs showed improved FITC-LPS binding capacity at low NP concentration. But compared with APM- and BIS-containing NPs, the FITC-LPS binding capacity of GUA- and PEG-containing NPs saturated earlier. To investigate the NPs' binding to proteins, we tested the NPs

  10. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    Directory of Open Access Journals (Sweden)

    Mittelmann Hans D

    2010-01-01

    Full Text Available Abstract Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/.

  11. RBPmap: a web server for mapping binding sites of RNA-binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kosti, Idit; Ares, Manuel; Cline, Melissa; Mandel-Gutfreund, Yael

    2014-07-01

    Regulation of gene expression is executed in many cases by RNA-binding proteins (RBPs) that bind to mRNAs as well as to non-coding RNAs. RBPs recognize their RNA target via specific binding sites on the RNA. Predicting the binding sites of RBPs is known to be a major challenge. We present a new webserver, RBPmap, freely accessible through the website http://rbpmap.technion.ac.il/ for accurate prediction and mapping of RBP binding sites. RBPmap has been developed specifically for mapping RBPs in human, mouse and Drosophila melanogaster genomes, though it supports other organisms too. RBPmap enables the users to select motifs from a large database of experimentally defined motifs. In addition, users can provide any motif of interest, given as either a consensus or a PSSM. The algorithm for mapping the motifs is based on a Weighted-Rank approach, which considers the clustering propensity of the binding sites and the overall tendency of regulatory regions to be conserved. In addition, RBPmap incorporates a position-specific background model, designed uniquely for different genomic regions, such as splice sites, 5' and 3' UTRs, non-coding RNA and intergenic regions. RBPmap was tested on high-throughput RNA-binding experiments and was proved to be highly accurate. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. 18F-Florbetaben PET beta-amyloid binding expressed in Centiloids

    International Nuclear Information System (INIS)

    Rowe, Christopher C.; Dore, Vincent; Jones, Gareth; Baxendale, David; Mulligan, Rachel S.; Bullich, Santiago; Stephens, Andrew W.; Dinkelborg, Ludger; De Santi, Susan; Masters, Colin L.; Villemagne, Victor L.

    2017-01-01

    The Centiloid (CL) method enables quantitative values from Aβ-amyloid (Aβ) imaging to be expressed in a universal unit providing pathological, diagnostic and prognostic thresholds in clinical practice and research and allowing integration of multiple tracers and methods. The method was developed for 11 C-PiB scans with zero CL set as the average in young normal subjects and 100 CL the average in subjects with mild Alzheimer's disease (AD). The method allows derivation of equations to convert the uptake value of any tracer into the same standard CL units but first requires head-to-head comparison with 11 C-PiB results. We derived the equation to express 18 F-florbetaben (FBB) binding in CL units. Paired PiB and FBB PET scans were obtained in 35 subjects. including ten young normal subjects aged under 45 years (33 ± 8 years). FBB images were acquired from 90 to 110 min after injection. Spatially normalized images were analysed using the standard CL method (SPM8 coregistration of PET data to MRI data and the MNI-152 atlas) and standard CL regions (cortex and whole cerebellum downloaded from http://www.gaain.org). FBB binding was strongly correlated with PiB binding (R 2 = 0.96, SUVR FBB = 0.61 x SUVR PiB + 0.39). The equation to derive CL values from FBB SUVR was CL units = 153.4 x SUVR FBB - 154.9. The CL value in the young normal subjects was -1.08 ± 6.81 for FBB scans compared to -0.32 ± 3.48 for PiB scans, giving a variance ratio of 1.96 (SD FBB CL /SD PiB CL ). 18 F-FBB binding is strongly correlated with PiB binding and FBB results can now be expressed in CL units. (orig.)

  13. Pictorial binding: endeavor to classify

    Directory of Open Access Journals (Sweden)

    Zinchenko S.

    2015-01-01

    Full Text Available The article is devoted to the classification of bindings of the 1-19th centuries with a unique and untypical book binding decoration technique (encaustic, tempera and oil paintings. Analysis of design features, materials and techniques of art decoration made it possible to identify them as a separate type - pictorial bindings and divide them into four groups. The first group consists of Coptic bindings, decorated with icon-painting images in encaustic technique. The second group is made up of leather Western bindings of the 13-14th centuries, which have the decoration and technique of ornamentation close to iconography. The third group involves parchment bindings, ornamentation technique of which is closer to the miniature. The last group comprises bindings of East Slavic origin of the 15-19th centuries, decorated with icon-painting pictures made in the technique of tempera or oil painting. The proposed classification requires further basic research as several specific kinds of bindings have not yet been investigated

  14. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells.

    OpenAIRE

    Jiang, M; Pandey, S; Tran, V T; Fong, H K

    1991-01-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein alpha subunits (G alpha) including Gs alpha, Gi-1 alpha, Gi-2 alpha, Gi-3 alpha, and Gz alpha (or Gx alpha), where Gs and Gi are proteins that stimulate or inhibit adenylyl cyclase, respectively, and Gz is a protein that may mediate pertussis toxin-insensi...

