WorldWideScience

Sample records for multiple objective magnet

  1. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  2. A multiple objective magnet sorting algorithm for the Advanced Light Source insertion devices

    International Nuclear Information System (INIS)

    Humphries, D.; Goetz, F.; Kownacki, P.; Marks, S.; Schlueter, R.

    1995-01-01

    Insertion devices for the Advanced Light Source (ALS) incorporate large numbers of permanent magnets which have a variety of magnetization orientation errors. These orientation errors can produce field errors which affect both the spectral brightness of the insertion devices and the storage ring electron beam dynamics. A perturbation study was carried out to quantify the effects of orientation errors acting in a hybrid magnetic structure. The results of this study were used to develop a multiple stage sorting algorithm which minimizes undesirable integrated field errors and essentially eliminates pole excitation errors. When applied to a measured magnet population for an existing insertion device, an order of magnitude reduction in integrated field errors was achieved while maintaining near zero pole excitation errors

  3. A multiple objective magnet sorting algorithm for the ALS insertion devices

    International Nuclear Information System (INIS)

    Humphries, D.; Goetz, F.; Kownacki, P.; Marks, S.; Schlueter, R.

    1994-07-01

    Insertion devices for the Advanced Light Source (ALS) incorporate large numbers of permanent magnets which have a variety of magnetization orientation errors. These orientation errors can produce field errors which affect both the spectral brightness of the insertion devices and the storage ring electron beam dynamics. A perturbation study was carried out to quantify the effects of orientation errors acting in a hybrid magnetic structure. The results of this study were used to develop a multiple stage sorting algorithm which minimizes undesirable integrated field errors and essentially eliminates pole excitation errors. When applied to a measured magnet population for an existing insertion device, an order of magnitude reduction in integrated field errors was achieved while maintaining near zero pole excitation errors

  4. Rough multiple objective decision making

    CERN Document Server

    Xu, Jiuping

    2011-01-01

    Rough Set TheoryBasic concepts and properties of rough sets Rough Membership Rough Intervals Rough FunctionApplications of Rough SetsMultiple Objective Rough Decision Making Reverse Logistics Problem with Rough Interval Parameters MODM based Rough Approximation for Feasible RegionEVRMCCRMDCRM Reverse Logistics Network Design Problem of Suji Renewable Resource MarketBilevel Multiple Objective Rough Decision Making Hierarchical Supply Chain Planning Problem with Rough Interval Parameters Bilevel Decision Making ModelBL-EVRM BL-CCRMBL-DCRMApplication to Supply Chain Planning of Mianyang Co., LtdStochastic Multiple Objective Rough Decision Multi-Objective Resource-Constrained Project Scheduling UnderRough Random EnvironmentRandom Variable Stochastic EVRM Stochastic CCRM Stochastic DCRM Multi-Objective rc-PSP/mM/Ro-Ra for Longtan Hydropower StationFuzzy Multiple Objective Rough Decision Making Allocation Problem under Fuzzy Environment Fuzzy Variable Fu-EVRM Fu-CCRM Fu-DCRM Earth-Rock Work Allocation Problem.

  5. Design and Integration of an All-Magnetic Attitude Control System for FASTSAT-HSV01's Multiple Pointing Objectives

    Science.gov (United States)

    DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro

    2011-01-01

    The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.

  6. Using magnetic nanoparticles to manipulate biological objects

    International Nuclear Information System (INIS)

    Liu Yi; Gao Yu; Xu Chenjie

    2013-01-01

    The use of magnetic nanoparticles (MNPs) for the manipulation of biological objects, including proteins, genes, cellular organelles, bacteria, cells, and organs, are reviewed. MNPs are popular candidates for controlling and probing biological objects with a magnetic force. In the past decade, progress in the synthesis and surface engineering of MNPs has further enhanced this popularity. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  7. Object tracking using multiple camera video streams

    Science.gov (United States)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  8. Intestinal perforation caused by multiple magnet ingestion

    Directory of Open Access Journals (Sweden)

    Nergul Corduk

    2014-01-01

    Full Text Available Multiple magnet ingestion is rare, but can cause serious gastrointestinal complications. We report a case of 7-year-old girl with multiple intestinal perforations caused by multiple magnet ingestion. The aim of this report is to draw attention to magnetic toys, results of magnet ingestion and the importance of timing of operation.

  9. Multiple Objective Treatment Aspects of Bank Filtration

    NARCIS (Netherlands)

    Maeng, S.K.

    2010-01-01

    This study shows that BF is an effective multiple objective barrier for removal of different contaminants present in surface water sources including bulk organic matter and organic microplollutants (OMPs) like pharmaceutically active compounds and endocrine disrupting compounds. It was found that

  10. Multiple objective treatment aspects of bank filtration

    NARCIS (Netherlands)

    Maeng, S.K.

    2010-01-01

    This study showed that BF is an effective multiple objective barrier for removal of different contaminants present in surface water sources including bulk organic matter and organic micropollutants (OMPs) like pharmaceutically active compounds and endocrine disrupting compounds. It was found that

  11. Multiple-Objective Stepwise Calibration Using Luca

    Science.gov (United States)

    Hay, Lauren E.; Umemoto, Makiko

    2007-01-01

    This report documents Luca (Let us calibrate), a multiple-objective, stepwise, automated procedure for hydrologic model calibration and the associated graphical user interface (GUI). Luca is a wizard-style user-friendly GUI that provides an easy systematic way of building and executing a calibration procedure. The calibration procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any model compiled with the U.S. Geological Survey's Modular Modeling System. This process assures that intermediate and final states of the model are simulated consistently with measured values.

  12. Magnetic resonance in multiple sclerosis

    International Nuclear Information System (INIS)

    Scotti, G.; Caputo, D.; Cazzullo, C.L.

    1986-01-01

    Magnetic Resonance Imaging was performed in more than 200 patients with clinical suspicion or knowledge of Multiple Sclerosis. One hundred and forty-seven (60 males and 87 females) had MR evidence of multiple sclerosis lesions. The MR signal of demyelinating plaques characteristically has prolonged T1 and T2 relaxation times and the T2-weighted spin-echo sequences are generally superior to the T1-weighted images because the lesions are better visualized as areas of increased signal intensity. MR is also able to detect plaques in the brainstem, cerebellum and within the cervical spinal cord. MR appears to be an important, non-invasive method for the diagnosis of Multiple Sclerosis and has proven to be diagnostically superior to CT, evoked potentials (EP) and CSF examination. In a selected group of 30 patients, with the whole battery of the relevant MS studies, MR was positive in 100%, CT in 33,3%, EP in 56% and CSF examination in 60%. In patients clinically presenting only with signs of spinal cord involvement or optic neuritis or when the clinical presentation is uncertain MR has proven to be a very useful diagnostic tool for diagnosis of MS by demonstrating unsuspected lesions in the cerebral hemispheres. (orig.)

  13. Single versus Multiple Objective(s) Decision Making: An Application ...

    African Journals Online (AJOL)

    Rahel

    rather than exception in many real life decision-making circumstances. For example ...... stakeholders' relative importance of various attributes in the utility function. (Steuer 1986). ..... Multiple Criteria Optimization: Theory, Computation and.

  14. Reallocating attention during multiple object tracking.

    Science.gov (United States)

    Ericson, Justin M; Christensen, James C

    2012-07-01

    Wolfe, Place, and Horowitz (Psychonomic Bulletin & Review 14:344-349, 2007) found that participants were relatively unaffected by selecting and deselecting targets while performing a multiple object tracking task, such that maintaining tracking was possible for longer durations than the few seconds typically studied. Though this result was generally consistent with other findings on tracking duration (Franconeri, Jonathon, & Scimeca Psychological Science 21:920-925, 2010), it was inconsistent with research involving cuing paradigms, specifically precues (Pylyshyn & Annan Spatial Vision 19:485-504, 2006). In the present research, we broke down the addition and removal of targets into separate conditions and incorporated a simple performance model to evaluate the costs associated with the selection and deselection of moving targets. Across three experiments, we demonstrated evidence against a cost being associated with any shift in attention, but rather that varying the type of cue used for target deselection produces no additional cost to performance and that hysteresis effects are not induced by a reduction in tracking load.

  15. Magnet power supply as a network object

    International Nuclear Information System (INIS)

    Cohen, S.; Stuewe, R.

    1991-01-01

    Magnet power supplies with embedded microprocessor controls are being installed in the beam-lines of the linear accelerator and proton storage ring at LAMPF. Using an RS422 link they communicate with the accelerator control system through a terminal server connected to the site-wide DECnet backbone. Each supply is, for all intents and purposes, a network object. The controller has a command set of over seventy-five three-character ASCII control and read-back instructions. Strategies for choosing the appropriate control protocol and the process of integrating these devices into a large accelerator control system will be presented. 7 refs., 2 figs., 1 tab

  16. Multiple Object Permanence Tracking: Maintenance, Retrieval and Transformation of Dynamic Object Representations

    OpenAIRE

    Saiki, Jun

    2008-01-01

    Multiple object permanence tracking (MOPT) task revealed that our ability of maintaining and transforming multiple representations of complex feature-bound objects is limited to handle only 1-2 objects. Often reported capacity of 3-5 objects likely reflects memory for partial representations of objects and simple cases such as just color and their locations. Also, performance in multiple object tracking (MOT) task is likely mediated by spatiotemporal indices, not by feature-bound object repre...

  17. Multiple objects tracking in fluorescence microscopy.

    Science.gov (United States)

    Kalaidzidis, Yannis

    2009-01-01

    Many processes in cell biology are connected to the movement of compact entities: intracellular vesicles and even single molecules. The tracking of individual objects is important for understanding cellular dynamics. Here we describe the tracking algorithms which have been developed in the non-biological fields and successfully applied to object detection and tracking in biological applications. The characteristics features of the different algorithms are compared.

  18. Multiple sclerosis in magnetic resonance

    International Nuclear Information System (INIS)

    Bekiesinska-Figatowska, M.; Walecki, J.; Stelmasiak, Z.

    1994-01-01

    The authors analyzed MR examination of 277 patients with multiple sclerosis. White matter hyperintesities in brain were found in 270 of them, in spinal cord in 32. The most frequently they were found in periventricular white matter, in subcortical localization and in the corpus callosum. MR examination allows the estimate the activity of the disease on the basis of the presence of edema around the plaques and their contrast enhancement with Gd-DTPA. About one third of all cases were accompanied by cortical brain atrophy (the most often seen in the frontal lobes), subcortical brain atrophy was less frequent. In about two third of all cases the corpus callosum atrophy was found. MR examination is a highly sensitive method of multiple sclerosis diagnosis, of the assessment of its activity and progression. (author)

  19. Compositional mining of multiple object API protocols through state abstraction.

    Science.gov (United States)

    Dai, Ziying; Mao, Xiaoguang; Lei, Yan; Qi, Yuhua; Wang, Rui; Gu, Bin

    2013-01-01

    API protocols specify correct sequences of method invocations. Despite their usefulness, API protocols are often unavailable in practice because writing them is cumbersome and error prone. Multiple object API protocols are more expressive than single object API protocols. However, the huge number of objects of typical object-oriented programs poses a major challenge to the automatic mining of multiple object API protocols: besides maintaining scalability, it is important to capture various object interactions. Current approaches utilize various heuristics to focus on small sets of methods. In this paper, we present a general, scalable, multiple object API protocols mining approach that can capture all object interactions. Our approach uses abstract field values to label object states during the mining process. We first mine single object typestates as finite state automata whose transitions are annotated with states of interacting objects before and after the execution of the corresponding method and then construct multiple object API protocols by composing these annotated single object typestates. We implement our approach for Java and evaluate it through a series of experiments.

  20. Multiple utility constrained multi-objective programs using Bayesian theory

    Science.gov (United States)

    Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed

    2018-03-01

    A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.

  1. Magnetic De-spinning of Space Objects

    Data.gov (United States)

    National Aeronautics and Space Administration — Objects in orbit about the earth rotate such that a service spacecraft cannot grapple to them. There are few techniques available to despin a space object without...

  2. Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.

    Science.gov (United States)

    Franconeri, S L; Jonathan, S V; Scimeca, J M

    2010-07-01

    In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.

  3. Intestinal perforation caused by multiple magnet ingestion | Corduk ...

    African Journals Online (AJOL)

    Multiple magnet ingestion is rare, but can cause serious gastrointestinal complications. We report a case of 7-year-old girl with multiple intestinal perforations caused by multiple magnet ingestion. The aim of this report is to draw attention to magnetic toys, results of magnet ingestion and the importance of timing of operation.

  4. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  5. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  6. Self-Motion Impairs Multiple-Object Tracking

    Science.gov (United States)

    Thomas, Laura E.; Seiffert, Adriane E.

    2010-01-01

    Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement…

  7. Efficient Selection of Multiple Objects on a Large Scale

    DEFF Research Database (Denmark)

    Stenholt, Rasmus

    2012-01-01

    The task of multiple object selection (MOS) in immersive virtual environments is important and still largely unexplored. The diffi- culty of efficient MOS increases with the number of objects to be selected. E.g. in small-scale MOS, only a few objects need to be simultaneously selected. This may...... consuming. Instead, we have implemented and tested two of the existing approaches to 3-D MOS, a brush and a lasso, as well as a new technique, a magic wand, which automati- cally selects objects based on local proximity to other objects. In a formal user evaluation, we have studied how the performance...

  8. Magnetic resonance in multiple sclerose twins

    International Nuclear Information System (INIS)

    Polman, C.H.; UitdeHaag, B.M.J.; Koetsier, C.J.; Valk, J.; Lucas, C.J.

    1989-01-01

    Magnetic resonance imaging (MR) examinations were performed in a series of 7 twin sets (4 monozygotic and 3 dizygotic) and one triplet set who were clinically discordant for multiple sclerosis (MS). MRI abnormalities were detected in a number of the unaffected members of the nonzygotic twin pairs. The authors discuss the possible implications of their findings for the present view on the aetiology of MS. (author). 3 refs.; 1 fig.; 1 tab

  9. Field Measurement of Surface Ship Magnetic Signature Using Multiple AUVs

    Science.gov (United States)

    2009-10-01

    been equipped with a tri-axial fluxgate magnetometer and used to perform preliminary magnetic field measurements. Measurements of this type will be...mounted on the AUVs, shown in Fig. 1, was a three-axis fluxgate type [16] magnetometer with a range of ±100,000 nT and a sensitivity of 100μV/nT. The...surface ship. The system will employ a formation of multiple AUVs, each equipped with a magnetometer . The objective is to measure total magnetic

  10. Nuclear magnetic resonance relaxation in multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Barker, G J; MacKay, A

    1998-01-01

    OBJECTIVES: The theory of relaxation processes and their measurements are described. An overview is presented of the literature on relaxation time measurements in the normal and the developing brain, in experimental diseases in animals, and in patients with multiple sclerosis. RESULTS...... AND CONCLUSION: Relaxation time measurements provide insight into development of multiple sclerosis plaques, especially the occurrence of oedema, demyelination, and gliosis. There is also evidence that normal appearing white matter in patients with multiple sclerosis is affected. What is now needed are fast...

  11. Fuzzy-like multiple objective multistage decision making

    CERN Document Server

    Xu, Jiuping

    2014-01-01

    Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like un...

  12. A PDP model of the simultaneous perception of multiple objects

    Science.gov (United States)

    Henderson, Cynthia M.; McClelland, James L.

    2011-06-01

    Illusory conjunctions in normal and simultanagnosic subjects are two instances where the visual features of multiple objects are incorrectly 'bound' together. A connectionist model explores how multiple objects could be perceived correctly in normal subjects given sufficient time, but could give rise to illusory conjunctions with damage or time pressure. In this model, perception of two objects benefits from lateral connections between hidden layers modelling aspects of the ventral and dorsal visual pathways. As with simultanagnosia, simulations of dorsal lesions impair multi-object recognition. In contrast, a large ventral lesion has minimal effect on dorsal functioning, akin to dissociations between simple object manipulation (retained in visual form agnosia and semantic dementia) and object discrimination (impaired in these disorders) [Hodges, J.R., Bozeat, S., Lambon Ralph, M.A., Patterson, K., and Spatt, J. (2000), 'The Role of Conceptual Knowledge: Evidence from Semantic Dementia', Brain, 123, 1913-1925; Milner, A.D., and Goodale, M.A. (2006), The Visual Brain in Action (2nd ed.), New York: Oxford]. It is hoped that the functioning of this model might suggest potential processes underlying dorsal and ventral contributions to the correct perception of multiple objects.

  13. Connection-based and object-based grouping in multiple-object tracking: A developmental study

    OpenAIRE

    Hallen, Ruth; Reusens, J. (Julie); Evers, K. (Kris); de-Wit, Lee; Wagemans, Johan

    2018-01-01

    textabstractDevelopmental research on Gestalt laws has previously revealed that, even as young as infancy, we are bound to group visual elements into unitary structures in accordance with a variety of organizational principles. Here, we focus on the developmental trajectory of both connection-based and object-based grouping, and investigate their impact on object formation in participants, aged 9-21 years old (N = 113), using a multiple-object tracking paradigm. Results reveal a main effect o...

  14. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics

    Directory of Open Access Journals (Sweden)

    Bernardin Keni

    2008-01-01

    Full Text Available Abstract Simultaneous tracking of multiple persons in real-world environments is an active research field and several approaches have been proposed, based on a variety of features and algorithms. Recently, there has been a growing interest in organizing systematic evaluations to compare the various techniques. Unfortunately, the lack of common metrics for measuring the performance of multiple object trackers still makes it hard to compare their results. In this work, we introduce two intuitive and general metrics to allow for objective comparison of tracker characteristics, focusing on their precision in estimating object locations, their accuracy in recognizing object configurations and their ability to consistently label objects over time. These metrics have been extensively used in two large-scale international evaluations, the 2006 and 2007 CLEAR evaluations, to measure and compare the performance of multiple object trackers for a wide variety of tracking tasks. Selected performance results are presented and the advantages and drawbacks of the presented metrics are discussed based on the experience gained during the evaluations.

  15. Use of multiple objective evolutionary algorithms in optimizing surveillance requirements

    International Nuclear Information System (INIS)

    Martorell, S.; Carlos, S.; Villanueva, J.F.; Sanchez, A.I; Galvan, B.; Salazar, D.; Cepin, M.

    2006-01-01

    This paper presents the development and application of a double-loop Multiple Objective Evolutionary Algorithm that uses a Multiple Objective Genetic Algorithm to perform the simultaneous optimization of periodic Test Intervals (TI) and Test Planning (TP). It takes into account the time-dependent effect of TP performed on stand-by safety-related equipment. TI and TP are part of the Surveillance Requirements within Technical Specifications at Nuclear Power Plants. It addresses the problem of multi-objective optimization in the space of dependable variables, i.e. TI and TP, using a novel flexible structure of the optimization algorithm. Lessons learnt from the cases of application of the methodology to optimize TI and TP for the High-Pressure Injection System are given. The results show that the double-loop Multiple Objective Evolutionary Algorithm is able to find the Pareto set of solutions that represents a surface of non-dominated solutions that satisfy all the constraints imposed on the objective functions and decision variables. Decision makers can adopt then the best solution found depending on their particular preference, e.g. minimum cost, minimum unavailability

  16. A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization.

    Science.gov (United States)

    Yang, Shaofu; Liu, Qingshan; Wang, Jun

    2018-04-01

    This paper is concerned with multiple-objective distributed optimization. Based on objective weighting and decision space decomposition, a collaborative neurodynamic approach to multiobjective distributed optimization is presented. In the approach, a system of collaborative neural networks is developed to search for Pareto optimal solutions, where each neural network is associated with one objective function and given constraints. Sufficient conditions are derived for ascertaining the convergence to a Pareto optimal solution of the collaborative neurodynamic system. In addition, it is proved that each connected subsystem can generate a Pareto optimal solution when the communication topology is disconnected. Then, a switching-topology-based method is proposed to compute multiple Pareto optimal solutions for discretized approximation of Pareto front. Finally, simulation results are discussed to substantiate the performance of the collaborative neurodynamic approach. A portfolio selection application is also given.

  17. Selectivity in multiple quantum nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible

  18. Selectivity in multiple quantum nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Warren Sloan [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  19. Visual attention is required for multiple object tracking.

    Science.gov (United States)

    Tran, Annie; Hoffman, James E

    2016-12-01

    In the multiple object tracking task, participants attempt to keep track of a moving set of target objects embedded in an identical set of moving distractors. Depending on several display parameters, observers are usually only able to accurately track 3 to 4 objects. Various proposals attribute this limit to a fixed number of discrete indexes (Pylyshyn, 1989), limits in visual attention (Cavanagh & Alvarez, 2005), or "architectural limits" in visual cortical areas (Franconeri, 2013). The present set of experiments examined the specific role of visual attention in tracking using a dual-task methodology in which participants tracked objects while identifying letter probes appearing on the tracked objects and distractors. As predicted by the visual attention model, probe identification was faster and/or more accurate when probes appeared on tracked objects. This was the case even when probes were more than twice as likely to appear on distractors suggesting that some minimum amount of attention is required to maintain accurate tracking performance. When the need to protect tracking accuracy was relaxed, participants were able to allocate more attention to distractors when probes were likely to appear there but only at the expense of large reductions in tracking accuracy. A final experiment showed that people attend to tracked objects even when letters appearing on them are task-irrelevant, suggesting that allocation of attention to tracked objects is an obligatory process. These results support the claim that visual attention is required for tracking objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Electromagnetic imaging of multiple-scattering small objects: non-iterative analytical approach

    International Nuclear Information System (INIS)

    Chen, X; Zhong, Y

    2008-01-01

    Multiple signal classification (MUSIC) imaging method and the least squares method are applied to solve the electromagnetic inverse scattering problem of determining the locations and polarization tensors of a collection of small objects embedded in a known background medium. Based on the analysis of induced electric and magnetic dipoles, the proposed MUSIC method is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply. After the locations of objects are obtained, the nonlinear inverse problem of determining the polarization tensors of objects accounting for multiple scattering between objects is solved by a non-iterative analytical approach based on the least squares method

  1. A Psychoacoustic-Based Multiple Audio Object Coding Approach via Intra-Object Sparsity

    Directory of Open Access Journals (Sweden)

    Maoshen Jia

    2017-12-01

    Full Text Available Rendering spatial sound scenes via audio objects has become popular in recent years, since it can provide more flexibility for different auditory scenarios, such as 3D movies, spatial audio communication and virtual classrooms. To facilitate high-quality bitrate-efficient distribution for spatial audio objects, an encoding scheme based on intra-object sparsity (approximate k-sparsity of the audio object itself is proposed in this paper. The statistical analysis is presented to validate the notion that the audio object has a stronger sparseness in the Modified Discrete Cosine Transform (MDCT domain than in the Short Time Fourier Transform (STFT domain. By exploiting intra-object sparsity in the MDCT domain, multiple simultaneously occurring audio objects are compressed into a mono downmix signal with side information. To ensure a balanced perception quality of audio objects, a Psychoacoustic-based time-frequency instants sorting algorithm and an energy equalized Number of Preserved Time-Frequency Bins (NPTF allocation strategy are proposed, which are employed in the underlying compression framework. The downmix signal can be further encoded via Scalar Quantized Vector Huffman Coding (SQVH technique at a desirable bitrate, and the side information is transmitted in a lossless manner. Both objective and subjective evaluations show that the proposed encoding scheme outperforms the Sparsity Analysis (SPA approach and Spatial Audio Object Coding (SAOC in cases where eight objects were jointly encoded.

  2. Disability and Fatigue Can Be Objectively Measured in Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Caterina Motta

    Full Text Available The available clinical outcome measures of disability in multiple sclerosis are not adequately responsive or sensitive.To investigate the feasibility of inertial sensor-based gait analysis in multiple sclerosis.A cross-sectional study of 80 multiple sclerosis patients and 50 healthy controls was performed. Lower-limb kinematics was evaluated by using a commercially available magnetic inertial measurement unit system. Mean and standard deviation of range of motion (mROM, sROM for each joint of lower limbs were calculated in one minute walking test. A motor performance index (E defined as the sum of sROMs was proposed.We established two novel observer-independent measures of disability. Hip mROM was extremely sensitive in measuring lower limb motor impairment, being correlated with muscle strength and also altered in patients without clinically detectable disability. On the other hand, E index discriminated patients according to disability, being altered only in patients with moderate and severe disability, regardless of walking speed. It was strongly correlated with fatigue and patient-perceived health status.Inertial sensor-based gait analysis is feasible and can detect clinical and subclinical disability in multiple sclerosis.

  3. A matter of tradeoffs: reintroduction as a multiple objective decision

    Science.gov (United States)

    Converse, Sarah J.; Moore, Clinton T.; Folk, Martin J.; Runge, Michael C.

    2013-01-01

    Decision making in guidance of reintroduction efforts is made challenging by the substantial scientific uncertainty typically involved. However, a less recognized challenge is that the management objectives are often numerous and complex. Decision makers managing reintroduction efforts are often concerned with more than just how to maximize the probability of reintroduction success from a population perspective. Decision makers are also weighing other concerns such as budget limitations, public support and/or opposition, impacts on the ecosystem, and the need to consider not just a single reintroduction effort, but conservation of the entire species. Multiple objective decision analysis is a powerful tool for formal analysis of such complex decisions. We demonstrate the use of multiple objective decision analysis in the case of the Florida non-migratory whooping crane reintroduction effort. In this case, the State of Florida was considering whether to resume releases of captive-reared crane chicks into the non-migratory whooping crane population in that state. Management objectives under consideration included maximizing the probability of successful population establishment, minimizing costs, maximizing public relations benefits, maximizing the number of birds available for alternative reintroduction efforts, and maximizing learning about the demographic patterns of reintroduced whooping cranes. The State of Florida engaged in a collaborative process with their management partners, first, to evaluate and characterize important uncertainties about system behavior, and next, to formally evaluate the tradeoffs between objectives using the Simple Multi-Attribute Rating Technique (SMART). The recommendation resulting from this process, to continue releases of cranes at a moderate intensity, was adopted by the State of Florida in late 2008. Although continued releases did not receive support from the International Whooping Crane Recovery Team, this approach does provide

  4. Connection-based and object-based grouping in multiple-object tracking: A developmental study.

    Science.gov (United States)

    Van der Hallen, Ruth; Reusens, Julie; Evers, Kris; de-Wit, Lee; Wagemans, Johan

    2018-03-30

    Developmental research on Gestalt laws has previously revealed that, even as young as infancy, we are bound to group visual elements into unitary structures in accordance with a variety of organizational principles. Here, we focus on the developmental trajectory of both connection-based and object-based grouping, and investigate their impact on object formation in participants, aged 9-21 years old (N = 113), using a multiple-object tracking paradigm. Results reveal a main effect of both age and grouping type, indicating that 9- to 21-year-olds are sensitive to both connection-based and object-based grouping interference, and tracking ability increases with age. In addition to its importance for typical development, these results provide an informative baseline to understand clinical aberrations in this regard. Statement of contribution What is already known on this subject? The origin of the Gestalt principles is still an ongoing debate: Are they innate, learned over time, or both? Developmental research has revealed how each Gestalt principle has its own trajectory and unique relationship to visual experience. Both connectedness and object-based grouping play an important role in object formation during childhood. What does this study add? The study identifies how sensitivity to connectedness and object-based grouping evolves in individuals, aged 9-21 years old. Using multiple-object tracking, results reveal that the ability to track multiple objects increases with age. These results provide an informative baseline to understand clinical aberrations in different types of grouping. © 2018 The Authors. British Journal of Developmental Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  5. Multiple Object Tracking Using the Shortest Path Faster Association Algorithm

    Directory of Open Access Journals (Sweden)

    Zhenghao Xi

    2014-01-01

    Full Text Available To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  6. Sensing Strategies for Disambiguating among Multiple Objects in Known Poses.

    Science.gov (United States)

    1985-08-01

    ELEMENT. PROIECT. TASK Artificial Inteligence Laboratory AE OKUI UBR 545 Technology Square Cambridge, MA 021.39 11. CONTROLLING OFFICE NAME AND ADDRESS 12...AD-Ali65 912 SENSING STRATEGIES FOR DISAMBIGURTING MONG MULTIPLE 1/1 OBJECTS IN KNOWN POSES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL ...or Dist Special 1 ’ MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 855 August, 1985 Sensing Strategies for

  7. Multiple-object permanence tracking: limitation in maintenance and transformation of perceptual objects.

    Science.gov (United States)

    Saiki, Jun

    2002-01-01

    Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.

  8. Layout design of user interface components with multiple objectives

    Directory of Open Access Journals (Sweden)

    Peer S.K.

    2004-01-01

    Full Text Available A multi-goal layout problem may be formulated as a Quadratic Assignment model, considering multiple goals (or factors, both qualitative and quantitative in the objective function. The facilities layout problem, in general, varies from the location and layout of facilities in manufacturing plant to the location and layout of textual and graphical user interface components in the human–computer interface. In this paper, we propose two alternate mathematical approaches to the single-objective layout model. The first one presents a multi-goal user interface component layout problem, considering the distance-weighted sum of congruent objectives of closeness relationships and the interactions. The second one considers the distance-weighted sum of congruent objectives of normalized weighted closeness relationships and normalized weighted interactions. The results of first approach are compared with that of an existing single objective model for example task under consideration. Then, the results of first approach and second approach of the proposed model are compared for the example task under consideration.

  9. Video based object representation and classification using multiple covariance matrices.

    Science.gov (United States)

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  10. Worldwide survey of damage from swallowing multiple magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oestreich, Alan E. [Cincinnati Children' s Hospital Medical Center, Radiology Department 5031, Cincinnati, OH (United States)

    2009-02-15

    It is increasingly recognized that in children swallowed multiple magnets cause considerable damage to the gastrointestinal tract. To emphasize that complications from swallowed magnets are extensive worldwide and throughout childhood. The author surveyed radiologists and researched cases of magnet swallowing in the literature and documented age and gender, numbers of magnets, nature of the magnets, reasons for swallowing, and clinical course. A total of 128 instances of magnet swallowing were identified, one fatal. Cases from 21 countries were found. Magnet swallowing occurred throughout childhood, with most children older than 3 years of age. Numbers of swallowed magnets ranged up to 100. Twelve children were known to be autistic. Many reasons were given for swallowing magnets, and a wide range of gastrointestinal damage was encountered. Considerable delay before seeking medical assistance was frequent, as was delay before obtaining radiographs or US imaging. Damage from swallowing multiple magnets is a considerable worldwide problem. More educational and preventative measures are needed. (orig.)

  11. Worldwide survey of damage from swallowing multiple magnets

    International Nuclear Information System (INIS)

    Oestreich, Alan E.

    2009-01-01

    It is increasingly recognized that in children swallowed multiple magnets cause considerable damage to the gastrointestinal tract. To emphasize that complications from swallowed magnets are extensive worldwide and throughout childhood. The author surveyed radiologists and researched cases of magnet swallowing in the literature and documented age and gender, numbers of magnets, nature of the magnets, reasons for swallowing, and clinical course. A total of 128 instances of magnet swallowing were identified, one fatal. Cases from 21 countries were found. Magnet swallowing occurred throughout childhood, with most children older than 3 years of age. Numbers of swallowed magnets ranged up to 100. Twelve children were known to be autistic. Many reasons were given for swallowing magnets, and a wide range of gastrointestinal damage was encountered. Considerable delay before seeking medical assistance was frequent, as was delay before obtaining radiographs or US imaging. Damage from swallowing multiple magnets is a considerable worldwide problem. More educational and preventative measures are needed. (orig.)

  12. A scalable parallel algorithm for multiple objective linear programs

    Science.gov (United States)

    Wiecek, Malgorzata M.; Zhang, Hong

    1994-01-01

    This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.

  13. A Dedicated Genetic Algorithm for Localization of Moving Magnetic Objects

    Directory of Open Access Journals (Sweden)

    Roger Alimi

    2015-09-01

    Full Text Available A dedicated Genetic Algorithm (GA has been developed to localize the trajectory of ferromagnetic moving objects within a bounded perimeter. Localization of moving ferromagnetic objects is an important tool because it can be employed in situations when the object is obscured. This work is innovative for two main reasons: first, the GA has been tuned to provide an accurate and fast solution to the inverse magnetic field equations problem. Second, the algorithm has been successfully tested using real-life experimental data. Very accurate trajectory localization estimations were obtained over a wide range of scenarios.

  14. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  15. Magnetic resonance tomography in confirmed multiple sclerosis

    International Nuclear Information System (INIS)

    Uhlenbrock, D.; Dickmann, E.; Beyer, H.K.; Gehlen, W.; Josef-Hospital, Bochum; Knappschafts-Krankenhaus Bochum

    1985-01-01

    The authors report on 21 cases of confirmed multiple sclerosis examined by both CT and magnetic resonance tomography. To safeguard the results, strict criteria were applied in accordance with the suggestions made by neurological work teams. Pathological lesons were seen in 20 patients; the MR image did not reveal anything abnormal in one case. On the average, 10.3 lesions were seen in the MR tomogram, whereas CT images showed on the average only 2.1 foci. The size and number of lesions in the MR tomogram were independent of the duration of the disease, the presented clinical symptoms, or the type of treatment at the time of examination. Evidently the sensitivity of MR tomography is very high in MS patients, but it has not yet been clarified to what extent this applies also to the specificity. Further research is mandatory. First experiences made by us show that lesions of a similar kind can also occur in diseases such as malignant lymphoma involving the brain, in vitamin B 12 deficiency syndrome, or encephalitis, and can become manifest in the MR tomogram. (orig.) [de

  16. Automatic feature-based grouping during multiple object tracking.

    Science.gov (United States)

    Erlikhman, Gennady; Keane, Brian P; Mettler, Everett; Horowitz, Todd S; Kellman, Philip J

    2013-12-01

    Contour interpolation automatically binds targets with distractors to impair multiple object tracking (Keane, Mettler, Tsoi, & Kellman, 2011). Is interpolation special in this regard or can other features produce the same effect? To address this question, we examined the influence of eight features on tracking: color, contrast polarity, orientation, size, shape, depth, interpolation, and a combination (shape, color, size). In each case, subjects tracked 4 of 8 objects that began as undifferentiated shapes, changed features as motion began (to enable grouping), and returned to their undifferentiated states before halting. We found that intertarget grouping improved performance for all feature types except orientation and interpolation (Experiment 1 and Experiment 2). Most importantly, target-distractor grouping impaired performance for color, size, shape, combination, and interpolation. The impairments were, at times, large (>15% decrement in accuracy) and occurred relative to a homogeneous condition in which all objects had the same features at each moment of a trial (Experiment 2), and relative to a "diversity" condition in which targets and distractors had different features at each moment (Experiment 3). We conclude that feature-based grouping occurs for a variety of features besides interpolation, even when irrelevant to task instructions and contrary to the task demands, suggesting that interpolation is not unique in promoting automatic grouping in tracking tasks. Our results also imply that various kinds of features are encoded automatically and in parallel during tracking.

  17. Fast, multiple optimizations of quadratic dose objective functions in IMRT

    International Nuclear Information System (INIS)

    Breedveld, Sebastiaan; Storchi, Pascal R M; Keijzer, Marleen; Heijmen, Ben J M

    2006-01-01

    Inverse treatment planning for intensity-modulated radiotherapy may include time consuming, multiple minimizations of an objective function. In this paper, methods are presented to speed up the process of (repeated) minimization of the well-known quadratic dose objective function, extended with a smoothing term that ensures generation of clinically acceptable beam profiles. In between two subsequent optimizations, the voxel-dependent importance factors of the quadratic terms will generally be adjusted, based on an intermediate plan evaluation. The objective function has been written in matrix-vector format, facilitating the use of a recently published, fast quadratic minimization algorithm, instead of commonly applied gradient-based methods. This format also reduces the calculation time in between subsequent minimizations, related to adjustment of the voxel-dependent importance factors. Sparse matrices are used to limit the required amount of computer memory. For three patients, comparisons have been made with a gradient method. Mean speed improvements of up to a factor of 37 have been achieved

  18. The multiplicity of the digital textbook as design object

    DEFF Research Database (Denmark)

    Riis Ebbesen, Toke

    2015-01-01

    Building on a preliminary case study of the Danish educational publisher Systime A/S and its flagship product, the web-based ‘iBog’/‘iBook’, this article explores how digital textbooks can be understood as design. The shaping of digital books is seen as being intertwined in a wider circuit...... reorganization of the publishing company, web-based user interfaces, and ultimately the branding, which market these new digital objects, are building power- ful discourses around the product. Thus it is suggested that the design process of the iBog case can be understood in a model of database-based publishing...... with multiple levels. In the final analysis, the iBog is much more than a product and a technology. It is a brand that goes beyond what can be studied by looking at the digital textbook as a singular artefact....

  19. Fuzzy multiple objective decision making methods and applications

    CERN Document Server

    Lai, Young-Jou

    1994-01-01

    In the last 25 years, the fuzzy set theory has been applied in many disciplines such as operations research, management science, control theory, artificial intelligence/expert system, etc. In this volume, methods and applications of crisp, fuzzy and possibilistic multiple objective decision making are first systematically and thoroughly reviewed and classified. This state-of-the-art survey provides readers with a capsule look into the existing methods, and their characteristics and applicability to analysis of fuzzy and possibilistic programming problems. To realize practical fuzzy modelling, it presents solutions for real-world problems including production/manufacturing, location, logistics, environment management, banking/finance, personnel, marketing, accounting, agriculture economics and data analysis. This book is a guided tour through the literature in the rapidly growing fields of operations research and decision making and includes the most up-to-date bibliographical listing of literature on the topi...

  20. Magnetic resonance imaging in multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Hirayama, Keizo

    1989-01-01

    Magnetic resonance imaging (MRI) of the brain was performed in a total of 45 patients with multiple sclerosis (MS), comprising 27 with brain symptoms and 18 without it. The results were compared with X-ray computed tomography (CT). Some of the 45 MS patients were also examined by neurophysiological studies for comparison. MRI showed demyelinating plaques of the brain in a total of 31 patients (69%) - 20 symptomatic and 11 asymptomatic patients. For symptomatic patients, MRI was capable of detecting brain lesions in 6 (86%) of 7 acute stage patients and 14 (70%) of 20 non-acute stage patients. It was also capable of detecting brain lesions in 21 (70%) of 30 clinically definite MR patients and 10 (67%) of 15 clinically probable MS patients. Concurrently available X-ray CT revealed brain lesions in 9 symptomatic patients (33%) and one asymptomatic patient (6%). Visual evoked potentials examined in 31 patients showed abnormality in one (11%) of 9 patients without symptoms of optic neuritis and all (100%) of the other 22 patients with symptoms. In 19 evaluable patients, auditory brainstem responses were abnormal in one (11%) of 9 patients without brainstem symptoms and 3 (30%) of 10 patients with symptoms. MRI of the brain was far superior to X-ray CT, visual evoked potentials and auditory brainstem responses in detecting clinically unsuspected lesions. We proposed new diagnostic criteria including MRI findings of the brain in the Japanese MS diagnostic criteria. MRI of the spinal cord was performed in 12 MS patients with spinal cord symptoms by sagittal and coronal images. It demonstrated demyelinating lesions within the cervical and superior thoracic cord in 8 MS acute stage patients. Spinal cord lesions were longitudinally continuous as long as many spinal segments, with swelling in 6 patients and atrophy in 2 patients. MRI of spinal cord was useful in deciding superior and inferior limits of cord lesions and in visualizing cord swelling or atrophy. (Namekawa, K)

  1. Vanpool trip planning based on evolutionary multiple objective optimization

    Science.gov (United States)

    Zhao, Ming; Yang, Disheng; Feng, Shibing; Liu, Hengchang

    2017-08-01

    Carpool and vanpool draw a lot of researchers’ attention, which is the emphasis of this paper. A concrete vanpool operation definition is given, based on the given definition, this paper tackles vanpool operation optimization using user experience decline index(UEDI). This paper is focused on making each user having identical UEDI and the system having minimum sum of all users’ UEDI. Three contributions are made, the first contribution is a vanpool operation scheme diagram, each component of the scheme is explained in detail. The second contribution is getting all customer’s UEDI as a set, standard deviation and sum of all users’ UEDI set are used as objectives in multiple objective optimization to decide trip start address, trip start time and trip destination address. The third contribution is a trip planning algorithm, which tries to minimize the sum of all users’ UEDI. Geographical distribution of the charging stations and utilization rate of the charging stations are considered in the trip planning process.

  2. Dual-Layer Density Estimation for Multiple Object Instance Detection

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-01-01

    Full Text Available This paper introduces a dual-layer density estimation-based architecture for multiple object instance detection in robot inventory management applications. The approach consists of raw scale-invariant feature transform (SIFT feature matching and key point projection. The dominant scale ratio and a reference clustering threshold are estimated using the first layer of the density estimation. A cascade of filters is applied after feature template reconstruction and refined feature matching to eliminate false matches. Before the second layer of density estimation, the adaptive threshold is finalized by multiplying an empirical coefficient for the reference value. The coefficient is identified experimentally. Adaptive threshold-based grid voting is applied to find all candidate object instances. Error detection is eliminated using final geometric verification in accordance with Random Sample Consensus (RANSAC. The detection results of the proposed approach are evaluated on a self-built dataset collected in a supermarket. The results demonstrate that the approach provides high robustness and low latency for inventory management application.

  3. Object representation and magnetic moments in thin alkali films

    Science.gov (United States)

    Garrett, Douglas C.

    2008-10-01

    This thesis is broken into two parts a computer vision part and a solid state physics part. In the computer vision part of the thesis (chapters 1 through 5), the concept of an architecture is discussed with a review of what is known about the brain's visual architecture as it applies to object representation. With this in mind we review the two main types of architectures that are used in computer vision for object representation. A specific object representation is then implemented and optimized to solve a problem in object tracking. This representation is then used to derive the fiducial points of a face using two distinct methods. One using evolutionary algorithms and another by a Bayesian analysis of the feature responses drawn from a gallery of faces. The evolved fiducial representation is tested as a facial detection system. It is shown that the Bayesian analysis of facial images gives an entropy measure that can be used to further improve detection results in the facial detection system. In addition, two similarity metrics are explored in the context of facial detection. It is found that a normalized vector dot product substantially outperforms the Euclidean distance measure. The solid state part of the thesis is composed of two self contained chapters. An effort has been made to reduce the redundancies between the material but some will necessarily remain (i.e., short descriptions of the experimental setup). Both chapters deal with the phenomenon of magnetism of atomic impurities in and on thin metal host films. The important difference between the chapters, besides the results, lies in the experimental technique used to measure the magnetism. In chapter 6, thin films of Pb are covered in situ with sub monolayers of V, Mo and Co in the range between 0.01 and 1 monolayers. If the surface impurities are magnetic they will reduce the superconducting transition temperature of the Pb film. From the reduction of Tc the magnetic dephasing rate of the surface

  4. Cortical mechanisms for trans-saccadic memory and integration of multiple object features

    Science.gov (United States)

    Prime, Steven L.; Vesia, Michael; Crawford, J. Douglas

    2011-01-01

    Constructing an internal representation of the world from successive visual fixations, i.e. separated by saccadic eye movements, is known as trans-saccadic perception. Research on trans-saccadic perception (TSP) has been traditionally aimed at resolving the problems of memory capacity and visual integration across saccades. In this paper, we review this literature on TSP with a focus on research showing that egocentric measures of the saccadic eye movement can be used to integrate simple object features across saccades, and that the memory capacity for items retained across saccades, like visual working memory, is restricted to about three to four items. We also review recent transcranial magnetic stimulation experiments which suggest that the right parietal eye field and frontal eye fields play a key functional role in spatial updating of objects in TSP. We conclude by speculating on possible cortical mechanisms for governing egocentric spatial updating of multiple objects in TSP. PMID:21242142

  5. [Intestinal perforation due to multiple magnet ingestion: a case report].

    Science.gov (United States)

    Cevizci, Mehmet Nuri; Karadağ, Cetin Ali; Demir, Mesut; Dokucu, Ali Ihsan

    2012-03-01

    Multiple magnet ingestion during childhood may result in emergency situations. A single magnet may be discharged with intestinal peristalsis, but multiple magnets may stick together and cause significant intestinal complications. Here we present a case with intestinal perforation due to ingestion of multiple magnets and metal pieces. An eight-year-old girl presented with abdominal pain and vomiting. She had abdominal tenderness and defense on the physical examination. Abdominal X-ray showed air and fluid levels. Metallic images were not considered at first as important in the diagnosis. Abdominal ultrasonography was reported as acute appendicitis. During the abdominal exploration, the appendix was normal, but there were dense adherences around the ileum and cecum. After adhesiolysis, intestinal perforations were seen in the cecum and 15 and 45 cm proximal to the cecum. Magnet and metal pieces were present in the perforated segments. Wedge resection and primary repair was performed. There were no postoperative complications, and she was discharged on the postoperative fifth day. Pediatric surgeons should be aware of the complications of multiple magnet ingestion. If the patient has a history of multiple magnet ingestion, follow-up with daily abdominal X-rays should be done, and in cases where magnets seem to cluster together or if acute abdominal signs develop, surgical exploration should be considered.

