WorldWideScience

Sample records for multiple objectives electronic

  1. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  2. Rough multiple objective decision making

    CERN Document Server

    Xu, Jiuping

    2011-01-01

    Rough Set TheoryBasic concepts and properties of rough sets Rough Membership Rough Intervals Rough FunctionApplications of Rough SetsMultiple Objective Rough Decision Making Reverse Logistics Problem with Rough Interval Parameters MODM based Rough Approximation for Feasible RegionEVRMCCRMDCRM Reverse Logistics Network Design Problem of Suji Renewable Resource MarketBilevel Multiple Objective Rough Decision Making Hierarchical Supply Chain Planning Problem with Rough Interval Parameters Bilevel Decision Making ModelBL-EVRM BL-CCRMBL-DCRMApplication to Supply Chain Planning of Mianyang Co., LtdStochastic Multiple Objective Rough Decision Multi-Objective Resource-Constrained Project Scheduling UnderRough Random EnvironmentRandom Variable Stochastic EVRM Stochastic CCRM Stochastic DCRM Multi-Objective rc-PSP/mM/Ro-Ra for Longtan Hydropower StationFuzzy Multiple Objective Rough Decision Making Allocation Problem under Fuzzy Environment Fuzzy Variable Fu-EVRM Fu-CCRM Fu-DCRM Earth-Rock Work Allocation Problem.

  3. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    Science.gov (United States)

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  4. Multiple Object Permanence Tracking: Maintenance, Retrieval and Transformation of Dynamic Object Representations

    OpenAIRE

    Saiki, Jun

    2008-01-01

    Multiple object permanence tracking (MOPT) task revealed that our ability of maintaining and transforming multiple representations of complex feature-bound objects is limited to handle only 1-2 objects. Often reported capacity of 3-5 objects likely reflects memory for partial representations of objects and simple cases such as just color and their locations. Also, performance in multiple object tracking (MOT) task is likely mediated by spatiotemporal indices, not by feature-bound object repre...

  5. Multiple-object permanence tracking: limitation in maintenance and transformation of perceptual objects.

    Science.gov (United States)

    Saiki, Jun

    2002-01-01

    Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.

  6. Multiple electron generation in a sea of electronic states

    Science.gov (United States)

    Witzel, Wayne; Shabaev, Andrew; Efros, Alexander; Hellberg, Carl; Verne, Jacobs

    2009-03-01

    In traditional bulk semiconductor photovoltaics (PVs), each photon may excite a single electron-hole, wasting excess energy beyond the band-gap as heat. In nanocrystals, multiple excitons can be generated from a single photon, enhancing the PV current. Multiple electron generation (MEG) may result from Coulombic interactions of the confined electrons. Previous investigations have been based on incomplete or over-simplified electronic-state representations. We present results of quantum simulations that include hundreds of thousands of configuration states and show how the complex dynamics, even in a closed electronic system, yields a saturated MEG effect on a femtosecond timescale. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Self-Motion Impairs Multiple-Object Tracking

    Science.gov (United States)

    Thomas, Laura E.; Seiffert, Adriane E.

    2010-01-01

    Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement…

  8. Apparatus for electron beam irradiation of objects

    International Nuclear Information System (INIS)

    Dmitriev, S.P.; Ivanov, A.S.; Sviniin, M.P.; Fedotov, M.T.

    1984-01-01

    This patent provides an apparatus for electron beam irradiation of objects, comprising a shaper of a ribbon-shaped electron beam and a deflecting electromagnet having a frame-type magnetic circuit and used to direct said electron beam onto an irradiated object substantially at an angle of 90 degrees. The deflecting electromagnet has two poles extended over the width of the irradiated object and comprises two windings embracing said poles and connected to a d.c. source. The deflecting electromagnet is arranged in such a manner that the trajectories of the electrons at an area from the shaper to the electromagnet are inclined to the plane of the frame of its magnetic circuit

  9. Fuzzy-like multiple objective multistage decision making

    CERN Document Server

    Xu, Jiuping

    2014-01-01

    Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like un...

  10. Compositional mining of multiple object API protocols through state abstraction.

    Science.gov (United States)

    Dai, Ziying; Mao, Xiaoguang; Lei, Yan; Qi, Yuhua; Wang, Rui; Gu, Bin

    2013-01-01

    API protocols specify correct sequences of method invocations. Despite their usefulness, API protocols are often unavailable in practice because writing them is cumbersome and error prone. Multiple object API protocols are more expressive than single object API protocols. However, the huge number of objects of typical object-oriented programs poses a major challenge to the automatic mining of multiple object API protocols: besides maintaining scalability, it is important to capture various object interactions. Current approaches utilize various heuristics to focus on small sets of methods. In this paper, we present a general, scalable, multiple object API protocols mining approach that can capture all object interactions. Our approach uses abstract field values to label object states during the mining process. We first mine single object typestates as finite state automata whose transitions are annotated with states of interacting objects before and after the execution of the corresponding method and then construct multiple object API protocols by composing these annotated single object typestates. We implement our approach for Java and evaluate it through a series of experiments.

  11. Multiple utility constrained multi-objective programs using Bayesian theory

    Science.gov (United States)

    Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed

    2018-03-01

    A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.

  12. Connection-based and object-based grouping in multiple-object tracking: A developmental study.

    Science.gov (United States)

    Van der Hallen, Ruth; Reusens, Julie; Evers, Kris; de-Wit, Lee; Wagemans, Johan

    2018-03-30

    Developmental research on Gestalt laws has previously revealed that, even as young as infancy, we are bound to group visual elements into unitary structures in accordance with a variety of organizational principles. Here, we focus on the developmental trajectory of both connection-based and object-based grouping, and investigate their impact on object formation in participants, aged 9-21 years old (N = 113), using a multiple-object tracking paradigm. Results reveal a main effect of both age and grouping type, indicating that 9- to 21-year-olds are sensitive to both connection-based and object-based grouping interference, and tracking ability increases with age. In addition to its importance for typical development, these results provide an informative baseline to understand clinical aberrations in this regard. Statement of contribution What is already known on this subject? The origin of the Gestalt principles is still an ongoing debate: Are they innate, learned over time, or both? Developmental research has revealed how each Gestalt principle has its own trajectory and unique relationship to visual experience. Both connectedness and object-based grouping play an important role in object formation during childhood. What does this study add? The study identifies how sensitivity to connectedness and object-based grouping evolves in individuals, aged 9-21 years old. Using multiple-object tracking, results reveal that the ability to track multiple objects increases with age. These results provide an informative baseline to understand clinical aberrations in different types of grouping. © 2018 The Authors. British Journal of Developmental Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  13. Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.

    Science.gov (United States)

    Franconeri, S L; Jonathan, S V; Scimeca, J M

    2010-07-01

    In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.

  14. Object tracking using multiple camera video streams

    Science.gov (United States)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  15. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics

    Directory of Open Access Journals (Sweden)

    Bernardin Keni

    2008-01-01

    Full Text Available Abstract Simultaneous tracking of multiple persons in real-world environments is an active research field and several approaches have been proposed, based on a variety of features and algorithms. Recently, there has been a growing interest in organizing systematic evaluations to compare the various techniques. Unfortunately, the lack of common metrics for measuring the performance of multiple object trackers still makes it hard to compare their results. In this work, we introduce two intuitive and general metrics to allow for objective comparison of tracker characteristics, focusing on their precision in estimating object locations, their accuracy in recognizing object configurations and their ability to consistently label objects over time. These metrics have been extensively used in two large-scale international evaluations, the 2006 and 2007 CLEAR evaluations, to measure and compare the performance of multiple object trackers for a wide variety of tracking tasks. Selected performance results are presented and the advantages and drawbacks of the presented metrics are discussed based on the experience gained during the evaluations.

  16. Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography

    Science.gov (United States)

    Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua

    2018-03-01

    We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).

  17. A Multiple-objective Optimization of Whey Fermentation in Stirred Tank Bioreactors

    Directory of Open Access Journals (Sweden)

    Mitko Petrov

    2006-12-01

    Full Text Available A multiple-objective optimization is applied to find an optimal policy of a fed-batch fermentation process for lactose oxidation from a natural substratum of the strain Kluyveromyces marxianus var. lactis MC5. The optimal policy is consisted of feed flow rate, agitation speed, and gas flow rate. The multiple-objective problem includes: the total price of the biomass production, the second objective functions are the separation cost in downstream processing and the third objective function corresponds to the oxygen mass-transfer in the bioreactor. The multiple-objective optimization are transforming to standard problem for optimization with single-objective function. Local criteria are defined utility function with different weight for single-type vector task. A fuzzy sets method is applied to be solved the maximizing decision problem. A simple combined algorithm guideline to find a satisfactory solution to the general multiple-objective optimization problem. The obtained optimal control results have shown an increase of the process productiveness and a decrease of the residual substrate concentration.

  18. Electron-electron interaction in Multiple Quantum Wells

    Science.gov (United States)

    Zybert, M.; Marchewka, M.; Tomaka, G.; Sheregii, E. M.

    2012-07-01

    The complex investigation of the magneto-transport effects in structures containing multiple quantum well (MQWs) based on the GaAs/AlGaAs-heterostructures has been performed. The MQWs investigated have different electron densities in QWs. The parameters of 2DEG in MQWs were determined from the data of the Integer Quantum Hall Effect (IQHE) and Shubnikov-de Haas oscillations (SdH) observed at low temperatures (0.6-4.2 K). The method of calculation of the electron states energies in MQWs has been developed which is based on the splitting of these states due to the exchange interaction (SAS-splitting, see D. Płoch et al., Phys. Rev. B 79 (2009) 195434) including the screening of this interaction. The IQHE and SdH observed in these multilayer structures with the third degree of freedom for electrons are interpreted from this.

  19. Connection-based and object-based grouping in multiple-object tracking: A developmental study

    OpenAIRE

    Hallen, Ruth; Reusens, J. (Julie); Evers, K. (Kris); de-Wit, Lee; Wagemans, Johan

    2018-01-01

    textabstractDevelopmental research on Gestalt laws has previously revealed that, even as young as infancy, we are bound to group visual elements into unitary structures in accordance with a variety of organizational principles. Here, we focus on the developmental trajectory of both connection-based and object-based grouping, and investigate their impact on object formation in participants, aged 9-21 years old (N = 113), using a multiple-object tracking paradigm. Results reveal a main effect o...

  20. A PDP model of the simultaneous perception of multiple objects

    Science.gov (United States)

    Henderson, Cynthia M.; McClelland, James L.

    2011-06-01

    Illusory conjunctions in normal and simultanagnosic subjects are two instances where the visual features of multiple objects are incorrectly 'bound' together. A connectionist model explores how multiple objects could be perceived correctly in normal subjects given sufficient time, but could give rise to illusory conjunctions with damage or time pressure. In this model, perception of two objects benefits from lateral connections between hidden layers modelling aspects of the ventral and dorsal visual pathways. As with simultanagnosia, simulations of dorsal lesions impair multi-object recognition. In contrast, a large ventral lesion has minimal effect on dorsal functioning, akin to dissociations between simple object manipulation (retained in visual form agnosia and semantic dementia) and object discrimination (impaired in these disorders) [Hodges, J.R., Bozeat, S., Lambon Ralph, M.A., Patterson, K., and Spatt, J. (2000), 'The Role of Conceptual Knowledge: Evidence from Semantic Dementia', Brain, 123, 1913-1925; Milner, A.D., and Goodale, M.A. (2006), The Visual Brain in Action (2nd ed.), New York: Oxford]. It is hoped that the functioning of this model might suggest potential processes underlying dorsal and ventral contributions to the correct perception of multiple objects.

  1. Multiple Objective Treatment Aspects of Bank Filtration

    NARCIS (Netherlands)

    Maeng, S.K.

    2010-01-01

    This study shows that BF is an effective multiple objective barrier for removal of different contaminants present in surface water sources including bulk organic matter and organic microplollutants (OMPs) like pharmaceutically active compounds and endocrine disrupting compounds. It was found that

  2. Multiple objective treatment aspects of bank filtration

    NARCIS (Netherlands)

    Maeng, S.K.

    2010-01-01

    This study showed that BF is an effective multiple objective barrier for removal of different contaminants present in surface water sources including bulk organic matter and organic micropollutants (OMPs) like pharmaceutically active compounds and endocrine disrupting compounds. It was found that

  3. Temporal brain dynamics of multiple object processing: the flexibility of individuation.

    Directory of Open Access Journals (Sweden)

    Veronica Mazza

    Full Text Available The ability to process concurrently multiple visual objects is fundamental for a coherent perception of the world. A core component of this ability is the simultaneous individuation of multiple objects. Many studies have addressed the mechanism of object individuation but it remains unknown whether the visual system mandatorily individuates all relevant elements in the visual field, or whether object indexing depends on task demands. We used a neural measure of visual selection, the N2pc component, to evaluate the flexibility of multiple object individuation. In three ERP experiments, participants saw a variable number of target elements among homogenous distracters and performed either an enumeration task (Experiment 1 or a detection task, reporting whether at least one (Experiment 2 or a specified number of target elements (Experiment 3 was present. While in the enumeration task the N2pc response increased as a function of the number of targets, no such modulation was found in Experiment 2, indicating that individuation of multiple targets is not mandatory. However, a modulation of the N2pc similar to the enumeration task was visible in Experiment 3, further highlighting that object individuation is a flexible mechanism that binds indexes to object properties and locations as needed for further object processing.

  4. Electron Raman scattering in asymmetrical multiple quantum wells

    International Nuclear Information System (INIS)

    Betancourt-Riera, R; Rosas, R; Marin-Enriquez, I; Riera, R; Marin, J L

    2005-01-01

    Optical properties of asymmetrical multiple quantum wells for the construction of quantum cascade lasers are calculated, and expressions for the electronic states of asymmetrical multiple quantum wells are presented. The gain and differential cross-section for an electron Raman scattering process are obtained. Also, the emission spectra for several scattering configurations are discussed, and the corresponding selection rules for the processes involved are studied; an interpretation of the singularities found in the spectra is given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers

  5. Studying visual attention using the multiple object tracking paradigm: A tutorial review.

    Science.gov (United States)

    Meyerhoff, Hauke S; Papenmeier, Frank; Huff, Markus

    2017-07-01

    Human observers are capable of tracking multiple objects among identical distractors based only on their spatiotemporal information. Since the first report of this ability in the seminal work of Pylyshyn and Storm (1988, Spatial Vision, 3, 179-197), multiple object tracking has attracted many researchers. A reason for this is that it is commonly argued that the attentional processes studied with the multiple object paradigm apparently match the attentional processing during real-world tasks such as driving or team sports. We argue that multiple object tracking provides a good mean to study the broader topic of continuous and dynamic visual attention. Indeed, several (partially contradicting) theories of attentive tracking have been proposed within the almost 30 years since its first report, and a large body of research has been conducted to test these theories. With regard to the richness and diversity of this literature, the aim of this tutorial review is to provide researchers who are new in the field of multiple object tracking with an overview over the multiple object tracking paradigm, its basic manipulations, as well as links to other paradigms investigating visual attention and working memory. Further, we aim at reviewing current theories of tracking as well as their empirical evidence. Finally, we review the state of the art in the most prominent research fields of multiple object tracking and how this research has helped to understand visual attention in dynamic settings.

  6. Use of multiple objective evolutionary algorithms in optimizing surveillance requirements

    International Nuclear Information System (INIS)

    Martorell, S.; Carlos, S.; Villanueva, J.F.; Sanchez, A.I; Galvan, B.; Salazar, D.; Cepin, M.

    2006-01-01

    This paper presents the development and application of a double-loop Multiple Objective Evolutionary Algorithm that uses a Multiple Objective Genetic Algorithm to perform the simultaneous optimization of periodic Test Intervals (TI) and Test Planning (TP). It takes into account the time-dependent effect of TP performed on stand-by safety-related equipment. TI and TP are part of the Surveillance Requirements within Technical Specifications at Nuclear Power Plants. It addresses the problem of multi-objective optimization in the space of dependable variables, i.e. TI and TP, using a novel flexible structure of the optimization algorithm. Lessons learnt from the cases of application of the methodology to optimize TI and TP for the High-Pressure Injection System are given. The results show that the double-loop Multiple Objective Evolutionary Algorithm is able to find the Pareto set of solutions that represents a surface of non-dominated solutions that satisfy all the constraints imposed on the objective functions and decision variables. Decision makers can adopt then the best solution found depending on their particular preference, e.g. minimum cost, minimum unavailability

  7. Application of multiple objective models to water resources planning and management

    International Nuclear Information System (INIS)

    North, R.M.

    1993-01-01

    Over the past 30 years, we have seen the birth and growth of multiple objective analysis from an idea without tools to one with useful applications. Models have been developed and applications have been researched to address the multiple purposes and objectives inherent in the development and management of water resources. A practical approach to multiple objective modelling incorporates macroeconomic-based policies and expectations in order to optimize the results from both engineering (structural) and management (non-structural) alternatives, while taking into account the economic and environmental trade-offs. (author). 27 refs, 4 figs, 3 tabs

  8. Photon-mediated electron multiplication in liquid xenon doped with trimethylamine

    International Nuclear Information System (INIS)

    Sano, Toshio; Ashikaga, Kinya; Doke, Tadayoshi; Hitachi, Akira; Kikuchi, Jun; Masuda, Kimiaki; Okumura, Yasuaki

    1989-01-01

    Electron multiplication mediated by photons has been observed in liquid xenon doped with trimethylamine in concentrations of 0, 9.3, 43, 118 and 400 ppm. The effect was observed by irradiating a single wire counter with 1 MeV electrons and gamma rays from 207 Bi sources. The multiplication factor was observed to increase from a value of 23 at a concentration of 9.3 ppm to a value of 45 at a concentration of 118 ppm. Over the same range of concentrations, the threshold anode voltage for photon-mediated electron multiplication (PMEM) decreased from 2.5 to 1.4 kV and the PMEM results in a deterioration of energy resolution. At a concentration of 400 ppm, the resulting electron multiplication was neither stable nor reproducible. (orig.)

  9. Interference electron microscopy of one-dimensional electron-optical phase objects

    International Nuclear Information System (INIS)

    Fazzini, P.F.; Ortolani, L.; Pozzi, G.; Ubaldi, F.

    2006-01-01

    The application of interference electron microscopy to the investigation of electron optical one-dimensional phase objects like reverse biased p-n junctions and ferromagnetic domain walls is considered. In particular the influence of diffraction from the biprism edges on the interference images is analyzed and the range of applicability of the geometric optical equation for the interpretation of the interference fringe shifts assessed by comparing geometric optical images with full wave-optical simulations. Finally, the inclusion of partial spatial coherence effects are discussed

  10. Statistics of electron multiplication in multiplier phototube: iterative method

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Ortiz Sanchez, J.F.

    1985-01-01

    An iterative method is applied to study the variation of dynode response in the multiplier phototube. Three different situations are considered that correspond to the following ways of electronic incidence on the first dynode: incidence of exactly one electron, incidence of exactly r electrons and incidence of an average anti-r electrons. The responses are given for a number of steps between 1 and 5, and for values of the multiplication factor of 2.1, 2.5, 3 and 5. We study also the variance, the skewness and the excess of jurtosis for different multiplication factors. (author)

  11. A Psychoacoustic-Based Multiple Audio Object Coding Approach via Intra-Object Sparsity

    Directory of Open Access Journals (Sweden)

    Maoshen Jia

    2017-12-01

    Full Text Available Rendering spatial sound scenes via audio objects has become popular in recent years, since it can provide more flexibility for different auditory scenarios, such as 3D movies, spatial audio communication and virtual classrooms. To facilitate high-quality bitrate-efficient distribution for spatial audio objects, an encoding scheme based on intra-object sparsity (approximate k-sparsity of the audio object itself is proposed in this paper. The statistical analysis is presented to validate the notion that the audio object has a stronger sparseness in the Modified Discrete Cosine Transform (MDCT domain than in the Short Time Fourier Transform (STFT domain. By exploiting intra-object sparsity in the MDCT domain, multiple simultaneously occurring audio objects are compressed into a mono downmix signal with side information. To ensure a balanced perception quality of audio objects, a Psychoacoustic-based time-frequency instants sorting algorithm and an energy equalized Number of Preserved Time-Frequency Bins (NPTF allocation strategy are proposed, which are employed in the underlying compression framework. The downmix signal can be further encoded via Scalar Quantized Vector Huffman Coding (SQVH technique at a desirable bitrate, and the side information is transmitted in a lossless manner. Both objective and subjective evaluations show that the proposed encoding scheme outperforms the Sparsity Analysis (SPA approach and Spatial Audio Object Coding (SAOC in cases where eight objects were jointly encoded.

  12. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1987-10-01

    Multiple electron capture is reported for Ca 17+ in Ar. Close collisions are defined by the observation of a coincident Ca K or Ar K x-ray. A large number of electrons is transferred to the projectile in a single close collision when the Ca ion projectile is of the order of the Ar L-shell electron velocity. The cross section for electron capture is reported

  13. A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization.

    Science.gov (United States)

    Yang, Shaofu; Liu, Qingshan; Wang, Jun

    2018-04-01

    This paper is concerned with multiple-objective distributed optimization. Based on objective weighting and decision space decomposition, a collaborative neurodynamic approach to multiobjective distributed optimization is presented. In the approach, a system of collaborative neural networks is developed to search for Pareto optimal solutions, where each neural network is associated with one objective function and given constraints. Sufficient conditions are derived for ascertaining the convergence to a Pareto optimal solution of the collaborative neurodynamic system. In addition, it is proved that each connected subsystem can generate a Pareto optimal solution when the communication topology is disconnected. Then, a switching-topology-based method is proposed to compute multiple Pareto optimal solutions for discretized approximation of Pareto front. Finally, simulation results are discussed to substantiate the performance of the collaborative neurodynamic approach. A portfolio selection application is also given.

  14. Electromagnetic imaging of multiple-scattering small objects: non-iterative analytical approach

    International Nuclear Information System (INIS)

    Chen, X; Zhong, Y

    2008-01-01

    Multiple signal classification (MUSIC) imaging method and the least squares method are applied to solve the electromagnetic inverse scattering problem of determining the locations and polarization tensors of a collection of small objects embedded in a known background medium. Based on the analysis of induced electric and magnetic dipoles, the proposed MUSIC method is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply. After the locations of objects are obtained, the nonlinear inverse problem of determining the polarization tensors of objects accounting for multiple scattering between objects is solved by a non-iterative analytical approach based on the least squares method

  15. Efficient Selection of Multiple Objects on a Large Scale

    DEFF Research Database (Denmark)

    Stenholt, Rasmus

    2012-01-01

    The task of multiple object selection (MOS) in immersive virtual environments is important and still largely unexplored. The diffi- culty of efficient MOS increases with the number of objects to be selected. E.g. in small-scale MOS, only a few objects need to be simultaneously selected. This may...... consuming. Instead, we have implemented and tested two of the existing approaches to 3-D MOS, a brush and a lasso, as well as a new technique, a magic wand, which automati- cally selects objects based on local proximity to other objects. In a formal user evaluation, we have studied how the performance...

  16. Multiple-Objective Stepwise Calibration Using Luca

    Science.gov (United States)

    Hay, Lauren E.; Umemoto, Makiko

    2007-01-01

    This report documents Luca (Let us calibrate), a multiple-objective, stepwise, automated procedure for hydrologic model calibration and the associated graphical user interface (GUI). Luca is a wizard-style user-friendly GUI that provides an easy systematic way of building and executing a calibration procedure. The calibration procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any model compiled with the U.S. Geological Survey's Modular Modeling System. This process assures that intermediate and final states of the model are simulated consistently with measured values.

  17. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    International Nuclear Information System (INIS)

    Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.

    2006-01-01

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature

  18. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es

    2006-09-15

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.

  19. Statistics of electron multiplication in a multiplier phototube; Iterative method

    International Nuclear Information System (INIS)

    Ortiz, J. F.; Grau, A.

    1985-01-01

    In the present paper an iterative method is applied to study the variation of dynode response in the multiplier phototube. Three different situation are considered that correspond to the following ways of electronic incidence on the first dynode: incidence of exactly one electron, incidence of exactly r electrons and incidence of an average r electrons. The responses are given for a number of steps between 1 and 5, and for values of the multiplication factor of 2.1, 2.5, 3 and 5. We study also the variance, the skewness and the excess of jurtosis for different multiplication factors. (Author) 11 refs

  20. Multiple electron processes of He and Ne by proton impact

    Science.gov (United States)

    Terekhin, Pavel Nikolaevich; Montenegro, Pablo; Quinto, Michele; Monti, Juan; Fojon, Omar; Rivarola, Roberto

    2016-05-01

    A detailed investigation of multiple electron processes (single and multiple ionization, single capture, transfer-ionization) of He and Ne is presented for proton impact at intermediate and high collision energies. Exclusive absolute cross sections for these processes have been obtained by calculation of transition probabilities in the independent electron and independent event models as a function of impact parameter in the framework of the continuum distorted wave-eikonal initial state theory. A binomial analysis is employed to calculate exclusive probabilities. The comparison with available theoretical and experimental results shows that exclusive probabilities are needed for a reliable description of the experimental data. The developed approach can be used for obtaining the input database for modeling multiple electron processes of charged particles passing through the matter.

  1. Multi-objective optimization of linear multi-state multiple sliding window system

    International Nuclear Information System (INIS)

    Konak, Abdullah; Kulturel-Konak, Sadan; Levitin, Gregory

    2012-01-01

    This paper considers the optimal element sequencing in a linear multi-state multiple sliding window system that consists of n linearly ordered multi-state elements. Each multi-state element can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. The failure of type i in the system occurs if for any i (1≤i≤I) the cumulative performance of any r i consecutive elements is lower than w i . The element sequence strongly affects the probability of any type of system failure. The sequence that minimizes the probability of certain type of failure can provide high probability of other types of failures. Therefore the optimization problem for the multiple sliding window system is essentially multi-objective. The paper formulates and solves the multi-objective optimization problem for the multiple sliding window systems. A multi-objective Genetic Algorithm is used as the optimization engine. Illustrative examples are presented.

  2. A matter of tradeoffs: reintroduction as a multiple objective decision

    Science.gov (United States)

    Converse, Sarah J.; Moore, Clinton T.; Folk, Martin J.; Runge, Michael C.

    2013-01-01

    Decision making in guidance of reintroduction efforts is made challenging by the substantial scientific uncertainty typically involved. However, a less recognized challenge is that the management objectives are often numerous and complex. Decision makers managing reintroduction efforts are often concerned with more than just how to maximize the probability of reintroduction success from a population perspective. Decision makers are also weighing other concerns such as budget limitations, public support and/or opposition, impacts on the ecosystem, and the need to consider not just a single reintroduction effort, but conservation of the entire species. Multiple objective decision analysis is a powerful tool for formal analysis of such complex decisions. We demonstrate the use of multiple objective decision analysis in the case of the Florida non-migratory whooping crane reintroduction effort. In this case, the State of Florida was considering whether to resume releases of captive-reared crane chicks into the non-migratory whooping crane population in that state. Management objectives under consideration included maximizing the probability of successful population establishment, minimizing costs, maximizing public relations benefits, maximizing the number of birds available for alternative reintroduction efforts, and maximizing learning about the demographic patterns of reintroduced whooping cranes. The State of Florida engaged in a collaborative process with their management partners, first, to evaluate and characterize important uncertainties about system behavior, and next, to formally evaluate the tradeoffs between objectives using the Simple Multi-Attribute Rating Technique (SMART). The recommendation resulting from this process, to continue releases of cranes at a moderate intensity, was adopted by the State of Florida in late 2008. Although continued releases did not receive support from the International Whooping Crane Recovery Team, this approach does provide

  3. Multiple purpose research complex on the basis of electron accelerators and terahertz free electron laser

    International Nuclear Information System (INIS)

    Kulipanov, G.N.

    2009-01-01

    In this report the basic positioning parameters of multiple purpose research complex are presented, the list of potential experiments and technological uses on the example of results received in the multiuser center of G.I. Budker Institut of nuclear physics Siberian department of the Russian Academy of Sciences is discussed. This research complex is directed on work in the big universities and nano technology centers. Electron accelerators is intended for development of electron-beam technologies different material modification, for production of nano powder, nano materials and solution of ecological tasks. In this work the project of multiple purpose research complex on the basis of new generation electron accelerator Il-14 and workable terahertz free electron laser is suggested. Terahertz free electron laser will be used for researches in the sphere of physics and chemistry, biology and medicine, nanotechnology engineering and different methods of nanodiagnostics.

  4. Multiple-electron processes in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs

  5. Objectives and configuration of the Multiple Pulse Propagation Experiment

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Caporaso, G.J.; Chamber, F.W.; Chong, Y.P.; Deadrick, F.J.; Guethlein, G.; Fawley, W.M.; Renbarger, V.L.; Rogers, D. Jr.; Weir, J.T.; Eckstrom, D.; Stalder, K.; Hubbard, R.; Lee, P.

    1990-01-01

    The Multiple Pulse Propagation Experiment (MPPE) was designed to determine the hose stability properties of an intense relativistic electron beam in a beam generated density channel and to investigate range extension with increasing pulse number in the burst. This experiment used a 10-MeV electron beam generated by the Advanced Test Accelerator (ATA). The electron beam current was expected to be at least 6-kA with an equilibrium radius of 0.5 cm (RMS) in the gas. This last constraint implied an unnormalized, RMS beam emittance of 20 mrad-cm. In order to achieve beam stability against hose, each electron beam pulse had to be tailored in emittance in order to phase mix damp the instability. The initial offsets of the beam were to be kept small in order to prevent a large saturated amplitude. Numerical simulations determined the initial criteria for the emittance profile and initial beam displacements. In order to demonstrate a final density depression of 25% of ambient pressure, at least five pulses with interpulse separation of 1- to 2-ms were specified

  6. Multiple Object Tracking Using the Shortest Path Faster Association Algorithm

    Directory of Open Access Journals (Sweden)

    Zhenghao Xi

    2014-01-01

    Full Text Available To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  7. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    International Nuclear Information System (INIS)

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-01-01

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA

  8. Continuum multiple-scattering approach to electron-molecule scattering and molecular photoionization

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dill, D.

    1979-01-01

    The multiple-scattering approach to the electronic continuum of molecules is described. The continuum multiple-scattering model (CMSM) was developed as a survey tool and, as such was required to satisfy two requirements. First, it had to have a very broad scope, which means (i) molecules of arbitrary geometry and complexity containing any atom in the periodic system, (ii) continuum electron energies from 0-1000 eV, and (iii) capability to treat a large range of processes involving both photoionization and electron scattering. Second, the structure of the theory was required to lend itself to transparent, physical interpretation of major spectral features such as shape resonances. A comprehensive theoretical framework for the continuum multiple scattering method is presented, as well as its applications to electron-molecule scattering and molecular photoionization. Highlights of recent applications in these two areas are reviewed. The major impact of the resulting studies over the last few years has been to establish the importance of shape resonances in electron collisions and photoionization of practically all (non-hydride) molecules

  9. Multiple Realities and Hybrid Objects: A Creative Approach of Schizophrenic Delusion

    Directory of Open Access Journals (Sweden)

    Michel Cermolacce

    2018-02-01

    Full Text Available Delusion is usually considered in DSM 5 as a false belief based on incorrect inference about external reality, but the issue of delusion raises crucial concerns, especially that of a possible (or absent continuity between delusional and normal experiences, and the understanding of delusional experience. In the present study, we first aim to consider delusion from a perspectivist angle, according to the Multiple Reality Theory (MRT. In this model inherited from Alfred Schütz and recently addressed by Gallagher, we are not confronting one reality only, but several (such as the reality of everyday life, of imaginary life, of work, of delusion, etc.. In other terms, the MRT states that our own experience is not drawing its meaning from one reality identified as the outer reality but rather from a multiplicity of realities, each with their own logic and style. Two clinical cases illustrate how the Multiple Realities Theory (MRT may help address the reality of delusion. Everyday reality and the reality of delusion may be articulated under a few conditions, such as compossibility [i.e., Double Book-Keeping (DBK, in Bleulerian terms] or flexibility. There are indeed possible bridges between them. Possible links with neuroscience or psychoanalysis are evoked. As the subject is confronting different realities, so do the objects among and toward which a subject is evolving. We call such objects Hybrid Objects (HO due to their multiple belonging. They can operate as shifters, i.e., as some functional operators letting one switch from one reality to another. In the final section, we will emphasize how delusion flexibility, as a dynamic interaction between Multiple Realities, may offer psychotherapeutic possibilities within some reality shared with others, entailing relocation of the present subjects in regained access to some flexibility via Multiple Realities and perspectivism.

  10. BSDB: A New Consistent Designation Scheme for Identifying Objects in Binary and Multiple Stars

    Directory of Open Access Journals (Sweden)

    Kovaleva D. A.

    2015-06-01

    Full Text Available The new consistent scheme for designation of objects in binary and multiple systems, BSDB, is described. It was developed in the frame of the Binary star DataBase, BDB (http://www.inasan.ru, due to necessity of a unified and consistent system for designation of objects in the database, and the name of the designation scheme was derived from that of the database. The BSDB scheme covers all types of observational data. Three classes of objects introduced within the BSDB nomenclature provide correct links between objects and data, what is especially important for complex multiple stellar systems. The final stage of establishing the BSDB scheme is compilation of the Identification List of Binaries, ILB, where all known objects in binary and multiple stars are presented with their BSDB identifiers along with identifiers according to major catalogues and lists.

  11. Layout design of user interface components with multiple objectives

    Directory of Open Access Journals (Sweden)

    Peer S.K.

    2004-01-01

    Full Text Available A multi-goal layout problem may be formulated as a Quadratic Assignment model, considering multiple goals (or factors, both qualitative and quantitative in the objective function. The facilities layout problem, in general, varies from the location and layout of facilities in manufacturing plant to the location and layout of textual and graphical user interface components in the human–computer interface. In this paper, we propose two alternate mathematical approaches to the single-objective layout model. The first one presents a multi-goal user interface component layout problem, considering the distance-weighted sum of congruent objectives of closeness relationships and the interactions. The second one considers the distance-weighted sum of congruent objectives of normalized weighted closeness relationships and normalized weighted interactions. The results of first approach are compared with that of an existing single objective model for example task under consideration. Then, the results of first approach and second approach of the proposed model are compared for the example task under consideration.

  12. Visual attention is required for multiple object tracking.

    Science.gov (United States)

    Tran, Annie; Hoffman, James E

    2016-12-01

    In the multiple object tracking task, participants attempt to keep track of a moving set of target objects embedded in an identical set of moving distractors. Depending on several display parameters, observers are usually only able to accurately track 3 to 4 objects. Various proposals attribute this limit to a fixed number of discrete indexes (Pylyshyn, 1989), limits in visual attention (Cavanagh & Alvarez, 2005), or "architectural limits" in visual cortical areas (Franconeri, 2013). The present set of experiments examined the specific role of visual attention in tracking using a dual-task methodology in which participants tracked objects while identifying letter probes appearing on the tracked objects and distractors. As predicted by the visual attention model, probe identification was faster and/or more accurate when probes appeared on tracked objects. This was the case even when probes were more than twice as likely to appear on distractors suggesting that some minimum amount of attention is required to maintain accurate tracking performance. When the need to protect tracking accuracy was relaxed, participants were able to allocate more attention to distractors when probes were likely to appear there but only at the expense of large reductions in tracking accuracy. A final experiment showed that people attend to tracked objects even when letters appearing on them are task-irrelevant, suggesting that allocation of attention to tracked objects is an obligatory process. These results support the claim that visual attention is required for tracking objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Design of a Flexible Hardware Interface for Multiple Remote Electronic practical Experiments of Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    Farah Said

    2012-03-01

    Full Text Available The objective of this work is to present a new design of a Flexible Hardware Interface (FHI based on PID control techniques to use in a virtual laboratory. This flexible hardware interface allows the easy implementation of different and multiple remote electronic practical experiments for undergraduate engineering classes. This interface can be viewed as opened hardware architecture to easily develop simple or complex remote experiments in the electronic domain. The philosophy of the use of this interface can also be expanded to many other domains as optic experiments for instance. It is also demonstrated that software can be developed to enable remote measurements of electronic circuits or systems using only Web site Interface. Using standard browsers (such as Internet explorer, Firefox, Chrome or Safari, different students can have a remote access to different practical experiments at a time.

  14. Behavioral changes induced by single and multiple electron beam pulses

    International Nuclear Information System (INIS)

    Pease, V.P.; McNulty, P.J.

    1985-01-01

    The effects of single, and low-dose, high-dose-rate and multiple electron beam pulses on passive avoidance behavior in mice were studied. Passive avoidance was measured by recording the time that an animal took to enter a chamber from a narrow platform. There were four conditions in the experiment: (1) no shock no radiation-control, (2) radiation only, (3) shock only, and (4) radiation plus shock. Forty animals were run for each data point. Dose rate was held constant at 9 x 10/sup 7/ rads/sec. Average doses for the two single pulses were 7.18 and 8.72 rads. The average total dose for a 25 pulse per second condition was 324.0 rads. The differences between the single versus multiple pulse radiation-only conditions were significant with longer avoidance latencies in the multiple pulse condition. Avoidance latencies were also significantly longer in the shock plus radiation condition for the multiple beam pulse than the single pulse. It is concluded that single and multiple electron beam pulses significantly effect behavior, in this case producing avoidance

  15. VNM: An R Package for Finding Multiple-Objective Optimal Designs for the 4-Parameter Logistic Model

    OpenAIRE

    Hyun, Seung Won; Wong, Weng Kee; Yang, Yarong

    2018-01-01

    A multiple-objective optimal design is useful for dose-response studies because it can incorporate several objectives at the design stage. Objectives can be of varying interests and a properly constructed multiple-objective optimal design can provide user-specified efficiencies, delivering higher efficiencies for the more important objectives. In this work, we introduce the VNM package written in R for finding 3-objective locally optimal designs for the 4-parameter logistic (4PL) model widely...

  16. Direct and indirect stabilisation mechanisms in multiple electron capture

    Energy Technology Data Exchange (ETDEWEB)

    Roncin, P. [Paris-11 Univ., 91 - Orsay (France). Lab. de Collisions Atomiques et Moleculaires; Barat, M. [Paris-11 Univ., 91 - Orsay (France). Lab. de Collisions Atomiques et Moleculaires; Gaboriaud, M.N. [Paris-11 Univ., 91 -Orsay (France). Lab. de Collisions Atomiques et Moleculaires; Szilagyi, Z.S. [Paris-11 Univ., 91 - Orsay (France). Lab. de Collisions Atomiques et Moleculaires; Kazansky, A.K. [Paris-11 Univ., 91 - Orsay (France). Lab. de Collisions Atomiques et Moleculaires

    1995-05-01

    During the last years both experimental and theoretical works have focused on the problem of the stabilisation of two excited electrons on the projectile. In this contribution we would like to give experimental examples of the two suggested mechanisms and their extension to multiple electron capture. Our data are discussed together with those obtained with other experimental techniques and with theoretical predictions. (orig./WL).

  17. Multi-sensor Object Recognition: The Case of Electronics Recycling

    NARCIS (Netherlands)

    van Dop, E.R.

    1999-01-01

    In automated object recognition systems, measurements from a single source of information do not always suffice for the reconstruction of the underlying scene. Incompleteness, inaccuracy and unreliability of the information often leaves room for multiple interpretations of the world which are

  18. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles.

    Science.gov (United States)

    Kim, Youngsoo; Smith, Jeremy G; Jain, Prashant K

    2018-05-07

    Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO 2 under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron-hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO 2 reduction to other challenging multi-electron, multi-proton transformations such as N 2 fixation.

  19. A multiple objective mixed integer linear programming model for power generation expansion planning

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, C. Henggeler; Martins, A. Gomes [INESC-Coimbra, Coimbra (Portugal); Universidade de Coimbra, Dept. de Engenharia Electrotecnica, Coimbra (Portugal); Brito, Isabel Sofia [Instituto Politecnico de Beja, Escola Superior de Tecnologia e Gestao, Beja (Portugal)

    2004-03-01

    Power generation expansion planning inherently involves multiple, conflicting and incommensurate objectives. Therefore, mathematical models become more realistic if distinct evaluation aspects, such as cost and environmental concerns, are explicitly considered as objective functions rather than being encompassed by a single economic indicator. With the aid of multiple objective models, decision makers may grasp the conflicting nature and the trade-offs among the different objectives in order to select satisfactory compromise solutions. This paper presents a multiple objective mixed integer linear programming model for power generation expansion planning that allows the consideration of modular expansion capacity values of supply-side options. This characteristic of the model avoids the well-known problem associated with continuous capacity values that usually have to be discretized in a post-processing phase without feedback on the nature and importance of the changes in the attributes of the obtained solutions. Demand-side management (DSM) is also considered an option in the planning process, assuming there is a sufficiently large portion of the market under franchise conditions. As DSM full costs are accounted in the model, including lost revenues, it is possible to perform an evaluation of the rate impact in order to further inform the decision process (Author)

  20. Interlayer electron-hole pair multiplication by hot carriers in atomic layer semiconductor heterostructures

    Science.gov (United States)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel

    Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.

  1. Multiple choice questions in electronics and electrical engineering

    CERN Document Server

    DAVIES, T J

    2013-01-01

    A unique compendium of over 2000 multiple choice questions for students of electronics and electrical engineering. This book is designed for the following City and Guilds courses: 2010, 2240, 2320, 2360. It can also be used as a resource for practice questions for any vocational course.

  2. Short-term scheduling of an open-pit mine with multiple objectives

    Science.gov (United States)

    Blom, Michelle; Pearce, Adrian R.; Stuckey, Peter J.

    2017-05-01

    This article presents a novel algorithm for the generation of multiple short-term production schedules for an open-pit mine, in which several objectives, of varying priority, characterize the quality of each solution. A short-term schedule selects regions of a mine site, known as 'blocks', to be extracted in each week of a planning horizon (typically spanning 13 weeks). Existing tools for constructing these schedules use greedy heuristics, with little optimization. To construct a single schedule in which infrastructure is sufficiently utilized, with production grades consistently close to a desired target, a planner must often run these heuristics many times, adjusting parameters after each iteration. A planner's intuition and experience can evaluate the relative quality and mineability of different schedules in a way that is difficult to automate. Of interest to a short-term planner is the generation of multiple schedules, extracting available ore and waste in varying sequences, which can then be manually compared. This article presents a tool in which multiple, diverse, short-term schedules are constructed, meeting a range of common objectives without the need for iterative parameter adjustment.

  3. A Mobile Service Oriented Multiple Object Tracking Augmented Reality Architecture for Education and Learning Experiences

    Science.gov (United States)

    Rattanarungrot, Sasithorn; White, Martin; Newbury, Paul

    2014-01-01

    This paper describes the design of our service-oriented architecture to support mobile multiple object tracking augmented reality applications applied to education and learning scenarios. The architecture is composed of a mobile multiple object tracking augmented reality client, a web service framework, and dynamic content providers. Tracking of…

  4. Tracking of multiple objects with time-adjustable composite correlation filters

    Science.gov (United States)

    Ruchay, Alexey; Kober, Vitaly; Chernoskulov, Ilya

    2017-09-01

    An algorithm for tracking of multiple objects in video based on time-adjustable adaptive composite correlation filtering is proposed. For each frame a bank of composite correlation filters are designed in such a manner to provide invariance to pose, occlusion, clutter, and illumination changes. The filters are synthesized with the help of an iterative algorithm, which optimizes the discrimination capability for each object. The filters are adapted to the objects changes online using information from the current and past scene frames. Results obtained with the proposed algorithm using real-life scenes are presented and compared with those obtained with state-of-the-art tracking methods in terms of detection efficiency, tracking accuracy, and speed of processing.

  5. Multiple scattering approach to the vibrational excitation of molecules by slow electrons

    International Nuclear Information System (INIS)

    Drukarev, G.

    1976-01-01

    Another approach to the problem of vibrational excitation of homonuclear two-atomic molecules by slow electrons possibly accompanied by rotational transitions is presented based on the picture of multiple scattering of an electron inside the molecule. The scattering of two fixed centers in the zero range potential model is considered. The results indicate that the multiple scattering determines the order of magnitude of the vibrational excitation cross sections in the energy region under consideration even if the zero range potential model is used. Also the connection between the multiple scattering approach and quasi-stationary molecular ion picture is established. 9 refs

  6. Modified-hybrid optical neural network filter for multiple object recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.