  15. Metal ion interaction of an oligopeptide fragment representing the regulatory metal binding site of a CueR protein

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szokolai, Hajnalka; Roszahegyi, Livia

    2013-01-01

    Metalloregulatory proteins of the MerR family are transcriptional activators that sense/control the concentration of various metal ions inside bacteria.1 The Cu+ efflux regulator CueR, similarly to other MerR proteins, possesses a short multiple Cys-containing metal binding loop close to the C...... of cognate metal ions.2 Nevertheless, it is an interesting question whether the same sequence, when removed from the protein, shows a flexibility to adopt different coordination environments and may efficiently bind metal ions having preferences for larger coordination numbers....

  16. Useable diffraction data from a multiple microdomain-containing crystal of Ascaris suum As-p18 fatty-acid-binding protein using a microfocus beamline

    International Nuclear Information System (INIS)

    Gabrielsen, Mads; Riboldi-Tunnicliffe, Alan; Ibáñez-Shimabukuro, Marina; Griffiths, Kate; Roe, Andrew J.; Cooper, Alan; Smith, Brian O.; Córsico, Betina; Kennedy, Malcolm W.

    2012-01-01

    As-p18, an unusual fatty-acid-binding protein from a parasitic nematode, was expressed in bacteria, purified and crystallized. The use of a microfocus beamline was essential for data collection. As-p18 is a fatty-acid-binding protein from the parasitic nematode Ascaris suum. Although it exhibits sequence similarity to mammalian intracellular fatty-acid-binding proteins, it contains features that are unique to nematodes. Crystals were obtained, but initial diffraction data analysis revealed that they were composed of a number of ‘microdomains’. Interpretable data could only be collected using a microfocus beamline with a beam size of 12 × 8 µm

  17. [Influence of probiotics on the establishment of a competitive flora, as well as on antibiotic use and performance parameters in pig breeding farms].

    Science.gov (United States)

    Dünner, B; Birrer, S; Nathues, C; Hässig, M; Stephan, R; Sidler, X

    2017-08-01

    The aim of the present study was to investigate the effect of Probiotics in Progress (PIP) on the establishment of a competitive flora as well as on antibiotic use and losses of suckling piglets in pig breeding farms. The tested products were PIP AHC® and PIP AHS® produced by "Chrisal AG" in Lommel, Belgium. PIP`s are cleaning products containing Bacillus spores. According to the manufacturer's specifications, they are able to establish a steady non-pathogenic stable flora. In a field trial in 19 pig breeding farms, the use of PIP-products did not lead to any reduction of antibiotic use or improvement of fertility parameters, especially in relation to losses of suckling piglets. In addition, we compared the bacterial flora using PIP products with the flora under conventional management conditions in a farrowing pen by means of swab samples. The use of PIP-products did not lead to any significant effect on the pen flora. Only very few swab samples contained a majority of probiotic Bacillus spp.

  18. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures.

    Science.gov (United States)

    Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Human serum albumin binding assay based on displacement of a non selective fluorescent inhibitor.

    Science.gov (United States)

    Thorarensen, Atli; Sarver, Ronald W; Tian, Fang; Ho, Andrea; Romero, Donna L; Marotti, Keith R

    2007-08-15

    In this paper, we describe a fluorescent antibacterial analog, 6, with utility as a competition probe to determine affinities of other antibacterial analogs for human serum albumin (HSA). Analog 6 bound to HSA with an affinity of 400+/-100 nM and the fluorescence was environmentally sensitive. With 370 nm excitation, environmental sensitivity was indicated by a quenching of the 530 nm emission when the probe bound to HSA. Displacement of dansylsarcosine from HSA by 6 indicated it competed with compounds that bound at site II (ibuprofen binding site) on HSA. Analog 6 also shifted the NMR peaks of an HSA bound oleic acid molecule that itself was affected by compounds that bound at site II. In addition to binding at site II, 6 interacted at site I (warfarin binding site) as indicated by displacement of dansylamide and the shifting of NMR peaks of an HSA bound oleic acid molecule affected by warfarin site binding. Additional evidence for multiple site interaction was discovered when a percentage of 6 could be displaced by either ibuprofen or phenylbutazone. A competition assay was established using 6 to determine relative affinities of other antibacterial inhibitors for HSA.

  20. Therapeutic interference with leukocyte recirculation in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Sørensen, P S

    2015-01-01

    Multiple sclerosis (MS) is an immune-mediated disease where T cells are thought to initiate an inflammatory reaction in the brain and spinal cord, resulting in demyelination and axonal pathology. Interfering with the activation and recruitment of immune cells reduces disease activity in MS. We...... review the mechanism of action and treatment effects of natalizumab and fingolimod, which interfere with the recruitment of pathogenic immune cells in MS. Fingolimod blocks the egress of activated lymphocytes from lymph nodes by binding to the sphingosine-1-phosphate (S1P) receptor 1, but may also have...... effects on S1P receptor-expressing cells within the central nervous system (CNS). Natalizumab reduces the migration of lymphocytes to the CNS by binding to the α4 integrin very late antigen 4. Fingolimod and natalizumab also have other effects, but these are less well understood. Both treatments...