  6. PRIVACY PRESERVING DATA MINING USING MULTIPLE OBJECTIVE OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    V. Shyamala Susan

    2016-10-01

    Full Text Available Privacy preservation is that the most targeted issue in information publication, because the sensitive data shouldn't be leaked. For this sake, several privacy preservation data mining algorithms are proposed. In this work, feature selection using evolutionary algorithm and data masking coupled with slicing is treated as a multiple objective optimisation to preserve privacy. To start with, Genetic Algorithm (GA is carried out over the datasets to perceive the sensitive attributes and prioritise the attributes for treatment as per their determined sensitive level. In the next phase, to distort the data, noise is added to the higher level sensitive value using Hybrid Data Transformation (HDT method. In the following phase slicing algorithm groups the correlated attributes organized and by this means reduces the dimensionality by retaining the Advanced Clustering Algorithm (ACA. With the aim of getting the optimal dimensions of buckets, tuple segregating is accomplished by Metaheuristic Firefly Algorithm (MFA. The investigational consequences imply that the anticipated technique can reserve confidentiality and therefore the information utility is additionally high. Slicing algorithm allows the protection of association and usefulness in which effects in decreasing the information dimensionality and information loss. Performance analysis is created over OCC 7 and OCC 15 and our optimization method proves its effectiveness over two totally different datasets by showing 92.98% and 96.92% respectively.

  7. Clinical diagnostic criteria of multiple sclerosis: the role of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Belair, M.; Girard, M.

    2004-01-01

    The objective of this article is to summarize the diagnostic criteria recommended by the International Panel on the Diagnosis of Multiple Sclerosis in 2001. The recommendations of another working group, the Consortium of Multiple Sclerosis Centers Consensus Meeting, which met in Vancouver in 2001, concerning the diagnosis and follow-up of patients with multiple sclerosis are also presented in an effort to standardize the protocols for magnetic resonance imaging of these patients. (author)

  8. Attraction and repulsion of magnetic or magnetizable objects to and from a sensor surface

    NARCIS (Netherlands)

    2008-01-01

    The present invention provides a magnetic sensor device a first magnetic field generating means for attracting magnetic or magnetizable objects, e.g. magnetic particles, to a sensor surface and a second magnetic field generating means for, in combination with the first magnetic field, repelling

  9. Multiple systems atrophy: Differentiation and findings by Magnetic resonance

    International Nuclear Information System (INIS)

    Vargas Velez, Sergio Alberto; Alzate Betancur, Catalina Maria

    2006-01-01

    Multiple system atrophy (MSA) is a neuro degenerative disorder of undetermined cause, characterized clinically by Parkinson's, autonomic, cerebellar or pyramidal sing and symptoms. lts differentiation from Parkinson's disease may be difficult, mainly in the early stages owing to overlapping features. Magnetic resonance imaging has demonstrated usefulness in MSA diagnosis and in differentiation with Parkinson's disease. One case with magnetic resonance findings is described

  10. SOLAR MULTIPLE ERUPTIONS FROM A CONFINED MAGNETIC STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongwoo; Chae, Jongchul [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Liu, Chang; Jing, Ju [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2016-09-20

    How eruption can recur from a confined magnetic structure is discussed based on the Solar Dynamics Observatory observations of the NOAA active region 11444, which produced three eruptions within 1.5 hr on 2012 March 27. The active region (AR) had the positive-polarity magnetic fields in the center surrounded by the negative-polarity fields around. Since such a distribution of magnetic polarity tends to form a dome-like magnetic fan structure confined over the AR, the multiple eruptions were puzzling. Our investigation reveals that this event exhibits several properties distinct from other eruptions associated with magnetic fan structures: (i) a long filament encircling the AR was present before the eruptions; (ii) expansion of the open–closed boundary (OCB) of the field lines after each eruption was suggestive of the growing fan-dome structure, and (iii) the ribbons inside the closed magnetic polarity inversion line evolved in response to the expanding OCB. It thus appears that in spite of multiple eruptions the fan-dome structure remained undamaged, and the closing back field lines after each eruption rather reinforced the fan-dome structure. We argue that the multiple eruptions could occur in this AR in spite of its confined magnetic structure because the filament encircling the AR was adequate for slipping through the magnetic separatrix to minimize the damage to its overlying fan-dome structure. The result of this study provides a new insight into the productivity of eruptions from a confined magnetic structure.

  11. SOLAR MULTIPLE ERUPTIONS FROM A CONFINED MAGNETIC STRUCTURE

    International Nuclear Information System (INIS)

    Lee, Jeongwoo; Chae, Jongchul; Liu, Chang; Jing, Ju

    2016-01-01

    How eruption can recur from a confined magnetic structure is discussed based on the Solar Dynamics Observatory observations of the NOAA active region 11444, which produced three eruptions within 1.5 hr on 2012 March 27. The active region (AR) had the positive-polarity magnetic fields in the center surrounded by the negative-polarity fields around. Since such a distribution of magnetic polarity tends to form a dome-like magnetic fan structure confined over the AR, the multiple eruptions were puzzling. Our investigation reveals that this event exhibits several properties distinct from other eruptions associated with magnetic fan structures: (i) a long filament encircling the AR was present before the eruptions; (ii) expansion of the open–closed boundary (OCB) of the field lines after each eruption was suggestive of the growing fan-dome structure, and (iii) the ribbons inside the closed magnetic polarity inversion line evolved in response to the expanding OCB. It thus appears that in spite of multiple eruptions the fan-dome structure remained undamaged, and the closing back field lines after each eruption rather reinforced the fan-dome structure. We argue that the multiple eruptions could occur in this AR in spite of its confined magnetic structure because the filament encircling the AR was adequate for slipping through the magnetic separatrix to minimize the damage to its overlying fan-dome structure. The result of this study provides a new insight into the productivity of eruptions from a confined magnetic structure.

  12. Magnetic induction tomography of objects for security applications

    Science.gov (United States)

    Ward, Rob; Joseph, Max; Langley, Abbi; Taylor, Stuart; Watson, Joe C.

    2017-10-01

    A coil array imaging system has been further developed from previous investigations, focusing on designing its application for fast screening of small bags or parcels, with a view to the production of a compact instrument for security applications. In addition to reducing image acquisition times, work was directed toward exploring potential cost effective manufacturing routes. Based on magnetic induction tomography and eddy-current principles, the instrument captured images of conductive targets using a lock-in amplifier, individually multiplexing signals between a primary driver coil and a 20 by 21 imaging array of secondary passive coils constructed using a reproducible multiple tile design. The design was based on additive manufacturing techniques and provided 2 orthogonal imaging planes with an ability to reconstruct images in less than 10 seconds. An assessment of one of the imaging planes is presented. This technique potentially provides a cost effective threat evaluation technique that may compliment conventional radiographic approaches.

  13. Time and multiple objectives in scheduling and routing problems

    NARCIS (Netherlands)

    Dabia, S.

    2012-01-01

    Many optimization problems encountered in practice are multi-objective by nature, i.e., different objectives are conflicting and equally important. Many times, it is not desirable to drop some of them or to optimize them in a composite single objective or hierarchical manner. Furthermore, cost

  14. Magnetic resonance imaging in the diagnostics of multiple sclerosis

    International Nuclear Information System (INIS)

    Larsen, J.P.; Tjoerstad, K.; Kaass, B.; Oedegaard, H.

    1987-01-01

    Multiple sclerosis is an important and frequent neurological disease and the diagnosis might be difficult. The clinical criteria of multiple sclerosis and the role of laboratory examinations in the diagnosis of the disease are discussed. In particular the help offered by the magnetic resonance imaging method is the subject of this paper. Three patients are reported and discussed

  15. Wall locking and multiple nonlinear states of magnetic islands

    International Nuclear Information System (INIS)

    Persson, Mikael; Australian National Univ., Canberra, ACT

    1994-01-01

    The nonlinear evolution of magnetic islands is analysed in configurations with multiple resonant magnetic surfaces. The existence of multiple nonlinear steady states, is discussed. These are shown to be associated with states where the dynamics around the different rational surfaces are coupled or decoupled and in the presence of a wall of finite resistivity may correspond wall-locked or non-wall-locked magnetic islands. For the case of strong wall stabilization the locking is shown to consist of two different phases. During the first phase the locking of the plasma at the different rational surfaces occurs. Only when the outermost resonant magnetic surface has locked to the inner surfaces can the actual wall locking process take place. Consequently, wall locking, of a global mode, involving more than one rational surface, can be prevented by the decoupling of the resonant magnetic surfaces by plasma rotation. Possible implications on tokamak experiments are discussed. (author)

  16. Magnetic resonance imaging in clinically-definite multiple sclerosis

    International Nuclear Information System (INIS)

    Noakes, J.B.; Herkes, G.K.; Frith, J.A.

    1990-01-01

    Forty-two patients with clinically-definite multiple sclerosis were examined by magnetic resonance imaging using a 1.5-T instrument. Magnetic resonance imaging detected an abnormality in 90% of patients. In four patients, no lesions were demonstrated. The number, size and site of the lesions by magnetic resonance imaging were compared with the patients' clinical status and other variables. The Kurtzke disability status scale score increased in patients with corpus callosum atrophy, brainstem and basal ganglia lesions, and correlated with the total number of lesions. No correlation was shown between the findings of magnetic resonance imaging and disease duration, age, sex or pattern-reversal visual-evoked potentials. The variety of magnetic resonance images that could be obtained in patients with clinically-definite multiple sclerosis is highlighted. 24 refs., 8 figs., 1 tab

  17. Magnetic resonance imaging in multiple sclerosis

    International Nuclear Information System (INIS)

    Kesselring, J.; Ormerod, I.E.C.; Miller, D.H.; Du Boulay, G.H.; McDonald, W.I.

    1989-01-01

    In 1983 the Multiple Sclerosis Society of Great Britain and Northern Ireland set up the Multiple Sclerosis NMR Research Group at the Institute of Neurology and the National Hospital, Queen Square. The first aim of the Group was to define the role of MRI in the diagnosis and differential diagnosis of multiple sclerosis, and this Atlas represents a summary of that work. Our strategy was to determine the pattern of MRI abnormalities in clinically definite MS and to compare it with those of isolated clinical syndromes of the kind seen in MS (e.g. optic neuritis) and of other disorders with which MS can be confused clinically or radiologically. We have also been involved in a major program of experimental work designed to elucidate the origin of the abnormal signals in MRI. To describe this in full detail would go beyond the scope of the Atlas, but we have incorporated such results as far as they illuminate our clinical problems. The imager used was a 0.5 Tesla Picker superconducting system. Technical advances have been rapid since we began. Nevertheless, the quality of the images obtained at our relatively low field has enabled us to establish the patterns of abnormality in the brain in MS and the diseases which must be distinguished from it. (orig./MG)

  18. Distributed magnetic field positioning system using code division multiple access

    Science.gov (United States)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  19. Uncovering the multiple objectives behind national energy efficiency planning

    International Nuclear Information System (INIS)

    Haydt, Gustavo; Leal, Vítor; Dias, Luís

    2013-01-01

    This work seeks to identify the fundamental objectives behind the development of energy efficiency (EE) plans for countries. It also presents a method to quantify the degree of achievement of each objective, through the identification and operationalization of attributes. This was achieved by applying Keeney's value-focused thinking approach. For that purpose, three key decision makers in EE planning were interviewed along with a bibliographic review on the subject. From this process six fundamental objectives were identified formalizing the problem as a multi-objective one: (i) to minimize the influence of energy use on climate change; (ii) to minimize the financial risk from the investment; (iii) to maximize the security of energy supply; (iv) to minimize investment costs; (v) to minimize the impacts of building new power plants and transmission infrastructures and (vi) to maximize the local air quality. The respective attributes were: (i) CO 2 emissions savings; (ii) payback; (iii) imported energy savings; (iv) investment cost; (v) electricity savings; and (vi) total suspended particles savings. To show the usefulness of the work, the objectives and attributes identified were used to show the possible outcomes from five hypothetical EE plans for Portugal

  20. An object-oriented approach to evaluating multiple spectral models

    International Nuclear Information System (INIS)

    Majoras, R.E.; Richardson, W.M.; Seymour, R.S.

    1995-01-01

    A versatile, spectroscopy analysis engine has been developed by using object-oriented design and analysis techniques coupled with an object-oriented language, C++. This engine provides the spectroscopist with the choice of several different peak shape models that are tailored to the type of spectroscopy being performed. It also allows ease of development in adapting the engine to other analytical methods requiring more complex peak fitting in the future. This results in a program that can currently be used across a wide range of spectroscopy applications and anticipates inclusion of future advances in the field. (author) 6 refs.; 1 fig

  1. Multiple magnetic transitions in SmCoAsO

    Directory of Open Access Journals (Sweden)

    Yongliang Chen

    2011-12-01

    Full Text Available The magnetic properties of SmCoAsO have been investigated. Our results differ from early observations. Complicated magnetism consists of antiferromagnetic, ferromagnetic, ferrimagnetic and paramagnetic, even diamagnetism at low field has been observed. A metamagnetic transition was observed, resulting from a canting of the spins. The interaction between two Co sublattices with canted-structure might take responsibility for the multiple magnetic transitions. Electrical resistivity data indicate that SmCoAsO is metallic conductor with room temperature resistivity of 0.51669 mΩ-cm. Negative magnetoresistance effect suggests a significant suppression of spin-flip scattering by the applied magnetic field. The magnetic phase diagram has been established.

  2. Multiple Level Crowding: Crowding at the Object Parts Level and at the Object Configural level.

    Science.gov (United States)

    Kimchi, Ruth; Pirkner, Yossef

    2015-01-01

    In crowding, identification of a peripheral target in the presence of nearby flankers is worse than when the target appears alone. Prevailing theories hold that crowding occurs because of integration or "pooling" of low-level features at a single, relatively early stage of visual processing. Recent studies suggest that crowding can occur also between high-level object representations. The most relevant findings come from studies with faces and may be specific to faces. We examined whether crowding can occur at the object configural level in addition to part-level crowding, using nonface objects. Target (a disconnected square or diamond made of four elements) identification was measured at varying eccentricities. The flankers were similar either to the target parts or to the target configuration. The results showed crowding in both cases: Flankers interfered with target identification such that identification accuracy decreased with an increase in eccentricity, and no interference was observed at the fovea. Crowding by object parts, however, was weaker and had smaller spatial extent than crowding by object configurations; we related this finding to the relationship between crowding and perceptual organization. These results provide strong evidence that crowding occurs not only between object parts but also between configural representations of objects. © The Author(s) 2015.

  3. Decision Support for Planning of Multimodal Transportation with Multiple Objectives

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    phase, and considers passenger inconvenience at transfers at the same time. The paper presents a mathematical model of the problem, and the implementation of a large neighbourhood search solution procedure. The problem is solved for a real-life based problem instance, containing eight bus lines......-known issues. They both originate in the world of multimodality, and deal with problems that arise as a consequence of the combined use of several modes. The thesis introduces the Double Travelling Salesman Problem with Multiple Stacks (DTSPMS), which is a problem that combines routing and last...... compare to solutions of the regular Travelling Salesman Problem. Next, two papers are presented, introducing respectively heuristic and exact solution procedures for the problem. The heuristic approach tests a variety of metaheuristic solution approaches, of which a large neighbourhood search obtains...

  4. Magnetic resonance imaging in multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Aotsuka, Akiyo; Shinotoh, Hitoshi; Hirayama, Keizo [Chiba Univ. (Japan). School of Medicine; Ikehira, Hiroo; Hashimoto, Takahiro

    1992-08-01

    We studied 18 patients with multiple system atrophy (MSA) by high field strength MRI: 6 striatonigral degeneration (SND), 4 Shy-Drager syndrome (SDS), and 8 olivo-ponto-cerebellar atrophy (OPCA). We also studied 30 Parkinson's disease (PD) and 10 age-matched controls. The diagnosis of SND, SDS, and OPCA were based on criteria after Hirayama et al (1985). Bradykinesia, rigidity, and tremor were assessed with the summed scores of the signs used as the extrapyramidal scores. The mean extrapyramidal scores were not significantly different in patients with SND, SDS, OPCA, and PD. MRI studies were performed on 1.5 tesla MRI unit, using a T[sub 2]-weighted spin echo pulse sequence (TR2500 ms/TE40 ms). The width of the pars compacta signal in all subjects was measured by the method of Duguid et al (1986). Intensity profiles were made on a straight line perpendicular to the pars compacta through the center of the red nucleus on an image of the midbrain. We measured the width of the valley at half-height between the peaks of an index of the width of the pars compacta signal. The mean widths of the pars compacta signal were: 2.8[+-]0.4 mm (SND), 2.8[+-]0.7 mm (SDS), 3.6[+-]0.6 mm (OPCA), 2.7[+-]0.3 mm (PD), and 4.3[+-]0.6 mm (control). The mean widths of the pars compacta signal in PD, SND, and SDS were significantly narrower than that in the control group (p<0.05), while the OPCA group was not significantly narrower. The results may indicate that the time course of nigral involvement is milder in OPCA than in SND and SDS. The extrapyramidal signs in OPCA may be attributed mainly to the degeneration of the putamen rather than to that of the substantia nigra. Abnormal hypointensity in the posterolateral putamen was found in only one SND patient and in two OPCA patients, even though this finding has been frequently observed in MSA. Since no PD patients exhibited this finding, it may of some value in differentiating MSA from PD. (author).

  5. Objectives and configuration of the Multiple Pulse Propagation Experiment

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Caporaso, G.J.; Chamber, F.W.; Chong, Y.P.; Deadrick, F.J.; Guethlein, G.; Fawley, W.M.; Renbarger, V.L.; Rogers, D. Jr.; Weir, J.T.; Eckstrom, D.; Stalder, K.; Hubbard, R.; Lee, P.

    1990-01-01

    The Multiple Pulse Propagation Experiment (MPPE) was designed to determine the hose stability properties of an intense relativistic electron beam in a beam generated density channel and to investigate range extension with increasing pulse number in the burst. This experiment used a 10-MeV electron beam generated by the Advanced Test Accelerator (ATA). The electron beam current was expected to be at least 6-kA with an equilibrium radius of 0.5 cm (RMS) in the gas. This last constraint implied an unnormalized, RMS beam emittance of 20 mrad-cm. In order to achieve beam stability against hose, each electron beam pulse had to be tailored in emittance in order to phase mix damp the instability. The initial offsets of the beam were to be kept small in order to prevent a large saturated amplitude. Numerical simulations determined the initial criteria for the emittance profile and initial beam displacements. In order to demonstrate a final density depression of 25% of ambient pressure, at least five pulses with interpulse separation of 1- to 2-ms were specified

  6. Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy.

    Science.gov (United States)

    Park, Seongjae; Seo, Hosung; Seol, Daehee; Yoon, Young-Hwan; Kim, Mi Yang; Kim, Yunseok

    2016-02-08

    Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features.

  7. Fast automated segmentation of multiple objects via spatially weighted shape learning

    Science.gov (United States)

    Chandra, Shekhar S.; Dowling, Jason A.; Greer, Peter B.; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-01

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice’s similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  8. Fire Hose Instability in the Multiple Magnetic Reconnection

    Science.gov (United States)

    Alexandrova, A.; Retino, A.; Divin, A. V.; Le Contel, O.; Matteini, L.; Breuillard, H.; Deca, J.; Catapano, F.; Cozzani, G.; Nakamura, R.; Panov, E. V.; Voros, Z.

    2017-12-01

    We present observations of multiple reconnection in the Earth's magnetotail. In particular, we observe an ion temperature anisotropy characterized by large temperature along the magnetic field, between the two active X-lines. The anisotropy is associated with right-hand polarized waves at frequencies lower than the ion cyclotron frequency and propagating obliquely to the background magnetic field. We show that the observed anisotropy and the wave properties are consistent with linear kinetic theory of fire hose instability. The observations are in agreement with the particle-in-cell simulations of multiple reconnection. The results suggest that the fire hose instability can develop during multiple reconnection as a consequence of the ion parallel anisotropy that is produced by counter-streaming ions trapped between the X-lines.

  9. Energy considerations concerning current loops and magnetic objects

    NARCIS (Netherlands)

    Fluitman, J.H.J.

    1980-01-01

    In the thermodynamics of compound magnetic systems there is an ambiguity in defining the free energies connected to the constituent parts or subsystems. It is argued that the choice, usually made in defining the energy of a magnetized body, leads to an expression for the energy of a current loop or

  10. Object-oriented magnetic resonance classes and objects, calculations and computations

    CERN Document Server

    Mehring, Michael

    2001-01-01

    This book presents, for the first time, a unified treatment of the quantum mechanisms of magnetic resonance, including both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Magnetic resonance is perhaps the most advanced type of spectroscopy and it is applied in biology, chemistry, physics, material science, and medicine. If applied in conjunction with spectroscopy, the imaging version of magnetic resonance has no counterpart in any type of experimental technique. The authors present explanations and applications from fundamental to advanced levels. Additionally, the

  11. Mars Environment and Magnetic Orbiter Scientific and Measurement Objectives

    DEFF Research Database (Denmark)

    Leblanc, F.; Langlais, B.; Fouchet, T.

    2009-01-01

    In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed......, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements...

  12. Apparatus and method for generating a magnetic field by rotation of a charge holding object

    Science.gov (United States)

    Gerald, II, Rex E.; Vukovic, Lela [Westchester, IL; Rathke, Jerome W [Homer Glenn, IL

    2009-10-13

    A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

  13. A Mobile Service Oriented Multiple Object Tracking Augmented Reality Architecture for Education and Learning Experiences

    Science.gov (United States)

    Rattanarungrot, Sasithorn; White, Martin; Newbury, Paul

    2014-01-01

    This paper describes the design of our service-oriented architecture to support mobile multiple object tracking augmented reality applications applied to education and learning scenarios. The architecture is composed of a mobile multiple object tracking augmented reality client, a web service framework, and dynamic content providers. Tracking of…

  14. Multi-Objective Optimization for Pure Permanent-Magnet Undulator Magnets Ordering Using Modified Simulated Annealing

    CERN Document Server

    Chen Nian; Li, Ge

    2004-01-01

    Undulator field errors influence the electron beam trajectories and lower the radiation quality. Angular deflection of electron beam is determined by first field integral, orbital displacement of electron beam is determined by second field integral and radiation quality can be evaluated by rms field error or phase error. Appropriate ordering of magnets can greatly reduce the errors. We apply a modified simulated annealing algorithm to this multi-objective optimization problem, taking first field integral, second field integral and rms field error as objective functions. Undulator with small field errors can be designed by this method within a reasonable calculation time even for the case of hundreds of magnets (first field integral reduced to 10-6T·m, second integral to 10-6T·m2 and rms field error to 0.01%). Thus, the field correction after assembling of undulator will be greatly simplified. This paper gives the optimizing process in detail and puts forward a new method to quickly calculate the rms field e...

  15. Increasing Benefit of Magnetic Resonance Imaging in Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Pyhtinen, J.; Karttunen, A.; Tikkakoski, T. [Radiologian Klinikka, Oulu (Finland)

    2006-11-15

    Magnetic resonance imaging (MRI) has emerged as an essential tool of multiple sclerosis (MS) diagnosis and has opened up completely new prospects in MS research and treatment trials. It is a sensitive method that gives direct evidence of tissue pathology and has greatly increased our knowledge of MS. In clinical work, MRI is used to confirm and exclude the diagnosis of MS. The international recommendation is that every suspected MS patient should undergo at least one brain MRI. T2-weighted images are the standard tool in clinical work, and functional imaging methods are mainly used in MS research. The subtypes and the course of the disease cause variation in MRI findings. Here, we present a general overview of MR findings in MS. Brain, magnetic resonance imaging, multiple sclerosis, spinal cord.

  16. Increasing Benefit of Magnetic Resonance Imaging in Multiple Sclerosis

    International Nuclear Information System (INIS)

    Pyhtinen, J.; Karttunen, A.; Tikkakoski, T.

    2006-01-01

    Magnetic resonance imaging (MRI) has emerged as an essential tool of multiple sclerosis (MS) diagnosis and has opened up completely new prospects in MS research and treatment trials. It is a sensitive method that gives direct evidence of tissue pathology and has greatly increased our knowledge of MS. In clinical work, MRI is used to confirm and exclude the diagnosis of MS. The international recommendation is that every suspected MS patient should undergo at least one brain MRI. T2-weighted images are the standard tool in clinical work, and functional imaging methods are mainly used in MS research. The subtypes and the course of the disease cause variation in MRI findings. Here, we present a general overview of MR findings in MS. Brain, magnetic resonance imaging, multiple sclerosis, spinal cord

  17. Quasi-equilibrium models of magnetized compact objects

    International Nuclear Information System (INIS)

    Markakis, Charalampos; Uryu, Koji; Gourgoulhon, Eric

    2011-01-01

    We report work towards a relativistic formulation for modeling strongly magnetized neutron stars, rotating or in a close circular orbit around another neutron star or black hole, under the approximations of helical symmetry and ideal MHD. The quasi-stationary evolution is governed by the frst law of thermodynamics for helically symmetric systems, which is generalized to include magnetic felds. The formulation involves an iterative scheme for solving the Einstein-Maxwell and relativistic MHD-Euler equations numerically. The resulting configurations for binary systems could be used as self-consistent initial data for studying their inspiral and merger.

  18. HLA typing in acute optic neuritis. Relation to multiple sclerosis and magnetic resonance imaging findings

    DEFF Research Database (Denmark)

    Frederiksen, J.L.; Madsen, H.O.; Ryder, L.P.

    1997-01-01

    OBJECTIVE: To study the association of brain magnetic resonance imaging (MRI) findings and HLA findings to clarify the relationship between monosymptomatic optic neuritis (ON) and ON as part of clinically definite multiple sclerosis (CDMS). DESIGN: Population-based cohort of patients with ON refe......OBJECTIVE: To study the association of brain magnetic resonance imaging (MRI) findings and HLA findings to clarify the relationship between monosymptomatic optic neuritis (ON) and ON as part of clinically definite multiple sclerosis (CDMS). DESIGN: Population-based cohort of patients......: The frequency of HLA-DR15 was significantly increased in patients with ON + CDMS (52%) and ON (47%) compared with control subjects (31%). The frequency of HLA-DR17 was almost equal in the ON + CDMS (18%), ON (23%), and control (23%) groups. The frequencies of HLA-DQA-1B (55% in ON + CDMS, 58% in ON) and HLA...

  19. Structure from the chaos: magnetic fields of cosmic objects

    Energy Technology Data Exchange (ETDEWEB)

    Krause, F

    1987-01-01

    The study deals with phenomenological and theoretical models in order to explain the existence of cosmic magnetic fields. Following aspects are considered: non-linear recursions, the theory of chaotic motions, turbulence, convection, the turbulent dynamo theory and magnetohydrodynamics. In the frame of these model assumptions it is tried to explain the causes of the solar activity cycle and the geomagnetic field.

  20. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    Science.gov (United States)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  1. Studying visual attention using the multiple object tracking paradigm: A tutorial review.

    Science.gov (United States)

    Meyerhoff, Hauke S; Papenmeier, Frank; Huff, Markus

    2017-07-01

    Human observers are capable of tracking multiple objects among identical distractors based only on their spatiotemporal information. Since the first report of this ability in the seminal work of Pylyshyn and Storm (1988, Spatial Vision, 3, 179-197), multiple object tracking has attracted many researchers. A reason for this is that it is commonly argued that the attentional processes studied with the multiple object paradigm apparently match the attentional processing during real-world tasks such as driving or team sports. We argue that multiple object tracking provides a good mean to study the broader topic of continuous and dynamic visual attention. Indeed, several (partially contradicting) theories of attentive tracking have been proposed within the almost 30 years since its first report, and a large body of research has been conducted to test these theories. With regard to the richness and diversity of this literature, the aim of this tutorial review is to provide researchers who are new in the field of multiple object tracking with an overview over the multiple object tracking paradigm, its basic manipulations, as well as links to other paradigms investigating visual attention and working memory. Further, we aim at reviewing current theories of tracking as well as their empirical evidence. Finally, we review the state of the art in the most prominent research fields of multiple object tracking and how this research has helped to understand visual attention in dynamic settings.

  2. Application of multiple objective models to water resources planning and management

    International Nuclear Information System (INIS)

    North, R.M.

    1993-01-01

    Over the past 30 years, we have seen the birth and growth of multiple objective analysis from an idea without tools to one with useful applications. Models have been developed and applications have been researched to address the multiple purposes and objectives inherent in the development and management of water resources. A practical approach to multiple objective modelling incorporates macroeconomic-based policies and expectations in order to optimize the results from both engineering (structural) and management (non-structural) alternatives, while taking into account the economic and environmental trade-offs. (author). 27 refs, 4 figs, 3 tabs

  3. Postmortem magnetic resonance imaging dealing with low temperature objects

    International Nuclear Information System (INIS)

    Kobayashi, Tomoya; Shiotani, Seiji; Isobe, Tomonori

    2010-01-01

    In Japan, the medical examiner system is not widespread, the rate of autopsy is low, and many medical institutions therefore perform postmortem imaging using clinical equipment. Postmortem imaging is performed to clarify cause of death, select candidates for autopsy, make a guide map for autopsy, or provide additional information for autopsy. Findings are classified into 3 categories: cause of death and associated changes, changes induced by cardiopulmonary resuscitation, and postmortem changes. Postmortem magnetic resonance imaging shows characteristic changes in signal intensity related to low body temperature after death; they are low temperature images. (author)

  4. Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography

    Science.gov (United States)

    Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua

    2018-03-01

    We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).

  5. A SCILAB Program for Computing Rotating Magnetic Compact Objects

    Science.gov (United States)

    Papasotiriou, P. J.; Geroyannis, V. S.

    We implement the so-called ``complex-plane iterative technique'' (CIT) to the computation of classical differentially rotating magnetic white dwarf and neutron star models. The program has been written in SCILAB (© INRIA-ENPC), a matrix-oriented high-level programming language, which can be downloaded free of charge from the site http://www-rocq.inria.fr/scilab. Due to the advanced capabilities of this language, the code is short and understandable. Highlights of the program are: (a) time-saving character, (b) easy use due to the built-in graphics user interface, (c) easy interfacing with Fortran via online dynamic link. We interpret our numerical results in various ways by extensively using the graphics environment of SCILAB.

  6. BSDB: A New Consistent Designation Scheme for Identifying Objects in Binary and Multiple Stars

    Directory of Open Access Journals (Sweden)

    Kovaleva D. A.

    2015-06-01

    Full Text Available The new consistent scheme for designation of objects in binary and multiple systems, BSDB, is described. It was developed in the frame of the Binary star DataBase, BDB (http://www.inasan.ru, due to necessity of a unified and consistent system for designation of objects in the database, and the name of the designation scheme was derived from that of the database. The BSDB scheme covers all types of observational data. Three classes of objects introduced within the BSDB nomenclature provide correct links between objects and data, what is especially important for complex multiple stellar systems. The final stage of establishing the BSDB scheme is compilation of the Identification List of Binaries, ILB, where all known objects in binary and multiple stars are presented with their BSDB identifiers along with identifiers according to major catalogues and lists.

  7. Magnetic resonance imaging abnormalities in multiple sclerosis: A review

    International Nuclear Information System (INIS)

    Saharian, M. A.; Shakaouri Rad, A.; Motamedi, M.; Pakdaman, H.; Radue, E. W.

    2007-01-01

    :During the last two decades, magnetic resonance imaging has been widely used In the diagnosis and treatment monitoring of multiple sclerosis. MRI, both conventional and non conventional methods, has transformed all aspects of M S research and clinical practice in recent years. Although advanced imaging methods have added much more to our knowledge about pathogenesis and natural history of the disease but their cost, availability, complexity and lack of validation have limited their use in routine clinical practice. Conventional MR techniques including proton density, T1/T2-Weighted images and fluid- attenuated inversion recovery sequences are now accepted in standard protocols for diagnosis and treatment outcome measures in clinical trials of multiple sclerosis. This review will focus on the type, morphology and evolution of M S lesions regarding conventional MRI and their use for treatment monitoring in daily clinical practice

  8. Temporal brain dynamics of multiple object processing: the flexibility of individuation.

    Directory of Open Access Journals (Sweden)

    Veronica Mazza

    Full Text Available The ability to process concurrently multiple visual objects is fundamental for a coherent perception of the world. A core component of this ability is the simultaneous individuation of multiple objects. Many studies have addressed the mechanism of object individuation but it remains unknown whether the visual system mandatorily individuates all relevant elements in the visual field, or whether object indexing depends on task demands. We used a neural measure of visual selection, the N2pc component, to evaluate the flexibility of multiple object individuation. In three ERP experiments, participants saw a variable number of target elements among homogenous distracters and performed either an enumeration task (Experiment 1 or a detection task, reporting whether at least one (Experiment 2 or a specified number of target elements (Experiment 3 was present. While in the enumeration task the N2pc response increased as a function of the number of targets, no such modulation was found in Experiment 2, indicating that individuation of multiple targets is not mandatory. However, a modulation of the N2pc similar to the enumeration task was visible in Experiment 3, further highlighting that object individuation is a flexible mechanism that binds indexes to object properties and locations as needed for further object processing.

  9. Noncontact orientation of objects in three-dimensional space using magnetic levitation.

    Science.gov (United States)

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M

    2014-09-09

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.

  10. Neutron magnetic multiple diffraction in a natural magnetite crystal

    International Nuclear Information System (INIS)

    Mazzocchi, V.L.; Parente, C.B.R.

    1988-09-01

    Neutron multiple diffraction has been employed in the study of the magnetism in magnetite (Fe 3 O 4 ). Magnetite has a crystallographic structure of an inverted spinel with tetrahedral A sites occupied solely by trivalent Fe 3+ ions and octahedral B sites occupied both by divalent Fe 2+ ions and the remaining Fe 3+ ions in random distribution. At room temperature magnetite is a Neel A-B ferrimagnet where the ions on the A, B sites are coupled antiferromagneticaly. This coupling disappears at T sup c approx. or approx.= 580 0 C. Employing a natural single crystal of magnetite experimental neutron multiple diffraction patterns were obtained for the primary reflection 111 at room temperature and 703 0 C. This reflection is almost entirely magnetic in origin resulting in 'Aufhellung' patterns below T c and mixed 'Aufhellung-Umweganregung' patterns above T c . Theoretical patterns were calculated employing the iterative method for the approximation of intensities by a Taylor series and compared to the experimental results. (author) [pt

  11. A Multiple-objective Optimization of Whey Fermentation in Stirred Tank Bioreactors

    Directory of Open Access Journals (Sweden)

    Mitko Petrov

    2006-12-01

    Full Text Available A multiple-objective optimization is applied to find an optimal policy of a fed-batch fermentation process for lactose oxidation from a natural substratum of the strain Kluyveromyces marxianus var. lactis MC5. The optimal policy is consisted of feed flow rate, agitation speed, and gas flow rate. The multiple-objective problem includes: the total price of the biomass production, the second objective functions are the separation cost in downstream processing and the third objective function corresponds to the oxygen mass-transfer in the bioreactor. The multiple-objective optimization are transforming to standard problem for optimization with single-objective function. Local criteria are defined utility function with different weight for single-type vector task. A fuzzy sets method is applied to be solved the maximizing decision problem. A simple combined algorithm guideline to find a satisfactory solution to the general multiple-objective optimization problem. The obtained optimal control results have shown an increase of the process productiveness and a decrease of the residual substrate concentration.

  12. The force on an object passing through a magnetic fluid seal

    CERN Document Server

    Morton, G

    2002-01-01

    Forces on solid objects passed through a magnetic liquid plug in a tube are measured. A simple one-dimensional model is developed based on hydrostatic and magnetic pressures. The results demonstrate its potential to be used to separate two fluids while allowing solids to pass from one fluid to the other.

  13. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation

    Directory of Open Access Journals (Sweden)

    Rafael A. Magris

    2017-07-01

    Full Text Available Decision-makers focus on representing biodiversity pattern, maintaining connectivity, and strengthening resilience to global warming when designing marine protected area (MPA systems, especially in coral reef ecosystems. The achievement of these broad conservation objectives will likely require large areas, and stretch limited funds for MPA implementation. We undertook a spatial prioritisation of Brazilian coral reefs that considered two types of conservation zones (i.e. no-take and multiple use areas and integrated multiple conservation objectives into MPA planning, while assessing the potential impact of different sets of objectives on implementation costs. We devised objectives for biodiversity, connectivity, and resilience to global warming, determined the extent to which existing MPAs achieved them, and designed complementary zoning to achieve all objectives combined in expanded MPA systems. In doing so, we explored interactions between different sets of objectives, determined whether refinements to the existing spatial arrangement of MPAs were necessary, and tested the utility of existing MPAs by comparing their cost effectiveness with an MPA system designed from scratch. We found that MPAs in Brazil protect some aspects of coral reef biodiversity pattern (e.g. threatened fauna and ecosystem types more effectively than connectivity or resilience to global warming. Expanding the existing MPA system was as cost-effective as designing one from scratch only when multiple objectives were considered and management costs were accounted for. Our approach provides a comprehensive assessment of the benefits of integrating multiple objectives in the initial stages of conservation planning, and yields insights for planners of MPAs tackling multiple objectives in other regions.

  14. Simple optical measurement of the magnetic moment of magnetically labeled objects

    Energy Technology Data Exchange (ETDEWEB)

    Heidsieck, Alexandra, E-mail: aheidsieck@tum.de [Zentralinstitut für Medizintechnik, Technische Universität München (Germany); Rudigkeit, Sarah [Physics Department, Technische Universität München (Germany); Rümenapp, Christine; Gleich, Bernhard [Zentralinstitut für Medizintechnik, Technische Universität München (Germany)

    2017-04-01

    The magnetic moment of magnetically labeled cells, microbubbles or microspheres is an important optimization parameter for many targeting, delivery or separation applications. The quantification of this property is often difficult, since it depends not only on the type of incorporated nanoparticle, but also on the intake capabilities, surface properties and internal distribution. We describe a method to determine the magnetic moment of those carriers using a microscopic set-up and an image processing algorithm. In contrast to other works, we measure the diversion of superparamagnetic nanoparticles in a static fluid. The set-up is optimized to achieve a homogeneous movement of the magnetic carriers inside the magnetic field. The evaluation is automated with a customized algorithm, utilizing a set of basic algorithms, including blob recognition, feature-based shape recognition and a graph algorithm. We present example measurements for the characteristic properties of different types of carriers in combination with different types of nanoparticles. Those properties include velocity in the magnetic field as well as the magnetic moment. The investigated carriers are adherent and suspension cells, while the used nanoparticles have different sizes and coatings to obtain varying behavior of the carriers. - Highlights: • Determination of the magnetic moment of magnetic carriers. • optimized set-up achieve a homogeneous movement. • Automated evaluation with a customized algorithm. • example measurements for the properties of nanoparticle-loaded cells.

  15. Tracking Multiple Statistics: Simultaneous Learning of Object Names and Categories in English and Mandarin Speakers.

    Science.gov (United States)

    Chen, Chi-Hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen

    2017-08-01

    Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories based on the commonalities across training stimuli. Experiment 2 replicated the first experiment and further examined whether speakers of Mandarin, a language in which final syllables of object names are more predictive of category membership than English, were able to learn words and form object categories when trained with the same type of structures. The results indicate that both groups of learners successfully extracted multiple levels of co-occurrence and used them to learn words and object categories simultaneously. However, marked individual differences in performance were also found, suggesting possible interference and competition in processing the two concurrent streams of regularities. Copyright © 2016 Cognitive Science Society, Inc.

  16. Ion collection by probing objects in flowing magnetized plasmas

    International Nuclear Information System (INIS)

    Kyu-Sun, Chung.

    1989-04-01

    A new one-dimensional collisionless kinetic model is developed for the flow of ions to probing structures in drifting plasmas. The cross-field flow into the presheath is modelled by accounting consistently for particle exchange between the collection flux tube and the outer plasma. Numerical solutions of the self-consistent plasma/sheath equations are obtained with arbitrary external ion temperature and parallel plasma flow velocity. Results are presented of the spatial dependence of the ion distribution function as well as its moments (density, particle flux, temperature, and power flux). The ion current to the probe is obtained and the ratio of the upstream to downstream currents is found to be well represented by the form R = exp[Ku d ], where K = 1.66 for T i = T e and u d is the drift velocity in units of (T e /m i ) 1/2 . The results agree well with comparable recent fluid calculations but show substantial deviations from other models which ignore particle exchange out of the presheath. No evidence is found of the formation of shocks in the downstream wake, contrary to the implications of some fluid theories. We have also extended the previous kinetic model by generalizing cross-field transport and adding ionization to the source of the Boltzmann equation along the presheath. Ion sheath current density and ratio(R) of upstream to downstream current are obtained as a function of plasma drift velocity, equivalent viscosity, ion temperature, and ionization rate. Constants(K) in the form R = exp[Ku d ] are obtained in terms of viscosity, ion temperature, and ionization rate. The effect of an electrical bias applied to the object on the presheath characteristics is discussed

  17. A study on software-based sensing technology for multiple object control in AR video.

    Science.gov (United States)

    Jung, Sungmo; Song, Jae-Gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo

    2010-01-01

    Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker'should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms.

  18. A Study on Software-based Sensing Technology for Multiple Object Control in AR Video

    Directory of Open Access Journals (Sweden)

    Seoksoo Kim

    2010-11-01

    Full Text Available Researches on Augmented Reality (AR have recently received attention. With these, the Machine-to-Machine (M2M market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms.

  19. Magnetic resonance in the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Rovira, A.

    2001-01-01

    Although the diagnosis of multiple sclearosi (MS) continues to be based on clinical findings, magnetic resonance (MR) is currently considered an indispensable technique for showing the spatial and temporal profiles of the demyelinating lesions that characterize the disease. The diagnostic yield of MR is based on its high sensitivity in the detection of demyelinating lesions in both brain and medulla and on its capacity to detect temporal changes in them. This high sensitivity must be accompanied by a high specificity, which is achieved with the proper knowledge of the signal, morphologic, topographic and temporal features of demyelinating lesions, as described in the diagnostic criteria recently proposed by McDonald et al. (Author) 77 refs

  20. Volume measurement of multiple sclerosis lesions with magnetic resonance images

    International Nuclear Information System (INIS)

    Wicks, D.A.G.; Tofts, P.S.; Miller, D.H.; Du Boulay, G.H.; Feinstein, A.; Harvey, I.; Brenner, R.; McDonald, W.I.; Sacares, R.P.

    1992-01-01

    The ability to visualise multiple sclerosis lesions in vivo with magnetic resonance imaging suggests an important role in monitoring the course of the disease. In order to help the long-term assessment of prospective treatments, a semi-automated technique for measuring lesion volume has been developed to provide a quantitative index of disease progression. Results are presented from a preliminary study with a single patient and compared to measurements taken from lesion outlines traced by a neuroradiologist, two neurologists and a technician. The semi-automated technique achieved a precision of 6% compared to a range of 12-33% for the manual tracing method. It also reduced the human interaction time from at least 60 min to 15 min. (orig.)

  1. Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects.

    Science.gov (United States)

    Mönch, Ingolf; Makarov, Denys; Koseva, Radinka; Baraban, Larysa; Karnaushenko, Daniil; Kaiser, Claudia; Arndt, Karl-Friedrich; Schmidt, Oliver G

    2011-09-27

    Detection and analysis of magnetic nanoobjects is a crucial task in modern diagnostic and therapeutic techniques applied to medicine and biology. Accomplishment of this task calls for the development and implementation of electronic elements directly in fluidic channels, which still remains an open and nontrivial issue. Here, we present a novel concept based on rolled-up nanotechnology for fabrication of multifunctional devices, which can be straightforwardly integrated into existing fluidic architectures. We apply strain engineering to roll-up a functional nanomembrane consisting of a magnetic sensor element based on [Py/Cu](30) multilayers, revealing giant magnetoresistance (GMR). The comparison of the sensor's characteristics before and after the roll-up process is found to be similar, allowing for a reliable and predictable method to fabricate high-quality ultracompact GMR devices. The performance of the rolled-up magnetic sensor was optimized to achieve high sensitivity to weak magnetic fields. We demonstrate that the rolled-up tube itself can be efficiently used as a fluidic channel, while the integrated magnetic sensor provides an important functionality to detect and respond to a magnetic field. The performance of the rolled-up magnetic sensor for the in-flow detection of ferromagnetic CrO(2) nanoparticles embedded in a biocompatible polymeric hydrogel shell is highlighted. © 2011 American Chemical Society

  2. Magnetic resonance techniques for investigation of multiple sclerosis

    Science.gov (United States)

    MacKay, Alex; Laule, Cornelia; Li, David K. B.; Meyers, Sandra M.; Russell-Schulz, Bretta; Vavasour, Irene M.

    2014-11-01

    Multiple sclerosis (MS) is a common neurological disease which can cause loss of vision and balance, muscle weakness, impaired speech, fatigue, cognitive dysfunction and even paralysis. The key pathological processes in MS are inflammation, edema, myelin loss, axonal loss and gliosis. Unfortunately, the cause of MS is still not understood and there is currently no cure. Magnetic resonance imaging (MRI) is an important clinical and research tool for MS. 'Conventional' MRI images of MS brain reveal bright lesions, or plaques, which demark regions of severe tissue damage. Conventional MRI has been extremely valuable for the diagnosis and management of people who have MS and also for the assessment of therapies designed to reduce inflammation and promote repair. While conventional MRI is clearly valuable, it lack pathological specificity and, in some cases, sensitivity to non-lesional pathology. Advanced MR techniques have been developed to provide information that is more sensitive and specific than what is available with clinical scanning. Diffusion tensor imaging and magnetization transfer provide a general but non-specific measure of the pathological state of brain tissue. MR spectroscopy provides concentrations of brain metabolites which can be related to specific pathologies. Myelin water imaging was designed to assess brain myelination and has proved useful for measuring myelin loss in MS. To combat MS, it is crucial that the pharmaceutical industry finds therapies which can reverse the neurodegenerative processes which occur in the disease. The challenge for magnetic resonance researchers is to design imaging techniques which can provide detailed pathological information relating to the mechanisms of MS therapies. This paper briefly describes the pathologies of MS and demonstrates how MS-associated pathologies can be followed using both conventional and advanced MR imaging protocols.