    2009-08-01

    Motivated by the non-linear interpolation and generalization abilities of the hybrid optical neural network filter between the reference and non-reference images of the true-class object we designed the modifiedhybrid optical neural network filter. We applied an optical mask to the hybrid optical neural network's filter input. The mask was built with the constant weight connections of a randomly chosen image included in the training set. The resulted design of the modified-hybrid optical neural network filter is optimized for performing best in cluttered scenes of the true-class object. Due to the shift invariance properties inherited by its correlator unit the filter can accommodate multiple objects of the same class to be detected within an input cluttered image. Additionally, the architecture of the neural network unit of the general hybrid optical neural network filter allows the recognition of multiple objects of different classes within the input cluttered image by modifying the output layer of the unit. We test the modified-hybrid optical neural network filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. The filter is shown to exhibit with a single pass over the input data simultaneously out-of-plane rotation, shift invariance and good clutter tolerance. It is able to successfully detect and classify correctly the true-class objects within background clutter for which there has been no previous training.

  7. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation

    Directory of Open Access Journals (Sweden)

    Rafael A. Magris

    2017-07-01

    Full Text Available Decision-makers focus on representing biodiversity pattern, maintaining connectivity, and strengthening resilience to global warming when designing marine protected area (MPA systems, especially in coral reef ecosystems. The achievement of these broad conservation objectives will likely require large areas, and stretch limited funds for MPA implementation. We undertook a spatial prioritisation of Brazilian coral reefs that considered two types of conservation zones (i.e. no-take and multiple use areas and integrated multiple conservation objectives into MPA planning, while assessing the potential impact of different sets of objectives on implementation costs. We devised objectives for biodiversity, connectivity, and resilience to global warming, determined the extent to which existing MPAs achieved them, and designed complementary zoning to achieve all objectives combined in expanded MPA systems. In doing so, we explored interactions between different sets of objectives, determined whether refinements to the existing spatial arrangement of MPAs were necessary, and tested the utility of existing MPAs by comparing their cost effectiveness with an MPA system designed from scratch. We found that MPAs in Brazil protect some aspects of coral reef biodiversity pattern (e.g. threatened fauna and ecosystem types more effectively than connectivity or resilience to global warming. Expanding the existing MPA system was as cost-effective as designing one from scratch only when multiple objectives were considered and management costs were accounted for. Our approach provides a comprehensive assessment of the benefits of integrating multiple objectives in the initial stages of conservation planning, and yields insights for planners of MPAs tackling multiple objectives in other regions.

  8. EMEN2: an object oriented database and electronic lab notebook.

    Science.gov (United States)

    Rees, Ian; Langley, Ed; Chiu, Wah; Ludtke, Steven J

    2013-02-01

    Transmission electron microscopy and associated methods, such as single particle analysis, two-dimensional crystallography, helical reconstruction, and tomography, are highly data-intensive experimental sciences, which also have substantial variability in experimental technique. Object-oriented databases present an attractive alternative to traditional relational databases for situations where the experiments themselves are continually evolving. We present EMEN2, an easy to use object-oriented database with a highly flexible infrastructure originally targeted for transmission electron microscopy and tomography, which has been extended to be adaptable for use in virtually any experimental science. It is a pure object-oriented database designed for easy adoption in diverse laboratory environments and does not require professional database administration. It includes a full featured, dynamic web interface in addition to APIs for programmatic access. EMEN2 installations currently support roughly 800 scientists worldwide with over 1/2 million experimental records and over 20 TB of experimental data. The software is freely available with complete source.

  9. MOTION PLANNING OF MULTIPLE MOBILE ROBOTS COOPERATIVELY TRANSPORTING A COMMON OBJECT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Many applications above the capability of a single robot need the cooperation of multiple mobile robots, but effective cooperation is hard to achieve. In this paper, a master-slave method is proposed to control the motions of multiple mobile robots that cooperatively transport a common object from a start point to a goal point. A noholonomic kinematic model to constrain the motions of multiple mobile robots is built in order to achieve cooperative motions of them, and a "Dynamic Coordinator" strategy is used to deal with the collision-avoidance of the master robot and slave robot individually. Simulation results show the robustness and effectiveness of the method.

  10. A study on software-based sensing technology for multiple object control in AR video.

    Science.gov (United States)

    Jung, Sungmo; Song, Jae-Gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo

    2010-01-01

    Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker'should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms.

  11. A Study on Software-based Sensing Technology for Multiple Object Control in AR Video

    Directory of Open Access Journals (Sweden)

    Seoksoo Kim

    2010-11-01

    Full Text Available Researches on Augmented Reality (AR have recently received attention. With these, the Machine-to-Machine (M2M market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms.

  12. Doubly differential single and multiple ionization of krypton by electron impact

    International Nuclear Information System (INIS)

    Lucio, O. G. de; Gavin, J.; DuBois, R. D.

    2007-01-01

    Differential measurements for single and multiple ionization of Kr by 240 and 500 eV electron impact are presented. Using a pulsed extraction field, Kr + , Kr 2+ , and Kr 3+ ions were measured in coincidence with scattered electrons for energy losses up to 120 eV and scattering angles between 16 degree sign and 90 degree sign . Scaling properties of the doubly differential cross sections (DDCS) are investigated as a function of energy loss, scattering angle, and momentum transfer. It is shown that scaling the DDCS as outlined by Kim and Inokuti and plotting them versus a parameter consisting of the momentum transfer divided by the square root of the impact energy times 1-cos(θ), where θ is the scattering angle, yielded similar curves, but with different magnitudes, for single and multiple ionization. Normalizing these curves together produced two universal curves, one appropriate for single and multiple electron emission at larger scattering angles (θ≥30 degree sign ) and one appropriate for small scattering angles (θ<30 degree sign )

  13. Detection and Classification of Multiple Objects using an RGB-D Sensor and Linear Spatial Pyramid Matching

    DEFF Research Database (Denmark)

    Dimitriou, Michalis; Kounalakis, Tsampikos; Vidakis, Nikolaos

    2013-01-01

    , connected components detection and filtering approaches, in order to design a complete image processing algorithm for efficient object detection of multiple individual objects in a single scene, even in complex scenes with many objects. Besides, we apply the Linear Spatial Pyramid Matching (LSPM) [1] method......This paper presents a complete system for multiple object detection and classification in a 3D scene using an RGB-D sensor such as the Microsoft Kinect sensor. Successful multiple object detection and classification are crucial features in many 3D computer vision applications. The main goal...... is making machines see and understand objects like humans do. To this goal, the new RGB-D sensors can be utilized since they provide real-time depth map which can be used along with the RGB images for our tasks. In our system we employ effective depth map processing techniques, along with edge detection...

  14. Reallocating attention during multiple object tracking.

    Science.gov (United States)

    Ericson, Justin M; Christensen, James C

    2012-07-01

    Wolfe, Place, and Horowitz (Psychonomic Bulletin & Review 14:344-349, 2007) found that participants were relatively unaffected by selecting and deselecting targets while performing a multiple object tracking task, such that maintaining tracking was possible for longer durations than the few seconds typically studied. Though this result was generally consistent with other findings on tracking duration (Franconeri, Jonathon, & Scimeca Psychological Science 21:920-925, 2010), it was inconsistent with research involving cuing paradigms, specifically precues (Pylyshyn & Annan Spatial Vision 19:485-504, 2006). In the present research, we broke down the addition and removal of targets into separate conditions and incorporated a simple performance model to evaluate the costs associated with the selection and deselection of moving targets. Across three experiments, we demonstrated evidence against a cost being associated with any shift in attention, but rather that varying the type of cue used for target deselection produces no additional cost to performance and that hysteresis effects are not induced by a reduction in tracking load.

  15. Continuum and bound electronic wavefunctions for anisotropic multiple-scattering potentials

    International Nuclear Information System (INIS)

    Siegel, J.; Dill, D.; Dehmer, J.L.

    1975-01-01

    Standard multiple-scattering treatments of bound and continuum one-electron states are restricted to a monopole potential in each of the various spherical regions. We have extended the treatment within these regions to a general potential. The corresponding multiple-scattering equations should facilitate accurate treatment of effects of the build-up of charge due to bonding, of the dipole character of polar molecules, and of external fields

  16. Statistics of electron multiplication in a multiplier phototube; Iterative method; Estadistica de la multiplicacion de electrones en un fotomultiplicador: Metodos iterativos

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, J F; Grau, A

    1985-07-01

    In the present paper an iterative method is applied to study the variation of dynode response in the multiplier phototube. Three different situation are considered that correspond to the following ways of electronic incidence on the first dynode: incidence of exactly one electron, incidence of exactly r electrons and incidence of an average r electrons. The responses are given for a number of steps between 1 and 5, and for values of the multiplication factor of 2.1, 2.5, 3 and 5. We study also the variance, the skewness and the excess of jurtosis for different multiplication factors. (Author) 11 refs.

  17. Invited Review Article: Methods for imaging weak-phase objects in electron microscopy

    International Nuclear Information System (INIS)

    Glaeser, Robert M.

    2013-01-01

    Contrast has traditionally been produced in electron-microscopy of weak phase objects by simply defocusing the objective lens. There now is renewed interest, however, in using devices that apply a uniform quarter-wave phase shift to the scattered electrons relative to the unscattered beam, or that generate in-focus image contrast in some other way. Renewed activity in making an electron-optical equivalent of the familiar “phase-contrast” light microscope is based in part on the improved possibilities that are now available for device microfabrication. There is also a better understanding that it is important to take full advantage of contrast that can be had at low spatial frequency when imaging large, macromolecular objects. In addition, a number of conceptually new phase-plate designs have been proposed, thus increasing the number of options that are available for development. The advantages, disadvantages, and current status of each of these options is now compared and contrasted. Experimental results that are, indeed, superior to what can be accomplished with defocus-based phase contrast have been obtained recently with two different designs of phase-contrast aperture. Nevertheless, extensive work also has shown that fabrication of such devices is inconsistent, and that their working lifetime is short. The main limitation, in fact, appears to be electrostatic charging of any device that is placed into the electron diffraction pattern. The challenge in fabricating phase plates that are practical to use for routine work in electron microscopy thus may be more in the area of materials science than in the area of electron optics

  18. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  19. Calculation of Pareto-optimal solutions to multiple-objective problems using threshold-of-acceptability constraints

    Science.gov (United States)

    Giesy, D. P.

    1978-01-01

    A technique is presented for the calculation of Pareto-optimal solutions to a multiple-objective constrained optimization problem by solving a series of single-objective problems. Threshold-of-acceptability constraints are placed on the objective functions at each stage to both limit the area of search and to mathematically guarantee convergence to a Pareto optimum.

  20. Laser radiography forming bremsstrahlung radiation to image an object

    Science.gov (United States)

    Perry, Michael D.; Sefcik, Joseph A.

    2004-01-13

    A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.

  1. Electronic Health Object

    Science.gov (United States)

    Almunawar, Mohammad Nabil; Anshari, Muhammad; Younis, Mustafa Z.; Kisa, Adnan

    2015-01-01

    Electronic health records (EHRs) store health-related patient information in an electronic format, improving the quality of health care management and increasing efficiency of health care processes. However, in existing information systems, health-related records are generated, managed, and controlled by health care organizations. Patients are perceived as recipients of care and normally cannot directly interact with the system that stores their health-related records; their participation in enriching this information is not possible. Many businesses now allow customers to participate in generating information for their systems, strengthening customer relationships. This trend is supported by Web 2.0, which enables interactivity through various means, including social networks. Health care systems should be able to take advantage of this development. This article proposes a novel framework in addressing the emerging need for interactivity while preserving and extending existing electronic medical data. The framework has 3 dimensions of patient health record: personal, social, and medical dimensions. The framework is designed to empower patients, changing their roles from static recipient of health care services to dynamic and active partners in health care processes. PMID:26660486

  2. Sensing Strategies for Disambiguating among Multiple Objects in Known Poses.

    Science.gov (United States)

    1985-08-01

    ELEMENT. PROIECT. TASK Artificial Inteligence Laboratory AE OKUI UBR 545 Technology Square Cambridge, MA 021.39 11. CONTROLLING OFFICE NAME AND ADDRESS 12...AD-Ali65 912 SENSING STRATEGIES FOR DISAMBIGURTING MONG MULTIPLE 1/1 OBJECTS IN KNOWN POSES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL ...or Dist Special 1 ’ MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 855 August, 1985 Sensing Strategies for

  3. Multiplicative mixing of object identity and image attributes in single inferior temporal neurons.

    Science.gov (United States)

    Ratan Murty, N Apurva; Arun, S P

    2018-04-03

    Object recognition is challenging because the same object can produce vastly different images, mixing signals related to its identity with signals due to its image attributes, such as size, position, rotation, etc. Previous studies have shown that both signals are present in high-level visual areas, but precisely how they are combined has remained unclear. One possibility is that neurons might encode identity and attribute signals multiplicatively so that each can be efficiently decoded without interference from the other. Here, we show that, in high-level visual cortex, responses of single neurons can be explained better as a product rather than a sum of tuning for object identity and tuning for image attributes. This subtle effect in single neurons produced substantially better population decoding of object identity and image attributes in the neural population as a whole. This property was absent both in low-level vision models and in deep neural networks. It was also unique to invariances: when tested with two-part objects, neural responses were explained better as a sum than as a product of part tuning. Taken together, our results indicate that signals requiring separate decoding, such as object identity and image attributes, are combined multiplicatively in IT neurons, whereas signals that require integration (such as parts in an object) are combined additively. Copyright © 2018 the Author(s). Published by PNAS.

  4. A new apparatus for electron-ion multiple coincidence momentum imaging spectroscopy

    International Nuclear Information System (INIS)

    Morishita, Y.; Kato, M.; Pruemper, G.; Liu, X.-J.; Lischke, T.; Ueda, K.; Tamenori, Y.; Oura, M.; Yamaoka, H.; Suzuki, I.H.; Saito, N.

    2006-01-01

    We have developed a new experimental apparatus for the electron-ion multiple coincidence momentum imaging spectroscopy in order to obtain the angular distributions of vibration-resolved photoelectrons from molecules fixed in space. The apparatus consists of a four-stage molecular supersonic jet and a spectrometer analyzing three-dimensional momenta of fragment ions and electrons in coincidence

  5. Automatic feature-based grouping during multiple object tracking.

    Science.gov (United States)

    Erlikhman, Gennady; Keane, Brian P; Mettler, Everett; Horowitz, Todd S; Kellman, Philip J

    2013-12-01

    Contour interpolation automatically binds targets with distractors to impair multiple object tracking (Keane, Mettler, Tsoi, & Kellman, 2011). Is interpolation special in this regard or can other features produce the same effect? To address this question, we examined the influence of eight features on tracking: color, contrast polarity, orientation, size, shape, depth, interpolation, and a combination (shape, color, size). In each case, subjects tracked 4 of 8 objects that began as undifferentiated shapes, changed features as motion began (to enable grouping), and returned to their undifferentiated states before halting. We found that intertarget grouping improved performance for all feature types except orientation and interpolation (Experiment 1 and Experiment 2). Most importantly, target-distractor grouping impaired performance for color, size, shape, combination, and interpolation. The impairments were, at times, large (>15% decrement in accuracy) and occurred relative to a homogeneous condition in which all objects had the same features at each moment of a trial (Experiment 2), and relative to a "diversity" condition in which targets and distractors had different features at each moment (Experiment 3). We conclude that feature-based grouping occurs for a variety of features besides interpolation, even when irrelevant to task instructions and contrary to the task demands, suggesting that interpolation is not unique in promoting automatic grouping in tracking tasks. Our results also imply that various kinds of features are encoded automatically and in parallel during tracking.

  6. Detection and Classification of Multiple Objects using an RGB-D Sensor and Linear Spatial Pyramid Matching

    OpenAIRE

    Dimitriou, Michalis; Kounalakis, Tsampikos; Vidakis, Nikolaos; Triantafyllidis, Georgios

    2013-01-01

    This paper presents a complete system for multiple object detection and classification in a 3D scene using an RGB-D sensor such as the Microsoft Kinect sensor. Successful multiple object detection and classification are crucial features in many 3D computer vision applications. The main goal is making machines see and understand objects like humans do. To this goal, the new RGB-D sensors can be utilized since they provide real-time depth map which can be used along with the RGB images for our ...

  7. A scalable parallel algorithm for multiple objective linear programs

    Science.gov (United States)

    Wiecek, Malgorzata M.; Zhang, Hong

    1994-01-01

    This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.

  8. Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks

    Science.gov (United States)

    Rai, Man Mohan

    2006-01-01

    Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more

  9. Many-electron model for multiple ionization in atomic collisions

    International Nuclear Information System (INIS)

    Archubi, C D; Montanari, C C; Miraglia, J E

    2007-01-01

    We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data

  10. Many-electron model for multiple ionization in atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C D [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Montanari, C C [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Miraglia, J E [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina)

    2007-03-14

    We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data.

  11. Bilevel formulation of a policy design problem considering multiple objectives and incomplete preferences

    Science.gov (United States)

    Hawthorne, Bryant; Panchal, Jitesh H.

    2014-07-01

    A bilevel optimization formulation of policy design problems considering multiple objectives and incomplete preferences of the stakeholders is presented. The formulation is presented for Feed-in-Tariff (FIT) policy design for decentralized energy infrastructure. The upper-level problem is the policy designer's problem and the lower-level problem is a Nash equilibrium problem resulting from market interactions. The policy designer has two objectives: maximizing the quantity of energy generated and minimizing policy cost. The stakeholders decide on quantities while maximizing net present value and minimizing capital investment. The Nash equilibrium problem in the presence of incomplete preferences is formulated as a stochastic linear complementarity problem and solved using expected value formulation, expected residual minimization formulation, and the Monte Carlo technique. The primary contributions in this article are the mathematical formulation of the FIT policy, the extension of computational policy design problems to multiple objectives, and the consideration of incomplete preferences of stakeholders for policy design problems.

  12. Application of In-Segment Multiple Sampling in Object-Based Classification

    Directory of Open Access Journals (Sweden)

    Nataša Đurić

    2014-12-01

    Full Text Available When object-based analysis is applied to very high-resolution imagery, pixels within the segments reveal large spectral inhomogeneity; their distribution can be considered complex rather than normal. When normality is violated, the classification methods that rely on the assumption of normally distributed data are not as successful or accurate. It is hard to detect normality violations in small samples. The segmentation process produces segments that vary highly in size; samples can be very big or very small. This paper investigates whether the complexity within the segment can be addressed using multiple random sampling of segment pixels and multiple calculations of similarity measures. In order to analyze the effect sampling has on classification results, statistics and probability value equations of non-parametric two-sample Kolmogorov-Smirnov test and parametric Student’s t-test are selected as similarity measures in the classification process. The performance of both classifiers was assessed on a WorldView-2 image for four land cover classes (roads, buildings, grass and trees and compared to two commonly used object-based classifiers—k-Nearest Neighbor (k-NN and Support Vector Machine (SVM. Both proposed classifiers showed a slight improvement in the overall classification accuracies and produced more accurate classification maps when compared to the ground truth image.

  13. Fast, multiple optimizations of quadratic dose objective functions in IMRT

    International Nuclear Information System (INIS)

    Breedveld, Sebastiaan; Storchi, Pascal R M; Keijzer, Marleen; Heijmen, Ben J M

    2006-01-01

    Inverse treatment planning for intensity-modulated radiotherapy may include time consuming, multiple minimizations of an objective function. In this paper, methods are presented to speed up the process of (repeated) minimization of the well-known quadratic dose objective function, extended with a smoothing term that ensures generation of clinically acceptable beam profiles. In between two subsequent optimizations, the voxel-dependent importance factors of the quadratic terms will generally be adjusted, based on an intermediate plan evaluation. The objective function has been written in matrix-vector format, facilitating the use of a recently published, fast quadratic minimization algorithm, instead of commonly applied gradient-based methods. This format also reduces the calculation time in between subsequent minimizations, related to adjustment of the voxel-dependent importance factors. Sparse matrices are used to limit the required amount of computer memory. For three patients, comparisons have been made with a gradient method. Mean speed improvements of up to a factor of 37 have been achieved

  14. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  15. Stochastic acceleration of electrons from multiple uncorrelated plasma waves

    Science.gov (United States)

    Gee, David; Michel, Pierre; Wurtele, Jonathan

    2017-10-01

    One-dimensional theory puts a strict limit on the maximum energy attainable by an electron trapped and accelerated by an electron plasma wave (EPW). However, experimental measurements of hot electron distributions accelerated by stimulated Raman scattering (SRS) in ICF experiments typically show a thermal distribution with temperatures of the order of the kinetic energy of the resonant EPW's (Thot mvp2 , where vp is the phase velocity of the EPW's driven by SRS) and no clear cutoff at high energies. In this project, we are investigating conditions under which electrons can be stochastically accelerated by multiple uncorrelated EPW's, such as those generated by incoherent laser speckles in large laser spots like the ones used on NIF ( mm-size), and reproduce distributions similar to those observed in experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  16. Dual-Layer Density Estimation for Multiple Object Instance Detection

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-01-01

    Full Text Available This paper introduces a dual-layer density estimation-based architecture for multiple object instance detection in robot inventory management applications. The approach consists of raw scale-invariant feature transform (SIFT feature matching and key point projection. The dominant scale ratio and a reference clustering threshold are estimated using the first layer of the density estimation. A cascade of filters is applied after feature template reconstruction and refined feature matching to eliminate false matches. Before the second layer of density estimation, the adaptive threshold is finalized by multiplying an empirical coefficient for the reference value. The coefficient is identified experimentally. Adaptive threshold-based grid voting is applied to find all candidate object instances. Error detection is eliminated using final geometric verification in accordance with Random Sample Consensus (RANSAC. The detection results of the proposed approach are evaluated on a self-built dataset collected in a supermarket. The results demonstrate that the approach provides high robustness and low latency for inventory management application.

  17. Vanpool trip planning based on evolutionary multiple objective optimization

    Science.gov (United States)

    Zhao, Ming; Yang, Disheng; Feng, Shibing; Liu, Hengchang

    2017-08-01

    Carpool and vanpool draw a lot of researchers’ attention, which is the emphasis of this paper. A concrete vanpool operation definition is given, based on the given definition, this paper tackles vanpool operation optimization using user experience decline index(UEDI). This paper is focused on making each user having identical UEDI and the system having minimum sum of all users’ UEDI. Three contributions are made, the first contribution is a vanpool operation scheme diagram, each component of the scheme is explained in detail. The second contribution is getting all customer’s UEDI as a set, standard deviation and sum of all users’ UEDI set are used as objectives in multiple objective optimization to decide trip start address, trip start time and trip destination address. The third contribution is a trip planning algorithm, which tries to minimize the sum of all users’ UEDI. Geographical distribution of the charging stations and utilization rate of the charging stations are considered in the trip planning process.

  18. Tracking Multiple Statistics: Simultaneous Learning of Object Names and Categories in English and Mandarin Speakers.

    Science.gov (United States)

    Chen, Chi-Hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen

    2017-08-01

    Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories based on the commonalities across training stimuli. Experiment 2 replicated the first experiment and further examined whether speakers of Mandarin, a language in which final syllables of object names are more predictive of category membership than English, were able to learn words and form object categories when trained with the same type of structures. The results indicate that both groups of learners successfully extracted multiple levels of co-occurrence and used them to learn words and object categories simultaneously. However, marked individual differences in performance were also found, suggesting possible interference and competition in processing the two concurrent streams of regularities. Copyright © 2016 Cognitive Science Society, Inc.

  19. Video based object representation and classification using multiple covariance matrices.

    Science.gov (United States)

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  20. Logarithmic r-θ mapping for hybrid optical neural network filter for multiple objects recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.

    2009-04-01

    θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.

  1. Multiple scattering of slow muons in an electron gas

    International Nuclear Information System (INIS)

    Archubi, C.D.; Arista, N.R.

    2017-01-01

    A comparative study of the angular dispersion of slow muons in an electron gas is performed using 3 dielectric models which represent the case of metals (Lindhard model for a free electron gas) and the cases of semiconductors and insulators (Levine and Louie model and Brandt and Reinheimer model for systems with a band gap) and a non-linear model for both cases at very low velocities. The contribution of collective electronic excitations according to the dielectric model are found to be negligible. The results from the calculation using Lindhard expressions for the angular half width are consistent with the result of a multiple scattering model. In particular, the effects produced by the band gap of the material are analyzed in detail. Finally, as the recoil effect is negligible, there is an almost exact scaling, for a given velocity, between the proton and the muon results. (authors)

  2. Thermoluminescence dosimetry of electronic components from personal objects

    International Nuclear Information System (INIS)

    Beerten, Koen; Woda, Clemens; Vanhavere, Filip

    2009-01-01

    Owing to the existence of ceramic materials inside common personal objects such as cellular phones and USB flash drives, these objects may be very useful in emergency (accident) dosimetry. Here we will present initial results regarding the dosimetric properties as determined by thermoluminescence (TL) from two alumina-rich electronic components from a USB flash drive. The TL method was applied in order to investigate the potential of conventional TL equipment for such purposes. For comparison, the optically stimulated luminescence (OSL) of the components was investigated as well. The studied components are ceramic resonators and alumina-based substrates from electrical resistors. The results show that various TL-related properties such as fading, optical stability and zero-dose response are different for the two investigated components. On the basis of these properties, the ceramic resonator was selected for dose recovery tests using TL and OSL. The given dose could reliably be determined using both methods, assuming that prompt measurement and/or fading correction is possible.

  3. A Case Study of Resources Management Planning with Multiple Objectives and Projects

    Science.gov (United States)

    David L. Peterson; David G. Silsbee; Daniel L. Schmoldt

    1995-01-01

    Each National Park Service unit in the United States produces a resources management plan (RMP) every four years or less. The plans commit budgets and personnel to specific projects for four years, but they are prepared with little quantitative and analytical rigor and without formal decisionmaking tools. We have previously described a multiple objective planning...

  4. The electron density and temperature distributions predicted by bow shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1990-01-01

    The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs

  5. Fuzzy multiple objective decision making methods and applications

    CERN Document Server

    Lai, Young-Jou

    1994-01-01

    In the last 25 years, the fuzzy set theory has been applied in many disciplines such as operations research, management science, control theory, artificial intelligence/expert system, etc. In this volume, methods and applications of crisp, fuzzy and possibilistic multiple objective decision making are first systematically and thoroughly reviewed and classified. This state-of-the-art survey provides readers with a capsule look into the existing methods, and their characteristics and applicability to analysis of fuzzy and possibilistic programming problems. To realize practical fuzzy modelling, it presents solutions for real-world problems including production/manufacturing, location, logistics, environment management, banking/finance, personnel, marketing, accounting, agriculture economics and data analysis. This book is a guided tour through the literature in the rapidly growing fields of operations research and decision making and includes the most up-to-date bibliographical listing of literature on the topi...

  6. A Multi-Objective Learning to re-Rank Approach to Optimize Online Marketplaces for Multiple Stakeholders

    OpenAIRE

    Nguyen, Phong; Dines, John; Krasnodebski, Jan

    2017-01-01

    Multi-objective recommender systems address the difficult task of recommending items that are relevant to multiple, possibly conflicting, criteria. However these systems are most often designed to address the objective of one single stakeholder, typically, in online commerce, the consumers whose input and purchasing decisions ultimately determine the success of the recommendation systems. In this work, we address the multi-objective, multi-stakeholder, recommendation problem involving one or ...

  7. Electron-beam-induced welding of 3D nano-objects from beneath

    International Nuclear Information System (INIS)

    Moskalenko, A V; Burbridge, D J; Viau, G; Gordeev, S N

    2007-01-01

    Exposure of a sample to the electron beam in a scanning electron microscope (SEM) results in the growth of a film of amorphous carbon due to decomposition of hydrocarbon molecules, which are always present in small quantities in the SEM chamber. This growth is induced mainly by secondary electrons backscattered by atoms of both the sample and substrate. We show that, because the secondary electrons are spread beyond the exposed area, this deposit can be grown in areas of geometric shadow and therefore can be used for bonding of different complex 3D nano-objects to a substrate. This is demonstrated by welding 100 nm Fe-Co-Ni nanoparticles to the surface of 2D graphite. The tip of an atomic force microscope was used to probe the mechanical properties of the formed nanostructures. We observed that, for layers thicker than 25 nm, the nanoparticle is bonded so strongly that it is easier to break the particle than to separate it from the substrate

  8. Single versus Multiple Objective(s) Decision Making: An Application ...

    African Journals Online (AJOL)

    Rahel

    rather than exception in many real life decision-making circumstances. For example ...... stakeholders' relative importance of various attributes in the utility function. (Steuer 1986). ..... Multiple Criteria Optimization: Theory, Computation and.

  9. Eye movements in Multiple Object Tracking systematically lagging behind the scene content

    Czech Academy of Sciences Publication Activity Database

    Lukavský, Jiří

    2013-01-01

    Roč. 42, Suppl (2013), s. 42-43 ISSN 0301-0066. [36th European Conference on Visual Perception . 25.08.2013.-29.08.2013, Brémy] R&D Projects: GA ČR GA13-28709S Institutional support: RVO:68081740 Keywords : eye movements * attention * multiple object tracking Subject RIV: AN - Psychology http://www. perception web.com/abstract.cgi?id=v130146

  10. Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control.

    Science.gov (United States)

    Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu

    2016-01-01

    In this paper, the problem of object caging and transporting is considered for multiple mobile robots. With the consideration of minimizing the number of robots and decreasing the rotation of the object, the proper points are calculated and assigned to the multiple mobile robots to allow them to form a symmetric caging formation. The caging formation guarantees that all of the Euclidean distances between any two adjacent robots are smaller than the minimal width of the polygonal object so that the object cannot escape. In order to avoid collision among robots, the parameter of the robots radius is utilized to design the caging formation, and the A⁎ algorithm is used so that mobile robots can move to the proper points. In order to avoid obstacles, the robots and the object are regarded as a rigid body to apply artificial potential field method. The fuzzy sliding mode control method is applied for tracking control of the nonholonomic mobile robots. Finally, the simulation and experimental results show that multiple mobile robots are able to cage and transport the polygonal object to the goal position, avoiding obstacles. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Tunable valley polarization by a gate voltage when an electron tunnels through multiple line defects in graphene.

    Science.gov (United States)

    Liu, Zhe; Jiang, Liwei; Zheng, Yisong

    2015-02-04

    By means of an appropriate wave function connection condition, we study the electronic structure of a line defect superlattice of graphene with the Dirac equation method. We obtain the analytical dispersion relation, which can simulate well the tight-binding numerical result about the band structure of the superlattice. Then, we generalize this theoretical method to study the electronic transmission through a potential barrier where multiple line defects are periodically patterned. We find that there exists a critical incident angle which restricts the electronic transmission through multiple line defects within a specific incident angle range. The critical angle depends sensitively on the potential barrier height, which can be modulated by a gate voltage. As a result, non-trivial transmissions of K and K' valley electrons are restricted, respectively, in two distinct ranges of the incident angle. Our theoretical result demonstrates that a gate voltage can act as a feasible measure to tune the valley polarization when electrons tunnel through multiple line defects.

  12. Multiplicity-Vertex Detector Electronics Development for Heavy-Ion Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L., Jr.; Bryan, W.L.; Emery, M.S. [and others

    1995-12-31

    This paper presents the electronics work performed to date for the Multiplicity-Vertex Detector (MVD) for the PHENIX collaboration at RHIC. The detector consists of approximately 34,000 channels of both silicon strips and silicon pads. The per-channel signal processing chain consists of a pre-amplifier gain stage, a current mode summed multiplicity discriminator, a 64 deep analog memory (simultaneous read/write), an analog correlator, and a 10-bit microsecs ADC. The system controller or Heap Manager, supplies all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Prototype performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 mu nwell CMOS process used for fabrication.

  13. Design and selection of load control strategies using a multiple objective model and evolutionary algorithms

    International Nuclear Information System (INIS)

    Gomes, Alvaro; Antunes, Carlos Henggeler; Martins, Antonio Gomes

    2005-01-01

    This paper aims at presenting a multiple objective model to evaluate the attractiveness of the use of demand resources (through load management control actions) by different stakeholders and in diverse structure scenarios in electricity systems. For the sake of model flexibility, the multiple (and conflicting) objective functions of technical, economical and quality of service nature are able to capture distinct market scenarios and operating entities that may be interested in promoting load management activities. The computation of compromise solutions is made by resorting to evolutionary algorithms, which are well suited to tackle multiobjective problems of combinatorial nature herein involving the identification and selection of control actions to be applied to groups of loads. (Author)

  14. Observation of electron multiplication in liquid xenon with a microstrip plate

    International Nuclear Information System (INIS)

    Policarpo, A.P.L.; Geltenbort, P.; Ferreira Marques, R.; Araujo, H.; Fraga, F.; Alves, M.A.; Fonte, P.; Lima, E.P.; Fraga, M.M.; Salete Leite, M.; Silander, K.; Onofre, A.; Pinhao, J.M.

    1995-01-01

    We report here on the observation of electron multiplication in liquid xenon in a microstrip chamber with an amplification factor of the order of 10. The measurements were carried out at a temperature between 208 and 215 K (liquid density of about 2.7 g/cm 3 ). (orig.)

  15. Plasma jet printing of electronic materials on flexible and nonconformal objects.

    Science.gov (United States)

    Gandhiraman, Ram P; Jayan, Vivek; Han, Jin-Woo; Chen, Bin; Koehne, Jessica E; Meyyappan, M

    2014-12-10

    We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration. The paper substrate with silver nanowires exhibited a very low change in resistance upon 50 cycles of systematic deformation, exhibiting high mechanical flexibility. The applicability of this process to print conductive traces on nonconformal 3D objects was also demonstrated through deposition on a 3D-printed thermoplastic object, indicating the potential to combine plasma printing with 3D printing technology. The role of plasma here includes activation of the material present in the aerosol for deposition, increasing the deposition rate, and plasma polymerization in the case of inorganic coatings. The demonstration here establishes a low-cost, high-throughput, and facile process for printing electronic components on nonconventional platforms.

  16. Origin of Hund's multiplicity rule in quasi-two-dimensional two-electron quantum dots

    International Nuclear Information System (INIS)

    Sako, Tokuei; Paldus, Josef; Diercksen, Geerd H. F.

    2010-01-01

    The origin of Hund's multiplicity rules has been studied for a system of two electrons confined by a quasi-two-dimensional harmonic-oscillator potential by relying on a full configuration interaction wave function and Cartesian anisotropic Gaussian basis sets. In terms of appropriate normal-mode coordinates the wave function factors into a product of the center-of-mass and the internal components. The 1 Π u singlet state and the 3 Π u triplet state represent the energetically lowest pair of states to which Hund's multiplicity rule applies. They are shown to involve excitations into different degrees of freedom, namely, into the center-of-mass angular mode and the internal angular mode for the singlet and triplet states, respectively. The presence of an angular nodal line in the internal space allows then the triplet state to avoid the singularity in the electron-electron interaction potential, leading to the energy lowering of the triplet state relative to its counterpart singlet state.

  17. Fluorescence excitation involving multiple electron transition states of N{sub 2} and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y.R.; Chen, F.Z.; Hung, T.; Judge, D.L. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-04-01

    The electronic states and electronic structures of N{sub 2} and CO{sub 2} in the 8-50 eV energy region have been studied extensively both experimentally and theoretically. In the energy region higher than 25 eV there exists many electronic states including multiple electron transition (MET) states which are responsible for producing most of the dissociative photoionization products. The electronic states at energies higher than 50 eV have been mainly determined by Auger spectroscopy, double charge transfer, photofragment spectroscopy and ion-ion coincidence spectroscopy. The absorption and ionization spectra of these molecules at energies higher than 50 eV mainly show a monotonic decrease in cross section values and exhibit structureless features. The decay channels of MET and Rydberg (or superexcited) states include autoionization, ionization, dissociative ionization, predissociation, and dissociation while those of single ion and multiple ion states may involve predissociation. and dissociation processes. The study of fluorescence specifically probes electronically excited species resulting from the above-mentioned decay channels and provides information for understanding the competition among these channels.

  18. The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations.

    Science.gov (United States)

    Bimurzaev, S B; Aldiyarov, N U; Yakushev, E M

    2017-10-01

    The paper describes the principle of operation of a relatively simple aberration corrector for the transmission electron microscope objective lens. The electron-optical system of the aberration corrector consists of the two main elements: an electrostatic mirror with rotational symmetry and a magnetic deflector formed by the round-shaped magnetic poles. The corrector operation is demonstrated by calculations on the example of correction of basic aberrations of the well-known objective lens with a bell-shaped distribution of the axial magnetic field. Two of the simplest versions of the corrector are considered: a corrector with a two-electrode electrostatic mirror and a corrector with a three-electrode electrostatic mirror. It is shown that using the two-electrode mirror one can eliminate either spherical or chromatic aberration of the objective lens, without changing the value of its linear magnification. Using a three-electrode mirror, it is possible to eliminate spherical and chromatic aberrations of the objective lens simultaneously, which is especially important in designing electron microscopes with extremely high resolution. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator

    International Nuclear Information System (INIS)

    Demeshko, O.A.; Kochetov, S.S.; Makhnenko, L.A.; Melnitsky, I.V.; Shopen, O.A.

    2009-01-01

    Comparison is made between the calculated and experimental doses absorbed by complex density-inhomogeneous objects during their radiation processing. The process of fast electron passage through the object and depth dose formation has been simulated by the Monte Carlo technique with the use of the licensed program package PENELOPE. The calculated and experimental data are found to be in good agreement (∼ 30 %). Preliminary simulation of the process of object irradiation at given conditions provides the necessary information when developing the methods for a particular group of objects. This is of particular importance at performing bilateral irradiation, when an insignificant density variance of different objects may lead to appreciable errors of dose determination in the symmetry plane of the object.

  20. Electronic cigarettes: human health effects

    OpenAIRE

    Callahan-Lyon, Priscilla

    2014-01-01

    Objective With the rapid increase in use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes (e-cigarettes), users and non-users are exposed to the aerosol and product constituents. This is a review of published data on the human health effects of exposure to e-cigarettes and their components. Methods Literature searches were conducted through September 2013 using multiple electronic databases. Results Forty-four articles are included in this analysis. E-cigarette ae...

  1. THE METHOD OF GEOMETRIC CALIBRATION OF OPTOELECTRONIC SYSTEMS BASED ON ELECTRONIC TEST OBJECT

    Directory of Open Access Journals (Sweden)

    D. A. Kozhevnikov

    2017-01-01

    Full Text Available Designing remote sensing of the Earth devices is requires a lot of attention to evaluation lens distortion level and providing the required accuracy values of geometric calibration of optoelectronic systems at all. Test- objects known as most common tools for optical systems geometric calibration. The purpose of the research was creating an automatically method of distortion correction coefficients calculating with a 3 μm precision in the measurement process. The method of geometric calibration of the internal orientation elements of the optical system based on the electronic test object is proposed. The calculation of the test string brightness image from its multispectral image and filtered signal extrema position determination are presented. Ratio of magnitude of the distortion and interval center is given. Three variants of electronic test-objects with different step and element size are considered. Оptimal size of calibration element was defined as 3×3 pixels due to shape of the subpixels with the aspect ratio of the radiating areas about 1 : 3. It is advisable to use IPS as an electronic test object template. An experimental test and measurement stand functional diagram based on the collimator and optical bench «OSK-2CL» is showed. It was determined that test objects with a grid spacing of 4 and 8 pixels can’t provide tolerable image because of non-collimated emission of active sites and scattering on optical surfaces – the shape of the elements is substantially disrupted. Test-object with a 12 pixels grid spacing was used to distortion level analyzing as most suitable.Ratio of coordinate increment and element number graphs for two photographic lenses (Canon EF-S 17-85 f/4-5.6 IS USM and EF-S 18-55 f/3.5-5.6 IS II are presented. A calculation of the distortion values in edge zones was held, which were respectively 43 μm and 51.6 μm. The technique and algorithm of software implementation is described. Possible directions of the

  2. Electronic structure of single- and multiple-shell carbon fullerenes

    International Nuclear Information System (INIS)

    Lin, Y.; Nori, F.

    1994-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multiple-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the π-state energy spectra of large fullerene cages: C 240 , C 540 , C 960 , C 1500 , C 2160 , and C 2940 . Our iteration technique reduces the size of the problem by more than one order of magnitude (factors of ∼12 and 20), while the symmetry-based approach reduces it by a factor of 10. We also find formulas for the highest occupied and lowest unoccupied molecular orbital energies of C 60n 2 fullerenes as a function of n, demonstrating a tendency towards a metallic regime for increasing n. For multiple-shell fullerenes, we analytically obtain the eigenvalues of the intershell interaction

  3. Category-based attentional guidance can operate in parallel for multiple target objects.

    Science.gov (United States)

    Jenkins, Michael; Grubert, Anna; Eimer, Martin

    2018-04-30

    The question whether the control of attention during visual search is always feature-based or can also be based on the category of objects remains unresolved. Here, we employed the N2pc component as an on-line marker for target selection processes to compare the efficiency of feature-based and category-based attentional guidance. Two successive displays containing pairs of real-world objects (line drawings of kitchen or clothing items) were separated by a 10 ms SOA. In Experiment 1, target objects were defined by their category. In Experiment 2, one specific visual object served as target (exemplar-based search). On different trials, targets appeared either in one or in both displays, and participants had to report the number of targets (one or two). Target N2pc components were larger and emerged earlier during exemplar-based search than during category-based search, demonstrating the superior efficiency of feature-based attentional guidance. On trials where target objects appeared in both displays, both targets elicited N2pc components that overlapped in time, suggesting that attention was allocated in parallel to these target objects. Critically, this was the case not only in the exemplar-based task, but also when targets were defined by their category. These results demonstrate that attention can be guided by object categories, and that this type of category-based attentional control can operate concurrently for multiple target objects. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Dissociative multiple ionization of diatomic molecules by extreme-ultraviolet free-electron-laser pulses

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Leth, Henriette Astrup

    2011-01-01

    Nuclear dynamics in dissociative multiple ionization processes of diatomic molecules exposed to extreme-ultraviolet free-electron-laser pulses is studied theoretically using the Monte Carlo wave packet approach. By simulated detection of the emitted electrons, the model reduces a full propagation...... of the system to propagations of the nuclear wave packet in one specific electronic charge state at a time. Suggested ionization channels can be examined, and kinetic energy release spectra for the nuclei can be calculated and compared with experiments. Double ionization of O2 is studied as an example, and good...

  5. Defining ecological and economical hydropoweroperations: a framework for managing dam releasesto meet multiple conflicting objectives

    Science.gov (United States)

    Irwin, Elise R.

    2014-01-01

    Hydroelectric dams are a flexible source of power, provide flood control, and contribute to the economic growth of local communities through real-estate and recreation. Yet the impoundment of rivers can alter and fragment miles of critical riverine habitat needed for other competing needs such as downstream consumptive water use, fish and wildlife population viability, or other forms of recreation. Multiple conflicting interests can compromise progressive management especially with recognized uncertainties related to whether management actions will fulfill the objectives of policy makers, resource managers and/or facility owners. Decision analytic tools were used in a stakeholder-driven process to develop and implement a template for evaluation and prediction of the effects of water resource management of multiple-use systems under the context provided by R.L. Harris Dam on the Tallapoosa River, Alabama, USA. The approach provided a transparent and structured framework for decision-making and incorporated both existing and new data to meet multiple management objectives. Success of the template has been evaluated by the stakeholder governing body in an adaptive resource management framework since 2005 and is ongoing. Consequences of management of discharge at the dam were evaluated annually relative to stakeholder satisfaction to allow for adjustment of both management scenarios and objectives. This template can be applied to attempt to resolve conflict inherent in many dam-regulated systems where management decisions impact diverse values of stakeholders.

  6. First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives

    Science.gov (United States)

    Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.; Richter, Jadwiga H.; Tilmes, Simone; Lamarque, Jean-Francois; Tribbia, Joseph J.; Vitt, Francis

    2017-12-01

    We describe the first simulations of stratospheric sulfate aerosol geoengineering using multiple injection locations to meet multiple simultaneous surface temperature objectives. Simulations were performed using CESM1(WACCM), a coupled atmosphere-ocean general circulation model with fully interactive stratospheric chemistry, dynamics (including an internally generated quasi-biennial oscillation), and a sophisticated treatment of sulfate aerosol formation, microphysical growth, and deposition. The objectives are defined as maintaining three temperature features at their 2020 levels against a background of the RCP8.5 scenario over the period 2020-2099. These objectives are met using a feedback mechanism in which the rate of sulfur dioxide injection at each of the four locations is adjusted independently every year of simulation. Even in the presence of uncertainties, nonlinearities, and variability, the objectives are met, predominantly by SO2 injection at 30°N and 30°S. By the last year of simulation, the feedback algorithm calls for a total injection rate of 51 Tg SO2 per year. The injections are not in the tropics, which results in a greater degree of linearity of the surface climate response with injection amount than has been found in many previous studies using injection at the equator. Because the objectives are defined in terms of annual mean temperature, the required geongineering results in "overcooling" during summer and "undercooling" during winter. The hydrological cycle is also suppressed as compared to the reference values corresponding to the year 2020. The demonstration we describe in this study is an important step toward understanding what geoengineering can do and what it cannot do.