  1. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL

    Directory of Open Access Journals (Sweden)

    Hastie C James

    2006-01-01

    Full Text Available Abstract Background Pim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers. Results Here we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-XL. Conclusion All three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death.

  2. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. (Parke-Davis Research Unit, Addenbrookes Hospital Site, Cambridge (England))

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  3. The Role of Attention in the Maintenance of Feature Bindings in Visual Short-term Memory

    Science.gov (United States)

    Johnson, Jeffrey S.; Hollingworth, Andrew; Luck, Steven J.

    2008-01-01

    This study examined the role of attention in maintaining feature bindings in visual short-term memory. In a change-detection paradigm, participants attempted to detect changes in the colors and orientations of multiple objects; the changes consisted of new feature values in a feature-memory condition and changes in how existing feature values were…

  4. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity.

    Directory of Open Access Journals (Sweden)

    Kate M Peters

    Full Text Available Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q and QacR(E120Q with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the "best available" positions within the pocket that elicit QacR induction.

  5. Effect of albumin-bound DHA on phosphoinositide phosphorylation in collagen stimulated human platelets

    International Nuclear Information System (INIS)

    Gaudette, D.C.; Holub, B.J.

    1990-01-01

    The effect of exogenous albumin-bound docosahexaenoic acid (22:6n-3) (DHA), arachidonic acid (20:4n-6) (AA), and eicosapendaenoic acid (20:5n-3) (EPA) on phosphoinositide metabolism following collagen stimulation was studied using [3H]inositol prelabelled platelets. Collagen stimulation (3 min, 1.8 micrograms/ml) increased the labelling of both phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4,5-biphosphate (PIP2). Of the fatty acids tested, only pre-incubation (2 min) with DHA (20 microM) significantly attenuated the collagen-induced increased PIP and PIP2 labelling; EPA was without effect, while AA enhanced PIP labelling. Forty microM DHA was less effective at attenuating the increased PIP and PIP2 labelling even though this concentration of DHA resulted in greater inhibition of platelet aggregation. Neither concentration of DHA attenuated the increased polyphosphoinositide labelling resulting from stimulation by the endoperoxide analogue U46619, or the phorbol ester, PMA. These data suggest that the effect of DHA on attenuating the increased PIP and PIP2 labelling following collagen stimulation likely occurs before thromboxane receptor occupancy, may not occur at the level of protein kinase C activation, and could be mediated in part via a lessened synthesis of thromboxane A2

  6. A machine learning approach for the identification of odorant binding proteins from sequence-derived properties

    Directory of Open Access Journals (Sweden)

    Suganthan PN

    2007-09-01

    Full Text Available Abstract Background Odorant binding proteins (OBPs are believed to shuttle odorants from the environment to the underlying odorant receptors, for which they could potentially serve as odorant presenters. Although several sequence based search methods have been exploited for protein family prediction, less effort has been devoted to the prediction of OBPs from sequence data and this area is more challenging due to poor sequence identity between these proteins. Results In this paper, we propose a new algorithm that uses Regularized Least Squares Classifier (RLSC in conjunction with multiple physicochemical properties of amino acids to predict odorant-binding proteins. The algorithm was applied to the dataset derived from Pfam and GenDiS database and we obtained overall prediction accuracy of 97.7% (94.5% and 98.4% for positive and negative classes respectively. Conclusion Our study suggests that RLSC is potentially useful for predicting the odorant binding proteins from sequence-derived properties irrespective of sequence similarity. Our method predicts 92.8% of 56 odorant binding proteins non-homologous to any protein in the swissprot database and 97.1% of the 414 independent dataset proteins, suggesting the usefulness of RLSC method for facilitating the prediction of odorant binding proteins from sequence information.

  7. Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism

    Science.gov (United States)

    Hubbard, Basil P; Loh, Christine; Gomes, Ana P; Li, Jun; Lu, Quinn; Doyle, Taylor LG; Disch, Jeremy S; Armour, Sean M; Ellis, James L; Vlasuk, George P; Sinclair, David A

    2013-01-01

    SIRT1 is an NAD+-dependent deacetylase that counteracts multiple disease states associated with aging and may underlie some of the health benefits of calorie restriction. Understanding how SIRT1 is regulated in vivo could therefore lead to new strategies to treat age-related diseases. SIRT1 forms a stable complex with DBC1, an endogenous inhibitor. Little is known regarding the biochemical nature of SIRT1-DBC1 complex formation, how it is regulated and whether or not it is possible to block this interaction pharmacologically. In this study, we show that critical residues within the catalytic core of SIRT1 mediate binding to DBC1 via its N-terminal region, and that several carboxamide SIRT1 inhibitors, including EX-527, can completely block this interaction. We identify two acetylation sites on DBC1 that regulate its ability to bind SIRT1 and suppress its activity. Furthermore, we show that DBC1 itself is a substrate for SIRT1. Surprisingly, the effect of EX-527 on SIRT1-DBC1 binding is independent of DBC1 acetylation. Together, these data show that protein acetylation serves as an endogenous regulatory mechanism for SIRT1-DBC1 binding and illuminate a new path to developing small-molecule modulators of SIRT1. PMID:23892437

  8. A rapid, LC-MS/MS assay for quantification of piperacillin and tazobactam in human plasma and pleural fluid; application to a clinical pharmacokinetic study.