  3. MOTION PLANNING OF MULTIPLE MOBILE ROBOTS COOPERATIVELY TRANSPORTING A COMMON OBJECT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Many applications above the capability of a single robot need the cooperation of multiple mobile robots, but effective cooperation is hard to achieve. In this paper, a master-slave method is proposed to control the motions of multiple mobile robots that cooperatively transport a common object from a start point to a goal point. A noholonomic kinematic model to constrain the motions of multiple mobile robots is built in order to achieve cooperative motions of them, and a "Dynamic Coordinator" strategy is used to deal with the collision-avoidance of the master robot and slave robot individually. Simulation results show the robustness and effectiveness of the method.

  4. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    International Nuclear Information System (INIS)

    Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.

    2006-01-01

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature

  5. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es

    2006-09-15

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.

  6. Multiple magnet ingestion: is there a role for early surgical intervention?

    Science.gov (United States)

    Salimi, Amrollah; Kooraki, Soheil; Esfahani, Shadi Abdar; Mehdizadeh, Mehrzad

    2012-01-01

    Children often swallow foreign bodies. Multiple magnet ingestion is rare, but can result in serious complications. This study presents three unique cases of multiple magnet ingestion: one case an 8-year-old boy with multiple magnet ingestion resulting in gastric obstruction and the other two cases with intestinal perforations due to multiple magnet intake. History and physical examination are unreliable in children who swallow multiple magnets. Sometimes radiological findings are not conclusive, whether one magnet is swallowed or more. If magnets are not moved in sequential radiology images, we recommend early surgical intervention before gastrointestinal complications develop. Toy companies, parents, physicians, and radiologists should be warned about the potential complications of such toys.

  7. Magnetic resonance imaging in the evaluation of treatment in multiple sclerosis

    International Nuclear Information System (INIS)

    Kappos, L.; Staedt, D.; Schneiderbanger-Grygier, S.; Heitzer, T.; Ratzka, M.; Nadjmi, M.; Poser, S.; Keil, W.

    1988-01-01

    Magnetic resonance scans of 74 patients with multiple sclerosis participating in a controlled trial were compared 6 months before and at the end of a 24-32 months-treatment period with either Cyclosporin A (n=31) or Azathioprine (n=43). Both qualitative rating and computation of lesion volume showed deterioration in more than 40% of the patients, while by clinical criteria only 10-30% were worse. No significant difference was noted when the two treatment groups were compared. If careful repositioning and standardized image parameters are used, MRI is an indispensable tool for the objective determination of disease progression in MS although it cannot replace clinical examination. (orig.)

  8. Magnetic resonance imaging in the evaluation of treatment in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Kappos, L.; Staedt, D.; Schneiderbanger-Grygier, S.; Heitzer, T.; Ratzka, M.; Nadjmi, M.; Poser, S.; Keil, W.

    1988-08-01

    Magnetic resonance scans of 74 patients with multiple sclerosis participating in a controlled trial were compared 6 months before and at the end of a 24-32 months-treatment period with either Cyclosporin A (n=31) or Azathioprine (n=43). Both qualitative rating and computation of lesion volume showed deterioration in more than 40% of the patients, while by clinical criteria only 10-30% were worse. No significant difference was noted when the two treatment groups were compared. If careful repositioning and standardized image parameters are used, MRI is an indispensable tool for the objective determination of disease progression in MS although it cannot replace clinical examination.

  9. Modified-hybrid optical neural network filter for multiple object recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.

    2009-08-01

    Motivated by the non-linear interpolation and generalization abilities of the hybrid optical neural network filter between the reference and non-reference images of the true-class object we designed the modifiedhybrid optical neural network filter. We applied an optical mask to the hybrid optical neural network's filter input. The mask was built with the constant weight connections of a randomly chosen image included in the training set. The resulted design of the modified-hybrid optical neural network filter is optimized for performing best in cluttered scenes of the true-class object. Due to the shift invariance properties inherited by its correlator unit the filter can accommodate multiple objects of the same class to be detected within an input cluttered image. Additionally, the architecture of the neural network unit of the general hybrid optical neural network filter allows the recognition of multiple objects of different classes within the input cluttered image by modifying the output layer of the unit. We test the modified-hybrid optical neural network filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. The filter is shown to exhibit with a single pass over the input data simultaneously out-of-plane rotation, shift invariance and good clutter tolerance. It is able to successfully detect and classify correctly the true-class objects within background clutter for which there has been no previous training.

  10. A Conceptual Framework for Error Remediation with Multiple External Representations Applied to Learning Objects

    Science.gov (United States)

    Leite, Maici Duarte; Marczal, Diego; Pimentel, Andrey Ricardo; Direne, Alexandre Ibrahim

    2014-01-01

    This paper presents the application of some concepts of Intelligent Tutoring Systems (ITS) to elaborate a conceptual framework that uses the remediation of errors with Multiple External Representations (MERs) in Learning Objects (LO). To this is demonstrated a development of LO for teaching the Pythagorean Theorem through this framework. This…

  11. A Case Study of Resources Management Planning with Multiple Objectives and Projects

    Science.gov (United States)

    David L. Peterson; David G. Silsbee; Daniel L. Schmoldt

    1995-01-01

    Each National Park Service unit in the United States produces a resources management plan (RMP) every four years or less. The plans commit budgets and personnel to specific projects for four years, but they are prepared with little quantitative and analytical rigor and without formal decisionmaking tools. We have previously described a multiple objective planning...

  12. Multiplicative mixing of object identity and image attributes in single inferior temporal neurons.

    Science.gov (United States)

    Ratan Murty, N Apurva; Arun, S P

    2018-04-03

    Object recognition is challenging because the same object can produce vastly different images, mixing signals related to its identity with signals due to its image attributes, such as size, position, rotation, etc. Previous studies have shown that both signals are present in high-level visual areas, but precisely how they are combined has remained unclear. One possibility is that neurons might encode identity and attribute signals multiplicatively so that each can be efficiently decoded without interference from the other. Here, we show that, in high-level visual cortex, responses of single neurons can be explained better as a product rather than a sum of tuning for object identity and tuning for image attributes. This subtle effect in single neurons produced substantially better population decoding of object identity and image attributes in the neural population as a whole. This property was absent both in low-level vision models and in deep neural networks. It was also unique to invariances: when tested with two-part objects, neural responses were explained better as a sum than as a product of part tuning. Taken together, our results indicate that signals requiring separate decoding, such as object identity and image attributes, are combined multiplicatively in IT neurons, whereas signals that require integration (such as parts in an object) are combined additively. Copyright © 2018 the Author(s). Published by PNAS.

  13. A multiple objective mixed integer linear programming model for power generation expansion planning

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, C. Henggeler; Martins, A. Gomes [INESC-Coimbra, Coimbra (Portugal); Universidade de Coimbra, Dept. de Engenharia Electrotecnica, Coimbra (Portugal); Brito, Isabel Sofia [Instituto Politecnico de Beja, Escola Superior de Tecnologia e Gestao, Beja (Portugal)

    2004-03-01

    Power generation expansion planning inherently involves multiple, conflicting and incommensurate objectives. Therefore, mathematical models become more realistic if distinct evaluation aspects, such as cost and environmental concerns, are explicitly considered as objective functions rather than being encompassed by a single economic indicator. With the aid of multiple objective models, decision makers may grasp the conflicting nature and the trade-offs among the different objectives in order to select satisfactory compromise solutions. This paper presents a multiple objective mixed integer linear programming model for power generation expansion planning that allows the consideration of modular expansion capacity values of supply-side options. This characteristic of the model avoids the well-known problem associated with continuous capacity values that usually have to be discretized in a post-processing phase without feedback on the nature and importance of the changes in the attributes of the obtained solutions. Demand-side management (DSM) is also considered an option in the planning process, assuming there is a sufficiently large portion of the market under franchise conditions. As DSM full costs are accounted in the model, including lost revenues, it is possible to perform an evaluation of the rate impact in order to further inform the decision process (Author)

  14. Applicability of McDonald 2010 and Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS) 2016 Magnetic Resonance Imaging Criteria for the Diagnosis of Multiple Sclerosis in Sri Lanka.

    Science.gov (United States)

    Gamage, Sujani Madhurika Kodagoda; Wijeweera, Indunil; Wijesinghe, Priyangi; Adikari, Sanjaya Bandara; Fink, Katharina; Sominanda, Herath Mudiyanselage Ajith

    2018-05-31

    The magnetic resonance imaging in multiple sclerosis (MAGNIMS) group recently proposed guidelines to replace the existing dissemination-in-space criteria in McDonald 2010 magnetic resonance imaging (MRI) criteria for diagnosing multiple sclerosis. There has been insufficient research regarding their applicability in Asians. Objective of this study was to determine the sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of McDonald 2010 and MAGNIMS 2016 MRI criteria with the aim of verifying their applicability in Sri Lankan patients. Patients with clinically isolated syndrome diagnosed by consultant neurologists were recruited from five major neurology centers. Baseline and follow-up MRI scans were performed within 3 months from the initial presentation and at one year after baseline MRI, respectively. McDonald 2010 and MAGNIMS 2016 MRI criteria were applied to all MRI scans. Patients were followed-up for 2 years to assess the conversion to clinically definite multiple sclerosis (CDMS). The sensitivity, specificity, accuracy, PPV, and NPV for predicting the conversion to CDMS were calculated. Forty-two of 66 patients converted to CDMS. Thirty-seven fulfilled the McDonald 2010 MRI criteria, and 33 converted to CDMS. MAGNIMS 2016 MRI criteria were fulfilled by 29, with 28 converting to CDMS. The sensitivity, specificity, accuracy, PPV, and NPV were 78%, 83%, 64%, 89%, and 69%, respectively, for the McDonald 2010 criteria, and 67%, 96%, 77%, 96%, and 62% for the MAGNIMS 2016 MRI criteria. MAGNIMS 2016 MRI criteria were superior to McDonald 2010 MRI criteria in specificity, accuracy, and PPV, but inferior in sensitivity and NPV. Copyright © 2018 Korean Neurological Association.

  15. Bilevel formulation of a policy design problem considering multiple objectives and incomplete preferences

    Science.gov (United States)

    Hawthorne, Bryant; Panchal, Jitesh H.

    2014-07-01

    A bilevel optimization formulation of policy design problems considering multiple objectives and incomplete preferences of the stakeholders is presented. The formulation is presented for Feed-in-Tariff (FIT) policy design for decentralized energy infrastructure. The upper-level problem is the policy designer's problem and the lower-level problem is a Nash equilibrium problem resulting from market interactions. The policy designer has two objectives: maximizing the quantity of energy generated and minimizing policy cost. The stakeholders decide on quantities while maximizing net present value and minimizing capital investment. The Nash equilibrium problem in the presence of incomplete preferences is formulated as a stochastic linear complementarity problem and solved using expected value formulation, expected residual minimization formulation, and the Monte Carlo technique. The primary contributions in this article are the mathematical formulation of the FIT policy, the extension of computational policy design problems to multiple objectives, and the consideration of incomplete preferences of stakeholders for policy design problems.

  16. VNM: An R Package for Finding Multiple-Objective Optimal Designs for the 4-Parameter Logistic Model

    OpenAIRE

    Hyun, Seung Won; Wong, Weng Kee; Yang, Yarong

    2018-01-01

    A multiple-objective optimal design is useful for dose-response studies because it can incorporate several objectives at the design stage. Objectives can be of varying interests and a properly constructed multiple-objective optimal design can provide user-specified efficiencies, delivering higher efficiencies for the more important objectives. In this work, we introduce the VNM package written in R for finding 3-objective locally optimal designs for the 4-parameter logistic (4PL) model widely...

  17. Evolution strategies and multi-objective optimization of permanent magnet motor

    DEFF Research Database (Denmark)

    Andersen, Søren Bøgh; Santos, Ilmar

    2012-01-01

    When designing a permanent magnet motor, several geometry and material parameters are to be defined. This is not an easy task, as material properties and magnetic fields are highly non-linear and the design of a motor is therefore often an iterative process. From an engineering point of view, we...... of evolution strategies, ES to effectively design and optimize parameters of permanent magnet motors. Single as well as multi-objective optimization procedures are carried out. A modified way of creating the strategy parameters for the ES algorithm is also proposed and has together with the standard ES...

  18. Magnetic resonance imaging in optic nerve lesions with multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Hirayama, Keizo; Kakisu, Yonetsugu; Adachi, Emiko

    1990-01-01

    Magnetic resonance imaging (MRI) of the optic nerve was performed in 10 patients with multiple sclerosis (MS) using short inversion time inversion recovery (STIR) pulse sequences, and the results were compared with the visual evoked potentials (VEP). The 10 patients had optic neuritis in the chronic or remitting phase together with additional symptoms or signs allowing a diagnosis of clinically definite or probable MS. Sixteen optic nerves were clinically affected and 4 were unaffected. MRI was performed using a 0.5 tesla supeconducting unit, and multiple continuous 5 mm coronal and axial STIR images were obtained. A lesion was judged to be present if a focal or diffuse area of increased signal intensity was detectd in the optic nerve. In VEP, a delay in peak latency or no P 100 component was judged to be abnormal. With regard to the clinically affected optic nerves, MRI revealed a region of increased signal intensity in 14/16 (88%) and the VEP was abnormal in 16/16 (100%). In the clinically unaffected optic nerves, MRI revealed an increased signal intensity in 2/4 (50%). One of these nerves had an abnormal VEP and the other had a VEP latency at the upper limit of normal. The VEP was abnormal in 1/4 (25%). In the clinically affected optic nerves, the degree of loss of visual acuity was not associated with the longitudinal extent of the lesions shown by MRI. The mean length was 17.5 mm in optic nerves with a slight disturbance of visual acuity and 15.0 mm in nerves with severe visual loss. MRI using STIR pulse sequences was found to be almost as sensitive as VEP in detecting both clinically affected and unaffected optic nerve lesions in patients with MS, and was useful in visualizing the location or size of the lesions. (author)

  19. Magnetic resonance imaging in the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Kato, Hiroyuki; Takase, Sadao; Ichikawa, Nobumichi; Yamada, Kenji; Matsuzawa, Taiju.

    1987-01-01

    Seventeen patients with multiple sclerosis (MS), 11 clinically definite and 6 probable MS, were studied using magnetic resonance imaging (MRI) and other diagnostic techniques including cerebrospinal fluid (CSF) analysis, evoked potentials (EP) and CT. The MRI imager was operated at 0.14 tesla. The Carr-Purcell-Meiboom-Gill pulse sequence was employed and multiple spin echoes were acquired. T 1 and T 2 relaxation times of the MS plaques were calculated. Incidence of MS plaque detection was 82 % in MRI (100 % in definite MS and 50 % in probable MS). Incidence of abnormality was 65 % in CSF analysis (IgG, oligoclonal bands and myelin basic protein), 63 % in EP (auditory evoked brainstem response and somatosensory evoked response), and 24 % in CT. Lesion detection by MRI was more frequent when the patient was diagnosed as clinically definite, when the duration of disease was longer or the exacerbation was more frequent. T 1 and T 2 of the MS plaques were 715 ± 140 msec and 184 ± 42 msec, respectively, and were significantly prolonged compared to normal values (T 1 ; 351 ± 35 msec, T 2 ; 102 ± 12 msec). The relaxation times of the plaques which were detected by CT (T 1 ; 834 ± 106 msec, T 2 ; 216 ± 37 msec) were significantly longer than those which were not detected (T 1 ; 673 ± 128 msec, T 2 ; 165 ± 32 msec). Serial observations of relaxation times showed that they become short as time passes after the onset of symptoms. As a result, MRI was most sensitive among the diagnostic modalities of MS, and the relaxation times can serve as indices of the activity and severity of the disease. (author)

  20. Multiple Realities and Hybrid Objects: A Creative Approach of Schizophrenic Delusion

    Directory of Open Access Journals (Sweden)

    Michel Cermolacce

    2018-02-01

    Full Text Available Delusion is usually considered in DSM 5 as a false belief based on incorrect inference about external reality, but the issue of delusion raises crucial concerns, especially that of a possible (or absent continuity between delusional and normal experiences, and the understanding of delusional experience. In the present study, we first aim to consider delusion from a perspectivist angle, according to the Multiple Reality Theory (MRT. In this model inherited from Alfred Schütz and recently addressed by Gallagher, we are not confronting one reality only, but several (such as the reality of everyday life, of imaginary life, of work, of delusion, etc.. In other terms, the MRT states that our own experience is not drawing its meaning from one reality identified as the outer reality but rather from a multiplicity of realities, each with their own logic and style. Two clinical cases illustrate how the Multiple Realities Theory (MRT may help address the reality of delusion. Everyday reality and the reality of delusion may be articulated under a few conditions, such as compossibility [i.e., Double Book-Keeping (DBK, in Bleulerian terms] or flexibility. There are indeed possible bridges between them. Possible links with neuroscience or psychoanalysis are evoked. As the subject is confronting different realities, so do the objects among and toward which a subject is evolving. We call such objects Hybrid Objects (HO due to their multiple belonging. They can operate as shifters, i.e., as some functional operators letting one switch from one reality to another. In the final section, we will emphasize how delusion flexibility, as a dynamic interaction between Multiple Realities, may offer psychotherapeutic possibilities within some reality shared with others, entailing relocation of the present subjects in regained access to some flexibility via Multiple Realities and perspectivism.

  1. Multiple sclerosis and anterograde axonal degeneration study by magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Pardo, P.; Capdevila Cirera, A.; Sanz Marin, P.M.; Gili Planas, J.

    1993-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system that affects specifically the myelin. Its diagnosis by imaging techniques is, since the development of magnetic resonance (MR), relatively simple, and its occasional association with anterograde axonal degeneration (WD) has been reported. In both disorders, there is a lengthening of the T1 and T2 relaxation times. In the present report, 76 patients with MS with less than 4 plaques in the typical periventricular position were studied retrospectively, resulting in a rate of association with anterograde axonal degeneration of 8%. We consider that in spite of their same behavior in MR,MS and WD, with moreover represent completely different pathologies, are perfectly differential by MR. The S-E images with longer repetition and echo times in the axial and coronal planes have proved to be those most sensitive for this differentiation. Given that MS is specific pathology of then myelin, the axonal damages in delayed until several plaques adjacent to an axon affect it. We consider that this, added to the restriction of our study group (less than 4 plaques), is the cause of the pow percentage of the MS-WD association in our study. (Author)

  2. Autonomous Magnetic Microrobots by Navigating Gates for Multiple Biomolecules Delivery.

    Science.gov (United States)

    Hu, Xinghao; Lim, Byeonghwa; Torati, Sri Ramulu; Ding, Junjia; Novosad, Valentine; Im, Mi-Young; Reddy, Venu; Kim, Kunwoo; Jung, Eunjoo; Shawl, Asif Iqbal; Kim, Eunjoo; Kim, CheolGi

    2018-05-08

    The precise delivery of biofunctionalized matters is of great interest from the fundamental and applied viewpoints. In spite of significant progress achieved during the last decade, a parallel and automated isolation and manipulation of rare analyte, and their simultaneous on-chip separation and trapping, still remain challenging. Here, a universal micromagnet junction for self-navigating gates of microrobotic particles to deliver the biomolecules to specific sites using a remote magnetic field is described. In the proposed concept, the nonmagnetic gap between the lithographically defined donor and acceptor micromagnets creates a crucial energy barrier to restrict particle gating. It is shown that by carefully designing the geometry of the junctions, it becomes possible to deliver multiple protein-functionalized carriers in high resolution, as well as MCF-7 and THP-1 cells from the mixture, with high fidelity and trap them in individual apartments. Integration of such junctions with magnetophoretic circuitry elements could lead to novel platforms without retrieving for the synchronous digital manipulation of particles/biomolecules in microfluidic multiplex arrays for next-generation biochips. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Assessment of multiple frequency ELF electric and magnetic field exposure

    International Nuclear Information System (INIS)

    Leitgeb, N

    2008-01-01

    Electromagnetic fields both in daily life and at workplaces exhibit increasingly complex frequency spectra. Present spectral assessment rules proved to be too conservative for health risk assessment. This is because they are based on the assumption that cells would react like linear systems in terms of responding to a sum of frequencies by a sum of independent responses to each individual frequency. Based on numerical investigations with the Hodgkin-Huxley and the Frankenhaeuser-Huxley nerve cell models, it could be shown that accounting for the nonlinear behaviour of cellular excitation processes avoids considerable overestimation of simultaneous exposures to multiple frequency ELF electric and magnetic fields. Besides this, it could be shown that the role of phase relationships is less important than that assumed so far. The present assessment rules lead to non-compliances of marketed electric appliances. For general application, a nonlinear biology-based assessment (NBBA) rule has been proposed, validated and proven advantageous compared with ICNIRP's rule. While staying conservative it avoids unnecessary overestimation and demonstrates compliance even in cases of suspected non-conformities. It is up to responsible bodies to decide upon the adoption of this proposal and the potential need for implementing additional or reducing the already incorporated safety factors

  4. Category-based attentional guidance can operate in parallel for multiple target objects.

    Science.gov (United States)

    Jenkins, Michael; Grubert, Anna; Eimer, Martin

    2018-04-30

    The question whether the control of attention during visual search is always feature-based or can also be based on the category of objects remains unresolved. Here, we employed the N2pc component as an on-line marker for target selection processes to compare the efficiency of feature-based and category-based attentional guidance. Two successive displays containing pairs of real-world objects (line drawings of kitchen or clothing items) were separated by a 10 ms SOA. In Experiment 1, target objects were defined by their category. In Experiment 2, one specific visual object served as target (exemplar-based search). On different trials, targets appeared either in one or in both displays, and participants had to report the number of targets (one or two). Target N2pc components were larger and emerged earlier during exemplar-based search than during category-based search, demonstrating the superior efficiency of feature-based attentional guidance. On trials where target objects appeared in both displays, both targets elicited N2pc components that overlapped in time, suggesting that attention was allocated in parallel to these target objects. Critically, this was the case not only in the exemplar-based task, but also when targets were defined by their category. These results demonstrate that attention can be guided by object categories, and that this type of category-based attentional control can operate concurrently for multiple target objects. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Identifying the Micro-relations Underpinning Familiarity Detection in Dynamic Displays Containing Multiple Objects

    Directory of Open Access Journals (Sweden)

    Jamie S. North

    2017-06-01

    Full Text Available We identified the important micro-relations that are perceived when attempting to recognize patterns in stimuli consisting of multiple dynamic objects. Skilled and less-skilled participants were presented with point light display sequences representing dynamic patterns in an invasion sport and were subsequently required to make familiarity based recognition judgments in three different conditions, each of which contained only a select number of features that were present at initial viewing. No differences in recognition accuracy were observed between skilled and less-skilled participants when just objects located in the periphery were presented. Yet, when presented with the relative motions of two centrally located attacking objects only, skilled participants were significantly more accurate than less-skilled participants and their recognition accuracy improved further when a target object was included against which these relative motions could be judged. Skilled participants can perceive and recognize global patterns on the basis of centrally located relational information.

  6. Magnetic resonance appearance of monoclonal gammopathies of unknown significance and multiple myeloma. The GRI Study Group.

    Science.gov (United States)

    Bellaïche, L; Laredo, J D; Lioté, F; Koeger, A C; Hamze, B; Ziza, J M; Pertuiset, E; Bardin, T; Tubiana, J M

    1997-11-01

    A prospective multicenter study. To evaluate the use of magnetic resonance imaging, in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. Although multiple myeloma has been studied extensively with magnetic resonance imaging, to the authors' knowledge, no study has evaluated the clinical interest of magnetic resonance imaging in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. The magnetic resonance examinations of the thoracolumbar spine in 24 patients with newly diagnosed monoclonal gammopathies of unknown significance were compared with those performed in 44 patients with newly diagnosed nontreated multiple myeloma. All findings on magnetic resonance examination performed in patients with monoclonal gammopathies of unknown significance were normal, whereas findings on 38 (86%) of the 44 magnetic resonance examinations performed in patients with multiple myeloma were abnormal. Magnetic resonance imaging can be considered as an additional diagnostic tool in differentiating between monoclonal gammopathies of unknown significance and multiple myeloma, which may be helpful when routine criteria are not sufficient. An abnormal finding on magnetic resonance examination in a patient with monoclonal gammopathies of unknown significance should suggest the diagnosis of multiple myeloma after other causes of marrow signal abnormalities are excluded. Magnetic resonance imaging also may be proposed in the long-term follow-up of monoclonal gammopathies of unknown significance when a new biologic or clinical event suggests the diagnosis of malignant monoclonal gammopathy.

  7. A multiple ship routing and speed optimization problem under time, cost and environmental objectives

    DEFF Research Database (Denmark)

    Wen, M.; Pacino, Dario; Kontovas, C.A.

    2017-01-01

    The purpose of this paper is to investigate a multiple ship routing and speed optimization problem under time, cost and environmental objectives. A branch and price algorithm as well as a constraint programming model are developed that consider (a) fuel consumption as a function of payload, (b......) fuel price as an explicit input, (c) freight rate as an input, and (d) in-transit cargo inventory costs. The alternative objective functions are minimum total trip duration, minimum total cost and minimum emissions. Computational experience with the algorithm is reported on a variety of scenarios....

  8. Design and selection of load control strategies using a multiple objective model and evolutionary algorithms

    International Nuclear Information System (INIS)

    Gomes, Alvaro; Antunes, Carlos Henggeler; Martins, Antonio Gomes

    2005-01-01

    This paper aims at presenting a multiple objective model to evaluate the attractiveness of the use of demand resources (through load management control actions) by different stakeholders and in diverse structure scenarios in electricity systems. For the sake of model flexibility, the multiple (and conflicting) objective functions of technical, economical and quality of service nature are able to capture distinct market scenarios and operating entities that may be interested in promoting load management activities. The computation of compromise solutions is made by resorting to evolutionary algorithms, which are well suited to tackle multiobjective problems of combinatorial nature herein involving the identification and selection of control actions to be applied to groups of loads. (Author)

  9. Eye movements in Multiple Object Tracking systematically lagging behind the scene content

    Czech Academy of Sciences Publication Activity Database

    Lukavský, Jiří

    2013-01-01

    Roč. 42, Suppl (2013), s. 42-43 ISSN 0301-0066. [36th European Conference on Visual Perception . 25.08.2013.-29.08.2013, Brémy] R&D Projects: GA ČR GA13-28709S Institutional support: RVO:68081740 Keywords : eye movements * attention * multiple object tracking Subject RIV: AN - Psychology http://www. perception web.com/abstract.cgi?id=v130146

  10. Objective Ratings of Relationship Skills across Multiple Domains as Predictors of Marital Satisfaction Trajectories

    OpenAIRE

    Lawrence, Erika; Pederson, Ashley; Bunde, Mali; Barry, Robin A.; Brock, Rebecca L.; Fazio, Emily; Mulryan, Lorin; Hunt, Sara; Madsen, Lisa; Dzankovic, Sandra

    2008-01-01

    Expanding upon social-learning and vulnerability-stress-adaptation approaches to marriage, the impact of multiple dyadic behaviors on marital satisfaction trajectories was examined in 101 couples. Semi-structured interviews were administered separately to husbands and wives at 3 months of marriage. Interviewers generated objective ratings for five domains: emotional closeness/intimacy, sexual intimacy/sensuality, interspousal support, decision-making/relational control, and communication/conf...

  11. Multiple containment for LSA [low specific activity] and SCO [surface contaminated objects] wastes

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1993-09-01

    Radioactive wastes are generally transported in the form of Low Specific Activity (LSA) materials or Surface Contaminated Objects (SCO). This report proposes that a method of acknowledging the beneficial effects of multiple containment for such wastes should be written into the 1996 Edition of the IAEA Transport Regulations. Experience used to assess risks from on-site movements of radioactive material in the UK can be applied to develop safety arguments justifying the alleviation of off-site transport risks. (UK)

  12. Defining ecological and economical hydropoweroperations: a framework for managing dam releasesto meet multiple conflicting objectives

    Science.gov (United States)

    Irwin, Elise R.

    2014-01-01

    Hydroelectric dams are a flexible source of power, provide flood control, and contribute to the economic growth of local communities through real-estate and recreation. Yet the impoundment of rivers can alter and fragment miles of critical riverine habitat needed for other competing needs such as downstream consumptive water use, fish and wildlife population viability, or other forms of recreation. Multiple conflicting interests can compromise progressive management especially with recognized uncertainties related to whether management actions will fulfill the objectives of policy makers, resource managers and/or facility owners. Decision analytic tools were used in a stakeholder-driven process to develop and implement a template for evaluation and prediction of the effects of water resource management of multiple-use systems under the context provided by R.L. Harris Dam on the Tallapoosa River, Alabama, USA. The approach provided a transparent and structured framework for decision-making and incorporated both existing and new data to meet multiple management objectives. Success of the template has been evaluated by the stakeholder governing body in an adaptive resource management framework since 2005 and is ongoing. Consequences of management of discharge at the dam were evaluated annually relative to stakeholder satisfaction to allow for adjustment of both management scenarios and objectives. This template can be applied to attempt to resolve conflict inherent in many dam-regulated systems where management decisions impact diverse values of stakeholders.

  13. Multi-objective optimization of linear multi-state multiple sliding window system

    International Nuclear Information System (INIS)

    Konak, Abdullah; Kulturel-Konak, Sadan; Levitin, Gregory

    2012-01-01

    This paper considers the optimal element sequencing in a linear multi-state multiple sliding window system that consists of n linearly ordered multi-state elements. Each multi-state element can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. The failure of type i in the system occurs if for any i (1≤i≤I) the cumulative performance of any r i consecutive elements is lower than w i . The element sequence strongly affects the probability of any type of system failure. The sequence that minimizes the probability of certain type of failure can provide high probability of other types of failures. Therefore the optimization problem for the multiple sliding window system is essentially multi-objective. The paper formulates and solves the multi-objective optimization problem for the multiple sliding window systems. A multi-objective Genetic Algorithm is used as the optimization engine. Illustrative examples are presented.

  14. Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects

    Science.gov (United States)

    Fatuzzo, Marco; Adams, Fred C.

    2018-04-01

    External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.

  15. Magnetic Field of Conductive Objects as Superposition of Elementary Eddy Currents and Eddy Current Tomography

    Science.gov (United States)

    Sukhanov, D. Ya.; Zav'yalova, K. V.

    2018-03-01

    The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.

  16. Spinal cord magnetic resonance imaging in suspected multiple sclerosis

    International Nuclear Information System (INIS)

    Lycklama a Nijeholt, G.J.; Bergers, E.; Castelijns, J.A.; Barkhof, F.; Uitdehaag, B.M.J.; Polman, C.H.

    2000-01-01

    We examined the value of spinal cord magnetic resonance imaging (MRI) in the diagnostic work-up of multiple sclerosis (MS). Forty patients suspected of having MS were examined within 24 months after the start of symptoms. Disability was assessed, and symptoms were categorized as either brain or spinal cord. Work-up further included cerebrospinal fluid analysis and standard proton-density, T2-, and T1-weighted gadolinium-enhanced brain and spinal cord MRI. Patients were categorized as either clinically definite MS (n = 13), laboratory-supported definite MS (n = 14), or clinically probable MS (n = 4); four patients had clinically probable MS, and in nine MS was suspected. Spinal cord abnormalities were found in 35 of 40 patients (87.5 %), consisting of focal lesions in 31, only diffuse abnormalities in two, and both in two. Asymptomatic spinal cord lesions occurred in six patients. All patients with diffuse spinal cord abnormality had clear spinal cord symptoms and a primary progressive disease course. In clinically definite MS, the inclusion of spinal imaging increased the sensitivity of MRI to 100 %. Seven patients without a definite diagnosis had clinically isolated syndromes involving the spinal cord. Brain MRI was inconclusive, while all had focal spinal cord lesions which explained symptoms and ruled out other causes. Two other patients had atypical brain abnormalities suggesting ischemic/vascular disease. No spinal cord abnormalities were found, and during follow-up MS was ruled out. Spinal cord abnormalities are common in suspected MS, and may occur asymptomatic. Although diagnostic classification is seldom changed, spinal cord imaging increases diagnostic sensitivity of MRI in patients with suspected MS. In addition, patients with primary progressive MS may possibly be earlier diagnosed. Finally, differentiation with atypical lesions may be improved. (orig.)

  17. Magnetic resonance imaging of spinal cord lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Yagishita, Toshiyuki; Fukutake, Toshio; Hirayama, Keizo; Fukuda, Nobuo.

    1987-01-01

    Magnetic resonance imaging (MRI) was used in three patients with multiple sclerosis (MS) to demonstrate the longitudinal distribution of demyelinating plaques in the spinal cord and to measure their T1 relaxation time values in these disease processes. Neurological examination allowed the detection of the superior limit of the spinal cord lesions in the three patients, but did not permit detection of the inferior limit in two of the patients. With MRI, however, it was possible to demonstrate the longitudinal distribution of demyelinating plaques in all three patients from coronal or sagittal images using spin echo and inversion recovery pulse sequences. In two patients treated with prednisolone, serial T1 relaxation time values of MS spinal cord lesions were measured from T1 calculated images. In one patient with transverse myelopathy, the T1 relaxation time values of MS spinal cord lesions were significantly increased at a stage of acute exacerbation. This is apparently in contrast with the values at the stage of remission. In the patient with localized cervical myelopathy, the increase in T1 relaxation time values of MS spinal cord lesions at the acute stage was small and significantly different from the values at the remission stage. Several recent reports have indicated that MRI is extremely sensitive in the detection of MS plaques, but most efforts to use MRI in the diagnosis of MS have been concentrated on brain lesions in spite of their frequent associations with spinal cord involvements. It is concluded from our case studies that MRI coronal or sagittal image is useful in demonstrating the longitudinal distribution of MS spinal cord lesions. In addition, serial observations of T1 relaxation time values of MS plaques may be important in assessing the activity of MS plaques and evaluation of the steroid therapy in MS processes. (author)

  18. A Single Unexpected Change in Target- but Not Distractor Motion Impairs Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Hauke S. Meyerhoff

    2013-02-01

    Full Text Available Recent research addresses the question whether motion information of multiple objects contributes to maintaining a selection of objects across a period of motion. Here, we investigate whether target and/or distractor motion information is used during attentive tracking. We asked participants to track four objects and changed either the motion direction of targets, the motion direction of distractors, neither, or both during a brief flash in the middle of a tracking interval. We observed that a single direction change of targets is sufficient to impair tracking performance. In contrast, changing the motion direction of distractors had no effect on performance. This indicates that target- but not distractor motion information is evaluated during tracking.

  19. Tracking of multiple objects with time-adjustable composite correlation filters

    Science.gov (United States)

    Ruchay, Alexey; Kober, Vitaly; Chernoskulov, Ilya

    2017-09-01

    An algorithm for tracking of multiple objects in video based on time-adjustable adaptive composite correlation filtering is proposed. For each frame a bank of composite correlation filters are designed in such a manner to provide invariance to pose, occlusion, clutter, and illumination changes. The filters are synthesized with the help of an iterative algorithm, which optimizes the discrimination capability for each object. The filters are adapted to the objects changes online using information from the current and past scene frames. Results obtained with the proposed algorithm using real-life scenes are presented and compared with those obtained with state-of-the-art tracking methods in terms of detection efficiency, tracking accuracy, and speed of processing.

  20. Objectivity

    CERN Document Server

    Daston, Lorraine

    2010-01-01

    Objectivity has a history, and it is full of surprises. In Objectivity, Lorraine Daston and Peter Galison chart the emergence of objectivity in the mid-nineteenth-century sciences--and show how the concept differs from its alternatives, truth-to-nature and trained judgment. This is a story of lofty epistemic ideals fused with workaday practices in the making of scientific images. From the eighteenth through the early twenty-first centuries, the images that reveal the deepest commitments of the empirical sciences--from anatomy to crystallography--are those featured in scientific atlases, the compendia that teach practitioners what is worth looking at and how to look at it. Galison and Daston use atlas images to uncover a hidden history of scientific objectivity and its rivals. Whether an atlas maker idealizes an image to capture the essentials in the name of truth-to-nature or refuses to erase even the most incidental detail in the name of objectivity or highlights patterns in the name of trained judgment is a...

  1. Optimum condition for spatial ion cyclotron resonance in a multiple magnetic mirror field

    International Nuclear Information System (INIS)

    Mieno, Tetsu; Hatakeyama, Rikizo; Sato, Noriyoshi

    1988-01-01

    A Spatial cyclotron resonance of ion beams passing through a multiple magnetic mirror field is investigated experimentally by varying parameters of the multiple mirror field. The optimum resonance condition is realized with a decrease in the cell length of the multiple mirror along the beams to satisfy the local condition of the spatial ion cyclotron resonance. The results show a remarkable increase of nonadiabatic transfer of the beam energy into the transverse direction to the magnetic field. (author)

  2. Short-term scheduling of an open-pit mine with multiple objectives

    Science.gov (United States)

    Blom, Michelle; Pearce, Adrian R.; Stuckey, Peter J.

    2017-05-01

    This article presents a novel algorithm for the generation of multiple short-term production schedules for an open-pit mine, in which several objectives, of varying priority, characterize the quality of each solution. A short-term schedule selects regions of a mine site, known as 'blocks', to be extracted in each week of a planning horizon (typically spanning 13 weeks). Existing tools for constructing these schedules use greedy heuristics, with little optimization. To construct a single schedule in which infrastructure is sufficiently utilized, with production grades consistently close to a desired target, a planner must often run these heuristics many times, adjusting parameters after each iteration. A planner's intuition and experience can evaluate the relative quality and mineability of different schedules in a way that is difficult to automate. Of interest to a short-term planner is the generation of multiple schedules, extracting available ore and waste in varying sequences, which can then be manually compared. This article presents a tool in which multiple, diverse, short-term schedules are constructed, meeting a range of common objectives without the need for iterative parameter adjustment.

  3. Calibration of a fluxgate magnetometer array and its application in magnetic object localization

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-01-01

    The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are −0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions. (paper)

  4. Calibration of a fluxgate magnetometer array and its application in magnetic object localization

    Science.gov (United States)

    Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-07-01

    The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are -0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions.

  5. First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives

    Science.gov (United States)

    Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.; Richter, Jadwiga H.; Tilmes, Simone; Lamarque, Jean-Francois; Tribbia, Joseph J.; Vitt, Francis

    2017-12-01

    We describe the first simulations of stratospheric sulfate aerosol geoengineering using multiple injection locations to meet multiple simultaneous surface temperature objectives. Simulations were performed using CESM1(WACCM), a coupled atmosphere-ocean general circulation model with fully interactive stratospheric chemistry, dynamics (including an internally generated quasi-biennial oscillation), and a sophisticated treatment of sulfate aerosol formation, microphysical growth, and deposition. The objectives are defined as maintaining three temperature features at their 2020 levels against a background of the RCP8.5 scenario over the period 2020-2099. These objectives are met using a feedback mechanism in which the rate of sulfur dioxide injection at each of the four locations is adjusted independently every year of simulation. Even in the presence of uncertainties, nonlinearities, and variability, the objectives are met, predominantly by SO2 injection at 30°N and 30°S. By the last year of simulation, the feedback algorithm calls for a total injection rate of 51 Tg SO2 per year. The injections are not in the tropics, which results in a greater degree of linearity of the surface climate response with injection amount than has been found in many previous studies using injection at the equator. Because the objectives are defined in terms of annual mean temperature, the required geongineering results in "overcooling" during summer and "undercooling" during winter. The hydrological cycle is also suppressed as compared to the reference values corresponding to the year 2020. The demonstration we describe in this study is an important step toward understanding what geoengineering can do and what it cannot do.

  6. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    Science.gov (United States)

    Akbaba, Hasan; Karagöz, Uğur; Selamet, Yusuf; Kantarcı, A. Gülten

    2017-03-01

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15-17 emu g-1 for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting.

  7. Single and multiple objective biomass-to-biofuel supply chain optimization considering environmental impacts

    Science.gov (United States)

    Valles Sosa, Claudia Evangelina

    Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers diminishing climate change by reducing Green House Gas Emissions, as well as providing energy security and enhancing rural development. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supply future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. Approaching this complex logistic problem as a multi-commodity network flow structure, the present work proposes the use of a genetic algorithm as a single objective optimization problem that considers the maximization of profit and the present work also proposes the use of a Multiple Objective Evolutionary Algorithm to simultaneously maximize profit while minimizing global warming potential. Most transportation optimization problems available in the literature have mostly considered the maximization of profit or the minimization of total travel time as potential objectives to be optimized. However, on this research work, we take a more conscious and sustainable approach for this logistic problem. Planners are increasingly expected to adopt a multi-disciplinary approach, especially due to the rising importance of environmental stewardship. The role of a transportation planner and designer is shifting from simple economic analysis to promoting sustainability through the integration of environmental objectives. To

  8. Method for locating a small magnetic object in the human body

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, L.; Williamson, S.J.; Ilmoniemi, R.J.; Weinberg, H.; Boyd, A.D.

    1988-02-29

    A piece of a thin acupuncture needle lodged under the right scapula of a patient could not be found in surgical procedures accompanied by studies of 30 standard x-ray images. To locate it, the authors mapped the magnetic-field component normal to a plane lying above the object, using a superconducting quantum interference device (SQUID). Assuming that the needle could be modeled as a magnetic dipole, the authors were able to infer its lateral position, depth, orientation, and magnetic moment. With this information, directed CT scans, high-resolution x-ray films, and the subsequent surgical removal of the needle proved that it could be located in the body with an accuracy of about three millimeters.

  9. Automated Object-Oriented Simulation Framework for Modelling of Superconducting Magnets at CERN

    CERN Document Server

    Maciejewski, Michał; Bartoszewicz, Andrzej

    The thesis aims at designing a flexible, extensible, user-friendly interface to model electro thermal transients occurring in superconducting magnets. Simulations are a fundamental tool for assessing the performance of a magnet and its protection system against the effects of a quench. The application is created using scalable and modular architecture based on object-oriented programming paradigm which opens an easy way for future extensions. What is more, each model composed of thousands of blocks is automatically created in MATLAB/Simulink. Additionally, the user is able to automatically run sets of simulations with varying parameters. Due to its scalability and modularity the framework can be easily used to simulate wide range of materials and magnet configurations.

  10. A case study of resources management planning with multiple objectives and projects

    Science.gov (United States)

    Peterson, David L.; Silsbee, David G.; Schmoldt, Daniel L.

    1994-09-01

    Each National Park Service unit in the United States produces a resources management plan (RMP) every four years or less. The plans commit budgets and personnel to specific projects for four years, but they are prepared with little quantitative and analytical rigor and without formal decision-making tools. We have previously described a multiple objective planning process for inventory and monitoring programs (Schmoldt and others 1994). To test the applicability of that process for the more general needs of resources management planning, we conducted an exercise on the Olympic National Park (NP) in Washington State, USA. Eight projects were selected as typical of those considered in RMPs and five members of the Olympic NP staff used the analytic hierarchy process (AHP) to prioritize the eight projects with respect to their implicit management objectives. By altering management priorities for the park, three scenarios were generated. All three contained some similarities in rankings for the eight projects, as well as some differences. Mathematical allocations of money and people differed among these scenarios and differed substantially from what the actual 1990 Olympic NP RMP contains. Combining subjective priority measures with budget dollars and personnel time into an objective function creates a subjective economic metric for comparing different RMP’s. By applying this planning procedure, actual expenditures of budget and personnel in Olympic NP can agree more closely with the staff’s management objectives for the park.

  11. Multiple recycling of NdFeB-type sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakotnik, M. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: miha.zakotnik@gmail.com; Harris, I.R.; Williams, A.J. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-05

    Some fully dense, sintered NdFeB-type magnets (employed in VCM disc drives) have been subjected to a recycling process using the hydrogen decrepitation (HD) process. After a brief milling treatment, the powder was aligned, pressed and re-sintered and this procedure was repeated four times with a progressive fall in the density and in the magnetic properties. The chemical analysis indicated that this was due to the progressive oxidation of the Nd-rich material and to some Nd loss by evaporation. The procedure was then repeated but with the addition (blending) of a fine powder of neodymium hydride after the first cycle. It was found that the addition of 1 at.% of neodymium at each stage was sufficient to maintain the density and the magnetic properties of the recycled magnets up to and including the 4th cycle. Inductively coupled plasma (ICP) and metallographic analysis indicated that the neodymium hydride additions compensated for the neodymium loss due to evaporation and to oxidation so that the proportion of Nd-rich material remained approximately constant. The additional amount of Nd{sub 2}O{sub 3} in the blended recycled magnets appeared to inhibit grain growth on the 3rd and 4th cycles when compared to that of the unblended magnets. The next challenge is to see if the process can be scaled-up to an industrial scale.