  7. Managing forest and marginal agricultural land for multiple tradeoffs : compromising on economic, carbon and structural biodiversity objectives

    NARCIS (Netherlands)

    Krcmar, E.; Kooten, van G.C.; Vertinsky, I.

    2005-01-01

    In this paper, we use compromise programming to solve a multiple-objective land use and forest management planning model. Long- and short- (`fast¿) term carbon uptake, maintenance of structural diversity, and economic (net returns to forestry and agriculture) objectives are simultaneously achieved

  8. Cortical mechanisms for trans-saccadic memory and integration of multiple object features

    Science.gov (United States)

    Prime, Steven L.; Vesia, Michael; Crawford, J. Douglas

    2011-01-01

    Constructing an internal representation of the world from successive visual fixations, i.e. separated by saccadic eye movements, is known as trans-saccadic perception. Research on trans-saccadic perception (TSP) has been traditionally aimed at resolving the problems of memory capacity and visual integration across saccades. In this paper, we review this literature on TSP with a focus on research showing that egocentric measures of the saccadic eye movement can be used to integrate simple object features across saccades, and that the memory capacity for items retained across saccades, like visual working memory, is restricted to about three to four items. We also review recent transcranial magnetic stimulation experiments which suggest that the right parietal eye field and frontal eye fields play a key functional role in spatial updating of objects in TSP. We conclude by speculating on possible cortical mechanisms for governing egocentric spatial updating of multiple objects in TSP. PMID:21242142

  9. Multiple-electron removal and molecular fragmentation of CO by fast F4+ impact

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Ginther, S.G.; Carnes, K.D.

    1993-01-01

    Multiple-electron removal from and molecular fragmentation of carbon monoxide molecules caused by collisions with 1-MeV/amu F 4+ ions were studied using the coincidence time-of-flight technique. In these collisions, multiple-electron removal of the target molecule is a dominant process. Cross sections for the different levels of ionization of the CO molecule during the collision were determined. The relative cross sections of ionization decrease with increasing number of electrons removed in a similar way as seen in atomic targets. This behavior is in agreement with a two-step mechanism, where first the molecule is ionized by a Franck-Condon ionization and then the molecular ion dissociates. Most of the highly charged intermediate states of the molecule dissociate rapidly. Only CO + and CO 2+ molecular ions have been seen to survive long enough to be detected as molecular ions. The relative cross sections for the different breakup channels were evaluated for collisions in which the molecule broke into two charged fragments as well as for collisions where only a single charged molecular ion or fragment were produced. The average charge state of each fragment resulting from CO Q+ →C i+ +O j+ breakup increases with the number of electrons removed from the molecule approximately following the relationship bar i=bar j=Q/2 as long as K-shell electrons are not removed. This does not mean that the charge-state distribution is exactly symmetric, as, in general, removing electrons from the carbon fragment is slightly more likely than removing electrons from the oxygen due to the difference in binding energy. The cross sections for molecular breakup into a charged fragment and a neutral fragment drop rapidly with an increasing number of electrons removed

  10. Comparison of multiple linear regression and artificial neural network in developing the objective functions of the orthopaedic screws.

    Science.gov (United States)

    Hsu, Ching-Chi; Lin, Jinn; Chao, Ching-Kong

    2011-12-01

    Optimizing the orthopaedic screws can greatly improve their biomechanical performances. However, a methodical design optimization approach requires a long time to search the best design. Thus, the surrogate objective functions of the orthopaedic screws should be accurately developed. To our knowledge, there is no study to evaluate the strengths and limitations of the surrogate methods in developing the objective functions of the orthopaedic screws. Three-dimensional finite element models for both the tibial locking screws and the spinal pedicle screws were constructed and analyzed. Then, the learning data were prepared according to the arrangement of the Taguchi orthogonal array, and the verification data were selected with use of a randomized selection. Finally, the surrogate objective functions were developed by using either the multiple linear regression or the artificial neural network. The applicability and accuracy of those surrogate methods were evaluated and discussed. The multiple linear regression method could successfully construct the objective function of the tibial locking screws, but it failed to develop the objective function of the spinal pedicle screws. The artificial neural network method showed a greater capacity of prediction in developing the objective functions for the tibial locking screws and the spinal pedicle screws than the multiple linear regression method. The artificial neural network method may be a useful option for developing the objective functions of the orthopaedic screws with a greater structural complexity. The surrogate objective functions of the orthopaedic screws could effectively decrease the time and effort required for the design optimization process. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Fast automated segmentation of multiple objects via spatially weighted shape learning

    Science.gov (United States)

    Chandra, Shekhar S.; Dowling, Jason A.; Greer, Peter B.; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-01

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice’s similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  12. A multiple objective test assembly approach for exposure control problems in Computerized Adaptive Testing

    Directory of Open Access Journals (Sweden)

    Theo J.H.M. Eggen

    2010-01-01

    Full Text Available Overexposure and underexposure of items in the bank are serious problems in operational computerized adaptive testing (CAT systems. These exposure problems might result in item compromise, or point at a waste of investments. The exposure control problem can be viewed as a test assembly problem with multiple objectives. Information in the test has to be maximized, item compromise has to be minimized, and pool usage has to be optimized. In this paper, a multiple objectives method is developed to deal with both types of exposure problems. In this method, exposure control parameters based on observed exposure rates are implemented as weights for the information in the item selection procedure. The method does not need time consuming simulation studies, and it can be implemented conditional on ability level. The method is compared with Sympson Hetter method for exposure control, with the Progressive method and with alphastratified testing. The results show that the method is successful in dealing with both kinds of exposure problems.

  13. Identifying the Micro-relations Underpinning Familiarity Detection in Dynamic Displays Containing Multiple Objects

    Directory of Open Access Journals (Sweden)

    Jamie S. North

    2017-06-01

    Full Text Available We identified the important micro-relations that are perceived when attempting to recognize patterns in stimuli consisting of multiple dynamic objects. Skilled and less-skilled participants were presented with point light display sequences representing dynamic patterns in an invasion sport and were subsequently required to make familiarity based recognition judgments in three different conditions, each of which contained only a select number of features that were present at initial viewing. No differences in recognition accuracy were observed between skilled and less-skilled participants when just objects located in the periphery were presented. Yet, when presented with the relative motions of two centrally located attacking objects only, skilled participants were significantly more accurate than less-skilled participants and their recognition accuracy improved further when a target object was included against which these relative motions could be judged. Skilled participants can perceive and recognize global patterns on the basis of centrally located relational information.

  14. The multiplicity of the digital textbook as design object

    DEFF Research Database (Denmark)

    Riis Ebbesen, Toke

    2015-01-01

    Building on a preliminary case study of the Danish educational publisher Systime A/S and its flagship product, the web-based ‘iBog’/‘iBook’, this article explores how digital textbooks can be understood as design. The shaping of digital books is seen as being intertwined in a wider circuit...... reorganization of the publishing company, web-based user interfaces, and ultimately the branding, which market these new digital objects, are building power- ful discourses around the product. Thus it is suggested that the design process of the iBog case can be understood in a model of database-based publishing...... with multiple levels. In the final analysis, the iBog is much more than a product and a technology. It is a brand that goes beyond what can be studied by looking at the digital textbook as a singular artefact....

  15. A Single Unexpected Change in Target- but Not Distractor Motion Impairs Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Hauke S. Meyerhoff

    2013-02-01

    Full Text Available Recent research addresses the question whether motion information of multiple objects contributes to maintaining a selection of objects across a period of motion. Here, we investigate whether target and/or distractor motion information is used during attentive tracking. We asked participants to track four objects and changed either the motion direction of targets, the motion direction of distractors, neither, or both during a brief flash in the middle of a tracking interval. We observed that a single direction change of targets is sufficient to impair tracking performance. In contrast, changing the motion direction of distractors had no effect on performance. This indicates that target- but not distractor motion information is evaluated during tracking.

  16. Magnetospheric Response Associated With Multiple Atmospheric Reflections of Precipitated Electrons in Aurora.

    Science.gov (United States)

    Khazanov, G. V.; Merkin, V. G.; Zesta, E.; Sibeck, D. G.; Grubbs, G. A., II; Chu, M.; Wiltberger, M. J.

    2017-12-01

    The magnetosphere and ionosphere are strongly coupled by precipitating electrons during storm times. Therefore, first principle simulations of precipitating electron fluxes are required to understand storm time variations of ionospheric conductances and related electric fields. As has been discussed by Khazanov et al. [2015 - 2017], the first step in such simulations is initiation of electron precipitation from the Earth's plasma sheet via wave particle interaction processes into both magnetically conjugate points, and the step 2 is the follow up of multiple atmospheric reflections of electron fluxes formed at the boundary between the ionosphere and magnetosphere of two magnetically conjugate points. To demonstrate this effect on the global magnetospheric response the Lyon-Fedder-Mobarry global magnetosphere model coupled with the Rice Convection Model of the inner magnetosphere has been used and run for the geomagnetic storm of 17 March 2013.

  17. A multiple ship routing and speed optimization problem under time, cost and environmental objectives

    DEFF Research Database (Denmark)

    Wen, M.; Pacino, Dario; Kontovas, C.A.

    2017-01-01

    The purpose of this paper is to investigate a multiple ship routing and speed optimization problem under time, cost and environmental objectives. A branch and price algorithm as well as a constraint programming model are developed that consider (a) fuel consumption as a function of payload, (b......) fuel price as an explicit input, (c) freight rate as an input, and (d) in-transit cargo inventory costs. The alternative objective functions are minimum total trip duration, minimum total cost and minimum emissions. Computational experience with the algorithm is reported on a variety of scenarios....

  18. A Conceptual Framework for Error Remediation with Multiple External Representations Applied to Learning Objects

    Science.gov (United States)

    Leite, Maici Duarte; Marczal, Diego; Pimentel, Andrey Ricardo; Direne, Alexandre Ibrahim

    2014-01-01

    This paper presents the application of some concepts of Intelligent Tutoring Systems (ITS) to elaborate a conceptual framework that uses the remediation of errors with Multiple External Representations (MERs) in Learning Objects (LO). To this is demonstrated a development of LO for teaching the Pythagorean Theorem through this framework. This…

  19. An optical study of multiple NEIAL events driven by low energy electron precipitation

    Directory of Open Access Journals (Sweden)

    J. M. Sullivan

    2008-08-01

    Full Text Available Optical data are compared with EISCAT radar observations of multiple Naturally Enhanced Ion-Acoustic Line (NEIAL events in the dayside cusp. This study uses narrow field of view cameras to observe small-scale, short-lived auroral features. Using multiple-wavelength optical observations, a direct link between NEIAL occurrences and low energy (about 100 eV optical emissions is shown. This is consistent with the Langmuir wave decay interpretation of NEIALs being driven by streams of low-energy electrons. Modelling work connected with this study shows that, for the measured ionospheric conditions and precipitation characteristics, growth of unstable Langmuir (electron plasma waves can occur, which decay into ion-acoustic wave modes. The link with low energy optical emissions shown here, will enable future studies of the shape, extent, lifetime, grouping and motions of NEIALs.

  20. Multiple scattering in electron fluid and energy loss in multi-ionic targets

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, C., E-mail: claude.deutsch@u-psud.fr [LPGP, UParis-Sud, 91405-Orsay (France); Tahir, N.A. [GSI, 1Planck Str., 64291-Darmstadt (Germany); Barriga-Carrasco, M. [ETSII, UCastilla-la-Mancha, 13071 Ciudad-Real (Spain); Ceban, V. [LPGP, UParis-Sud, 91405-Orsay (France); Fromy, P. [CRI, UParis-Sud, 91405-Orsay (France); Gilles, D. [CEA/Saclay/DSM/IRFU/SAP, 91191-Gif-s-Yvette (France); Leger, D. [Laboratoire Monthouy, UValenciennes-Hainaut Cambresis (France); Maynard, G. [LPGP, UParis-Sud, 91405-Orsay (France); Tashev, B. [Department of Physics, KazNu, Tole Bi82, Almaty (Kazakhstan); Volpe, L. [Department of Physics, UMilano-Bicocca, Milano 20126 (Italy)

    2014-01-01

    Extensions of the standard stopping model (SSM) for ion projectiles interacting with dense targets of timely concern for ICF and WDM are reviewed. They include multiple scattering on partially degenerate electrons, low velocity ion slowing down in demixing H–He mixtures within Jovian planets core or multiionic target such as Kapton.

  1. Multiple scattering in electron fluid and energy loss in multi-ionic targets

    International Nuclear Information System (INIS)

    Deutsch, C.; Tahir, N.A.; Barriga-Carrasco, M.; Ceban, V.; Fromy, P.; Gilles, D.; Leger, D.; Maynard, G.; Tashev, B.; Volpe, L.

    2014-01-01

    Extensions of the standard stopping model (SSM) for ion projectiles interacting with dense targets of timely concern for ICF and WDM are reviewed. They include multiple scattering on partially degenerate electrons, low velocity ion slowing down in demixing H–He mixtures within Jovian planets core or multiionic target such as Kapton

  2. Using reusable learning objects (rlos) in injection skills teaching: Evaluations from multiple user types.

    Science.gov (United States)

    Williams, Julia; O'Connor, Mórna; Windle, Richard; Wharrad, Heather J

    2015-12-01

    Clinical skills are a critical component of pre-registration nurse education in the United Kingdom, yet there is widespread concern about the clinical skills displayed by newly-qualified nurses. Novel means of supporting clinical skills education are required to address this. A package of Reusable Learning Objects (RLOs) was developed to supplement pre-registration teaching on the clinical skill of administering injection medication. RLOs are electronic resources addressing a single learning objective whose interactivity facilitates learning. This article evaluates a package of five injection RLOs across three studies: (1) questionnaires administered to pre-registration nursing students at University of Nottingham (UoN) (n=46) evaluating the RLO package as a whole; (2) individual RLOs evaluated in online questionnaires by educators and students from UoN; from other national and international institutions; and healthcare professionals (n=265); (3) qualitative evaluation of the RLO package by UoN injection skills tutors (n=6). Data from all studies were assessed for (1) access to, (2) usefulness, (3) impact and (4) integration of the RLOs. Study one found that pre-registration nursing students rate the RLO package highly across all categories, particularly underscoring the value of their self-test elements. Study two found high ratings in online assessments of individual RLOs by multiple users. The global reach is particularly encouraging here. Tutors reported insufficient levels of student-RLO access, which might be explained by the timing of their student exposure. Tutors integrate RLOs into teaching and agree on their use as teaching supplements, not substitutes for face-to-face education. This evaluation encompasses the first years postpackage release. Encouraging data on evaluative categories in this early review suggest that future evaluations are warranted to track progress as the package is adopted and evaluated more widely. Copyright © 2015 Elsevier Ltd

  3. Electricity supply industry modelling for multiple objectives under demand growth uncertainty

    International Nuclear Information System (INIS)

    Heinrich, G.; Basson, L.; Howells, M.; Petrie, J.

    2007-01-01

    Appropriate energy-environment-economic (E3) modelling provides key information for policy makers in the electricity supply industry (ESI) faced with navigating a sustainable development path. Key challenges include engaging with stakeholder values and preferences, and exploring trade-offs between competing objectives in the face of underlying uncertainty. As a case study we represent the South African ESI using a partial equilibrium E3 modelling approach, and extend the approach to include multiple objectives under selected future uncertainties. This extension is achieved by assigning cost penalties to non-cost attributes to force the model's least-cost objective function to better satisfy non-cost criteria. This paper incorporates aspects of flexibility to demand growth uncertainty into each future expansion alternative by introducing stochastic programming with recourse into the model. Technology lead times are taken into account by the inclusion of a decision node along the time horizon where aspects of real options theory are considered within the planning process. Hedging in the recourse programming is automatically translated from being purely financial, to include the other attributes that the cost penalties represent. From a retrospective analysis of the cost penalties, the correct market signals, can be derived to meet policy goal, with due regard to demand uncertainty. (author)

  4. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    Science.gov (United States)

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  5. A multiple objective magnet sorting algorithm for the ALS insertion devices

    International Nuclear Information System (INIS)

    Humphries, D.; Goetz, F.; Kownacki, P.; Marks, S.; Schlueter, R.

    1994-07-01

    Insertion devices for the Advanced Light Source (ALS) incorporate large numbers of permanent magnets which have a variety of magnetization orientation errors. These orientation errors can produce field errors which affect both the spectral brightness of the insertion devices and the storage ring electron beam dynamics. A perturbation study was carried out to quantify the effects of orientation errors acting in a hybrid magnetic structure. The results of this study were used to develop a multiple stage sorting algorithm which minimizes undesirable integrated field errors and essentially eliminates pole excitation errors. When applied to a measured magnet population for an existing insertion device, an order of magnitude reduction in integrated field errors was achieved while maintaining near zero pole excitation errors

  6. Theoretical analysis of moiré fringe multiplication under a scanning electron microscope

    International Nuclear Information System (INIS)

    Li, Yanjie; Xie, Huimin; Chen, Pengwan; Zhang, Qingming

    2011-01-01

    In this study, theoretical analysis and experimental verification of fringe multiplication under a scanning electron microscope (SEM) are presented. Fringe multiplication can be realized by enhancing the magnification or the number of scanning lines under the SEM. A universal expression of the pitch of moiré fringes is deduced. To apply this method to deformation measurement, the calculation formulas of strain and displacement are derived. Compared to natural moiré, the displacement sensitivity is increased by fringe multiplication while the strain sensitivity may be retained or enhanced depending on the number of scanning lines used. The moiré patterns are formed by the interference of a 2000 lines mm −1 grating with the scanning lines of SEM, and the measured parameters of moiré fringes from experimental results agree well with theoretical analysis

  7. Designing an Electronic Patient Management System for Multiple Sclerosis: Building a Next Generation Multiple Sclerosis Documentation System.

    Science.gov (United States)

    Kern, Raimar; Haase, Rocco; Eisele, Judith Christina; Thomas, Katja; Ziemssen, Tjalf

    2016-01-08

    Technologies like electronic health records or telemedicine devices support the rapid mediation of health information and clinical data independent of time and location between patients and their physicians as well as among health care professionals. Today, every part of the treatment process from diagnosis, treatment selection, and application to patient education and long-term care may be enhanced by a quality-assured implementation of health information technology (HIT) that also takes data security standards and concerns into account. In order to increase the level of effectively realized benefits of eHealth services, a user-driven needs assessment should ensure the inclusion of health care professional perspectives into the process of technology development as we did in the development process of the Multiple Sclerosis Documentation System 3D. After analyzing the use of information technology by patients suffering from multiple sclerosis, we focused on the needs of neurological health care professionals and their handling of health information technology. Therefore, we researched the status quo of eHealth adoption in neurological practices and clinics as well as health care professional opinions about potential benefits and requirements of eHealth services in the field of multiple sclerosis. We conducted a paper-and-pencil-based mail survey in 2013 by sending our questionnaire to 600 randomly chosen neurological practices in Germany. The questionnaire consisted of 24 items covering characteristics of participating neurological practices (4 items), the current use of network technology and the Internet in such neurological practices (5 items), physicians' attitudes toward the general and MS-related usefulness of eHealth systems (8 items) and toward the clinical documentation via electronic health records (4 items), and physicians' knowledge about the Multiple Sclerosis Documentation System (3 items). From 600 mailed surveys, 74 completed surveys were returned

  8. Analysis of multiple scattering contributions in electron-impact ionization of molecular hydrogen

    Science.gov (United States)

    Ren, Xueguang; Hossen, Khokon; Wang, Enliang; Pindzola, M. S.; Dorn, Alexander; Colgan, James

    2017-10-01

    We report a combined experimental and theoretical study on the low-energy (E 0 = 31.5 eV) electron-impact ionization of molecular hydrogen (H2). Triple differential cross sections are measured for a range of fixed emission angles of one outgoing electron between {θ }1=-70^\\circ and -130° covering the full 4π solid angle of the second electron. The energy sharing of the outgoing electrons varies from symmetric ({E}1={E}2=8 eV) to highly asymmetric (E 1 = 1 eV and E 2 = 15 eV). In addition to the binary and recoil lobes, a structure is observed perpendicular to the incoming beam direction which is due to multiple scattering of the projectile inside the molecular potential. The absolutely normalized experimental cross sections are compared with results from the time-dependent close-coupling (TDCC) calculations. Molecular alignment dependent TDCC results demonstrate that these structures are only present if the molecule axis is lying in the scattering plane.

  9. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    International Nuclear Information System (INIS)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Rahaman, Hasibur

    2016-01-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  10. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    Science.gov (United States)

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  11. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan 333031 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani (India); Pal, Dharmendra Kumar; Jadon, Arvind Singh; Rahaman, Hasibur [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan 333031 (India)

    2016-03-15

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  12. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    Science.gov (United States)

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  13. Multiple capture investigated by coincident electron spectroscopy in X7++Ar, at 70 keV

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    1999-01-01

    The multiple electron capture in N 7+ + Ar and F 7+ (1s 2 ) + Ar systems is investigated at 70 keV with a new electron-recoil ion charge coincidence experiment. The whole electron energy range has been studied. Up to six electrons are found to be captured into autoionizing states. The recoil ion charge distribution associated with the emission of electrons is similar for both systems and found to be in good agreement with the prediction of Niehaus's model roughly adapted to take into account autoionizing cascades. New findings for the coincident double and triple captures are briefly discussed. A capture of an inner L-shell electron of Ar into the K-shell of the projectile is also observed in N 7+ + Ar collisions. (orig.)

  14. Objective Ratings of Relationship Skills across Multiple Domains as Predictors of Marital Satisfaction Trajectories

    OpenAIRE

    Lawrence, Erika; Pederson, Ashley; Bunde, Mali; Barry, Robin A.; Brock, Rebecca L.; Fazio, Emily; Mulryan, Lorin; Hunt, Sara; Madsen, Lisa; Dzankovic, Sandra

    2008-01-01

    Expanding upon social-learning and vulnerability-stress-adaptation approaches to marriage, the impact of multiple dyadic behaviors on marital satisfaction trajectories was examined in 101 couples. Semi-structured interviews were administered separately to husbands and wives at 3 months of marriage. Interviewers generated objective ratings for five domains: emotional closeness/intimacy, sexual intimacy/sensuality, interspousal support, decision-making/relational control, and communication/conf...

  15. Formation Process of Non-Neutral Plasmas by Multiple Electron Beams on BX-U

    Science.gov (United States)

    Sanpei, Akio; Himura, Haruhiko; Masamune, Sadao

    An imaging diagnostic system, which is composed of a handmade phosphor screen and a high-speed camera, has been applied to identify the dynamics of multiple electron beams on BX-U. The relaxation process of those toward a non-neutral plasma is experimentally identified. Also, the radial density profile of the plasma is measured as a function of time. Assuming that the plasma is a spheroidal shape, the value of electron density ne is in the range between 2.2 × 106 and 4.4 × 108 cm-3 on BX-U.

  16. Multiple containment for LSA [low specific activity] and SCO [surface contaminated objects] wastes

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1993-09-01

    Radioactive wastes are generally transported in the form of Low Specific Activity (LSA) materials or Surface Contaminated Objects (SCO). This report proposes that a method of acknowledging the beneficial effects of multiple containment for such wastes should be written into the 1996 Edition of the IAEA Transport Regulations. Experience used to assess risks from on-site movements of radioactive material in the UK can be applied to develop safety arguments justifying the alleviation of off-site transport risks. (UK)

  17. Multiple objects tracking in fluorescence microscopy.

    Science.gov (United States)

    Kalaidzidis, Yannis

    2009-01-01

    Many processes in cell biology are connected to the movement of compact entities: intracellular vesicles and even single molecules. The tracking of individual objects is important for understanding cellular dynamics. Here we describe the tracking algorithms which have been developed in the non-biological fields and successfully applied to object detection and tracking in biological applications. The characteristics features of the different algorithms are compared.

  18. Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera

    Science.gov (United States)

    Dziri, Aziz; Duranton, Marc; Chapuis, Roland

    2016-07-01

    Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.

  19. A Synthetic Algorithm for Tracking a Moving Object in a Multiple-Dynamic Obstacles Environment Based on Kinematically Planar Redundant Manipulators

    Directory of Open Access Journals (Sweden)

    Hongzhe Jin

    2017-01-01

    Full Text Available This paper presents a synthetic algorithm for tracking a moving object in a multiple-dynamic obstacles environment based on kinematically planar manipulators. By observing the motions of the object and obstacles, Spline filter associated with polynomial fitting is utilized to predict their moving paths for a period of time in the future. Several feasible paths for the manipulator in Cartesian space can be planned according to the predicted moving paths and the defined feasibility criterion. The shortest one among these feasible paths is selected as the optimized path. Then the real-time path along the optimized path is planned for the manipulator to track the moving object in real-time. To improve the convergence rate of tracking, a virtual controller based on PD controller is designed to adaptively adjust the real-time path. In the process of tracking, the null space of inverse kinematic and the local rotation coordinate method (LRCM are utilized for the arms and the end-effector to avoid obstacles, respectively. Finally, the moving object in a multiple-dynamic obstacles environment is thus tracked via real-time updating the joint angles of manipulator according to the iterative method. Simulation results show that the proposed algorithm is feasible to track a moving object in a multiple-dynamic obstacles environment.

  20. The use of multiple imputation for the accurate measurements of individual feed intake by electronic feeders.

    Science.gov (United States)

    Jiao, S; Tiezzi, F; Huang, Y; Gray, K A; Maltecca, C

    2016-02-01

    Obtaining accurate individual feed intake records is the key first step in achieving genetic progress toward more efficient nutrient utilization in pigs. Feed intake records collected by electronic feeding systems contain errors (erroneous and abnormal values exceeding certain cutoff criteria), which are due to feeder malfunction or animal-feeder interaction. In this study, we examined the use of a novel data-editing strategy involving multiple imputation to minimize the impact of errors and missing values on the quality of feed intake data collected by an electronic feeding system. Accuracy of feed intake data adjustment obtained from the conventional linear mixed model (LMM) approach was compared with 2 alternative implementations of multiple imputation by chained equation, denoted as MI (multiple imputation) and MICE (multiple imputation by chained equation). The 3 methods were compared under 3 scenarios, where 5, 10, and 20% feed intake error rates were simulated. Each of the scenarios was replicated 5 times. Accuracy of the alternative error adjustment was measured as the correlation between the true daily feed intake (DFI; daily feed intake in the testing period) or true ADFI (the mean DFI across testing period) and the adjusted DFI or adjusted ADFI. In the editing process, error cutoff criteria are used to define if a feed intake visit contains errors. To investigate the possibility that the error cutoff criteria may affect any of the 3 methods, the simulation was repeated with 2 alternative error cutoff values. Multiple imputation methods outperformed the LMM approach in all scenarios with mean accuracies of 96.7, 93.5, and 90.2% obtained with MI and 96.8, 94.4, and 90.1% obtained with MICE compared with 91.0, 82.6, and 68.7% using LMM for DFI. Similar results were obtained for ADFI. Furthermore, multiple imputation methods consistently performed better than LMM regardless of the cutoff criteria applied to define errors. In conclusion, multiple imputation

  1. A case study of resources management planning with multiple objectives and projects

    Science.gov (United States)

    Peterson, David L.; Silsbee, David G.; Schmoldt, Daniel L.

    1994-09-01

    Each National Park Service unit in the United States produces a resources management plan (RMP) every four years or less. The plans commit budgets and personnel to specific projects for four years, but they are prepared with little quantitative and analytical rigor and without formal decision-making tools. We have previously described a multiple objective planning process for inventory and monitoring programs (Schmoldt and others 1994). To test the applicability of that process for the more general needs of resources management planning, we conducted an exercise on the Olympic National Park (NP) in Washington State, USA. Eight projects were selected as typical of those considered in RMPs and five members of the Olympic NP staff used the analytic hierarchy process (AHP) to prioritize the eight projects with respect to their implicit management objectives. By altering management priorities for the park, three scenarios were generated. All three contained some similarities in rankings for the eight projects, as well as some differences. Mathematical allocations of money and people differed among these scenarios and differed substantially from what the actual 1990 Olympic NP RMP contains. Combining subjective priority measures with budget dollars and personnel time into an objective function creates a subjective economic metric for comparing different RMP’s. By applying this planning procedure, actual expenditures of budget and personnel in Olympic NP can agree more closely with the staff’s management objectives for the park.

  2. Single and multiple objective biomass-to-biofuel supply chain optimization considering environmental impacts

    Science.gov (United States)

    Valles Sosa, Claudia Evangelina

    Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers diminishing climate change by reducing Green House Gas Emissions, as well as providing energy security and enhancing rural development. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supply future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. Approaching this complex logistic problem as a multi-commodity network flow structure, the present work proposes the use of a genetic algorithm as a single objective optimization problem that considers the maximization of profit and the present work also proposes the use of a Multiple Objective Evolutionary Algorithm to simultaneously maximize profit while minimizing global warming potential. Most transportation optimization problems available in the literature have mostly considered the maximization of profit or the minimization of total travel time as potential objectives to be optimized. However, on this research work, we take a more conscious and sustainable approach for this logistic problem. Planners are increasingly expected to adopt a multi-disciplinary approach, especially due to the rising importance of environmental stewardship. The role of a transportation planner and designer is shifting from simple economic analysis to promoting sustainability through the integration of environmental objectives. To

  3. Additivity of Feature-based and Symmetry-based Grouping Effects in Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Chundi eWang

    2016-05-01

    Full Text Available Multiple object tracking (MOT is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the laws of perceptual organization proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. Additive effect refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The where and what pathways might have played an important role in the additive grouping effect.

  4. Clinical vocabulary as a boundary object in multidisciplinary care management of multiple chemical sensitivity, a complex and chronic condition.

    Science.gov (United States)

    Sampalli, Tara; Shepherd, Michael; Duffy, Jack

    2011-04-14

    Research has shown that accurate and timely communication between multidisciplinary clinicians involved in the care of complex and chronic health conditions is often challenging. The domain knowledge for these conditions is heterogeneous, with poorly categorized, unstructured, and inconsistent clinical vocabulary. The potential of boundary object as a technique to bridge communication gaps is explored in this study. A standardized and controlled clinical vocabulary was developed as a boundary object in the domain of a complex and chronic health condition, namely, multiple chemical sensitivity, to improve communication among multidisciplinary clinicians. A convenience sample of 100 patients with a diagnosis of multiple chemical sensitivity, nine multidisciplinary clinicians involved in the care of patients with multiple chemical sensitivity, and 36 clinicians in the community participated in the study. Eighty-two percent of the multidisciplinary and inconsistent vocabulary was standardized using the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED(®) CT as a reference terminology. Over 80% of the multidisciplinary clinicians agreed on the overall usefulness of having a controlled vocabulary as a boundary object. Over 65% of clinicians in the community agreed on the overall usefulness of the vocabulary. The results from this study are promising and will be further evaluated in the domain of another complex chronic condition, ie, chronic pain. The study was conducted as a preliminary analysis for developing a boundary object in a heterogeneous domain of knowledge.

  5. Enhanced Algorithms for EO/IR Electronic Stabilization, Clutter Suppression, and Track-Before-Detect for Multiple Low Observable Targets

    Science.gov (United States)

    Tartakovsky, A.; Brown, A.; Brown, J.

    The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud

  6. The limits of the electron optical parameters of asymmetric double pipecol magnetic objective lenses

    International Nuclear Information System (INIS)

    Al-khashab, A. M.; Abas, K. A.

    1997-01-01

    The asymmetrical magnetic electron lens is of great importance for the electron microscopes intended for high resolution. Such lenses are determined not only by its geometric structure and shape parameters but also by the gap width to bore diameter (S/D) of its pole pieces. a systematic investigation has been carried out for asymmetric objective lenses having different bore diameters. The results indicate that the op per h ore diameter of pole piece lens has considerable effects on the electron optical properties. The Comparison between the two sets of the family of asymmetric lenses provides good performance, and suggests that the ratio of the lens gap width to the bore diameters of its pole pieces (S/ D 1 /D 2 =3) are favourable. (authors). 9 refs., 9 figs

  7. PRIVACY PRESERVING DATA MINING USING MULTIPLE OBJECTIVE OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    V. Shyamala Susan

    2016-10-01

    Full Text Available Privacy preservation is that the most targeted issue in information publication, because the sensitive data shouldn't be leaked. For this sake, several privacy preservation data mining algorithms are proposed. In this work, feature selection using evolutionary algorithm and data masking coupled with slicing is treated as a multiple objective optimisation to preserve privacy. To start with, Genetic Algorithm (GA is carried out over the datasets to perceive the sensitive attributes and prioritise the attributes for treatment as per their determined sensitive level. In the next phase, to distort the data, noise is added to the higher level sensitive value using Hybrid Data Transformation (HDT method. In the following phase slicing algorithm groups the correlated attributes organized and by this means reduces the dimensionality by retaining the Advanced Clustering Algorithm (ACA. With the aim of getting the optimal dimensions of buckets, tuple segregating is accomplished by Metaheuristic Firefly Algorithm (MFA. The investigational consequences imply that the anticipated technique can reserve confidentiality and therefore the information utility is additionally high. Slicing algorithm allows the protection of association and usefulness in which effects in decreasing the information dimensionality and information loss. Performance analysis is created over OCC 7 and OCC 15 and our optimization method proves its effectiveness over two totally different datasets by showing 92.98% and 96.92% respectively.

  8. Few-Photon Multiple Ionization of Ne and Ar by Strong Free-Electron-Laser Pulses

    International Nuclear Information System (INIS)

    Moshammer, R.; Jiang, Y. H.; Rudenko, A.; Ergler, Th.; Schroeter, C. D.; Luedemann, S.; Zrost, K.; Dorn, A.; Ferger, T.; Kuehnel, K. U.; Ullrich, J.; Foucar, L.; Titze, J.; Jahnke, T.; Schoeffler, M.; Doerner, R.; Fischer, D.; Weber, T.; Zouros, T. J. M.; Duesterer, S.

    2007-01-01

    Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope. The light-intensity dependence of Ne 2+ production reveals the dominance of nonsequential two-photon double ionization at intensities of I 12 W/cm 2 and significant contributions of three-photon ionization as I increases. Ne 2+ recoil-ion-momentum distributions suggest that two electrons absorbing ''instantaneously'' two photons are ejected most likely into opposite hemispheres with similar energies

  9. Position Affects Performance in Multiple-Object Tracking in Rugby Union Players

    Directory of Open Access Journals (Sweden)

    Andrés Martín

    2017-09-01

    Full Text Available We report an experiment that examines the performance of rugby union players and a control group composed of graduate student with no sport experience, in a multiple-object tracking task. It compares the ability of 86 high level rugby union players grouped as Backs and Forwards and the control group, to track a subset of randomly moving targets amongst the same number of distractors. Several difficulties were included in the experimental design in order to evaluate possible interactions between the relevant variables. Results show that the performance of the Backs is better than that of the other groups, but the occurrence of interactions precludes an isolated groups analysis. We interpret the results within the framework of visual attention and discuss both, the implications of our results and the practical consequences.

  10. Simulation of multicomponent light source for optical-electronic system of color analysis objects

    Science.gov (United States)

    Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.

    2016-04-01

    Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.

  11. Multiple capture investigated by coincident electron spectroscopy in X{sup 7+}+Ar, at 70 keV

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Lab. Collisions-Agregats-Reactivite

    1999-11-01

    The multiple electron capture in N{sup 7+} + Ar and F{sup 7+}(1s{sup 2}) + Ar systems is investigated at 70 keV with a new electron-recoil ion charge coincidence experiment. The whole electron energy range has been studied. Up to six electrons are found to be captured into autoionizing states. The recoil ion charge distribution associated with the emission of electrons is similar for both systems and found to be in good agreement with the prediction of Niehaus`s model roughly adapted to take into account autoionizing cascades. New findings for the coincident double and triple captures are briefly discussed. A capture of an inner L-shell electron of Ar into the K-shell of the projectile is also observed in N{sup 7+} + Ar collisions. (orig.) 10 refs.

  12. Structure Determination of Anionic Metal Clusters via Infrared Resonance Enhanced Multiple Photon Electron Detachment Spectroscopy

    NARCIS (Netherlands)

    Haertelt, M.; Lapoutre, V. J. F.; Bakker, J. M.; Redlich, B.; Harding, D. J.; Fielicke, A.; Meijer, G.

    2011-01-01

    We report vibrational spectra of anionic metal clusters, measured via electron detachment following resonant absorption of multiple infrared photons. To facilitate the sequential absorption of the required large number of photons, the cluster beam interacts with the infrared radiation inside the

  13. Electronics cooling of Phenix multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Chen, Z.; Gregory, W.S.

    1996-08-01

    The Multiplicity and Vertex Detector (MVD) uses silicon strip sensors arranged in two concentric barrels around the beam pipe of the PHENIX detector that will be installed at Brookhaven National Laboratory. Each silicon sensor is connected by a flexible kapton cable to its own front-end electronics printed circuit board that is a multi-chip module or MCM. The MCMs are the main heat source in the system. To maintain the MVD at optimized operational status, the maximum temperature of the multi-chip modules must be below 40 C. Using COSMOS/M HSTAR for the Heat Transfer analysis, a finite element model of a typical MCM plate was created to simulate a 9m/s airflow and 9m/s mixed flow composed of 50% helium and 50% air respectively, with convective heat transfer on both sides of the plate. The results using a mixed flow of helium and air show that the average maximum temperature reached by the MCMs is 37.5 C. The maximum temperature which is represented by the hot spots on the MCM is 39.43 C for the helium and air mixture which meets the design temperature requirement 40 C. To maintain the Multiplicity and Vertex Detector at optimized operational status, the configuration of the plenum chamber, the power dissipated by the silicon chips, the fluid flow velocity and comparison on the MCM design parameters will be discussed

  14. Design and implementation of the reconstruction software for the photon multiplicity detector in object oriented programming framework

    International Nuclear Information System (INIS)

    Chattopadhayay, Subhasis; Ghosh, Premomoy; Gupta, R.; Mishra, D.; Phatak, S.C.; Sood, G.

    2002-01-01

    High granularity photon multiplicity detector (PMD) is scheduled to take data in Relativistic Heavy Ion Collision(RHIC) this year. A detailed scheme has been designed and implemented in object oriented programming framework using C++ for the monitoring and reconstruction job of PMD data

  15. Single and multiple ionization of sulfur atoms by electron impact

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1982-01-01

    Laboratory measurements of the cross sections for single, double, triple, and quadruple ionization of sulfur atoms by electron impact are presented for collision energies from threshold to 500 eV. The cross sections for single ionization of sulfur are measured relative to those of several elements whose absolute cross sections for single ionization are known. Cross sections for each multiple ionization process are then measured relative to those for single ionization. The configuration and operation of the apparatus for these measurements are described. The possible effects of excited sulfur reactants are examined, and the reported cross sections are felt to be characteristic of ground state sulfur atoms

  16. Photon multiplicity in the hard radiation of 150 GeV electrons in an aligned germanium crystal

    International Nuclear Information System (INIS)

    Belkacem, A.; Chevallier, M.; Gaillard, M.J.; Genre, R.; Kirsch, R.; Poizat, J.C.; Remillieux, J.; Bologna, G.; Peigneux, J.P.; Sillou, D.; Spighel, M.; Cue, N.; Kimball, J.C.; Marsh, B.B.; Sun, C.R.

    1988-01-01

    Mean values m of photon multiplicity in the radiation of 150 GeV electrons directed at and near the axis of a 0.185 mm thick Ge crystal cooled to 100 K have been deduced from the measurements of pair conversion probabilities. Depending on the distribution of multiplicity assumed, values of m ranging from 3.8 to 4.3 are obtained for the previously reported anomalous radiation peak. (orig.)

  17. A versatile nanotechnology to connect individual nano-objects for the fabrication of hybrid single-electron devices

    International Nuclear Information System (INIS)

    Bernand-Mantel, A; Bouzehouane, K; Seneor, P; Fusil, S; Deranlot, C; Petroff, F; Fert, A; Brenac, A; Notin, L; Morel, R

    2010-01-01

    We report on the high yield connection of single nano-objects as small as a few nanometres in diameter to separately elaborated metallic electrodes, using a 'table-top' nanotechnology. Single-electron transport measurements validate that transport occurs through a single nano-object. The vertical geometry of the device natively allows an independent choice of materials for each electrode and the nano-object. In addition ferromagnetic materials can be used without encountering oxidation problems. The possibility of elaborating such hybrid nanodevices opens new routes for the democratization of spintronic studies in low dimensions.

  18. A Fisher Kernel Approach for Multiple Instance Based Object Retrieval in Video Surveillance

    Directory of Open Access Journals (Sweden)

    MIRONICA, I.

    2015-11-01

    Full Text Available This paper presents an automated surveillance system that exploits the Fisher Kernel representation in the context of multiple-instance object retrieval task. The proposed algorithm has the main purpose of tracking a list of persons in several video sources, using only few training examples. In the first step, the Fisher Kernel representation describes a set of features as the derivative with respect to the log-likelihood of the generative probability distribution that models the feature distribution. Then, we learn the generative probability distribution over all features extracted from a reduced set of relevant frames. The proposed approach shows significant improvements and we demonstrate that Fisher kernels are well suited for this task. We demonstrate the generality of our approach in terms of features by conducting an extensive evaluation with a broad range of keypoints features. Also, we evaluate our method on two standard video surveillance datasets attaining superior results comparing to state-of-the-art object recognition algorithms.

  19. First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives: DESIGNING STRATOSPHERIC GEOENGINEERING

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Ben [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; MacMartin, Douglas G. [Mechanical and Aerospace Engineering, Cornell University, Ithaca NY USA; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena CA USA; Mills, Michael J. [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA; Richter, Jadwiga H. [Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO USA; Tilmes, Simone [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA; Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO USA; Lamarque, Jean-Francois [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA; Tribbia, Joseph J. [Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO USA; Vitt, Francis [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA

    2017-12-07

    We describe the first simulations of stratospheric sulfate aerosol geoengineering using multiple injection locations to meet multiple simultaneous surface temperature objectives. Simulations were performed using CESM1(WACCM), a coupled atmosphere-ocean general circulation model with fully interactive stratospheric chemistry, dynamics (including an internally generated quasi-biennial oscillation), and a sophisticated treatment of sulfate aerosol formation, microphysical growth, and deposition. The objectives are defined as maintaining three temperature features at their 2020 levels against a background of the RCP8.5 scenario over the period 2020-2099. These objectives are met using a feedback mechanism in which the rate of sulfur dioxide injection at each of the four locations is adjusted independently every year of simulation. Even in the presence of uncertainties, nonlinearities, and variability, the objectives are met, predominantly by SO2 injection at 30°N and 30°S. By the last year of simulation, the feedback algorithm calls for a total injection rate of 51 Tg SO2 per year. The injections are not in the tropics, which results in a greater degree of linearity of the surface climate response with injection amount than has been found in many previous studies using injection at the equator. Because the objectives are defined in terms of annual mean temperature, the required geeongineering results in "overcooling" during summer and "undercooling" during winter. The hydrological cycle is also suppressed as compared to the reference values corresponding to the year 2020. The demonstration we describe in this study is an important step toward understanding what geoengineering can do and what it cannot do.

  20. Coulomb Blockade and Multiple Andreev Reflection in a Superconducting Single-Electron Transistor

    Science.gov (United States)

    Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke

    2018-06-01

    In superconducting quantum point contacts, multiple Andreev reflection (MAR), which describes the coherent transport of m quasiparticles each carrying an electron charge with m≥3, sets in at voltage thresholds eV = 2Δ /m. In single-electron transistors, Coulomb blockade, however, suppresses the current at low voltage. The required voltage for charge transport increases with the square of the effective charge eV∝ ( me) ^2. Thus, studying the charge transport in all-superconducting single-electron transistors (SSETs) sets these two phenomena into competition. In this article, we present the fabrication as well as a measurement scheme and transport data for a SSET with one junction in which the transmission and thereby the MAR contributions can be continuously tuned. All regimes from weak to strong coupling are addressed. We extend the Orthodox theory by incorporating MAR processes to describe the observed data qualitatively. We detect a new transport process the nature of which is unclear at present. Furthermore, we observe a renormalization of the charging energy when approaching the strong coupling regime.

  1. Spatial-area selective retrieval of multiple object-place associations in a hierarchical cognitive map formed by theta phase coding.