    Science.gov (United States)

    Popowicz, Natalia D; O'Halloran, Sean J; Fitzgerald, Deirdre; Lee, Y C Gary; Joyce, David A

    2018-04-01

    Piperacillin, in combination with tazobactam is a common first-line antibiotic used for the treatment of pleural infection, however its pleural pharmacokinetics and penetration has not previously been reported. The objective of this work was to develop and validate a rapid and sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) assay for quantification of piperacillin (PIP) and tazobactam (TAZ). PIP and TAZ were extracted from both human plasma and pleural fluid samples by protein precipitation in methanol containing the internal standards (IS) piperacillin-d 5 (PIP-d 5 ) and sulbactam (SUL). Briefly, 5 μL of sample was mixed with 125 μL of methanol containing IS, vortexed and centrifuged. Supernatant (50 μL) was diluted into 500 μL of mobile phase containing 10 mM of ammonium bicarbonate in LCMS grade water and transferred to the autosampler tray. Electrospray ionization in positive mode and multiple reaction monitoring (MRM) were used for PIP and PIP-d 5 at the transitions m/z 518.2 → 143.2 and m/z 523.2 → 148.2 respectively, and electrospray ionization in negative mode and MRM were used for TAZ and SUL at the transitions m/z 299.1 → 138.1 and m/z 232.4 → 140.1. The chromatographic separation was achieved using an Acquity BEH C-18 column with gradient elution of mobile phase containing 10 mmol/L ammonium bicarbonate in water and methanol. A linear range was observed over the concentration range of 0.25-352 mg/L and 0.25-50.5 mg/L for PIP and TAZ respectively. Complete method validation was performed according to US FDA guidelines for selectivity, specificity, precision and accuracy, LLOQ, matrix effects, recovery and stability, with all results within acceptable limits. This method was successfully applied to two patients with pleural infection and is suitable for further pharmacokinetic studies and therapeutic drug monitoring. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  9. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  10. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    Science.gov (United States)

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  11. Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression

    Science.gov (United States)

    Nugent, Allison C.; Bain, Earle E.; Carlson, Paul J.; Neumeister, Alexander; Bonne, Omer; Carson, Richard E.; Eckelman, William; Herscovitch, Peter; Zarate, Carlos A.; Charney, Dennis S.; Drevets, Wayne C.

    2013-01-01

    Multiple lines of evidence suggest that serotonin type 1A (5-HT1A) receptor dysfunction is involved in the pathophysiology of mood disorders, and that alterations in 5-HT1A receptor function play a role in the mechanisms of antidepressant and mood stabilizer treatment. The literature is in disagreement, however, as to whether 5-HT1A receptor binding abnormalities exist in bipolar disorder (BD). We acquired PET images of 5-HT1A receptor binding in 26 unmedicated BD subjects and 37 healthy controls using [18F]FCWAY, a highly selective 5-HT1A receptor radio-ligand. The mean 5-HT1A receptor binding potential (BPP) was significantly lower in BD subjects compared to controls in cortical regions where 5-HT1A receptors are expressed post-synaptically, most prominently in the mesiotemporal cortex. Post-hoc assessments involving other receptor specific binding parameters suggested that this difference particularly affected the females with BD. The mean BPP did not differ between groups in the raphe nucleus, however, where 5-HT1A receptors are predominantly expressed pre-synaptically. Across subjects the BPP in the mesiotemporal cortex was inversely correlated with trough plasma cortisol levels, consistent with preclinical literature indicating that hippocampal 5-HT1A receptor expression is inhibited by glucocorticoid receptor stimulation. These findings suggest that 5-HT1A receptor binding is abnormally reduced in BD, and this abnormality may particularly involve the postsynaptic 5-HT1A receptor system of individuals with a tendency toward cortisol hypersecretion. PMID:23434290

  12. CREB Binding Protein Functions During Successive Stages of Eye Development in Drosophila

    OpenAIRE

    Kumar, Justin P.; Jamal, Tazeen; Doetsch, Alex; Turner, F. Rudolf; Duffy, Joseph B.

    2004-01-01

    During the development of the compound eye of Drosophila several signaling pathways exert both positive and inhibitory influences upon an array of nuclear transcription factors to produce a near-perfect lattice of unit eyes or ommatidia. Individual cells within the eye are exposed to many extracellular signals, express multiple surface receptors, and make use of a large complement of cell-subtype-specific DNA-binding transcription factors. Despite this enormous complexity, each cell will make...