  12. Cerebral metabolism, magnetic resonance spectroscopy and cognitive dysfunction in early multiple sclerosis: an exploratory study

    DEFF Research Database (Denmark)

    Blinkenberg, Morten; Mathiesen, Henrik K; Tscherning, Thomas

    2012-01-01

    and neurological disability. METHODS: We studied 20 recently diagnosed, clinically definite, relapsing-remitting MS patients. Global and cortical CMRglc was estimated using PET with 18-F-deoxyglucose and NAA/Cr ratio was measured using multislice echo-planar spectroscopic imaging. All subjects were neuro-psychologically......OBJECTIVES: Positron emission tomography (PET) studies have shown that cortical cerebral metabolic rate of glucose (CMRglc) is reduced in multiple sclerosis (MS). Quantitative magnetic resonance spectroscopy (MRS) measures of N-acetyl-aspartate (NAA) normalized to creatine (NAA/Cr) assess neuronal...... deterioration, and several studies have shown reductions in MS. Furthermore, both PET and MRS reductions correlate with cognitive dysfunction in MS. Our aim was to determine if changes in cortical CMRglc in early MS correlate with NAA/Cr measurements of neuronal deterioration, as well as cognitive dysfunction...

  13. Multi-objective optimization of circular magnetic abrasive polishing of SUS304 and Cu materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, NhatTan; Yin, ShaoHui; Chen, FengJun; Yin, HanFeng [Hunan University, Changsha (China); Pham, VanThoan [Hanoi University, Hanoi (Viet Nam); Tran, TrongNhan [Industrial University of Ho Chi Minh City, HCM City (Viet Nam)

    2016-06-15

    In this paper, a Multi-objective particle swarm optimization algorithm (MOPSOA) is applied to optimize surface roughness of workpiece after circular magnetic abrasive polishing. The most important parameters of polishing model, namely current, gap between pole and workpiece, spindle speed and polishing time, were considered in this approach. The objective functions of the MOPSOA depend on the quality of surface roughness of polishing materials with both simultaneous surfaces (Ra1, Ra2), which are determined by means of experimental approach with the aid of circular magnetic field. Finally, the effectiveness of the approach is compared between the optimal results with the experimental data. The results show that the new proposed polishing optimization method is more feasible.

  14. Application of In-Segment Multiple Sampling in Object-Based Classification

    Directory of Open Access Journals (Sweden)

    Nataša Đurić

    2014-12-01

    Full Text Available When object-based analysis is applied to very high-resolution imagery, pixels within the segments reveal large spectral inhomogeneity; their distribution can be considered complex rather than normal. When normality is violated, the classification methods that rely on the assumption of normally distributed data are not as successful or accurate. It is hard to detect normality violations in small samples. The segmentation process produces segments that vary highly in size; samples can be very big or very small. This paper investigates whether the complexity within the segment can be addressed using multiple random sampling of segment pixels and multiple calculations of similarity measures. In order to analyze the effect sampling has on classification results, statistics and probability value equations of non-parametric two-sample Kolmogorov-Smirnov test and parametric Student’s t-test are selected as similarity measures in the classification process. The performance of both classifiers was assessed on a WorldView-2 image for four land cover classes (roads, buildings, grass and trees and compared to two commonly used object-based classifiers—k-Nearest Neighbor (k-NN and Support Vector Machine (SVM. Both proposed classifiers showed a slight improvement in the overall classification accuracies and produced more accurate classification maps when compared to the ground truth image.

  15. Additivity of Feature-based and Symmetry-based Grouping Effects in Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Chundi eWang

    2016-05-01

    Full Text Available Multiple object tracking (MOT is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the laws of perceptual organization proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. Additive effect refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The where and what pathways might have played an important role in the additive grouping effect.

  16. A multiple objective test assembly approach for exposure control problems in Computerized Adaptive Testing

    Directory of Open Access Journals (Sweden)

    Theo J.H.M. Eggen

    2010-01-01

    Full Text Available Overexposure and underexposure of items in the bank are serious problems in operational computerized adaptive testing (CAT systems. These exposure problems might result in item compromise, or point at a waste of investments. The exposure control problem can be viewed as a test assembly problem with multiple objectives. Information in the test has to be maximized, item compromise has to be minimized, and pool usage has to be optimized. In this paper, a multiple objectives method is developed to deal with both types of exposure problems. In this method, exposure control parameters based on observed exposure rates are implemented as weights for the information in the item selection procedure. The method does not need time consuming simulation studies, and it can be implemented conditional on ability level. The method is compared with Sympson Hetter method for exposure control, with the Progressive method and with alphastratified testing. The results show that the method is successful in dealing with both kinds of exposure problems.

  17. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets.

    Science.gov (United States)

    Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris

    2015-07-17

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.

  18. Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks

    Science.gov (United States)

    Rai, Man Mohan

    2006-01-01

    Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more

  19. Magnetic resonance imaging correlates of bee sting induced multiple organ dysfunction syndrome: A case report.

    Science.gov (United States)

    Das, Sushant K; Zeng, Li-Chuan; Li, Bing; Niu, Xiang-Ke; Wang, Jing-Liang; Bhetuwal, Anup; Yang, Han-Feng

    2014-09-28

    Occasionally systemic complications with high risk of death, such as multiple organ dysfunction syndrome (MODS), can occur following multiple bee stings. This case study reports a patient who presented with MODS, i.e., acute kidney injury, hepatic and cardiac dysfunction, after multiple bee stings. The standard clinical findings were then correlated with magnetic resonance imaging (MRI) findings, which demonstrates that MRI may be utilized as a simpler tool to use than other multiple diagnostics.

  20. Exploratory Spectroscopy of Magnetic Cataclysmic Variables Candidates and Other Variable Objects

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A. S.; Palhares, M. S. [IP and D, Universidade do Vale do Paraíba, 12244-000, São José dos Campos, SP (Brazil); Rodrigues, C. V.; Cieslinski, D.; Jablonski, F. J. [Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, 12227-010, São José dos Campos, SP (Brazil); Silva, K. M. G. [Gemini Observatory, Casilla 603, La Serena (Chile); Almeida, L. A. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05508-900, São Paulo, SP (Brazil); Rodríguez-Ardila, A., E-mail: alexandre@univap.br [Laboratório Nacional de Astrofísica LNA/MCTI, 37504-364, Itajubá MG (Brazil)

    2017-04-01

    The increasing number of synoptic surveys made by small robotic telescopes, such as the photometric Catalina Real-Time Transient Survey (CRTS), provides a unique opportunity to discover variable sources and improves the statistical samples of such classes of objects. Our goal is the discovery of magnetic Cataclysmic Variables (mCVs). These are rare objects that probe interesting accretion scenarios controlled by the white-dwarf magnetic field. In particular, improved statistics of mCVs would help to address open questions on their formation and evolution. We performed an optical spectroscopy survey to search for signatures of magnetic accretion in 45 variable objects selected mostly from the CRTS. In this sample, we found 32 CVs, 22 being mCV candidates, 13 of which were previously unreported as such. If the proposed classifications are confirmed, it would represent an increase of 4% in the number of known polars and 12% in the number of known IPs. A fraction of our initial sample was classified as extragalactic sources or other types of variable stars by the inspection of the identification spectra. Despite the inherent complexity in identifying a source as an mCV, variability-based selection, followed by spectroscopic snapshot observations, has proved to be an efficient strategy for their discoveries, being a relatively inexpensive approach in terms of telescope time.

  1. Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft

    Science.gov (United States)

    Yadav, Vipin K.; Srivastava, Nandita; Ghosh, S. S.; Srikar, P. T.; Subhalakshmi, Krishnamoorthy

    2018-01-01

    The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018-19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models. The proposed FGM is a dual range magnetic sensor on a 6 m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6 m from the spacecraft) and other, midway (3 m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space. In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.

  2. Magnetic nanoparticle imaging using multiple electron paramagnetic resonance activation sequences

    International Nuclear Information System (INIS)

    Coene, A.; Dupré, L.; Crevecoeur, G.

    2015-01-01

    Magnetic nanoparticles play an important role in several biomedical applications such as hyperthermia, drug targeting, and disease detection. To realize an effective working of these applications, the spatial distribution of the particles needs to be accurately known, in a non-invasive way. Electron Paramagnetic Resonance (EPR) is a promising and sensitive measurement technique for recovering these distributions. In the conventional approach, EPR is applied with a homogeneous magnetic field. In this paper, we employ different heterogeneous magnetic fields that allow to stabilize the solution of the associated inverse problem and to obtain localized spatial information. A comparison is made between the two approaches and our novel adaptation shows an average increase in reconstruction quality by 5% and is 12 times more robust towards noise. Furthermore, our approach allows to speed up the EPR measurements while still obtaining reconstructions with an improved accuracy and noise robustness compared to homogeneous EPR

  3. Electricity supply industry modelling for multiple objectives under demand growth uncertainty

    International Nuclear Information System (INIS)

    Heinrich, G.; Basson, L.; Howells, M.; Petrie, J.

    2007-01-01

    Appropriate energy-environment-economic (E3) modelling provides key information for policy makers in the electricity supply industry (ESI) faced with navigating a sustainable development path. Key challenges include engaging with stakeholder values and preferences, and exploring trade-offs between competing objectives in the face of underlying uncertainty. As a case study we represent the South African ESI using a partial equilibrium E3 modelling approach, and extend the approach to include multiple objectives under selected future uncertainties. This extension is achieved by assigning cost penalties to non-cost attributes to force the model's least-cost objective function to better satisfy non-cost criteria. This paper incorporates aspects of flexibility to demand growth uncertainty into each future expansion alternative by introducing stochastic programming with recourse into the model. Technology lead times are taken into account by the inclusion of a decision node along the time horizon where aspects of real options theory are considered within the planning process. Hedging in the recourse programming is automatically translated from being purely financial, to include the other attributes that the cost penalties represent. From a retrospective analysis of the cost penalties, the correct market signals, can be derived to meet policy goal, with due regard to demand uncertainty. (author)

  4. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    Energy Technology Data Exchange (ETDEWEB)

    Akbaba, Hasan; Karagöz, Uğur [Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 35100 Izmir (Turkey); Selamet, Yusuf [Izmir Institute of Technology, Faculty of Science, Department of Physics, 35433 Izmir (Turkey); Kantarcı, A. Gülten, E-mail: gulten.kantarci@ege.edu.tr [Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 35100 Izmir (Turkey)

    2017-03-15

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15–17 emu g{sup −1} for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting. - Highlights: • A novel iron oxide nanoparticle synthesis method with in-situ surface coating. • Combining advantages of microemulsions and multiple emulsion methods. • Multiple emulsions were used as microreactors for magnetic nanoparticle synthesis. • Superparamagnetic iron oxide particles synthesized in the core of cationic lipids. • Possible delivery systems for nucleic acids, oil soluble compounds or drugs.

  5. Operation of multiple superconducting energy doubler magnets in series

    International Nuclear Information System (INIS)

    Kalbfleisch, G.; Limon, P.J.; Rode, C.

    1977-01-01

    In order to understand the operational characteristics of the Energy Doubler, a series of experiments were begun which were designed to be a practical test of running superconducting accelerator magnets in series. Two separate tests in which two Energy Doubler dipoles were powered in series are described. Of particular interest are the static losses of the cryostats and the behavior of the coils and cryostats during quenches. The results of the tests show that Energy Doubler magnets can be safely operated near their short sample limit, and that the various safety devices used are adequate to protect the coils and the cryostats from damage

  6. Calculation of Pareto-optimal solutions to multiple-objective problems using threshold-of-acceptability constraints

    Science.gov (United States)

    Giesy, D. P.

    1978-01-01

    A technique is presented for the calculation of Pareto-optimal solutions to a multiple-objective constrained optimization problem by solving a series of single-objective problems. Threshold-of-acceptability constraints are placed on the objective functions at each stage to both limit the area of search and to mathematically guarantee convergence to a Pareto optimum.

  7. Sleep and its associations with perceived and objective cognitive impairment in individuals with multiple sclerosis.

    Science.gov (United States)

    Hughes, Abbey J; Parmenter, Brett A; Haselkorn, Jodie K; Lovera, Jesus F; Bourdette, Dennis; Boudreau, Eilis; Cameron, Michelle H; Turner, Aaron P

    2017-08-01

    Problems with sleep and cognitive impairment are common among people with multiple sclerosis (MS). The present study examined the relationship between self-reported sleep and both objective and perceived cognitive impairment in MS. Data were obtained from the baseline assessment of a multi-centre intervention trial (NCT00841321). Participants were 121 individuals with MS. Nearly half (49%) of participants met the criteria for objective cognitive impairment; however, cognitively impaired and unimpaired participants did not differ on any self-reported sleep measures. Nearly two-thirds (65%) of participants met the criteria for 'poor' sleep, and poorer sleep was significantly associated with greater levels of perceived cognitive impairment. Moreover, the relationships between self-reported sleep and perceived cognitive impairment were significant beyond the influence of clinical and demographic factors known to influence sleep and cognitive functioning (e.g. age, sex, education level, disability severity, type of MS, disease duration, depression and fatigue). However, self-reported sleep was not associated with any measures of objective cognitive impairment. Among different types of perceived cognitive impairment, poor self-reported sleep was most commonly related to worse perceived executive function (e.g. planning/organization) and prospective memory. Results from the present study emphasize that self-reported sleep is significantly and independently related to perceived cognitive impairment in MS. In terms of clinical implications, interventions focused on improving sleep may help improve perceived cognitive function and quality of life in this population; however, the impact of improved sleep on objective cognitive function requires further investigation. © 2017 European Sleep Research Society.

  8. Position Affects Performance in Multiple-Object Tracking in Rugby Union Players

    Directory of Open Access Journals (Sweden)

    Andrés Martín

    2017-09-01

    Full Text Available We report an experiment that examines the performance of rugby union players and a control group composed of graduate student with no sport experience, in a multiple-object tracking task. It compares the ability of 86 high level rugby union players grouped as Backs and Forwards and the control group, to track a subset of randomly moving targets amongst the same number of distractors. Several difficulties were included in the experimental design in order to evaluate possible interactions between the relevant variables. Results show that the performance of the Backs is better than that of the other groups, but the occurrence of interactions precludes an isolated groups analysis. We interpret the results within the framework of visual attention and discuss both, the implications of our results and the practical consequences.

  9. Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin

    Science.gov (United States)

    Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M.

    2006-01-01

    The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated, consistently with measured values.

  10. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    Science.gov (United States)

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G. D.; Xiong, Ying; Xie, Lun; Cao, Yong

    2017-09-01

    We present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.

  11. Buoyancy limits on magnetic viscosity stress-law scalings in quasi stellar object accretion disk models

    International Nuclear Information System (INIS)

    Sakimoto, P.J.

    1985-01-01

    Quasi-Stellar Objects (QSOs) are apparently the excessively bright nuclei of distant galaxies. They are thought to be powered by accretion disks surrounding supermassive black holes: however, proof of this presumption is hampered by major uncertainties in the viscous stress necessary for accretion to occur. Models generally assume an and hoc stress law which scales the stress with the total pressure. Near the black hole, radiation pressure dominates gas pressure; scaling the stress with the radiation pressure results in disk models that are thermally unstable and optically thin. This dissertation shows that a radiation pressure scaling for the stress is not possible if the viscosity is due to turbulent magnetic Maxwell stresses. The argument is one of internal self-consistency. First, four model accretion disks that bound the reasonably expected ranges of viscous stress scalings and vertical structures are constructed. Magnetic flux tubes of various initial field strengths are then placed within these models, nd their buoyancy is modeled numerically. In disks using the radiation pressure stress law scaling, low opacities allow rapid heat flow into the flux tubes: the tubes are extremely buoyant, and magnetic fields strong enough to provide the required stress cannot be retained. If an alternative gas pressure scaling for the stress is assumed, then the disks are optically thick; flux tubes have corresponding lower buoyancy, and magnetic fields strong enough to provide the stress can be retained for dynamically significant time periods

  12. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    DEFF Research Database (Denmark)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.

    2013-01-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data...... for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has...... implications for any future efforts to model their effects. We resolve persistent current intensifications between geomagnetic latitudes of 30 and 50° in the postmidnight, predawn sector, a region typically thought to be relatively free of electric currents. The cause of these unexpected intensifications...

  13. Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera

    Science.gov (United States)

    Dziri, Aziz; Duranton, Marc; Chapuis, Roland

    2016-07-01

    Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.

  14. A Fisher Kernel Approach for Multiple Instance Based Object Retrieval in Video Surveillance

    Directory of Open Access Journals (Sweden)

    MIRONICA, I.

    2015-11-01

    Full Text Available This paper presents an automated surveillance system that exploits the Fisher Kernel representation in the context of multiple-instance object retrieval task. The proposed algorithm has the main purpose of tracking a list of persons in several video sources, using only few training examples. In the first step, the Fisher Kernel representation describes a set of features as the derivative with respect to the log-likelihood of the generative probability distribution that models the feature distribution. Then, we learn the generative probability distribution over all features extracted from a reduced set of relevant frames. The proposed approach shows significant improvements and we demonstrate that Fisher kernels are well suited for this task. We demonstrate the generality of our approach in terms of features by conducting an extensive evaluation with a broad range of keypoints features. Also, we evaluate our method on two standard video surveillance datasets attaining superior results comparing to state-of-the-art object recognition algorithms.

  15. Multi-objective, multiple participant decision support for water management in the Andarax catchment, Almeria

    Science.gov (United States)

    van Cauwenbergh, N.; Pinte, D.; Tilmant, A.; Frances, I.; Pulido-Bosch, A.; Vanclooster, M.

    2008-04-01

    Water management in the Andarax river basin (Almeria, Spain) is a multi-objective, multi-participant, long-term decision-making problem that faces several challenges. Adequate water allocation needs informed decisions to meet increasing socio-economic demands while respecting the environmental integrity of this basin. Key players in the Andarax water sector include the municipality of Almeria, the irrigators involved in the intensive greenhouse agricultural sector, and booming second residences. A decision support system (DSS) is developed to rank different sustainable planning and management alternatives according to their socio-economic and environmental performance. The DSS is intimately linked to sustainability indicators and is designed through a public participation process. Indicators are linked to criteria reflecting stakeholders concerns in the 2005 field survey, such as fulfilling water demand, water price, technical and economical efficiency, social and environmental impacts. Indicators can be partly quantified after simulating the operation of the groundwater reservoir over a 20-year planning period and partly through a parallel expert evaluation process. To predict the impact of future water demand in the catchment, several development scenarios are designed to be evaluated in the DSS. The successive multi-criteria analysis of the performance indicators permits the ranking of the different management alternatives according to the multiple objectives formulated by the different sectors/participants. This allows more informed and transparent decision-making processes for the Andarax river basin, recognizing both the socio-economic and environmental dimensions of water resources management.

  16. Detection and Classification of Multiple Objects using an RGB-D Sensor and Linear Spatial Pyramid Matching

    DEFF Research Database (Denmark)

    Dimitriou, Michalis; Kounalakis, Tsampikos; Vidakis, Nikolaos

    2013-01-01

    , connected components detection and filtering approaches, in order to design a complete image processing algorithm for efficient object detection of multiple individual objects in a single scene, even in complex scenes with many objects. Besides, we apply the Linear Spatial Pyramid Matching (LSPM) [1] method......This paper presents a complete system for multiple object detection and classification in a 3D scene using an RGB-D sensor such as the Microsoft Kinect sensor. Successful multiple object detection and classification are crucial features in many 3D computer vision applications. The main goal...... is making machines see and understand objects like humans do. To this goal, the new RGB-D sensors can be utilized since they provide real-time depth map which can be used along with the RGB images for our tasks. In our system we employ effective depth map processing techniques, along with edge detection...

  17. After the Recall: Reexamining Multiple Magnet Ingestion at a Large Pediatric Hospital.

    Science.gov (United States)

    Rosenfield, Daniel; Strickland, Matt; Hepburn, Charlotte Moore

    2017-07-01

    To evaluate the effectiveness of a mandatory product recall on the frequency of multiple mini-magnet ingestion at a large tertiary pediatric hospital, and to examine the morbidity and mortality associated with these ingestions. In this retrospective chart review, we searched our institution's electronic patient record for patients aged magnetic foreign bodies between 2002 and 2015, a period that included the mandatory product recall. We compared the frequency and character of ingestions before and after the recall. Comparing the postrecall years (January 1, 2014, to December 31, 2015) with the 2 years immediately preceding the recall year (January 1, 2011, to December 31, 2012) yields an incidence rate ratio of 0.34 (95% CI, 0.18-0.64) for all magnet ingestions and 0.20 (95% CI, 0.08-0.53) for ingestion of multiple magnets. Based on the Fisher exact test, the incidence of both magnet ingestion (P magnet ingestion (P magnet ingestion decreased. There were no deaths in either study period. There was a significant decrease in multiple mini-magnet ingestion following a mandatory product recall. This study supports the effectiveness of the recall, which should bolster efforts to keep it in place in jurisdictions where it is being appealed. More broadly, the result provides general evidence of a recall helping decrease further harm from a product that carries a potential hazard. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Intestinal volvulus and perforation caused by multiple magnet ingestion: report of a case.

    Science.gov (United States)

    Ilçe, Zekeriya; Samsum, Hakan; Mammadov, Emil; Celayir, Sinan

    2007-01-01

    Ingested magnets can cause intestinal fistulas, perforation, and obstruction. There have been reports of magnet ingestion causing intestinal volvulus, but multiple magnet ingestion causing perforation and intestinal volvulus in a child is very unusual. We report the case of a 4-year-old girl, who ingested four magnets she acquired as toys, which caused intestinal volvulus and perforation as a result of pressure necrosis, several days after ingestion. At surgery we repaired two perforations, but additional bowel resection was not required. The patient was discharged on postoperative day 10. If multiple magnet ingestion is suspected in a child, the child must be monitored carefully. If there are signs of obstruction, emergency surgery is mandatory.

  19. Magnetic resonance imaging of the spine in multiple myeloma

    International Nuclear Information System (INIS)

    Tanaka, Masato; Nakahara, Shinnosuke; Koura, Hiroshi; Kai, Nobuo; Asaumi, Koji; Tanaka, Shunsuke; Sezaki, Tatsuo; Fukuda, Shunichi; Sunami, Kazutaka

    2000-01-01

    The characteristics of diagnostic imaging of the spine in multiple myeloma were examined. Twenty-one patients with stage II-III multiple myeloma (male=12, female=9, mean age=64) underwent MRI of the spine. Other diagnostic imaging modalities used in these patients included, CT bone scintigraphy, and radiography. All images of the spine were assessed and compared with the MRI images. The type of progression was evaluated based on the tumor distribution classification established by Sezaki. T1-weighted images of all 21 patients showed low signals in vertebral bodies, including 14 cases with a focal low signal intensity and 7 cases with diffuse low signal intensity. On the T2-weighted images, 15 of the 21 cases (71%) showed equivalent signals, while T2*-weighted images obtained by the field-echo method yielded high signals in 10 out of 11 cases. It was difficult to differentiate between senile osteoporosis and multiple myeloma by MRI, but CT images clearly distinguished between them. The results suggested that fat-suppressive T1-contrast images and T2*-weighted images are useful in detecting lesions, especially focal low signal intensity lesions. Patients with the multiple-lesion-tumor type of disease were more likely to develop paralysis more than those with the diffuse myeloproliferative type. Thus, the tumor distribution classification established by Sezaki was useful in considering radiotherapy for the treatment of patients at risk of paralysis. Bone scintigraphy revealed accumulation only in spinal lesions caused by compression fractures, while CT appeared to be useful in localizing the diffuse myeloproliferative type of lesions. The problems associated with diagnosis by MRI are differentiation of multiple myeloma from senile osteoporosis and metastatic bone tumors of the spine. There are few specific findings in multiple myeloma. (K.H.)

  20. An object-oriented framework for magnetic-fusion modeling and analysis codes

    International Nuclear Information System (INIS)

    Cohen, R H; Yang, T Y Brian.

    1999-01-01

    The magnetic-fusion energy (MFE) program, like many other scientific and engineering activities, has a need to efficiently develop complex modeling codes which combine detailed models of components to make an integrated model of a device, as well as a rich supply of legacy code that could provide the component models. There is also growing recognition in many technical fields of the desirability of steerable software: computer programs whose functionality can be changed by the user as it is run. This project had as its goals the development of two key pieces of infrastructure that are needed to combine existing code modules, written mainly in Fortran, into flexible, steerable, object-oriented integrated modeling codes for magnetic- fusion applications. These two pieces are (1) a set of tools to facilitate the interfacing of Fortran code with a steerable object-oriented framework (which we have chosen to be based on PythonlW3, an object-oriented interpreted language), and (2) a skeleton for the integrated modeling code which defines the relationships between the modules. The first of these activities obviously has immediate applicability to a spectrum of projects; the second is more focussed on the MFE application, but may be of value as an example for other applications

  1. Bimonthly assessment of magnetization transfer magnetic resonance imaging parameters in multiple sclerosis: a 14-month, multicentre, follow-up study

    NARCIS (Netherlands)

    Mesaros, S.; Rocca, M.A.; Sormani, M.P.; Valsasina, P.; Markowitz, C.; De Stefano, N.; Montalban, X.; Barkhof, F.; Ranjeva, J.P.; Sailer, M.; Kappos, L.; Comi, G.; Filippi, M.

    2010-01-01

    This study was performed to assess the temporal evolution of damage within lesions and the normal-appearing white matter, measured using frequent magnetization transfer (MT) MRI, in relapsing-remitting multiple sclerosis (RRMS). The relationship of MT ratio (MTR) changes with measures of lesion

  2. Exploratory Spectroscopy of Magnetic Cataclysmic Variables Candidates and Other Variable Objects

    Science.gov (United States)

    Oliveira, A. S.; Rodrigues, C. V.; Cieslinski, D.; Jablonski, F. J.; Silva, K. M. G.; Almeida, L. A.; Rodríguez-Ardila, A.; Palhares, M. S.

    2017-04-01

    The increasing number of synoptic surveys made by small robotic telescopes, such as the photometric Catalina Real-Time Transient Survey (CRTS), provides a unique opportunity to discover variable sources and improves the statistical samples of such classes of objects. Our goal is the discovery of magnetic Cataclysmic Variables (mCVs). These are rare objects that probe interesting accretion scenarios controlled by the white-dwarf magnetic field. In particular, improved statistics of mCVs would help to address open questions on their formation and evolution. We performed an optical spectroscopy survey to search for signatures of magnetic accretion in 45 variable objects selected mostly from the CRTS. In this sample, we found 32 CVs, 22 being mCV candidates, 13 of which were previously unreported as such. If the proposed classifications are confirmed, it would represent an increase of 4% in the number of known polars and 12% in the number of known IPs. A fraction of our initial sample was classified as extragalactic sources or other types of variable stars by the inspection of the identification spectra. Despite the inherent complexity in identifying a source as an mCV, variability-based selection, followed by spectroscopic snapshot observations, has proved to be an efficient strategy for their discoveries, being a relatively inexpensive approach in terms of telescope time. Based on observations obtained at the Observatório do Pico dos Dias/LNA, and at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  3. Multiple minimally invasive Erbium:YAG laser mini-peels for skin rejuvenation: An objective assessment

    Science.gov (United States)

    El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, Mỹ G.; Uitto, Jouni

    2012-01-01

    Summary Background As the demand for minimally invasive rejuvenation is increasing, micro-peel resurfacing using Erbium:Yttrium Aluminium Garnet (Er:YAG ) laser 2940 nm has been reported for the treatment of photoaged skin without ablation of the epidermis. However, little is known about the efficacy and underlying histologic changes associated with this type of treatment. Aims The purpose of this study is to evaluate the clinical effect and objectively quantify the histological changes in response to multiple sessions of Er:YAG laser 2940 nm mini-peels. Patients and methods Six female volunteers of Fitzpatrick skin type III-IV and Glogau’s class I-III wrinkles were subjected to six microresurfacing peels at 2-week intervals using Er:YAG 2940 nm laser at sub-ablative fluences of 2 - 3 J/cm2 to treat periorbital rhytides. Quantitative evaluation of collagen types I, III and VII, newly synthesized collagen, total elastin and tropoelastin was performed by histochemistry and immunohistochemistry coupled with computerized morphometric analysis at base line, end of treatment, and three months post treatment. Results Compared to the base line, evaluation of volunteers revealed obvious clinical improvement in response to Er:YAG mini-peels. Collagen types I, III, and VII, as well as newly synthesized collagen, together with tropoelastin showed a statistically significant increase in response to treatment, while the mean level of total elastin was significantly decreased in response to treatment. However, this was followed by regression of improvement at 3 months post treatment, but was still better than baseline. Conclusions The present study revealed that multiple Er:YAG mini-peels is a promising treatment option for photoaging as it reverses the signs of photoaged skin with little downtime and side effects. However, to maintain the short term improvement achieved after treatment, continued Er:YAG 2940 nm laser mini-peels is required. PMID:22672276

  4. Delay Kalman Filter to Estimate the Attitude of a Mobile Object with Indoor Magnetic Field Gradients

    Directory of Open Access Journals (Sweden)

    Christophe Combettes

    2016-05-01

    Full Text Available More and more services are based on knowing the location of pedestrians equipped with connected objects (smartphones, smartwatches, etc.. One part of the location estimation process is attitude estimation. Many algorithms have been proposed but they principally target open space areas where the local magnetic field equals the Earth’s field. Unfortunately, this approach is impossible indoors, where the use of magnetometer arrays or magnetic field gradients has been proposed. However, current approaches omit the impact of past state estimates on the current orientation estimate, especially when a reference field is computed over a sliding window. A novel Delay Kalman filter is proposed in this paper to integrate this time correlation: the Delay MAGYQ. Experimental assessment, conducted in a motion lab with a handheld inertial and magnetic mobile unit, shows that the novel filter better estimates the Euler angles of the handheld device with an 11.7° mean error on the yaw angle as compared to 16.4° with a common Additive Extended Kalman filter.

  5. Using reusable learning objects (rlos) in injection skills teaching: Evaluations from multiple user types.

    Science.gov (United States)

    Williams, Julia; O'Connor, Mórna; Windle, Richard; Wharrad, Heather J

    2015-12-01

    Clinical skills are a critical component of pre-registration nurse education in the United Kingdom, yet there is widespread concern about the clinical skills displayed by newly-qualified nurses. Novel means of supporting clinical skills education are required to address this. A package of Reusable Learning Objects (RLOs) was developed to supplement pre-registration teaching on the clinical skill of administering injection medication. RLOs are electronic resources addressing a single learning objective whose interactivity facilitates learning. This article evaluates a package of five injection RLOs across three studies: (1) questionnaires administered to pre-registration nursing students at University of Nottingham (UoN) (n=46) evaluating the RLO package as a whole; (2) individual RLOs evaluated in online questionnaires by educators and students from UoN; from other national and international institutions; and healthcare professionals (n=265); (3) qualitative evaluation of the RLO package by UoN injection skills tutors (n=6). Data from all studies were assessed for (1) access to, (2) usefulness, (3) impact and (4) integration of the RLOs. Study one found that pre-registration nursing students rate the RLO package highly across all categories, particularly underscoring the value of their self-test elements. Study two found high ratings in online assessments of individual RLOs by multiple users. The global reach is particularly encouraging here. Tutors reported insufficient levels of student-RLO access, which might be explained by the timing of their student exposure. Tutors integrate RLOs into teaching and agree on their use as teaching supplements, not substitutes for face-to-face education. This evaluation encompasses the first years postpackage release. Encouraging data on evaluative categories in this early review suggest that future evaluations are warranted to track progress as the package is adopted and evaluated more widely. Copyright © 2015 Elsevier Ltd

  6. Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology

    DEFF Research Database (Denmark)

    Tardif, Christine L; Bedell, Barry J; Eskildsen, Simon Fristed

    2012-01-01

    pathology. The objective of this study was to characterize the MRI signature of CLs to help interpret the changes seen in vivo and elucidate the factors limiting their visualization. A quantitative 3D high-resolution (350 μm isotropic) MRI study at 3 Tesla of a fixed post mortem cerebral hemisphere from...

  7. Managing forest and marginal agricultural land for multiple tradeoffs : compromising on economic, carbon and structural biodiversity objectives

    NARCIS (Netherlands)

    Krcmar, E.; Kooten, van G.C.; Vertinsky, I.

    2005-01-01

    In this paper, we use compromise programming to solve a multiple-objective land use and forest management planning model. Long- and short- (`fast¿) term carbon uptake, maintenance of structural diversity, and economic (net returns to forestry and agriculture) objectives are simultaneously achieved

  8. Detection and Classification of Multiple Objects using an RGB-D Sensor and Linear Spatial Pyramid Matching

    OpenAIRE

    Dimitriou, Michalis; Kounalakis, Tsampikos; Vidakis, Nikolaos; Triantafyllidis, Georgios

    2013-01-01

    This paper presents a complete system for multiple object detection and classification in a 3D scene using an RGB-D sensor such as the Microsoft Kinect sensor. Successful multiple object detection and classification are crucial features in many 3D computer vision applications. The main goal is making machines see and understand objects like humans do. To this goal, the new RGB-D sensors can be utilized since they provide real-time depth map which can be used along with the RGB images for our ...

  9. A Multi-Objective Learning to re-Rank Approach to Optimize Online Marketplaces for Multiple Stakeholders

    OpenAIRE

    Nguyen, Phong; Dines, John; Krasnodebski, Jan

    2017-01-01

    Multi-objective recommender systems address the difficult task of recommending items that are relevant to multiple, possibly conflicting, criteria. However these systems are most often designed to address the objective of one single stakeholder, typically, in online commerce, the consumers whose input and purchasing decisions ultimately determine the success of the recommendation systems. In this work, we address the multi-objective, multi-stakeholder, recommendation problem involving one or ...

  10. Neural Networks for Segregation of Multiple Objects: Visual Figure-Ground Separation and Auditory Pitch Perception.

    Science.gov (United States)

    Wyse, Lonce

    An important component of perceptual object recognition is the segmentation into coherent perceptual units of the "blooming buzzing confusion" that bombards the senses. The work presented herein develops neural network models of some key processes of pre-attentive vision and audition that serve this goal. A neural network model, called an FBF (Feature -Boundary-Feature) network, is proposed for automatic parallel separation of multiple figures from each other and their backgrounds in noisy images. Figure-ground separation is accomplished by iterating operations of a Boundary Contour System (BCS) that generates a boundary segmentation of a scene, and a Feature Contour System (FCS) that compensates for variable illumination and fills-in surface properties using boundary signals. A key new feature is the use of the FBF filling-in process for the figure-ground separation of connected regions, which are subsequently more easily recognized. The new CORT-X 2 model is a feed-forward version of the BCS that is designed to detect, regularize, and complete boundaries in up to 50 percent noise. It also exploits the complementary properties of on-cells and off -cells to generate boundary segmentations and to compensate for boundary gaps during filling-in. In the realm of audition, many sounds are dominated by energy at integer multiples, or "harmonics", of a fundamental frequency. For such sounds (e.g., vowels in speech), the individual frequency components fuse, so that they are perceived as one sound source with a pitch at the fundamental frequency. Pitch is integral to separating auditory sources, as well as to speaker identification and speech understanding. A neural network model of pitch perception called SPINET (SPatial PItch NETwork) is developed and used to simulate a broader range of perceptual data than previous spectral models. The model employs a bank of narrowband filters as a simple model of basilar membrane mechanics, spectral on-center off-surround competitive

  11. Magnetic resonance imaging in monitoring of treatment of multiple sclerosis

    International Nuclear Information System (INIS)

    Bekiesinska-Figatowska, M.; Walecki, J.; Stelmasiak, Z.

    1996-01-01

    The purpose of the study was to establish the value of MR in monitoring of treatment of multiple sclerosis with new drug 2-CDA and placebo. 83 patients (51 women, 32 men) were examined - 81 of them twice, 66 - three times: before and after 6 and 12 courses of treatment. Toshiba MRT50A machine was used. After the first 6 courses of treatment the number of new plaques was twice as big in placebo group than in 2-CDA group. After 12 courses it turned out that a certain inhibitory influence of 2-CDA on new plaques' appearance was more evident after 15 than 3 months after the end of its administration. This may indicate the delayed action of 2-CDA but requires further investigation. (author)

  12. [Multiple coil pulsed magnetic resonance method to measure the SSC bending magnet multipole moments

    International Nuclear Information System (INIS)

    Clark, W.G.

    1990-01-01

    The main emphasis has been to continue development of the high frequency (to 300 MHz) instrumentation, to test the system on a prototype bending magnet, construct the high frequency 32-channel electronics and probes, to seek industrial partners for technology transfer and commercial exploitation, and to do computer simulations for optimizing design parameters. Experience gained from tests made on a dipole magnet at Lawrence Berkeley Laboratory was extremely valuable and has resulted in substantial modifications to the original design

  13. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kisielewski, J., E-mail: jankis@uwb.edu.pl; Kurant, Z.; Sveklo, I.; Tekielak, M.; Maziewski, A. [Faculty of Physics, University of Białystok, Ciołkowskiego 1L, 15-245 Białystok (Poland); Wawro, A. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland)

    2016-05-21

    Ultrathin Pt/Co/Pt trilayers with initial in-plane magnetization were irradiated with femtosecond laser pulses. In this way, an irreversible structural modification was introduced, which resulted in the creation of numerous pulse fluence-dependent magnetic phases. This was particularly true with the out-of-plane magnetization state, which exhibited a submicrometer domain structure. This effect was studied in a broad range of pulse fluences up to the point of ablation of the metallic films. In addition to this single-pulse experiment, multiple exposure spots were also investigated, which exhibited an extended area of out-of-plane magnetization phases and a decreased damage threshold. Using a double exposure with partially overlapped spots, a two-dimensional diagram of the magnetic phases as a function of the two energy densities was built, which showed a strong inequality between the first and second incoming pulses.

  14. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses

    International Nuclear Information System (INIS)

    Kisielewski, J.; Kurant, Z.; Sveklo, I.; Tekielak, M.; Maziewski, A.; Wawro, A.

    2016-01-01

    Ultrathin Pt/Co/Pt trilayers with initial in-plane magnetization were irradiated with femtosecond laser pulses. In this way, an irreversible structural modification was introduced, which resulted in the creation of numerous pulse fluence-dependent magnetic phases. This was particularly true with the out-of-plane magnetization state, which exhibited a submicrometer domain structure. This effect was studied in a broad range of pulse fluences up to the point of ablation of the metallic films. In addition to this single-pulse experiment, multiple exposure spots were also investigated, which exhibited an extended area of out-of-plane magnetization phases and a decreased damage threshold. Using a double exposure with partially overlapped spots, a two-dimensional diagram of the magnetic phases as a function of the two energy densities was built, which showed a strong inequality between the first and second incoming pulses.

  15. Optimizing Placement of Weather Stations: Exploring Objective Functions of Meaningful Combinations of Multiple Weather Variables

    Science.gov (United States)

    Snyder, A.; Dietterich, T.; Selker, J. S.

    2017-12-01

    Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these

  16. Multiple-decker phthalocyaninato dinuclear lanthanoid(III) single-molecule magnets with dual-magnetic relaxation processes.

    Science.gov (United States)

    Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro

    2012-11-28

    The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.

  17. The limits of the electron optical parameters of asymmetric double pipecol magnetic objective lenses

    International Nuclear Information System (INIS)

    Al-khashab, A. M.; Abas, K. A.

    1997-01-01

    The asymmetrical magnetic electron lens is of great importance for the electron microscopes intended for high resolution. Such lenses are determined not only by its geometric structure and shape parameters but also by the gap width to bore diameter (S/D) of its pole pieces. a systematic investigation has been carried out for asymmetric objective lenses having different bore diameters. The results indicate that the op per h ore diameter of pole piece lens has considerable effects on the electron optical properties. The Comparison between the two sets of the family of asymmetric lenses provides good performance, and suggests that the ratio of the lens gap width to the bore diameters of its pole pieces (S/ D 1 /D 2 =3) are favourable. (authors). 9 refs., 9 figs

  18. Probabilistic active recognition of multiple objects using Hough-based geometric matching features

    CSIR Research Space (South Africa)

    Govender, N

    2015-01-01

    Full Text Available be recognized simultaneously, and occlusion and clutter (through distracter objects) is common. We propose a representation for object viewpoints using Hough transform based geometric matching features, which are robust in such circumstances. We show how...

  19. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging.

    Science.gov (United States)

    Genova, Helen M; Rajagopalan, Venkateswaran; Deluca, John; Das, Abhijit; Binder, Allison; Arjunan, Aparna; Chiaravalloti, Nancy; Wylie, Glenn

    2013-01-01

    The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS), looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI) was used to examine where in the brain BOLD activity covaried with "state" fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI) was used to examine where in the brain white matter damage correlated with increased "trait" fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS) completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a "fatigue-network" in MS.

  20. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Helen M Genova

    Full Text Available The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS, looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI was used to examine where in the brain BOLD activity covaried with "state" fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI was used to examine where in the brain white matter damage correlated with increased "trait" fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a "fatigue-network" in MS.

  1. Multiple coil pulsed magnetic resonance method for measuring cold SSC dipole magnet field quality

    International Nuclear Information System (INIS)

    Clark, W.G.; Moore, J.M.; Wong, W.H.

    1990-01-01

    The operating principles and system architecture for a method to measure the magnetic field multipole expansion coefficients are described in the context of the needs of SSC dipole magnets. The operation of an 8-coil prototype system is discussed. Several of the most important technological issues that influence the design are identified and the basis of their resolution is explained. The new features of a 32-coil system presently under construction are described, along with estimates of its requirements for measurement time and data storage capacity

  2. Metasurface Cloak Performance Near-by Multiple Line Sources and PEC Cylindrical Objects

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Yatman, William H.; Pehrson, Signe

    2014-01-01

    The performance/robustness of metasurface cloaks to a complex field environment which may represent a realistic scenario of radiating sources is presently reported. Attention is devoted to the cloak operation near-by multiple line sources and multiple perfectly electrically conducting cylinders. ...

  3. Bi-objective optimization of a multiple-target active debris removal mission

    Science.gov (United States)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed

  4. Evaluation of the Multiple Careers Magnet and Assessment Centers at William B. Carrell, 1978-79.

    Science.gov (United States)

    Maples, Wayne; And Others

    The report evaluates Texas' Multiple Careers Magnet Center (MCMC), a part time program to provide special education secondary students with career training. It is explained that students enter one of six career education clusters: furniture repair and upholstery, general construction trades, building and grounds maintenance, laundry and dry…

  5. Encephalic magnetic resonance imaging in spinal clinical forms of multiple sclerosis

    International Nuclear Information System (INIS)

    Lubetzki, C.; Lyon-Caen, O.; Lhermitte, F.; Iba-Zizen, M.T.

    1988-01-01

    The diagnosis of multiple sclerosis (MS) in patients presenting with signs and symptoms of pure spinal cord involvement is always difficult. Previous studies have shown the usefulness of encephalic magnetic resonance imaging (MRI) of the brain in those cases. The aim was to evaluate the diagnosis value of brain MRI in medullar forms of MS. 3 refs

  6. Exposure estimates based on broadband elf magnetic field measurements versus the ICNIRP multiple frequency rule

    International Nuclear Information System (INIS)

    Paniagua, Jesus M.; Rufo, Montana; Jimenez, Antonio; Pachon, Fernando T.; Carrero, Julian

    2015-01-01

    The evaluation of exposure to extremely low-frequency (ELF) magnetic fields using broadband measurement techniques gives satisfactory results when the field has essentially a single frequency. Nevertheless, magnetic fields are in most cases distorted by harmonic components. This work analyses the harmonic components of the ELF magnetic field in an outdoor urban context and compares the evaluation of the exposure based on broadband measurements with that based on spectral analysis. The multiple frequency rule of the International Commission on Non-ionizing Radiation Protection (ICNIRP) regulatory guidelines was applied. With the 1998 ICNIRP guideline, harmonics dominated the exposure with a 55 % contribution. With the 2010 ICNIRP guideline, however, the primary frequency dominated the exposure with a 78 % contribution. Values of the exposure based on spectral analysis were significantly higher than those based on broadband measurements. Hence, it is clearly necessary to determine the harmonic components of the ELF magnetic field to assess exposure in urban contexts. (authors)

  7. Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control.

    Science.gov (United States)

    Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu

    2016-01-01

    In this paper, the problem of object caging and transporting is considered for multiple mobile robots. With the consideration of minimizing the number of robots and decreasing the rotation of the object, the proper points are calculated and assigned to the multiple mobile robots to allow them to form a symmetric caging formation. The caging formation guarantees that all of the Euclidean distances between any two adjacent robots are smaller than the minimal width of the polygonal object so that the object cannot escape. In order to avoid collision among robots, the parameter of the robots radius is utilized to design the caging formation, and the A⁎ algorithm is used so that mobile robots can move to the proper points. In order to avoid obstacles, the robots and the object are regarded as a rigid body to apply artificial potential field method. The fuzzy sliding mode control method is applied for tracking control of the nonholonomic mobile robots. Finally, the simulation and experimental results show that multiple mobile robots are able to cage and transport the polygonal object to the goal position, avoiding obstacles. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Multiple coil pulsed magnetic resonance method to measure the SSC bending magnet multipole moments

    International Nuclear Information System (INIS)

    Clark, W.G.