    Science.gov (United States)

    Sato, Naoyuki; Yamaguchi, Yoko

    2009-06-01

    The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic "theta phase precession" observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object-place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object-place associations in the hierarchical network formed by theta phase precession. The results show that multiple object-place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object-place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object-place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.

  2. Path-separated electron interferometry in a scanning transmission electron microscope

    Science.gov (United States)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  3. Electron beam for preservation of biodeteriorated cultural heritage paper-based objects

    Science.gov (United States)

    Chmielewska-Śmietanko, Dagmara; Gryczka, Urszula; Migdał, Wojciech; Kopeć, Kamil

    2018-02-01

    Unsuitable storage conditions or accidents such as floods can present a serious threat for large quantities of book making them prone to attack by harmful microorganisms. The microbiological degradation of archives and book collections can be efficiently inhibited with irradiation processing. Application of EB irradiation to book and archive collections can also be a very effective alternative to the commonly used ethylene oxide treatment, which is toxic to the human and natural environment. In this study was evaluated the influence of EB irradiation used for microbiological decontamination process on paper-based objects. Three different kinds of paper (Whatman CHR 1, office paper and newsprint paper) were treated with 0.4, 1, 2, 5, 10 and 25 kGy electron beam irradiation. Optical and mechanical properties of different sorts of paper treated with e-beam, before and after the radiation process were studied. These results, which correlated with absorbed radiation doses effective for the elimination of Aspergillus niger (A. niger) allowed to determine that EB irradiation with absorbed radiation dose of 5 kGy ensures safe decontamination of different sorts of paper-based objects.

  4. A multiple objective magnet sorting algorithm for the Advanced Light Source insertion devices

    International Nuclear Information System (INIS)

    Humphries, D.; Goetz, F.; Kownacki, P.; Marks, S.; Schlueter, R.

    1995-01-01

    Insertion devices for the Advanced Light Source (ALS) incorporate large numbers of permanent magnets which have a variety of magnetization orientation errors. These orientation errors can produce field errors which affect both the spectral brightness of the insertion devices and the storage ring electron beam dynamics. A perturbation study was carried out to quantify the effects of orientation errors acting in a hybrid magnetic structure. The results of this study were used to develop a multiple stage sorting algorithm which minimizes undesirable integrated field errors and essentially eliminates pole excitation errors. When applied to a measured magnet population for an existing insertion device, an order of magnitude reduction in integrated field errors was achieved while maintaining near zero pole excitation errors

  5. A Girl With Multiple Disabilities Increases Object Manipulation and Reduces Hand Mouthing Through a Microswitch-Based Program

    NARCIS (Netherlands)

    Lancioni, G.E.; Singh, N.N.; O'Reilly, M.F.; Sigafoos, J.; Didden, H.C.M.; Oliva, D.; Cingolani, E.

    2008-01-01

    The study was an effort to help a girl with multiple disabilities increase object manipulation responses and reduce hand mouthing, carried out according to an ABAB sequence (in which A represented baseline phases; B, treatment phases) and including a 3-month follow-up. During the baseline phases, a

  6. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food.

    Science.gov (United States)

    Chyan, Yieu; Ye, Ruquan; Li, Yilun; Singh, Swatantra Pratap; Arnusch, Christopher J; Tour, James M

    2018-03-27

    A simple and facile method for obtaining patterned graphene under ambient conditions on the surface of diverse materials ranging from renewable precursors such as food, cloth, paper, and cardboard to high-performance polymers like Kevlar or even on natural coal would be highly desirable. Here, we report a method of using multiple pulsed-laser scribing to convert a wide range of substrates into laser-induced graphene (LIG). With the increased versatility of the multiple lase process, highly conductive patterns can be achieved on the surface of a diverse number of substrates in ambient atmosphere. The use of a defocus method results in multiple lases in a single pass of the laser, further simplifying the procedure. This method can be implemented without increasing processing times when compared with laser induction of graphene on polyimide (Kapton) substrates as previously reported. In fact, any carbon precursor that can be converted into amorphous carbon can be converted into graphene using this multiple lase method. This may be a generally applicable technique for forming graphene on diverse substrates in applications such as flexible or even biodegradable and edible electronics.

  7. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  8. Multiple-objective optimization in precision laser cutting of different thermoplastics

    Science.gov (United States)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  9. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  10. Dependence of Xmax and multiplicity of electron and muon on different high energy interaction models

    Directory of Open Access Journals (Sweden)

    G Rastegarzadeh

    2010-06-01

    Full Text Available Different high energy interaction models are the applied in CORSIKA code to simulate Extensive Air Showers (EAS generated by Cosmic Rays (CR. In this work the effects of QGSJET01, QGSJETII, DPMJET, SIBYLL models on Xmax and multiplicity of secondary electrons and muons at observation level are studied.

  11. Object-Based Change Detection in Urban Areas from High Spatial Resolution Images Based on Multiple Features and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2018-02-01

    Full Text Available To improve the accuracy of change detection in urban areas using bi-temporal high-resolution remote sensing images, a novel object-based change detection scheme combining multiple features and ensemble learning is proposed in this paper. Image segmentation is conducted to determine the objects in bi-temporal images separately. Subsequently, three kinds of object features, i.e., spectral, shape and texture, are extracted. Using the image differencing process, a difference image is generated and used as the input for nonlinear supervised classifiers, including k-nearest neighbor, support vector machine, extreme learning machine and random forest. Finally, the results of multiple classifiers are integrated using an ensemble rule called weighted voting to generate the final change detection result. Experimental results of two pairs of real high-resolution remote sensing datasets demonstrate that the proposed approach outperforms the traditional methods in terms of overall accuracy and generates change detection maps with a higher number of homogeneous regions in urban areas. Moreover, the influences of segmentation scale and the feature selection strategy on the change detection performance are also analyzed and discussed.

  12. Improvement of the R-SWAT-FME framework to support multiple variables and multi-objective functions

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang

    2014-01-01

    Application of numerical models is a common practice in the environmental field for investigation and prediction of natural and anthropogenic processes. However, process knowledge, parameter identifiability, sensitivity, and uncertainty analyses are still a challenge for large and complex mathematical models such as the hydrological/water quality model, Soil and Water Assessment Tool (SWAT). In this study, the previously developed R program language-SWAT-Flexible Modeling Environment (R-SWAT-FME) was improved to support multiple model variables and objectives at multiple time steps (i.e., daily, monthly, and annually). This expansion is significant because there is usually more than one variable (e.g., water, nutrients, and pesticides) of interest for environmental models like SWAT. To further facilitate its easy use, we also simplified its application requirements without compromising its merits, such as the user-friendly interface. To evaluate the performance of the improved framework, we used a case study focusing on both streamflow and nitrate nitrogen in the Upper Iowa River Basin (above Marengo) in the United States. Results indicated that the R-SWAT-FME performs well and is comparable to the built-in auto-calibration tool in multi-objective model calibration. Overall, the enhanced R-SWAT-FME can be useful for the SWAT community, and the methods we used can also be valuable for wrapping potential R packages with other environmental models.

  13. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium.

    Science.gov (United States)

    Zhang, Dongdong; Zhang, Chunfang; Xiao, Zhixing; Suzuki, Daisuke; Katayama, Arata

    2015-02-01

    A solid-phase humin, acting as an electron donor, was able to enhance multiple reductive biotransformations, including dechlorination of pentachlorophenol (PCP), dissimilatory reduction of amorphous Fe (III) oxide (FeOOH), and reduction of nitrate, in a consortium. Humin that was chemically reduced by NaBH4 served as an electron donor for these microbial reducing reactions, with electron donating capacities of 0.013 mmol e(-)/g for PCP dechlorination, 0.15 mmol e(-)/g for iron reduction, and 0.30 mmol e(-)/g for nitrate reduction. Two pairs of oxidation and reduction peaks within the humin were detected by cyclic voltammetry analysis. 16S rRNA gene sequencing-based microbial community analysis of the consortium incubated with different terminal electron acceptors, suggested that Dehalobacter sp., Bacteroides sp., and Sulfurospirillum sp. were involved in the PCP dechlorination, dissimilatory iron reduction, and nitrate reduction, respectively. These findings suggested that humin functioned as a versatile redox mediator, donating electrons for multiple respiration reactions with different redox potentials. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Two-Electron Transfer Pathways.

    Science.gov (United States)

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple

  15. Opposition multiple objective symbiotic organisms search (OMOSOS for time, cost, quality and work continuity tradeoff in repetitive projects

    Directory of Open Access Journals (Sweden)

    Duc-Hoc Tran

    2018-04-01

    Full Text Available Construction managers often face with projects containing multiple units wherein activities repeat from unit to unit. Therefore effective resource management is crucial in terms of project duration, cost and quality. Accordingly, researchers have developed several models to aid planners in developing practical and near-optimal schedules for repetitive projects. Despite their undeniable benefits, such models lack the ability of pure simultaneous optimization because existing methodologies optimize the schedule with respect to a single factor, to achieve minimum duration, total cost, resource work breaks or various combinations, respectively. This study introduces a novel approach called “opposition multiple objective symbiotic organisms search” (OMOSOS for scheduling repetitive projects. The proposed algorithm used an opposition-based learning technique for population initialization and for generation jumping. Further, this study integrated a scheduling module (M1 to determine all project objectives including time, cost, quality and interruption. The proposed algorithm was implemented on two application examples in order to demonstrate its capabilities in optimizing the scheduling of repetitive construction projects. The results indicate that the OMOSOS approach is a powerful optimization technique and can assist project managers in selecting appropriate plan for project. Keywords: Symbiotic organisms search, Multi-objective analysis, Resource tradeoff, Schedules, Repetitive

  16. Electron radiography

    Science.gov (United States)

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  17. Multiple stable states of a periodically driven electron spin in a quantum dot using circularly polarized light

    Science.gov (United States)

    Korenev, V. L.

    2011-06-01

    The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.

  18. Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines

    International Nuclear Information System (INIS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-01-01

    Ecological performance of a single resonance ESE heat engine with heat leakage is conducted by applying finite time thermodynamics. By introducing Nielsen function and numerical calculations, expressions about power output, efficiency, entropy generation rate and ecological objective function are derived; relationships between ecological objective function and power output, between ecological objective function and efficiency as well as between power output and efficiency are demonstrated; influences of system parameters of heat leakage, boundary energy and resonance width on the optimal performances are investigated in detail; a specific range of boundary energy is given as a compromise to make ESE heat engine system work at optimal operation regions. Comparing performance characteristics with different optimization objective functions, the significance of selecting ecological objective function as the design objective is clarified specifically: when changing the design objective from maximum power output into maximum ecological objective function, the improvement of efficiency is 4.56%, while the power output drop is only 2.68%; when changing the design objective from maximum efficiency to maximum ecological objective function, the improvement of power output is 229.13%, and the efficiency drop is only 13.53%. - Highlights: • An irreversible single resonance energy selective electron heat engine is studied. • Heat leakage between two reservoirs is considered. • Power output, efficiency and ecological objective function are derived. • Optimal performance comparison for three objective functions is carried out.

  19. Reconstruction of an Non-Monochromatically Illuminated Object Imaged through an Electron Microscope with a Fluctuating Electromagnetic Field

    NARCIS (Netherlands)

    Hoenders, B.J.

    1975-01-01

    It is shown that a weak phase object imaged by an electron microscope within the presence of instabilities of the lense currents and the acceleration voltage, fluctuating electromagnetic field, can be reconstructed from the intensity distribution in the image plane. Perfectly incoherent illumination

  20. A Comparative Study of Multiple Object Detection Using Haar-Like Feature Selection and Local Binary Patterns in Several Platforms

    Directory of Open Access Journals (Sweden)

    Souhail Guennouni

    2015-01-01

    Full Text Available Object detection has been attracting much interest due to the wide spectrum of applications that use it. It has been driven by an increasing processing power available in software and hardware platforms. In this work we present a developed application for multiple objects detection based on OpenCV libraries. The complexity-related aspects that were considered in the object detection using cascade classifier are described. Furthermore, we discuss the profiling and porting of the application into an embedded platform and compare the results with those obtained on traditional platforms. The proposed application deals with real-time systems implementation and the results give a metric able to select where the cases of object detection applications may be more complex and where it may be simpler.

  1. Methods of Information Subjects and Objects Interaction Rules Formalization in the Electronic Trading Platform System

    Directory of Open Access Journals (Sweden)

    Emma Emanuilova Yandybaeva

    2015-03-01

    Full Text Available The methods of information subjects and objects interaction rules formalization in the electronic trading platform system has been developed. They are based on mathematical model of mandatory role-based access control. As a result of the work we have defined set of user roles and constructed roles hierarchy. For the roles hierarchy restrictions have been imposed to ensure the safety of the information system.

  2. Evidence for multiple polytypes of semiconducting boron carbide (C2B10) from electronic structure

    International Nuclear Information System (INIS)

    Lunca-Popa, Petru; Brand, J I; Balaz, Snjezana; Rosa, Luis G; Boag, N M; Bai Mengjun; Robertson, B W; Dowben, P A

    2005-01-01

    Boron carbides fabricated via plasma enhanced chemical vapour deposition from different isomeric source compounds with the same C 2 B 10 H 12 closo-icosahedral structure result in materials with very different direct (optical) band gaps. This provides compelling evidence for the existence of multiple polytypes of C 2 B 10 boron carbide and is consistent with electron diffraction results

  3. Jumping magneto-electric states of electrons in semiconductor multiple quantum wells

    International Nuclear Information System (INIS)

    Pfeffer, Pawel; Zawadzki, Wlodek

    2011-01-01

    Orbital and spin electron states in semiconductor multiple quantum wells in the presence of an external magnetic field transverse to the growth direction are considered. Rectangular wells of GaAs/GaAlAs and InAs/AlSb are taken as examples. It is shown that, in addition to magneto-electric states known from one-well systems, there appear magneto-electric states having a much stronger dependence of energies on a magnetic field and exhibiting an interesting anti-crossing behavior. The origin of these states is investigated and it is shown that the strong field dependence of the energies is related to an unusual 'jumping' behavior of their wavefunctions between quantum wells as the field increases. The ways of investigating the jumping states by means of interband magneto-luminescence transitions or intraband cyclotron-like transitions are considered and it is demonstrated that the jumping states can be observed. The spin g factors of electrons in the jumping states are calculated using the real values of the spin–orbit interaction and bands' nonparabolicity for the semiconductors in question. It is demonstrated that the jumping states offer a wide variety of the spin g factors

  4. Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buijsse, Bart; Laarhoven, Frank M.H.M. van [FEI Company, PO Box 80066, 5600 KA Eindhoven (Netherlands); Schmid, Andreas K.; Cambie, Rossana; Cabrini, Stefano; Jin, Jian [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Glaeser, Robert M., E-mail: rmglaeser@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2011-12-15

    A novel design is described for an aperture that blocks a half-plane of the electron diffraction pattern out to a desired scattering angle, and then - except for a narrow support beam - transmits all of the scattered electrons beyond that angle. Our proposed tulip-shaped design is thus a hybrid between the single-sideband (ssb) aperture, which blocks a full half-plane of the diffraction pattern, and the conventional (i.e. fully open) double-sideband (dsb) aperture. The benefits of this hybrid design include the fact that such an aperture allows one to obtain high-contrast images of weak-phase objects with the objective lens set to Scherzer defocus. We further demonstrate that such apertures can be fabricated from thin-foil materials by milling with a focused ion beam (FIB), and that such apertures are fully compatible with the requirements of imaging out to a resolution of at least 0.34 nm. As is known from earlier work with single-sideband apertures, however, the edge of such an aperture can introduce unwanted, electrostatic phase shifts due to charging. The principal requirement for using such an aperture in a routine data-collection mode is thus to discover appropriate materials, protocols for fabrication and processing and conditions of use such that the hybrid aperture remains free of charging over long periods of time. -- Highlights: Black-Right-Pointing-Pointer New objective-aperture design is proposed for imaging weak-phase objects. Black-Right-Pointing-Pointer Design produces single-sideband contrast at low spatial frequencies. Black-Right-Pointing-Pointer Design also retains Scherzer-defocus phase contrast at higher resolution. Black-Right-Pointing-Pointer Proof-of-concept results are presented for microfabricated apertures. Black-Right-Pointing-Pointer Charging of such apertures during use remains an experimental challenge.

  5. Effectiveness of Guided Multiple Choice Objective Questions Test on Students' Academic Achievement in Senior School Mathematics by School Location

    Science.gov (United States)

    Igbojinwaekwu, Patrick Chukwuemeka

    2015-01-01

    This study investigated, using pretest-posttest quasi-experimental research design, the effectiveness of guided multiple choice objective questions test on students' academic achievement in Senior School Mathematics, by school location, in Delta State Capital Territory, Nigeria. The sample comprised 640 Students from four coeducation secondary…

  6. On the representation of electron multiple elastic-scattering distributions for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Kawrakow, I.; Bielajew, A.F.

    1998-01-01

    A new representation of elastic electron-nucleus (Coulomb) multiple-scattering distributions is developed. Using the screened Rutherford cross section with the Moliere screening parameter as an example, a simple analytic angular transformation of the Goudsmit-Saunderson multiple-scattering distribution accounts for most of the structure of the angular distribution leaving a residual 3-parameter (path-length, transformed angle and screening parameter) function that is reasonably slowly varying and suitable for rapid, accurate interpolation in a computer-intensive algorithm. The residual function is calculated numerically for a wide range of Moliere screening parameters and path-lengths suitable for use in a general-purpose condensed-history Monte Carlo code. Additionally, techniques are developed that allow the distributions to be scaled to account for energy loss. This new representation allows ''''on-the-fly'''' sampling of Goudsmit-Saunderson angular distributions in a screened Rutherford approximation suitable for class II condensed-history Monte Carlo codes. (orig.)

  7. Automated pose estimation of objects using multiple ID devices for handling and maintenance task in nuclear fusion reactor

    International Nuclear Information System (INIS)

    Umetani, Tomohiro; Morioka, Jun-ichi; Tamura, Yuichi; Inoue, Kenji; Arai, Tatsuo; Mae, Yasusi

    2011-01-01

    This paper describes a method for the automated estimation of three-dimensional pose (position and orientation) of objects by autonomous robots, using multiple identification (ID) devices. Our goal is to estimate the object pose for assembly or maintenance tasks in a real nuclear fusion reactor system, with autonomous robots cooperating in a virtual assembly system. The method estimates the three-dimensional pose for autonomous robots. This paper discusses a method of motion generation for ID acquisition using the sensory data acquired by the measurement system attached to the robots and from the environment. Experimental results show the feasibility of the proposed method. (author)

  8. Robust multiple cue fusion-based high-speed and nonrigid object tracking algorithm for short track speed skating

    Science.gov (United States)

    Liu, Chenguang; Cheng, Heng-Da; Zhang, Yingtao; Wang, Yuxuan; Xian, Min

    2016-01-01

    This paper presents a methodology for tracking multiple skaters in short track speed skating competitions. Nonrigid skaters move at high speed with severe occlusions happening frequently among them. The camera is panned quickly in order to capture the skaters in a large and dynamic scene. To automatically track the skaters and precisely output their trajectories becomes a challenging task in object tracking. We employ the global rink information to compensate camera motion and obtain the global spatial information of skaters, utilize random forest to fuse multiple cues and predict the blob of each skater, and finally apply a silhouette- and edge-based template-matching and blob-evolving method to labelling pixels to a skater. The effectiveness and robustness of the proposed method are verified through thorough experiments.

  9. Time and multiple objectives in scheduling and routing problems

    NARCIS (Netherlands)

    Dabia, S.

    2012-01-01

    Many optimization problems encountered in practice are multi-objective by nature, i.e., different objectives are conflicting and equally important. Many times, it is not desirable to drop some of them or to optimize them in a composite single objective or hierarchical manner. Furthermore, cost

  10. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xing [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Gao, Baoyu, E-mail: bygao@sdu.edu.cn [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Jin, Bo [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia); Zhen, Hu [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaoyi [CSIRO Land and Water, Gate 5, Waite Road, Urrbrae, SA 5064 (Australia); Dai, Ming [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia)

    2015-03-21

    Graphical abstract: Schemes of perchlorate reduction in ClO{sub 4}{sup −}/ClO{sub 3}{sup −}–NO{sub 3}{sup −} e{sup −}acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO{sub 4}{sup −} reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}and NO{sub 3}{sup −}. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO{sub 4}{sup −}–ClO{sub 3}{sup −}, ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −},and ClO{sub 4}{sup −}–NO{sub 3}{sup −} acceptor systems, while being completely inhibited by the additional O{sub 2} in the ClO{sub 4}{sup −}–O{sub 2} acceptor system. The reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}, and NO{sub 3}{sup −} in the ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −} system. K{sub S,}v{sub max}, and q{sub max} obtained at different e{sup −} acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively.

  11. The Tynode: A new vacuum electron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Harry van der, E-mail: vdgraaf@nikhef.nl [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Akhtar, Hassan; Budko, Neil; Chan, Hong Wah; Hagen, Cornelis W. [Delft University of Technology, Delft (Netherlands); Hansson, Conny C.T. [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Nützel, Gert; Pinto, Serge D. [Photonis, Roden (Netherlands); Prodanović, Violeta; Raftari, Behrouz; Sarro, Pasqualina M. [Delft University of Technology, Delft (Netherlands); Sinsheimer, John; Smedley, John [Brookhaven National Laboratory, Upton, NY 11973 (United States); Tao, Shuxia [Eindhoven University of Technology/DIFFER (Netherlands); Theulings, Anne M.M.G. [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Vuik, Kees [Delft University of Technology, Delft (Netherlands)

    2017-03-01

    By placing, in vacuum, a stack of transmission dynodes (tynodes) on top of a CMOS pixel chip, a single free electron detector could be made with outstanding performance in terms of spatial and time resolution. The essential object is the tynode: an ultra thin membrane, which emits, at the impact of an energetic electron on one side, a multiple of electrons at the other side. The electron yields of tynodes have been calculated by means of GEANT-4 Monte Carlo simulations, applying special low-energy extensions. The results are in line with another simulation based on a continuous charge-diffusion model. By means of Micro Electro Mechanical System (MEMS) technology, tynodes and test samples have been realized. The secondary electron yield of several samples has been measured in three different setups. Finally, several possibilities to improve the yield are presented.

  12. Multiple Level Crowding: Crowding at the Object Parts Level and at the Object Configural level.

    Science.gov (United States)

    Kimchi, Ruth; Pirkner, Yossef

    2015-01-01

    In crowding, identification of a peripheral target in the presence of nearby flankers is worse than when the target appears alone. Prevailing theories hold that crowding occurs because of integration or "pooling" of low-level features at a single, relatively early stage of visual processing. Recent studies suggest that crowding can occur also between high-level object representations. The most relevant findings come from studies with faces and may be specific to faces. We examined whether crowding can occur at the object configural level in addition to part-level crowding, using nonface objects. Target (a disconnected square or diamond made of four elements) identification was measured at varying eccentricities. The flankers were similar either to the target parts or to the target configuration. The results showed crowding in both cases: Flankers interfered with target identification such that identification accuracy decreased with an increase in eccentricity, and no interference was observed at the fovea. Crowding by object parts, however, was weaker and had smaller spatial extent than crowding by object configurations; we related this finding to the relationship between crowding and perceptual organization. These results provide strong evidence that crowding occurs not only between object parts but also between configural representations of objects. © The Author(s) 2015.

  13. Modeling a terminology-based electronic nursing record system: an object-oriented approach.

    Science.gov (United States)

    Park, Hyeoun-Ae; Cho, InSook; Byeun, NamSoo

    2007-10-01

    The aim of this study was to present our perspectives on healthcare information analysis at a conceptual level and the lessons learned from our experience with the development of a terminology-based enterprise electronic nursing record system - which was one of components in an EMR system at a tertiary teaching hospital in Korea - using an object-oriented system analysis and design concept. To ensure a systematic approach and effective collaboration, the department of nursing constituted a system modeling team comprising a project manager, systems analysts, user representatives, an object-oriented methodology expert, and healthcare informaticists (including the authors). A rational unified process (RUP) and the Unified Modeling Language were used as a development process and for modeling notation, respectively. From the scenario and RUP approach, user requirements were formulated into use case sets and the sequence of activities in the scenario was depicted in an activity diagram. The structure of the system was presented in a class diagram. This approach allowed us to identify clearly the structural and behavioral states and important factors of a terminology-based ENR system (e.g., business concerns and system design concerns) according to the viewpoints of both domain and technical experts.

  14. Contributions to the theory of electron spectroscopy. Applications of the relativistic multiple-scattering theory

    International Nuclear Information System (INIS)

    Henk, J.

    2004-01-01

    Electron spectroscopy provides access to fundamental properties of solids, such as the geometric, electronic, and the magnetic structure. The latter are necessary for the understanding of a variety of basic but nevertheless important effects. The present work outlines recently developed theoretical approaches to electron spectroscopies. Most of the collected results rely on first-principles calculations, as formulated in multiple-scattering theory, and are contrasted with experimental findings. One topic involves spin- and angle-resolved photoelectron spectroscopy which is addressed for magnetic surfaces and ultrathin films. Exemplary results comprise magnetic dichroism in both valence-band and core-level photoemission as well as the temperature dependence of magnetic properties of ultrathin films. Another topic is spin-dependent ballistic transport through planar tunnel junctions, focusing here on the zero-bias anomaly. In most of the cases, spin-orbit coupling (SOC) is an essential ingredient and, hence, favors a relativistic description. Prominent effects of SOC are illustrated by means of the electronic structure of rare gases adsorbed on a substrate and by the splitting of surface states on Au(111). Concerning magnetism, the magnetic anisotropy of Ni films on Cu(001) is discussed, focusing in particular on the spin reorientation transition induced by lattice distortions in ultrathin films. (orig.)

  15. Hierarchical Robot Control System and Method for Controlling Select Degrees of Freedom of an Object Using Multiple Manipulators

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor)

    2013-01-01

    A robotic system includes a robot having manipulators for grasping an object using one of a plurality of grasp types during a primary task, and a controller. The controller controls the manipulators during the primary task using a multiple-task control hierarchy, and automatically parameterizes the internal forces of the system for each grasp type in response to an input signal. The primary task is defined at an object-level of control, e.g., using a closed-chain transformation, such that only select degrees of freedom are commanded for the object. A control system for the robotic system has a host machine and algorithm for controlling the manipulators using the above hierarchy. A method for controlling the system includes receiving and processing the input signal using the host machine, including defining the primary task at the object-level of control, e.g., using a closed-chain definition, and parameterizing the internal forces for each of grasp type.

  16. Can dentists detect multiple myeloma through oral manifestations?

    Directory of Open Access Journals (Sweden)

    Thaís Miranda Xavier de Almeida

    2018-01-01

    Full Text Available Objective: To review published data on oral manifestations of multiple myeloma. Methods: An electronic database search was performed of articles published from 1971 to November 2016 in order to identify studies that reported oral manifestations of patients with multiple myeloma. Case reports and case series with oral manifestations of multiple myeloma in English were included in the study. An additional search was performed of the references of the selected articles. Results: Thirty-seven articles that reported 81 patients with oral manifestations of multiple myeloma were selected: 30 case reports (82% and seven case series (18%. The most common clinical features in the dental cavity were swelling (65.4%, bone pain (33.3%, paresthesia (27.1% and amyloidosis lesions (11.1%. Osteolytic lesions detected on imaging exams were reported in the majority of the patients (90.1% as plasmacytomas or ‘punched-out’ lesions. Conclusions: Swelling and osteolytic lesions represent the most common clinical and radiographic signs of the jaws relating to multiple myeloma, respectively. Keywords: Multiple Myeloma, Oral Manifestations, Mouth, Jaws

  17. Connecting the Production Multiple

    DEFF Research Database (Denmark)

    Lichen, Alex Yu; Mouritsen, Jan

    &OP process itself is a fluid object, but there is still possibility to organise the messy Production. There are connections between the Production multiple and the managerial technology fluid. The fluid enacted the multiplicity of Production thus making it more difficult to be organised because there were...... in opposite directions. They are all part of the fluid object. There is no single chain of circulating references that makes the object a matter of fact. Accounting fluidity means that references drift back and forth and enact new realities also connected to the chain. In this setting future research may......This paper is about objects. It follows post ANT trajectories and finds that objects are multiple and fluid. Extant classic ANT inspired accounting research largely sees accounting inscriptions as immutable mobiles. Although multiplicity of objects upon which accounting acts has been explored...

  18. Special issue on multi-objective reinforcement learning

    NARCIS (Netherlands)

    Drugan, Madalina; Wiering, Marco; Vamplew, Peter; Chetty, Madhu

    2017-01-01

    Many real-life problems involve dealing with multiple objectives. For example, in network routing the criteria may consist of energy consumption, latency, and channel capacity, which are in essence conflicting objectives. As in many problems there may be multiple (conflicting) objectives, there

  19. Electron transport effects in ion induced electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium)]. E-mail: adubus@ulb.ac.be; Pauly, N. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium); Roesler, M. [Karl-Pokern-Str. 12, D-12587 Berlin (Germany)

    2007-03-15

    Ion induced electron emission (IIEE) is usually described as a three-step process, i.e. electron excitation by the incident projectile, electron transport (and multiplication) and electron escape through the potential barrier at the surface. In many cases, the first step of the process has been carefully described. The second step of the process, i.e. electron transport and multiplication, has often been treated in a very rough way, a simple decreasing exponential law being sometimes used. It is precisely the aim of the present work to show the importance of a correct description of electron transport and multiplication in a theoretical calculation of IIEE. A short overview of the electron transport models developed for IIEE is given in this work. The so-called 'Infinite medium slowing-down model' often used in recent works is evaluated by means of Monte Carlo simulations. In particular, the importance of considering correctly the semi-infinite character of the medium and the boundary condition at the vacuum-medium interface is discussed. Quantities like the electron escape depth are also briefly discussed. This evaluation has been performed in the particular case of protons (25keV

  20. DNA-based prenatal diagnosis for severe and variant forms of multiple acyl-CoA dehydrogenation deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Andresen, Brage S; Christensen, Ernst

    2005-01-01

    OBJECTIVES: Multiple acyl-CoA dehydrogenation deficiency (MADD) is a clinically heterogeneous disorder of mitochondrial fatty acid, amino acid, and choline oxidation due to mutations in the genes encoding electron transfer flavoprotein (ETF) or ETF ubiquinone oxidoreductase (ETFQO). So far...

  1. Luminance mechanisms in green organic light-emitting devices fabricated utilizing tris(8-hydroxyquinoline)aluminum/4,7-diphenyl-1, 10-phenanthroline multiple heterostructures acting as an electron transport layer.

    Science.gov (United States)

    Choo, Dong Chul; Seo, Su Yul; Kim, Tae Whan; Jin, You Young; Seo, Ji Hyun; Kim, Young Kwan

    2010-05-01

    The electrical and the optical properties in green organic light-emitting devices (OLEDs) fabricated utilizing tris(8-hydroxyquinoline)aluminum (Alq3)/4,7-diphenyl-1,10-phenanthroline (BPhen) multiple heterostructures acting as an electron transport layer (ETL) were investigated. The operating voltage of the OLEDs with a multiple heterostructure ETL increased with increasing the number of the Alq3/BPhen heterostructures because more electrons were accumulated at the Alq3/BPhen heterointerfaces. The number of the leakage holes existing in the multiple heterostructure ETL of the OLEDs at a low voltage range slightly increased due to an increase of the internal electric field generated from the accumulated electrons at the Alq3/BPhen heterointerface. The luminance efficiency of the OLEDs with a multiple heterostructure ETL at a high voltage range became stabilized because the increase of the number of the heterointerface decreased the quantity of electrons accumulated at each heterointerface.

  2. STakeholder-Objective Risk Model (STORM): Determiningthe aggregated risk of multiple contaminant hazards in groundwater well catchments

    DEFF Research Database (Denmark)

    Enzenhoefer, R.; Binning, Philip John; Nowak, W.

    2015-01-01

    Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any......-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired...

  3. Femtosecond investigation of electronic and vibrational dynamics of metal nano-objects and local order in glasses

    International Nuclear Information System (INIS)

    Burgin, Julien

    2007-01-01

    In this Ph.D. work we have investigated the electronic and vibrational properties of metallic nano objects as a function of their size, shape and composition, and studied the vibrational modes in glasses, using femtosecond time-resolved spectroscopy. In mono-metallic copper clusters, acceleration of the electron-lattice energy exchanges for sizes smaller than 10 nm has been demonstrated, confirming previous results in gold and silver clusters. The small size regime, i.e., nanoparticles smaller than 2 nm, has been addressed. The results show the limit of the classical confined material approach. In bi-metallic clusters, electron-lattice interaction has been shown to reflect their composition for gold-silver materials, but exhibits a more complex behavior in the case of segregated nickel-silver particles. The impact of shape, structure and environment on the acoustic vibrations of metallic nano-objects has also been studied. Measurements performed in ensemble or pairs of prisms yielded evidence for local fluctuations of their coupling with the substrate. Nano-structuration effects have been demonstrated in nano-columns and segregated components. The vibrational modes associated to local order in glasses have been investigated using a high sensitivity impulsive stimulated Raman scattering technique. The 'defect modes' of normal and densified silica, associated to vibrations of ring structures, have been observed and characterized, yielding information on the evolution of the ring density. Performing similar measurements in germania, we have demonstrated the existence of a vibrational mode due to a similar ring structure and determined its characteristics [fr

  4. Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin

    Science.gov (United States)

    Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M.

    2006-01-01

    The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated, consistently with measured values.

  5. Disability and Fatigue Can Be Objectively Measured in Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Caterina Motta

    Full Text Available The available clinical outcome measures of disability in multiple sclerosis are not adequately responsive or sensitive.To investigate the feasibility of inertial sensor-based gait analysis in multiple sclerosis.A cross-sectional study of 80 multiple sclerosis patients and 50 healthy controls was performed. Lower-limb kinematics was evaluated by using a commercially available magnetic inertial measurement unit system. Mean and standard deviation of range of motion (mROM, sROM for each joint of lower limbs were calculated in one minute walking test. A motor performance index (E defined as the sum of sROMs was proposed.We established two novel observer-independent measures of disability. Hip mROM was extremely sensitive in measuring lower limb motor impairment, being correlated with muscle strength and also altered in patients without clinically detectable disability. On the other hand, E index discriminated patients according to disability, being altered only in patients with moderate and severe disability, regardless of walking speed. It was strongly correlated with fatigue and patient-perceived health status.Inertial sensor-based gait analysis is feasible and can detect clinical and subclinical disability in multiple sclerosis.

  6. Sleep and its associations with perceived and objective cognitive impairment in individuals with multiple sclerosis.

    Science.gov (United States)

    Hughes, Abbey J; Parmenter, Brett A; Haselkorn, Jodie K; Lovera, Jesus F; Bourdette, Dennis; Boudreau, Eilis; Cameron, Michelle H; Turner, Aaron P

    2017-08-01

    Problems with sleep and cognitive impairment are common among people with multiple sclerosis (MS). The present study examined the relationship between self-reported sleep and both objective and perceived cognitive impairment in MS. Data were obtained from the baseline assessment of a multi-centre intervention trial (NCT00841321). Participants were 121 individuals with MS. Nearly half (49%) of participants met the criteria for objective cognitive impairment; however, cognitively impaired and unimpaired participants did not differ on any self-reported sleep measures. Nearly two-thirds (65%) of participants met the criteria for 'poor' sleep, and poorer sleep was significantly associated with greater levels of perceived cognitive impairment. Moreover, the relationships between self-reported sleep and perceived cognitive impairment were significant beyond the influence of clinical and demographic factors known to influence sleep and cognitive functioning (e.g. age, sex, education level, disability severity, type of MS, disease duration, depression and fatigue). However, self-reported sleep was not associated with any measures of objective cognitive impairment. Among different types of perceived cognitive impairment, poor self-reported sleep was most commonly related to worse perceived executive function (e.g. planning/organization) and prospective memory. Results from the present study emphasize that self-reported sleep is significantly and independently related to perceived cognitive impairment in MS. In terms of clinical implications, interventions focused on improving sleep may help improve perceived cognitive function and quality of life in this population; however, the impact of improved sleep on objective cognitive function requires further investigation. © 2017 European Sleep Research Society.

  7. Uncovering the multiple objectives behind national energy efficiency planning

    International Nuclear Information System (INIS)

    Haydt, Gustavo; Leal, Vítor; Dias, Luís

    2013-01-01

    This work seeks to identify the fundamental objectives behind the development of energy efficiency (EE) plans for countries. It also presents a method to quantify the degree of achievement of each objective, through the identification and operationalization of attributes. This was achieved by applying Keeney's value-focused thinking approach. For that purpose, three key decision makers in EE planning were interviewed along with a bibliographic review on the subject. From this process six fundamental objectives were identified formalizing the problem as a multi-objective one: (i) to minimize the influence of energy use on climate change; (ii) to minimize the financial risk from the investment; (iii) to maximize the security of energy supply; (iv) to minimize investment costs; (v) to minimize the impacts of building new power plants and transmission infrastructures and (vi) to maximize the local air quality. The respective attributes were: (i) CO 2 emissions savings; (ii) payback; (iii) imported energy savings; (iv) investment cost; (v) electricity savings; and (vi) total suspended particles savings. To show the usefulness of the work, the objectives and attributes identified were used to show the possible outcomes from five hypothetical EE plans for Portugal

  8. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    Science.gov (United States)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  9. High-harmonic electron bunching in the field of a signal wave and the use of this effect in cyclotron masers with frequency multiplication

    Directory of Open Access Journals (Sweden)

    I. V. Bandurkin

    2005-01-01

    Full Text Available A method of organizing electron-wave interaction at the multiplied frequency of the signal wave is proposed. This type of electron-wave interaction provides multiplied-frequency electron bunching, which leads to formation of an intense harmonic of the electron current at a selected multiplied frequency of the signal wave. This effect is attractive for the use in klystron-type cyclotron masers with frequency multiplication as a way to increase the output frequency and improve the selectivity.

  10. Multiple ionization of noble gases by 2.0 MeV proton impact: comparison with equi-velocity electron impact ionization

    International Nuclear Information System (INIS)

    Melo, W.S.; Santos, A.C.F.; Sant'Anna, M.M.; Sigaud, G.M.; Montenegro, E.C.

    2002-01-01

    Absolute single- and multiple-ionization cross sections of rare gases (He, Ne, Ar, Kr and Xe) have been measured for collisions with 2.0 MeV p + . A comparison is made with equi-velocity electron impact ionization cross sections as well as with the available proton impact data. For the light rare gases the single-ionization cross sections are essentially the same for both proton and electron impacts, but increasing differences appear for the heavier targets. (author). Letter-to-the-editor

  11. Stepwise approach to establishing multiple outreach laboratory information system-electronic medical record interfaces.

    Science.gov (United States)

    Pantanowitz, Liron; Labranche, Wayne; Lareau, William

    2010-05-26

    Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR). Physician connectivity with the laboratory information system (LIS) is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1), followed by interface building (step 2) with subsequent testing (step 3), and finally ongoing maintenance (step 4). The role of organized project management, software as a service (SAAS), and alternate solutions for outreach connectivity are discussed.

  12. Multi-Objective Planning Techniques in Distribution Networks: A Composite Review

    Directory of Open Access Journals (Sweden)

    Syed Ali Abbas Kazmi

    2017-02-01

    Full Text Available Distribution networks (DNWs are facing numerous challenges, notably growing load demands, environmental concerns, operational constraints and expansion limitations with the current infrastructure. These challenges serve as a motivation factor for various distribution network planning (DP strategies, such as timely addressing load growth aiming at prominent objectives such as reliability, power quality, economic viability, system stability and deferring costly reinforcements. The continuous transformation of passive to active distribution networks (ADN needs to consider choices, primarily distributed generation (DG, network topology change, installation of new protection devices and key enablers as planning options in addition to traditional grid reinforcements. Since modern DP (MDP in deregulated market environments includes multiple stakeholders, primarily owners, regulators, operators and consumers, one solution fit for all planning scenarios may not satisfy all these stakeholders. Hence, this paper presents a review of several planning techniques (PTs based on mult-objective optimizations (MOOs in DNWs, aiming at better trade-off solutions among conflicting objectives and satisfying multiple stakeholders. The PTs in the paper spread across four distinct planning classifications including DG units as an alternative to costly reinforcements, capacitors and power electronic devices for ensuring power quality aspects, grid reinforcements, expansions, and upgrades as a separate category and network topology alteration and reconfiguration as a viable planning option. Several research works associated with multi-objective planning techniques (MOPT have been reviewed with relevant models, methods and achieved objectives, abiding with system constraints. The paper also provides a composite review of current research accounts and interdependence of associated components in the respective classifications. The potential future planning areas, aiming at

  13. Object-based warping: an illusory distortion of space within objects.

    Science.gov (United States)

    Vickery, Timothy J; Chun, Marvin M

    2010-12-01

    Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.

  14. A practical theoretical formalism for atomic multielectron processes: direct multiple ionization by a single auger decay or by impact of a single electron or photon

    Science.gov (United States)

    Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin

    2018-04-01

    Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our

  15. Non-uniform shrinkage of multiple-walled carbon nanotubes under in situ electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lunxiong [South China Normal University, Brain Science Institute, Guangzhou (China); Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China); Su, Jiangbin [Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China); Chang Zhou University, School of Mathematics and Physics, Changzhou (China); Zhu, Xianfang [Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China)

    2016-10-15

    Instability of multiple-walled carbon nanotubes (MWCNTs) was investigated by in situ transmission electron microscopy at room temperature. Specially, the non-uniform shrinkage of tubes was found: The pristine MWCNT shrank preferentially in its axial direction from the most curved free cap end of the tube, but the shrinkage of the tube diameter was offset by the axial shrinkage: For the complex MWCNT, the two inner MWCNTs also preferentially axially shrank from their most curved cap ends and separated from each other. However, for the effect of the radial pressure from the out walls which enveloped the two inner tubes and the tube amorphization, the two inner tubes were extruded to come close to each other and finally touched again. The new ''evaporation'' and ''diffusion'' mechanisms of carbon atoms as driven by the nano-curvature of CNT and the electron beam-induced athermal activation were suggested to explain the above phenomena. (orig.)

  16. Optimising case detection within UK electronic health records : use of multiple linked databases for detecting liver injury

    NARCIS (Netherlands)

    Wing, Kevin; Bhaskaran, Krishnan; Smeeth, Liam; van Staa, Tjeerd P|info:eu-repo/dai/nl/304827762; Klungel, Olaf H|info:eu-repo/dai/nl/181447649; Reynolds, Robert F; Douglas, Ian

    2016-01-01

    OBJECTIVES: We aimed to create a 'multidatabase' algorithm for identification of cholestatic liver injury using multiple linked UK databases, before (1) assessing the improvement in case ascertainment compared to using a single database and (2) developing a new single-database case-definition

  17. On Objects and Events

    DEFF Research Database (Denmark)

    Eugster, Patrick Thomas; Guerraoui, Rachid; Damm, Christian Heide

    2001-01-01

    This paper presents linguistic primitives for publish/subscribe programming using events and objects. We integrate our primitives into a strongly typed object-oriented language through four mechanisms: (1) serialization, (2) multiple sub typing, (3) closures, and (4) deferred code evaluation. We...

  18. On the possibility of study the surface structure of small bio-objects, including fragments of nucleotide chains, by means of electron interference

    Energy Technology Data Exchange (ETDEWEB)

    Namiot, V.A., E-mail: vnamiot@gmail.co [Institute of Nuclear Physics, Moscow State University, Vorobyovy Gory, 119992 Moscow (Russian Federation)

    2009-07-20

    We propose a new method to study the surface of small bio-objects, including macromolecules and their complexes. This method is based on interference of low-energy electrons. Theoretically, this type of interference may allow to construct a hologram of the biological object, but, unlike an optical hologram, with the spatial resolution of the order of inter-atomic distances. The method provides a possibility to construct a series of such holograms at various levels of electron energies. In theory, obtaining such information would be enough to identify the types of molecular groups existing on the surface of the studied object. This method could also be used for 'fast reading' of nucleotide chains. It has been shown how to depose a long linear molecule as a straight line on a substrate before carrying out such 'reading'.