  13. Binding of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to tRNA(phe..

    Directory of Open Access Journals (Sweden)

    Anirban Basu

    Full Text Available BACKGROUND: Three new analogs of berberine with aryl/ arylalkyl amino carbonyl methyl substituent at the 9-position of the isoquinoline chromophore along with berberrubine were studied for their binding to tRNA(phe by wide variety of biophysical techniques like spectrophotometry, spectrofluorimetry, circular dichroism, thermal melting, viscosity and isothermal titration calorimetry. METHODOLOGY/ PRINCIPAL FINDINGS: Scatchard binding isotherms revealed that the cooperative binding mode of berberine was propagated in the analogs also. Thermal melting studies showed that all the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs stabilized the tRNA(phe more in comparison to berberine. Circular dichroism studies showed that these analogs perturbed the structure of tRNA(phe more in comparison to berberine. Ferrocyanide quenching studies and viscosity results proved the intercalative binding mode of these analogs into the helical organization of tRNA(phe. The binding was entropy driven for the analogs in sharp contrast to the enthalpy driven binding of berberine. The introduction of the aryl/arylalkyl amino carbonyl methyl substituent at the 9-position thus switched the enthalpy driven binding of berberine to entropy dominated binding. Salt and temperature dependent calorimetric studies established the involvement of multiple weak noncovalent interactions in the binding process. CONCLUSIONS/ SIGNIFICANCE: The results showed that 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs exhibited almost ten folds higher binding affinity to tRNA(phe compared to berberine whereas the binding of berberrubine was dramatically reduced by about twenty fold in comparison to berberine. The spacer length of the substitution at the 9-position of the isoquinoline chromophore appears to be critical in modulating the binding affinities towards tRNA(phe.

  14. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms

    OpenAIRE

    Kahvejian, Avak; Svitkin, Yuri V.; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5′-end of the mRNA to promote the recruitment of the ribosome. Although the 3′ poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for ...

  15. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  16. CfaE tip mutations in enterotoxigenic Escherichia coli CFA/I fimbriae define critical human intestinal binding sites.

    Science.gov (United States)

    Baker, K K; Levine, M M; Morison, J; Phillips, A; Barry, E M

    2009-05-01

    Enterotoxigenic Escherichia coli (ETEC) use colonization factors to attach to the human intestinal mucosa, followed by enterotoxin expression that induces net secretion and diarrhoeal illness. ETEC strain H10407 expresses CFA/I fimbriae, which are composed of multiple CfaB structural subunits and a CfaE tip subunit. Currently, the contribution of these individual fimbrial subunits in intestinal binding remains incompletely defined. To identify the role of CfaE in attachment in the native ETEC background, an R181A single-amino-acid substitution was introduced by recombination into the H10407 genome. The substitution of R181A eliminated haemagglutination and binding of intestinal mucosa biopsies in in vitro organ culture assays, without loss of CFA/I fimbriae expression. Wild-type in trans plasmid-expressed cfaE restored the binding phenotype. In contrast, in trans expression of cfaE containing amino acid 181 substitutions with similar amino acids, lysine, methionine and glutamine did not restore the binding phenotype, indicating that the loss of the binding phenotype was due to localized areas of epitope disruption. R181 appears to have an irreplaceable role in the formation of a receptor-binding feature on CFA/I fimbriae. The results specifically indicate that the CfaE tip protein is a required binding factor in CFA/I-mediated ETEC colonization, making it a potentially important vaccine antigen. © 2009 Blackwell Publishing Ltd.

  17. Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes

    International Nuclear Information System (INIS)

    McMurray, C.T.; Small, E.W.; van Holde, K.E.

    1991-01-01

    The authors have previously reported that the binding of ethidium bromide to the nucleosome core particle results in a stepwise dissociation of the structure which involves the initial release of one copy each of H2A and H2B. In this report, they have examined the absorbance and fluorescence properties of intercalated and outside bound forms of ethidium bromide. From these properties, they have measured the extent of external, electrostatic binding of the dye versus internal, intercalation binding to the core particle, free from contribution by linker DNA. They have established that dissociation is induced by the intercalation mode of binding to DNA within the core particle DNA, and not by binding to the histones or by nonintercalative binding to DNA. The covalent binding of [ 3 H]-8-azidoethidium to the core particle clearly shows that < 1.0 adduct is formed per histone octamer over a wide range of input ratios. Simultaneously, analyses of steady-state fluorescence enhancement and fluorescence lifetime data from bound ethidium complexes demonstrate extensive intercalation binding. Combined analyses from steady-state fluorescence intensity with equilibrium dialysis or fluorescence lifetime data revealed that dissociation began when ∼14 ethidium molecules are bound by intercalation to each core particle and < 1.0 nonintercalated ion pair was formed per core particle

  18. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement

    Directory of Open Access Journals (Sweden)

    Gene A Morrill

    2016-09-01

    Full Text Available ABSTRACT: Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb; neuroglobin (Ngb; myoglobin (Mb; hemoglobin (Hb subunits Hba(α and Hbb(β] contain either a transmembrane (TM helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol-binding (CRAC/CARC domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba and pore-lining region (Hbb. The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, band 3, which contains a large internal cavity and 12 TM helices (5 being pore-lining regions. The Hba TM helix may be the erythrocyte membrane band 3 attachment site. Band 3 contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO movement within the large internal cavities and

  19. Novel structural features drive DNA binding properties of Cmr, a CRP family protein in TB complex mycobacteria.

    Science.gov (United States)

    Ranganathan, Sridevi; Cheung, Jonah; Cassidy, Michael; Ginter, Christopher; Pata, Janice D; McDonough, Kathleen A