    1990-01-01

    This document describes the technical progress made during the current contract period (4-1-89 to 3-31-90) of US DOE Contract AC02-87ER40350. The main emphasis of the current contract year has been to continue development of the high frequency (to 300 MHz) instrumentation, to test the system on a prototype bending magnet, to construct the high frequency 32-channel electronics and probes, and to do computer simulations for optimizing design parameters. Experience gained from tests made on a dipole magnet at Lawrence Berkeley Laboratory was extremely valuable and has resulted in substantial modifications to the original designs. These, and other items are discussed in this paper

  9. CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158

    Energy Technology Data Exchange (ETDEWEB)

    Tarr, Lucas; Longcope, Dana; Millhouse, Margaret [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2013-06-10

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 A channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 Multiplication-Sign 10{sup 20} Mx, 2.0 Multiplication-Sign 10{sup 20} Mx, and 21.0 Multiplication-Sign 10{sup 20} Mx, respectively, resulting in free energy drops of 3.89 Multiplication-Sign 10{sup 30} erg, 2.62 Multiplication-Sign 10{sup 30} erg, and 1.68 Multiplication-Sign 10{sup 32} erg.

  10. Assessment and Instruction of Object Permanence in Children with Blindness and Multiple Disabilities

    Science.gov (United States)

    Bruce, Susan M.; Vargas, Claudia

    2012-01-01

    Introduction: This article discusses the impact of blindness and low vision on the development of object permanence and provides suggestions for assessment and instruction. Methods: The reviewed literature was identified by searching both ERIC and Psych Info using combinations of search terms such as "object permanence" and "visual…

  11. A novel approach for multiple mobile objects path planning: Parametrization method and conflict resolution strategy

    International Nuclear Information System (INIS)

    Ma, Yong; Wang, Hongwei; Zamirian, M.

    2012-01-01

    We present a new approach containing two steps to determine conflict-free paths for mobile objects in two and three dimensions with moving obstacles. Firstly, the shortest path of each object is set as goal function which is subject to collision-avoidance criterion, path smoothness, and velocity and acceleration constraints. This problem is formulated as calculus of variation problem (CVP). Using parametrization method, CVP is converted to time-varying nonlinear programming problems (TNLPP) and then resolved. Secondly, move sequence of object is assigned by priority scheme; conflicts are resolved by multilevel conflict resolution strategy. Approach efficiency is confirmed by numerical examples. -- Highlights: ► Approach with parametrization method and conflict resolution strategy is proposed. ► Approach fits for multi-object paths planning in two and three dimensions. ► Single object path planning and multi-object conflict resolution are orderly used. ► Path of each object obtained with parameterization method in the first phase. ► Conflict-free paths gained by multi-object conflict resolution in the second phase.

  12. A Girl With Multiple Disabilities Increases Object Manipulation and Reduces Hand Mouthing Through a Microswitch-Based Program

    NARCIS (Netherlands)

    Lancioni, G.E.; Singh, N.N.; O'Reilly, M.F.; Sigafoos, J.; Didden, H.C.M.; Oliva, D.; Cingolani, E.

    2008-01-01

    The study was an effort to help a girl with multiple disabilities increase object manipulation responses and reduce hand mouthing, carried out according to an ABAB sequence (in which A represented baseline phases; B, treatment phases) and including a 3-month follow-up. During the baseline phases, a

  13. Effectiveness of Guided Multiple Choice Objective Questions Test on Students' Academic Achievement in Senior School Mathematics by School Location

    Science.gov (United States)

    Igbojinwaekwu, Patrick Chukwuemeka

    2015-01-01

    This study investigated, using pretest-posttest quasi-experimental research design, the effectiveness of guided multiple choice objective questions test on students' academic achievement in Senior School Mathematics, by school location, in Delta State Capital Territory, Nigeria. The sample comprised 640 Students from four coeducation secondary…

  14. Design and implementation of the reconstruction software for the photon multiplicity detector in object oriented programming framework

    International Nuclear Information System (INIS)

    Chattopadhayay, Subhasis; Ghosh, Premomoy; Gupta, R.; Mishra, D.; Phatak, S.C.; Sood, G.

    2002-01-01

    High granularity photon multiplicity detector (PMD) is scheduled to take data in Relativistic Heavy Ion Collision(RHIC) this year. A detailed scheme has been designed and implemented in object oriented programming framework using C++ for the monitoring and reconstruction job of PMD data

  15. Generalized framework for the parallel semantic segmentation of multiple objects and posterior manipulation

    DEFF Research Database (Denmark)

    Llopart, Adrian; Ravn, Ole; Andersen, Nils Axel

    2017-01-01

    The end-to-end approach presented in this paper deals with the recognition, detection, segmentation and grasping of objects, assuming no prior knowledge of the environment nor objects. The proposed pipeline is as follows: 1) Usage of a trained Convolutional Neural Net (CNN) that recognizes up to 80...... different classes of objects in real time and generates bounding boxes around them. 2) An algorithm to derive in parallel the pointclouds of said regions of interest (ROI). 3) Eight different segmentation methods to remove background data and noise from the pointclouds and obtain a precise result...

  16. Multivertebral and epidural involvement of the multiple myeloma, as confirmed by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasuhiro; Tamaki, Norihiko; Hosoda, Koukichi; Ehara, Kazumasa; Matsumoto, Satoshi

    1987-08-01

    A case is reported of a multiple myeloma exhibiting symptoms of paraparesis as an initial manifestation following tetraparesis, but with no particular common symptoms of multiple myeloma. Laboratory findings, however, strongly suggested multiple myeloma, and this was confirmed by a biopsy. Radiological investigations could not show all the features of this tumor invasion, but revealed only the osteosclerotic and destructive changes in the cervical and thoracic spine, plus a complete block at the C2 level. Magnetic resonance imaging, however, disclosed entire lesions. There existed multiple vertebral involvements and an epidural invasion of the tumor, continuing to an extraspinal mass. Multiple myeloma is a disorder with varied manifestations; it is rarely present as a primary neuropathological entity. Among these manifestations, initial neurological manifestations in the form of peripheral neuropathy have been reported most commonly. Unusual clinical presentations such as in our case may result in an erroneous and delayed diagnosis unless an early and correct identification of the lesion is made. Magnetic resonance imaging is thought to be the most useful technique to detect such a multiple lesion in the spinal canal with no invasive manipulation.

  17. Logarithmic r-θ mapping for hybrid optical neural network filter for multiple objects recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.

    2009-04-01

    θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.

  18. Comparison of multiple linear regression and artificial neural network in developing the objective functions of the orthopaedic screws.

    Science.gov (United States)

    Hsu, Ching-Chi; Lin, Jinn; Chao, Ching-Kong

    2011-12-01

    Optimizing the orthopaedic screws can greatly improve their biomechanical performances. However, a methodical design optimization approach requires a long time to search the best design. Thus, the surrogate objective functions of the orthopaedic screws should be accurately developed. To our knowledge, there is no study to evaluate the strengths and limitations of the surrogate methods in developing the objective functions of the orthopaedic screws. Three-dimensional finite element models for both the tibial locking screws and the spinal pedicle screws were constructed and analyzed. Then, the learning data were prepared according to the arrangement of the Taguchi orthogonal array, and the verification data were selected with use of a randomized selection. Finally, the surrogate objective functions were developed by using either the multiple linear regression or the artificial neural network. The applicability and accuracy of those surrogate methods were evaluated and discussed. The multiple linear regression method could successfully construct the objective function of the tibial locking screws, but it failed to develop the objective function of the spinal pedicle screws. The artificial neural network method showed a greater capacity of prediction in developing the objective functions for the tibial locking screws and the spinal pedicle screws than the multiple linear regression method. The artificial neural network method may be a useful option for developing the objective functions of the orthopaedic screws with a greater structural complexity. The surrogate objective functions of the orthopaedic screws could effectively decrease the time and effort required for the design optimization process. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Audiovisual functional magnetic resonance imaging adaptation reveals multisensory integration effects in object-related sensory cortices.

    Science.gov (United States)

    Doehrmann, Oliver; Weigelt, Sarah; Altmann, Christian F; Kaiser, Jochen; Naumer, Marcus J

    2010-03-03

    Information integration across different sensory modalities contributes to object recognition, the generation of associations and long-term memory representations. Here, we used functional magnetic resonance imaging adaptation to investigate the presence of sensory integrative effects at cortical levels as early as nonprimary auditory and extrastriate visual cortices, which are implicated in intermediate stages of object processing. Stimulation consisted of an adapting audiovisual stimulus S(1) and a subsequent stimulus S(2) from the same basic-level category (e.g., cat). The stimuli were carefully balanced with respect to stimulus complexity and semantic congruency and presented in four experimental conditions: (1) the same image and vocalization for S(1) and S(2), (2) the same image and a different vocalization, (3) different images and the same vocalization, or (4) different images and vocalizations. This two-by-two factorial design allowed us to assess the contributions of auditory and visual stimulus repetitions and changes in a statistically orthogonal manner. Responses in visual regions of right fusiform gyrus and right lateral occipital cortex were reduced for repeated visual stimuli (repetition suppression). Surprisingly, left lateral occipital cortex showed stronger responses to repeated auditory stimuli (repetition enhancement). Similarly, auditory regions of interest of the right middle superior temporal gyrus and sulcus exhibited repetition suppression to auditory repetitions and repetition enhancement to visual repetitions. Our findings of crossmodal repetition-related effects in cortices of the respective other sensory modality add to the emerging view that in human subjects sensory integrative mechanisms operate on earlier cortical processing levels than previously assumed.

  20. Multiple-Sensor Discrimination of Closely-Spaced Objects on a Ballistic Trajectory

    Science.gov (United States)

    2015-05-18

    Modeling Two-body orbit dynamics was utilized to generate ballistic trajectories between the desired burnout and reentry points. The dispersion of object...trajectories within the target complex was achieved by varying the velocity of each object at the burnout points. The generated trajectories served...utilized as it removes several limitations associated with using the Euclidean distance mainly that it accounts for the scaling of the coordinate

  1. Rapid top-down control over template-guided attention shifts to multiple objects.

    Science.gov (United States)

    Grubert, Anna; Fahrenfort, Johannes; Olivers, Christian N L; Eimer, Martin

    2017-02-01

    Previous research has shown that when observers search for targets defined by a particular colour, attention can be directed rapidly and independently to two target objects that appear in close temporal proximity. We investigated how such rapid attention shifts are modulated by task instructions to selectively attend versus ignore one of these objects. Two search displays that both contained a colour-defined target and a distractor in a different colour were presented in rapid succession, with a stimulus onset asynchrony (SOA) of 100ms. In different blocks, participants were instructed to attend and respond to target-colour objects in the first display and to ignore these objects in the second display, or vice versa. N2pc components were measured to track the allocation of spatial attention to target-colour objects in these two displays. When participants responded to the second display, irrelevant target-colour objects in the first display still triggered N2pc components, demonstrating task-set contingent attentional capture while a feature-specific target template is active. Critically, when participants responded to the first display instead, no N2pc was elicited by target-colour items in the second display, indicating that they no longer rapidly captured attention. However, these items still elicited a longer-latency contralateral negativity (SPCN component), suggesting that attention was oriented towards template-matching objects in working memory. This dissociation between N2pc and SPCN components shows that rapid attentional capture and subsequent attentional selection processes within working memory can be independent. We suggest that early attentional orienting mechanisms can be inhibited when task-set matching objects are no longer task-relevant, and that this type of inhibitory control is a rapid but transient process. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Early recognition is important when multiple magnets masquerade as a single chain after foreign body ingestion

    Directory of Open Access Journals (Sweden)

    Auriel August

    2016-10-01

    Full Text Available Ingestions of multiple magnets can lead to serious damage to the gastrointestinal tract. Moreover, these foreign bodies can take deceptive shapes such as single chains which may mislead clinicians. We report the case of a ten-year-old boy who swallowed 33 magnets, the most yet reported, which took on the appearance of a single loop in the stomach, while actually being located in the stomach, small bowel, and colon. Early recognition and prompt intervention are necessary to avoid complications of this foreign body misadventure.

  3. Roadside Multiple Objects Extraction from Mobile Laser Scanning Point Cloud Based on DBN

    Directory of Open Access Journals (Sweden)

    LUO Haifeng

    2018-02-01

    Full Text Available This paper proposed an novel algorithm for exploring deep belief network (DBN architectures to extract and recognize roadside facilities (trees,cars and traffic poles from mobile laser scanning (MLS point cloud.The proposed methods firstly partitioned the raw MLS point cloud into blocks and then removed the ground and building points.In order to partition the off-ground objects into individual objects,off-ground points were organized into an Octree structure and clustered into candidate objects based on connected component.To improve segmentation performance on clusters containing overlapped objects,a refining processing using a voxel-based normalized cut was then implemented.In addition,multi-view features descriptor was generated for each independent roadside facilities based on binary images.Finally,a deep belief network (DBN was trained to extract trees,cars and traffic pole objects.Experiments are undertaken to evaluate the validities of the proposed method with two datasets acquired by Lynx Mobile Mapper System.The precision of trees,cars and traffic poles objects extraction results respectively was 97.31%,97.79% and 92.78%.The recall was 98.30%,98.75% and 96.77% respectively.The quality is 95.70%,93.81% and 90.00%.And the F1 measure was 97.80%,96.81% and 94.73%.

  4. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    Science.gov (United States)

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  5. Multiple Moving Object Detection for Fast Video Content Description in Compressed Domain

    Directory of Open Access Journals (Sweden)

    Boris Mansencal

    2007-11-01

    Full Text Available Indexing deals with the automatic extraction of information with the objective of automatically describing and organizing the content. Thinking of a video stream, different types of information can be considered semantically important. Since we can assume that the most relevant one is linked to the presence of moving foreground objects, their number, their shape, and their appearance can constitute a good mean for content description. For this reason, we propose to combine both motion information and region-based color segmentation to extract moving objects from an MPEG2 compressed video stream starting only considering low-resolution data. This approach, which we refer to as “rough indexing,” consists in processing P-frame motion information first, and then in performing I-frame color segmentation. Next, since many details can be lost due to the low-resolution data, to improve the object detection results, a novel spatiotemporal filtering has been developed which is constituted by a quadric surface modeling the object trace along time. This method enables to effectively correct possible former detection errors without heavily increasing the computational effort.

  6. An implementation of multiple multipole method in the analyse of elliptical objects to enhance backscattering light

    Science.gov (United States)

    Jalali, T.

    2015-07-01

    In this paper, we present dielectric elliptical shapes modelling with respect to a highly confined power distribution in the resulting nanojet, which has been parameterized according to the beam waist and its beam divergence. The method is based on spherical bessel function as a basis function, which is adapted to standard multiple multipole method. This method can handle elliptically shaped particles due to the change of size and refractive indices, which have been studied under plane wave illumination in two and three dimensional multiple multipole method. Because of its fast and good convergence, the results obtained from simulation are highly accurate and reliable. The simulation time is less than minute for two and three dimension. Therefore, the proposed method is found to be computationally efficient, fast and accurate.

  7. INCORPORATING MULTIPLE OBJECTIVES IN PLANNING MODELS OF LOW-RESOURCE FARMERS

    OpenAIRE

    Flinn, John C.; Jayasuriya, Sisira; Knight, C. Gregory

    1980-01-01

    Linear goal programming provides a means of formally incorporating the multiple goals of a household into the analysis of farming systems. Using this approach, the set of plans which come as close as possible to achieving a set of desired goals under conditions of land and cash scarcity are derived for a Filipino tenant farmer. A challenge in making LGP models empirically operational is the accurate definition of the goals of the farm household being modelled.

  8. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    L. Bayón Arnáu

    2000-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NOx and SO2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network.

  9. Clinical vocabulary as a boundary object in multidisciplinary care management of multiple chemical sensitivity, a complex and chronic condition.

    Science.gov (United States)

    Sampalli, Tara; Shepherd, Michael; Duffy, Jack

    2011-04-14

    Research has shown that accurate and timely communication between multidisciplinary clinicians involved in the care of complex and chronic health conditions is often challenging. The domain knowledge for these conditions is heterogeneous, with poorly categorized, unstructured, and inconsistent clinical vocabulary. The potential of boundary object as a technique to bridge communication gaps is explored in this study. A standardized and controlled clinical vocabulary was developed as a boundary object in the domain of a complex and chronic health condition, namely, multiple chemical sensitivity, to improve communication among multidisciplinary clinicians. A convenience sample of 100 patients with a diagnosis of multiple chemical sensitivity, nine multidisciplinary clinicians involved in the care of patients with multiple chemical sensitivity, and 36 clinicians in the community participated in the study. Eighty-two percent of the multidisciplinary and inconsistent vocabulary was standardized using the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED(®) CT as a reference terminology. Over 80% of the multidisciplinary clinicians agreed on the overall usefulness of having a controlled vocabulary as a boundary object. Over 65% of clinicians in the community agreed on the overall usefulness of the vocabulary. The results from this study are promising and will be further evaluated in the domain of another complex chronic condition, ie, chronic pain. The study was conducted as a preliminary analysis for developing a boundary object in a heterogeneous domain of knowledge.

  10. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    Science.gov (United States)

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  11. Methods for providing decision makers with optimal solutions for multiple objectives that change over time

    CSIR Research Space (South Africa)

    Greeff, M

    2010-09-01

    Full Text Available Decision making - with the goal of finding the optimal solution - is an important part of modern life. For example: In the control room of an airport, the goals or objectives are to minimise the risk of airplanes colliding, minimise the time that a...

  12. Trajectory Planning of Mobile robot in Unstructured Environment for Multiple Objects

    Directory of Open Access Journals (Sweden)

    Muhammad Arshad

    2012-01-01

    Full Text Available In this paper we have presented a novel technique for the navigation and path formulation of wheeled mobile robot. In a given environment having obstacles, a path is generated from the given initial and final position of the robot. Based on the global knowledge of the environment a global path is formulated initially. This global path considers all the known obstacles in the environment and must avoid collision with these obstacles, i.e. the formulated path must be safe (collision free. For global path formulation strategic schemes have been employed using the a priori knowledge of the environment. The global path is fed to the robot. When unknown obstacles come in the path of the robot, it must deviate from the given global path and should generate a local path to avoid collision with the new unknown obstacle. By using sensors data the reactive schemes have been implemented for local path formulation. For local path formulation the path has been subdivided into intermediate steps known as sub goals. In the existing approaches known and unknown objects are considered separately. But in some of the practical applications known and unknown objects need to be considered simultaneously. This paper considers the problem of robot motion formulation in an environment having already known obstacles and unknown new moving objects. A Novel algorithm has been developed which incorporates local path planner, optimization and navigation modules. As unknown objects can appear in the environment randomly therefore uncertainty in the environment has been considered.

  13. Magnetic Actuator with Multiple Vibration Components Arranged at Eccentric Positions for Use in Complex Piping

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yaguchi

    2016-06-01

    Full Text Available This paper proposes a magnetic actuator using multiple vibration components to perform locomotion in a complex pipe with a 25 mm inner diameter. Due to the desire to increase the turning moment in a T-junction pipe, two vibration components were attached off-center to an acrylic plate with an eccentricity of 2 mm. The experimental results show that the magnetic actuator was able to move at 40.6 mm/s while pulling a load mass of 20 g in a pipe with an inner diameter of 25 mm. In addition, this magnetic actuator was able to move stably in U-junction and T-junction pipes. If a micro-camera is implemented in the future, the inspection of small complex pipes can be enabled. The possibility of inspection in pipes with a 25 mm inner diameter was shown by equipping the pipe with a micro-camera.

  14. A Comparative Study of Multiple Object Detection Using Haar-Like Feature Selection and Local Binary Patterns in Several Platforms

    Directory of Open Access Journals (Sweden)

    Souhail Guennouni

    2015-01-01

    Full Text Available Object detection has been attracting much interest due to the wide spectrum of applications that use it. It has been driven by an increasing processing power available in software and hardware platforms. In this work we present a developed application for multiple objects detection based on OpenCV libraries. The complexity-related aspects that were considered in the object detection using cascade classifier are described. Furthermore, we discuss the profiling and porting of the application into an embedded platform and compare the results with those obtained on traditional platforms. The proposed application deals with real-time systems implementation and the results give a metric able to select where the cases of object detection applications may be more complex and where it may be simpler.

  15. On Multiple Reconnection X-lines and Tripolar Perturbations of Strong Guide Magnetic Fields

    Science.gov (United States)

    Eriksson, S.; Lapenta, G.; Newman, D. L.; Phan, T. D.; Gosling, J. T.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.; Goldman, M. V.

    2015-05-01

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field BM which is almost four times as strong as the reversing field BL. The novel tripolar field consists of two narrow regions of depressed BM, with an observed 7%-14% ΔBM magnitude relative to the external field, which are found adjacent to a wide region of enhanced BM within the exhaust. A stronger reversing field is associated with each BM depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔBM/ΔXN over the normal width ΔXN between a BM minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.

  16. ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Eriksson, S.; Gosling, J. T.; Lapenta, G.; Newman, D. L.; Goldman, M. V.; Phan, T. D.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.

    2015-01-01

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B M   which is almost four times as strong as the reversing field B L . The novel tripolar field consists of two narrow regions of depressed B M , with an observed 7%–14% ΔB M magnitude relative to the external field, which are found adjacent to a wide region of enhanced B M within the exhaust. A stronger reversing field is associated with each B M depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB M /ΔX N over the normal width ΔX N between a B M minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field

  17. ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, S.; Gosling, J. T. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); Lapenta, G. [Center for Mathematical Plasma Astrophysics, Department of Mathematics, University of Leuven, Leuven (Belgium); Newman, D. L.; Goldman, M. V. [Center for Integrated Plasma Studies, University of Colorado, Boulder, CO (United States); Phan, T. D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Lavraud, B. [Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Toulouse (France); Khotyaintsev, Yu. V. [Swedish Institute of Space Physics, Uppsala (Sweden); Carr, C. M. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Markidis, S., E-mail: eriksson@lasp.colorado.edu [High Performance Computing and Visualization Department, KTH, Stockholm (Sweden)

    2015-05-20

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B{sub M} {sub  }which is almost four times as strong as the reversing field B{sub L}. The novel tripolar field consists of two narrow regions of depressed B{sub M}, with an observed 7%–14% ΔB{sub M} magnitude relative to the external field, which are found adjacent to a wide region of enhanced B{sub M} within the exhaust. A stronger reversing field is associated with each B{sub M} depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB{sub M}/ΔX{sub N} over the normal width ΔX{sub N} between a B{sub M} minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.

  18. Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.

    Directory of Open Access Journals (Sweden)

    Ki Hwan Kim

    Full Text Available Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i weak amplitudes, (ii fast oscillations, which are faster than MRI temporal resolution, and (iii random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i dynamic acquisitions using multiple times to repeats (TRs and (ii an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.

  19. Serial contrast-enhanced magnetic resonance and magnetization transfer in the study of patients with multiple sclerosis

    International Nuclear Information System (INIS)

    Rovira, A.; Alonso, J.; Cucurella, G.; Nos, C.; Tintore, M.; Pedraza, S.; Rio, J.; Montalban, X.

    1997-01-01

    To demonstrate the changes in the magnetization transfer ratio (MTR) of different demyelinating plaques, correlating them with the baseline values in T1-weighted contrast-enhanced magnetic resonance (MR) sequences in order to relate them more closely to the underlying disease. The study was based on 33 demyelinating plaques obtained from six patients clinically diagnosed as having remitting-recurring multiple sclerosis (MS). All the patients underwent two MR studies at a 3 to 5-month interval, including contrast-enhanced T1 and T2- weighted sequences and magnetization transfer images. The latter were used to calculate the MTR for each of the demyelinating plaques included in the study. The statistical analysis of the results obtained revealed statistically significant between initial MTR values and those of subsequent T1-weighted sequences. The MTR demonstrate significant differences between plaques according to contrast-enhanced T1-weigh tes sequences, probably indicating variable degrees of edema, demyelination and tissue destruction. These differences should be taken into account to enable the use of T1-weighted sequences to quantify the lesion load in MS patients. (Author) 35 refs

  20. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    Arnáu L. Bayón

    1999-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NO x and SO 2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network. Time-delays are included and the electric network is considered by using the active power balance equation. The volume of water discharge for each hydro-plant is a given constant amount from the optimization interval. The generic minimization algorithm, which is not difficult to construct on the basis of the Ritz method, has certain advantages in comparison with the conventional methods.

  1. Detecting multiple moving objects in crowded environments with coherent motion regions

    Science.gov (United States)

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  2. Automated pose estimation of objects using multiple ID devices for handling and maintenance task in nuclear fusion reactor

    International Nuclear Information System (INIS)

    Umetani, Tomohiro; Morioka, Jun-ichi; Tamura, Yuichi; Inoue, Kenji; Arai, Tatsuo; Mae, Yasusi

    2011-01-01

    This paper describes a method for the automated estimation of three-dimensional pose (position and orientation) of objects by autonomous robots, using multiple identification (ID) devices. Our goal is to estimate the object pose for assembly or maintenance tasks in a real nuclear fusion reactor system, with autonomous robots cooperating in a virtual assembly system. The method estimates the three-dimensional pose for autonomous robots. This paper discusses a method of motion generation for ID acquisition using the sensory data acquired by the measurement system attached to the robots and from the environment. Experimental results show the feasibility of the proposed method. (author)

  3. Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.

    Science.gov (United States)

    Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen

    2015-04-01

    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.

  4. Generation of ultra-long pure magnetization needle and multiple spots by phase modulated doughnut Gaussian beam

    Science.gov (United States)

    Udhayakumar, M.; Prabakaran, K.; Rajesh, K. B.; Jaroszewicz, Z.; Belafhal, Abdelmajid; Velauthapillai, Dhayalan

    2018-06-01

    Based on vector diffraction theory and inverse Faraday effect (IFE), the light induced magnetization distribution of a tightly focused azimuthally polarized doughnut Gaussian beam superimposed with a helical phase and modulated by an optimized multi belt complex phase filter (MBCPF) is analysed numerically. It is noted that by adjusting the radii of different rings of the complex phase filter, one can achieve many novel magnetization focal distribution such as sub wavelength scale (0.29λ) and super long (52.2λ) longitudinal magnetic probe suitable for all optical magnetic recording and the formation of multiple magnetization chain with four, six and eight sub-wavelength spherical magnetization spots suitable for multiple trapping of magnetic particles are achieved.

  5. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives

    International Nuclear Information System (INIS)

    Warmflash, Aryeh; Siggia, Eric D; Francois, Paul

    2012-01-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input–output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria. (paper)

  6. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.

    Science.gov (United States)

    Warmflash, Aryeh; Francois, Paul; Siggia, Eric D

    2012-10-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.

  7. Collaborative Workshops for Assessment and Creation of Multi-Objective Decision Support for Multiple Sectors

    Science.gov (United States)

    Kasprzyk, J. R.; Smith, R.; Raseman, W. J.; DeRousseau, M. A.; Dilling, L.; Ozekin, K.; Summers, R. S.; Balaji, R.; Livneh, B.; Rosario-Ortiz, F.; Sprain, L.; Srubar, W. V., III

    2017-12-01

    This presentation will report on three projects that used interactive workshops with stakeholders to develop problem formulations for Multi-Objective Evolutionary Algorithm (MOEA)-based decision support in diverse fields - water resources planning, water quality engineering under climate extremes, and sustainable materials design. When combined with a simulation model of a system, MOEAs use intelligent search techniques to provide new plans or designs. This approach is gaining increasing prominence in design and planning for environmental sustainability. To use this technique, a problem formulation - objectives and constraints (quantitative measures of performance) and decision variables (actions that can be modified to improve the system) - must be identified. Although critically important for MOEA effectiveness, the problem formulations are not always developed with stakeholders' interests in mind. To ameliorate this issue, project workshops were organized to improve the tool's relevance as well as collaboratively build problem formulations that can be used in applications. There were interesting differences among the projects, which altered the findings of each workshop. Attendees ranged from a group of water managers on the Front Range of Colorado, to water utility representatives from across the country, to a set of designers, academics, and trade groups. The extent to which the workshop participants were already familiar with simulation tools contributed to their willingness to accept the solutions that were generated using the tool. Moreover, in some instances, brainstorming new objectives to include within the MOEA expanded the scope of the problem formulation, relative to the initial conception of the researchers. Through describing results across a diversity of projects, the goal of this presentation is to report on how our approach may inform future decision support collaboration with a variety of stakeholders and sectors.

  8. Neo: an object model for handling electrophysiology data in multiple formats

    Directory of Open Access Journals (Sweden)

    Samuel eGarcia

    2014-02-01

    Full Text Available Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs.A common representation of the core data would improve interoperability and facilitate data-sharing.To that end, we propose here a language-independent object model, named Neo, suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language.In addition to representing electrophysiology data in memory for the purposes of analysis and visualisation, the Python implementation provides a set of input/output (IO modules for reading/writing the data from/to a variety of commonly used file formats.Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB.Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation.For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualisation.Software for neurophysiology data analysis and visualisation built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in

  9. Statistical Methods for Magnetic Resonance Image Analysis with Applications to Multiple Sclerosis

    Science.gov (United States)

    Pomann, Gina-Maria

    Multiple sclerosis (MS) is an immune-mediated neurological disease that causes disability and morbidity. In patients with MS, the accumulation of lesions in the white matter of the brain is associated with disease progression and worse clinical outcomes. In the first part of the dissertation, we present methodology to study to compare the brain anatomy between patients with MS and controls. A nonparametric testing procedure is proposed for testing the null hypothesis that two samples of curves observed at discrete grids and with noise have the same underlying distribution. We propose to decompose the curves using functional principal component analysis of an appropriate mixture process, which we refer to as marginal functional principal component analysis. This approach reduces the dimension of the testing problem in a way that enables the use of traditional nonparametric univariate testing procedures. The procedure is computationally efficient and accommodates different sampling designs. Numerical studies are presented to validate the size and power properties of the test in many realistic scenarios. In these cases, the proposed test is more powerful than its primary competitor. The proposed methodology is illustrated on a state-of-the art diffusion tensor imaging study, where the objective is to compare white matter tract profiles in healthy individuals and MS patients. In the second part of the thesis, we present methods to study the behavior of MS in the white matter of the brain. Breakdown of the blood-brain barrier in newer lesions is indicative of more active disease-related processes and is a primary outcome considered in clinical trials of treatments for MS. Such abnormalities in active MS lesions are evaluated in vivo using contrast-enhanced structural magnetic resonance imaging (MRI), during which patients receive an intravenous infusion of a costly magnetic contrast agent. In some instances, the contrast agents can have toxic effects. Recently, local

  10. Approach to proliferation risk assessment based on multiple objective analysis framework

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, A.; Kuptsov, I. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhI (Russian Federation); Studgorodok 1, Obninsk, Kaluga region, 249030 (Russian Federation)

    2013-07-01

    The approach to the assessment of proliferation risk using the methods of multi-criteria decision making and multi-objective optimization is presented. The approach allows the taking into account of the specifics features of the national nuclear infrastructure, and possible proliferation strategies (motivations, intentions, and capabilities). 3 examples of applying the approach are shown. First, the approach has been used to evaluate the attractiveness of HEU (high enriched uranium)production scenarios at a clandestine enrichment facility using centrifuge enrichment technology. Secondly, the approach has been applied to assess the attractiveness of scenarios for undeclared production of plutonium or HEU by theft of materials circulating in nuclear fuel cycle facilities and thermal reactors. Thirdly, the approach has been used to perform a comparative analysis of the structures of developing nuclear power systems based on different types of nuclear fuel cycles, the analysis being based on indicators of proliferation risk.

  11. HackaMol: An Object-Oriented Modern Perl Library for Molecular Hacking on Multiple Scales.

    Science.gov (United States)

    Riccardi, Demian; Parks, Jerry M; Johs, Alexander; Smith, Jeremy C

    2015-04-27

    HackaMol is an open source, object-oriented toolkit written in Modern Perl that organizes atoms within molecules and provides chemically intuitive attributes and methods. The library consists of two components: HackaMol, the core that contains classes for storing and manipulating molecular information, and HackaMol::X, the extensions that use the core. The core is well-tested, well-documented, and easy to install across computational platforms. The goal of the extensions is to provide a more flexible space for researchers to develop and share new methods. In this application note, we provide a description of the core classes and two extensions: HackaMol::X::Calculator, an abstract calculator that uses code references to generalize interfaces with external programs, and HackaMol::X::Vina, a structured class that provides an interface with the AutoDock Vina docking program.

  12. Detection of High-Z Objects using Multiple Scattering of Cosmic Ray Muons

    International Nuclear Information System (INIS)

    Hogan, Gary E.; Borozdin, Konstantin N.; Gomez, John; Morris, Christopher; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Teasdale, Margaret E.

    2004-01-01

    Detection of high-Z material hidden inside a large volume of ordinary cargo is an important and timely task given the danger associated with illegal transport of uranium and heavier elements. Existing radiography techniques are inefficient for shielded material, often expensive and involve radiation hazards, real and perceived. We recently demonstrated that radiographs can be formed using cosmic-ray muons. Here, we show that compact, high-Z objects can be detected and located in 3 dimensions with muon radiography. The natural flux of cosmic-ray muons, approximately 10,000 m-2min-1, can generate a reliable detection signal in a fraction of a minute, using large-area muon detectors as used in particle and nuclear physics

  13. Approach to proliferation risk assessment based on multiple objective analysis framework

    International Nuclear Information System (INIS)

    Andrianov, A.; Kuptsov, I.

    2013-01-01

    The approach to the assessment of proliferation risk using the methods of multi-criteria decision making and multi-objective optimization is presented. The approach allows the taking into account of the specifics features of the national nuclear infrastructure, and possible proliferation strategies (motivations, intentions, and capabilities). 3 examples of applying the approach are shown. First, the approach has been used to evaluate the attractiveness of HEU (high enriched uranium)production scenarios at a clandestine enrichment facility using centrifuge enrichment technology. Secondly, the approach has been applied to assess the attractiveness of scenarios for undeclared production of plutonium or HEU by theft of materials circulating in nuclear fuel cycle facilities and thermal reactors. Thirdly, the approach has been used to perform a comparative analysis of the structures of developing nuclear power systems based on different types of nuclear fuel cycles, the analysis being based on indicators of proliferation risk

  14. Traffic intensity monitoring using multiple object detection with traffic surveillance cameras

    Science.gov (United States)

    Hamdan, H. G. Muhammad; Khalifah, O. O.

    2017-11-01

    Object detection and tracking is a field of research that has many applications in the current generation with increasing number of cameras on the streets and lower cost for Internet of Things(IoT). In this paper, a traffic intensity monitoring system is implemented based on the Macroscopic Urban Traffic model is proposed using computer vision as its source. The input of this program is extracted from a traffic surveillance camera which has another program running a neural network classification which can identify and differentiate the vehicle type is implanted. The neural network toolbox is trained with positive and negative input to increase accuracy. The accuracy of the program is compared to other related works done and the trends of the traffic intensity from a road is also calculated. relevant articles in literature searches, great care should be taken in constructing both. Lastly the limitation and the future work is concluded.

  15. Subjective, but not objective, lingering effects of multiple past concussions in adolescents.

    Science.gov (United States)

    Brooks, Brian L; McKay, Carly D; Mrazik, Martin; Barlow, Karen M; Meeuwisse, Willem H; Emery, Carolyn A

    2013-09-01

    The existing literature on lingering effects from concussions in children and adolescents is limited and mixed, and there are no clear answers for patients, clinicians, researchers, or policy makers. The purpose of this study was to examine whether there are lingering effects of past concussions in adolescent athletes. Participants in this study included 643 competitive Bantam and Midget hockey players (most elite 20% by division of play) between 13 and 17 years of age (mean age=15.5, SD=1.2). Concussion history at baseline assessment was retrospectively documented using a pre-season questionnaire (PSQ), which was completed at home by parents and players in advance of baseline testing. Players with English as a second language, self-reported attention or learning disorders, a concussion within 6 months of baseline, or suspected invalid test profiles were excluded from these analyses. Demographically adjusted standard scores for the five composites/domains and raw symptom ratings from the brief Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) computerized battery were analyzed. Adolescent athletes with one or two or more prior concussions did not have significantly worse neurocognitive functioning on ImPACT than did those with no previous concussions. There were significantly more symptoms reported in those with two or more prior concussions than in those with no or one prior concussion. Adolescents with multiple previous concussions had higher levels of baseline symptoms, but there were not group differences in neurocognitive functioning using this brief computerized battery.

  16. Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal

    International Nuclear Information System (INIS)

    Zhang, Shengxiao; Zhang, Yuanyuan; Bi, Guoming; Liu, Junshen; Wang, Zhigang; Xu, Qiang; Xu, Hui; Li, Xiaoyan

    2014-01-01

    Highlights: • The Fe 3 O 4 /PDA hybrid material was synthesized and characterized. • The PDA polymer was firstly applied in environmental remediation. • The Fe 3 O 4 /PDA exhibited high adsorption capacity for multiple pollutants. • Removal efficiencies of pollutants with Fe 3 O 4 /PDA were pH dependent. - Abstract: The polydopamine polymer decorated with magnetic nanoparticles (Fe 3 O 4 /PDA) was synthesized and applied for removal of multiple pollutants. The resulted Fe 3 O 4 /PDA was characterized with elemental analysis, thermo-gravimetric analyses, vibrating sample magnetometer, high resolution transmission electron microscope, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy. The self-polymerization of dopamine could be completed within 8 h, and Fe 3 O 4 nanoparticles were embedded into PDA polymer. Superparamagnetism and large saturation magnetization facilitated collection of sorbents with a magnet. Based on the catechol and amine groups, the PDA polymer provided multiple interactions to combine with pollutants. To investigate the adsorption ability of Fe 3 O 4 /PDA, heavy metal ions and dyes were selected as target pollutants. The adsorption of pollutants was pH dependent due to the variation of surface charges at different solution pH. The removal efficiencies of cation pollutants enhanced with solution pH increasing, and that of anion pollutant was just the opposite. Under the optimal solution pH, the maximum adsorption capacity calculated from Langmuir adsorption isotherm for methylene blue, tartrazine, Cu 2+ , Ag + , and Hg 2+ were 204.1, 100.0, 112.9, 259.1, and 467.3 mg g −1 , respectively. The Fe 3 O 4 /PDA shows great potential for multiple pollutants removal, and this study is the first application of PDA polymer in environmental remediation

  17. Implementation of an object oriented track reconstruction model into multiple LHC experiments*

    Science.gov (United States)

    Gaines, Irwin; Gonzalez, Saul; Qian, Sijin

    2001-10-01

    An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.

  18. Change Analysis and Decision Tree Based Detection Model for Residential Objects across Multiple Scales

    Directory of Open Access Journals (Sweden)

    CHEN Liyan

    2018-03-01

    Full Text Available Change analysis and detection plays important role in the updating of multi-scale databases.When overlap an updated larger-scale dataset and a to-be-updated smaller-scale dataset,people usually focus on temporal changes caused by the evolution of spatial entities.Little attention is paid to the representation changes influenced by map generalization.Using polygonal building data as an example,this study examines the changes from different perspectives,such as the reasons for their occurrence,their performance format.Based on this knowledge,we employ decision tree in field of machine learning to establish a change detection model.The aim of the proposed model is to distinguish temporal changes that need to be applied as updates to the smaller-scale dataset from representation changes.The proposed method is validated through tests using real-world building data from Guangzhou city.The experimental results show the overall precision of change detection is more than 90%,which indicates our method is effective to identify changed objects.

  19. A Multi-Objective Compounded Local Mobile Cloud Architecture Using Priority Queues to Process Multiple Jobs.

    Science.gov (United States)

    Wei, Xiaohui; Sun, Bingyi; Cui, Jiaxu; Xu, Gaochao

    2016-01-01

    As a result of the greatly increased use of mobile devices, the disadvantages of portable devices have gradually begun to emerge. To solve these problems, the use of mobile cloud computing assisted by cloud data centers has been proposed. However, cloud data centers are always very far from the mobile requesters. In this paper, we propose an improved multi-objective local mobile cloud model: Compounded Local Mobile Cloud Architecture with Dynamic Priority Queues (LMCpri). This new architecture could briefly store jobs that arrive simultaneously at the cloudlet in different priority positions according to the result of auction processing, and then execute partitioning tasks on capable helpers. In the Scheduling Module, NSGA-II is employed as the scheduling algorithm to shorten processing time and decrease requester cost relative to PSO and sequential scheduling. The simulation results show that the number of iteration times that is defined to 30 is the best choice of the system. In addition, comparing with LMCque, LMCpri is able to effectively accommodate a requester who would like his job to be executed in advance and shorten execution time. Finally, we make a comparing experiment between LMCpri and cloud assisting architecture, and the results reveal that LMCpri presents a better performance advantage than cloud assisting architecture.

  20. A Multi-Objective Compounded Local Mobile Cloud Architecture Using Priority Queues to Process Multiple Jobs.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wei

    Full Text Available As a result of the greatly increased use of mobile devices, the disadvantages of portable devices have gradually begun to emerge. To solve these problems, the use of mobile cloud computing assisted by cloud data centers has been proposed. However, cloud data centers are always very far from the mobile requesters. In this paper, we propose an improved multi-objective local mobile cloud model: Compounded Local Mobile Cloud Architecture with Dynamic Priority Queues (LMCpri. This new architecture could briefly store jobs that arrive simultaneously at the cloudlet in different priority positions according to the result of auction processing, and then execute partitioning tasks on capable helpers. In the Scheduling Module, NSGA-II is employed as the scheduling algorithm to shorten processing time and decrease requester cost relative to PSO and sequential scheduling. The simulation results show that the number of iteration times that is defined to 30 is the best choice of the system. In addition, comparing with LMCque, LMCpri is able to effectively accommodate a requester who would like his job to be executed in advance and shorten execution time. Finally, we make a comparing experiment between LMCpri and cloud assisting architecture, and the results reveal that LMCpri presents a better performance advantage than cloud assisting architecture.

  1. Multiple-objective optimization in precision laser cutting of different thermoplastics

    Science.gov (United States)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  2. Comparison of sensitivity of magnetic resonance imaging and evoked potentials in the detection of brainstem involvement in multiple sclerosis

    International Nuclear Information System (INIS)

    Comi, G.; Martinelli, V.; Medaglini, S.; Locatelli, T.; Magnani, G.; Poggi, A.; Triulzi, F.

    1988-01-01

    A comparison was made of the sensitivity of magnetic resonance imaging and the combined use of Brainstem Auditory Evoked Potential and Median Somatosensory Evoked Potential in the detection of brainstem dysfunction in 54 multiple sclerosis patients. 10 refs.; 2 tabs

  3. SLIPPING MAGNETIC RECONNECTIONS WITH MULTIPLE FLARE RIBBONS DURING AN X-CLASS SOLAR FLARE

    International Nuclear Information System (INIS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    2016-01-01

    With the observations of the Solar Dynamics Observatory , we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection between the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.

  4. Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils

    Energy Technology Data Exchange (ETDEWEB)

    Sasayama, Teruyoshi, E-mail: sasayama@sc.kyushu-u.ac.jp; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji

    2017-04-01

    We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used. - Highlights: • 3D magnetic particle imaging system combining field-free line and two pickup coils. • Imaging method based on third harmonic signal detection and small field gradient. • Nonnegative least squares method for 3D magnetic nanoparticle image reconstruction. • High spatial resolution despite use of small field gradient.

  5. First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives: DESIGNING STRATOSPHERIC GEOENGINEERING

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Ben [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; MacMartin, Douglas G. [Mechanical and Aerospace Engineering, Cornell University, Ithaca NY USA; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena CA USA; Mills, Michael J. [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA; Richter, Jadwiga H. [Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO USA; Tilmes, Simone [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA; Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO USA; Lamarque, Jean-Francois [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA; Tribbia, Joseph J. [Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO USA; Vitt, Francis [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA

    2017-12-07

    We describe the first simulations of stratospheric sulfate aerosol geoengineering using multiple injection locations to meet multiple simultaneous surface temperature objectives. Simulations were performed using CESM1(WACCM), a coupled atmosphere-ocean general circulation model with fully interactive stratospheric chemistry, dynamics (including an internally generated quasi-biennial oscillation), and a sophisticated treatment of sulfate aerosol formation, microphysical growth, and deposition. The objectives are defined as maintaining three temperature features at their 2020 levels against a background of the RCP8.5 scenario over the period 2020-2099. These objectives are met using a feedback mechanism in which the rate of sulfur dioxide injection at each of the four locations is adjusted independently every year of simulation. Even in the presence of uncertainties, nonlinearities, and variability, the objectives are met, predominantly by SO2 injection at 30°N and 30°S. By the last year of simulation, the feedback algorithm calls for a total injection rate of 51 Tg SO2 per year. The injections are not in the tropics, which results in a greater degree of linearity of the surface climate response with injection amount than has been found in many previous studies using injection at the equator. Because the objectives are defined in terms of annual mean temperature, the required geeongineering results in "overcooling" during summer and "undercooling" during winter. The hydrological cycle is also suppressed as compared to the reference values corresponding to the year 2020. The demonstration we describe in this study is an important step toward understanding what geoengineering can do and what it cannot do.

  6. Object-Based Change Detection in Urban Areas from High Spatial Resolution Images Based on Multiple Features and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2018-02-01

    Full Text Available To improve the accuracy of change detection in urban areas using bi-temporal high-resolution remote sensing images, a novel object-based change detection scheme combining multiple features and ensemble learning is proposed in this paper. Image segmentation is conducted to determine the objects in bi-temporal images separately. Subsequently, three kinds of object features, i.e., spectral, shape and texture, are extracted. Using the image differencing process, a difference image is generated and used as the input for nonlinear supervised classifiers, including k-nearest neighbor, support vector machine, extreme learning machine and random forest. Finally, the results of multiple classifiers are integrated using an ensemble rule called weighted voting to generate the final change detection result. Experimental results of two pairs of real high-resolution remote sensing datasets demonstrate that the proposed approach outperforms the traditional methods in terms of overall accuracy and generates change detection maps with a higher number of homogeneous regions in urban areas. Moreover, the influences of segmentation scale and the feature selection strategy on the change detection performance are also analyzed and discussed.