  19. Robust video object cosegmentation.

    Science.gov (United States)

    Wang, Wenguan; Shen, Jianbing; Li, Xuelong; Porikli, Fatih

    2015-10-01

    With ever-increasing volumes of video data, automatic extraction of salient object regions became even more significant for visual analytic solutions. This surge has also opened up opportunities for taking advantage of collective cues encapsulated in multiple videos in a cooperative manner. However, it also brings up major challenges, such as handling of drastic appearance, motion pattern, and pose variations, of foreground objects as well as indiscriminate backgrounds. Here, we present a cosegmentation framework to discover and segment out common object regions across multiple frames and multiple videos in a joint fashion. We incorporate three types of cues, i.e., intraframe saliency, interframe consistency, and across-video similarity into an energy optimization framework that does not make restrictive assumptions on foreground appearance and motion model, and does not require objects to be visible in all frames. We also introduce a spatio-temporal scale-invariant feature transform (SIFT) flow descriptor to integrate across-video correspondence from the conventional SIFT-flow into interframe motion flow from optical flow. This novel spatio-temporal SIFT flow generates reliable estimations of common foregrounds over the entire video data set. Experimental results show that our method outperforms the state-of-the-art on a new extensive data set (ViCoSeg).

  20. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement

    International Nuclear Information System (INIS)

    Yu, J.

    2015-01-01

    By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasing (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.

  1. Proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons

    International Nuclear Information System (INIS)

    Marzec, J.; Pawlowski, Z.

    1982-01-01

    The work describes the construction of a proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons. It has been shown that in this counter filled with Penning's mixtures Ne+Ar+CO 2 , Ne+CH 4 and Ar+C 2 H 2 , much higher resolutions are obtained than in typical cylindrical counters. In the counter described filled with a mixture of Ne+1%CH 4 , a resolution of fwhm=10.5% has been obtained for E=5.9 keV. (orig.)

  2. New sampling electronics using CCD for DIOGENE: a high multiplicity, 4 π detector for relativistic heavy ions

    International Nuclear Information System (INIS)

    Babinet, R.P.

    1987-01-01

    DIOGENE is a small time projection chamber which has been developed to study central collisions of relativistic heavy ions. The maximum multiplicity (up to 40 charged particles) that can be accepted by this detector is limited by the present electronics. In view of the heavier mass ions that should become readily available at the Saturne national facility (France), a new sampling electronics has been tested. In the first part of this talk they will present a brief description of the actual detector, insisting on the performances that have been effectively obtained with α-particles and Neon beams. The motivation for and characteristics of a renewed electronic set-up should thus appear more clearly. The second part of the talk is devoted to results of the tests that have been performed using charged couple devices. They will finally conclude on the future perspectives that have been opened by these developments

  3. Multiple double cross-section transmission electron microscope sample preparation of specific sub-10 nm diameter Si nanowire devices.

    Science.gov (United States)

    Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W

    2011-12-01

    The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.

  4. Charged Particles Multiplicity and Scaling Violation of Fragmentation Functions in Electron-Positron Annihilation

    International Nuclear Information System (INIS)

    Ghaffary, Tooraj

    2016-01-01

    By the use of data from the annihilation process of electron-positron in AMY detector at 60 GeV center of mass energy, charged particles multiplicity distribution is obtained and fitted with the KNO scaling. Then, momentum spectra of charged particles and momentum distribution with respect to the jet axis are obtained, and the results are compared to the different models of QCD; also, the distribution of fragmentation functions and scaling violations are studied. It is being expected that the scaling violations of the fragmentation functions of gluon jets are stronger than the quark ones. One of the reasons for such case is that splitting function of quarks is larger than splitting function of gluon.

  5. Stepwise approach to establishing multiple outreach laboratory information system-electronic medical record interfaces

    Directory of Open Access Journals (Sweden)

    Liron Pantanowitz

    2010-01-01

    Full Text Available Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR. Physician connectivity with the laboratory information system (LIS is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1, followed by interface building (step 2 with subsequent testing (step 3, and finally ongoing maintenance (step 4. The role of organized project management, software as a service (SAAS, and alternate solutions for outreach connectivity are discussed.

  6. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Stearns, J.W.; Berkner, K.H.

    1989-01-01

    Collisions in which a fast highly charged ion passes within the orbit of K electron of a target gas atom are selected by emission of a K x-ray from the projectile or target. Measurement of the projectile charge state after the collision, in coincidence with the K x-ray, allows measurement of the charge-transfer probability during these close collisions. When the projectile velocity is approximately the same as that of target electrons, a large number of electrons can be transferred to the projectile in a single collision. The electron-capture probability is found to be a linear function of the number of vacancies in the projectile L shell for 47-MeV calcium ions in an Ar target. 18 refs., 9 figs

  7. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    Science.gov (United States)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  8. First-Class Object Sets

    DEFF Research Database (Denmark)

    Ernst, Erik

    Typically, objects are monolithic entities with a fixed interface. To increase the flexibility in this area, this paper presents first-class object sets as a language construct. An object set offers an interface which is a disjoint union of the interfaces of its member objects. It may also be used...... for a special kind of method invocation involving multiple objects in a dynamic lookup process. With support for feature access and late-bound method calls object sets are similar to ordinary objects, only more flexible. The approach is made precise by means of a small calculus, and the soundness of its type...

  9. Coherent Electron Focussing in a Two-Dimensional Electron Gas.

    NARCIS (Netherlands)

    Houten, H. van; Wees, B.J. van; Mooij, J.E.; Beenakker, C.W.J.; Williamson, J.G.; Foxon, C.T.

    1988-01-01

    The first experimental realization of ballistic point contacts in a two-dimensional electron gas for the study of transverse electron focussing by a magnetic field is reported. Multiple peaks associated with skipping orbits of electrons reflected specularly by the channel boundary are observed. At

  10. The digital object identifier (DOI in electronic scientific journals of communication and information

    Directory of Open Access Journals (Sweden)

    Erik André de Nazaré Pires

    2017-06-01

    Full Text Available The present study seeks to investigate the use of the Digital Object Identifier (DOI in the scientific journals of Communication and Information and, providing new integration utilities with the Lattes Platform. In this sense, it aims to inform the existing titles in Communication Information in electronic format, demonstrate the importance of DOI in the integration with the Lattes Platform in order to guarantee author credibility and analyze the characteristics of publications that have DOI. The methodology used for the development of this study is bibliographic, research with descriptive-descriptive characteristics. From the development of the research, it is inferred that of all the analyzed journals (33 journals, 10 titles in the evaluation of 2013 and 06 titles of the evaluation of 2014 present DOI in their publications, all have WebQualis classification, Qualis A1 in the area Communication and Information. Most publications are international and only 3 titles are national. It is necessary that journals, principally national ones, accompany new technologies such as DOI for objects and ORCID for the identification of people, bringing more mechanisms that guarantee authors 'credibility and to bring the researchers' connection, and both can already be adopted in the Platform Lattes.

  11. Reduction of radiation damage on organic material at very low object temperatures in an electron microscope with supraconductive lenses

    International Nuclear Information System (INIS)

    Knapek, E.

    1981-01-01

    As a result of this study, the increase in structure conservation by cooling the object to very low temperatures (cryoprotection) as compared with the conditions at room temperature was higher than the values at low temperatures reached so far by one to two orders of magnitude. The experiments carried out with an electron microscope with supraconductive lenses (SLEM) showed, depending of the organic substance, that in tests with an electron diffraction of about 4.2 K the reduction of radiation damage as compared with room temperature was by a factor between 30 and 350. (orig./PW) [de

  12. Proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, J.; Pawlowski, Z. (Politechnika Warszawska (Poland). Inst. Radioelektroniki)

    1982-09-15

    The work describes the construction of a proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons. It has been shown that in this counter filled with Penning's mixtures Ne+Ar+CO/sub 2/, Ne+CH/sub 4/ and Ar+C/sub 2/H/sub 2/, much higher resolutions are obtained than in typical cylindrical counters. In the counter described filled with a mixture of Ne+1%CH/sub 4/, a resolution of fwhm=10.5% has been obtained for E=5.9 keV.

  13. Electron and positron contributions to the displacement per atom profile in bulk multi-walled carbon nanotube material irradiated with gamma rays; Aporte de electrones y positrones al perfil de desplazamientos atomicos en materiales masivos de nanotubos de carbono de paredes multiples irradiados con rayos gamma

    Energy Technology Data Exchange (ETDEWEB)

    Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Leyva Pernia, Diana, E-mail: aleyva@ceaden.edu.cu [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), La Habana (Cuba); others, and

    2013-07-01

    The electron and positron contributions to the effective atom displacement cross-section in multi-walled carbon nanotube bulk materials exposed to gamma rays were calculated. The physical properties and the displacement threshold energy value reported in literature for this material were taken into account. Then, using the mathematical simulation of photon and particle transport in matter, the electron and positron energy flux distributions within the irradiated object were also calculated. Finally, considering both results, the atom displacement damage profiles inside the analyzed bulk carbon nanotube material were determined. The individual contribution from each type of secondary particles generated by the photon interactions was specified. An increasing behavior of the displacement cross-sections for all the studied particles energy range was observed. The particles minimum kinetic energy values that make probabilistically possible the single and multiple atom displacement processes were determined. The positrons contribution importance to the total number of point defects generated during the interaction of gamma rays with the studied materials was confirmed.

  14. Electron pumping of the ground state of 21Ne. Transfers and multiple diffusion processes

    International Nuclear Information System (INIS)

    Stoeckel, F.; Lombardi, M.

    1978-01-01

    The electron-pumping process of the ground state of 21 Ne has been studied. It is demonstrated how in a neon cell at a pressure of 10 -4 to 10 -2 torr, a high frequency discharge can create a nuclear spin alignment in the fundamental level (I=3/2) when the excited levels are themselves aligned. The nuclear alignment is observed by monitoring the change of the linear polarization of several optical transitions during the magnetic resonance of the fundamental level. Various transfers of the alignments are investigated and a detailed study of the influence of the multiple diffusion is carried out. The multiple diffusion produces a depolarization and a relaxation of the nuclear spin. A theoretical calculation has been made for a two-level system with a J=1 radiative level and a J=0 ground state. Experimentally a relaxation time of the nuclear alignment varying from 37 ms to 240 ms is observed when the neon pressure decreases from 10 -2 to 10 -4 torr [fr

  15. Ionization of liquid water by fast electron impact: multiple differential cross sections for the 1B1 orbital

    International Nuclear Information System (INIS)

    Fojon, O A; De Sanctis, M L; Stia, C R; Vuilleumier, R; Politis, M-F

    2011-01-01

    We present a theoretical study of single ionization of water molecules in liquid phase by impact of fast electrons in a coplanar geometry. Multiple differential cross sections are obtained through a first order model obtained within the framework of an independent electron approximation in which relaxation of the target is not taken into account. The wavefunctions for a single water molecule in the liquid phase are obtained through a Wannier orbital formalism and the ejected electron is described by means of Coulomb functions. We also present averaged calculations over all molecular orientations. A comparison with previous theoretical and experimental results, the latter corresponding to water in gaz phase, shows a good agreement. The main physical features of the reaction (such as binary and recoil peaks) present in measurements for vapor are also observed in the present theoretical predictions.

  16. Project objectives and progress at the Research Laboratory of Electronics

    International Nuclear Information System (INIS)

    Allen, J.

    1983-01-01

    Molecule microscopy, semiconductor surface studies, atomic resonance and scattering, reaction dynamics at semiconductor surfaces, X-ray diffuse scattering, phase transitions in chemisorbed systems, optics and quantum electronics, photonics, optical spectroscopy of disordered materials and X-ray scattering from surfaces, infrared nonlinear optics, quantum optics and electronics, microwave and millimeter wave techniques, microwave and quantum magnetics, radio astronomy, electromagnetic wave theory and remote sensing, electronic properties of amorphous silicon dioxide, photon correlation spectroscopy and applications, submicron structures fabrication, plasma dynamics, optical propagation and communication, digital signal processing, speech communication, linguistics, cognitive information processing, custom integrated circuits, communications biophysics, and physiology, are discussed

  17. STakeholder-Objective Risk Model (STORM): Determining the aggregated risk of multiple contaminant hazards in groundwater well catchments

    Science.gov (United States)

    Enzenhoefer, R.; Binning, P. J.; Nowak, W.

    2015-09-01

    Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any point in time, which then affects the pumped quality upon transport through the aquifer. In such situations, estimating the overall risk is not trivial, and three key questions emerge: (1) How to aggregate the impacts from different contaminants and spill locations to an overall, cumulative impact on the value at risk? (2) How to properly account for the stochastic nature of spill events when converting the aggregated impact to a risk estimate? (3) How will the overall risk and subsequent decision making depend on stakeholder objectives, where stakeholder objectives refer to the values at risk, risk attitudes and risk metrics that can vary between stakeholders. In this study, we provide a STakeholder-Objective Risk Model (STORM) for assessing the total aggregated risk. Or concept is a quantitative, probabilistic and modular framework for simulation-based risk estimation. It rests on the source-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired by a German drinking water catchment. As one may expect, the results depend strongly on the chosen stakeholder objectives, but they are equally sensitive to different approaches for risk aggregation across different hazards, contaminant types, and over time.

  18. Multi-objective, multiple participant decision support for water management in the Andarax catchment, Almeria

    Science.gov (United States)

    van Cauwenbergh, N.; Pinte, D.; Tilmant, A.; Frances, I.; Pulido-Bosch, A.; Vanclooster, M.

    2008-04-01

    Water management in the Andarax river basin (Almeria, Spain) is a multi-objective, multi-participant, long-term decision-making problem that faces several challenges. Adequate water allocation needs informed decisions to meet increasing socio-economic demands while respecting the environmental integrity of this basin. Key players in the Andarax water sector include the municipality of Almeria, the irrigators involved in the intensive greenhouse agricultural sector, and booming second residences. A decision support system (DSS) is developed to rank different sustainable planning and management alternatives according to their socio-economic and environmental performance. The DSS is intimately linked to sustainability indicators and is designed through a public participation process. Indicators are linked to criteria reflecting stakeholders concerns in the 2005 field survey, such as fulfilling water demand, water price, technical and economical efficiency, social and environmental impacts. Indicators can be partly quantified after simulating the operation of the groundwater reservoir over a 20-year planning period and partly through a parallel expert evaluation process. To predict the impact of future water demand in the catchment, several development scenarios are designed to be evaluated in the DSS. The successive multi-criteria analysis of the performance indicators permits the ranking of the different management alternatives according to the multiple objectives formulated by the different sectors/participants. This allows more informed and transparent decision-making processes for the Andarax river basin, recognizing both the socio-economic and environmental dimensions of water resources management.

  19. Multi-objective Transmission Planning Paper

    DEFF Research Database (Denmark)

    Xu, Zhao; Dong, Zhao Yang; Wong, Kit Po

    2009-01-01

    This paper describes a transmission expansion planning method based on multi-objective optimization (MOOP). The method starts with constructing a candidate pool of feasible expansion plans, followed by selection of the best candidates through MOOP, of which multiple objectives are tackled...

  20. Real Objects Can Impede Conditional Reasoning but Augmented Objects Do Not.

    Science.gov (United States)

    Sato, Yuri; Sugimoto, Yutaro; Ueda, Kazuhiro

    2018-03-01

    In this study, Knauff and Johnson-Laird's (2002) visual impedance hypothesis (i.e., mental representations with irrelevant visual detail can impede reasoning) is applied to the domain of external representations and diagrammatic reasoning. We show that the use of real objects and augmented real (AR) objects can control human interpretation and reasoning about conditionals. As participants made inferences (e.g., an invalid one from "if P then Q" to "P"), they also moved objects corresponding to premises. Participants who moved real objects made more invalid inferences than those who moved AR objects and those who did not manipulate objects (there was no significant difference between the last two groups). Our results showed that real objects impeded conditional reasoning, but AR objects did not. These findings are explained by the fact that real objects may over-specify a single state that exists, while AR objects suggest multiple possibilities. Copyright © 2017 Cognitive Science Society, Inc.

  1. Apparatus for irradiation with electron beam

    International Nuclear Information System (INIS)

    Uehara, K.; Ito, A.; Nishimune, K.; Fujita, K.

    1976-01-01

    An irradiation apparatus with high energy electrons is disclosed in which a wire shaped or linear object to be irradiated is moved back and forth many times under an electron window so as to irradiate it with an electron beam. According to one feature of the invention, an electron beam, which leaks through gaps between the objects to be irradiated or which penetrates the objects to be irradiated, is reversed by a magnetic field approximately perpendicular to the scanning face of the electron beam by means of a magnet which is disposed under the objects to be irradiated, and the reversed electron beam is thereby again applied to the objects to be irradiated. A high utilization rate of the electron beam is accomplished, and the objects can be thereby uniformly irradiated with the electron beam. 4 claims, 6 drawing figures

  2. Metasurface Cloak Performance Near-by Multiple Line Sources and PEC Cylindrical Objects

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Yatman, William H.; Pehrson, Signe

    2014-01-01

    The performance/robustness of metasurface cloaks to a complex field environment which may represent a realistic scenario of radiating sources is presently reported. Attention is devoted to the cloak operation near-by multiple line sources and multiple perfectly electrically conducting cylinders. ...

  3. An object-oriented approach to evaluating multiple spectral models

    International Nuclear Information System (INIS)

    Majoras, R.E.; Richardson, W.M.; Seymour, R.S.

    1995-01-01

    A versatile, spectroscopy analysis engine has been developed by using object-oriented design and analysis techniques coupled with an object-oriented language, C++. This engine provides the spectroscopist with the choice of several different peak shape models that are tailored to the type of spectroscopy being performed. It also allows ease of development in adapting the engine to other analytical methods requiring more complex peak fitting in the future. This results in a program that can currently be used across a wide range of spectroscopy applications and anticipates inclusion of future advances in the field. (author) 6 refs.; 1 fig

  4. On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvin-Helmholtz Waves

    Science.gov (United States)

    Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.

    2018-02-01

    Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.

  5. A Survey of Multi-Objective Sequential Decision-Making

    OpenAIRE

    Roijers, D.M.; Vamplew, P.; Whiteson, S.; Dazeley, R.

    2013-01-01

    Sequential decision-making problems with multiple objectives arise naturally in practice and pose unique challenges for research in decision-theoretic planning and learning, which has largely focused on single-objective settings. This article surveys algorithms designed for sequential decision-making problems with multiple objectives. Though there is a growing body of literature on this subject, little of it makes explicit under what circumstances special methods are needed to solve multi-obj...

  6. Objective consensus from decision trees.

    Science.gov (United States)

    Putora, Paul Martin; Panje, Cedric M; Papachristofilou, Alexandros; Dal Pra, Alan; Hundsberger, Thomas; Plasswilm, Ludwig

    2014-12-05

    Consensus-based approaches provide an alternative to evidence-based decision making, especially in situations where high-level evidence is limited. Our aim was to demonstrate a novel source of information, objective consensus based on recommendations in decision tree format from multiple sources. Based on nine sample recommendations in decision tree format a representative analysis was performed. The most common (mode) recommendations for each eventuality (each permutation of parameters) were determined. The same procedure was applied to real clinical recommendations for primary radiotherapy for prostate cancer. Data was collected from 16 radiation oncology centres, converted into decision tree format and analyzed in order to determine the objective consensus. Based on information from multiple sources in decision tree format, treatment recommendations can be assessed for every parameter combination. An objective consensus can be determined by means of mode recommendations without compromise or confrontation among the parties. In the clinical example involving prostate cancer therapy, three parameters were used with two cut-off values each (Gleason score, PSA, T-stage) resulting in a total of 27 possible combinations per decision tree. Despite significant variations among the recommendations, a mode recommendation could be found for specific combinations of parameters. Recommendations represented as decision trees can serve as a basis for objective consensus among multiple parties.

  7. Objective consensus from decision trees

    International Nuclear Information System (INIS)

    Putora, Paul Martin; Panje, Cedric M; Papachristofilou, Alexandros; Pra, Alan Dal; Hundsberger, Thomas; Plasswilm, Ludwig

    2014-01-01

    Consensus-based approaches provide an alternative to evidence-based decision making, especially in situations where high-level evidence is limited. Our aim was to demonstrate a novel source of information, objective consensus based on recommendations in decision tree format from multiple sources. Based on nine sample recommendations in decision tree format a representative analysis was performed. The most common (mode) recommendations for each eventuality (each permutation of parameters) were determined. The same procedure was applied to real clinical recommendations for primary radiotherapy for prostate cancer. Data was collected from 16 radiation oncology centres, converted into decision tree format and analyzed in order to determine the objective consensus. Based on information from multiple sources in decision tree format, treatment recommendations can be assessed for every parameter combination. An objective consensus can be determined by means of mode recommendations without compromise or confrontation among the parties. In the clinical example involving prostate cancer therapy, three parameters were used with two cut-off values each (Gleason score, PSA, T-stage) resulting in a total of 27 possible combinations per decision tree. Despite significant variations among the recommendations, a mode recommendation could be found for specific combinations of parameters. Recommendations represented as decision trees can serve as a basis for objective consensus among multiple parties

  8. Locating Objects in Wide-Area Systems

    NARCIS (Netherlands)

    Steen, M. van; Hauck, F.J.; Homburg, P.; Tanenbaum, A.S.

    Locating mobile objects in a worldwide system requires a scalable location service. An object can be a telephone or a notebook computer, but also a software or data object, such as a file or an electronic document. Our service strictly separates an object's name from the addresses where it can be

  9. Multiple tobacco product use among adults in the United States: cigarettes, cigars, electronic cigarettes, hookah, smokeless tobacco, and snus.

    Science.gov (United States)

    Lee, Youn O; Hebert, Christine J; Nonnemaker, James M; Kim, Annice E

    2014-05-01

    Noncigarette tobacco products are increasingly popular. Researchers need to understand multiple tobacco product use to assess the effects of these products on population health. We estimate national prevalence and examine risk factors for multiple product use. We calculated prevalence estimates of current use patterns involving cigarettes, cigars, electronic cigarettes, hookah, smokeless tobacco, and snus using data from the 2012 RTI National Adult Tobacco Survey (N=3627), a random-digit-dial telephone survey of adults aged 18 and over. Associations between use patterns (exclusive single product and multiple products) and demographic characteristics were examined using Pearson chi-square tests and logistic regression. 32.1% of adults currently use 1 or more tobacco products; 14.9% use cigarettes exclusively, and 6.6% use one noncigarette product exclusively, 6.9% use cigarettes with another product (dual use), 1.3% use two noncigarette products, and 2.4% use three or more products (polytobacco use). Smokers who are young adult, male, never married, reside in the West, and made prior quit attempts were at risk for multiple product use. Over 10% of U.S. adults use multiple tobacco products. A better understanding of multiple product use involving combustible products, like cigars and hookah, is needed. Multiple product use may be associated with past quit attempts. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. [Inelastic electron scattering from surfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned

  11. Neural substrates of view-invariant object recognition developed without experiencing rotations of the objects.

    Science.gov (United States)

    Okamura, Jun-Ya; Yamaguchi, Reona; Honda, Kazunari; Wang, Gang; Tanaka, Keiji

    2014-11-05

    One fails to recognize an unfamiliar object across changes in viewing angle when it must be discriminated from similar distractor objects. View-invariant recognition gradually develops as the viewer repeatedly sees the objects in rotation. It is assumed that different views of each object are associated with one another while their successive appearance is experienced in rotation. However, natural experience of objects also contains ample opportunities to discriminate among objects at each of the multiple viewing angles. Our previous behavioral experiments showed that after experiencing a new set of object stimuli during a task that required only discrimination at each of four viewing angles at 30° intervals, monkeys could recognize the objects across changes in viewing angle up to 60°. By recording activities of neurons from the inferotemporal cortex after various types of preparatory experience, we here found a possible neural substrate for the monkeys' performance. For object sets that the monkeys had experienced during the task that required only discrimination at each of four viewing angles, many inferotemporal neurons showed object selectivity covering multiple views. The degree of view generalization found for these object sets was similar to that found for stimulus sets with which the monkeys had been trained to conduct view-invariant recognition. These results suggest that the experience of discriminating new objects in each of several viewing angles develops the partially view-generalized object selectivity distributed over many neurons in the inferotemporal cortex, which in turn bases the monkeys' emergent capability to discriminate the objects across changes in viewing angle. Copyright © 2014 the authors 0270-6474/14/3415047-13$15.00/0.

  12. A Real-Time Method to Estimate Speed of Object Based on Object Detection and Optical Flow Calculation

    Science.gov (United States)

    Liu, Kaizhan; Ye, Yunming; Li, Xutao; Li, Yan

    2018-04-01

    In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.

  13. Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector

    International Nuclear Information System (INIS)

    Ericson, M.N.; Allen, M.D.; Boissevain, J.

    1997-11-01

    Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented

  14. RTDB: A memory resident real-time object database

    International Nuclear Information System (INIS)

    Nogiec, Jerzy M.; Desavouret, Eugene

    2003-01-01

    RTDB is a fast, memory-resident object database with built-in support for distribution. It constitutes an attractive alternative for architecting real-time solutions with multiple, possibly distributed, processes or agents sharing data. RTDB offers both direct and navigational access to stored objects, with local and remote random access by object identifiers, and immediate direct access via object indices. The database supports transparent access to objects stored in multiple collaborating dispersed databases and includes a built-in cache mechanism that allows for keeping local copies of remote objects, with specifiable invalidation deadlines. Additional features of RTDB include a trigger mechanism on objects that allows for issuing events or activating handlers when objects are accessed or modified and a very fast, attribute based search/query mechanism. The overall architecture and application of RTDB in a control and monitoring system is presented

  15. Sunward-propagating Solar Energetic Electrons inside Multiple Interplanetary Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, Raúl; Hidalgo, Miguel A.; Carcaboso, Fernando; Blanco, Juan J. [Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid (Spain); Dresing, Nina; Klassen, Andreas; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, University of Kiel, D-24118, Kiel (Germany); Temmer, Manuela; Veronig, Astrid [Institute of Physics/Kanzelhöhe Observatory, University of Graz, A-8010 Graz (Austria); Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Lario, David, E-mail: raul.gomezh@uah.es [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-05-10

    On 2013 December 2 and 3, the SEPT and STE instruments on board STEREO-A observed two solar energetic electron events with unusual sunward-directed fluxes. Both events occurred during a time interval showing typical signatures of interplanetary coronal mass ejections (ICMEs). The electron timing and anisotropies, combined with extreme-ultraviolet solar imaging and radio wave spectral observations, are used to confirm the solar origin and the injection times of the energetic electrons. The solar source of the ICME is investigated using remote-sensing observations and a three-dimensional reconstruction technique. In situ plasma and magnetic field data combined with energetic electron observations and a flux-rope model are used to determine the ICME magnetic topology and the interplanetary electron propagation path from the Sun to 1 au. Two consecutive flux ropes crossed the STEREO-A location and each electron event occurred inside a different flux rope. In both cases, the electrons traveled from the solar source to 1 au along the longest legs of the flux ropes still connected to the Sun. During the December 2 event, energetic electrons propagated along the magnetic field, while during the December 3 event they were propagating against the field. As found by previous studies, the energetic electron propagation times are consistent with a low number of field line rotations N < 5 of the flux rope between the Sun and 1 au. The flux rope model used in this work suggests an even lower number of rotations.

  16. Informed multi-objective decision-making in environmental management using Pareto optimality

    Science.gov (United States)

    Maureen C. Kennedy; E. David Ford; Peter Singleton; Mark Finney; James K. Agee

    2008-01-01

    Effective decisionmaking in environmental management requires the consideration of multiple objectives that may conflict. Common optimization methods use weights on the multiple objectives to aggregate them into a single value, neglecting valuable insight into the relationships among the objectives in the management problem.

  17. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate

    KAUST Repository

    Rao, Hari Ananda

    2016-03-03

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57–96 %) was the largest electron sink and methane (0–2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  18. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    L. Bayón Arnáu

    2000-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NOx and SO2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network.

  19. The Electronic Health Record Objective Structured Clinical Examination: Assessing Student Competency in Patient Interactions While Using the Electronic Health Record.

    Science.gov (United States)

    Biagioli, Frances E; Elliot, Diane L; Palmer, Ryan T; Graichen, Carla C; Rdesinski, Rebecca E; Ashok Kumar, Kaparaboyna; Galper, Ari B; Tysinger, James W

    2017-01-01

    Because many medical students do not have access to electronic health records (EHRs) in the clinical environment, simulated EHR training is necessary. Explicitly training medical students to use EHRs appropriately during patient encounters equips them to engage patients while also attending to the accuracy of the record and contributing to a culture of information safety. Faculty developed and successfully implemented an EHR objective structured clinical examination (EHR-OSCE) for clerkship students at two institutions. The EHR-OSCE objectives include assessing EHR-related communication and data management skills. The authors collected performance data for students (n = 71) at the first institution during academic years 2011-2013 and for students (n = 211) at the second institution during academic year 2013-2014. EHR-OSCE assessment checklist scores showed that students performed well in EHR-related communication tasks, such as maintaining eye contact and stopping all computer work when the patient expresses worry. Findings indicated student EHR skill deficiencies in the areas of EHR data management including medical history review, medication reconciliation, and allergy reconciliation. Most students' EHR skills failed to improve as the year progressed, suggesting that they did not gain the EHR training and experience they need in clinics and hospitals. Cross-institutional data comparisons will help determine whether differences in curricula affect students' EHR skills. National and institutional policies and faculty development are needed to ensure that students receive adequate EHR education, including hands-on experience in the clinic as well as simulated EHR practice.

  20. Multiple minimally invasive Erbium:YAG laser mini-peels for skin rejuvenation: An objective assessment

    Science.gov (United States)

    El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, Mỹ G.; Uitto, Jouni

    2012-01-01

    Summary Background As the demand for minimally invasive rejuvenation is increasing, micro-peel resurfacing using Erbium:Yttrium Aluminium Garnet (Er:YAG ) laser 2940 nm has been reported for the treatment of photoaged skin without ablation of the epidermis. However, little is known about the efficacy and underlying histologic changes associated with this type of treatment. Aims The purpose of this study is to evaluate the clinical effect and objectively quantify the histological changes in response to multiple sessions of Er:YAG laser 2940 nm mini-peels. Patients and methods Six female volunteers of Fitzpatrick skin type III-IV and Glogau’s class I-III wrinkles were subjected to six microresurfacing peels at 2-week intervals using Er:YAG 2940 nm laser at sub-ablative fluences of 2 - 3 J/cm2 to treat periorbital rhytides. Quantitative evaluation of collagen types I, III and VII, newly synthesized collagen, total elastin and tropoelastin was performed by histochemistry and immunohistochemistry coupled with computerized morphometric analysis at base line, end of treatment, and three months post treatment. Results Compared to the base line, evaluation of volunteers revealed obvious clinical improvement in response to Er:YAG mini-peels. Collagen types I, III, and VII, as well as newly synthesized collagen, together with tropoelastin showed a statistically significant increase in response to treatment, while the mean level of total elastin was significantly decreased in response to treatment. However, this was followed by regression of improvement at 3 months post treatment, but was still better than baseline. Conclusions The present study revealed that multiple Er:YAG mini-peels is a promising treatment option for photoaging as it reverses the signs of photoaged skin with little downtime and side effects. However, to maintain the short term improvement achieved after treatment, continued Er:YAG 2940 nm laser mini-peels is required. PMID:22672276

  1. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    Science.gov (United States)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  2. Use and acceptance of electronic communication by patients with multiple sclerosis: a multicenter questionnaire study.

    Science.gov (United States)

    Haase, Rocco; Schultheiss, Thorsten; Kempcke, Raimar; Thomas, Katja; Ziemssen, Tjalf

    2012-10-15

    The number of multiple sclerosis (MS) information websites, online communities, and Web-based health education programs has been increasing. However, MS patients' willingness to use new ways of communication, such as websites, mobile phone application, short message service, or email with their physician, remains unknown. We designed a questionnaire to evaluate the a priori use of electronic communication methods by MS patients and to assess their acceptance of such tools for communication with their health care providers. We received complete data from 586 MS patients aged between 17 and 73 years. Respondents were surveyed in outpatient clinics across Germany using a novel paper-and-pencil questionnaire. In addition to demographics, the survey items queried frequency of use of, familiarity with, and comfort with using computers, websites, email, and mobile phones. About 90% of all MS patients used a personal computer (534/586) and the Internet (527/586) at least once a week, 87.0% (510/586) communicated by email, and 85.6% (488/570) communicated by mobile phone. When asked about their comfort with using electronic communication methods for communication with health care providers, 20.5% (120/586) accepted communication by mobile Internet application or short message service via mobile phone, 41.0% (240/586) by websites, 54.3% (318/586) by email service, and 67.8% (397/586) by at least one type of electronic communication. The level of a priori use was the best predictor for the acceptance of electronic communication with health care providers. Patients who reported already searching online for health information (odds ratio 2.4, P higher acceptance for Web-based communication. Patients who already scheduled appointments with their mobile phones (odds ratio 2.1, P = .002) were more likely to accept the use of mobile phone applications or short message service for communicating with their physician. The majority of MS patients seen at specialist centers already use

  3. A Deductive and Typed Object-Oriented Language

    NARCIS (Netherlands)

    Bal, C.M.R.; Balsters, H.

    1993-01-01

    In this paper we introduce a logical query language extended with object-oriented typing facilities. This language, called DTL (from DataTypeLog), can be seen as an extension of Datalog equipped with complex objects, object identities, and multiple inheritance based on Cardelli type theory. The

  4. Observations of multiple order parameters in 5f electron systems

    International Nuclear Information System (INIS)

    Blackburn, E.

    2005-12-01

    In this thesis, multiple order parameters originating in the same electronic system are studied. The multi-k magnetic structures, where more than one propagation wavevector, k, is observed in the same volume, are considered as prototypical models. The effect of this structure on the elastic and inelastic response is studied. In cubic 3-k uranium rock-salts, unexpected elastic diffraction events were observed at positions in reciprocal space where the structure factor should have been zero. These diffraction peaks are identified with correlations between the (orthogonal) magnetic order parameters. The 3-k structure also affects the observed dynamics; the spin-wave fluctuations in uranium dioxide as observed by inelastic neutron polarization analysis can only be explained on the basis of a 3-k structure. In the antiferromagnetic superconductor UPd 2 Al 3 the magnetic order and the super-conducting state coexist, and are apparently generated by the same heavy fermions. The effect of an external magnetic field on both the normal and superconducting states is examined. In the normal state, the compound displays Fermi-liquid-like behaviour. The inelastic neutron response is strongly renormalized on entering the superconducting state, and high-precision measurements of the low-energy transfer part of this response confirm that the superconducting energy gap has the same symmetry as the antiferromagnetic lattice. (author)

  5. Investigation on the optimal magnetic field of a cusp electron gun for a W-band gyro-TWA

    Science.gov (United States)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2018-05-01

    High efficiency and broadband operation of a gyrotron traveling wave amplifier (gyro-TWA) require a high-quality electron beam with low-velocity spreads. The beam velocity spreads are mainly due to the differences of the electric and magnetic fields that the electrons withstand the electron gun. This paper investigates the possibility to decouple the design of electron gun geometry and the magnet system while still achieving optimal results, through a case study of designing a cusp electron gun for a W-band gyro-TWA. A global multiple-objective optimization routing was used to optimize the electron gun geometry for different predefined magnetic field profiles individually. Their results were compared and the properties of the required magnetic field profile are summarized.

  6. Study of Electron Gas on a Neutron-Rich Nuclear Pasta

    Science.gov (United States)

    Ramirez-Homs, Enrique

    This study used a classical molecular dynamics model to observe the role of electron gas on the formation of nuclear structures at subsaturation densities (rho pasta structures was observed even with the absence of the Coulomb interaction but with a modication of the shapes formed. It was found that the presence of the electron gas tends to distribute matter more evenly, forms less compact objects, decreases the isospin content of clusters, modies the nucleon mobility, reduces the persistence and the fragment size multiplicity, but does not alter the inter-particle distance in clusters. The degree of these effects also varied on the nuclear structures and depended on their isospin content, temperature, and density.

  7. Optimal thickness of a monocrystal line object in atomic plane visualization on its image in a high-resolution electron microscope

    International Nuclear Information System (INIS)

    Grishina, T.A.; Sviridova, V.Yu.

    1983-01-01

    Theoretical and experimental investigation of the influence of the FCC-lattice crystal (gold, nickel) thickness on conditions of visulization of atomic plane projections (APP) on the crystal image in a transmission high-resolution electron microscope (THREM) is reported. Results of electron diffraction theory are used for theoretical investigation. Calculation analysis of the influence of the monocrystal thickness and orientation on conitions of visualization of APP and atomic columns in monocrystal images formed in THREM in multibeam regimes with inclined and axial illumination is conducted. It is shown that, to visualize the atomic column projections in a crystal image formed in the multibeam regime with axial illumination, optimal are the thicknesses from 0.1 xisub(min) to 0.25 xisub(min) and at some object orientations also the thicknesses from 0.8 xisub(min) to 0.9 xisub(min), where xisub(min) is the extinction length minimum for the given orientation. It is shown that, to realize the ultimate resolutions in multibeam regimes both with inclined and axial illumination the optimal thickness of the object is 0.63 xisub(min). Satisfactory coincidence of theoretical and experimental data is obtained

  8. Participative Knowledge Production of Learning Objects for E-Books.

    Science.gov (United States)

    Dodero, Juan Manuel; Aedo, Ignacio; Diaz, Paloma

    2002-01-01

    Defines a learning object as any digital resource that can be reused to support learning and thus considers electronic books as learning objects. Highlights include knowledge management; participative knowledge production, i.e. authoring electronic books by a distributed group of authors; participative knowledge production architecture; and…

  9. Educational Outcomes After Serving with Electronic Monitoring

    DEFF Research Database (Denmark)

    Larsen, Britt Østergaard

    2016-01-01

    are based on a comprehensive longitudinal dataset (n = 1013) constructed from multiple official administrative registers and including a high number of covariates. Results The EM-program increases the completion rates of upper secondary education by 18 % points among program participants 3 years post......Objectives The paper explores the effects of electronic monitoring (EM) on young offenders’ educational outcomes and contributes to the evaluation of EM as a non-custodial sanction with a new outcome measure. Methods The study is based on a natural experiment exploiting a reform in Denmark in 2006...... introducing electronic monitoring to all offenders under the age of 25 with a maximum prison sentence of 3 months. Information on program participation is used to estimate instrument variable models in order to assess the causal effects of EM on young offenders’ educational outcomes. The empirical analyses...

  10. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya; Yu, Weili; Usman, Anwar; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Alarousu, Erkki; Takanabe, Kazuhiro; Mohammed, Omar F.

    2014-01-01

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  11. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya

    2014-02-20

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  12. Observations of multiple order parameters in 5f electron systems; Observations de parametres d'ordre multiples dans les systemes d'electrons 5f

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, E

    2005-12-15

    In this thesis, multiple order parameters originating in the same electronic system are studied. The multi-k magnetic structures, where more than one propagation wavevector, k, is observed in the same volume, are considered as prototypical models. The effect of this structure on the elastic and inelastic response is studied. In cubic 3-k uranium rock-salts, unexpected elastic diffraction events were observed at positions in reciprocal space where the structure factor should have been zero. These diffraction peaks are identified with correlations between the (orthogonal) magnetic order parameters. The 3-k structure also affects the observed dynamics; the spin-wave fluctuations in uranium dioxide as observed by inelastic neutron polarization analysis can only be explained on the basis of a 3-k structure. In the antiferromagnetic superconductor UPd{sub 2}Al{sub 3} the magnetic order and the super-conducting state coexist, and are apparently generated by the same heavy fermions. The effect of an external magnetic field on both the normal and superconducting states is examined. In the normal state, the compound displays Fermi-liquid-like behaviour. The inelastic neutron response is strongly renormalized on entering the superconducting state, and high-precision measurements of the low-energy transfer part of this response confirm that the superconducting energy gap has the same symmetry as the antiferromagnetic lattice. (author)

  13. Very low-excitation Herbig-Haro objects

    International Nuclear Information System (INIS)

    Boehm, K.H.; Brugel, E.W.; Mannery, E.

    1980-01-01

    Spectrophotometric observations show that H-H 7 and H-H 11 belong to a class of very low-excitation Herbig-Haro objects of which H-H 47 has been the only known example. Typical properties include line flux ratios [N I] (lambda5198+lambda5200)/Hβ and [S II] lambda/6717/Hα, which are both considerably larger than 1, very strong [O I] and [C I] lines, as well as relatively faint [O II] lines. So far no shock-wave models are available for these low-excitation objects. H-H 7 and H-H 11 have electron densities which are lower by about one order of magnitude, and electron temperatures which are slightly lower than those for high-excitation objects like H-H 1 and H-H 2. H-H 11 has a filling factor of about 1, much higher than other H-H objects

  14. Electronic and optical properties of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems

    Science.gov (United States)

    Amini, M.; Soleimani, M.; Ehsani, M. H.

    2017-12-01

    We numerically investigated the optical rectification coefficients (ORCs), transmission coefficient, energy levels and corresponding eigen-functions of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems (FO-MQWs) in the presence of an external electric field. In our calculations, two different methods, including transfer matrix and finite-difference have been used. It has been illustrated that with three types of the FO-MQWs, presented here, localization of the wave-function in any position of the structure is possible. Therefore, managing the electron distribution within the system is easier now. Finally, using the presented structures we could tune the position and amplitude of the ORCs.

  15. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  16. Measuring and correcting aberrations of a cathode objective lens

    International Nuclear Information System (INIS)

    Tromp, R.M.

    2011-01-01

    In this paper I discuss several theoretical and practical aspects related to measuring and correcting the chromatic and spherical aberrations of a cathode objective lens as used in Low Energy Electron Microscopy (LEEM) and Photo Electron Emission Microscopy (PEEM) experiments. Special attention is paid to the various components of the cathode objective lens as they contribute to chromatic and spherical aberrations, and affect practical methods for aberration correction. This analysis has enabled us to correct a LEEM instrument for the spherical and chromatic aberrations of the objective lens. -- Research highlights: → Presents a comprehensive theory of the relation between chromatic aberration and lens current in a cathode objective lens. → Presents practical methods for measuring both spherical and chromatic aberrations of a cathode objective lens. → Presents measurements of these aberrations in good agreement with theory. → Presents practical methods for measuring and correcting these aberrations with an electron mirror.

  17. Object-based spatial attention when objects have sufficient depth cues.

    Science.gov (United States)

    Takeya, Ryuji; Kasai, Tetsuko

    2015-01-01

    Attention directed to a part of an object tends to obligatorily spread over all of the spatial regions that belong to the object, which may be critical for rapid object-recognition in cluttered visual scenes. Previous studies have generally used simple rectangles as objects and have shown that attention spreading is reflected by amplitude modulation in the posterior N1 component (150-200 ms poststimulus) of event-related potentials, while other interpretations (i.e., rectangular holes) may arise implicitly in early visual processing stages. By using modified Kanizsa-type stimuli that provided less ambiguity of depth ordering, the present study examined early event-related potential spatial-attention effects for connected and separated objects, both of which were perceived in front of (Experiment 1) and in back of (Experiment 2) the surroundings. Typical P1 (100-140 ms) and N1 (150-220 ms) attention effects of ERP in response to unilateral probes were observed in both experiments. Importantly, the P1 attention effect was decreased for connected objects compared to separated objects only in Experiment 1, and the typical object-based modulations of N1 were not observed in either experiment. These results suggest that spatial attention spreads over a figural object at earlier stages of processing than previously indicated, in three-dimensional visual scenes with multiple depth cues.

  18. Object tracking using active appearance models

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2001-01-01

    This paper demonstrates that (near) real-time object tracking can be accomplished by the deformable template model; the Active Appearance Model (AAM) using only low-cost consumer electronics such as a PC and a web-camera. Successful object tracking of perspective, rotational and translational...

  19. Multiple pole in the electron--hydrogen-atom scattering amplitude

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Kuchiev, M.Y.

    1982-01-01

    It is demonstrated that the amplitude for electron--hydrogen-atom forward scattering has the third-order pole at the point E = -13.6 eV, E being the energy of the incident electron. The coefficients which characterize the pole are calculated exactly. The invalidity of the Born approximation is proved. The contribution of the pole singularity to the dispersion relation for the scattering amplitude is discussed

  20. Multi-objective convex programming problem arising in multivariate ...

    African Journals Online (AJOL)

    user

    Multi-objective convex programming problem arising in ... However, although the consideration of multiple objectives may seem a novel concept, virtually any nontrivial ..... Solving multiobjective programming problems by discrete optimization.