    2018-01-09

    Mycobacterium tuberculosis (Mtb) encodes two CRP/FNR family transcription factors (TF) that contribute to virulence, Cmr (Rv1675c) and CRPMt (Rv3676). Prior studies identified distinct chromosomal binding profiles for each TF despite their recognizing overlapping DNA motifs. The present study shows that Cmr binding specificity is determined by discriminator nucleotides at motif positions 4 and 13. X-ray crystallography and targeted mutational analyses identified an arginine-rich loop that expands Cmr's DNA interactions beyond the classical helix-turn-helix contacts common to all CRP/FNR family members and facilitates binding to imperfect DNA sequences. Cmr binding to DNA results in a pronounced asymmetric bending of the DNA and its high level of cooperativity is consistent with DNA-facilitated dimerization. A unique N-terminal extension inserts between the DNA binding and dimerization domains, partially occluding the site where the canonical cAMP binding pocket is found. However, an unstructured region of this N-terminus may help modulate Cmr activity in response to cellular signals. Cmr's multiple levels of DNA interaction likely enhance its ability to integrate diverse gene regulatory signals, while its novel structural features establish Cmr as an atypical CRP/FNR family member. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  1. Melanin-binding radiopharmaceuticals

    International Nuclear Information System (INIS)

    Packer, S.; Fairchild, R.G.; Watts, K.P.; Greenberg, D.; Hannon, S.J.

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed

  2. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A

    Science.gov (United States)

    Yao, Guorui; Zhang, Sicai; Mahrhold, Stefan; Lam, Kwok-ho; Stern, Daniel; Bagramyan, Karine; Perry, Kay; Kalkum, Markus; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2016-01-01

    Botulinum neurotoxin serotype A1 (BoNT/A1) is one of the most dangerous potential bioterrorism agents, and exerts its action by invading motoneurons. It is also a licensed drug widely used for medical and cosmetic applications. Here we report a 2.0 Å resolution crystal structure of BoNT/A1 receptor-binding domain in complex with its neuronal receptor, the glycosylated human SV2C. We find that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan—conserved in all SV2 isoforms across vertebrates—is essential for BoNT/A1 binding to neurons and its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an anti-botulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications to achieve highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors. PMID:27294781

  3. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    International Nuclear Information System (INIS)

    Serck-Hanssen, G.; Soevik, O.

    1987-01-01

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of 125 I-insulin was carried out at 15 0 C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table

  4. Lead-Binding Proteins: A Review

    Directory of Open Access Journals (Sweden)

    Harvey C. Gonick

    2011-01-01

    Full Text Available Lead-binding proteins are a series of low molecular weight proteins, analogous to metallothionein, which segregate lead in a nontoxic form in several organs (kidney, brain, lung, liver, erythrocyte. Whether the lead-binding proteins in every organ are identical or different remains to be determined. In the erythrocyte, delta-aminolevulinic acid dehydratase (ALAD isoforms have commanded the greatest attention as proteins and enzymes that are both inhibitable and inducible by lead. ALAD-2, although it binds lead to a greater degree than ALAD-1, appears to bind lead in a less toxic form. What may be of greater significance is that a low molecular weight lead-binding protein, approximately 10 kDa, appears in the erythrocyte once blood lead exceeds 39 μg/dL and eventually surpasses the lead-binding capacity of ALAD. In brain and kidney of environmentally exposed humans and animals, a cytoplasmic lead-binding protein has been identified as thymosin β4, a 5 kDa protein. In kidney, but not brain, another lead-binding protein has been identified as acyl-CoA binding protein, a 9 kDa protein. Each of these proteins, when coincubated with liver ALAD and titrated with lead, diminishes the inhibition of ALAD by lead, verifying their ability to segregate lead in a nontoxic form.

  5. Design of multiligand inhibitors for the swine flu H1N1 neuraminidase binding site

    Directory of Open Access Journals (Sweden)

    Narayanan MM

    2013-08-01

    Full Text Available Manoj M Narayanan,1,2 Chandrasekhar B Nair,2 Shilpa K Sanjeeva,2 PV Subba Rao,2 Phani K Pullela,1,2 Colin J Barrow11Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia; 2Bigtec Pvt Ltd, Rajajinagar, Bangalore, IndiaAbstract: Viral neuraminidase inhibitors such as oseltamivir and zanamivir prevent early virus multiplication by blocking sialic acid cleavage on host cells. These drugs are effective for the treatment of a variety of influenza subtypes, including swine flu (H1N1. The binding site for these drugs is well established and they were designed based on computational docking studies. We show here that some common natural products have moderate inhibitory activity for H1N1 neuraminidase under docking studies. Significantly, docking studies using AutoDock for biligand and triligand forms of these compounds (camphor, menthol, and methyl salicylate linked via methylene bridges indicate that they may bind in combination with high affinity to the H1N1 neuraminidase active site. These results also indicate that chemically linked biligands and triligands of these natural products could provide a new class of drug leads for the prevention and treatment of influenza. This study also highlights the need for a multiligand docking algorithm to understand better the mode of action of natural products, wherein multiple active ingredients are present.Keywords: neuraminidase, influenza, H1N1, multiligand, binding energy, molecular docking, virus

  6. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models*

    Science.gov (United States)

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-01-01

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. PMID:26912662

  7. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models.