  7. Opposition multiple objective symbiotic organisms search (OMOSOS for time, cost, quality and work continuity tradeoff in repetitive projects

    Directory of Open Access Journals (Sweden)

    Duc-Hoc Tran

    2018-04-01

    Full Text Available Construction managers often face with projects containing multiple units wherein activities repeat from unit to unit. Therefore effective resource management is crucial in terms of project duration, cost and quality. Accordingly, researchers have developed several models to aid planners in developing practical and near-optimal schedules for repetitive projects. Despite their undeniable benefits, such models lack the ability of pure simultaneous optimization because existing methodologies optimize the schedule with respect to a single factor, to achieve minimum duration, total cost, resource work breaks or various combinations, respectively. This study introduces a novel approach called “opposition multiple objective symbiotic organisms search” (OMOSOS for scheduling repetitive projects. The proposed algorithm used an opposition-based learning technique for population initialization and for generation jumping. Further, this study integrated a scheduling module (M1 to determine all project objectives including time, cost, quality and interruption. The proposed algorithm was implemented on two application examples in order to demonstrate its capabilities in optimizing the scheduling of repetitive construction projects. The results indicate that the OMOSOS approach is a powerful optimization technique and can assist project managers in selecting appropriate plan for project. Keywords: Symbiotic organisms search, Multi-objective analysis, Resource tradeoff, Schedules, Repetitive

  8. Multiple scattering modeling pipeline for spectroscopy and photometry of airless Solar System objects

    Science.gov (United States)

    Penttilä, Antti; Väisänen, Timo; Markkanen, Johannes; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2017-10-01

    We combine numerical tools to analyze the reflectance spectra of granular materials. Our motivation comes from the lack of tools when it comes to intimate mixing of materials and modeling space-weathering effects with nano- or micron-sized inclusions. The current practice is to apply a semi-physical models such as the Hapke models (e.g., Icarus 195, 2008). These are expressed in a closed form so that they are fast to apply. The problem is that the validity of the model is not guaranteed, and the derived properties related to particle scattering can be unrealistic (JQSRT 113, 2012).Our pipeline consists of individual scattering simulation codes and a main program that chains them together. The chain for analyzing a macroscopic target with space-weathered mineral would go as: (1) Scattering properties of small inclusions inside a host matrix are derived using exact Maxwell equation solvers. From the scattering properties, we use the so-called incoherent fields and Mueller matrices as input for the next step; (2) Scattering by a regolith grain is solved using a geometrical optics method with surface reflections, internal absorption, and internal diffuse scattering; (3) The radiative transfer simulation is executed inputting the regolith grains from the previous step as the scatterers in a macroscopic planar volume element.For the most realistic asteroid reflectance model, the chain would produce the properties of a planar surface element. Then, a shadowing simulation over the surface elements would be considered, and finally the asteroid phase function would be solved by integrating the bidirectional reflectance distribution function of the planar element over the object's realistic shape model.The tools in the proposed chain already exist, and practical task for us is to tie these together into an easy-to-use public pipeline. We plan to open the pipeline as a web-based open service a dedicated server, using Django application server and Python environment for the

  9. Multiple superconducting gaps in MgB2 single crystals from magnetic torque

    International Nuclear Information System (INIS)

    Atsumi, Toshiyuki; Xu, Mingxiang; Kitazawa, Hideaki; Ishida, Takekazu

    2004-01-01

    We have measured the magnetic torque of an MgB 2 single crystal in the various different fields below 10 kG by using a torque magnetometer and a 4 K closed cycle refrigerator. The MgB 2 single crystal was synthesized by the vapor transport method. The torque can be measured as an off-balance signal of the Wheatstone bridge of the four piezoresistors on a Si cantilever. The torque curves are analyzed by the Kogan model. The superconducting anisotropy γ is rather independent of temperature in 5 and 10 kG, but is dependent on field up to 60 kG. We consider that the field dependence of γ comes from the nature of the multiple superconducting gaps. The experimental results show that the π-band superconducting gaps have been deteriorated gradually up to a crossover field H * (π) ∼ 20 kG at 10 K when the magnetic field increases

  10. In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J

    1992-01-01

    Measurement of water self-diffusion in the brain in 25 patients with multiple sclerosis was performed by magnetic resonance imaging. Quantitative diffusion measurements were obtained using single spin-echo pulse sequences with pulsed magnetic field gradients of different magnitude. Twenty......-two of these patients also underwent measurement of the transverse relaxation time (T2). Only one plaque was evaluated in each patient. Based on prior knowledge, 12 plaques were classified as being 3 mo or less in age, and 7 plaques were classified as being more than 3 mo old. In all 25 plaques, water self......-diffusion was found to be higher than in apparently normal white matter. Furthermore, water self-diffusion was found to be higher in acute plaques compared with chronic plaques. Finally, a slight tendency toward a relationship between the diffusion capability and T2 was found. We believe that an increased diffusion...

  11. Robust multiple cue fusion-based high-speed and nonrigid object tracking algorithm for short track speed skating

    Science.gov (United States)

    Liu, Chenguang; Cheng, Heng-Da; Zhang, Yingtao; Wang, Yuxuan; Xian, Min

    2016-01-01

    This paper presents a methodology for tracking multiple skaters in short track speed skating competitions. Nonrigid skaters move at high speed with severe occlusions happening frequently among them. The camera is panned quickly in order to capture the skaters in a large and dynamic scene. To automatically track the skaters and precisely output their trajectories becomes a challenging task in object tracking. We employ the global rink information to compensate camera motion and obtain the global spatial information of skaters, utilize random forest to fuse multiple cues and predict the blob of each skater, and finally apply a silhouette- and edge-based template-matching and blob-evolving method to labelling pixels to a skater. The effectiveness and robustness of the proposed method are verified through thorough experiments.

  12. The Combined Quantification and Interpretation of Multiple Quantitative Magnetic Resonance Imaging Metrics Enlightens Longitudinal Changes Compatible with Brain Repair in Relapsing-Remitting Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Guillaume Bonnier

    2017-09-01

    Full Text Available ObjectiveQuantitative and semi-quantitative MRI (qMRI metrics provide complementary specificity and differential sensitivity to pathological brain changes compatible with brain inflammation, degeneration, and repair. Moreover, advanced magnetic resonance imaging (MRI metrics with overlapping elements amplify the true tissue-related information and limit measurement noise. In this work, we combined multiple advanced MRI parameters to assess focal and diffuse brain changes over 2 years in a group of early-stage relapsing-remitting MS patients.MethodsThirty relapsing-remitting MS patients with less than 5 years disease duration and nine healthy subjects underwent 3T MRI at baseline and after 2 years including T1, T2, T2* relaxometry, and magnetization transfer imaging. To assess longitudinal changes in normal-appearing (NA tissue and lesions, we used analyses of variance and Bonferroni correction for multiple comparisons. Multivariate linear regression was used to assess the correlation between clinical outcome and multiparametric MRI changes in lesions and NA tissue.ResultsIn patients, we measured a significant longitudinal decrease of mean T2 relaxation times in NA white matter (p = 0.005 and a decrease of T1 relaxation times in the pallidum (p < 0.05, which are compatible with edema reabsorption and/or iron deposition. No longitudinal changes in qMRI metrics were observed in controls. In MS lesions, we measured a decrease in T1 relaxation time (p-value < 2.2e−16 and a significant increase in MTR (p-value < 1e−6, suggesting repair mechanisms, such as remyelination, increased axonal density, and/or a gliosis. Last, the evolution of advanced MRI metrics—and not changes in lesions or brain volume—were correlated to motor and cognitive tests scores evolution (Adj-R2 > 0.4, p < 0.05. In summary, the combination of multiple advanced MRI provided evidence of changes compatible with focal and diffuse brain repair at

  13. Multi-Objective PID-Controller Tuning for a Magnetic Levitation System using NSGA-II

    DEFF Research Database (Denmark)

    Pedersen, Gerulf K. M.; Yang, Zhenyu

    2006-01-01

    This paper investigates the issue of PID-controller parameter tuning for a magnetic levitation system using the non-dominated sorting genetic algorithm (NSGA-II). The magnetic levitation system is inherently unstable and the PID-controller parameters are hard to find using conventional methods....... Based on four different performance measures, derived from the step response of the levitation system, the algorithm is used to find a set of non-dominated parameters for a PID-controller that can stabilize the system and minimize the performance measures....

  14. Magnetic resonance imaging of multiple sclerosis brain lesions: A semeiologic study by multiple spin-echo sequences

    International Nuclear Information System (INIS)

    Caires, M.C.; Scheiber, C.; Rumbach, L.; Gounot, D.; Dumitresco, B.; Warter, J.M.; Collard, M.; Chambron, J.

    1986-01-01

    Nuclear magnetic resonance imaging (MRI) if the brain is now known as a very sensitive tool for clearly revealing lesions in white matter, and has thus become important in the study of multiple sclerosis (MS). Since 1981, others have shown the best of MRI: we can see 6 x more lesions than CT. MRI contrast bases mainly on the spatial heterogeneity of the relaxation time of different tissues. The sensitivity depends on the longer T1 and/or T2 of the pathological tissues compared to those of normal tissues. In our series, the authors use mainly T2 weighted MR images and they evaluate their interest for the diagnosis of MS. They study the frequency of the abnormalities and their semeiology in a small number of transversal sections imaged at the level of the lateral ventricles. The authors' aim is to describe the NMR-derived morphological signs of MS and to prospect its interest in the physiopathological studies of this disease

  15. STakeholder-Objective Risk Model (STORM): Determiningthe aggregated risk of multiple contaminant hazards in groundwater well catchments

    DEFF Research Database (Denmark)

    Enzenhoefer, R.; Binning, Philip John; Nowak, W.

    2015-01-01

    Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any......-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired...

  16. Magnetic resonance imaging compared with trimodal evoked potentials in possible multiple sclerosis

    International Nuclear Information System (INIS)

    Roullet, E.; Leger-Ravet, M.B.; Amarenco, P.; Marteau, R.; Lavallard-Rousseau, M.-C.; Dupuch, K.; Iba-Zizen, M.T.; Tamraz, J.; Cabanis, E.A.

    1988-01-01

    Magnetic Resonance Imaging (MRI) of the brain and Evoked Potentials (EP) can both demonstrate the presence of clinically unsuspected demyelinating lesions and have proven to be sensitive (but not specific) in the diagnosis of multiple sclerosis (MS). MRI and EP are positive in 90 to 100% of patients with a definite diagnosis of MS. However, few studies have been conducted in patients with a lesser diagnostic certainty. In possible or suspected MS they gave conflicting results, possibly because of technical discrepancies and different clinical inclusion criteria. Since a number of putative new treatments can be evaluated in patients who have a definite diagnosis of MS, but nevertheless a short duration of disease and a low disability, it was decided to compare the sensitivity of MRI and EP as diagnostic tools in possible MS patients. MRI is shown to be more sensitive, shows more multiple lesions and gives a clearer appreciation of their size and exact location than EP. 10 refs.; 3 tabs

  17. Hierarchical Robot Control System and Method for Controlling Select Degrees of Freedom of an Object Using Multiple Manipulators

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor)

    2013-01-01

    A robotic system includes a robot having manipulators for grasping an object using one of a plurality of grasp types during a primary task, and a controller. The controller controls the manipulators during the primary task using a multiple-task control hierarchy, and automatically parameterizes the internal forces of the system for each grasp type in response to an input signal. The primary task is defined at an object-level of control, e.g., using a closed-chain transformation, such that only select degrees of freedom are commanded for the object. A control system for the robotic system has a host machine and algorithm for controlling the manipulators using the above hierarchy. A method for controlling the system includes receiving and processing the input signal using the host machine, including defining the primary task at the object-level of control, e.g., using a closed-chain definition, and parameterizing the internal forces for each of grasp type.

  18. Improvement of the R-SWAT-FME framework to support multiple variables and multi-objective functions

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang

    2014-01-01

    Application of numerical models is a common practice in the environmental field for investigation and prediction of natural and anthropogenic processes. However, process knowledge, parameter identifiability, sensitivity, and uncertainty analyses are still a challenge for large and complex mathematical models such as the hydrological/water quality model, Soil and Water Assessment Tool (SWAT). In this study, the previously developed R program language-SWAT-Flexible Modeling Environment (R-SWAT-FME) was improved to support multiple model variables and objectives at multiple time steps (i.e., daily, monthly, and annually). This expansion is significant because there is usually more than one variable (e.g., water, nutrients, and pesticides) of interest for environmental models like SWAT. To further facilitate its easy use, we also simplified its application requirements without compromising its merits, such as the user-friendly interface. To evaluate the performance of the improved framework, we used a case study focusing on both streamflow and nitrate nitrogen in the Upper Iowa River Basin (above Marengo) in the United States. Results indicated that the R-SWAT-FME performs well and is comparable to the built-in auto-calibration tool in multi-objective model calibration. Overall, the enhanced R-SWAT-FME can be useful for the SWAT community, and the methods we used can also be valuable for wrapping potential R packages with other environmental models.

  19. Optimized, unequal pulse spacing in multiple echo sequences improves refocusing in magnetic resonance.

    Science.gov (United States)

    Jenista, Elizabeth R; Stokes, Ashley M; Branca, Rosa Tamara; Warren, Warren S

    2009-11-28

    A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.

  20. Magnetic Resonance Spectroscopy: An Objective Technique for the Quantification of Prostate Cancer Pathologies

    Science.gov (United States)

    2007-02-01

    infantile Alexander disease. J. Neurol. 2003; 250(3): 300–306. 8. Chaudhuri A, Condon BR, Gow JW, Brennan D, Hadley DM. Proton magnetic resonance...xanthomatosis with NAA/Cr and Lac/Cr levels [70]. Studies were also seen in diabetes mellitus [71], and most interestingly, after the lengthy discussion of...71] Geissler A, Frund R, Scholmerich J, Feuerbach S, Zietz B. Alterations of cerebral metabolism in patients with diabetes mellitus studied by proton

  1. Examination of the role of magnetic resonance imaging in multiple sclerosis: A problem-orientated approach

    Directory of Open Access Journals (Sweden)

    McFarland Henry

    2009-01-01

    Full Text Available Magnetic Resonance Imaging (MRI has brought in several benefits to the study of Multiple Sclerosis (MS. It provides accurate measurement of disease activity, facilitates precise diagnosis, and aid in the assessment of newer therapies. The imaging guidelines for MS are broadly divided in to approaches for imaging patients with suspected MS or clinically isolated syndromes (CIS or for monitoring patients with established MS. In this review, the technical aspects of MR imaging for MS are briefly discussed. The imaging process need to capture the twin aspects of acute MS viz. the autoimmune acute inflammatory process and the neurodegenerative process. Gadolinium enhanced MRI can identify acute inflammatory lesions precisely. The commonly applied MRI marker of disease progression is brain atrophy. Whole brain magnetization Transfer Ratio (MTR and Magnetic Resonance Spectroscopy (MRS are two other techniques use to monitor disease progression. A variety of imaging techniques such as Double Inversion Recovery (DIR, Spoiled Gradient Recalled (SPGR acquisition, and Fluid Attenuated Inversion Recovery (FLAIR have been utilized to study the cortical changes in MS. MRI is now extensively used in the Phase I, II and III clinical trials of new therapies. As the technical aspects of MRI advance rapidly, and higher field strengths become available, it is hoped that the impact of MRI on our understanding of MS will be even more profound in the next decade.

  2. Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengxiao, E-mail: beijingzsx@163.com [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Zhang, Yuanyuan [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Bi, Guoming [Yantai Enironmental Monitoring Center, Yantai 264025, Shandong Province (China); Liu, Junshen [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Wang, Zhigang [Yantai Enironmental Monitoring Center, Yantai 264025, Shandong Province (China); Xu, Qiang; Xu, Hui; Li, Xiaoyan [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China)

    2014-04-01

    Highlights: • The Fe{sub 3}O{sub 4}/PDA hybrid material was synthesized and characterized. • The PDA polymer was firstly applied in environmental remediation. • The Fe{sub 3}O{sub 4}/PDA exhibited high adsorption capacity for multiple pollutants. • Removal efficiencies of pollutants with Fe{sub 3}O{sub 4}/PDA were pH dependent. - Abstract: The polydopamine polymer decorated with magnetic nanoparticles (Fe{sub 3}O{sub 4}/PDA) was synthesized and applied for removal of multiple pollutants. The resulted Fe{sub 3}O{sub 4}/PDA was characterized with elemental analysis, thermo-gravimetric analyses, vibrating sample magnetometer, high resolution transmission electron microscope, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy. The self-polymerization of dopamine could be completed within 8 h, and Fe{sub 3}O{sub 4} nanoparticles were embedded into PDA polymer. Superparamagnetism and large saturation magnetization facilitated collection of sorbents with a magnet. Based on the catechol and amine groups, the PDA polymer provided multiple interactions to combine with pollutants. To investigate the adsorption ability of Fe{sub 3}O{sub 4}/PDA, heavy metal ions and dyes were selected as target pollutants. The adsorption of pollutants was pH dependent due to the variation of surface charges at different solution pH. The removal efficiencies of cation pollutants enhanced with solution pH increasing, and that of anion pollutant was just the opposite. Under the optimal solution pH, the maximum adsorption capacity calculated from Langmuir adsorption isotherm for methylene blue, tartrazine, Cu{sup 2+}, Ag{sup +}, and Hg{sup 2+} were 204.1, 100.0, 112.9, 259.1, and 467.3 mg g{sup −1}, respectively. The Fe{sub 3}O{sub 4}/PDA shows great potential for multiple pollutants removal, and this study is the first application of PDA polymer in environmental remediation.

  3. STakeholder-Objective Risk Model (STORM): Determining the aggregated risk of multiple contaminant hazards in groundwater well catchments

    Science.gov (United States)

    Enzenhoefer, R.; Binning, P. J.; Nowak, W.

    2015-09-01

    Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any point in time, which then affects the pumped quality upon transport through the aquifer. In such situations, estimating the overall risk is not trivial, and three key questions emerge: (1) How to aggregate the impacts from different contaminants and spill locations to an overall, cumulative impact on the value at risk? (2) How to properly account for the stochastic nature of spill events when converting the aggregated impact to a risk estimate? (3) How will the overall risk and subsequent decision making depend on stakeholder objectives, where stakeholder objectives refer to the values at risk, risk attitudes and risk metrics that can vary between stakeholders. In this study, we provide a STakeholder-Objective Risk Model (STORM) for assessing the total aggregated risk. Or concept is a quantitative, probabilistic and modular framework for simulation-based risk estimation. It rests on the source-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired by a German drinking water catchment. As one may expect, the results depend strongly on the chosen stakeholder objectives, but they are equally sensitive to different approaches for risk aggregation across different hazards, contaminant types, and over time.

  4. Nuclear Magnetic Resonance Spectroscopy Applications: Proton NMR In Biological Objects Subjected To Magic Angle Spinning

    International Nuclear Information System (INIS)

    Wind, Robert A.; Hu, Jian Zhi

    2005-01-01

    Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896

  5. Seven-Tesla Magnetization Transfer Imaging to Detect Multiple Sclerosis White Matter Lesions.

    Science.gov (United States)

    Chou, I-Jun; Lim, Su-Yin; Tanasescu, Radu; Al-Radaideh, Ali; Mougin, Olivier E; Tench, Christopher R; Whitehouse, William P; Gowland, Penny A; Constantinescu, Cris S

    2018-03-01

    Fluid-attenuated inversion recovery (FLAIR) imaging at 3 Tesla (T) field strength is the most sensitive modality for detecting white matter lesions in multiple sclerosis. While 7T FLAIR is effective in detecting cortical lesions, it has not been fully optimized for visualization of white matter lesions and thus has not been used for delineating lesions in quantitative magnetic resonance imaging (MRI) studies of the normal appearing white matter in multiple sclerosis. Therefore, we aimed to evaluate the sensitivity of 7T magnetization-transfer-weighted (MT w ) images in the detection of white matter lesions compared with 3T-FLAIR. Fifteen patients with clinically isolated syndrome, 6 with multiple sclerosis, and 10 healthy participants were scanned with 7T 3-dimensional (D) MT w and 3T-2D-FLAIR sequences on the same day. White matter lesions visible on either sequence were delineated. Of 662 lesions identified on 3T-2D-FLAIR images, 652 were detected on 7T-3D-MT w images (sensitivity, 98%; 95% confidence interval, 97% to 99%). The Spearman correlation coefficient between lesion loads estimated by the two sequences was .910. The intrarater and interrater reliability for 7T-3D-MT w images was good with an intraclass correlation coefficient (ICC) of 98.4% and 81.8%, which is similar to that for 3T-2D-FLAIR images (ICC 96.1% and 96.7%). Seven-Tesla MT w sequences detected most of the white matter lesions identified by FLAIR at 3T. This suggests that 7T-MT w imaging is a robust alternative for detecting demyelinating lesions in addition to 3T-FLAIR. Future studies need to compare the roles of optimized 7T-FLAIR and of 7T-MT w imaging. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  6. Magnetic properties of NiMn2O4−δ (nickel manganite): Multiple magnetic phase transitions and exchange bias effect

    International Nuclear Information System (INIS)

    Tadic, Marin; Savic, S.M.; Jaglicic, Z.; Vojisavljevic, K.; Radojkovic, A.; Prsic, S.; Nikolic, Dobrica

    2014-01-01

    Highlights: • We have successfully synthesized NiMn 2 O 4−δ sample by complex polymerization synthesis. • Magnetic measurements reveal complex properties and triple magnetic phase transitions. • Magnetic measurements of M(H) show hysteretic behavior below 120 K. • Hysteresis properties after cooling of the sample in magnetic field show exchange bias effect. -- Abstract: We present magnetic properties of NiMn 2 O 4−δ (nickel manganite) which was synthesized by complex polymerization synthesis method followed by successive heat treatment and final calcinations in air at 1200 °C. The sample was characterized by using X-ray powder diffractometer (XRPD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM) and superconducting quantum interference device (SQUID) magnetometer. The XRPD and FE-SEM studies revealed NiMn 2 O 4−δ phase and good crystallinity of particles. No other impurities have been observed by XRPD. The magnetic properties of the sample have been studied by measuring the temperature and field dependence of magnetization. Magnetic measurements of M(T) reveal rather complex magnetic properties and multiple magnetic phase transitions. We show three magnetic phase transitions with transition temperatures at T M1 = 35 K (long-range antiferromagnetic transition), T M2 = 101 K (antiferromagnetic-type transition) and T M3 = 120 K (ferromagnetic-like transition). We found that the T M1 transition is strongly dependent on the strength of the applied magnetic field (T M1 decreases with increasing applied field) whereas the T M3 is field independent. Otherwise, the T M2 maximum almost disappears in higher applied magnetic fields (H = 1 kOe and 10 kOe). Magnetic measurements of M(H) show hysteretic behavior below T M3 . Moreover, hysteresis properties measured after cooling of the sample in magnetic field of 10 kOe show exchange bias effect with an exchange bias field |H EB |=196 Oe. In summary, the properties that

  7. Transcranial magnetic stimulation primes the effects of exercise therapy in multiple sclerosis.

    Science.gov (United States)

    Mori, Francesco; Ljoka, Concetta; Magni, Elisabetta; Codecà, Claudia; Kusayanagi, Hajime; Monteleone, Fabrizia; Sancesario, Andrea; Bernardi, Giorgio; Koch, Giacomo; Foti, Calogero; Centonze, Diego

    2011-07-01

    Exercise therapy (ET) can be beneficial in disabled multiple sclerosis (MS) patients. Intermittent transcranial magnetic theta burst stimulation (iTBS) induces long-term excitability changes of the cerebral cortex and may ameliorate spasticity in MS. We investigated whether the combination of iTBS and a program of ET can improve motor disability in MS patients. In a double-blind, sham-controlled trial, 30 participants were randomized to three different interventions: iTBS plus ET, sham stimulation plus ET, and iTBS alone. Before and after 2 weeks of treatment, measures of spasticity through the modified Ashworth scale (MAS) and the 88 items Multiple Sclerosis Spasticity Score questionnaire (MSSS-88), fatigue through the Fatigue Severity Scale (FSS), daily living activities (ADL) through the Barthel index and health-related quality of life (HRQoL) through the 54 items Multiple Sclerosis Quality of life inventory (MSQoL-54) were collected. iTBS plus ET reduced MAS, MSSS-88, FSS scores, while in the Barthel index and MSQoL-54, physical composite scores were increased. iTBS alone caused a reduction of the MAS score, while none of the measured scales showed significant changes after sham iTBS plus ET. iTBS associated with ET is a promising tool for motor rehabilitation of MS patients.

  8. Serial gadolinium-enhanced magnetic resonance imaging in patients with multiple sclerosis treated with mitoxantrone

    International Nuclear Information System (INIS)

    Krapf, H.; Mauch, E.; Fetzer, U.; Laufen, H.; Kornhuber, H.H.

    1995-01-01

    Serial gadolinium (Gd)-enhanced magnetic resonance imaging (MRI) was used to monitor the effect of mitoxantrone in ten patients with rapidly deteriorating multiple sclerosis (MS). MRI was performed as a baseline and thereafter at 1, 3, 6, 9, 12 and 24 months. The total number of Gd-enhancing lesions diminished from 169 at baseline to 10 after 1 year and to 5 after 2 years. This reduction and the percentage of follow-up MRI studies showing no Gd enhancement were more pronounced than in other MRI studies of the natural course of MS. Measured with quantitative neurological scales, only one patient showed deterioration after 2 years; nevertheless, the changes in MRI were much more marked than those observed clinically. Serial Gd-MRI therefore, seems necessary for documenting efficacy in future therapeutic trails. (orig.)

  9. Simulation of a resonant-type ring magnet power supply with multiple resonant cells and energy storage chokes

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Blackmore, E.W.; Reiniger, K.W.

    1992-01-01

    For the TRIUMF KAON Factory Booster Ring, a resonant-type magnet power supply has been proposed for the dipole magnet excitation. The Booster Ring magnet power supply system based on resonant circuits, coupled with distributed energy make-up networks, is a complex system, sensitive to many system parameters. When multiple resonant cells, each with its own energy make-up network, are connected in a ring, it is very difficult to derive closed-form solutions to determine the operating conditions of the power supply system. A meaningful way to understand and analyze such a complex system is to use a simulation tool. This paper presents the analysis of operating conditions of the resonant-type ring magnet power supply with multiple resonant cells, using the circuit simulation tool, SPICE. The focus of the study is on the effect of circuit parameter variations in energy storage chokes

  10. Multiple scattering of electromagnetic waves in disordered magnetic media localization parameter, energy transport velocity and diffusion constant

    CERN Document Server

    Pinheiro, F A; Martínez, A S

    2001-01-01

    We review some of our recent results concerning the single and multiple electromagnetic scattering by magnetic spherical particles. For a single electromagnetic scattering we show that the magnetic contribution alters, when compared to nonmagnetic scattering, the behavior of the cross sections and mean cosine of the scattering angle (cos omega). For ferromagnetic particles, resonances may occur even in the small-particle limit when the particle radius is much smaller than the wavelength. The resonances increase the cross sections while (cos omega) is diminished , and even may become negative. Several quantities such the Ioffe-Regel parameter for localization are calculated for the multiple scattering regime. We show that magnetic scattering favors the observation of localization of electromagnetic waves in three dimensions. Further, this is also verified for dynamical experiments, where we show that the diffusion constant can be very small. Since the magnetic permeability of the scatterers can vary significan...

  11. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    Directory of Open Access Journals (Sweden)

    Nabeela Nathoo

    2014-01-01

    Full Text Available There are exciting new advances in multiple sclerosis (MS resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS.

  12. No Evidence for Phase-Specific Effects of 40 Hz HD–tACS on Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Nicholas S. Bland

    2018-03-01

    Full Text Available Phase synchronization drives connectivity between neural oscillators, providing a flexible mechanism through which information can be effectively and selectively routed between task-relevant cortical areas. The ability to keep track of objects moving between the left and right visual hemifields, for example, requires the integration of information between the two cerebral hemispheres. Both animal and human studies have suggested that coherent (or phase-locked gamma oscillations (30–80 Hz might underlie this ability. While most human evidence has been strictly correlational, high-density transcranial alternating current stimulation (HD-tACS has been used to manipulate ongoing interhemispheric gamma phase relationships. Previous research showed that 40 Hz tACS delivered bilaterally over human motion complex could bias the perception of a bistable ambiguous motion stimulus (Helfrich et al., 2014. Specifically, this work showed that in-phase (0° offset stimulation boosted endogenous interhemispheric gamma coherence and biased perception toward the horizontal (whereby visual tokens moved between visual hemifields—requiring interhemispheric integration. By contrast, anti-phase (180° offset stimulation decreased interhemispheric gamma coherence and biased perception toward the vertical (whereby tokens moved within separate visual hemifields. Here we devised a multiple object tracking arena comprised of four quadrants whereby discrete objects moved either entirely within the left and right visual hemifields, or could cross freely between visual hemifields, thus requiring interhemispheric integration. Using the same HD-tACS montages as Helfrich et al. (2014, we found no phase-specific effect of 40 Hz stimulation on overall tracking performance. While tracking performance was generally lower during between-hemifield trials (presumably reflecting a cost of integration, this difference was unchanged by in- vs. anti-phase stimulation. Our null results

  13. Accretion-Ejection Instability in magnetized accretion disk around compact objects

    International Nuclear Information System (INIS)

    Varniere, Peggy

    2002-01-01

    The major problem in accretion physics come from the origin of angular momentum transfer in the disk. My PhD deal with a mechanism (the Accretion-Ejection Instability, AEI) able to explain and link together accretion in the inner region of the disk and ejection. This instability occurs in magnetized accretion disk near equipartition with gas pressure. We first study the impact of some relativistic effects on the instability, particularly on the m = 1 mode. And compared the results with the Quasi-Periodic Oscillation (QPO) observed in micro-quasars. In the second part we study analytically and numerically the Alfven wave emission mechanism which re-emit the angular momentum and energy taken from the inner region of the disk into the corona. The last part deals with MHD numerical simulation. First of all a 2D non-linear disk simulation which contribute to QPO modelization. The last chapter is about a beginning collaboration on 3D simulation in order to study the Alfven wave emission in the corona. (author) [fr

  14. Phase unwinding for dictionary compression with multiple channel transmission in magnetic resonance fingerprinting.

    Science.gov (United States)

    Lattanzi, Riccardo; Zhang, Bei; Knoll, Florian; Assländer, Jakob; Cloos, Martijn A

    2018-06-01

    Magnetic Resonance Fingerprinting reconstructions can become computationally intractable with multiple transmit channels, if the B 1 + phases are included in the dictionary. We describe a general method that allows to omit the transmit phases. We show that this enables straightforward implementation of dictionary compression to further reduce the problem dimensionality. We merged the raw data of each RF source into a single k-space dataset, extracted the transceiver phases from the corresponding reconstructed images and used them to unwind the phase in each time frame. All phase-unwound time frames were combined in a single set before performing SVD-based compression. We conducted synthetic, phantom and in-vivo experiments to demonstrate the feasibility of SVD-based compression in the case of two-channel transmission. Unwinding the phases before SVD-based compression yielded artifact-free parameter maps. For fully sampled acquisitions, parameters were accurate with as few as 6 compressed time frames. SVD-based compression performed well in-vivo with highly under-sampled acquisitions using 16 compressed time frames, which reduced reconstruction time from 750 to 25min. Our method reduces the dimensions of the dictionary atoms and enables to implement any fingerprint compression strategy in the case of multiple transmit channels. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Nuclear magnetic resonance imaging in a case of facial myokymia with multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Yagishita, Toshiyuki; Kita, Kohei; Hirayama, Keizo; Ikehira, Hiroo; Fukuda, Nobuo; Tateno, Yukio.

    1985-01-01

    A 59-year-old female of facial myokymia with multiple sclerosis was reported. In this case, facial myokymia appeared at the same time as the first attack of multiple sclerosis, in association with paroxysmal pain and desesthesia of the neck, painful tonic seizures of the right upper and lower extremities and cervical transverse myelopathy. The facial myokymia consisted of grossly visible, continuous, fine and worm-like movement, which often began in the area of the left orbicularis oculi and spread to the other facial muscles on one side. Electromyographic studies revealed grouping of motor units and continuous spontaneous rhythmic discharges in the left orbicularis oris suggesting facial myokymia, but there were no abnormalities on voluntary contraction. Sometimes doublet or multiplet patterns occurred while at other times the bursts were of single motor potential. The respective frequencies were 3-4/sec and 40-50/sec. There was no evidence of fibrillation. The facial myokymia disappeared after 4-8 weeks of administration of prednisolone and did not recur. In the remission stage after disappearance of the facial myokymia, nuclear magnetic resonance (NMR) imaging by the inversion recovery method demonstrated low intensity demyelinated plaque in the left lateral tegmentum of the inferior pons, which was responsible for the facial myokymia, but X-ray computed tomography revealed no pathological findings. The demyelinated plaque demonstrated by NMR imaging seemed to be located in the infranuclear area of the facial nerve nucleus and to involve the intramedurally root. (J.P.N.)

  16. Contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Seidl, Z.; Obenberger, J.; Vitak, T.

    1996-01-01

    The potential of magnetic resonance imaging in the diagnosis of multiple sclerosis (MS) was confirmed on 52 patients. In 25 patients, MS was diagnosed as highly probable, in additional 8 patients this diagnosis was suspected. MR imaging supported the diagnosis in 21 (95%) patients where this disease had been diagnosed as highly probable, and in 3 (38%) suspect patients. Lesions were found most frequently paraventricularly in the white matter of the brain, but also in the deep structures of the white matter of the temporal lobe and below the tentorium (in the cerebellum, pons and mesencephalon). No lesions were found in the optic nerve despite the frequent diagnosis of retrobulbar neuritis. Computerized tomography (CT) was performed in 14 patients; this technique only supported the diagnosis of MS in 3 patients, in all of whom this diagnosis had also been suggested by MR imaging. It is concluded that MR imaging can fully supersede CT as a tool for diagnosing multiple sclerosis. 3 figs., 10 refs

  17. Development of a multiple HTS current lead assembly for corrector magnets application

    International Nuclear Information System (INIS)

    Wu, J.L.; Dederer, J.T.; Singh, S.K.

    1994-01-01

    Vapor-cooled current leads used for transmitting power to superconducting power equipment such as the corrector magnets in the SSC spools can introduce a significant heat leak into the cryostat which results in cryogen boil-off. Replenishing the boil-off or refrigerating and liquefying the vapors associated with the cooling of these leads may constitute a significant portion of the operating cost and/or the capital investment of the power equipment. Theoretical studies and experiments have demonstrated that the heat leak introduced by a current lead can be significantly reduced by using ceramic high temperature superconductor (HTSC) as part of the conductor in the current leads. A HTSC reduces heat leak in a current lead by being superconducting in the temperature range below its critical temperature and by having a low temperature thermal conductivity which is generally orders of magnitude lower than the copper alloys commonly used as the current lead conductors. This combination reduces Joule heating and heat conduction, resulting in lower heat leak to the cryostat. To demonstrate the advantages and large scale application of this technology, Westinghouse Science ampersand Technology Center has continued its efforts in High Temperature Superconducting (HTS) current lead development. The efforts include qualification testing and selection of commercial sources of HTSC for current leads and the successful development of a 12 x 100 A multiple HTS current lead assembly prototype for SSC Corrector Element Power Lead application. The efforts on the design, fabrication and testing of the multiple HTS lead assembly is reported below

  18. Nuclear magnetic resonance imaging in a case of facial myokymia with multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Shigeyuki; Yagishita, Toshiyuki; Kita, Kohei; Hirayama, Keizo; Ikehira, Hiroo; Fukuda, Nobuo; Tateno, Yukio

    1985-06-01

    A 59-year-old female of facial myokymia with multiple sclerosis was reported. In this case, facial myokymia appeared at the same time as the first attack of multiple sclerosis, in association with paroxysmal pain and desesthesia of the neck, painful tonic seizures of the right upper and lower extremities and cervical transverse myelopathy. The facial myokymia consisted of grossly visible, continuous, fine and worm-like movement, which often began in the area of the left orbicularis oculi and spread to the other facial muscles on one side. Electromyographic studies revealed grouping of motor units and continuous spontaneous rhythmic discharges in the left orbicularis oris suggesting facial myokymia, but there were no abnormalities on voluntary contraction. Sometimes doublet or multiplet patterns occurred while at other times the bursts were of single motor potential. The respective frequencies were 3-4/sec and 40-50/sec. There was no evidence of fibrillation. The facial myokymia disappeared after 4-8 weeks of administration of prednisolone and did not recur. In the remission stage after disappearance of the facial myokymia, nuclear magnetic resonance (NMR) imaging by the inversion recovery method demonstrated low intensity demyelinated plaque in the left lateral segmentum of the inferior pons, which was responsible for the facial myokymia, but X-ray computed tomography revealed no pathological findings. The demyelinated plaque demonstrated by NMR imaging seemed to be located in the infranuclear area of the facial nerve nucleus and to involve the intramedurally root.

  19. Magnetic Gradient Horizontal Operator (MHGO) useful for detecting objects buried at shallow depth: cultural heritage (Villa degli Antonini, Rota Rio)

    Science.gov (United States)

    Di Filippo, Michele; Di Nezza, Maria

    2016-04-01

    Several factors were taken into consideration in order to appropriately tailor the geophysical explorations at the cultural heritage. Given the fact that each site has been neglected for a long time and in recent times used as an illegal dumping area, we thoroughly evaluated for this investigation the advantages and limitations of each specific technique, and the general conditions and history of the site. We took into account the extension of the areas to be investigated and the need for rapid data acquisition and processing. Furthermore, the survey required instrumentation with sensitivity to small background contrasts and as little as possible affected by background noise sources. In order to ascertain the existence and location of underground buried walls, a magnetic gradiometer survey (MAG) was planned. The map of the magnetic anomalies is not computed to reduction at the pole (RTP), but with a magnetic horizontal gradient operator (MHGO). The magnetic horizontal gradient operator (MHGO) generates from a grid of vertical gradient a grid of steepest slopes (i.e. the magnitude of the gradient) at any point on the surface. The MHGO is reported as a number (rise over run) rather than degrees, and the direction is opposite to that of the slope. The MHGO is zero for a horizontal surface, and approaches infinity as the slope approaches the vertical. The gradient data are especially useful for detecting objects buried at shallow depth. The map reveals some details of the anomalies of the geomagnetic field. Magnetic anomalies due to walls are more evident than in the total intensity map, whereas anomalies due to concentrations of debris are very weak. In this work we describe the results of an investigation obtained with magnetometry investigation for two archaeological sites: "Villa degli Antonini" (Genzano, Rome) and Rota Ria (Mugnano in Teverina, Viterbo). Since the main goal of the investigation was to understand the nature of magnetic anomalies with cost

  20. Defining active progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Börnsen, Lars; Ammitzbøll, Cecilie

    2017-01-01

    BACKGROUND: It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). OBJECTIVE: To compare CSF biomarkers in active and inactive...

  1. Modulation of the Left Prefrontal Cortex with High Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Gait in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic central nervous system (CNS demyelinating disease. Gait abnormalities are common and disabling in patients with MS with limited treatment options available. Emerging evidence suggests a role of prefrontal attention networks in modulating gait. High-frequency repetitive transcranial magnetic stimulation (rTMS is known to enhance cortical excitability in stimulated cortex and its correlates. We investigated the effect of high-frequency left prefrontal rTMS on gait parameters in a 51-year-old Caucasian male with chronic relapsing/remitting MS with residual disabling attention and gait symptoms. Patient received 6 Hz, rTMS at 90% motor threshold using figure of eight coil centered on F3 location (using 10-20 electroencephalography (EEG lead localization system. GAITRite gait analysis system was used to collect objective gait measures before and after one session and in another occasion three consecutive daily sessions of rTMS. Two-tailed within subject repeated measure t-test showed significant enhancement in ambulation time, gait velocity, and cadence after three consecutive daily sessions of rTMS. Modulating left prefrontal cortex excitability using rTMS resulted in significant change in gait parameters after three sessions. To our knowledge, this is the first report that demonstrates the effect of rTMS applied to the prefrontal cortex on gait in MS patients.

  2. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa [Universiti Teknologi MARA (UiTM), Selangor (Malaysia)

    2012-08-15

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application.

  3. Neural Dynamics of Multiple Object Processing in Mild Cognitive Impairment and Alzheimer's Disease: Future Early Diagnostic Biomarkers?

    Science.gov (United States)

    Bagattini, Chiara; Mazza, Veronica; Panizza, Laura; Ferrari, Clarissa; Bonomini, Cristina; Brignani, Debora

    2017-01-01

    The aim of this study was to investigate the behavioral and electrophysiological dynamics of multiple object processing (MOP) in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to test whether its neural signatures may represent reliable diagnostic biomarkers. Behavioral performance and event-related potentials [N2pc and contralateral delay activity (CDA)] were measured in AD, MCI, and healthy controls during a MOP task, which consisted in enumerating a variable number of targets presented among distractors. AD patients showed an overall decline in accuracy for both small and large target quantities, whereas in MCI patients, only enumeration of large quantities was impaired. N2pc, a neural marker of attentive individuation, was spared in both AD and MCI patients. In contrast, CDA, which indexes visual short term memory abilities, was altered in both groups of patients, with a non-linear pattern of amplitude modulation along the continuum of the disease: a reduction in AD and an increase in MCI. These results indicate that AD pathology shows a progressive decline in MOP, which is associated to the decay of visual short-term memory mechanisms. Crucially, CDA may be considered as a useful neural signature both to distinguish between healthy and pathological aging and to characterize the different stages along the AD continuum, possibly becoming a reliable candidate for an early diagnostic biomarker of AD pathology.

  4. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    International Nuclear Information System (INIS)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa

    2012-01-01

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application

  5. Identification of multiple sclerosis patients at highest risk of cognitive impairment using an integrated brain magnetic resonance imaging assessment approach.

    Science.gov (United States)

    Uher, T; Vaneckova, M; Sormani, M P; Krasensky, J; Sobisek, L; Dusankova, J Blahova; Seidl, Z; Havrdova, E; Kalincik, T; Benedict, R H B; Horakova, D

    2017-02-01

    While impaired cognitive performance is common in multiple sclerosis (MS), it has been largely underdiagnosed. Here a magnetic resonance imaging (MRI) screening algorithm is proposed to identify patients at highest risk of cognitive impairment. The objective was to examine whether assessment of lesion burden together with whole brain atrophy on MRI improves our ability to identify cognitively impaired MS patients. Of the 1253 patients enrolled in the study, 1052 patients with all cognitive, volumetric MRI and clinical data available were included in the analysis. Brain MRI and neuropsychological assessment with the Brief International Cognitive Assessment for Multiple Sclerosis were performed. Multivariable logistic regression and individual prediction analysis were used to investigate the associations between MRI markers and cognitive impairment. The results of the primary analysis were validated at two subsequent time points (months 12 and 24). The prevalence of cognitive impairment was greater in patients with low brain parenchymal fraction (BPF) (3.5 ml) than in patients with high BPF (>0.85) and low T2-LV (patients predicted cognitive impairment with 83% specificity, 82% negative predictive value, 51% sensitivity and 75% overall accuracy. The risk of confirmed cognitive decline over the follow-up was greater in patients with high T2-LV (OR 2.1; 95% CI 1.1-3.8) and low BPF (OR 2.6; 95% CI 1.4-4.7). The integrated MRI assessment of lesion burden and brain atrophy may improve the stratification of MS patients who may benefit from cognitive assessment. © 2016 EAN.

  6. Delineation of cortical pathology in multiple sclerosis using multi-surface magnetization transfer ratio imaging

    Directory of Open Access Journals (Sweden)

    David A. Rudko

    2016-01-01

    Full Text Available The purpose of our study was to evaluate the utility of measurements of cortical surface magnetization transfer ratio (csMTR on the inner, mid and outer cortical boundaries as clinically accessible biomarkers of cortical gray matter pathology in multiple sclerosis (MS. Twenty-five MS patients and 12 matched controls were recruited from the MS Clinic of the Montreal Neurological Institute. Anatomical and magnetization transfer ratio (MTR images were acquired using 3 Tesla MRI at baseline and two-year time-points. MTR maps were smoothed along meshes representing the inner, mid and outer neocortical boundaries. To evaluate csMTR reductions suggestive of sub-pial demyelination in MS patients, a mixed model analysis was carried out at both the individual vertex level and in anatomically parcellated brain regions. Our results demonstrate that focal areas of csMTR reduction are most prevalent along the outer cortical surface in the superior temporal and posterior cingulate cortices, as well as in the cuneus and precentral gyrus. Additionally, age regression analysis identified that reductions of csMTR in MS patients increase with age but appear to hit a plateau in the outer caudal anterior cingulate, as well as in the precentral and postcentral cortex. After correction for the naturally occurring gradient in cortical MTR, the difference in csMTR between the inner and outer cortex in focal areas in the brains of MS patients correlated with clinical disability. Overall, our findings support multi-surface analysis of csMTR as a sensitive marker of cortical sub-pial abnormality indicative of demyelination in MS patients.