  1. Feasibility study for mega-electron-volt electron beam tomography.

    Science.gov (United States)

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  2. Methodology for the selection of routes for international cross-border line projects involving multiple objectives and decision-makers in the analyses of restrictions and environmental possibilities

    International Nuclear Information System (INIS)

    Angel S, Enrique; Cadena, Luis Fernando

    2005-01-01

    A scheme was developed and applied to select the optimum environmental route for international cross-border line projects, in a decision making context involving multiple objectives and multiple decision-makers, the project studied was the electricity interconnection for central America (SIEPAC) for which a prospective assessment was carried out regarding the restrictions and possibilities in the light of the Colombian environmental dimensions management model. The methodology proposed followed these stages: Definition and approval of the structure of environmental restriction and criticality variables, sectorization and selection of complex sections, definition of decision-makers for multi-objective analysis; design and application of consultation tool; definition and modeling of options applying SIG; sensitivity analysis of alternative routes and project's environment management. Different options were identified for insertion and permanence of the project according to the criteria of various interest groups and actors consulted: environmental authorities, electricity companies, scientific community and civil society

  3. Herbig-Haro objects and T Tauri nebulae

    International Nuclear Information System (INIS)

    Boehm, K.H.

    1975-01-01

    The empirical information about Herbig-Haro objects and T Tauri nebulae is summarized. We emphasize especially the importance of the spectroscopic and spectrophotometric data. Relative and (preliminary) absolute emission line fluxes are presented and discussed. We consider the radial velocity data and the detection of a faint blue continuum in Herbig-Haro objects as important from a theoretical point of view. The direct interpretation of the emission line spectra is simple and leads to values of the electron temperature, electron density, density inhomogeneities, filling factors, degree of ionization and chemical abundances. The relevant procedures are discussed in some detail. The possible role of the Herbig-Haro objects in the early phases of stellar evolution is discussed. (orig./BJ) [de

  4. Multiple-Sensor Discrimination of Closely-Spaced Objects on a Ballistic Trajectory

    Science.gov (United States)

    2015-05-18

    Modeling Two-body orbit dynamics was utilized to generate ballistic trajectories between the desired burnout and reentry points. The dispersion of object...trajectories within the target complex was achieved by varying the velocity of each object at the burnout points. The generated trajectories served...utilized as it removes several limitations associated with using the Euclidean distance mainly that it accounts for the scaling of the coordinate

  5. Rapid top-down control over template-guided attention shifts to multiple objects.

    Science.gov (United States)

    Grubert, Anna; Fahrenfort, Johannes; Olivers, Christian N L; Eimer, Martin

    2017-02-01

    Previous research has shown that when observers search for targets defined by a particular colour, attention can be directed rapidly and independently to two target objects that appear in close temporal proximity. We investigated how such rapid attention shifts are modulated by task instructions to selectively attend versus ignore one of these objects. Two search displays that both contained a colour-defined target and a distractor in a different colour were presented in rapid succession, with a stimulus onset asynchrony (SOA) of 100ms. In different blocks, participants were instructed to attend and respond to target-colour objects in the first display and to ignore these objects in the second display, or vice versa. N2pc components were measured to track the allocation of spatial attention to target-colour objects in these two displays. When participants responded to the second display, irrelevant target-colour objects in the first display still triggered N2pc components, demonstrating task-set contingent attentional capture while a feature-specific target template is active. Critically, when participants responded to the first display instead, no N2pc was elicited by target-colour items in the second display, indicating that they no longer rapidly captured attention. However, these items still elicited a longer-latency contralateral negativity (SPCN component), suggesting that attention was oriented towards template-matching objects in working memory. This dissociation between N2pc and SPCN components shows that rapid attentional capture and subsequent attentional selection processes within working memory can be independent. We suggest that early attentional orienting mechanisms can be inhibited when task-set matching objects are no longer task-relevant, and that this type of inhibitory control is a rapid but transient process. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Electronic Submissions of Pesticide Applications

    Science.gov (United States)

    Applications for pesticide registration can be submitted electronically, including forms, studies, and draft product labeling. Applicants need not submit multiple electronic copies of any pieces of their applications.

  7. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were t...

  8. Multiple ion species fluid modeling of sprite halos and the role of electron detachment from O- in their dynamics

    Science.gov (United States)

    Liu, N.

    2011-12-01

    Sprite halos are brief descending glows appearing at the lower ionosphere boundary, which follow impulsive cloud-to-ground lightning discharges [e.g., Barrington-Leigh et al., JGR, 106, 1741, 2001, Wescott et al., JGR, 106, 10467, 2001; Pasko, JGR, 115, A00E35, 2010]. They last for a few milliseconds, with horizontal extension of tens of kilometers and vertical thickness of several kilometers. According to global survey of the occurrence of transient luminous events by the ISUAL instruments on the FORMOSAT-2 satellite, on average sprite halos occur once every minute on Earth [Chen et al., JGR, 113, A08306, 2008]. It has been established that sprite halos are caused by electron heating, and molecule excitation and ionization in the lower ionosphere due to lightning quasi-electrostatic field [e.g., Pasko et al., JGR, 102, 4529, 1997; Barrington-Leigh et al., 2001; Pasko, 2010]. Past modeling work on sprite halos was conducted using either a two dimensional (2D) model of at most three charged species or a zero dimensional model of multiple ion species. In this talk, we report a modeling study of sprite halos using a recently developed 2D fluid model of multiple charged species. The model charged species include the ion species set used in [Lehtinen and Inan, GRL, 34, L08804, 2007] to study the dynamics of ionization perturbations produced by gigantic jets in the middle and upper atmosphere. In addition, another charged species, O-, is added to this set, because electron detachment of O- can proceed very fast under moderate electric field [Rayment and Moruzzi, Int. J. Mass Spectrom., 26, 321, 1978], requiring a separate treatment from the other light negative ions. The modeling results of a sprite halo driven by positive cloud-to-ground lightning indicate that the halo can descend to lower altitude with much higher electron density behind its front when the O- detachment process is included. Electron density ahead of the halo front is not significantly reduced from the

  9. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  10. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  11. Orienting Attention to Sound Object Representations Attenuates Change Deafness

    Science.gov (United States)

    Backer, Kristina C.; Alain, Claude

    2012-01-01

    According to the object-based account of attention, multiple objects coexist in short-term memory (STM), and we can selectively attend to a particular object of interest. Although there is evidence that attention can be directed to visual object representations, the assumption that attention can be oriented to sound object representations has yet…

  12. Real-time object detection, tracking and occlusion reasoning

    Science.gov (United States)

    Divakaran, Ajay; Yu, Qian; Tamrakar, Amir; Sawhney, Harpreet Singh; Zhu, Jiejie; Javed, Omar; Liu, Jingen; Cheng, Hui; Eledath, Jayakrishnan

    2018-02-27

    A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.

  13. INCORPORATING MULTIPLE OBJECTIVES IN PLANNING MODELS OF LOW-RESOURCE FARMERS

    OpenAIRE

    Flinn, John C.; Jayasuriya, Sisira; Knight, C. Gregory

    1980-01-01

    Linear goal programming provides a means of formally incorporating the multiple goals of a household into the analysis of farming systems. Using this approach, the set of plans which come as close as possible to achieving a set of desired goals under conditions of land and cash scarcity are derived for a Filipino tenant farmer. A challenge in making LGP models empirically operational is the accurate definition of the goals of the farm household being modelled.

  14. Double ionization of the hydrogen sulfide molecule by electron impact: Influence of the target orientation on multiple differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Imadouchene, N. [Laboratoire de Mécanique, Structures et Energétique Université Mouloud Mammeri de Tizi-Ouzou, B.P. 17, Tizi-Ouzou 15000 (Algeria); Aouchiche, H., E-mail: h_aouchiche@yahoo.fr [Laboratoire de Mécanique, Structures et Energétique Université Mouloud Mammeri de Tizi-Ouzou, B.P. 17, Tizi-Ouzou 15000 (Algeria); Champion, C. [Centre d’Etudes Nucléaires de Bordeaux Gradignan, Université Bordeaux, CNRS/IN2P3, Boîte Postale 120, Gradignan 33175 (France)

    2016-07-15

    Highlights: • The double ionization of the H{sub 2}S molecule is here theoretically studied. • The orientation dependence of the differential cross sections is scrutinized. • The specific double ionizing mechanisms are clearly identified. - Abstract: Multiple differential cross sections of double ionization of hydrogen sulfide molecule impacted by electrons are here investigated within the first Born approximation. In the initial state, the incident electron is represented by a plane wave function whereas the target is described by means of a single-center molecular wave function. In the final state, the two ejected electrons are described by Coulomb wave functions coupled by the Gamow factor, whereas the scattered electron is described by a plane wave. In this work, we analyze the role played by the molecular target orientation in the double ionization of the four outermost orbitals, namely 2b{sub 1}, 5a{sub 1}, 2b{sub 2} and 4a{sub 1} in considering the particular case of two electrons ejected from the same orbital. The contribution of each final state to the double ionization process is studied in terms of shape and magnitude for specific molecular orientations and for each molecular orbital we identified the mechanisms involved in the double ionization process, namely, the Shake-Off and the Two-Step 1.

  15. Utilization-based object recognition in confined spaces

    Science.gov (United States)

    Shirkhodaie, Amir; Telagamsetti, Durga; Chan, Alex L.

    2017-05-01

    Recognizing substantially occluded objects in confined spaces is a very challenging problem for ground-based persistent surveillance systems. In this paper, we discuss the ontology inference of occluded object recognition in the context of in-vehicle group activities (IVGA) and describe an approach that we refer to as utilization-based object recognition method. We examine the performance of three types of classifiers tailored for the recognition of objects with partial visibility, namely, (1) Hausdorff Distance classifier, (2) Hamming Network classifier, and (3) Recurrent Neural Network classifier. In order to train these classifiers, we have generated multiple imagery datasets containing a mixture of common objects appearing inside a vehicle with full or partial visibility and occultation. To generate dynamic interactions between multiple people, we model the IVGA scenarios using a virtual simulation environment, in which a number of simulated actors perform a variety of IVGA tasks independently or jointly. This virtual simulation engine produces the much needed imagery datasets for the verification and validation of the efficiency and effectiveness of the selected object recognizers. Finally, we improve the performance of these object recognizers by incorporating human gestural information that differentiates various object utilization or handling methods through the analyses of dynamic human-object interactions (HOI), human-human interactions (HHI), and human-vehicle interactions (HVI) in the context of IVGA.

  16. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  17. Digital Distribution of Advertising for Publications (DDAP): a graphic arts prototype of electronic intermedia publishing (EIP)

    Science.gov (United States)

    Dunn, Patrice M.

    1998-01-01

    The Digital Distribution of Advertising for Publications (DDAP) is a graphic arts industry prototype of Electronic Intermedia Publishing (EIP). EIP is a strategic, multi- industrial concept that seeks to enable the capture and input of volumes of data (i.e., both raster and object oriented data -- as well as the latter's antecedent which is vector data -- color data and black-and-white data) from a multiplicity of devices; then flowing, controlling, manipulating, modifying, storing, retrieving, transmitting, and shipping, that data through an industrial process for output to a multiplicity of output devices (e.g., ink on paper, toner on paper, bits and bytes on CD ROM, Internet, Multimedia, HDTV, etc.). As the technical requirements of the print medium are among the most rigorous in the Intermedia milieu the DDAP prototype addresses some of the most challenging issues faced in Electronic Intermedia Publishing (EIP).

  18. Integrated production planning and control: A multi-objective optimization model

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2013-09-01

    Full Text Available Purpose: Production planning and control has crucial impact on the production and business activities of enterprise. Enterprise Resource Planning (ERP is the most popular resources planning and management system, however there are some shortcomings and deficiencies in the production planning and control because its core component is still the Material Requirements Planning (MRP. For the defects of ERP system, many local improvement and optimization schemes have been proposed, and improve the feasibility and practicality of the plan in some extent, but study considering the whole planning system optimization in the multiple performance management objectives and achieving better application performance is less. The purpose of this paper is to propose a multi-objective production planning optimization model Based on the point of view of the integration of production planning and control, in order to achieve optimization and control of enterprise manufacturing management. Design/methodology/approach: On the analysis of ERP planning system’s defects and disadvantages, and related research and literature, a multi-objective production planning optimization model is proposed, in addition to net demand and capacity, multiple performance management objectives, such as on-time delivery, production balance, inventory, overtime production, are considered incorporating into the examination scope of the model, so that the manufacturing process could be management and controlled Optimally between multiple objectives. The validity and practicability of the model will be verified by the instance in the last part of the paper. Findings: The main finding is that production planning management of manufacturing enterprise considers not only the capacity and materials, but also a variety of performance management objectives in the production process, and building a multi-objective optimization model can effectively optimize the management and control of enterprise

  19. Probabilistic active recognition of multiple objects using Hough-based geometric matching features

    CSIR Research Space (South Africa)

    Govender, N

    2015-01-01

    Full Text Available be recognized simultaneously, and occlusion and clutter (through distracter objects) is common. We propose a representation for object viewpoints using Hough transform based geometric matching features, which are robust in such circumstances. We show how...

  20. Multiple Moving Object Detection for Fast Video Content Description in Compressed Domain

    Directory of Open Access Journals (Sweden)

    Boris Mansencal

    2007-11-01

    Full Text Available Indexing deals with the automatic extraction of information with the objective of automatically describing and organizing the content. Thinking of a video stream, different types of information can be considered semantically important. Since we can assume that the most relevant one is linked to the presence of moving foreground objects, their number, their shape, and their appearance can constitute a good mean for content description. For this reason, we propose to combine both motion information and region-based color segmentation to extract moving objects from an MPEG2 compressed video stream starting only considering low-resolution data. This approach, which we refer to as “rough indexing,” consists in processing P-frame motion information first, and then in performing I-frame color segmentation. Next, since many details can be lost due to the low-resolution data, to improve the object detection results, a novel spatiotemporal filtering has been developed which is constituted by a quadric surface modeling the object trace along time. This method enables to effectively correct possible former detection errors without heavily increasing the computational effort.

  1. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    Arnáu L. Bayón

    1999-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NO x and SO 2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network. Time-delays are included and the electric network is considered by using the active power balance equation. The volume of water discharge for each hydro-plant is a given constant amount from the optimization interval. The generic minimization algorithm, which is not difficult to construct on the basis of the Ritz method, has certain advantages in comparison with the conventional methods.

  2. Correlation Matrix Of Farmers Perceived Objectives In Crop ...

    African Journals Online (AJOL)

    The study examined the correlation matrix of farmers perceived objectives in crop production in Emohua and Etche local government areas of Rivers State, Nigeria. ... It was found that small holder farmers have multiple objectives which were ...

  3. No Evidence for Phase-Specific Effects of 40 Hz HD–tACS on Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Nicholas S. Bland

    2018-03-01

    Full Text Available Phase synchronization drives connectivity between neural oscillators, providing a flexible mechanism through which information can be effectively and selectively routed between task-relevant cortical areas. The ability to keep track of objects moving between the left and right visual hemifields, for example, requires the integration of information between the two cerebral hemispheres. Both animal and human studies have suggested that coherent (or phase-locked gamma oscillations (30–80 Hz might underlie this ability. While most human evidence has been strictly correlational, high-density transcranial alternating current stimulation (HD-tACS has been used to manipulate ongoing interhemispheric gamma phase relationships. Previous research showed that 40 Hz tACS delivered bilaterally over human motion complex could bias the perception of a bistable ambiguous motion stimulus (Helfrich et al., 2014. Specifically, this work showed that in-phase (0° offset stimulation boosted endogenous interhemispheric gamma coherence and biased perception toward the horizontal (whereby visual tokens moved between visual hemifields—requiring interhemispheric integration. By contrast, anti-phase (180° offset stimulation decreased interhemispheric gamma coherence and biased perception toward the vertical (whereby tokens moved within separate visual hemifields. Here we devised a multiple object tracking arena comprised of four quadrants whereby discrete objects moved either entirely within the left and right visual hemifields, or could cross freely between visual hemifields, thus requiring interhemispheric integration. Using the same HD-tACS montages as Helfrich et al. (2014, we found no phase-specific effect of 40 Hz stimulation on overall tracking performance. While tracking performance was generally lower during between-hemifield trials (presumably reflecting a cost of integration, this difference was unchanged by in- vs. anti-phase stimulation. Our null results

  4. Multiple-scattering theory. New developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Arthur

    2007-12-04

    Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)

  5. Multiple-scattering theory. New developments and applications

    International Nuclear Information System (INIS)

    Ernst, Arthur

    2007-01-01

    Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)

  6. Effect of electron-electron collisions on the phase transition and kinetics of nonequilibrium superconductors

    International Nuclear Information System (INIS)

    Elesin, V.F.; Kashurnikov, V.A.; Kondrashov, V.E.; Shamraev, B.N.

    1983-01-01

    An explicit expression is obtained for the distribution function of excess quasiparticles, taking into account electron-electron collisions in nonequilibrium superconductors. It is shown that the character of the phase transition may change at a definite ratio of the electron-electron and electron-phonon interaction constants: the dependence of the order parameter on the power of the source becomes single-valued. In addition, diffusion instability and paramagnetism of the superconductors arise. The multiplication factor of the excess quasiparticles due to electron-electron collisions and to reabsorption of phonons is calculated

  7. A Survey of Multi-Objective Sequential Decision-Making

    NARCIS (Netherlands)

    Roijers, D.M.; Vamplew, P.; Whiteson, S.; Dazeley, R.

    2013-01-01

    Sequential decision-making problems with multiple objectives arise naturally in practice and pose unique challenges for research in decision-theoretic planning and learning, which has largely focused on single-objective settings. This article surveys algorithms designed for sequential

  8. Many-electron phenomena in the ionization of ions

    International Nuclear Information System (INIS)

    Mueller, A.

    2004-01-01

    Full text: Single and multiple ionization in ion-atom collisions involve a multitude of complex interactions between the electrons and nuclei of projectile and target. Some of the complexity is avoided in studies of fast collisions when the impulse approximation can be applied and the electrons can be described as independent quasi-free particles with a known momentum distribution. For the detailed investigation of ionization mechanisms that can occur in fast ion-atom collisions, it is illuminating to consider collisions of ions (or atoms) and really free electrons with a narrow energy spread. High energy resolution in electron-ion collision studies provides access to individual, possibly even state-selective, reaction pathways. Even in the simple electron-ion collision system (simple compared with the initial ion-atom problem) single and multiple ionization still involve a multitude of complex mechanisms. Besides the direct removal of one or several electrons from the target by electron impact, resonant and non-resonant formation of intermediate multiply excited states which subsequently decay by electron emission is important in single and multiple ionization of ions and atoms. Direct ionization proceeds via one-step or multi-step knock-off mechanisms which can partly be disentangled by studying effects of different projectile species. The role of multiply excited states in the ionization can be experimentally studied in great detail by a further reduction of the initial ion-atom problem. Multiply excited states of atoms and ions can be selectively populated by photon-ion interactions making use of the potential for extreme energy resolution made available at modern synchrotron radiation sources. In the review talk, examples of studies on single and multiple ionization in electron-ion collisions will be discussed in some detail. Electron-ion collision experiments will also be compared with photon-ion interaction studies. Many-electron phenomena have been observed

  9. Trajectory Planning of Mobile robot in Unstructured Environment for Multiple Objects

    Directory of Open Access Journals (Sweden)

    Muhammad Arshad

    2012-01-01

    Full Text Available In this paper we have presented a novel technique for the navigation and path formulation of wheeled mobile robot. In a given environment having obstacles, a path is generated from the given initial and final position of the robot. Based on the global knowledge of the environment a global path is formulated initially. This global path considers all the known obstacles in the environment and must avoid collision with these obstacles, i.e. the formulated path must be safe (collision free. For global path formulation strategic schemes have been employed using the a priori knowledge of the environment. The global path is fed to the robot. When unknown obstacles come in the path of the robot, it must deviate from the given global path and should generate a local path to avoid collision with the new unknown obstacle. By using sensors data the reactive schemes have been implemented for local path formulation. For local path formulation the path has been subdivided into intermediate steps known as sub goals. In the existing approaches known and unknown objects are considered separately. But in some of the practical applications known and unknown objects need to be considered simultaneously. This paper considers the problem of robot motion formulation in an environment having already known obstacles and unknown new moving objects. A Novel algorithm has been developed which incorporates local path planner, optimization and navigation modules. As unknown objects can appear in the environment randomly therefore uncertainty in the environment has been considered.

  10. The Composite OLAP-Object Data Model

    Energy Technology Data Exchange (ETDEWEB)

    Pourabbas, Elaheh; Shoshani, Arie

    2005-12-07

    In this paper, we define an OLAP-Object model that combines the main characteristics of OLAP and Object data models in order to achieve their functionalities in a common framework. We classify three different object classes: primitive, regular and composite. Then, we define a query language which uses the path concept in order to facilitate data navigation and data manipulation. The main feature of the proposed language is an anchor. It allows us to fix dynamically an object class (primitive, regular or composite) along the paths over the OLAP-Object data model for expressing queries. The queries can be formulated on objects, composite objects and combination of both. The power of the proposed query language is investigated through multiple query examples. The semantic of different clauses and syntax of the proposed language are investigated.

  11. Transforming clinical imaging and 3D data for virtual reality learning objects: HTML5 and mobile devices implementation.

    Science.gov (United States)

    Trelease, Robert B; Nieder, Gary L

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. © 2012 American Association of Anatomists.

  12. REAL-TIME OBJECT DETECTION IN PARALLEL THROUGH ATOMIC TRANSACTIONS

    Directory of Open Access Journals (Sweden)

    K Sivakumar

    2016-11-01

    Full Text Available Object detection and tracking is important operation involved in embedded systems like video surveillance, Traffic monitoring, campus security system, machine vision applications and other areas. Detecting and tracking multiple objects in a video or image is challenging problem in machine vision and computer vision based embedded systems. Implementation of such a object detection and tracking systems are done in sequential way of processing and also it was implemented using hardware synthesize tools like verilog HDL with FPGA, achieves considerably lesser performance in speed and it does support lesser atomic transactions. There are many object detection and tracking algorithm were proposed and implemented, among them background subtraction is one of them. This paper proposes a implementation of detecting and tracking multiple objects based on background subtraction algorithm using java and .NET and also discuss about the architecture concept for object detection through atomic transactional, modern hardware synthesizes language called Bluespec.

  13. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Bruinvis, I.A.D.

    1987-01-01

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  14. Significance of matrix diagonalization in modelling inelastic electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Z. [University of Ulm, Ulm 89081 (Germany); Hambach, R. [University of Ulm, Ulm 89081 (Germany); University of Jena, Jena 07743 (Germany); Kaiser, U.; Rose, H. [University of Ulm, Ulm 89081 (Germany)

    2017-04-15

    Electron scattering is always applied as one of the routines to investigate nanostructures. Nowadays the development of hardware offers more and more prospect for this technique. For example imaging nanostructures with inelastic scattered electrons may allow to produce component-sensitive images with atomic resolution. Modelling inelastic electron scattering is therefore essential for interpreting these images. The main obstacle to study inelastic scattering problem is its complexity. During inelastic scattering, incident electrons entangle with objects, and the description of this process involves a multidimensional array. Since the simulation usually involves fourdimensional Fourier transforms, the computation is highly inefficient. In this work we have offered one solution to handle the multidimensional problem. By transforming a high dimensional array into twodimensional array, we are able to perform matrix diagonalization and approximate the original multidimensional array with its twodimensional eigenvectors. Our procedure reduces the complicated multidimensional problem to a twodimensional problem. In addition, it minimizes the number of twodimensional problems. This method is very useful for studying multiple inelastic scattering. - Highlights: • 4D problems are involved in modelling inelastic electron scattering. • By means of matrix diagonalization, the 4D problems can be simplified as 2D problems. • The number of 2D problems is minimized by using this approach.

  15. Fundamental problems in the evaluation of electron micrographs

    International Nuclear Information System (INIS)

    Huiser, A.M.J.

    1979-01-01

    A theoretical assessment of optical images in electron microscopy is presented. The relation between the structure of the objects one usually encounters in electron microscopy and the recorded images is found to depend upon the scattering by the object of fast electrons from the source and the propagation of the scattered electrons through the rest of the microscope. A model is developed which enables the calculation of the mutual intensity in the object plane, under conditions which usually apply in electron microscopy, such as small angle scattering. The phase problem in electron microscopy is also fully discussed. (C.F.)

  16. Patterns, Perception and Behavior of Electronic Nicotine Delivery Systems Use and Multiple Product Use Among Young Adults.

    Science.gov (United States)

    Martinasek, Mary P; Bowersock, Amy; Wheldon, Christopher W

    2018-03-27

    Electronic nicotine delivery systems (ENDS) are battery-operated devices used to inhale vaporized or aerosolized nicotine. There is increasing research uncovering negative health effects of these devices. Less is known about the social and behavioral aspects among college students. This cross-sectional study was conducted at a mid-sized private university in Florida. The survey was sent via e-mail to the student body of undergraduates. A final sample size of 989 students was analyzed to understand demographic differences between users and nonusers, initiation factors, and influencers, as well as multiple product behaviors. Approximately 51.4% ( n = 508) of participants reported ever using an ENDS and other tobacco consumption. Males were significantly more likely to be users of ENDS. Polytobacco use, or the use of multiple tobacco products, was also more common among participants who have tried ENDS ( P influencer for initial use. A 4-class latent variable model differentiated between usage patterns characterized as abstainers (70%), hookah users only (14%), ENDS only (11%), and polytobacco users (4%). ENDS are not commonly used as a quit tool among college students, but rather as a secondary source of nicotine, most commonly in current smokers. Copyright © 2018 by Daedalus Enterprises.

  17. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    Science.gov (United States)

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2017-03-01

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An experimental analysis of design choices of multi-objective ant colony optimization algorithms

    OpenAIRE

    Lopez-Ibanez, Manuel; Stutzle, Thomas

    2012-01-01

    There have been several proposals on how to apply the ant colony optimization (ACO) metaheuristic to multi-objective combinatorial optimization problems (MOCOPs). This paper proposes a new formulation of these multi-objective ant colony optimization (MOACO) algorithms. This formulation is based on adding specific algorithm components for tackling multiple objectives to the basic ACO metaheuristic. Examples of these components are how to represent multiple objectives using pheromone and heuris...

  19. Electronic Commerce Success Model: A Search for Multiple Criteria

    Directory of Open Access Journals (Sweden)

    Didi Achjari

    2004-01-01

    Full Text Available The current study attempts to develop and examine framework of e-commerce success. In order to obtain comprehensive and robust measures, the framework accomodates key factors that are identified in the literature concerning the success of electronic commerce. The structural model comprises of four exogenous variables (Internal Driver, Internal Impediment, External Driver and Exgternal Impediment and one endogenous variable (Electornic Commerce Success eith 24 observed variables. The study that was administered within large Australian companies using questionaire survey concluded that benefits for both internal organization and external parties from the use of e-commerce were the main factor tro predict perceived and/or expected success of electronic commerce.

  20. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.; Kachorovskiǐ, Valentin Yu; Stillman, William J.; Veksler, Dmitry B.; Salama, Khaled N.; Zhang, Xicheng; Shur, Michael S.

    2010-01-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  1. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.

    2010-02-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  2. Passive Aerial Grasping of Ferrous Objects

    KAUST Repository

    Fiaz, Usman Amin

    2017-10-19

    Aerial transportation is probably the most efficient way to supply quick and effective aid especially in cases of emergency like search and rescue operations. Thus the ability to grasp and deliver objects is of vital importance in all sorts of unmanned and autonomous aerial operations. We detail a simple yet novel approach for aerial grasping of ferrous objects using a passive magnetic pickup and an impulse based drop mechanism. The design enables our gripper to grasp ferrous objects using single as well as multiple gripping pads, with visual as well as pickup and drop feedback. We describe the various components of the gripper with emphasis on its low mass and high lift capability since weight is a matter of high consideration in all aerial applications. In addition, we investigate and address the issues that may cause our design to fail. We demonstrate by experiments that the proposed design is robust and effective, based on its high payload capability, its sturdiness against possible slide during aggressive aerial maneuvers, and optimum performance of the drop mechanism for the designed range of payloads. We also show that the gripper is able to pick up and drop a single as well as multiple ferrous objects of different shapes, curvature, and inclination, which also involves picking up an object and then grasping the next, while keeping hold of the previous one.

  3. Passive Aerial Grasping of Ferrous Objects

    KAUST Repository

    Fiaz, Usman; Toumi, Noureddine; Shamma, Jeff S.

    2017-01-01

    Aerial transportation is probably the most efficient way to supply quick and effective aid especially in cases of emergency like search and rescue operations. Thus the ability to grasp and deliver objects is of vital importance in all sorts of unmanned and autonomous aerial operations. We detail a simple yet novel approach for aerial grasping of ferrous objects using a passive magnetic pickup and an impulse based drop mechanism. The design enables our gripper to grasp ferrous objects using single as well as multiple gripping pads, with visual as well as pickup and drop feedback. We describe the various components of the gripper with emphasis on its low mass and high lift capability since weight is a matter of high consideration in all aerial applications. In addition, we investigate and address the issues that may cause our design to fail. We demonstrate by experiments that the proposed design is robust and effective, based on its high payload capability, its sturdiness against possible slide during aggressive aerial maneuvers, and optimum performance of the drop mechanism for the designed range of payloads. We also show that the gripper is able to pick up and drop a single as well as multiple ferrous objects of different shapes, curvature, and inclination, which also involves picking up an object and then grasping the next, while keeping hold of the previous one.

  4. Single-molecule electron tunnelling through multiple redox levels with environmental relaxation

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    represent the substrate and tip in electrochemical in situ scanning tunnelling microscopy. An equivalent three-electrode configuration represents a molecular single-electron transistor in which the enclosing electrodes constitute source and drain, and the reference electrode the gate. Current-bias voltage...... relations at fixed electrochemical overpotential or gate voltage, and current-overpotential or current-gate voltage relations at fixed bias voltage are equivalent in the two systems. Due to the activation-less nature of the processes, electron flow between the electrodes through the molecular redox levels...... level(s) subsequent to electron transfer. Several physical mechanisms can be distinguished and distinctive current-overpotential/gate voltage or current-bias voltage relations obtained. These reflect electronic level separation, environmental nuclear reorganisation, and coherent or incoherent multi...

  5. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    Science.gov (United States)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  6. Constraints on reusability of learning objects

    DEFF Research Database (Denmark)

    May, Michael; Hussmann, Peter Munkebo; Jensen, Anne Skov

    2010-01-01

    It is the aim of this paper to discuss some didactic constraints on the use and reuse of digital modular learning objects. Engineering education is used as the specific context of use with examples from courses in introductory electronics and mathematics. Digital multimedia and modular learning....... Constraints on reuse arise from the nature of conceptual understanding in higher education and the functionality of learning objects within present technologies. We will need didactic as well as technical perspectives on learning objects in designing for understanding....

  7. Spatial and visuospatial working memory tests predict performance in classic multiple-object tracking in young adults, but nonspatial measures of the executive do not.

    Science.gov (United States)

    Trick, Lana M; Mutreja, Rachna; Hunt, Kelly

    2012-02-01

    An individual-differences approach was used to investigate the roles of visuospatial working memory and the executive in multiple-object tracking. The Corsi Blocks and Visual Patterns Tests were used to assess visuospatial working memory. Two relatively nonspatial measures of the executive were used: operation span (OSPAN) and reading span (RSPAN). For purposes of comparison, the digit span test was also included (a measure not expected to correlate with tracking). The tests predicted substantial amounts of variance (R (2) = .33), and the visuospatial measures accounted for the majority (R (2) = .30), with each making a significant contribution. Although the executive measures correlated with each other, the RSPAN did not correlate with tracking. The correlation between OSPAN and tracking was similar in magnitude to that between digit span and tracking (p < .05 for both), and when regression was used to partial out shared variance between the two tests, the remaining variance predicted by the OSPAN was minimal (sr ( 2 ) = .029). When measures of spatial memory were included in the regression, the unique variance predicted by the OSPAN became negligible (sr ( 2 ) = .000004). This suggests that the executive, as measured by tests such as the OSPAN, plays little role in explaining individual differences in multiple-object tracking.

  8. Superluminal motion of extragalactic objects

    Energy Technology Data Exchange (ETDEWEB)

    Matveenko, L.I. (AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij)

    1983-07-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex structure of Seyfert galaxies, quasars and lacertae objects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronouys radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation.

  9. Roadside Multiple Objects Extraction from Mobile Laser Scanning Point Cloud Based on DBN

    Directory of Open Access Journals (Sweden)

    LUO Haifeng

    2018-02-01

    Full Text Available This paper proposed an novel algorithm for exploring deep belief network (DBN architectures to extract and recognize roadside facilities (trees,cars and traffic poles from mobile laser scanning (MLS point cloud.The proposed methods firstly partitioned the raw MLS point cloud into blocks and then removed the ground and building points.In order to partition the off-ground objects into individual objects,off-ground points were organized into an Octree structure and clustered into candidate objects based on connected component.To improve segmentation performance on clusters containing overlapped objects,a refining processing using a voxel-based normalized cut was then implemented.In addition,multi-view features descriptor was generated for each independent roadside facilities based on binary images.Finally,a deep belief network (DBN was trained to extract trees,cars and traffic pole objects.Experiments are undertaken to evaluate the validities of the proposed method with two datasets acquired by Lynx Mobile Mapper System.The precision of trees,cars and traffic poles objects extraction results respectively was 97.31%,97.79% and 92.78%.The recall was 98.30%,98.75% and 96.77% respectively.The quality is 95.70%,93.81% and 90.00%.And the F1 measure was 97.80%,96.81% and 94.73%.

  10. An Evolutionary Approach for Bilevel Multi-objective Problems

    Science.gov (United States)

    Deb, Kalyanmoy; Sinha, Ankur

    Evolutionary multi-objective optimization (EMO) algorithms have been extensively applied to find multiple near Pareto-optimal solutions over the past 15 years or so. However, EMO algorithms for solving bilevel multi-objective optimization problems have not received adequate attention yet. These problems appear in many applications in practice and involve two levels, each comprising of multiple conflicting objectives. These problems require every feasible upper-level solution to satisfy optimality of a lower-level optimization problem, thereby making them difficult to solve. In this paper, we discuss a recently proposed bilevel EMO procedure and show its working principle on a couple of test problems and on a business decision-making problem. This paper should motivate other EMO researchers to engage more into this important optimization task of practical importance.

  11. Detecting multiple moving objects in crowded environments with coherent motion regions

    Science.gov (United States)

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  12. Multiple-walled BN nanotubes obtained with a mechanical alloying technique

    International Nuclear Information System (INIS)

    Rosas, G.; Sistos, J.; Ascencio, J.A.; Medina, A.; Perez, R.

    2005-01-01

    An experimental method to obtain multiple-walled nanotubes of BN using low energy is presented. The method is based on the use of mechanical alloying techniques with elemental boron powders and nitrogen gas mixed in an autoclave at room temperature. The chemical and structural characteristics of the multiple-walled nanotubes were obtained using different techniques, such as X-ray diffraction, transmission electron microscopy, EELS microanalysis, high-resolution electron microscopy images and theoretical simulations based on the multisliced approach of the electron diffraction theory. This investigation clearly illustrates the production of multiple-wall BN nanotubes at room temperature. These results open up a new kind of synthesis method with low expense and important perspectives for use in large-quantity production. (orig.)

  13. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    Science.gov (United States)

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  14. Electronic Science Seminar

    Directory of Open Access Journals (Sweden)

    Geidarov P.Sh.

    2015-09-01

    Full Text Available The structure of electronic scientific seminar, which provides a high level of quality of the objectivity in the evaluation of scientific papers, including dissertations, is described. Conditions for the implementation of electronic scientific seminar are also considered.

  15. Preliminary results on application of the multiple-scattering technique to electron--molecule scattering and molecular photoionization: the PI/sub g/ resonance in e-N2 scattering

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dill, D.

    1974-01-01

    A prototype calculation of the well-known 2.5-eV shape resonance in e-N 2 scattering was performed to test the usefulness of the multiple-scattering method for electronic continuum molecular wavefunctions. The results of this demanding test are very encouraging. (U.S.)

  16. Multiple Sclerosis.

    Science.gov (United States)

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on multiple sclerosis is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  17. Electron Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-01-01

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code 'POSINST' was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ∼(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed

  18. Engaging and Assessing Students through their Electronic Devices and Real Time Quizzes

    Directory of Open Access Journals (Sweden)

    E. Ferrándiz

    2016-10-01

    Full Text Available This paper describes a teaching experience using Socrative, a third party electronic tool, for real-time questioning in lectures of Econometrics.  Econometrics is a theoretical-practical subject, but traditionally a large proportion of our students tend to focus on the practical and discard the theory, often skipping classes on theory and avoiding studying its content, probably motivated by its complexity. As a consequence, students’ marks obtained in the theoretical part of the exam are usually low. In this context, we put forward a change in our teaching methodology to include the use of Socrative, a freely available app, that allows students to answer teachers’ short, true/false, or multiple choice questions posed during each class using their smartphones (or other electronic devices with Internet connection. The objectives of this project are twofold: 1 to engage students and increase attendance at lectures; 2 to improve feedback on the learning process. The results of a survey of a sample of 186 students reveal that Socrative has been an effective tool for achieving these objectives.

  19. Optimizing multiple sequence alignments using a genetic algorithm based on three objectives: structural information, non-gaps percentage and totally conserved columns.

    Science.gov (United States)

    Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio

    2013-09-01

    Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.

  20. Integration trumps selection in object recognition

    Science.gov (United States)

    Saarela, Toni P.; Landy, Michael S.

    2015-01-01

    Summary Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several “cues” (color, luminance, texture etc.), and humans can integrate sensory cues to improve detection and recognition [1–3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue-invariance by responding to a given shape independent of the visual cue defining it [5–8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10,11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11,12], imaging [13–16], and single-cell and neural population recordings [17,18]. Besides single features, attention can select whole objects [19–21]. Objects are among the suggested “units” of attention because attention to a single feature of an object causes the selection of all of its features [19–21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near-optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154

  1. Integration trumps selection in object recognition.

    Science.gov (United States)

    Saarela, Toni P; Landy, Michael S

    2015-03-30

    Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development of an object-oriented simulation code for repository performance assessment

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Ahn, J.

    1999-01-01

    As understanding for mechanisms of radioactivity confinement by a deep geologic repository improves at the individual process level, it has become imperative to evaluate consequences of individual processes to the performance of the whole repository system. For this goal, the authors have developed a model for radionuclide transport in, and release from, the repository region by incorporating multiple-member decay chains and multiple waste canisters. A computer code has been developed with C++, an object-oriented language. By utilizing the feature that a geologic repository consists of thousands of objects of the same kind, such as the waste canister, the repository region is divided into multiple compartments and objects for simulation of radionuclide transport. Massive computational tasks are distributed over, and executed by, multiple networked workstations, with the help of parallel virtual machine (PVM) technology. Temporal change of the mass distribution of 28 radionuclides in the repository region for the time period of 100 million yr has been successfully obtained by the code

  3. From Lobster Shells to Plastic Objects: A Bioplastics Activity

    Science.gov (United States)

    Hudson, Reuben; Glaisher, Samuel; Bishop, Alexandra; Katz, Jeffrey L.

    2015-01-01

    A multiple day activity for students to create large-scale plastic objects from the biopolymer chitin (major component of lobster, crab, and shrimp shells) is described. The plastic objects created are durable and made from benign materials, making them suitable for students to take home to play with. Since the student-created plastic objects are…

  4. Maximum entropy theory of recoil charge distributions in electron-capture collisions

    International Nuclear Information System (INIS)

    Aberg, T.; Blomberg, A.; Tulkki, J.; Goscinski, O.

    1984-01-01

    A generalized Fermi-Dirac distribution is derived and applied to charge-state distributions in single collisions between multiply charged ions and rare-gas atoms. It relates multiple electron loss in single-electron capture to multiple ionization in multiphoton absorption and discloses inner-shell vacancy formation in double- and triple-electron capture

  5. The optical design of 3D ICs for smartphone and optro-electronics sensing module

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.

  6. Electron-molecule interactions and their applications

    CERN Document Server

    Christophorou, L G

    1984-01-01

    Electron-Molecule Interactions and Their Applications, Volume 2 provides a balanced and comprehensive account of electron-molecule interactions in dilute and dense gases and liquid media. This book consists of six chapters. Chapter 1 deals with electron transfer reactions, while Chapter 2 discusses electron-molecular positive-ion recombination. The electron motion in high-pressure gases and electron-molecule interactions from single- to multiple-collision conditions is deliberated in Chapter 3. In Chapter 4, knowledge on electron-molecule interactions in gases is linked to that on similar proc

  7. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  8. Ego, drives, and the dynamics of internal objects

    Directory of Open Access Journals (Sweden)

    Simon eBoag

    2014-07-01

    Full Text Available This paper addresses the relationship between the ego, id, and internal objects. While ego psychology views the ego as autonomous of the drives, a less well-known alternative position views the ego as constituted by the drives. Based on Freud’s ego-instinct account, this position has developed into a school of thought which postulates that the drives act as knowers. Given that there are multiple drives, this position proposes that personality is constituted by multiple knowers. Following on from Freud, the ego is viewed as a composite sub-set of the instinctual drives (ego-drives, whereas those drives cut off from expression form the id. The nature of the ‘self’ is developed in terms of identification and the possibility of multiple personalities is also established. This account is then extended to object-relations and the explanatory value of the ego-drive account is discussed in terms of the addressing the nature of ego-structures and the dynamic nature of internal objects. Finally, the impact of psychological conflict and the significance of repression for understanding the nature of splits within the psyche are also discussed.

  9. A multi-objective decision-making approach to the journal submission problem.

    Directory of Open Access Journals (Sweden)

    Tony E Wong

    Full Text Available When researchers complete a manuscript, they need to choose a journal to which they will submit the study. This decision requires to navigate trade-offs between multiple objectives. One objective is to share the new knowledge as widely as possible. Citation counts can serve as a proxy to quantify this objective. A second objective is to minimize the time commitment put into sharing the research, which may be estimated by the total time from initial submission to final decision. A third objective is to minimize the number of rejections and resubmissions. Thus, researchers often consider the trade-offs between the objectives of (i maximizing citations, (ii minimizing time-to-decision, and (iii minimizing the number of resubmissions. To complicate matters further, this is a decision with multiple, potentially conflicting, decision-maker rationalities. Co-authors might have different preferences, for example about publishing fast versus maximizing citations. These diverging preferences can lead to conflicting trade-offs between objectives. Here, we apply a multi-objective decision analytical framework to identify the Pareto-front between these objectives and determine the set of journal submission pathways that balance these objectives for three stages of a researcher's career. We find multiple strategies that researchers might pursue, depending on how they value minimizing risk and effort relative to maximizing citations. The sequences that maximize expected citations within each strategy are generally similar, regardless of time horizon. We find that the "conditional impact factor"-impact factor times acceptance rate-is a suitable heuristic method for ranking journals, to strike a balance between minimizing effort objectives and maximizing citation count. Finally, we examine potential co-author tension resulting from differing rationalities by mapping out each researcher's preferred Pareto front and identifying compromise submission strategies

  10. A Requirement Engineering Framework for Electronic Data Sharing of Health Care Data Between Organizations

    Science.gov (United States)

    Liu, Xia; Peyton, Liam; Kuziemsky, Craig

    Health care is increasingly provided to citizens by a network of collaboration that includes multiple providers and locations. Typically, that collaboration is on an ad-hoc basis via phone calls, faxes, and paper based documentation. Internet and wireless technologies provide an opportunity to improve this situation via electronic data sharing. These new technologies make possible new ways of working and collaboration but it can be difficult for health care organizations to understand how to use the new technologies while still ensuring that their policies and objectives are being met. It is also important to have a systematic approach to validate that e-health processes deliver the performance improvements that are expected. Using a case study of a palliative care patient receiving home care from a team of collaborating health organizations, we introduce a framework based on requirements engineering. Key concerns and objectives are identified and modeled (privacy, security, quality of care, and timeliness of service). And, then, proposed business processes which use new technologies are modeled in terms of these concerns and objectives to assess their impact and ensure that electronic data sharing is well regulated.

  11. Generalized framework for the parallel semantic segmentation of multiple objects and posterior manipulation

    DEFF Research Database (Denmark)

    Llopart, Adrian; Ravn, Ole; Andersen, Nils Axel

    2017-01-01

    The end-to-end approach presented in this paper deals with the recognition, detection, segmentation and grasping of objects, assuming no prior knowledge of the environment nor objects. The proposed pipeline is as follows: 1) Usage of a trained Convolutional Neural Net (CNN) that recognizes up to 80...... different classes of objects in real time and generates bounding boxes around them. 2) An algorithm to derive in parallel the pointclouds of said regions of interest (ROI). 3) Eight different segmentation methods to remove background data and noise from the pointclouds and obtain a precise result...

  12. Interactive density maps for moving objects

    NARCIS (Netherlands)

    Scheepens, R.J.; Willems, C.M.E.; Wetering, van de H.M.M.; Wijk, van J.J.