    Science.gov (United States)

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-05-06

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes

    Directory of Open Access Journals (Sweden)

    Bodee Nutho

    2014-11-01

    Full Text Available In the present study, our aim is to investigate the preferential binding mode and encapsulation of the flavonoid fisetin in the nano-pore of β-cyclodextrin (β-CD at the molecular level using various theoretical approaches: molecular docking, molecular dynamics (MD simulations and binding free energy calculations. The molecular docking suggested four possible fisetin orientations in the cavity through its chromone or phenyl ring with two different geometries of fisetin due to the rotatable bond between the two rings. From the multiple MD results, the phenyl ring of fisetin favours its inclusion into the β-CD cavity, whilst less binding or even unbinding preference was observed in the complexes where the larger chromone ring is located in the cavity. All MM- and QM-PBSA/GBSA free energy predictions supported the more stable fisetin/β-CD complex of the bound phenyl ring. Van der Waals interaction is the key force in forming the complexes. In addition, the quantum mechanics calculations with M06-2X/6-31G(d,p clearly showed that both solvation effect and BSSE correction cannot be neglected for the energy determination of the chosen system.

  9. Advancing Psychologically Informed Practice for Patients With Persistent Musculoskeletal Pain: Promise, Pitfalls, and Solutions.

    Science.gov (United States)

    Keefe, Francis J; Main, Chris J; George, Steven Z

    2018-05-01

    There has been growing interest in psychologically oriented pain management over the past 3 to 4 decades, including a 2011 description of psychologically informed practice (PIP) for low back pain. PIP requires a broader focus than traditional biomechanical and pathology-based approaches that have been traditionally used to manage musculoskeletal pain. A major focus of PIP is addressing the behavioral aspects of pain (ie, peoples' responses to pain) by identifying individual expectations, beliefs, and feelings as prognostic factors for clinical and occupational outcomes indicating progression to chronicity. Since 2011, the interest in PIP seems to be growing, as evidenced by its use in large trials, inclusion in scientific conferences, increasing evidence base, and expansion to other musculoskeletal pain conditions. Primary care physicians and physical therapists have delivered PIP as part of a stratified care approach involving screening and targeting of treatment for people at high risk for continued pain-associated disability. Furthermore, PIP is consistent with recent national priorities emphasizing nonpharmacological pain management options. In this perspective, PIP techniques that range in complexity are described, considerations for implementation in clinical practice are offered, and future directions that will advance the understanding of PIP are outlined.

  10. Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors

    Directory of Open Access Journals (Sweden)

    Aixin Li

    2017-09-01

    Full Text Available C-repeat binding factors (CBF are a subfamily of AP2 transcription factors that play critical roles in the regulation of plant cold tolerance and growth in low temperature. In the present work, we sought to perform a detailed investigation into global transcriptional regulation of plant hormone signaling associated genes in transgenic plants engineered with CBF genes. RNA samples from Arabidopsis thaliana plants overexpressing two CBF genes, CBF2 and CBF3, were subjected to Illumina HiSeq 2000 RNA sequencing (RNA-Seq. Our results showed that more than half of the hormone associated genes that were differentially expressed in CBF2 or CBF3 transgenic plants were related to auxin signal transduction and metabolism. Most of these alterations in gene expression could lead to repression of auxin signaling. Accordingly, the IAA content was significantly decreased in young tissues of plants overexpressing CBF2 and CBF3 compared with wild type. In addition, genes associated with the biosynthesis of Jasmonate (JA and Salicylic acid (SA, as well as the signal sensing of Brassinolide (BR and SA, were down-regulated, while genes associated with Gibberellin (GA deactivation were up-regulated. In general, overexpression of CBF2 and CBF3 negatively affects multiple plant hormone signaling pathways in Arabidopsis. The transcriptome analysis using CBF2 and CBF3 transgenic plants provides novel and integrated insights into the interaction between CBFs and plant hormones, particularly the modulation of auxin signaling, which may contribute to the improvement of crop yields under abiotic stress via molecular engineering using CBF genes.

  11. SHBG (Sex Hormone Binding Globulin)

    Science.gov (United States)

    ... Links Patient Resources For Health Professionals Subscribe Search Sex Hormone Binding Globulin (SHBG) Send Us Your Feedback ... As Testosterone-estrogen Binding Globulin TeBG Formal Name Sex Hormone Binding Globulin This article was last reviewed ...

  12. Binding of 3H-iloprost to rat gastric mucosa: a pitfall in performing radioligand binding assays

    International Nuclear Information System (INIS)

    Beinborn, M.; Kromer, W.; Staar, U.; Sewing, K.F.

    1985-01-01

    Binding of 3 H-iloprost was studied in a 20,000 x g sediment of the rat gastric mucosa. When pH in both test tubes for total and non-specific binding was kept identical, no displaceable binding of iloprost could be detected. When no care was taken to keep the pH identical in corresponding test tubes of the binding assay, changes in pH simulated specific and displaceable binding of iloprost. Therefore it is concluded that - in contrast to earlier reports - it is not possible to demonstrate specific iloprost binding using the given method

  13. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes

    DEFF Research Database (Denmark)

    Mandrup, S; Hummel, R; Ravn, S

    1992-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous mod...... have molecularly cloned and characterized the ACBP/DBI gene family in rat. The rat ACBP/DBI gene family comprises one expressed gene and four processed pseudogenes of which one was shown to exist in two allelic forms. The expressed gene is organized into four exons and three introns...