  7. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    International Nuclear Information System (INIS)

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj; Kim, Yeon-Han; Park, Young-Deuk; Kusano, Kanya; Chae, Jongchul; Park, So-Young

    2013-01-01

    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

  8. Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Piotr [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo (Norway); Owren Nygaard, Gro [Oslo University Hospital, Department of Neurology, Oslo (Norway); Bjoernerud, Atle [Intervention Center, Oslo University Hospital, Oslo (Norway); University of Oslo, Department of Physics, Oslo (Norway); Gulowsen Celius, Elisabeth [Oslo University Hospital, Department of Neurology, Oslo (Norway); University of Oslo, Institute of Health and Society, Faculty of Medicine, Oslo (Norway); Flinstad Harbo, Hanne [University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo (Norway); Oslo University Hospital, Department of Neurology, Oslo (Norway); Kristiansen Beyer, Mona [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Oslo (Norway); Oslo and Akershus University College of Applied Sciences, Department of Life Sciences and Health, Oslo (Norway)

    2017-07-15

    The utility of perfusion-weighted imaging in multiple sclerosis (MS) is not well investigated. The purpose of this study was to compare baseline normalized perfusion measures in subgroups of newly diagnosed MS patients. We wanted to test the hypothesis that this method can differentiate between groups defined according to disease severity and disease activity at 1 year follow-up. Baseline magnetic resonance imaging (MRI) including a dynamic susceptibility contrast perfusion sequence was performed on a 1.5-T scanner in 66 patients newly diagnosed with relapsing-remitting MS. From the baseline MRI, cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were generated. Normalized (n) perfusion values were calculated by dividing each perfusion parameter obtained in white matter lesions by the same parameter obtained in normal-appearing white matter. Neurological examination was performed at baseline and at follow-up approximately 1 year later to establish the multiple sclerosis severity score (MSSS) and evidence of disease activity (EDA). Baseline normalized mean transit time (nMTT) was lower in patients with MSSS >3.79 (p = 0.016), in patients with EDA (p = 0.041), and in patients with both MSSS >3.79 and EDA (p = 0.032) at 1-year follow-up. Baseline normalized cerebral blood flow and normalized cerebral blood volume did not differ between these groups. Lower baseline nMTT was associated with higher disease severity and with presence of disease activity 1 year later in newly diagnosed MS patients. Further longitudinal studies are needed to confirm whether baseline-normalized perfusion measures can differentiate between disease severity and disease activity subgroups over time. (orig.)

  9. Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis

    International Nuclear Information System (INIS)

    Sowa, Piotr; Owren Nygaard, Gro; Bjoernerud, Atle; Gulowsen Celius, Elisabeth; Flinstad Harbo, Hanne; Kristiansen Beyer, Mona

    2017-01-01

    The utility of perfusion-weighted imaging in multiple sclerosis (MS) is not well investigated. The purpose of this study was to compare baseline normalized perfusion measures in subgroups of newly diagnosed MS patients. We wanted to test the hypothesis that this method can differentiate between groups defined according to disease severity and disease activity at 1 year follow-up. Baseline magnetic resonance imaging (MRI) including a dynamic susceptibility contrast perfusion sequence was performed on a 1.5-T scanner in 66 patients newly diagnosed with relapsing-remitting MS. From the baseline MRI, cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were generated. Normalized (n) perfusion values were calculated by dividing each perfusion parameter obtained in white matter lesions by the same parameter obtained in normal-appearing white matter. Neurological examination was performed at baseline and at follow-up approximately 1 year later to establish the multiple sclerosis severity score (MSSS) and evidence of disease activity (EDA). Baseline normalized mean transit time (nMTT) was lower in patients with MSSS >3.79 (p = 0.016), in patients with EDA (p = 0.041), and in patients with both MSSS >3.79 and EDA (p = 0.032) at 1-year follow-up. Baseline normalized cerebral blood flow and normalized cerebral blood volume did not differ between these groups. Lower baseline nMTT was associated with higher disease severity and with presence of disease activity 1 year later in newly diagnosed MS patients. Further longitudinal studies are needed to confirm whether baseline-normalized perfusion measures can differentiate between disease severity and disease activity subgroups over time. (orig.)

  10. Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy

    Directory of Open Access Journals (Sweden)

    Foronda Jesus

    2004-06-01

    Full Text Available Abstract Background What currently appears to be irreversible axonal loss in normal appearing white matter, measured by proton magnetic resonance spectroscopy is of great interest in the study of Multiple Sclerosis. Our aim is to determine the axonal damage in normal appearing white matter measured by magnetic resonance spectroscopy and to correlate this with the functional disability measured by Multiple Sclerosis Functional Composite scale, Neurological Rating Scale, Ambulation Index scale, and Expanded Disability Scale Score. Methods Thirty one patients (9 male and 22 female with relapsing remitting Multiple Sclerosis and a Kurtzke Expanded Disability Scale Score of 0–5.5 were recruited from four hospitals in Andalusia, Spain and included in the study. Magnetic resonance spectroscopy scans and neurological disability assessments were performed the same day. Results A statistically significant correlation was found (r = -0.38 p Conclusions There is correlation between disability (measured by Expanded Disability Scale Score and the NAA/Cr ratio in normal appearing white matter. The lack of correlation between the NAA/Cr ratio and the Multiple Sclerosis Functional Composite score indicates that the Multiple Sclerosis Functional Composite is not able to measure irreversible disability and would be more useful as a marker in stages where axonal damage is not a predominant factor.

  11. Horizontal nystagmus and multiple sclerosis using 3-Tesla magnetic resonance imaging.

    Science.gov (United States)

    Iyer, P M; Fagan, A J; Meaney, J F; Colgan, N C; Meredith, S D; Driscoll, D O; Curran, K M; Bradley, D; Redmond, J

    2016-11-01

    Nystagmus in patients with multiple sclerosis (MS) is generally attributed to brainstem disease. Lesions in other regions may result in nystagmus. The identification of these other sites is enhanced by using 3-Tesla magnetic resonance imaging (3TMRI) due to increased signal-to-noise ratio. We sought to evaluate the distribution of structural lesions and disruption of tracts in patients with horizontal nystagmus secondary to MS using 3TMRI. Twenty-four patients (20 women, 4 men; age range 26-55 years) with horizontal nystagmus secondary to MS underwent 3TMRI brain scans; and 18 patients had diffusion tensor imaging (DTI) for tractography. Nystagmus was bidirectional in 11, right-sided in 6 and left-sided in 7. We identified 194 lesions in 20 regions within the neural integrator circuit in 24 patients; 140 were within the cortex and 54 were within the brainstem. Only two patients had no lesions in the cortex, and 9 had no lesions in the brainstem. There was no relationship between side of lesion and direction of nystagmus. Thirteen of 18 (72 %) had tract disruption with fractional anisotropy (FA) values below 0.2. FA was significantly lower in bidirectional compared to unidirectional nystagmus (p = 0.006). In MS patients with horizontal nystagmus, lesions in all cortical eye fields and their descending connections were evident. Technical improvements in tractography may help identify the specific site(s) resulting in nystagmus in MS.

  12. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, P.R.B.; Brum, D.G. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Santos, A. C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Clinica Medica; Murta-Junior, L.O.; Araujo, D.B. de, E-mail: murta@usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-01-15

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  13. Veins in plaques of multiple sclerosis patients - a longitudinal magnetic resonance imaging study at 7 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Dal-Bianco, Assunta; Auff, Eduard; Leutmezer, Fritz; Vass, Karl [Medical University of Vienna, Department of Neurology, Wien (Austria); Hametner, Simon [Medical University of Vienna, Center for Brain Research, Wien (Austria); Grabner, Guenther; Schernthaner, Melanie; Kronnerwetter, Claudia; Trattnig, Siegfried [Medical University of Vienna, Department of Radiology, Wien (Austria); Reitner, Andreas; Vass, Clemens; Kircher, Karl [Medical University of Vienna, Department of Ophthalmology, Wien (Austria)

    2015-10-15

    To monitor the venous volumes in plaques of patients with multiple sclerosis (MS) compared to an age-matched control group over a period of 3.5 years. Ten MS patients underwent an annual neurological examination and MRI. Susceptibility-weighted imaging (SWI) combined with fluid-attenuated inversion recovery (FLAIR) or FLAIR-like contrast at 7 Tesla (7 T) magnetic resonance imaging (MRI) was used for manual segmentation of veins in plaques, in the normal-appearing white matter (NAWM) and in location-matched white matter of 9 age-matched controls. Venous volume to tissue volume ratio was assessed for each time point in order to describe the dynamics of venous volumes in MS plaques over time. MS plaques, which were newly detected during the study period, showed significantly higher venous volumes compared to the preplaque area 1 year before plaque detection and the corresponding NAWM regions. Venous volumes in established MS plaques, which were present already in the first scans, were significantly higher compared to the NAWM and controls. Our data underpin a relation of veins and plaque development in MS and reflect increased apparent venous calibers due to increased venous diameters or increased oxygen consumption in early MS plaques. (orig.)

  14. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Directory of Open Access Journals (Sweden)

    P.R.B. Diniz

    2010-01-01

    Full Text Available The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

  15. Optical Coherence Tomography and Magnetic Resonance Imaging in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder.

    Science.gov (United States)

    Manogaran, Praveena; Hanson, James V M; Olbert, Elisabeth D; Egger, Christine; Wicki, Carla; Gerth-Kahlert, Christina; Landau, Klara; Schippling, Sven

    2016-11-15

    Irreversible disability in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) is largely attributed to neuronal and axonal degeneration, which, along with inflammation, is one of the major pathological hallmarks of these diseases. Optical coherence tomography (OCT) is a non-invasive imaging tool that has been used in MS, NMOSD, and other diseases to quantify damage to the retina, including the ganglion cells and their axons. The fact that these are the only unmyelinated axons within the central nervous system (CNS) renders the afferent visual pathway an ideal model for studying axonal and neuronal degeneration in neurodegenerative diseases. Structural magnetic resonance imaging (MRI) can be used to obtain anatomical information about the CNS and to quantify evolving pathology in MS and NMOSD, both globally and in specific regions of the visual pathway including the optic nerve, optic radiations and visual cortex. Therefore, correlations between brain or optic nerve abnormalities on MRI, and retinal pathology using OCT, may shed light on how damage to one part of the CNS can affect others. In addition, these imaging techniques can help identify important differences between MS and NMOSD such as disease-specific damage to the visual pathway, trans-synaptic degeneration, or pathological changes independent of the underlying disease process. This review focuses on the current knowledge of the role of the visual pathway using OCT and MRI in patients with MS and NMOSD. Emphasis is placed on studies that employ both MRI and OCT to investigate damage to the visual system in these diseases.

  16. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    International Nuclear Information System (INIS)

    Chandra, Sudeshna; Noronha, Glen; Dietrich, Sascha; Lang, Heinrich; Bahadur, Dhirendra

    2015-01-01

    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH 2 CH 2 C(O)O(CH 2 CH 2 O) 9 CH 3 and CH 2 CH 2 C(O)O(CH 2 CH 2 O) 2 C 2 H 5 , respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe 3 O 4 ) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells

  17. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sudeshna; Noronha, Glen [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Dietrich, Sascha; Lang, Heinrich [Technische Universität Chemnitz, Institute of Chemistry, Straße der Nationen 62, d-09111 Chemnitz (Germany); Bahadur, Dhirendra, E-mail: dhirenb@iitb.ac.in [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India)

    2015-04-15

    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 9}CH{sub 3} and CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 2}C{sub 2}H{sub 5}, respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe{sub 3}O{sub 4}) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells.

  18. Classification of multiple sclerosis patients by latent class analysis of magnetic resonance imaging characteristics.

    Science.gov (United States)

    Zwemmer, J N P; Berkhof, J; Castelijns, J A; Barkhof, F; Polman, C H; Uitdehaag, B M J

    2006-10-01

    Disease heterogeneity is a major issue in multiple sclerosis (MS). Classification of MS patients is usually based on clinical characteristics. More recently, a pathological classification has been presented. While clinical subtypes differ by magnetic resonance imaging (MRI) signature on a group level, a classification of individual MS patients based purely on MRI characteristics has not been presented so far. To investigate whether a restricted classification of MS patients can be made based on a combination of quantitative and qualitative MRI characteristics and to test whether the resulting subgroups are associated with clinical and laboratory characteristics. MRI examinations of the brain and spinal cord of 50 patients were scored for 21 quantitative and qualitative characteristics. Using latent class analysis, subgroups were identified, for whom disease characteristics and laboratory measures were compared. Latent class analysis revealed two subgroups that mainly differed in the extent of lesion confluency and MRI correlates of neuronal loss in the brain. Demographics and disease characteristics were comparable except for cognitive deficits. No correlations with laboratory measures were found. Latent class analysis offers a feasible approach for classifying subgroups of MS patients based on the presence of MRI characteristics. The reproducibility, longitudinal evolution and further clinical or prognostic relevance of the observed classification will have to be explored in a larger and independent sample of patients.

  19. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    International Nuclear Information System (INIS)

    Diniz, P.R.B.; Brum, D.G.; Santos, A. C.; Murta-Junior, L.O.; Araujo, D.B. de

    2010-01-01

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  20. Veins in plaques of multiple sclerosis patients - a longitudinal magnetic resonance imaging study at 7 Tesla

    International Nuclear Information System (INIS)

    Dal-Bianco, Assunta; Auff, Eduard; Leutmezer, Fritz; Vass, Karl; Hametner, Simon; Grabner, Guenther; Schernthaner, Melanie; Kronnerwetter, Claudia; Trattnig, Siegfried; Reitner, Andreas; Vass, Clemens; Kircher, Karl

    2015-01-01

    To monitor the venous volumes in plaques of patients with multiple sclerosis (MS) compared to an age-matched control group over a period of 3.5 years. Ten MS patients underwent an annual neurological examination and MRI. Susceptibility-weighted imaging (SWI) combined with fluid-attenuated inversion recovery (FLAIR) or FLAIR-like contrast at 7 Tesla (7 T) magnetic resonance imaging (MRI) was used for manual segmentation of veins in plaques, in the normal-appearing white matter (NAWM) and in location-matched white matter of 9 age-matched controls. Venous volume to tissue volume ratio was assessed for each time point in order to describe the dynamics of venous volumes in MS plaques over time. MS plaques, which were newly detected during the study period, showed significantly higher venous volumes compared to the preplaque area 1 year before plaque detection and the corresponding NAWM regions. Venous volumes in established MS plaques, which were present already in the first scans, were significantly higher compared to the NAWM and controls. Our data underpin a relation of veins and plaque development in MS and reflect increased apparent venous calibers due to increased venous diameters or increased oxygen consumption in early MS plaques. (orig.)

  1. Non-London electrodynamics in a multiband London model: Anisotropy-induced nonlocalities and multiple magnetic field penetration lengths

    Science.gov (United States)

    Silaev, Mihail; Winyard, Thomas; Babaev, Egor

    2018-05-01

    The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N +1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N +1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices.

  2. On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvin-Helmholtz Waves

    Science.gov (United States)

    Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.

    2018-02-01

    Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.

  3. Ni–Mn–Ga single crystal exhibiting multiple magnetic shape memory effects

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Veřtát, Petr; Vronka, Marek; Kopecký, Vít; Perevertov, Oleksiy

    2016-01-01

    Roč. 2, č. 3 (2016), s. 272-280 ISSN 2199-384X R&D Projects: GA ČR GB14-36566G; GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetic shape memory * NiMnGa * stress-strain * twinning * magnetic field-induced transformation * magnetic field-induced reorientation Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Magnetic properties of NiMn{sub 2}O{sub 4−δ} (nickel manganite): Multiple magnetic phase transitions and exchange bias effect

    Energy Technology Data Exchange (ETDEWEB)

    Tadic, Marin, E-mail: marint@vinca.rs [Condensed Matter Physics Laboratory, Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade (Serbia); Savic, S.M. [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Jaglicic, Z. [University of Ljubljana, Faculty of Civil Engineering and Geodesy and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana (Slovenia); Vojisavljevic, K.; Radojkovic, A.; Prsic, S. [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, Dobrica [Department of Physics, University of Belgrade Faculty of Mining and Geology, Belgrade (Serbia)

    2014-03-05

    Highlights: • We have successfully synthesized NiMn{sub 2}O{sub 4−δ} sample by complex polymerization synthesis. • Magnetic measurements reveal complex properties and triple magnetic phase transitions. • Magnetic measurements of M(H) show hysteretic behavior below 120 K. • Hysteresis properties after cooling of the sample in magnetic field show exchange bias effect. -- Abstract: We present magnetic properties of NiMn{sub 2}O{sub 4−δ} (nickel manganite) which was synthesized by complex polymerization synthesis method followed by successive heat treatment and final calcinations in air at 1200 °C. The sample was characterized by using X-ray powder diffractometer (XRPD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM) and superconducting quantum interference device (SQUID) magnetometer. The XRPD and FE-SEM studies revealed NiMn{sub 2}O{sub 4−δ} phase and good crystallinity of particles. No other impurities have been observed by XRPD. The magnetic properties of the sample have been studied by measuring the temperature and field dependence of magnetization. Magnetic measurements of M(T) reveal rather complex magnetic properties and multiple magnetic phase transitions. We show three magnetic phase transitions with transition temperatures at T{sub M1} = 35 K (long-range antiferromagnetic transition), T{sub M2} = 101 K (antiferromagnetic-type transition) and T{sub M3} = 120 K (ferromagnetic-like transition). We found that the T{sub M1} transition is strongly dependent on the strength of the applied magnetic field (T{sub M1} decreases with increasing applied field) whereas the T{sub M3} is field independent. Otherwise, the T{sub M2} maximum almost disappears in higher applied magnetic fields (H = 1 kOe and 10 kOe). Magnetic measurements of M(H) show hysteretic behavior below T{sub M3}. Moreover, hysteresis properties measured after cooling of the sample in magnetic field of 10 kOe show exchange bias effect with an

  5. Magnetic resonance imaging with k-means clustering objectively measures whole muscle volume compartments in sarcopenia/cancer cachexia.

    Science.gov (United States)

    Gray, Calum; MacGillivray, Thomas J; Eeley, Clare; Stephens, Nathan A; Beggs, Ian; Fearon, Kenneth C; Greig, Carolyn A

    2011-02-01

    Sarcopenia and cachexia are characterized by infiltration of non-contractile tissue within muscle which influences area and volume measurements. We applied a statistical clustering (k-means) technique to magnetic resonance (MR) images of the quadriceps of young and elderly healthy women and women with cancer to objectively separate the contractile and non-contractile tissue compartments. MR scans of the thigh were obtained for 34 women (n = 16 young, (median) age 26 y; n = 9 older, age 80 y; n = 9 upper gastrointestinal cancer patients, age 65 y). Segmented regions of consecutive axial images were used to calculate cross-sectional area and (gross) volume. The k-means unsupervised algorithm was subsequently applied to the MR binary mask image array data with resultant volumes compared between groups. Older women and women with cancer had 37% and 48% less quadriceps muscle respectively than young women (p k-means subtracted a significant 9%, 14% and 20% non-contractile tissue from the quadriceps of young, older and patient groups respectively (p K-means objectively separates contractile and non-contractile tissue components. Women with upper GI cancer have significant fatty infiltration throughout whole muscle groups which is maintained when controlling for age. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. The Combined Quantification and Interpretation of Multiple Quantitative Magnetic Resonance Imaging Metrics Enlightens Longitudinal Changes Compatible with Brain Repair in Relapsing-Remitting Multiple Sclerosis Patients.

    Science.gov (United States)

    Bonnier, Guillaume; Maréchal, Benedicte; Fartaria, Mário João; Falkowskiy, Pavel; Marques, José P; Simioni, Samanta; Schluep, Myriam; Du Pasquier, Renaud; Thiran, Jean-Philippe; Krueger, Gunnar; Granziera, Cristina

    2017-01-01

    Quantitative and semi-quantitative MRI (qMRI) metrics provide complementary specificity and differential sensitivity to pathological brain changes compatible with brain inflammation, degeneration, and repair. Moreover, advanced magnetic resonance imaging (MRI) metrics with overlapping elements amplify the true tissue-related information and limit measurement noise. In this work, we combined multiple advanced MRI parameters to assess focal and diffuse brain changes over 2 years in a group of early-stage relapsing-remitting MS patients. Thirty relapsing-remitting MS patients with less than 5 years disease duration and nine healthy subjects underwent 3T MRI at baseline and after 2 years including T1, T2, T2* relaxometry, and magnetization transfer imaging. To assess longitudinal changes in normal-appearing (NA) tissue and lesions, we used analyses of variance and Bonferroni correction for multiple comparisons. Multivariate linear regression was used to assess the correlation between clinical outcome and multiparametric MRI changes in lesions and NA tissue. In patients, we measured a significant longitudinal decrease of mean T2 relaxation times in NA white matter ( p  = 0.005) and a decrease of T1 relaxation times in the pallidum ( p  decrease in T1 relaxation time ( p -value  0.4, p  < 0.05). In summary, the combination of multiple advanced MRI provided evidence of changes compatible with focal and diffuse brain repair at early MS stages as suggested by histopathological studies.

  7. An investigation of clinical studies suggests those with multiple objectives should have at least 90% power for each endpoint.

    NARCIS (Netherlands)

    Borm, G.F.; Houben, R.; Welsing, P.M.J.; Zielhuis, G.A.

    2006-01-01

    BACKGROUND AND OBJECTIVES: Many clinical studies have more than one objective, either formally or informally, but this is not usually taken into account in the determination of the sample size. We investigated the overall power of a study, that is, the probability that all the objectives will be

  8. Identification of multiple magnetizations of the Ediacaran strata in South China

    Science.gov (United States)

    Jing, Xianqing; Yang, Zhenyu; Tong, Yabo; Wang, Heng; Xu, Yingchao

    2018-01-01

    A suspected Silurian remagnetization of the Ediacaran strata of South China was proposed decades ago by many researchers, but, there has been no systematic study of its causes and mechanisms. In this study, we investigate the multiphase remagnetization processes that affected the Ediacaran strata and the possible mechanisms of these remagnetization events. We conducted detailed palaeomagnetic, rock magnetic and scanning electron microscope (SEM) studies of samples from the Ediacaran strata in the Jiulongwan (JLWE, JLWS), Qinglinkou (QLK) and Sanxiarenjia (SXRJ) sections in the Three Gorges Area, South China. After removal of a recent viscous remanent magnetization below 150 °C, an intermediate temperature component (ITC; Dg = 27.6°, Ig = 45.3°, N = 12 sites, kg = 184.3, α95 = 3.2° for JLWE; Dg = 22°, Ig = 45.3°, N = 11 sites, kg = 789.2, α95 = 1.6° for JLWS; and Dg = 25.5°, Ig = 52.5°, N = 6 sites, kg = 533.4, α95 = 2.9° for SXRJ) was removed below 300 °C which coincides with the Jurassic results from South China, suggesting a pervasive Jurassic remagnetization. In addition, a high temperature component (HTC; Ds = 84.8°, Is = 19.2°, N = 9 sites, ks = 35.5, α95 = 8.8° for JLWE; Ds = 74.1°, Is = 49.4°, N = 7 sites, ks = 218.9, α95 = 4.1° for JLWS; and Ds = 89.5°, Is = 30.7°, N = 8 sites, ks = 129.2, α95 = 4.9° for SXRJ) was isolated between 300 and 480-540 °C. Rock magnetic and SEM studies suggest that the ITC and HTC are carried by pyrrhotite and magnetite, respectively. SEM observations also demonstrate the occurrence of massive authigenic magnetite in cavities or cracks, mineralogical changes from pyrite to Fe oxides, and the reaction between gypsum and Fe oxides. Based on similarities to the Silurian poles of South China, together with the SEM observations, we suggest that the HTC from the JLWE and SXRJ sections is a Silurian age remagnetization. The oxidation of iron sulphides and thermochemical sulphate reduction induced by the

  9. Evaluation of pancreatic cancer by multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging at 3.0 T

    International Nuclear Information System (INIS)

    Yao, Xiuzhong; Zeng, Mengsu; Wang, He; Sun, Fei; Rao, Shengxiang; Ji, Yuan

    2012-01-01

    Objective: To investigate the microcirculation in pancreatic cancer by pharmacokinetic analysis of multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging at 3.0 T. Materials and methods: Multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging was performed in 40 healthy volunteers and 40 patients with pancreatic cancer proven by histopathology using an axial three-dimensions fat-saturated T1-weighted spoiled-gradient echo sequence at 3.0 T. A two compartment model with T1 correction was used to quantify the transfer constant, the rate constant of backflux from the extravascular extracellular space to the plasma and the extravascular extracellular space fractional volume in pancreatic cancer, obstructive pancreatitis distal to the malignant tumor, adjacent pancreatic tissue proximal to the tumor and normal pancreas. All parameters were statistically analyzed. Results: Statistical differences were noticed in both the transfer constant (p = 0.000075) and the rate constant of backflux (p = 0.006) among different tissues. Both the transfer constant and the rate constant of backflux in pancreatic cancer were statistically lower than those in normal pancreas and adjacent pancreatic tissue (p < 0.05). Both the transfer constant and the rate constant of backflux in obstructive pancreatitis were statistically lower than those in normal pancreas and adjacent pancreatic tissue (p < 0.05). The extravascular extracellular space fractional volume in pancreatic cancer was statistically lager than that in normal pancreas (p = 0.002). Conclusion: Multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging offers a useful technique to evaluate the microenvironment in pancreatic cancer at 3.0 T. Compared to normal pancreas, pancreatic cancer has lower transfer constant, rate constant of backflux and larger extravascular extracellular space fractional volume.

  10. Evaluation of pancreatic cancer by multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xiuzhong, E-mail: yao.xiuzhong@zs-hospital.sh.cn [Department of Radiology, Zhongshan Hospital of Fudan University and Department of Medical Image, Shanghai Medical College of Fudan University, No. 138, Fenglin Road, Xuhui District, Shanghai 200032 (China); Zeng, Mengsu, E-mail: zengmengsu@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Department of Medical Image, Shanghai Medical College of Fudan University, No. 138, Fenglin Road, Xuhui District, Shanghai 200032 (China); Wang, He, E-mail: herry258@hotmail.com [Global Applied Science Laboratory of GE Healthcare, No. 1, Huatuo Road, Zhangjiang Hi-tech Park, Pudong District, Shanghai 201203 (China); Sun, Fei, E-mail: fei.sun@med.ge.com [Global Applied Science Laboratory of GE Healthcare, No. 1, Huatuo Road, Zhangjiang Hi-tech Park, Pudong District, Shanghai 201203 (China); Rao, Shengxiang, E-mail: rao.shengxiang@zs-hospital.sh.cn [Department of Radiology, Zhongshan Hospital of Fudan University and Department of Medical Image, Shanghai Medical College of Fudan University, No. 138, Fenglin Road, Xuhui District, Shanghai 200032 (China); Ji, Yuan, E-mail: Ji.yuan@zs-hospital.sh.cn [Department of Pathology, Zhongshan Hospital of Fudan University, No. 138, Fenglin Road, Xuhui District, Shanghai 200032 (China)

    2012-08-15

    Objective: To investigate the microcirculation in pancreatic cancer by pharmacokinetic analysis of multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging at 3.0 T. Materials and methods: Multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging was performed in 40 healthy volunteers and 40 patients with pancreatic cancer proven by histopathology using an axial three-dimensions fat-saturated T1-weighted spoiled-gradient echo sequence at 3.0 T. A two compartment model with T1 correction was used to quantify the transfer constant, the rate constant of backflux from the extravascular extracellular space to the plasma and the extravascular extracellular space fractional volume in pancreatic cancer, obstructive pancreatitis distal to the malignant tumor, adjacent pancreatic tissue proximal to the tumor and normal pancreas. All parameters were statistically analyzed. Results: Statistical differences were noticed in both the transfer constant (p = 0.000075) and the rate constant of backflux (p = 0.006) among different tissues. Both the transfer constant and the rate constant of backflux in pancreatic cancer were statistically lower than those in normal pancreas and adjacent pancreatic tissue (p < 0.05). Both the transfer constant and the rate constant of backflux in obstructive pancreatitis were statistically lower than those in normal pancreas and adjacent pancreatic tissue (p < 0.05). The extravascular extracellular space fractional volume in pancreatic cancer was statistically lager than that in normal pancreas (p = 0.002). Conclusion: Multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging offers a useful technique to evaluate the microenvironment in pancreatic cancer at 3.0 T. Compared to normal pancreas, pancreatic cancer has lower transfer constant, rate constant of backflux and larger extravascular extracellular space fractional volume.

  11. Serial changes of magnetic resonance imaging of spinal cord lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    Sugimura, Kimiya; Sekimoto, Yoichi; Koike, Yasuo; Takahashi, Akira

    1987-01-01

    Serial changes of magnetic resonance imaging (MRI) of spinal cord lesions in multiple sclerosis (MS) were demonstrated. Two inpatients of MS were followed-up for 8 and 5 months respectively. The first case was a 38-year-old housewife with lesions in upper cervical cord, medulla oblongata and visual nerve. The second case was a 45-year-old man with middle thracic spinal cord and brain stem lesions. Both cases were successfully induced into the remission by peroral prednisolone therapy. In the first case, in early stage of the disease, low signal (in IR method) and high signal (in T 2 -weighted SE method) intensities with enlarged lower dorsal medulla were demonstrated. The second MRI in this case specially in horizontal sections revealed round high intensity lesions (in T 2 -weighted SE) with clear margins, which appeared to push away the normal spinal cord tissue. In the third MRI, T 2 weighted SE revealed localized narrowing in C 2 and C 3 cervical cord, and even no signal lesions in IR method were shown in the central of the spinal cord. The forth and fifth MRI, however, showed almost normally recovered spinal cord and medulla oblongata. In the second case, the first MRI revealed high intensity lesions in the middle thracic spinal cord in T 2 weight SE, and moreover, the spinal cord looked very enlarged. In IR method, localized patchy low intensity lesions were seen in the enlarged spinal cord, but in this case, the MRI demonstrated that localized patchy high intensity lesions without cord swelling in SE remained long after the clinically complete recovery of the disease. (author)

  12. T2 relaxation time analysis in patients with multiple sclerosis: correlation with magnetization transfer ratio

    International Nuclear Information System (INIS)

    Papanikolaou, Nickolas; Papadaki, Eufrosini; Karampekios, Spyros; Maris, Thomas; Prassopoulos, Panos; Gourtsoyiannis, Nicholas; Spilioti, Martha

    2004-01-01

    The aim of the current study was to perform T2 relaxation time measurements in multiple sclerosis (MS) patients and correlate them with magnetization transfer ratio (MTR) measurements, in order to investigate in more detail the various histopathological changes that occur in lesions and normal-appearing white matter (NAWM). A total number of 291 measurements of MTR and T2 relaxation times were performed in 13 MS patients and 10 age-matched healthy volunteers. Measurements concerned MS plaques (105), NAWM (80), and ''dirty'' white matter (DWM; 30), evenly divided between the MS patients, and normal white matter (NWM; 76) in the healthy volunteers. Biexponential T2 relaxation-time analysis was performed, and also possible linearity between MTR and mean T2 relaxation times was evaluated using linear regression analysis in all subgroups. Biexponential relaxation was more pronounced in ''black-hole'' lesions (16.6%) and homogeneous enhancing plaques (10%), whereas DWM, NAWM, and mildly hypointense lesions presented biexponential behavior with a lower frequency(6.6, 5, and 3.1%, respectively). Non-enhancing isointense lesions and normal white matter did not reveal any biexponentional behavior. Linear regression analysis between monoexponential T2 relaxation time and MTR measurements demonstrated excellent correlation for DWM(r=-0.78, p<0.0001), very good correlation for black-hole lesions(r=-0.71, p=0.002), good correlation for isointense lesions(r=-0.60, p=0.005), moderate correlation for mildly hypointense lesions(r=-0.34, p=0.007), and non-significant correlation for homogeneous enhancing plaques, NAWM, and NWM. Biexponential T2 relaxation-time behavior is seen in only very few lesions (mainly on plaques with high degree of demyelination and axonal loss). A strong correlation between MTR and monoexponential T2 values was found in regions where either inflammation or demyelination predominates; however, when both pathological conditions coexist, this linear

  13. Magnetic resonance imaging features of the spinal cord in pediatric multiple sclerosis: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Verhey, Leonard H. [Hospital for Sick Children, Neuroscience and Mental Health, Toronto, ON (Canada); University of Toronto, Institute of Medical Science, Faculty of Medicine, Toronto, ON (Canada); Branson, Helen M.; Shroff, Manohar [Hospital for Sick Children, Department of Diagnostic Imaging (Neuroradiology), Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Makhija, Monica [Hospital for Sick Children, Neuroscience and Mental Health, Toronto, ON (Canada); Banwell, Brenda [Hospital for Sick Children, Neuroscience and Mental Health, Toronto, ON (Canada); University of Toronto, Institute of Medical Science, Faculty of Medicine, Toronto, ON (Canada); University of Toronto, Department of Pediatrics (Neurology), Toronto, ON (Canada)

    2010-12-15

    Spinal cord lesions in adults with multiple sclerosis (MS) are thought to contribute to disability. The magnetic resonance imaging (MRI) appearance and clinical correlates of spinal cord lesions in children with MS have not been reported. T1-weighted pre- and post-gadolinium and T2-weighted TSE/FSE spine MR images of 36 children (age, 14.3 {+-} 3.3) with relapsing-remitting MS (annualized relapse rate, 0.7; disease duration, 7.5 {+-} 3.3 years) were analyzed for total lesion count, lesion location and length, intramedullary extent, and gadolinium enhancement. Clinical, demographic, laboratory, and MRI data were correlated. Lesions preferentially involved the cervical region, were predominantly focal, and involved only a portion of the transverse cord diameter. However, ten of 36 patients demonstrated longitudinally extensive lesions. Children with the highest clinical relapse rate also tended to have more spinal cord lesions and were more likely to accrue new lesions on serial spinal scans. These preliminary data suggest that MS lesions of the spinal cord in children are radiographically similar to that of adult-onset MS - supporting a common biology of pediatric- and adult-onset disease. However, children with relapsing-remitting MS can also develop longitudinally extensive lesions, suggesting that such lesions may be less specific for diseases such as neuromyelitis optica in pediatric patients. All patients recovered well from spinal cord attacks, and the presence of spinal cord lesions in the first few years of disease did not correlate with physical disability. Measures of spinal cord atrophy and longer periods of observation are required to determine the impact of spinal cord involvement in pediatric-onset MS. (orig.)

  14. Magnetic resonance imaging features of the spinal cord in pediatric multiple sclerosis: a preliminary study

    International Nuclear Information System (INIS)

    Verhey, Leonard H.; Branson, Helen M.; Shroff, Manohar; Makhija, Monica; Banwell, Brenda

    2010-01-01

    Spinal cord lesions in adults with multiple sclerosis (MS) are thought to contribute to disability. The magnetic resonance imaging (MRI) appearance and clinical correlates of spinal cord lesions in children with MS have not been reported. T1-weighted pre- and post-gadolinium and T2-weighted TSE/FSE spine MR images of 36 children (age, 14.3 ± 3.3) with relapsing-remitting MS (annualized relapse rate, 0.7; disease duration, 7.5 ± 3.3 years) were analyzed for total lesion count, lesion location and length, intramedullary extent, and gadolinium enhancement. Clinical, demographic, laboratory, and MRI data were correlated. Lesions preferentially involved the cervical region, were predominantly focal, and involved only a portion of the transverse cord diameter. However, ten of 36 patients demonstrated longitudinally extensive lesions. Children with the highest clinical relapse rate also tended to have more spinal cord lesions and were more likely to accrue new lesions on serial spinal scans. These preliminary data suggest that MS lesions of the spinal cord in children are radiographically similar to that of adult-onset MS - supporting a common biology of pediatric- and adult-onset disease. However, children with relapsing-remitting MS can also develop longitudinally extensive lesions, suggesting that such lesions may be less specific for diseases such as neuromyelitis optica in pediatric patients. All patients recovered well from spinal cord attacks, and the presence of spinal cord lesions in the first few years of disease did not correlate with physical disability. Measures of spinal cord atrophy and longer periods of observation are required to determine the impact of spinal cord involvement in pediatric-onset MS. (orig.)

  15. Functional Magnetic Resonance Imaging with Concurrent Urodynamic Testing Identifies Brain Structures Involved in Micturition Cycle in Patients with Multiple Sclerosis.

    Science.gov (United States)

    Khavari, Rose; Karmonik, Christof; Shy, Michael; Fletcher, Sophie; Boone, Timothy

    2017-02-01

    Neurogenic lower urinary tract dysfunction, which is common in patients with multiple sclerosis, has a significant impact on quality of life. In this study we sought to determine brain activity processes during the micturition cycle in female patients with multiple sclerosis and neurogenic lower urinary tract dysfunction. We report brain activity on functional magnetic resonance imaging and simultaneous urodynamic testing in 23 ambulatory female patients with multiple sclerosis. Individual functional magnetic resonance imaging activation maps at strong desire to void and at initiation of voiding were calculated and averaged at Montreal Neuroimaging Institute. Areas of significant activation were identified in these average maps. Subgroup analysis was performed in patients with elicitable neurogenic detrusor overactivity or detrusor-sphincter dyssynergia. Group analysis of all patients at strong desire to void yielded areas of activation in regions associated with executive function (frontal gyrus), emotional regulation (cingulate gyrus) and motor control (putamen, cerebellum and precuneus). Comparison of the average change in activation between previously reported healthy controls and patients with multiple sclerosis showed predominantly stronger, more focal activation in the former and lower, more diffused activation in the latter. Patients with multiple sclerosis who had demonstrable neurogenic detrusor overactivity and detrusor-sphincter dyssynergia showed a trend toward distinct brain activation at full urge and at initiation of voiding respectively. We successfully studied brain activation during the entire micturition cycle in female patients with neurogenic lower urinary tract dysfunction and multiple sclerosis using a concurrent functional magnetic resonance imaging/urodynamic testing platform. Understanding the central neural processes involved in specific parts of micturition in patients with neurogenic lower urinary tract dysfunction may identify areas

  16. Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents.

    Science.gov (United States)

    Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A

    2017-08-16

    Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.

  17. Constraints on Multiple Object Tracking in Williams Syndrome: How Atypical Development Can Inform Theories of Visual Processing

    Science.gov (United States)

    Ferrara, Katrina; Hoffman, James E.; O'Hearn, Kirsten; Landau, Barbara

    2016-01-01

    The ability to track moving objects is a crucial skill for performance in everyday spatial tasks. The tracking mechanism depends on representation of moving items as coherent entities, which follow the spatiotemporal constraints of objects in the world. In the present experiment, participants tracked 1 to 4 targets in a display of 8 identical…

  18. Developmental Profiles for Multiple Object Tracking and Spatial Memory: Typically Developing Preschoolers and People with Williams Syndrome

    Science.gov (United States)

    O'Hearn, Kirsten; Hoffman, James E.; Landau, Barbara

    2010-01-01

    The ability to track moving objects, a crucial skill for mature performance on everyday spatial tasks, has been hypothesized to require a specialized mechanism that may be available in infancy (i.e. indexes). Consistent with the idea of specialization, our previous work showed that object tracking was more impaired than a matched spatial memory…

  19. Changes of deep gray matter magnetic susceptibility over 2years in multiple sclerosis and healthy control brain

    Directory of Open Access Journals (Sweden)

    Jesper Hagemeier

    Full Text Available In multiple sclerosis, pathological changes of both tissue iron and myelin occur, yet these factors have not been characterized in a longitudinal fashion using the novel iron- and myelin-sensitive quantitative susceptibility mapping (QSM MRI technique. We investigated disease-relevant tissue changes associated with myelin loss and iron accumulation in multiple sclerosis deep gray matter (DGM over two years. One-hundred twenty (120 multiple sclerosis patients and 40 age- and sex-matched healthy controls were included in this prospective study. Written informed consent and local IRB approval were obtained from all participants. Clinical testing and QSM were performed both at baseline and at follow-up. Brain magnetic susceptibility was measured in major DGM structures. Temporal (baseline vs. follow-up and cross-sectional (multiple sclerosis vs. controls differences were studied using mixed factorial ANOVA analysis and appropriate t-tests. At either time-point, multiple sclerosis patients had significantly higher susceptibility in the caudate and globus pallidus and lower susceptibility in the thalamus. Over two years, susceptibility increased significantly in the caudate of both controls and multiple sclerosis patients. Inverse thalamic findings among MS patients suggest a multi-phase pathology explained by simultaneous myelin loss and/or iron accumulation followed by iron depletion and/or calcium deposition at later stages. Keywords: Quantitative susceptibility mapping, QSM, Iron, Multiple sclerosis, Longitudinal study

  20. Multiple collinear magnetic arrangements in thin Mn films supported on Fe(001). Antiferromagnetic versus ferromagnetic behavior

    International Nuclear Information System (INIS)

    Martinez, E.; Vega, A.; Robles, R.; Vazquez de Parga, A.L.

    2005-01-01

    We present a theoretical study of the magnetic properties of thin Mn films of 6 and 7 monolayers supported on Fe(001). The ab-initio tight binding linear muffin tin orbital (TB-LMTO) method was used to investigate the competition between ferromagnetic (F) and antiferromagnetic (AF) couplings within the system. We found several collinear magnetic solutions that may coexist at room temperature. The most stable configurations are characterized by AF coupling between the surface and subsurface Mn layers together with F coupling between Mn and Fe at the interface. The ground state arrangements for the 6 and 7 Mn films display opposite sign of the surface magnetic moment relative to the Fe substrate. The implications of these results in the possible onset of non-collinear magnetism when a step is present at the interface are discussed in comparison with Cr/Fe systems where non-collinear magnetism has been recently reported

  1. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    Science.gov (United States)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  2. Landau levels and shallow donor states in GaAs/AlGaAs multiple quantum wells at megagauss magnetic fields

    Science.gov (United States)

    Zybert, M.; Marchewka, M.; Sheregii, E. M.; Rickel, D. G.; Betts, J. B.; Balakirev, F. F.; Gordon, M.; Stier, A. V.; Mielke, C. H.; Pfeffer, P.; Zawadzki, W.

    2017-03-01

    Landau levels and shallow donor states in multiple GaAs/AlGaAs quantum wells (MQWs) are investigated by means of the cyclotron resonance at megagauss magnetic fields. Measurements of magneto-optical transitions were performed in pulsed fields up to 140 T and temperatures from 6-300 K. The 14 ×14 P.p band model for GaAs is used to interpret free-electron transitions in a magnetic field. Temperature behavior of the observed resonant structure indicates, in addition to the free-electron Landau states, contributions of magnetodonor states in the GaAs wells and possibly in the AlGaAs barriers. The magnetodonor energies are calculated using a variational procedure suitable for high magnetic fields and accounting for conduction band nonparabolicity in GaAs. It is shown that the above states, including their spin splitting, allow one to interpret the observed magneto-optical transitions in MQWs in the middle infrared region. Our experimental and theoretical results at very high magnetic fields are consistent with the picture used previously for GaAs/AlGaAs MQWs at lower magnetic fields.

  3. A Synthetic Algorithm for Tracking a Moving Object in a Multiple-Dynamic Obstacles Environment Based on Kinematically Planar Redundant Manipulators

    Directory of Open Access Journals (Sweden)

    Hongzhe Jin

    2017-01-01

    Full Text Available This paper presents a synthetic algorithm for tracking a moving object in a multiple-dynamic obstacles environment based on kinematically planar manipulators. By observing the motions of the object and obstacles, Spline filter associated with polynomial fitting is utilized to predict their moving paths for a period of time in the future. Several feasible paths for the manipulator in Cartesian space can be planned according to the predicted moving paths and the defined feasibility criterion. The shortest one among these feasible paths is selected as the optimized path. Then the real-time path along the optimized path is planned for the manipulator to track the moving object in real-time. To improve the convergence rate of tracking, a virtual controller based on PD controller is designed to adaptively adjust the real-time path. In the process of tracking, the null space of inverse kinematic and the local rotation coordinate method (LRCM are utilized for the arms and the end-effector to avoid obstacles, respectively. Finally, the moving object in a multiple-dynamic obstacles environment is thus tracked via real-time updating the joint angles of manipulator according to the iterative method. Simulation results show that the proposed algorithm is feasible to track a moving object in a multiple-dynamic obstacles environment.

  4. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state.

    Science.gov (United States)

    Dørum, Erlend S; Kaufmann, Tobias; Alnæs, Dag; Andreassen, Ole A; Richard, Geneviève; Kolskår, Knut K; Nordvik, Jan Egil; Westlye, Lars T

    2017-03-01

    Age-related differences in cognitive agility vary greatly between individuals and cognitive functions. This heterogeneity is partly mirrored in individual differences in brain network connectivity as revealed using resting-state functional magnetic resonance imaging (fMRI), suggesting potential imaging biomarkers for age-related cognitive decline. However, although convenient in its simplicity, the resting state is essentially an unconstrained paradigm with minimal experimental control. Here, based on the conception that the magnitude and characteristics of age-related differences in brain connectivity is dependent on cognitive context and effort, we tested the hypothesis that experimentally increasing cognitive load boosts the sensitivity to age and changes the discriminative network configurations. To this end, we obtained fMRI data from younger (n=25, mean age 24.16±5.11) and older (n=22, mean age 65.09±7.53) healthy adults during rest and two load levels of continuous multiple object tracking (MOT). Brain network nodes and their time-series were estimated using independent component analysis (ICA) and dual regression, and the edges in the brain networks were defined as the regularized partial temporal correlations between each of the node pairs at the individual level. Using machine learning based on a cross-validated regularized linear discriminant analysis (rLDA) we attempted to classify groups and cognitive load from the full set of edge-wise functional connectivity indices. While group classification using resting-state data was highly above chance (approx. 70% accuracy), functional connectivity (FC) obtained during MOT strongly increased classification performance, with 82% accuracy for the young and 95% accuracy for the old group at the highest load level. Further, machine learning revealed stronger differentiation between rest and task in young compared to older individuals, supporting the notion of network dedifferentiation in cognitive aging. Task

  5. Spatial-area selective retrieval of multiple object-place associations in a hierarchical cognitive map formed by theta phase coding.