    2012-01-01

    Trajectories capture the movements of objects with multiple attributes. A visualization method called density maps shows trends in these trajectories. Density map creation involves aggregating smoothed trajectories in a density field and then visualizing the field. Users can explore attributes along

  13. Magnesium Object Manager Sandbox, A More Effective Sandbox Method for Windows 7

    Science.gov (United States)

    2012-03-01

    keys, synchronization primitives , etc.). The object body is specific to, and the same for, each object type; it contains information common to each...the Object Directory Specific Rights Synchronization Object (Event, Mutex, Semaphore , Timer) Synchronization objects allow multiple threads to... Synchronization Object Specific Rights . . . . . . . . . . . . . . . . . . . . . 19 2.5 File Object Specific Rights

  14. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Geisler, Daniela A; Møller, Ian Max

    2008-01-01

    The electron transport chain in mitochondria of different organisms contains a mixture of common and specialised components. The specialised enzymes form branches to the universal electron path, especially at the level of ubiquinone, and allow the chain to adjust to different cellular and metabolic...... and their consequences for the understanding of electron transport and redundancy of electron paths...... requirements. In plants, specialised components have been known for a long time. However, recently, the known number of plant respiratory chain dehydrogenases has increased, including both components specific to plants and those with mammalian counterparts. This review will highlight the novel branches...

  15. Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.

    Science.gov (United States)

    Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen

    2015-04-01

    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.

  16. Near-infrared H2 emission from Herbig-Haro objects. I. A survey of low excitation objects

    International Nuclear Information System (INIS)

    Schwartz, R.D.; Cohen, M.; Williams, P.M.

    1987-01-01

    A survey for H 2 1-0 S(1) emission in 16 Herbig-Haro (HH) objects and three exciting stars for HH objects is reported. Eleven HH objects which show low-excitation optical spectra exhibit H 2 emission. One object (HH 43) is more than twice as bright as any previously reported HH object. In addition, spectra in the range 1.6-2.55 microns are reported for HH 43 and HH 120, and a 2.0-2.55 micron spectrum is presented for HH 26. The spectra yield estimates of the H 2 density and temperature ranges in these objects. The role of ultraviolet H 2 emission-line fluorescence in HH 43 with respect to cascading among excited vibrational states of the ground electronic state is discussed. Models which may account for the combined ultraviolet, optical, and near-IR spectra of HHs are briefly analyzed. 35 references

  17. Realization of a gamma multiplicity filter and gamma multiplicity measurements

    International Nuclear Information System (INIS)

    Azgui, F.

    1981-12-01

    A gamma multiplicity filter for the study of reaction mechanism has been realised. It's composed of six NaI(Tl) counters. The flexibility of the geometry allows many configurations. This set up has been tested with gamma radioactive sources and with the 252 Cf source to resolve problems of gamma-efficiency of the NaI(Tl) counters and the contamination of neutrons in these detectors. A logical electronic unit (Encodeur) has been constructed and the around electronic has been developped. This gamma multiplicity filter has been coupled with a detector of high resolution Ge(Li), and used in two reactions: 12 C + 55 Mn at E( 12 C) = 54 MeV; α + 63 Cu at E(α) = 52 MeV. The dominant process is the fusion-evaporation. The compound nucleus 67 Ga, is formed at the same excitation energy. The values of multiplicities Msub(γ) have been extracted using a program based on the formalism of W.J. Ockels. The fractionalization of the angular momentum is well observed for some residual nuclei ( 63 Zn, 64 Zn, 65 Zn), and for each residual nucleus, the average gamma multiplicity is lower with projectile α than that with projectile 12 C. For the most strongly output channel p2n, an entry point for the 64 Zn has been determined in the reactions. All these observations are in good agreement with those published, in the same region (f-p shell) of nuclei. This set up can be coupled with different central detector as, ''X'', neutrons charged particles detectors, and will be used with the new machine SARA to make a systematic study of transfer of angular momentum to the fragments at 30 MeV/A [fr

  18. Occlusion Handling in Videos Object Tracking: A Survey

    International Nuclear Information System (INIS)

    Lee, B Y; Liew, L H; Cheah, W S; Wang, Y C

    2014-01-01

    Object tracking in video has been an active research since for decades. This interest is motivated by numerous applications, such as surveillance, human-computer interaction, and sports event monitoring. Many challenges related to tracking objects still remain, this can arise due to abrupt object motion, changing appearance patterns of objects and the scene, non-rigid object structures and most significant are occlusion of tracked object be it object-to-object or object-to-scene occlusions. Generally, occlusion in object tracking occur under three situations: self-occlusion, inter-object occlusion by background scene structure. Self-occlusion occurs most frequently while tracking articulated objects when one part of the object occludes another. Inter-object occlusion occurs when two objects being tracked occlude each other whereas occlusion by the background occurs when a structure in the background occludes the tracked objects. Typically, tracking methods handle occlusion by modelling the object motion using linear and non-linear dynamic models. The derived models will be used to continuously predicting the object location when a tracked object is occluded until the object reappears. Example of these method are Kalman filtering and Particle filtering trackers. Researchers have also utilised other features to resolved occlusion, for example, silhouette projections, colour histogram and optical flow. We will present some result from a previously conducted experiment when tracking single object using Kalman filter, Particle filter and Mean Shift trackers under various occlusion situation in this paper. We will also review various other occlusion handling methods that involved using multiple cameras. In a nutshell, the goal of this paper is to discuss in detail the problem of occlusion in object tracking and review the state of the art occlusion handling methods, classify them into different categories, and identify new trends. Moreover, we discuss the important

  19. Occlusion Handling in Videos Object Tracking: A Survey

    Science.gov (United States)

    Lee, B. Y.; Liew, L. H.; Cheah, W. S.; Wang, Y. C.

    2014-02-01

    Object tracking in video has been an active research since for decades. This interest is motivated by numerous applications, such as surveillance, human-computer interaction, and sports event monitoring. Many challenges related to tracking objects still remain, this can arise due to abrupt object motion, changing appearance patterns of objects and the scene, non-rigid object structures and most significant are occlusion of tracked object be it object-to-object or object-to-scene occlusions. Generally, occlusion in object tracking occur under three situations: self-occlusion, inter-object occlusion by background scene structure. Self-occlusion occurs most frequently while tracking articulated objects when one part of the object occludes another. Inter-object occlusion occurs when two objects being tracked occlude each other whereas occlusion by the background occurs when a structure in the background occludes the tracked objects. Typically, tracking methods handle occlusion by modelling the object motion using linear and non-linear dynamic models. The derived models will be used to continuously predicting the object location when a tracked object is occluded until the object reappears. Example of these method are Kalman filtering and Particle filtering trackers. Researchers have also utilised other features to resolved occlusion, for example, silhouette projections, colour histogram and optical flow. We will present some result from a previously conducted experiment when tracking single object using Kalman filter, Particle filter and Mean Shift trackers under various occlusion situation in this paper. We will also review various other occlusion handling methods that involved using multiple cameras. In a nutshell, the goal of this paper is to discuss in detail the problem of occlusion in object tracking and review the state of the art occlusion handling methods, classify them into different categories, and identify new trends. Moreover, we discuss the important

  20. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    Science.gov (United States)

    Brown, Jr., R. Malcolm; Barnes, Zack [Austin, TX; Sawatari, Chie [Shizuoka, JP; Kondo, Tetsuo [Kukuoka, JP

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  1. Emission line spectra of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Brugel, E.W.; Boehm, K.H.; Mannery, E.

    1981-01-01

    Spectrophotometric data have been obtained for 12 Herbig-Haro nebulae with the multichannel spectrometer on the Mt. Palomar 5.08 m telescope and with the image intensified dissector scanner on the Kitt Peak 2.13 m telescope. Optical emission line fluxes are presented for the following Herbig-Haro objects: H-H 1 (NW), H-H 1 (SE), H-H 2A, H-H 2G, H-H 2H, H-H 3, H-H 7, H-H 11, H-H 24A, H-H 30, H-H 32, and H-H 40. Values for the electron temperature and electron density have been determined for 10 of these condensations. Significant inhomogeneities in the line-forming regions of these H-H objects are indicated by the derived N/sub e/-T/sub e/ diagrams. Empirical two-component density models have been constructed to interpret the emission line spectra of the five brightest condensations. Slightly less satisfactory homogeneous models are presented for the remaining five objects

  2. Auditory memory can be object based.

    Science.gov (United States)

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  3. Bi-objective optimization of a multiple-target active debris removal mission

    Science.gov (United States)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed

  4. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-06-01

    Full Text Available Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i generation of a three-dimensional (3D human model; (ii human object-based automatic scene calibration; and (iii metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.

  5. An object model for beamline descriptions

    International Nuclear Information System (INIS)

    Hill, B.W.; Martono, H.; Gillespie, J.S.

    1997-01-01

    Translation of beamline model descriptions between different accelerator codes presents a unique challenge due to the different representations used for various elements and subsystems. These differences range from simple units conversions to more complex translations involving multiple beamline components. A representation of basic accelerator components is being developed in order to define a meta-structure from which beamline models, in different codes, can be described and to facilitate the translation of models between these codes. Sublines of basic components will be used to represent more complex beamline descriptions and bridge the gap between codes which may represent a beamline element as a single entity, and those which use multiple elements to describe the same physical device. A C++ object model for supporting this beamline description and a grammar for describing beamlines in terms of these components is being developed. The object model will support a common graphic user interface and translation filters for representing native beamline descriptions for a variety of accelerator codes. An overview of our work on the object model for beamline descriptions is presented here. copyright 1997 American Institute of Physics

  6. A study on the secondary electrons in a clinical electron beam

    International Nuclear Information System (INIS)

    Krithivas, G.; Rao, S.N.

    1989-01-01

    The central axis dose of a 12 MeV clinical electron beam is investigated in terms of an axial component due to primary electrons in the central ray and a lateral component due to secondary electrons originating from multiple scattering of electrons in the off-axis rays. To this effect secondary electron fluence measurements in a polystyrene medium irradiated with a collimated beam are made with a sensitive diode detector. This leads to a construction of secondary electron depth-dose profiles for beam sizes of diameters ranging from 1.7 to 17.4 cm. The results indicate that the lateral electrons account for 25% of the dose in the therapeutic region. For these electrons, the depth of dose maximum is correlated with diffusion depth and maximum lateral excursion in the medium. Dose component due to backscatter electrons at depths is also investigated using a thin-window parallel-plate ion chamber. The role of lateral and backscatter electrons in characterising central axis per cent depth-dose is discussed. (author)

  7. Identification of uncommon objects in containers

    Science.gov (United States)

    Bremer, Peer-Timo; Kim, Hyojin; Thiagarajan, Jayaraman J.

    2017-09-12

    A system for identifying in an image an object that is commonly found in a collection of images and for identifying a portion of an image that represents an object based on a consensus analysis of segmentations of the image. The system collects images of containers that contain objects for generating a collection of common objects within the containers. To process the images, the system generates a segmentation of each image. The image analysis system may also generate multiple segmentations for each image by introducing variations in the selection of voxels to be merged into a segment. The system then generates clusters of the segments based on similarity among the segments. Each cluster represents a common object found in the containers. Once the clustering is complete, the system may be used to identify common objects in images of new containers based on similarity between segments of images and the clusters.

  8. Cognitive object recognition system (CORS)

    Science.gov (United States)

    Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy

    2010-04-01

    We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.

  9. Neural Networks for Segregation of Multiple Objects: Visual Figure-Ground Separation and Auditory Pitch Perception.

    Science.gov (United States)

    Wyse, Lonce

    An important component of perceptual object recognition is the segmentation into coherent perceptual units of the "blooming buzzing confusion" that bombards the senses. The work presented herein develops neural network models of some key processes of pre-attentive vision and audition that serve this goal. A neural network model, called an FBF (Feature -Boundary-Feature) network, is proposed for automatic parallel separation of multiple figures from each other and their backgrounds in noisy images. Figure-ground separation is accomplished by iterating operations of a Boundary Contour System (BCS) that generates a boundary segmentation of a scene, and a Feature Contour System (FCS) that compensates for variable illumination and fills-in surface properties using boundary signals. A key new feature is the use of the FBF filling-in process for the figure-ground separation of connected regions, which are subsequently more easily recognized. The new CORT-X 2 model is a feed-forward version of the BCS that is designed to detect, regularize, and complete boundaries in up to 50 percent noise. It also exploits the complementary properties of on-cells and off -cells to generate boundary segmentations and to compensate for boundary gaps during filling-in. In the realm of audition, many sounds are dominated by energy at integer multiples, or "harmonics", of a fundamental frequency. For such sounds (e.g., vowels in speech), the individual frequency components fuse, so that they are perceived as one sound source with a pitch at the fundamental frequency. Pitch is integral to separating auditory sources, as well as to speaker identification and speech understanding. A neural network model of pitch perception called SPINET (SPatial PItch NETwork) is developed and used to simulate a broader range of perceptual data than previous spectral models. The model employs a bank of narrowband filters as a simple model of basilar membrane mechanics, spectral on-center off-surround competitive

  10. General object recognition is specific: Evidence from novel and familiar objects.

    Science.gov (United States)

    Richler, Jennifer J; Wilmer, Jeremy B; Gauthier, Isabel

    2017-09-01

    In tests of object recognition, individual differences typically correlate modestly but nontrivially across familiar categories (e.g. cars, faces, shoes, birds, mushrooms). In theory, these correlations could reflect either global, non-specific mechanisms, such as general intelligence (IQ), or more specific mechanisms. Here, we introduce two separate methods for effectively capturing category-general performance variation, one that uses novel objects and one that uses familiar objects. In each case, we show that category-general performance variance is unrelated to IQ, thereby implicating more specific mechanisms. The first approach examines three newly developed novel object memory tests (NOMTs). We predicted that NOMTs would exhibit more shared, category-general variance than familiar object memory tests (FOMTs) because novel objects, unlike familiar objects, lack category-specific environmental influences (e.g. exposure to car magazines or botany classes). This prediction held, and remarkably, virtually none of the substantial shared variance among NOMTs was explained by IQ. Also, while NOMTs correlated nontrivially with two FOMTs (faces, cars), these correlations were smaller than among NOMTs and no larger than between the face and car tests themselves, suggesting that the category-general variance captured by NOMTs is specific not only relative to IQ, but also, to some degree, relative to both face and car recognition. The second approach averaged performance across multiple FOMTs, which we predicted would increase category-general variance by averaging out category-specific factors. This prediction held, and as with NOMTs, virtually none of the shared variance among FOMTs was explained by IQ. Overall, these results support the existence of object recognition mechanisms that, though category-general, are specific relative to IQ and substantially separable from face and car recognition. They also add sensitive, well-normed NOMTs to the tools available to study

  11. The Case Of The Elusive Electron Cloud

    CERN Multimedia

    2001-01-01

    Fig. 1 Electron cloud following a controlled beam bump. 'Elementary my dear Watson, you see this footprint proves it was the butler in the foyer with the butcher's knife.' Sir Arthur Conan Doyle's Sherlock Holmes may at first appear a long way from particle physics, but first appearances are often deceiving... The mysteries behind the 'Electron Cloud Effect', a dangerous electron multiplication phenomenon which could possibly limit the LHC's performance, have recently been under a detective level investigation that is yielding data that would make even the valiant Holmes balk. The electron cloud, a group of free floating electrons in the collider, is caused by electron multiplication on the vacuum chamber wall and was first observed in 1976. The cloud that develops is a serious problem because it can lead to beam growth, increased gas release from the collider surface, and a supplementary heat load to the LHC cryogenic system. The phenomenon has been observed since 1999 in the SPS where unexpected pressure...

  12. Assessment and Instruction of Object Permanence in Children with Blindness and Multiple Disabilities

    Science.gov (United States)

    Bruce, Susan M.; Vargas, Claudia

    2012-01-01

    Introduction: This article discusses the impact of blindness and low vision on the development of object permanence and provides suggestions for assessment and instruction. Methods: The reviewed literature was identified by searching both ERIC and Psych Info using combinations of search terms such as "object permanence" and "visual…

  13. Practical integrated design of a condenser-objective lens for transmission electron microscope

    International Nuclear Information System (INIS)

    Li Wenping; Wu Jian; Zhou Zhen; Gui Lijiang; Han Li

    2009-01-01

    A condenser-objective lens is designed through combination of separating and integrating to consider the effect of the front condenser field on its objective performance. A practical lens model including magnetic pole piece, magnetic circuit and coil windings is built to optimize its rear field. The front field can be integrated into the rear one by simply adjusting the position of the specimen and the excitation on the condenser-objective lens. Optical performance of the integrated lens is researched as both a condenser lens and an imaging one. The total aberrations at the specimen plane are 0.01nm under STEM operation mode and its spherical aberration coefficient is 1.5mm when being an imaging objective lens, which can meet for high resolution microanalysis and TEM imaging.

  14. Multi-objective optimization using genetic algorithms: A tutorial

    International Nuclear Information System (INIS)

    Konak, Abdullah; Coit, David W.; Smith, Alice E.

    2006-01-01

    Multi-objective formulations are realistic models for many complex engineering optimization problems. In many real-life problems, objectives under consideration conflict with each other, and optimizing a particular solution with respect to a single objective can result in unacceptable results with respect to the other objectives. A reasonable solution to a multi-objective problem is to investigate a set of solutions, each of which satisfies the objectives at an acceptable level without being dominated by any other solution. In this paper, an overview and tutorial is presented describing genetic algorithms (GA) developed specifically for problems with multiple objectives. They differ primarily from traditional GA by using specialized fitness functions and introducing methods to promote solution diversity

  15. Least squares reverse time migration of controlled order multiples

    Science.gov (United States)

    Liu, Y.

    2016-12-01

    Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).

  16. Label-free, single-object sensing with a microring resonator: FDTD simulation.

    Science.gov (United States)

    Nguyen, Dan T; Norwood, Robert A

    2013-01-14

    Label-free, single-object sensing with a microring resonator is investigated numerically using the finite difference time-domain (FDTD) method. A pulse with ultra-wide bandwidth that spans over several resonant modes of the ring and of the sensing object is used for simulation, enabling a single-shot simulation of the microring sensing. The FDTD simulation not only can describe the circulation of the light in a whispering-gallery-mode (WGM) microring and multiple interactions between the light and the sensing object, but also other important factors of the sensing system, such as scattering and radiation losses. The FDTD results show that the simulation can yield a resonant shift of the WGM cavity modes. Furthermore, it can also extract eigenmodes of the sensing object, and therefore information from deep inside the object. The simulation method is not only suitable for a single object (single molecule, nano-, micro-scale particle) but can be extended to the problem of multiple objects as well.

  17. Multi-Feature Based Multiple Landmine Detection Using Ground Penetration Radar

    Directory of Open Access Journals (Sweden)

    S. Park

    2014-06-01

    Full Text Available This paper presents a novel method for detection of multiple landmines using a ground penetrating radar (GPR. Conventional algorithms mainly focus on detection of a single landmine, which cannot linearly extend to the multiple landmine case. The proposed algorithm is composed of four steps; estimation of the number of multiple objects buried in the ground, isolation of each object, feature extraction and detection of landmines. The number of objects in the GPR signal is estimated by using the energy projection method. Then signals for the objects are extracted by using the symmetry filtering method. Each signal is then processed for features, which are given as input to the support vector machine (SVM for landmine detection. Three landmines buried in various ground conditions are considered for the test of the proposed method. They demonstrate that the proposed method can successfully detect multiple landmines.

  18. On the effect of model parameters on forecast objects

    Science.gov (United States)

    Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott

    2018-04-01

    Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map. The field for some quantities generally consists of spatially coherent and disconnected objects. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.

  19. Effect of multiple austenitizing treatments on HT-9 steels

    International Nuclear Information System (INIS)

    Emigh, R.A.

    1985-12-01

    The effect of multiple austenitizing treatments on the toughness of an Fe-12Cr-1.0Mo-0.5W-0.3V (HT-9) steel was studied. The resulting microstructures were characterized by their mechanical properties, precipitated carbide distribution, and fracture surface appearance. It was proposed that multiple transformations would refine the martensite structure and improve toughness. Optical and scanning electron microscopic observations revealed that the martensite packet structure was somewhat refined by a second austenite transformation. Transmission electron microscopy studies of carbon extraction replicas showed that this multiple step treatment had eliminated grain boundary carbide films seen in single treated specimens on prior austenite grain boundaries. The 0.2% yield strength, tensile strength, and elongation were relatively unchanged, but the toughness measured by fatigue pre-cracked Charpy impact tests increased for the multiple step specimens

  20. Decision Support for Planning of Multimodal Transportation with Multiple Objectives

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    phase, and considers passenger inconvenience at transfers at the same time. The paper presents a mathematical model of the problem, and the implementation of a large neighbourhood search solution procedure. The problem is solved for a real-life based problem instance, containing eight bus lines......-known issues. They both originate in the world of multimodality, and deal with problems that arise as a consequence of the combined use of several modes. The thesis introduces the Double Travelling Salesman Problem with Multiple Stacks (DTSPMS), which is a problem that combines routing and last...... compare to solutions of the regular Travelling Salesman Problem. Next, two papers are presented, introducing respectively heuristic and exact solution procedures for the problem. The heuristic approach tests a variety of metaheuristic solution approaches, of which a large neighbourhood search obtains...

  1. Superluminal motion of extragalactic objects

    International Nuclear Information System (INIS)

    Matveenko, L.I.

    1983-01-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex strUcture of Seyfert galaxies quasars and lacertae ob ects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronoUs radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation

  2. Object-Relational Management of Multiply Represented Geographic Entities

    DEFF Research Database (Denmark)

    Friis-Christensen, Anders; Jensen, Christian Søndergaard

    2003-01-01

    Multiple representation occurs when information about the same geographic entity is represented electronically more than once. This occurs frequently in practice, and it invariably results in the occurrence of inconsistencies among the different representations. We propose to resolve this situation...... by introducing a multiple representation management system (MRMS), the schema of which includes rules that specify how to identify representations of the same entity, rules that specify consistency requirements, and rules used to restore consistency when necessary. In this paper, we demonstrate by means...

  3. Attention should be given to multiplicity issues in systematic reviews

    DEFF Research Database (Denmark)

    Bender, R.; Bunce, C.; Clarke, M.

    2008-01-01

    OBJECTIVE: The objective of this paper is to describe the problem of multiple comparisons in systematic reviews and to provide some guidelines on how to deal with it in practice. STUDY DESIGN AND SETTING: We describe common reasons for multiplicity in systematic reviews, and present some examples...

  4. Detection and Localization of Subsurface Two-Dimensional Metallic Objects

    Science.gov (United States)

    Meschino, S.; Pajewski, L.; Schettini, G.

    2009-04-01

    "Roma Tre" University, Applied Electronics Dept.v. Vasca Navale 84, 00146 Rome, Italy Non-invasive identification of buried objects in the near-field of a receiver array is a subject of great interest, due to its application to the remote sensing of the earth's subsurface, to the detection of landmines, pipes, conduits, to the archaeological site characterization, and more. In this work, we present a Sub-Array Processing (SAP) approach for the detection and localization of subsurface perfectly-conducting circular cylinders. We consider a plane wave illuminating the region of interest, which is assumed to be a homogeneous, unlossy medium of unknown permittivity containing one or more targets. In a first step, we partition the receiver array so that the field scattered from the targets result to be locally plane at each sub-array. Then, we apply a Direction of Arrival (DOA) technique to obtain a set of angles for each locally plane wave, and triangulate these directions obtaining a collection of crossing crowding in the expected object locations [1]. We compare several DOA algorithms such as the traditional Bartlett and Capon Beamforming, the Pisarenko Harmonic Decomposition (PHD), the Minimum-Norm method, the Multiple Signal Classification (MUSIC) and the Estimation of Signal Parameters via Rotational Techinque (ESPRIT) [2]. In a second stage, we develop a statistical Poisson based model to manage the crossing pattern in order to extract the probable target's centre position. In particular, if the crossings are Poisson distributed, it is possible to feature two different distribution parameters [3]. These two parameters perform two density rate for the crossings, so that we can previously divide the crossing pattern in a certain number of equal-size windows and we can collect the windows of the crossing pattern with low rate parameters (that probably are background windows) and remove them. In this way we can consider only the high rate parameter windows (that most

  5. A novel approach for multiple mobile objects path planning: Parametrization method and conflict resolution strategy

    International Nuclear Information System (INIS)

    Ma, Yong; Wang, Hongwei; Zamirian, M.

    2012-01-01

    We present a new approach containing two steps to determine conflict-free paths for mobile objects in two and three dimensions with moving obstacles. Firstly, the shortest path of each object is set as goal function which is subject to collision-avoidance criterion, path smoothness, and velocity and acceleration constraints. This problem is formulated as calculus of variation problem (CVP). Using parametrization method, CVP is converted to time-varying nonlinear programming problems (TNLPP) and then resolved. Secondly, move sequence of object is assigned by priority scheme; conflicts are resolved by multilevel conflict resolution strategy. Approach efficiency is confirmed by numerical examples. -- Highlights: ► Approach with parametrization method and conflict resolution strategy is proposed. ► Approach fits for multi-object paths planning in two and three dimensions. ► Single object path planning and multi-object conflict resolution are orderly used. ► Path of each object obtained with parameterization method in the first phase. ► Conflict-free paths gained by multi-object conflict resolution in the second phase.

  6. Random clustering ferns for multimodal object recognition

    OpenAIRE

    Villamizar Vergel, Michael Alejandro; Garrell Zulueta, Anais; Sanfeliu Cortés, Alberto; Moreno-Noguer, Francesc

    2017-01-01

    The final publication is available at link.springer.com We propose an efficient and robust method for the recognition of objects exhibiting multiple intra-class modes, where each one is associated with a particular object appearance. The proposed method, called random clustering ferns, combines synergically a single and real-time classifier, based on the boosted assembling of extremely randomized trees (ferns), with an unsupervised and probabilistic approach in order to recognize efficient...

  7. Neural dynamics of object-based multifocal visual spatial attention and priming: object cueing, useful-field-of-view, and crowding.

    Science.gov (United States)

    Foley, Nicholas C; Grossberg, Stephen; Mingolla, Ennio

    2012-08-01

    How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued locations? What factors underlie individual differences in the timing and frequency of such attentional shifts? How do transient and sustained spatial attentional mechanisms work and interact? How can volition, mediated via the basal ganglia, influence the span of spatial attention? A neural model is developed of how spatial attention in the where cortical stream coordinates view-invariant object category learning in the what cortical stream under free viewing conditions. The model simulates psychological data about the dynamics of covert attention priming and switching requiring multifocal attention without eye movements. The model predicts how "attentional shrouds" are formed when surface representations in cortical area V4 resonate with spatial attention in posterior parietal cortex (PPC) and prefrontal cortex (PFC), while shrouds compete among themselves for dominance. Winning shrouds support invariant object category learning, and active surface-shroud resonances support conscious surface perception and recognition. Attentive competition between multiple objects and cues simulates reaction-time data from the two-object cueing paradigm. The relative strength of sustained surface-driven and fast-transient motion-driven spatial attention controls individual differences in reaction time for invalid cues. Competition between surface-driven attentional shrouds controls individual differences in detection rate of peripheral targets in useful-field-of-view tasks. The model proposes how the strength of competition can be mediated, though learning or momentary changes in volition, by the basal ganglia. A new explanation of

  8. Coding Transparency in Object-Based Video

    DEFF Research Database (Denmark)

    Aghito, Shankar Manuel; Forchhammer, Søren

    2006-01-01

    A novel algorithm for coding gray level alpha planes in object-based video is presented. The scheme is based on segmentation in multiple layers. Different coders are specifically designed for each layer. In order to reduce the bit rate, cross-layer redundancies as well as temporal correlation are...

  9. Vibrational and electronic excitation of hexatriacontane thin films by low energy electron impact

    International Nuclear Information System (INIS)

    Vilar, M.R.; Schott, M.; Pfluger, P.

    1990-01-01

    Thin polycrystalline films of hexatriacontane (HTC) were irradiated with low energy (E=0.5--15 eV) electrons, and off-specular backscattered electron spectra were measured. Below E∼7 eV, single and multiple vibrational excitations only are observed, which relax the electrons down to the bottom of the HTC conduction band. Due to the negative electron affinity of HTC, thermal electrons are emitted into vacuum. Structure in the backscattered electron current at kinetic energies about 1.5 and 4 eV are associated to conduction band density of states. Above E∼7 eV, the dominant losses correspond to electronic excitations, excitons, or above a threshold (energy of the electron inside the HTC film) at 9.2±0.1 eV, electron--hole pair generation. The latter process is very efficient and reaches a yield of the order of one ∼11 eV. Evidence for chemical reaction above E∼4 eV is observed

  10. Effects of Hydrostatic Pressure and Electric Field on the Electron-Related Optical Properties in GaAs Multiple Quantum Well.

    Science.gov (United States)

    Ospina, D A; Mora-Ramos, M E; Duque, C A

    2017-02-01

    The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses.

  11. Neo: an object model for handling electrophysiology data in multiple formats

    Directory of Open Access Journals (Sweden)

    Samuel eGarcia

    2014-02-01

    Full Text Available Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs.A common representation of the core data would improve interoperability and facilitate data-sharing.To that end, we propose here a language-independent object model, named Neo, suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language.In addition to representing electrophysiology data in memory for the purposes of analysis and visualisation, the Python implementation provides a set of input/output (IO modules for reading/writing the data from/to a variety of commonly used file formats.Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB.Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation.For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualisation.Software for neurophysiology data analysis and visualisation built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in

  12. Object similarity affects the perceptual strategy underlying invariant visual object recognition in rats

    Directory of Open Access Journals (Sweden)

    Federica Bianca Rosselli

    2015-03-01

    Full Text Available In recent years, a number of studies have explored the possible use of rats as models of high-level visual functions. One central question at the root of such an investigation is to understand whether rat object vision relies on the processing of visual shape features or, rather, on lower-order image properties (e.g., overall brightness. In a recent study, we have shown that rats are capable of extracting multiple features of an object that are diagnostic of its identity, at least when those features are, structure-wise, distinct enough to be parsed by the rat visual system. In the present study, we have assessed the impact of object structure on rat perceptual strategy. We trained rats to discriminate between two structurally similar objects, and compared their recognition strategies with those reported in our previous study. We found that, under conditions of lower stimulus discriminability, rat visual discrimination strategy becomes more view-dependent and subject-dependent. Rats were still able to recognize the target objects, in a way that was largely tolerant (i.e., invariant to object transformation; however, the larger structural and pixel-wise similarity affected the way objects were processed. Compared to the findings of our previous study, the patterns of diagnostic features were: i smaller and more scattered; ii only partially preserved across object views; and iii only partially reproducible across rats. On the other hand, rats were still found to adopt a multi-featural processing strategy and to make use of part of the optimal discriminatory information afforded by the two objects. Our findings suggest that, as in humans, rat invariant recognition can flexibly rely on either view-invariant representations of distinctive object features or view-specific object representations, acquired through learning.

  13. Multisensory softness perceived compliance from multiple sources of information

    CERN Document Server

    Luca, Massimiliano Di

    2014-01-01

    Offers a unique multidisciplinary overview of how humans interact with soft objects and how multiple sensory signals are used to perceive material properties, with an emphasis on object deformability. The authors describe a range of setups that have been employed to study and exploit sensory signals involved in interactions with compliant objects as well as techniques to simulate and modulate softness - including a psychophysical perspective of the field. Multisensory Softness focuses on the cognitive mechanisms underlying the use of multiple sources of information in softness perception. D

  14. Acoustic features of objects matched by an echolocating bottlenose dolphin.

    Science.gov (United States)

    Delong, Caroline M; Au, Whitlow W L; Lemonds, David W; Harley, Heidi E; Roitblat, Herbert L

    2006-03-01

    The focus of this study was to investigate how dolphins use acoustic features in returning echolocation signals to discriminate among objects. An echolocating dolphin performed a match-to-sample task with objects that varied in size, shape, material, and texture. After the task was completed, the features of the object echoes were measured (e.g., target strength, peak frequency). The dolphin's error patterns were examined in conjunction with the between-object variation in acoustic features to identify the acoustic features that the dolphin used to discriminate among the objects. The present study explored two hypotheses regarding the way dolphins use acoustic information in echoes: (1) use of a single feature, or (2) use of a linear combination of multiple features. The results suggested that dolphins do not use a single feature across all object sets or a linear combination of six echo features. Five features appeared to be important to the dolphin on four or more sets: the echo spectrum shape, the pattern of changes in target strength and number of highlights as a function of object orientation, and peak and center frequency. These data suggest that dolphins use multiple features and integrate information across echoes from a range of object orientations.

  15. Study of distribution of electron density in heteropolymolybdates by method of X-ray electron spectroscopy

    International Nuclear Information System (INIS)

    Molchanov, V.N.; Kazanskij, L.P.; Torchenkova, E.A.; Spitsyn, V.I.

    1978-01-01

    X-ray electron spectra of some iso- and heteropolymolybdates relating to different structure types are investigated to study electron structure of complex polyoxyion-heteropolyanions. Binding energies of Modsub(5/2) and 01s-electrons in iso- and heteropolycompounds line are measured and their interdependence is detected. The effective charge of oxygen and molybdenum atoms in heteropolymolybdates increases with decreasing a number of external sphere cations per an oxygen atom and a number of Mo=0 multiple bonds

  16. Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.

    Science.gov (United States)

    Tombu, Michael; Seiffert, Adriane E

    2011-04-01

    People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.

  17. A permanent magnet electron beam spread system used for a low energy electron irradiation accelerator

    International Nuclear Information System (INIS)

    Huang Jiang; Xiong Yongqian; Chen Dezhi; Liu Kaifeng; Yang Jun; Li Dong; Yu Tiaoqin; Fan Mingwu; Yang Bo

    2014-01-01

    The development of irradiation processing industry brings about various types of irradiation objects and expands the irradiation requirements for better uniformity and larger areas. This paper proposes an innovative design of a permanent magnet electron beam spread system. By clarifying its operation principles, the author verifies the feasibility of its application in irradiation accelerators for industrial use with the examples of its application in electron accelerators with energy ranging from 300 keV to 1 MeV. Based on the finite element analyses of electromagnetic fields and the charged particle dynamics, the author also conducts a simulation of electron dynamics in magnetic field on a computer. The results indicate that compared with the traditional electron beam scanning system, this system boosts the advantages of a larger spread area, non-power supply, simple structure and low cost, etc., which means it is not only suitable for the irradiation of objects with the shape of tubes, strips and panels, but can also achieve a desirable irradiation performance on irregular constructed objects of large size. (authors)

  18. A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha

    2018-01-01

    It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

  19. The Initial Development of Object Knowledge by a Learning Robot.

    Science.gov (United States)

    Modayil, Joseph; Kuipers, Benjamin

    2008-11-30

    We describe how a robot can develop knowledge of the objects in its environment directly from unsupervised sensorimotor experience. The object knowledge consists of multiple integrated representations: trackers that form spatio-temporal clusters of sensory experience, percepts that represent properties for the tracked objects, classes that support efficient generalization from past experience, and actions that reliably change object percepts. We evaluate how well this intrinsically acquired object knowledge can be used to solve externally specified tasks including object recognition and achieving goals that require both planning and continuous control.

  20. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.

    Science.gov (United States)

    Dohi, Hideto; Kruit, Pieter

    2018-06-01

    Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed

  1. Multi-objective compared to single-objective optimization with application to model validation and uncertainty quantification

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Riegert, R.; Krosche, M.; Stekolschikov, K. [Scandpower Petroleum Technology GmbH, Hamburg (Germany); Fahimuddin, A. [Technische Univ. Braunschweig (Germany)

    2007-09-13

    History Matching in Reservoir Simulation, well location and production optimization etc. is generally a multi-objective optimization problem. The problem statement of history matching for a realistic field case includes many field and well measurements in time and type, e.g. pressure measurements, fluid rates, events such as water and gas break-throughs, etc. Uncertainty parameters modified as part of the history matching process have varying impact on the improvement of the match criteria. Competing match criteria often reduce the likelihood of finding an acceptable history match. It is an engineering challenge in manual history matching processes to identify competing objectives and to implement the changes required in the simulation model. In production optimization or scenario optimization the focus on one key optimization criterion such as NPV limits the identification of alternatives and potential opportunities, since multiple objectives are summarized in a predefined global objective formulation. Previous works primarily focus on a specific optimization method. Few works actually concentrate on the objective formulation and multi-objective optimization schemes have not yet been applied to reservoir simulations. This paper presents a multi-objective optimization approach applicable to reservoir simulation. It addresses the problem of multi-objective criteria in a history matching study and presents analysis techniques identifying competing match criteria. A Pareto-Optimizer is discussed and the implementation of that multi-objective optimization scheme is applied to a case study. Results are compared to a single-objective optimization method. (orig.)

  2. Evolution of binaries with compact objects in globular clusters

    OpenAIRE

    Ivanova, Natalia

    2017-01-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries...

  3. 2 D electron transport in selectively doped Ga As/Inx Ga1-x As multiple quantum well structures

    International Nuclear Information System (INIS)

    Kulbachinskii, V.A.; Kytin, V.G.; Babushkina, T.S.; Malkina, I.G.

    1996-01-01

    Photoluminescence, temperature dependence of conductivity (0.4 x Ga 1-x As multiple quantum well (MQW) structures were investigated. The dependence of electron mobility on the width of the quantum wells and temperature were measured. It was shown that in narrow MQW structures the value of mobility is restricted by interface roughness scattering. In wider MQW structures neither interface roughness scattering nor change impurity scattering can describe the values and temperature dependence of mobility. Negative magnetoresistance was observed. From detailed comparison between theory of weak localization and experiment the relaxation time of the wave function phase τ ψ and temperature dependence of τ ψ were evaluated. Quantum Hall effect was investigated in all samples at T=0.4-4.2 K in magnetic fields up to 40 T. (author). 9 refs., 5 figs., 1 tab

  4. A novel method for producing multiple ionization of noble gas

    International Nuclear Information System (INIS)

    Wang Li; Li Haiyang; Dai Dongxu; Bai Jiling; Lu Richang

    1997-01-01

    We introduce a novel method for producing multiple ionization of He, Ne, Ar, Kr and Xe. A nanosecond pulsed electron beam with large number density, which could be energy-controlled, was produced by incidence a focused 308 nm laser beam onto a stainless steel grid. On Time-of-Flight Mass Spectrometer, using this electron beam, we obtained multiple ionization of noble gas He, Ne, Ar and Xe. Time of fight mass spectra of these ions were given out. These ions were supposed to be produced by step by step ionization of the gas atoms by electron beam impact. This method may be used as a ideal soft ionizing point ion source in Time of Flight Mass Spectrometer

  5. Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging

    Science.gov (United States)

    Olczak, Eugene G (Inventor)

    2011-01-01

    An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.

  6. Model of charge-state distributions for electron cyclotron resonance ion source plasmas

    Directory of Open Access Journals (Sweden)

    D. H. Edgell

    1999-12-01

    Full Text Available A computer model for the ion charge-state distribution (CSD in an electron cyclotron resonance ion source (ECRIS plasma is presented that incorporates non-Maxwellian distribution functions, multiple atomic species, and ion confinement due to the ambipolar potential well that arises from confinement of the electron cyclotron resonance (ECR heated electrons. Atomic processes incorporated into the model include multiple ionization and multiple charge exchange with rate coefficients calculated for non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS. Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic potential profiles, further eliminating arbitrary user input to the model.

  7. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    Science.gov (United States)

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  8. The ALS Gun Electronics system

    International Nuclear Information System (INIS)

    Lo, C.C.

    1993-05-01

    The ALS Gun Electronics system has been designed to accommodate gun with a custom made socket and high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters

  9. The ALS gun electronics system

    International Nuclear Information System (INIS)

    Lo, C.C.

    1993-01-01

    The ALS Gun Electronics system has been designed to accommodate the gun with a custom made socket and a high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters

  10. Off-axis and inline electron holography: Experimental comparison

    International Nuclear Information System (INIS)

    Latychevskaia, Tatiana; Formanek, Petr; Koch, C.T.; Lubk, Axel

    2010-01-01

    Electron holography is a very powerful technique for mapping static electric and magnetic potentials down to atomic resolution. While electron holography is commonly considered synonymous with its off-axis variant in the high energy electron microscopy community, inline electron holography is widely applied in low-energy electron microscopy, where the realization of the off-axis setup is still an experimental challenge. This paper demonstrates that both inline and off-axis holography may be used to recover amplitude and phase shift of the very same object, in our example latex spheres of 90 and 200 nm in diameter, producing very similar results, provided the object does not charge under the electron beam.

  11. Real-space multiple-scattering theory and the electronic structure of systems with full or reduced symmetry

    International Nuclear Information System (INIS)

    Zhang, X.; Gonis, A.; MacLaren, J.M.

    1989-01-01

    We present a new real-space multiple-scattering-theory method for the solution of the Schroedinger equation and the calculation of the electronic structure of solid materials with full or reduced symmetry. The method is based on the concept of semi-infinite periodicity (SIP), rather than translational invariance, and on the property of removal invariance of the scattering matrix of systems with SIP. This latter property allows one to replace the usual Brillouin-zone integrals in reciprocal space by a self-consistency equation for the t matrix, which is sufficient for the determination of the Green function and related properties. Because it is developed entirely in direct space, the method provides a unified treatment of the electronic structure of bulk materials, surfaces, interfaces and grain boundaries (coherent or incoherent), impurities of interstitial or substitutional kinds, and can be easily extended to treat concentrated, substitutionally disordered alloys. One of its advantages over methods based on Bloch's theorem and reciprocal space is the great simplicity of setting up and running the associated computer codes even for complex structures, and structures with reduced or no symmetry that lie outside the realm of applicability of conventional methods. We present the results of model calculations for one-dimensional and three-dimensional model systems as well as for three-dimensional realistic materials. Where appropriate, these results are compared with those obtained through conventional techniques, and give an indication of the method's flexibility and reliability. Our applications of this method to this point are discussed, and our plans for future development are presented

  12. Tracking Object Existence From an Autonomous Patrol Vehicle

    Science.gov (United States)

    Wolf, Michael; Scharenbroich, Lucas

    2011-01-01

    An autonomous vehicle patrols a large region, during which an algorithm receives measurements of detected potential objects within its sensor range. The goal of the algorithm is to track all objects in the region over time. This problem differs from traditional multi-target tracking scenarios because the region of interest is much larger than the sensor range and relies on the movement of the sensor through this region for coverage. The goal is to know whether anything has changed between visits to the same location. In particular, two kinds of alert conditions must be detected: (1) a previously detected object has disappeared and (2) a new object has appeared in a location already checked. For the time an object is within sensor range, the object can be assumed to remain stationary, changing position only between visits. The problem is difficult because the upstream object detection processing is likely to make many errors, resulting in heavy clutter (false positives) and missed detections (false negatives), and because only noisy, bearings-only measurements are available. This work has three main goals: (1) Associate incoming measurements with known objects or mark them as new objects or false positives, as appropriate. For this, a multiple hypothesis tracker was adapted to this scenario. (2) Localize the objects using multiple bearings-only measurements to provide estimates of global position (e.g., latitude and longitude). A nonlinear Kalman filter extension provides these 2D position estimates using the 1D measurements. (3) Calculate the probability that a suspected object truly exists (in the estimated position), and determine whether alert conditions have been triggered (for new objects or disappeared objects). The concept of a probability of existence was created, and a new Bayesian method for updating this probability at each time step was developed. A probabilistic multiple hypothesis approach is chosen because of its superiority in handling the

  13. Multiple-Objective Particle Swarm Optimization for Multi-Head Beam-Type Surface Mounting Machines

    NARCIS (Netherlands)

    Torabi, S.A.; Hamedi, M.; Ashayeri, J.

    2010-01-01

    The growing demand for electronic devices has made the manufacturing of printed circuit boards (PCBs) a promising industry over the last decades. As the demand for printed circuit boards increases, the industry becomes more dependent on highly automated assembly processes using Surface Mounting

  14. Voice analysis as an objective state marker in bipolar disorder

    DEFF Research Database (Denmark)

    Faurholt-Jepsen, M.; Busk, Jonas; Frost, M.

    2016-01-01

    Changes in speech have been suggested as sensitive and valid measures of depression and mania in bipolar disorder. The present study aimed at investigating (1) voice features collected during phone calls as objective markers of affective states in bipolar disorder and (2) if combining voice...... features, automatically generated objective smartphone data on behavioral activities and electronic self-monitored data were collected from 28 outpatients with bipolar disorder in naturalistic settings on a daily basis during a period of 12 weeks. Depressive and manic symptoms were assessed using...... and electronic self-monitored data increased the accuracy, sensitivity and specificity of classification of affective states slightly. Voice features collected in naturalistic settings using smartphones may be used as objective state markers in patients with bipolar disorder....