  14. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.

    Science.gov (United States)

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan

    2017-04-04

    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    Science.gov (United States)

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  16. Multiple conformational states of DnaA protein regulate its interaction with DnaA boxes in the initiation of DNA replication.

    Science.gov (United States)

    Patel, Meera J; Bhatia, Lavesh; Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2017-09-01

    DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  18. Microwave induced stimulation of 32Pi incorporation into phosphoinositides of rat brain synaptosomes

    International Nuclear Information System (INIS)

    Gandhi, C.R.; Ross, D.H.

    1989-01-01

    Exposure of synaptosomes to microwave radiation at a power density of 10 mW/sq cm or more produced stimulation of the 32 Pi-incorporation into phosphoinositides. The extent of 32 Pi incorporation was found to be much more pronounced in phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP 2 ) as compared to phosphatidylinositol (PI) and phosphatidic acid (PA). Other lipids were also found to incorporate 32 Pi but no significant changes in their labeling were seen after exposure to microwave radiation. Inclusion of 10 mM lithium in the medium reduced the basal labeling of PIP 2 , PIP and PI and increased PA labeling. Li + also inhibited the microwave stimulated PIP 2 , PIP and PI labeling but had no effect on PA labeling. Calcium inophore, A 23187 , inhibited the basal and microwave stimulated 32 Pi labeling of PIP and PIP 2 , stimulated basal labeling of PA and PI and had no effect on microwave stimulated PA and PI labeling. Calcium chelator, EGTA, on the other hand, had no effect on basal labeling of PA and PI, stimulated basal PIP and PIP 2 labeling but did not alter microwave stimulated labeling of these lipids. Exposure of synaptosomes to microwave radiation did not alter the chemical concentration of phosphoinositides indicating that the turnover of these lipids was altered. These results suggest that low frequency microwave radiation alter the metabolism of inositol phospholipids by enhancing their turnover and thus may affect the transmembrane signalling in the nerve endings. (orig.)

  19. Microwave induced stimulation of /sup 32/Pi incorporation into phosphoinositides of rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, C.R.; Ross, D.H.

    1989-07-01

    Exposure of synaptosomes to microwave radiation at a power density of 10 mW/sq cm or more produced stimulation of the /sup 32/Pi-incorporation into phosphoinositides. The extent of /sup 32/Pi incorporation was found to be much more pronounced in phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP/sub 2/) as compared to phosphatidylinositol (PI) and phosphatidic acid (PA). Other lipids were also found to incorporate /sup 32/Pi but no significant changes in their labeling were seen after exposure to microwave radiation. Inclusion of 10 mM lithium in the medium reduced the basal labeling of PIP/sub 2/, PIP and PI and increased PA labeling. Li/sup +/ also inhibited the microwave stimulated PIP/sub 2/, PIP and PI labeling but had no effect on PA labeling. Calcium inophore, A/sub 23187/, inhibited the basal and microwave stimulated /sup 32/Pi labeling of PIP and PIP/sub 2/, stimulated basal labeling of PA and PI and had no effect on microwave stimulated PA and PI labeling. Calcium chelator, EGTA, on the other hand, had no effect on basal labeling of PA and PI, stimulated basal PIP and PIP/sub 2/ labeling but did not alter microwave stimulated labeling of these lipids. Exposure of synaptosomes to microwave radiation did not alter the chemical concentration of phosphoinositides indicating that the turnover of these lipids was altered. These results suggest that low frequency microwave radiation alter the metabolism of inositol phospholipids by enhancing their turnover and thus may affect the transmembrane signalling in the nerve endings.

  20. Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase

    Energy Technology Data Exchange (ETDEWEB)

    Landon, Melissa R.; Lieberman, Raquel L.; Hoang, Quyen Q.; Ju, Shulin; Caaveiro, Jose M.M.; Orwig, Susan D.; Kozakov, Dima; Brenke, Ryan; Chuang, Gwo-Yu; Beglov, Dmitry; Vajda, Sandor; Petsko, Gregory A.; Ringe, Dagmar; (BU-M); (Brandeis); (GIT)

    2010-08-04

    The identification of hot spots, i.e., binding regions that contribute substantially to the free energy of ligand binding, is a critical step for structure-based drug design. Here we present the application of two fragment-based methods to the detection of hot spots for DJ-1 and glucocerebrosidase (GCase), targets for the development of therapeutics for Parkinson's and Gaucher's diseases, respectively. While the structures of these two proteins are known, binding information is lacking. In this study we employ the experimental multiple solvent crystal structures (MSCS) method and computational fragment mapping (FTMap) to identify regions suitable for the development of pharmacological chaperones for DJ-1 and GCase. Comparison of data derived via MSCS and FTMap also shows that FTMap, a computational method for the identification of fragment binding hot spots, is an accurate and robust alternative to the performance of expensive and difficult crystallographic experiments.