  15. Multiplicities and parton dynamics

    International Nuclear Information System (INIS)

    Knuteson, R.O.

    1987-01-01

    The production of strongly interacting particles from the annihilation of electrons and positrons at high energies is studied, with emphasis on the multiplicity, or number, of particles produced. A probabilistic branching model based on the leading log approximation in QCD is formulated to predict the evolution of particle number with the energy of collision. Direct integration of a master equation for the probabilities allows a comparison to the experimentally observed particle distribution. The production of strongly interacting particles from proton-antiproton collisions is also considered. A model for the production of particles from parton-parton collisions is presented and the growth in multiplicity with energy demonstrated

  16. Making the Most of Multiple Choice

    Science.gov (United States)

    Brookhart, Susan M.

    2015-01-01

    Multiple-choice questions draw criticism because many people perceive they test only recall or atomistic, surface-level objectives and do not require students to think. Although this can be the case, it does not have to be that way. Susan M. Brookhart suggests that multiple-choice questions are a useful part of any teacher's questioning repertoire…

  17. Multi-Label Object Categorization Using Histograms of Global Relations

    DEFF Research Database (Denmark)

    Mustafa, Wail; Xiong, Hanchen; Kraft, Dirk

    2015-01-01

    In this paper, we present an object categorization system capable of assigning multiple and related categories for novel objects using multi-label learning. In this system, objects are described using global geometric relations of 3D features. We propose using the Joint SVM method for learning......). The experiments are carried out on a dataset of 100 objects belonging to 13 visual and action-related categories. The results indicate that multi-label methods are able to identify the relation between the dependent categories and hence perform categorization accordingly. It is also found that extracting...

  18. Evaluation of field emission properties from multiple-stacked Si quantum dots

    International Nuclear Information System (INIS)

    Takeuchi, Daichi; Makihara, Katsunori; Ohta, Akio; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2016-01-01

    Multiple-stacked Si quantum dots (QDs) with ultrathin SiO 2 interlayers were formed on ultrathin SiO 2 layers by repeating a process sequence consisting of the formation of Si-QDs by low pressure chemical vapor deposition using a SiH 4 gas and the surface oxidation and subsequent surface modification by remote hydrogen and oxygen plasmas, respectively. To clarify the electron emission mechanism from multiple-stacked Si-QDs covered with an ultrathin Au top electrode, the energy distribution of the emitted electrons and its electric field dependence was measured using a hemispherical electron energy analyzer in an X-ray photoelectron spectroscopy system under DC bias application to the multiple-stacked Si-QD structure. At − 6 V and over, the energy distributions reached a peak at ~ 2.5 eV with a tail toward the higher energy side. While the electron emission intensity was increased exponentially with an increase in the applied DC bias, there was no significant increase in the emission peak energy. The observed emission characteristics can be interpreted in terms of field emissions from the second and/or third topmost Si-QDs resulting from the electric concentration there. - Highlights: • Electron field emission from 6-fold stack of Si-QDs has been evaluated. • AFM measurements show the local electron emission from individual Si-QDs. • Impact of applied bias on the electron emission energy distribution was investigated.

  19. Failure of single electron descriptions of molecular orbital collision processes. [Electron promotion mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Elston, S.B.

    1978-01-01

    Inner-shell excitation occurring in low and moderate (keV range) energy collisions between light atomic and ionic systems is frequently describable in terms of molecular promotion mechanisms, which were extensively explored both theoretically and experimentally. The bulk of such studies have concentrated on processes understandable through the use of single- and independent-electron models. Nonetheless, it is possible to find cases of inner-shell excitation in relatively simple collision systems which involve nearly simultaneous multiple-electron transitions and transitions induced by inherently two-electron interactions. Evidence for these many- and nonindependent-electron phenomena in inner-shell excitation processes and the importance of considering such effects in the interpretation of collisionally induced excitation spectra is discussed. 13 references.

  20. Fast electrons from multi-electron dynamics in xenon clusters induced by inner-shell ionization

    International Nuclear Information System (INIS)

    Bostedt, Christoph; Thomas, Heiko; Hoener, Matthias; Moeller, Thomas; Saalmann, Ulf; Georgescu, Ionut; Gnodtke, Christian; Rost, Jan-Michael

    2010-01-01

    Fast electrons emitted from xenon clusters in strong femtosecond 90 eV pulses have been measured at the Free-electron Laser in Hamburg (FLASH). Energy absorption occurs mainly through atomic inner-shell photo-ionization. Photo-electrons are trapped in the strong Coulomb potential of the cluster ions and form a non-equilibrium plasma with supra-atomic density. Its equilibration through multiple energy-exchanging collisions within the entire cluster volume produces electrons with energies well beyond the dominant emission line of atomic xenon. Here, in contrast to traditional low-frequency laser plasma heating, the plasma gains energy from electrons delivered through massive single-photon excitation from bound states. Electron emission induced by thermalization of a non-equilibrium plasma is expected to be a general phenomenon occurring for strong atomic x-ray absorption in extended systems.

  1. Multi objective multi refinery optimization with environmental and catastrophic failure effects objectives

    Science.gov (United States)

    Khogeer, Ahmed Sirag

    2005-11-01

    Petroleum refining is a capital-intensive business. With stringent environmental regulations on the processing industry and declining refining margins, political instability, increased risk of war and terrorist attacks in which refineries and fuel transportation grids may be targeted, higher pressures are exerted on refiners to optimize performance and find the best combination of feed and processes to produce salable products that meet stricter product specifications, while at the same time meeting refinery supply commitments and of course making profit. This is done through multi objective optimization. For corporate refining companies and at the national level, Intea-Refinery and Inter-Refinery optimization is the second step in optimizing the operation of the whole refining chain as a single system. Most refinery-wide optimization methods do not cover multiple objectives such as minimizing environmental impact, avoiding catastrophic failures, or enhancing product spec upgrade effects. This work starts by carrying out a refinery-wide, single objective optimization, and then moves to multi objective-single refinery optimization. The last step is multi objective-multi refinery optimization, the objectives of which are analysis of the effects of economic, environmental, product spec, strategic, and catastrophic failure. Simulation runs were carried out using both MATLAB and ASPEN PIMS utilizing nonlinear techniques to solve the optimization problem. The results addressed the need to debottleneck some refineries or transportation media in order to meet the demand for essential products under partial or total failure scenarios. They also addressed how importing some high spec products can help recover some of the losses and what is needed in order to accomplish this. In addition, the results showed nonlinear relations among local and global objectives for some refineries. The results demonstrate that refineries can have a local multi objective optimum that does not

  2. A Block-Structure Concurrent Object-Oriented Language

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann

    1998-01-01

    The BETA programming language has been developed in the Scandinavian tradition for object-orientation based on Simula. In this tradition, support for modeling and design have been important design goals for programming language design. There has thus been two accompanying design criteria for BETA...... of conceptual means for understanding knowledge abuout the real world. It includes means such as concepts and phenomena, identification of objects, identification of classes, classification, generalization/specialization, multiple classification, refence- and part-of-composition, etc. In this paper we...

  3. Elastic scattering of low energy electrons by hydrogen molecule

    International Nuclear Information System (INIS)

    Freitas, L.C.G.; Mu-Tao, L.; Botelho, L.F.

    1987-01-01

    The coherent version of the Renormalized Multiple-Centre Potential Model (RMPM) has been extended to treat the elastic scattering of low energy electrons by H2 molecule. The intramolecular Multiple Scattering (MS) effect has also been included. The comparison against the experimental data shows that the inclusion of the MS improves significantly with experiment. The extension of the present method to study electron-polyatomic molecule interaction is also discussed. (author) [pt

  4. Fundamental principles of nanostructures and multiple exciton generation effect in quantum dots

    International Nuclear Information System (INIS)

    Turaeva, N.; Oksengendler, B.; Rashidova, S.

    2011-01-01

    In this work the theoretical aspects of the effect of multiple exciton generation in QDs has been studied. The statistic theory of multiple exciton generation in quantum dots is presented based on the Fermi approach to the problem of multiple generation of elementary particles at nucleon-nucleon collisions. Our calculations show that the quantum efficiencies of multiple exciton generation in various quantum dots at absorption of single photon are in a good agreement with the experimental data. The microscopic mechanism of this effect is based on the theory of electronic 'shaking'. In the work the deviation of averaged multiplicity of MEG effect from the Poisson law of fluctuations has been investigated. Besides, the role of interface electronic states of quantum dot and ligand has been considered by means of quantum mechanics. The size optimization of quantum dot has been arranged to receive the maximum multiplicity of MEG effect. (authors)

  5. Hemifield effects in multiple identity tracking.

    Directory of Open Access Journals (Sweden)

    Charlotte Hudson

    Full Text Available In everyday life, we often need to attentively track moving objects. A previous study has claimed that this tracking occurs independently in the left and right visual hemifields (Alvarez & Cavanagh, 2005, Psychological Science,16, 637-647. Specifically, it was shown that observers were much more accurate at tracking objects that were spread over both visual hemifields as opposed to when all were confined to a single visual hemifield. In that study, observers were not required to remember the identities of the objects. Conversely, in real life, there is seldom any benefit to tracking an object unless you can also recall its identity. It has been predicted that when observers are required to remember the identities of the tracked objects a bilateral advantage should no longer be observed (Oksama & Hyönä, 2008, Cognitive Psychology, 56, 237-283. We tested this prediction and found that a bilateral advantage still occurred, though it was not as strong as when observers were not required to remember the identities of the targets. Even in the later case we found that tracking was not completely independent in the two visual hemifields. We present a combined model of multiple object tracking and multiple identity tracking that can explain our data.

  6. Conditioning 3D object-based models to dense well data

    Science.gov (United States)

    Wang, Yimin C.; Pyrcz, Michael J.; Catuneanu, Octavian; Boisvert, Jeff B.

    2018-06-01

    Object-based stochastic simulation models are used to generate categorical variable models with a realistic representation of complicated reservoir heterogeneity. A limitation of object-based modeling is the difficulty of conditioning to dense data. One method to achieve data conditioning is to apply optimization techniques. Optimization algorithms can utilize an objective function measuring the conditioning level of each object while also considering the geological realism of the object. Here, an objective function is optimized with implicit filtering which considers constraints on object parameters. Thousands of objects conditioned to data are generated and stored in a database. A set of objects are selected with linear integer programming to generate the final realization and honor all well data, proportions and other desirable geological features. Although any parameterizable object can be considered, objects from fluvial reservoirs are used to illustrate the ability to simultaneously condition multiple types of geologic features. Channels, levees, crevasse splays and oxbow lakes are parameterized based on location, path, orientation and profile shapes. Functions mimicking natural river sinuosity are used for the centerline model. Channel stacking pattern constraints are also included to enhance the geological realism of object interactions. Spatial layout correlations between different types of objects are modeled. Three case studies demonstrate the flexibility of the proposed optimization-simulation method. These examples include multiple channels with high sinuosity, as well as fragmented channels affected by limited preservation. In all cases the proposed method reproduces input parameters for the object geometries and matches the dense well constraints. The proposed methodology expands the applicability of object-based simulation to complex and heterogeneous geological environments with dense sampling.

  7. Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation

    CSIR Research Space (South Africa)

    Greeff, M

    2008-06-01

    Full Text Available Many optimisation problems are multi-objective and change dynamically. Many methods use a weighted average approach to the multiple objectives. This paper introduces the usage of the vector evaluated particle swarm optimiser (VEPSO) to solve dynamic...

  8. Restricted active space spin-flip configuration interaction: theory and examples for multiple spin flips with odd numbers of electrons.

    Science.gov (United States)

    Zimmerman, Paul M; Bell, Franziska; Goldey, Matthew; Bell, Alexis T; Head-Gordon, Martin

    2012-10-28

    The restricted active space spin flip (RAS-SF) method is extended to allow ground and excited states of molecular radicals to be described at low cost (for small numbers of spin flips). RAS-SF allows for any number of spin flips and a flexible active space while maintaining pure spin eigenfunctions for all states by maintaining a spin complete set of determinants and using spin-restricted orbitals. The implementation supports both even and odd numbers of electrons, while use of resolution of the identity integrals and a shared memory parallel implementation allow for fast computation. Examples of multiple-bond dissociation, excited states in triradicals, spin conversions in organic multi-radicals, and mixed-valence metal coordination complexes demonstrate the broad usefulness of RAS-SF.

  9. Enhancement mode GaN-based multiple-submicron channel array gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors

    Science.gov (United States)

    Lee, Ching-Ting; Wang, Chun-Chi

    2018-04-01

    To study the function of channel width in multiple-submicron channel array, we fabricated the enhancement mode GaN-based gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) with a channel width of 450 nm and 195 nm, respectively. In view of the enhanced gate controllability in a narrower fin-channel structure, the transconductance was improved from 115 mS/mm to 151 mS/mm, the unit gain cutoff frequency was improved from 6.2 GHz to 6.8 GHz, and the maximum oscillation frequency was improved from 12.1 GHz to 13.1 GHz of the devices with a channel width of 195 nm, compared with the devices with a channel width of 450 nm.

  10. Pattern of Presentation of Multiple Organ Dysfunction Syndrome in ...

    African Journals Online (AJOL)

    Background: Multiple organ dysfunction syndrome is the sequential failure of several organ systems after a trigger event, like sepsis, massive transfusions, burns, trauma and cardiogenic shock. Aim and Objectives- The pattern of presentation of multiple organ dysfunction and the risk factors associated with multiple organ ...

  11. A discriminator with a current-sum multiplicity output for the PHENIX multiplicity vertex detector

    International Nuclear Information System (INIS)

    Smith, R.S.; Kennedy, E.J.; Jackson, R.G.

    1996-01-01

    A current output multiplicity discriminator for use in the front-end electronics (FEE) of the Multiplicity Vertex Detector (MVD) for the PHENIX detector at RHIC has been fabricated in the a 1.2-micro CMOS, n-well process. The discriminator is capable of triggering on input signals ranging from 0.25 MIP to 5 MIP. Frequency response of the discriminator is such that the circuit is capable of generating an output for every bunch crossing (105 ns) of the RHIC collider. Channel-to-channel threshold matching was adjustable to ± 4 mV. One channel of multiplicity discriminator occupied an area of 85 micro x 630 micro and consumed 515 microW from a single 5-V supply. Details of the design and results from prototype device testing are presented

  12. Electron-phonon coupling from finite differences

    Science.gov (United States)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  13. Search for Fermi shuttle mechanisms in electron emission from atomic collision sequences

    International Nuclear Information System (INIS)

    Suarez, S.; Jung, M.; Rothard, H.; Schosnig, M.; Maier, R.; Clouvas, A.; Groeneveld, K.O.

    1994-01-01

    In electron spectra induced by slow heavy ion bombardment of solids a high energy tail can be observed, which is suggested to be explained by multiple collision sequences. In order to find those multiple collision effects like the ''Fermi shuttle'' acceleration mechanism we measured doubly differential electron emission cross sections for H + (33.5-700 keV) impact on different targets (He, Ne, C and Au) as a function of projectile energy and electron emission angle. We observed a surprising target dependence of the electron emission within the range of electron energies close to that of the binary encounter electrons for all observed angles of emission. (orig.)

  14. An object-oriented language-database integration model: The composition filters approach

    NARCIS (Netherlands)

    Aksit, Mehmet; Bergmans, Lodewijk; Vural, Sinan; Vural, S.

    1991-01-01

    This paper introduces a new model, based on so-called object-composition filters, that uniformly integrates database-like features into an object-oriented language. The focus is on providing persistent dynamic data structures, data sharing, transactions, multiple views and associative access,

  15. An Object-Oriented Language-Database Integration Model: The Composition-Filters Approach

    NARCIS (Netherlands)

    Aksit, Mehmet; Bergmans, Lodewijk; Vural, S.; Vural, Sinan; Lehrmann Madsen, O.

    1992-01-01

    This paper introduces a new model, based on so-called object-composition filters, that uniformly integrates database-like features into an object-oriented language. The focus is on providing persistent dynamic data structures, data sharing, transactions, multiple views and associative access,

  16. Hex Chrome Free Coatings for Electronics Overview

    Science.gov (United States)

    Kessel, Kurt

    2013-01-01

    The overall objective of the Hex Chrome Free Coatings for Electronics project is to evaluate and test pretreatment coating systems not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders.

  17. Self-correcting electronically scanned pressure sensor

    Science.gov (United States)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  18. Representing Objects using Global 3D Relational Features for Recognition Tasks

    DEFF Research Database (Denmark)

    Mustafa, Wail

    2015-01-01

    representations. For representing objects, we derive global descriptors encoding shape using viewpoint-invariant features obtained from multiple sensors observing the scene. Objects are also described using color independently. This allows for combining color and shape when it is required for the task. For more...... robust color description, color calibration is performed. The framework was used in three recognition tasks: object instance recognition, object category recognition, and object spatial relationship recognition. For the object instance recognition task, we present a system that utilizes color and scale...

  19. Voice analysis as an objective state marker in bipolar disorder

    DEFF Research Database (Denmark)

    Faurholt-Jepsen, M.; Busk, Jonas; Frost, M.

    2016-01-01

    features with automatically generated objective smartphone data on behavioral activities (for example, number of text messages and phone calls per day) and electronic self-monitored data (mood) on illness activity would increase the accuracy as a marker of affective states. Using smartphones, voice...... features, automatically generated objective smartphone data on behavioral activities and electronic self-monitored data were collected from 28 outpatients with bipolar disorder in naturalistic settings on a daily basis during a period of 12 weeks. Depressive and manic symptoms were assessed using...... to be more accurate, sensitive and specific in the classification of manic or mixed states with an area under the curve (AUC)=0.89 compared with an AUC=0.78 for the classification of depressive states. Combining voice features with automatically generated objective smartphone data on behavioral activities...

  20. Interactive Preference Learning of Utility Functions for Multi-Objective Optimization

    OpenAIRE

    Dewancker, Ian; McCourt, Michael; Ainsworth, Samuel

    2016-01-01

    Real-world engineering systems are typically compared and contrasted using multiple metrics. For practical machine learning systems, performance tuning is often more nuanced than minimizing a single expected loss objective, and it may be more realistically discussed as a multi-objective optimization problem. We propose a novel generative model for scalar-valued utility functions to capture human preferences in a multi-objective optimization setting. We also outline an interactive active learn...

  1. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  2. Practical solutions for multi-objective optimization: An application to system reliability design problems

    International Nuclear Information System (INIS)

    Taboada, Heidi A.; Baheranwala, Fatema; Coit, David W.; Wattanapongsakorn, Naruemon

    2007-01-01

    For multiple-objective optimization problems, a common solution methodology is to determine a Pareto optimal set. Unfortunately, these sets are often large and can become difficult to comprehend and consider. Two methods are presented as practical approaches to reduce the size of the Pareto optimal set for multiple-objective system reliability design problems. The first method is a pseudo-ranking scheme that helps the decision maker select solutions that reflect his/her objective function priorities. In the second approach, we used data mining clustering techniques to group the data by using the k-means algorithm to find clusters of similar solutions. This provides the decision maker with just k general solutions to choose from. With this second method, from the clustered Pareto optimal set, we attempted to find solutions which are likely to be more relevant to the decision maker. These are solutions where a small improvement in one objective would lead to a large deterioration in at least one other objective. To demonstrate how these methods work, the well-known redundancy allocation problem was solved as a multiple objective problem by using the NSGA genetic algorithm to initially find the Pareto optimal solutions, and then, the two proposed methods are applied to prune the Pareto set

  3. The company objects keep: Linking referents together during cross-situational word learning.

    Science.gov (United States)

    Zettersten, Martin; Wojcik, Erica; Benitez, Viridiana L; Saffran, Jenny

    2018-04-01

    Learning the meanings of words involves not only linking individual words to referents but also building a network of connections among entities in the world, concepts, and words. Previous studies reveal that infants and adults track the statistical co-occurrence of labels and objects across multiple ambiguous training instances to learn words. However, it is less clear whether, given distributional or attentional cues, learners also encode associations amongst the novel objects. We investigated the consequences of two types of cues that highlighted object-object links in a cross-situational word learning task: distributional structure - how frequently the referents of novel words occurred together - and visual context - whether the referents were seen on matching backgrounds. Across three experiments, we found that in addition to learning novel words, adults formed connections between frequently co-occurring objects. These findings indicate that learners exploit statistical regularities to form multiple types of associations during word learning.

  4. Spanish Tourist Behaviour: A Specific Objective-base Segmantation

    OpenAIRE

    González, Pablo Rodríguez; Molina, Oscar

    2009-01-01

    This work uses data from the Spanish Tourism Demand Segments Survey (N=6900) conducted by the IESA-CSIC for Turismo Andaluz, SA. The objective of the paper is to develop a statistical segmentation or typology of Spanish tourists based on objective aspects of tourist behaviour measured in the survey including destinations visited, theme of the trip, lodging, transportation and travel group. Initial categorical data are reduced using multiple correspondence analysis and grouped through cluster ...

  5. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  6. Fining of Red Wine Monitored by Multiple Light Scattering.

    Science.gov (United States)

    Ferrentino, Giovanna; Ramezani, Mohsen; Morozova, Ksenia; Hafner, Daniela; Pedri, Ulrich; Pixner, Konrad; Scampicchio, Matteo

    2017-07-12

    This work describes a new approach based on multiple light scattering to study red wine clarification processes. The whole spectral signal (1933 backscattering points along the length of each sample vial) were fitted by a multivariate kinetic model that was built with a three-step mechanism, implying (1) adsorption of wine colloids to fining agents, (2) aggregation into larger particles, and (3) sedimentation. Each step is characterized by a reaction rate constant. According to the first reaction, the results showed that gelatin was the most efficient fining agent, concerning the main objective, which was the clarification of the wine, and consequently the increase in its limpidity. Such a trend was also discussed in relation to the results achieved by nephelometry, total phenols, ζ-potential, color, sensory, and electronic nose analyses. Also, higher concentrations of the fining agent (from 5 to 30 g/100 L) or higher temperatures (from 10 to 20 °C) sped up the process. Finally, the advantage of using the whole spectral signal vs classical univariate approaches was demonstrated by comparing the uncertainty associated with the rate constants of the proposed kinetic model. Overall, multiple light scattering technique showed a great potential for studying fining processes compared to classical univariate approaches.

  7. Atomic electron correlations in intense laser fields

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.

    1998-01-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear

  8. Porting of the DBCSR library for Sparse Matrix-Matrix Multiplications to Intel Xeon Phi systems

    OpenAIRE

    Bethune, Iain; Gloess, Andeas; Hutter, Juerg; Lazzaro, Alfio; Pabst, Hans; Reid, Fiona

    2017-01-01

    Multiplication of two sparse matrices is a key operation in the simulation of the electronic structure of systems containing thousands of atoms and electrons. The highly optimized sparse linear algebra library DBCSR (Distributed Block Compressed Sparse Row) has been specifically designed to efficiently perform such sparse matrix-matrix multiplications. This library is the basic building block for linear scaling electronic structure theory and low scaling correlated methods in CP2K. It is para...

  9. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller

    Energy Technology Data Exchange (ETDEWEB)

    Bellary, Sayed Ahmed Imran; Samad, Abdus [Indian Institute of Technology Madras, Chennai (India); Husain, Afzal [Sultan Qaboos University, Al-Khoudh (Oman)

    2014-12-15

    The major issue of multiple fidelity based analysis and optimization of fluid machinery system depends upon the proper construction of low fidelity model or meta-model. A low fidelity model uses responses obtained from a high fidelity model, and the meta-model is then used to produce population of solutions required for evolutionary algorithm for multi-objective optimization. The Pareto-optimal front which shows functional relationships among the multiple objectives can produce erroneous results if the low fidelity models are not well-constructed. In the present research, response surface approximation and Kriging meta-models were evaluated for their effectiveness for the application in the turbomachinery design and optimization. A high fidelity model such as CFD technique along with the metamodels was used to obtain Pareto-optimal front via multi-objective genetic algorithm. A centrifugal impeller has been considered as case study to find relationship between two conflicting objectives, viz., hydraulic efficiency and head. Design variables from the impeller geometry have been chosen and the responses of the objective functions were evaluated through CFD analysis. The fidelity of each metamodel has been discussed in context of their predictions in entire design space in general and near optimal region in particular. Exploitation of the multiple meta-models enhances the quality of multi-objective optimization and provides the information pertaining to fidelity of optimization model. It was observed that the Kriging meta-model was better suited for this type of problem as it involved less approximation error in the Pareto-optimal front.

  10. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller

    International Nuclear Information System (INIS)

    Bellary, Sayed Ahmed Imran; Samad, Abdus; Husain, Afzal

    2014-01-01

    The major issue of multiple fidelity based analysis and optimization of fluid machinery system depends upon the proper construction of low fidelity model or meta-model. A low fidelity model uses responses obtained from a high fidelity model, and the meta-model is then used to produce population of solutions required for evolutionary algorithm for multi-objective optimization. The Pareto-optimal front which shows functional relationships among the multiple objectives can produce erroneous results if the low fidelity models are not well-constructed. In the present research, response surface approximation and Kriging meta-models were evaluated for their effectiveness for the application in the turbomachinery design and optimization. A high fidelity model such as CFD technique along with the metamodels was used to obtain Pareto-optimal front via multi-objective genetic algorithm. A centrifugal impeller has been considered as case study to find relationship between two conflicting objectives, viz., hydraulic efficiency and head. Design variables from the impeller geometry have been chosen and the responses of the objective functions were evaluated through CFD analysis. The fidelity of each metamodel has been discussed in context of their predictions in entire design space in general and near optimal region in particular. Exploitation of the multiple meta-models enhances the quality of multi-objective optimization and provides the information pertaining to fidelity of optimization model. It was observed that the Kriging meta-model was better suited for this type of problem as it involved less approximation error in the Pareto-optimal front.

  11. Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus.

    Science.gov (United States)

    Alnæs, Dag; Sneve, Markus Handal; Espeseth, Thomas; Endestad, Tor; van de Pavert, Steven Harry Pieter; Laeng, Bruno

    2014-04-01

    Attentional effort relates to the allocation of limited-capacity attentional resources to meet current task demands and involves the activation of top-down attentional systems in the brain. Pupillometry is a sensitive measure of this intensity aspect of top-down attentional control. Studies relate pupillary changes in response to cognitive processing to activity in the locus coeruleus (LC), which is the main hub of the brain's noradrenergic system and it is thought to modulate the operations of the brain's attentional systems. In the present study, participants performed a visual divided attention task known as multiple object tracking (MOT) while their pupil sizes were recorded by use of an infrared eye tracker and then were tested again with the same paradigm while brain activity was recorded using fMRI. We hypothesized that the individual pupil dilations, as an index of individual differences in mental effort, as originally proposed by Kahneman (1973), would be a better predictor of LC activity than the number of tracked objects during MOT. The current results support our hypothesis, since we observed pupil-related activity in the LC. Moreover, the changes in the pupil correlated with activity in the superior colliculus and the right thalamus, as well as cortical activity in the dorsal attention network, which previous studies have shown to be strongly activated during visual tracking of multiple targets. Follow-up pupillometric analyses of the MOT task in the same individuals also revealed that individual differences to cognitive load can be remarkably stable over a lag of several years. To our knowledge this is the first study using pupil dilations as an index of attentional effort in the MOT task and also relating these to functional changes in the brain that directly implicate the LC-NE system in the allocation of processing resources.

  12. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  13. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  14. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    International Nuclear Information System (INIS)

    Nation, J.A.

    1996-01-01

    The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives

  15. Spin-orbit interaction in multiple quantum wells

    International Nuclear Information System (INIS)

    Hao, Ya-Fei

    2015-01-01

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices

  16. Spin-orbit interaction in multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  17. Fuzzy Multi-objective Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    Amna Rehmat

    2007-07-01

    Full Text Available Traveling salesman problem (TSP is one of the challenging real-life problems, attracting researchers of many fields including Artificial Intelligence, Operations Research, and Algorithm Design and Analysis. The problem has been well studied till now under different headings and has been solved with different approaches including genetic algorithms and linear programming. Conventional linear programming is designed to deal with crisp parameters, but information about real life systems is often available in the form of vague descriptions. Fuzzy methods are designed to handle vague terms, and are most suited to finding optimal solutions to problems with vague parameters. Fuzzy multi-objective linear programming, an amalgamation of fuzzy logic and multi-objective linear programming, deals with flexible aspiration levels or goals and fuzzy constraints with acceptable deviations. In this paper, a methodology, for solving a TSP with imprecise parameters, is deployed using fuzzy multi-objective linear programming. An example of TSP with multiple objectives and vague parameters is discussed.

  18. The trajectories of secondary electrons in the scanning electron microscope.

    Science.gov (United States)

    Konvalina, Ivo; Müllerová, Ilona

    2006-01-01

    Three-dimensional simulations of the trajectories of secondary electrons (SE) in the scanning electron microscope have been performed for plenty of real configurations of the specimen chamber, including all its basic components. The primary purpose was to evaluate the collection efficiency of the Everhart-Thornley detector of SE and to reveal fundamental rules for tailoring the set-ups in which efficient signal acquisition can be expected. Intuitive realizations about the easiness of attracting the SEs towards the biased front grid of the detector have shown themselves likely as false, and all grounded objects in the chamber have been proven to influence the spatial distribution of the signal-extracting field. The role of the magnetic field penetrating from inside the objective lens is shown to play an ambiguous role regarding possible support for the signal collection.

  19. Electronic Commerce

    Energy Technology Data Exchange (ETDEWEB)

    Laird, N. [NRG Information Services Inc., Calgary, AB (Canada)

    1995-11-01

    The concept of electronic commerce in the gas industry was discussed. It was defined as the integration of communication technology, advanced information processing capability and business standards, to improve effectiveness of the business process. Examples of electronic data interchange from the automotive, airline, and banking industry were given. The objective of using this technology in the gas industry was described as the provision of one electronic facility to make seamless contractual and operational arrangements for moving natural gas across participating pipelines. The benefit of seamless integration - one readily available standard system used by several companies - was highlighted. A list of value-added services such as the free movement of bulletins, directories, nominations,and other documents was provided.

  20. Neural basis for dynamic updating of object representation in visual working memory.

    Science.gov (United States)

    Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun

    2010-02-15

    In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Mission-profile based multi-objective optimization of power electronics converter for wind turbines

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh; Teodorescu, Remus; Kerekes, Tamas

    2017-01-01

    -objective optimization approach for designing power converter is presented. The objective is to minimize the energy loss for a given load profile as against the conventional approach of minimizing power loss at specific loading conditions. The proposed approach is illustrated by designing a grid-side power converter...

  2. Method for Statically Checking an Object-oriented Computer Program Module

    Science.gov (United States)

    Bierhoff, Kevin M. (Inventor); Aldrich, Jonathan (Inventor)

    2012-01-01

    A method for statically checking an object-oriented computer program module includes the step of identifying objects within a computer program module, at least one of the objects having a plurality of references thereto, possibly from multiple clients. A discipline of permissions is imposed on the objects identified within the computer program module. The permissions enable tracking, from among a discrete set of changeable states, a subset of states each object might be in. A determination is made regarding whether the imposed permissions are violated by a potential reference to any of the identified objects. The results of the determination are output to a user.

  3. Electronic cigarette

    OpenAIRE

    Wang, Tao

    2016-01-01

    As we know E-cigarette is becoming increasingly popular all over the world. It is a new product that the most of smoking people would like to buy and use. However, we are not realizing advantages and disadvantages of e-cigarette clearly. My objective was to research the development of electronic cigarette whether it is under control or a good way of marketing. The thesis has two main parts. They include answers to questions what is electronic cigarette and how to manage the whole industry...

  4. Rocket measurements of electrons in a system of multiple auroral arcs

    Science.gov (United States)

    Boyd, J. S.; Davis, T. N.

    1977-01-01

    A Nike-Tomahawk rocket was launched into a system of auroral arcs northward of Poker Flat Research Range, Fairbanks, Alaska. The pitch-angle distribution of electrons was measured at 2.5, 5, and 10 keV and also at 10 keV on a separating forward section of the payload. The auroral activity appeared to be the extension of substorm activity centered to the east. The rocket crossed a westward-propagating fold in the brightest band. The electron spectrum was relatively hard through most of the flight, showing a peak in the range from 2.5 to 10 keV in the weaker aurora and below 5 keV in the brightest arc. The detailed structure of the pitch-angle distribution suggested that, at times, a very selective process was accelerating some electrons in the magnetic field direction, so that a narrow field-aligned component appeared superimposed on a more isotropic distribution. It is concluded that this process could not be a near-ionosphere field-aligned potential drop, although the more isotropic component may have been produced by a parallel electric field extending several thousand kilometers along the field line above the ionosphere.

  5. Rocket measurements of electrons in a system of multiple auroral arcs

    International Nuclear Information System (INIS)

    Boyd, J.S.; Davis, T.N.

    1977-01-01

    A Nike-Tomahawk rocket was launched into a system of auroral arcs northward of Poker Flat Research Range, Fairbanks, Alaska, at 0815 UT on March 20, 1971. The pitch angle distribution of electrons was measured at 2.5, 5, and 10 keV and also at 10 keV on a separating forward section of the payload. The auroral activity appeared to be the extension of substorm activity centered to the east. The rocket crossed a westward propagating fold in the brightest band. The electron spectrum was relatively hard through most of the flight, showing a peak in the range 2.5 5 keV in the brightest arc. The detailed structure of the pitch angle distribution suggested that, at times, a very selective process was accelerating some electrons in the direction of B, so that a narrow field-aligned component appeared superimposed on a more isotropic distribution. It is concluded that this process could not be a near-ionosphere field-aligned potential drop, although the more isotropic component may have been produced by a parallel electric field extending several thousand kilometers along the field line above the ionsophere

  6. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa [Universiti Teknologi MARA (UiTM), Selangor (Malaysia)

    2012-08-15

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application.

  7. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    International Nuclear Information System (INIS)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa

    2012-01-01

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application

  8. Multiple Sclerosis After Infectious Mononucleosis

    DEFF Research Database (Denmark)

    Nielsen, Trine Rasmussen; Rostgaard, Klaus; Nielsen, Nete Munk

    2007-01-01

    BACKGROUND: Infectious mononucleosis caused by the Epstein-Barr virus has been associated with increased risk of multiple sclerosis. However, little is known about the characteristics of this association. OBJECTIVE: To assess the significance of sex, age at and time since infectious mononucleosis......, and attained age to the risk of developing multiple sclerosis after infectious mononucleosis. DESIGN: Cohort study using persons tested serologically for infectious mononucleosis at Statens Serum Institut, the Danish Civil Registration System, the Danish National Hospital Discharge Register, and the Danish...... Multiple Sclerosis Registry. SETTING: Statens Serum Institut. PATIENTS: A cohort of 25 234 Danish patients with mononucleosis was followed up for the occurrence of multiple sclerosis beginning on April 1, 1968, or January 1 of the year after the diagnosis of mononucleosis or after a negative Paul...

  9. The Level-1 Calorimeter Global Feature Extractor (gFEX) Boosted Object Trigger for the Phase-I Upgrade of the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00235957; The ATLAS collaboration; Stark, Giordon; Miller, David

    2016-01-01

    The Global Feature Extractor (gFEX) module is a planned component of the Level 1 online trigger system for the ATLAS experiment planned for installation during the Phase I upgrade in 2018. This unique single electronics board with multiple high speed processors will receive coarse-granularity information from all the ATLAS calorimeters enabling the identification in real time of large-radius jets for capturing Lorentz-boosted objects such as top quarks, Higgs, $Z$ and $W$ bosons. The gFEX architecture also facilitates the calculation of global event variables such as missing transverse energy, centrality for heavy ion collisions, and event-by-event pile-up energy density. Details of the electronics architecture that provides these capabilities are presented, along with results of tests of the prototype systems now available. The status of the firmware algorithm design and implementation as well as monitoring capabilities are also presented.

  10. Assessing the Cartographic Visualization of Moving Objects ...

    African Journals Online (AJOL)

    Four representations are considered in this research: the single static map, multiple static maps, animation, and the space-time cube. The study is conducted by considering four movement characteristics (or aspects of moving objects): speed change, returns, stops, and path of movement. The ability of users to perceive and ...

  11. Transmission Electron Microscope Measures Lattice Parameters

    Science.gov (United States)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  12. Defining active progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Börnsen, Lars; Ammitzbøll, Cecilie

    2017-01-01

    BACKGROUND: It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). OBJECTIVE: To compare CSF biomarkers in active and inactive...

  13. Nemo-3 calorimeter electronics

    International Nuclear Information System (INIS)

    Bernaudin, P.; Cheikali, C.; Lavigne, B.; Richard, A.; Lebris, J.

    2000-11-01

    The calorimeter electronics of the NEMO-3 double beta decay experiment fulfills three functions: -energy measurement of the electrons by measuring the charge of the pulses, - time measurement, - fast first level triggering. The electronics of the 1940 Scintillator-PM modules is implemented as 40 '9U x 400 mm VME' boards of up to 51 channels. For each channel the analog signals conditioning is implemented as one SMD daughter board. Each board performs 12 bit charge measurements with 0.35 pC charge resolution, 12 bit time measurements with 50 ps time resolution and a fast analog multiplicity level for triggering. The total handling and conversion time for all the channels is less than 100 μs. The electronics will be presented as well as the test system. (authors)

  14. Electronic cigarettes: human health effects

    Science.gov (United States)

    Callahan-Lyon, Priscilla

    2014-01-01

    Objective With the rapid increase in use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes (e-cigarettes), users and non-users are exposed to the aerosol and product constituents. This is a review of published data on the human health effects of exposure to e-cigarettes and their components. Methods Literature searches were conducted through September 2013 using multiple electronic databases. Results Forty-four articles are included in this analysis. E-cigarette aerosols may contain propylene glycol, glycerol, flavourings, other chemicals and, usually, nicotine. Aerosolised propylene glycol and glycerol produce mouth and throat irritation and dry cough. No data on the effects of flavouring inhalation were identified. Data on short-term health effects are limited and there are no adequate data on long-term effects. Aerosol exposure may be associated with respiratory function impairment, and serum cotinine levels are similar to those in traditional cigarette smokers. The high nicotine concentrations of some products increase exposure risks for non-users, particularly children. The dangers of secondhand and thirdhand aerosol exposure have not been thoroughly evaluated. Conclusions Scientific evidence regarding the human health effects of e-cigarettes is limited. While e-cigarette aerosol may contain fewer toxicants than cigarette smoke, studies evaluating whether e-cigarettes are less harmful than cigarettes are inconclusive. Some evidence suggests that e-cigarette use may facilitate smoking cessation, but definitive data are lacking. No e-cigarette has been approved by FDA as a cessation aid. Environmental concerns and issues regarding non-user exposure exist. The health impact of e-cigarettes, for users and the public, cannot be determined with currently available data. PMID:24732161

  15. Reach on sound: a key to object permanence in visually impaired children.

    Science.gov (United States)

    Fazzi, Elisa; Signorini, Sabrina Giovanna; Bomba, Monica; Luparia, Antonella; Lanners, Josée; Balottin, Umberto

    2011-04-01

    The capacity to reach an object presented through sound clue indicates, in the blind child, the acquisition of object permanence and gives information over his/her cognitive development. To assess cognitive development in congenitally blind children with or without multiple disabilities. Cohort study. Thirty-seven congenitally blind subjects (17 with associated multiple disabilities, 20 mainly blind) were enrolled. We used Bigelow's protocol to evaluate "reach on sound" capacity over time (at 6, 12, 18, 24, and 36 months), and a battery of clinical, neurophysiological and cognitive instruments to assess clinical features. Tasks n.1 to 5 were acquired by most of the mainly blind children by 12 months of age. Task 6 coincided with a drop in performance, and the acquisition of the subsequent tasks showed a less agehomogeneous pattern. In blind children with multiple disabilities, task acquisition rates were lower, with the curves dipping in relation to the more complex tasks. The mainly blind subjects managed to overcome Fraiberg's "conceptual problem"--i.e., they acquired the ability to attribute an external object with identity and substance even when it manifested its presence through sound only--and thus developed the ability to reach an object presented through sound. Instead, most of the blind children with multiple disabilities presented poor performances on the "reach on sound" protocol and were unable, before 36 months of age, to develop the strategies needed to resolve Fraiberg's "conceptual problem". Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Multiple beam envelope equations for electron injectors using a bunch segmentation model

    Directory of Open Access Journals (Sweden)

    A. Mizuno

    2012-06-01

    Full Text Available A new semianalytical method of investigating the beam dynamics for electron injectors was developed. In this method, a short bunched electron beam is assumed to be an ensemble of several segmentation pieces in both the longitudinal and the transverse directions. The trajectory of each electron in the segmentation pieces is solved by the beam envelope equations while taking into account the space charge fields produced by all the pieces, the electromagnetic fields of an rf cavity, and the image charge fields at a cathode surface. The shape of the entire bunch is consequently calculated, and thus the emittances can be obtained from weighted mean values of the solutions for the obtained electron trajectories. The advantage of this method is its unique assumption for the beam parameters. We assume that each segmentation slice is not warped in the calculations. Although if the beam energy is low and the charge density is large, this condition is not satisfied, in practice, this condition is usually satisfied. We have performed beam dynamics calculations to obtain traces in free space and in the BNL-type rf gun cavity by comparing the analytical solutions with those obtained by simulation. In most cases, the emittances obtained by the simulation become closer to those obtained analytically with increasing the number of particles used in the simulation. Therefore, the analytically obtained emittances are expected to coincide with converged values obtained by the simulation. The applicable range of the analytical method for the BNL-type rf gun cavity is under 0.5 nC per bunch. This range is often used in recently built x-ray free electron laser facilities.

  17. Electronic Structure of Single- and Multiple-shell Carbon Fullerenes

    OpenAIRE

    Lin, Yeong-Lieh; Nori, Franco

    1993-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multi-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the $\\pi$-state energy spectra of large fullerene cages: $C_{240}$, $C_{540}$, $C_{960}$, $C_{1500}$, $C_{2160}$ and $C_{2940}$. Our iteration technique reduces the dimensionality of the problem by more than one order of magnitude (factors of $\\...

  18. 4D Electron Tomography

    Science.gov (United States)

    Kwon, Oh-Hoon; Zewail, Ahmed H.

    2010-06-01

    Electron tomography provides three-dimensional (3D) imaging of noncrystalline and crystalline equilibrium structures, as well as elemental volume composition, of materials and biological specimens, including those of viruses and cells. We report the development of 4D electron tomography by integrating the fourth dimension (time resolution) with the 3D spatial resolution obtained from a complete tilt series of 2D projections of an object. The different time frames of tomograms constitute a movie of the object in motion, thus enabling studies of nonequilibrium structures and transient processes. The method was demonstrated using carbon nanotubes of a bracelet-like ring structure for which 4D tomograms display different modes of motion, such as breathing and wiggling, with resonance frequencies up to 30 megahertz. Applications can now make use of the full space-time range with the nanometer-femtosecond resolution of ultrafast electron tomography.

  19. Multiple ionization of atoms by ion impact

    International Nuclear Information System (INIS)

    DuBois, R.D.

    1988-01-01

    In order to model the energy deposition of fast ions as they slow down in gaseous media, information about the ionization occurring in collisions between ions and target atoms/molecules is required. Our measurements of doubly differential electron emission cross sections provide detailed information about the ionization process but do not provide any information about the final states of the target. They also do not distinguish between the emission of one or more target electrons in a single collision. It is important to know the relative importance of multiple-, with respect to single-, target ionization in order to accurately model the energy deposition. To date, multiple ionization of He, Ne, Ar, Kr, and Xe targets has been studied. Primarily, H and He ions were used, although some data for heavier ions (C,N and O) have also been obtained

  20. Interactive multi-objective path planning through a palette-based user interface

    Science.gov (United States)

    Shaikh, Meher T.; Goodrich, Michael A.; Yi, Daqing; Hoehne, Joseph

    2016-05-01

    n a problem where a human uses supervisory control to manage robot path-planning, there are times when human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or minimizes an objective. When a human is assigned the task of path planning for robot, the human may care about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot path-planning when an operator may prefer one objective over others or care about how multiple objectives are traded off. The GUI represents multiple objectives using the metaphor of an artist's palette. A distinct color is used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes colors to get the desired shade of color. Thus, human intent is analogous to the artist's shade of color. We call the GUI an "Adverb Palette" where the word "Adverb" represents a specific type of objective for the path, such as the adverbs "quickly" and "safely" in the commands: "travel the path quickly", "make the journey safely". The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints (guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a way for the user and robot to find an acceptable solution even though they use very different representations of the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks with a