    Science.gov (United States)

    Sato, Naoyuki; Yamaguchi, Yoko

    2009-06-01

    The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic "theta phase precession" observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object-place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object-place associations in the hierarchical network formed by theta phase precession. The results show that multiple object-place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object-place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object-place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.

  6. Magnetic stability in exchange-spring and exchange bias systems after multiple switching cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J. S.; Inomata, A.; You, C.-Y.; Pearson, J. E.; Bader, S. D.

    2001-06-01

    We have studied the magnetic stability in exchange bias and exchange spring systems prepared via epitaxial sputter deposition. The two interfacial exchange coupled systems, Fe/Cr(211) double superlattices consisting of a ferromagnetic and an antiferromagnetic Fe/Cr superlattice that are exchange coupled through a Cr spacer, and Sin-Co/Fe exchange-spring bilayer structures with ferromagnetically coupled hard Sin-Co layer and soft Fe layer, were epitaxially grown on suitably prepared Cr buffer layers to give rise to different microstructure and magnetic anisotropy. The magnetic stability was investigated using the magneto-optic Kerr effect during repeated reversal of the soft layer magnetization by field cycling up to 10{sup 7} times. For uniaxial Fe/Cr exchange biased double superlattices and exchange spring bilayers with uniaxial Sin-Co, small but rapid initial decay in the exchange bias field HE and in the remanent magnetization is observed. However, the exchange spring bilayers with biaxial and random in-plane anisotropy in the Sin-Co layer shows gradual decay in H{sub E} and without large reduction of the magnetization. The different decay behaviors are attributed to the different microstructure and spin configuration of the pinning layers.

  7. Using structured decision making with landowners to address private forest management and parcelization: balancing multiple objectives and incorporating uncertainty

    Science.gov (United States)

    Paige F. B. Ferguson; Michael J. Conroy; John F. Chamblee; Jeffrey Hepinstall-Cymerman

    2015-01-01

    Parcelization and forest fragmentation are of concern for ecological, economic, and social reasons. Efforts to keep large, private forests intact may be supported by a decision-making process that incorporates landowners’ objectives and uncertainty. We used structured decision making (SDM) with owners of large, private forests in Macon County, North Carolina....

  8. Reconciling the Multiple Objectives of Prison Diversion Programs for Drug Offenders: Evidence from Kansas' Senate Bill 123

    Science.gov (United States)

    Stemen, Don; Rengifo, Andres F.

    2011-01-01

    Background: In recent years, several states have created mandatory prison-diversion programs for felony drug possessors. These programs have both individual-level goals of reducing recidivism rates and system-level goals of reducing prison populations. Objective: This study examines the individual level and system level impact of Kansas' Senate…

  9. Managing multiple funding streams and agendas to achieve local and global health and research objectives: lessons from the field.

    Science.gov (United States)

    Holmes, Charles B; Sikazwe, Izukanji; Raelly, Roselyne L; Freeman, Bethany L; Wambulawae, Inonge; Silwizya, Geoffrey; Topp, Stephanie M; Chilengi, Roma; Henostroza, German; Kapambwe, Sharon; Simbeye, Darius; Sibajene, Sheila; Chi, Harmony; Godfrey, Katy; Chi, Benjamin; Moore, Carolyn Bolton

    2014-01-01

    Multiple funding sources provide research and program implementation organizations a broader base of funding and facilitate synergy, but also entail challenges that include varying stakeholder expectations, unaligned grant cycles, and highly variable reporting requirements. Strong governance and strategic planning are essential to ensure alignment of goals and agendas. Systems to track budgets and outputs, as well as procurement and human resources are required. A major goal of funders is to transition leadership and operations to local ownership. This article details successful approaches used by the newly independent nongovernmental organization, the Centre for Infectious Disease Research in Zambia.

  10. Investigation of Permanent Magnet Demagnetization in Synchronous Machines during Multiple Short-Circuit Fault Conditions

    Directory of Open Access Journals (Sweden)

    Stefan Sjökvist

    2017-10-01

    Full Text Available Faults in electrical machines can vary in severity and affect different parts of the machine. This study focuses on various kinds of short-circuits on the terminal side of a generic 20 kW surface mounted permanent magnet synchronous generator and how successive faults affect the performance of the machine. The study was conducted with the commercially available finite element method software COMSOL Multiphysics ® , and two time-dependent models for demagnetization of permanent magnets were compared, one using only internal models and the other using a proprietary external function. The study is simulation based and the two models were compared to a previously experimentally verified stationary model. Results showed that the power output decreased by more than 30% after five successive faults. In addition, the no-load voltage had become unsymmetrical, which was explained by the uneven demagnetization of the permanent magnets. The permanent magnet with the lowest reduction in average remanence was decreased by 0.8%, while the highest average reduction was 23.8% in another permanent magnet. The internal simulation model was about four times faster than the external model, but slightly overestimated the demagnetization.

  11. Optimal design of permanent magnet flux switching generator for wind applications via artificial neural network and multi-objective particle swarm optimization hybrid approach

    International Nuclear Information System (INIS)

    Meo, Santolo; Zohoori, Alireza; Vahedi, Abolfazl

    2016-01-01

    Highlights: • A new optimal design of flux switching permanent magnet generator is developed. • A prototype is employed to validate numerical data used for optimization. • A novel hybrid multi-objective particle swarm optimization approach is proposed. • Optimization targets are weight, cost, voltage and its total harmonic distortion. • The hybrid approach preference is proved compared with other optimization methods. - Abstract: In this paper a new hybrid approach obtained combining a multi-objective particle swarm optimization and artificial neural network is proposed for the design optimization of a direct-drive permanent magnet flux switching generators for low power wind applications. The targets of the proposed multi-objective optimization are to reduce the costs and weight of the machine while maximizing the amplitude of the induced voltage as well as minimizing its total harmonic distortion. The permanent magnet width, the stator and rotor tooth width, the rotor teeth number and stator pole number of the machine define the search space for the optimization problem. Four supervised artificial neural networks are designed for modeling the complex relationships among the weight, the cost, the amplitude and the total harmonic distortion of the output voltage respect to the quantities of the search space. Finite element analysis is adopted to generate training dataset for the artificial neural networks. Finite element analysis based model is verified by experimental results with a 1.5 kW permanent magnet flux switching generator prototype suitable for renewable energy applications, having 6/19 stator poles/rotor teeth. Finally the effectiveness of the proposed hybrid procedure is compared with the results given by conventional multi-objective optimization algorithms. The obtained results show the soundness of the proposed multi objective optimization technique and its feasibility to be adopted as suitable methodology for optimal design of permanent

  12. A hybrid credibility-based fuzzy multiple objective optimisation to differential pricing and inventory policies with arbitrage consideration

    Science.gov (United States)

    Ghasemy Yaghin, R.; Fatemi Ghomi, S. M. T.; Torabi, S. A.

    2015-10-01

    In most markets, price differentiation mechanisms enable manufacturers to offer different prices for their products or services in different customer segments; however, the perfect price discrimination is usually impossible for manufacturers. The importance of accounting for uncertainty in such environments spurs an interest to develop appropriate decision-making tools to deal with uncertain and ill-defined parameters in joint pricing and lot-sizing problems. This paper proposes a hybrid bi-objective credibility-based fuzzy optimisation model including both quantitative and qualitative objectives to cope with these issues. Taking marketing and lot-sizing decisions into account simultaneously, the model aims to maximise the total profit of manufacturer and to improve service aspects of retailing simultaneously to set different prices with arbitrage consideration. After applying appropriate strategies to defuzzify the original model, the resulting non-linear multi-objective crisp model is then solved by a fuzzy goal programming method. An efficient stochastic search procedure using particle swarm optimisation is also proposed to solve the non-linear crisp model.

  13. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  14. HLA-DRB*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis.

    Science.gov (United States)

    Yaldizli, Özgür; Sethi, Varun; Pardini, Matteo; Tur, Carmen; Mok, Kin Y; Muhlert, Nils; Liu, Zheng; Samson, Rebecca S; Wheeler-Kingshott, Claudia A M; Yousry, Tarek A; Houlden, Henry; Hardy, John; Miller, David H; Chard, Declan T

    2016-05-01

    The HLA-DRB*1501 haplotype influences the risk of developing multiple sclerosis (MS), but it is not known how it affects grey matter pathology. To assess HLA-DRB(*)1501 effects on magnetic resonance imaging (MRI) cortical grey matter pathology. Whole and lesional cortical grey matter volumes, lesional and normal-appearing grey matter magnetization transfer ratio were measured in 85 people with MS and 36 healthy control subjects. HLA-DRB(*)1501 haplotype was determined by genotyping (rs3135388). No significant differences were observed in MRI measures between the HLA-DRB(*)1501 subgroups. The HLA-DRB(*)1501 haplotype is not strongly associated with MRI-visible grey matter pathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Methodology for the selection of routes for international cross-border line projects involving multiple objectives and decision-makers in the analyses of restrictions and environmental possibilities

    International Nuclear Information System (INIS)

    Angel S, Enrique; Cadena, Luis Fernando

    2005-01-01

    A scheme was developed and applied to select the optimum environmental route for international cross-border line projects, in a decision making context involving multiple objectives and multiple decision-makers, the project studied was the electricity interconnection for central America (SIEPAC) for which a prospective assessment was carried out regarding the restrictions and possibilities in the light of the Colombian environmental dimensions management model. The methodology proposed followed these stages: Definition and approval of the structure of environmental restriction and criticality variables, sectorization and selection of complex sections, definition of decision-makers for multi-objective analysis; design and application of consultation tool; definition and modeling of options applying SIG; sensitivity analysis of alternative routes and project's environment management. Different options were identified for insertion and permanence of the project according to the criteria of various interest groups and actors consulted: environmental authorities, electricity companies, scientific community and civil society

  16. A Decision Support System for Land Allocation under Multiple Objectives in Public Production Forests in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Marco W. Lentini

    2010-01-01

    Full Text Available Logging in natural forests is a vital economic activity in the Brazilian Amazon. However, illegal and unplanned logging is exhausting forests rapidly. In 2006, a new forestry law in Brazil (Lei 11,284/2006 established the legal framework to develop state and national public forests for multiple uses. To support public forest planning efforts, we combine spatially explicit data on logging profits, biodiversity, and potential for community use for use within a forest planning optimization model. While generating optimal land use configurations, the model enables an assessment of the market and nonmarket tradeoffs associated with different land use priorities. We demonstrate the model's use for Faro State Forest, a 636,000 ha forest embedded within a large mosaic of conservation units recently established in the state of Pará. The datasets used span the entire Brazilian Amazon, implying that the analysis can be repeated for any public forest planning effort within the region.

  17. A tumefactive multiple sclerosis lesion in the brain: An uncommon site with atypical magnetic resonance image findings

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Min Sun; Kim, Hyun Sook; Kim, Jae Hoon; Kim, Eun Kyung; Choi, Yun Sun [Eulji Hospital, Eulji University, Seoul (Korea, Republic of)

    2013-11-15

    Tumefactive multiple sclerosis (MS) is a rare type of demyelinating disease. Typical magnetic resonance (MR) image findings show incomplete ring enhancement with a mild mass effect. This lesion is otherwise indistinguishable from other mass-like lesions in the brain. Knowledge of the MR imaging findings for tumefactive MS is thus helpful for correct diagnosis and appropriate therapy. In this report we describe the MR image findings for pathology-confirmed tumefactive MS in an uncommon location, alongside a discussion of its aggressive features.

  18. Scoring sacroiliac joints by magnetic resonance imaging. A multiple-reader reliability experiment

    DEFF Research Database (Denmark)

    Landewe, Robert B.M.; Hermann, Kay Geert A; Van Der Heijde, Desiree M.F.M

    2005-01-01

    Magnetic resonance imaging (MRI) of the sacroiliac (SI) joints and the spine is increasingly important in the assessment of inflammatory activity and structural damage in clinical trials with patients with ankylosing spondylitis (AS). We investigated inter-reader reliability and sensitivity...

  19. Manipulating antiferromagnets with magnetic fields: ratchet motion of multiple domain walls induced by asymmetric field pulses

    Czech Academy of Sciences Publication Activity Database

    Gomonay, O.; Kläui, M.; Sinova, Jairo

    2016-01-01

    Roč. 109, č. 14 (2016), 1-4, č. článku 142404. ISSN 0003-6951 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spintronics * solitons * Mn 2 Au Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.411, year: 2016

  20. Serial contrast-enhanced magnetic resonance and magnetization transfer in the study of patients with multiple sclerosis; Resonancia magnetica con contraste y transferencia de magnetizacion en el estudio seriado de pacientes con esclerosis multiple

    Energy Technology Data Exchange (ETDEWEB)

    Rovira, A; Alonso, J; Cucurella, G; Nos, C; Tintore, M; Pedraza, S; Rio, J; Montalban, X [Hospital General i Universitari Vall d` Hebron. Barcelona (Spain)

    1998-12-31

    To demonstrate the changes in the magnetization transfer ratio (MTR) of different demyelinating plaques, correlating them with the baseline values in T1-weighted contrast-enhanced magnetic resonance (MR) sequences in order to relate them more closely to the underlying disease. The study was based on 33 demyelinating plaques obtained from six patients clinically diagnosed as having remitting-recurring multiple sclerosis (MS). All the patients underwent two MR studies at a 3 to 5-month interval, including contrast-enhanced T1 and T2- weighted sequences and magnetization transfer images. The latter were used to calculate the MTR for each of the demyelinating plaques included in the study. The statistical analysis of the results obtained revealed statistically significant between initial MTR values and those of subsequent T1-weighted sequences. The MTR demonstrate significant differences between plaques according to contrast-enhanced T1-weigh tes sequences, probably indicating variable degrees of edema, demyelination and tissue destruction. These differences should be taken into account to enable the use of T1-weighted sequences to quantify the lesion load in MS patients. (Author) 35 refs.

  1. Quantitative Magnetic Resonance Imaging of Brainstem Volumes, Plaques, and Surface Area in the Occipital Regions of Patients with Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Alper, F.; Kantarci, M.; Altunkaynak, E.; Varoglu, A. O.; Karaman, A.; Oral, E.; Okur, A. [Ataturk Univ., Erzurum (Turkey). Depts. of Radiology, Histology, Neurology and Embryology, Psychiatry

    2006-07-15

    Purpose: To determine brainstem volumes, number of plaques, and surface areas in the occipital lobes of patients with relapsing remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), and to investigate whether there is any correlation between brainstem volume and the number/surface areas of plaque in the occipital lobes. Material and Methods: Magnetic resonance imaging was obtained on 14 relapsing-remitting (RR) and 13 secondary progressive (SP) MS patients and 26 female control subjects. The Cavalieri method was used by modern design stereology to measure brainstem volume. The point-counting grid was used to evaluate sclerotic plaque surface areas in the occipital lobe. The number of plaques in the imaging section was calculated. Results: Brainstem volumes for RR and SP with multiple sclerosis and control subjects were 3647 mm{sup 3} , 3515 mm{sup 3} , and 4517 mm{sup 3} , respectively. Mean number of plaques in the right-left occipital lobe was found to be 2.7-3.4 in RR-MS and 5.2-2.8 in SP-MS. Mean plaque surface area in the right-left occipital lobe was determined to be 58.52-88.24 mm{sup 2} in RR MS and 124.3-64.82 mm{sup 2} in SP MS. Brainstem volumes were significantly reduced in both groups of patients with MS compared to controls ( P <0.01). Conclusion: Magnetic-resonance-estimated volume and surface area values in multiple sclerosis may facilitate our understanding of the clinical situation of patients and provide a simple index for evaluating therapeutic efficiency.

  2. Quantitative Magnetic Resonance Imaging of Brainstem Volumes, Plaques, and Surface Area in the Occipital Regions of Patients with Multiple Sclerosis

    International Nuclear Information System (INIS)

    Alper, F.; Kantarci, M.; Altunkaynak, E.; Varoglu, A. O.; Karaman, A.; Oral, E.; Okur, A.

    2006-01-01

    Purpose: To determine brainstem volumes, number of plaques, and surface areas in the occipital lobes of patients with relapsing remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), and to investigate whether there is any correlation between brainstem volume and the number/surface areas of plaque in the occipital lobes. Material and Methods: Magnetic resonance imaging was obtained on 14 relapsing-remitting (RR) and 13 secondary progressive (SP) MS patients and 26 female control subjects. The Cavalieri method was used by modern design stereology to measure brainstem volume. The point-counting grid was used to evaluate sclerotic plaque surface areas in the occipital lobe. The number of plaques in the imaging section was calculated. Results: Brainstem volumes for RR and SP with multiple sclerosis and control subjects were 3647 mm 3 , 3515 mm 3 , and 4517 mm 3 , respectively. Mean number of plaques in the right-left occipital lobe was found to be 2.7-3.4 in RR-MS and 5.2-2.8 in SP-MS. Mean plaque surface area in the right-left occipital lobe was determined to be 58.52-88.24 mm 2 in RR MS and 124.3-64.82 mm 2 in SP MS. Brainstem volumes were significantly reduced in both groups of patients with MS compared to controls ( P <0.01). Conclusion: Magnetic-resonance-estimated volume and surface area values in multiple sclerosis may facilitate our understanding of the clinical situation of patients and provide a simple index for evaluating therapeutic efficiency

  3. Decision support system for optimally managing water resources to meet multiple objectives in the Savannah River Basin

    Science.gov (United States)

    Roehl, Edwin A.; Conrads, Paul

    2015-01-01

    Managers of large river basins face conflicting demands for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin, for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting dependent economies for years. The Savannah River estuary contains two municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor to expand ship traffic since the 1970s have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent. A planned deepening of the harbor includes flow-alteration features to minimize further migration of salinity, whose effectiveness will only be known after all construction is completed.One of the challenges of large basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge, while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of

  4. Research on active magnetic levitation of multiple high-T{sub c} superconductors; Fukusu no baruku chodendotai wo mochiita akuteibu jikifujo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, K.; Tachi, K.; Sawa, K. [Keio University, Tokyo (Japan); Iwasa, K. [Francis Bitter Magnet Laboratory, Cambridge (United States); Nagashima, K.; Fujimoto, H. [Railway Technical Research Institute, Tokyo (Japan); Miyamoto, T.; Tomita, M.; Murakami, M. [Superconducting Research Laboratory, Tokyo (Japan)

    1999-11-25

    This paper describes a new [electromaglev] system, in which multiple Y-Ba-Cu-O bulk superconductors are levitated on a DC magnet. In this system, we have succeeded in controlling the levitation height and force like the case of a single bulk system. We also simulated the total levitation force for multiple bulks, which were in good agreement with the experimental results. (author)

  5. Magnetic Signature: Small Arms Testing of Multiple Examples of Same Model Weapons

    Science.gov (United States)

    2009-04-01

    inside the wooden building, showing a three-axis fluxgate magnetometer , north-south path lines, and instrumentation system...the FVM-400 Vector Fluxgate Magnetometer by Macintyre Electronics Design Associates, Inc. (MEDA) was used and in other cases two DFM100G2 Digital... Fluxgate Magnetometers made by Billingsley Magnetics were used. The majority of the data obtained was done with the latter. The MEDA has a 1 nT

  6. Detent Force Reduction of a C-Core Linear Flux-Switching Permanent Magnet Machine with Multiple Additional Teeth

    Directory of Open Access Journals (Sweden)

    Yi Du

    2017-03-01

    Full Text Available C-core linear flux-switching permanent magnet (PM machines (LFSPMs are attracting more and more attention due to their advantages of simplicity and robustness of the secondary side, high power density and high torque density, in which both PMs and armature windings are housed in the primary side. The primary salient tooth wound with a concentrated winding consists of C-shaped iron core segments between which PMs are sandwiched and the magnetization directions of these PMs are adjacent and alternant in the horizontal direction. On the other hand, the secondary side is composed of a simple iron core with salient teeth so that it is very suitable for long stroke applications. However, the detent force of the C-core LFSPM machine is relatively high and the magnetic circuit is unbalanced due to the end effect. Thus, a new multiple additional tooth which consists of an active and a traditional passive additional tooth, is employed at each end side of the primary in this paper, so that the asymmetry due to end effect can be depressed and the detent force can be reduced by adjusting the passive additional tooth position. By using the finite element method, the characteristics and performances of the proposed machine are analyzed and verified.

  7. Study on the clinical usefulness of magnetic resonance imaging in cases of multiple cerebral infarction

    International Nuclear Information System (INIS)

    Miyashita, Kotaro

    1991-01-01

    The clinical significance of MRI in thrombotic multiple cerebral infarction was examined in 9 patients having recent lacunar stroke. Recent infarct was identified on Gd-enhanced MRI in 4 patients. For patients multiple small infarction, Gd-enhanced MRI made it possible to differentiate recent from other lesions. To clarify the significance of periventricular high intensity lesion (PVH) on T2-weighted MRI, hemodynamic and neuropsychologic examinations were carried out in 41 patients with multiple cerebral infarction. All the patients had PVH, which was classified into three grades as follows: grade I (n=16) showing only a thin high intensity band along the body of lateral ventricles; grade 2 (n=15) showing a definite high intensity area around the lateral ventricles; grade 3 (n=10) showing diffuse thick and irregular foci around the whole ventricle. In these patients, rCBF was measured by 133 Xe inhalation methods. Initial slope index was significantly higher in patients with grade 3 than those with grade I. Mini-mental state test score was significantly higher in patients with grade l than those with grade 2 and 3. Progression of PVH may be related with the reduction of the cerebral circulation and mental function in cases of multiple cerebral infarction. Ischemic and hemorrhagic lesions can be distinguished by MRI, because old intracerebral hemorrhage appear as hypointensity areas with or without hyperintensity area on T2w images. In 92 patients with multiple infarction, MRI was used to evaluate the incidence and distribution of coexisting old intracerebral hemorrhage. Old hemorrhage were found in 15 patients (16.3%). locating the site where hypertensive hemorrhage commonly occurred. High-field MRI is useful for assessing the coexistence of hemorrhage in hypertensive patients with multiple cerebral infarction. (N.K.)

  8. Multi-Objective Optimization of Moving-magnet Linear Oscillatory Motor Using Response Surface Methodology with Quantum-Behaved PSO Operator

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.

  9. Optic nerve size evaluated by magnetic resonance imaging in children with optic nerve hypoplasia, multiple pituitary hormone deficiency, isolated growth hormone deficiency, and idiopathic short stature.

    Science.gov (United States)

    Birkebaek, Niels Holtum; Patel, Leena; Wright, Neville Bryce; Grigg, John Russell; Sinha, Smeeta; Hall, Catherine Margaret; Price, David Anthony; Lloyd, Ian Christopher; Clayton, Peter Ellis

    2004-10-01

    To objectively define criteria for intracranial optic nerve (ON) size in ON hypoplasia (ONH) on magnetic resonance imaging (MRI) scans. Intracranial ON sizes from MRI were compared between 46 children with ONH diagnosed by ophthalmoscopy (group 1, isolated ONH, 8 children; and group 2, ONH associated with abnormalities of the hypothalamic-pituitary axis and septum pellucidum, 38 children) and children with multiple pituitary hormone deficiency (group 3, multiple pituitary hormone deficiency, 14 children), isolated growth hormone deficiency (group 4, isolated growth hormone deficiency, 15 children), and idiopathic short stature (group 5, idiopathic short stature, 10 children). Intracranial ON size was determined by the cross-sectional area, calculated as [pi x (1/2) height x (1/2) width]. Groups 1 and 2 had lower intracranial ON size than did groups 3, 4, and 5 (P imaging of the ONs with cross-sectional area short child more than 12 months of age, with or without hypothalamic-pituitary axis abnormalities, confirms the clinical diagnosis of ONH.

  10. Monitoring the Effect of Facilitation Physiotherapy in Multiple Sclerosis using Functional Magnetic Resonance Imaging

    Czech Academy of Sciences Publication Activity Database

    Procházková, M.; Řasová, K.; Tintěra, J.; Martinková, Patrícia; Procházka, A.

    2014-01-01

    Roč. 20, č. 7 (2014), s. 1003-1004 ISSN 1352-4585. [RIMS 2014. Annual Conference on Rehabilitation in Multiple Sclerosis /19./. 06.06.2014-07.06.2014, Brighton] Institutional support: RVO:67985807 Subject RIV: BB - Applied Statistics, Operational Research

  11. Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia

    DEFF Research Database (Denmark)

    Kimberley, Teresa Jacobson; Borich, Michael R; Arora, Sanjeev

    2013-01-01

    , respectively. Behavioral measures included pen force and velocity during handwriting and subjective report. Results: Multiple-session rTMS strengthened intracortical inhibition causing a prolongation of CSP after 3 days of intervention and pen force was reduced at day 1 and 5, leaving other measures unchanged...

  12. Temperature and magnetic field effect on oscillations observed in GaInNAs/GaAs multiple quantum wells structures

    International Nuclear Information System (INIS)

    Khalil, H.M.; Mazzucato, S.; Ardali, S.; Celik, O.; Mutlu, S.; Royall, B.; Tiras, E.; Balkan, N.; Puustinen, J.; Korpijärvi, V.-M.; Guina, M.

    2012-01-01

    Highlights: ► We studied p-i-n GaInNAs MQW devices as function of temperature and magnetic field. ► Observed oscillations in the sample current–voltage curves at low temperature. ► Shift in oscillation position with magnetic field described by Landau level split. ► Resonant tunnelling and thermionic emission used to describe oscillations. - Abstract: The photoconductivity of p-i-n GaInNAs/GaAs multiple quantum well (MQW) mesa structures is investigated. When illuminated with photons at energy greater than the GaAs bandgap, a number of oscillations are observed in the current–voltage I–V characteristics. The amplitude and position of the oscillations is shown to depend upon the temperature, as well as upon the exciting wavelength and intensity. Due to the absence of the oscillations in the dark I–V and at temperatures above T = 200 K, we explain them in terms of photogenerated electrons escaping from quantum wells via tunnelling or thermionic emission. Magnetic fields up to B = 11 T were applied parallel to the planes of the QWs. A small voltage shift in the position of the oscillations was observed, proportional to the magnetic field intensity and dependent upon the temperature. Calculation of the Landau level energy separation (16 meV) agrees with the observed experimental data. Magneto-tunnelling spectroscopy probes in detail the nature of band- or impurity-like states responsible for resonances in first and second subbands, observing the I–V plot in dark condition and under illumination. The field-dependence of the amplitude of the oscillation peaks in I–V has the characteristic form of a quantum mechanical admixing effect. This enhancement is also probably due to the hole recombination with majority electrons tunnelling in the N-related states of the quantum wells.

  13. Temperature and magnetic field effect on oscillations observed in GaInNAs/GaAs multiple quantum wells structures

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, H.M., E-mail: hkhalia@essex.ac.uk [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Mazzucato, S. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Ardali, S.; Celik, O.; Mutlu, S. [Anadolu University, Faculty of Science, Department of Physics, Yunus Emre Campus 26470, Eskisehir (Turkey); Royall, B. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Tiras, E. [Anadolu University, Faculty of Science, Department of Physics, Yunus Emre Campus 26470, Eskisehir (Turkey); Balkan, N. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Puustinen, J.; Korpijaervi, V.-M.; Guina, M. [Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 10, FI-33720 Tampere (Finland)

    2012-06-05

    Highlights: Black-Right-Pointing-Pointer We studied p-i-n GaInNAs MQW devices as function of temperature and magnetic field. Black-Right-Pointing-Pointer Observed oscillations in the sample current-voltage curves at low temperature. Black-Right-Pointing-Pointer Shift in oscillation position with magnetic field described by Landau level split. Black-Right-Pointing-Pointer Resonant tunnelling and thermionic emission used to describe oscillations. - Abstract: The photoconductivity of p-i-n GaInNAs/GaAs multiple quantum well (MQW) mesa structures is investigated. When illuminated with photons at energy greater than the GaAs bandgap, a number of oscillations are observed in the current-voltage I-V characteristics. The amplitude and position of the oscillations is shown to depend upon the temperature, as well as upon the exciting wavelength and intensity. Due to the absence of the oscillations in the dark I-V and at temperatures above T = 200 K, we explain them in terms of photogenerated electrons escaping from quantum wells via tunnelling or thermionic emission. Magnetic fields up to B = 11 T were applied parallel to the planes of the QWs. A small voltage shift in the position of the oscillations was observed, proportional to the magnetic field intensity and dependent upon the temperature. Calculation of the Landau level energy separation (16 meV) agrees with the observed experimental data. Magneto-tunnelling spectroscopy probes in detail the nature of band- or impurity-like states responsible for resonances in first and second subbands, observing the I-V plot in dark condition and under illumination. The field-dependence of the amplitude of the oscillation peaks in I-V has the characteristic form of a quantum mechanical admixing effect. This enhancement is also probably due to the hole recombination with majority electrons tunnelling in the N-related states of the quantum wells.

  14. Multiple ground-based and satellite observations of global Pi 2 magnetic pulsations

    International Nuclear Information System (INIS)

    Yumoto, K.; Takahashi, K.; Sakurai, T.; Sutcliffe, P.R.; Kokubun, S.; Luehr, H.; Saito, T.; Kuwashima, M.; Sato, N.

    1990-01-01

    Four Pi 2 magnetic pulsations, observed on the ground at L = 1.2-6.9 in the interval from 2,300 UT on May 22 to 0300 UT on May 23, 1985, provide new evidence of a global nature of Pi 2 pulsations in the inner (L approx-lt 7) region of the magnetosphere bounded by the plasma sheet during quiet geomagnetic conditions. In the present study, magnetic data have been collected from stations distributed widely both in local time and in latitude, including conjugate stations, and from the AMPTE/CCE spacecraft located in the magnetotail. On the basis of high time resolution magnetic field data, the following characteristics of Pi 2 have been established: horizontal components, H and D, of the Pi 2 oscillate nearly antiphase and in-phase, respectively, between the high- and low-altitude stations in the midnight southern hemisphere. Both the H and D components of the Pi 2 have nearly in-phase relationships between the nightside and the dayside stations at low latitude. The Pi 2 amplitude is larger at the high-latitude station and decreases toward lower latitudes. The dominant periods of the Pi 2 are nearly identical at all stations. Although a direct coincidence between spacecraft-observed and ground-based global Pi 2 events does not exist for these events, the Pi 2 events are believed to be a forced field line oscillation of global scale, coupled with the magnetospheric cavity resonance wave in the inner magnetosphere during the substorm expansive phase

  15. [The application of high-frequency and iTBS transcranial magnetic stimulation for the treatment of spasticity in the patients presenting with secondary progressive multiple sclerosis].

    Science.gov (United States)

    Korzhova, J E; Chervyakov, A V; Poydasheva, A G; Kochergin, I A; Peresedova, A V; Zakharova, M N; Suponeva, N A; Chernikova, L A; Piradov, M A

    Spasticity is considered to be a common manifestation of multiple sclerosis. Muscle relaxants are not sufficiently effective; more than that, some of them often cause a variety of adverse reactions. Transcranial magnetic stimulation (TMS) can be a promising new tool for the treatment of spasticity. The objective of the present study was to compare the effectiveness of the two TMS protocols: rhythmic (high-frequency) TMS (rTMS) and stimulation with the theta bursts (iTBS) in terms of their ability to reduce spasticity in the patients presenting with multiple sclerosis. Twenty two patients with secondary-progressive multiple sclerosis were pseudo-randomized into two groups: those in the first (high-frequency) group received the treatment with the use of rTMS therapy at a frequency of 10 Hz; the patients of the second group, underwent stimulation with the theta bursts (iTBS). All the patients received 10 sessions of either stimulation applied to the primary motor area (M1) of both legs. The effectiveness of TMS protocols was evaluated before therapy and after 10 sessions of stimulation based on the Modified Ashworth scale (MAS), the expanded disability status scale (EDSS), and the Kurtzke functional scale (Kfs). In addition, the patients were interviewed before treatment, after 10 rTMS sessions, immediately after and within 2 and 12 weeks after the completion of the treatment using questionnaires for the evaluation of spasticity (SESS) , fatigue, and dysfunction of the pelvic organs (severity of defecation and urination disorders), fatigue. The study has demonstrated a significant reduction in spasticity in the patients of both groups at the end of the TMS protocol based on the MAS scale. There was no significant difference between the outcomes of the two protocols. Both had positive effect on the concomitant «non-motor» symptoms (fatigue, dysfunction of the pelvic organs). High-frequency transcranial magnetic stimulation (10 sessions of rTMS therapy at a frequency

  16. Confinement of ultra-cold neutron in a multiple cusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Nobumichi; Inoue, Nobuyuki; Nihei, Hitoshi; Kinosita, Ken-ichi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-08-01

    A new confinement system of ultra-cold neutrons is proposed. The neutron bottle is made of a rectangular vacuum chamber with the size of 40 cm x 40 cm x 30 cm covered with arrays of bar type permanent magnets. The operation of bottle requires neither cooling system nor high electric power supply, and thereby the bottle is appropriate to use in the room which is located in controlled area. The maximum kinetic energy of neutrons confined is 20 neV. Experimental scheme to test the performance of the bottle is described. (author)

  17. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    Science.gov (United States)

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  18. Multiple sclerosis and anterograde axonal degeneration study by magnetic resonance. Asociacion de esclerosis multiple y degeneracion Walleriana estudio por resonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Pardo, P; Capdevila Cirera, A; Sanz Marin, P M; Gili Planas, J [Centro de Resonancia Magnetica de Barcelona (Spain)

    1993-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system that affects specifically the myelin. Its diagnosis by imaging techniques is, since the development of magnetic resonance (MR), relatively simple, and its occasional association with anterograde axonal degeneration (WD) has been reported. In both disorders, there is a lengthening of the T1 and T2 relaxation times. In the present report, 76 patients with MS with less than 4 plaques in the typical periventricular position were studied retrospectively, resulting in a rate of association with anterograde axonal degeneration of 8%. We consider that in spite of their same behavior in MR,MS and WD, with moreover represent completely different pathologies, are perfectly differential by MR. The S-E images with longer repetition and echo times in the axial and coronal planes have proved to be those most sensitive for this differentiation. Given that MS is specific pathology of then myelin, the axonal damages in delayed until several plaques adjacent to an axon affect it. We consider that this, added to the restriction of our study group (less than 4 plaques), is the cause of the pow percentage of the MS-WD association in our study. (Author).

  19. Scoring sacroiliac joints by magnetic resonance imaging. A Multiple-reader reliability experiment

    DEFF Research Database (Denmark)

    Landewé, RB; Hermann, KG; van der Heijde, DM

    2005-01-01

    Magnetic resonance imaging (MRI) of the sacroiliac (SI) joints and the spine is increasingly important in the assessment of inflammatory activity and structural damage in clinical trials with patients with ankylosing spondylitis (AS). We investigated inter-reader reliability and sensitivity...... for 'depth' and 'intensity,' and the fifth method included the SPARCC slice with the maximum score. Inter-reader reliability was investigated by calculating intraclass correlation coefficients (ICC) for all readers together and for all possible reader pairs. Sensitivity to change was investigated...... values close to zero (no agreement) and highest observed values over 0.80 (excellent agreement). In general, agreement of status scores was somewhat better than agreement of change scores, and agreement of the comprehensive SPARCC scoring system was somewhat better than agreement of the more condensed...

  20. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  1. On the signatures of magnetic islands and multiple X-lines in the solar wind as observed by ARTEMIS and WIND

    Science.gov (United States)

    Eriksson, S.; Newman, D. L.; Lapenta, G.; Angelopoulos, V.

    2014-06-01

    We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar wind reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma density enhancement and a locally slower exhaust speed which differentiates it from a regular solar wind exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma density depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar wind-like conditions. The combined ARTEMIS and WIND observations of tripolar Hall magnetic fields across the same exhaust and Grad-Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4RE normal width and a 43RE extent along the exhaust between two neighboring X-lines.

  2. On the signatures of magnetic islands and multiple X-lines in the solar wind as observed by ARTEMIS and WIND

    International Nuclear Information System (INIS)

    Eriksson, S; Newman, D L; Lapenta, G; Angelopoulos, V

    2014-01-01

    We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar wind reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma density enhancement and a locally slower exhaust speed which differentiates it from a regular solar wind exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma density depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar wind-like conditions. The combined ARTEMIS and WIND observations of tripolar Hall magnetic fields across the same exhaust and Grad–Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4R E normal width and a 43R E extent along the exhaust between two neighboring X-lines. (paper)

  3. Examination by magnetic resonance in the diagnosis and treatment of multiple myeloma

    International Nuclear Information System (INIS)

    Nekula, J.; Scudla, V.; Bacovsky, J.

    1998-01-01

    A group of 41 patients with a confirmed diagnosis of multiple myeloma (MM) was subjected to MR examination of the lumbar and thoracic spine. Pathological MR changes in the initial stage of MM were found in 88%, whereas in simple images the finding was only positive in 8%. T1 v.o. changes in sagittal planes are most important from the diagnostic point of view. Paraspinal or epidural propagation in 11 patients was a finding of fundamental importance, serving as indication for radiotherapy or surgical intervention. In 16 patients in remission, signs of complete lipid reconstruction of bone marrow were found 11 times, reconversion or mixed changes were observed twice. (author)

  4. Spatial and visuospatial working memory tests predict performance in classic multiple-object tracking in young adults, but nonspatial measures of the executive do not.

    Science.gov (United States)

    Trick, Lana M; Mutreja, Rachna; Hunt, Kelly

    2012-02-01

    An individual-differences approach was used to investigate the roles of visuospatial working memory and the executive in multiple-object tracking. The Corsi Blocks and Visual Patterns Tests were used to assess visuospatial working memory. Two relatively nonspatial measures of the executive were used: operation span (OSPAN) and reading span (RSPAN). For purposes of comparison, the digit span test was also included (a measure not expected to correlate with tracking). The tests predicted substantial amounts of variance (R (2) = .33), and the visuospatial measures accounted for the majority (R (2) = .30), with each making a significant contribution. Although the executive measures correlated with each other, the RSPAN did not correlate with tracking. The correlation between OSPAN and tracking was similar in magnitude to that between digit span and tracking (p < .05 for both), and when regression was used to partial out shared variance between the two tests, the remaining variance predicted by the OSPAN was minimal (sr ( 2 ) = .029). When measures of spatial memory were included in the regression, the unique variance predicted by the OSPAN became negligible (sr ( 2 ) = .000004). This suggests that the executive, as measured by tests such as the OSPAN, plays little role in explaining individual differences in multiple-object tracking.

  5. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  6. Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field

    International Nuclear Information System (INIS)

    Molokov, S.

    1993-01-01

    Fully developed liquid-metal flow in a straight rectangular duct with thin conducting walls is investigated. The duct is divided into a number of rectangular channels by electrically conducting dividing walls. A strong uniform magnetic field is applied parallel to the outer side walls and dividing walls and perpendicular to the top and the bottom walls. The analysis of the flow is performed by means of matched asymptotics at large values of the Hartmann number M. The asymptotic solution obtained is valid for arbitrary wall conductance ratio of the side walls and dividing walls, provided the top and bottom walls are much better conductors than the Hartmann layers. The influence of the Hartmann number, wall conductance ratio, number of channels and duct geometry on pressure losses and flow distribution is investigated. If the Hartmann number is high, the volume flux is carried by the core, occupying the bulk of the fluid and by thin layers with thickness of order M -1/2 . In some of the layers, however, the flow is reversed. As the number of channels increases the flow in the channels close to the centre approaches a Hartmann-type flow with no jets at the side walls. Estimation of pressure-drop increase in radial ducts of a self-cooled liquid-metal blanket with respect to flow in a single duct with walls of the same wall conductance ratio gives an upper limit of 30%. (author). 13 refs., 10 figs., 1 tab

  7. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    Science.gov (United States)

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  8. Association between retinal nerve fiber layer thickness and magnetic resonance imaging findings and intelligence in patients with multiple sclerosis.

    Science.gov (United States)

    Ashtari, Fereshteh; Emami, Parisa; Akbari, Mojtaba

    2015-01-01

    Multiple Sclerosis (MS) is a neurological disease in which demyelination and axonal loss leads to progressive disability. Cognition impairment is among the most common complication. Studying axonal loss in the retina is a new marker for MS. The main goal of our study is to search for correlations between magnetic resonance imaging (MRI) findings and the retinal nerve fiber layer (RNFL) thickness at the macula and head of the optic nerve and Wechsler Adult Intelligence Scale-Revised (WAIS-R) Scores that assess multiple domains of intelligence, and to explore the relationship between changes in the RNFL thickness with intellectual and cognitive dysfunction. A prospective cross-sectional study was conducted at the University Hospital of Kashani, Isfahan, Iran, from September to December 2013. All patients were assessed with a full-scale intelligence quotient (IQ) on the WAIS-R. An optical coherence tomography study and brain MRI were performed in the same week for all the patients. Statistical analysis was conducted by using a bivariate correlation, by utilizing SPSS 20.0. A P value ≤ 0.05 was the threshold of statistical significance. Examination of a 100 patients showed a significant correlation between the average RNFL thickness of the macula and the verbal IQ (P value = 0.01) and full IQ (P value = 0.01). There was a significant correlation between brain atrophy and verbal IQ. The RNFL loss was correlated with verbal IQ and full IQ.

  9. Estimating Accurate Target Coordinates with Magnetic Resonance Images by Using Multiple Phase-Encoding Directions during Acquisition.

    Science.gov (United States)

    Kim, Minsoo; Jung, Na Young; Park, Chang Kyu; Chang, Won Seok; Jung, Hyun Ho; Chang, Jin Woo

    2018-06-01

    Stereotactic procedures are image guided, often using magnetic resonance (MR) images limited by image distortion, which may influence targets for stereotactic procedures. The aim of this work was to assess methods of identifying target coordinates for stereotactic procedures with MR in multiple phase-encoding directions. In 30 patients undergoing deep brain stimulation, we acquired 5 image sets: stereotactic brain computed tomography (CT), T2-weighted images (T2WI), and T1WI in both right-to-left (RL) and anterior-to-posterior (AP) phase-encoding directions. Using CT coordinates as a reference, we analyzed anterior commissure and posterior commissure coordinates to identify any distortion relating to phase-encoding direction. Compared with CT coordinates, RL-directed images had more positive x-axis values (0.51 mm in T1WI, 0.58 mm in T2WI). AP-directed images had more negative y-axis values (0.44 mm in T1WI, 0.59 mm in T2WI). We adopted 2 methods to predict CT coordinates with MR image sets: parallel translation and selective choice of axes according to phase-encoding direction. Both were equally effective at predicting CT coordinates using only MR; however, the latter may be easier to use in clinical settings. Acquiring MR in multiple phase-encoding directions and selecting axes according to the phase-encoding direction allows identification of more accurate coordinates for stereotactic procedures. © 2018 S. Karger AG, Basel.

  10. Diffusion tensor imaging applications in multiple sclerosis patients using 3T magnetic resonance: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Testaverde, Lorenzo; Caporali, Laura [University ' ' Sapienza' ' of Rome, Department of Radiological Sciences, Rome (Italy); Venditti, Eugenio; Grillea, Giovanni [U.O.C. Neuroradiologia, I.R.C.C.S. ' ' Neuromed' ' , Pozzilli (Italy); Colonnese, Claudio [University ' ' Sapienza' ' of Rome, Department of Radiological Sciences, Rome (Italy); U.O.C. Neuroradiologia, I.R.C.C.S. ' ' Neuromed' ' , Pozzilli (Italy)

    2012-05-15

    This study evaluated patients with multiple sclerosis using diffusion tensor imaging (DTI) to obtain fractional anisotropy (FA) and mean diffusivity (MD) values. We investigated the possible statistically significant variation of MD and FA in different MS patients, compared simultaneously, putting in comparison their normal appearing white matter (NAWM) and white matter affected by disease (plaques), both during activity and in remission, with normal white matter (NWM) of control subjects. Statistical analysis using Levene's test for comparison of variances revealed significant (P < 0.05) differences between FA values of the NWM of the controls and those of NAWM and active or inactive lesions, of the patients in the study. However, the differences between MD values of the NWM of the controls and those of NAWM and active or inactive lesions of the patients in the study were judged not significant (P > 0.05). Imaging of MS using MRI techniques is constantly searching for reproducible quantitative parameter. This study shows how these parameters can be identified in the MD and FA values, and thus suggests the implementation of MRI routine protocols for diagnosing MS with the DTI analysis, since it can provide valuable information otherwise unobtainable. (orig.)

  11. Magnetic resonance imaging of spinal cord lesions in 22 multiple sclerosis patients

    International Nuclear Information System (INIS)

    Kato, Hiroshi; Funakawa, Itaru; Hara, Kenji; Yasuda, Takeshi; Terao, Akira

    1994-01-01

    We reviewed MRI findings in 22 patients (37 cases) with clinically diagnosed multiple sclerosis (MS) with spinal cord lesions. The spinal cord lesions were detected in 17 (46%) of these 37 cases on MRI. The cervical cord lesions were more detectable than other spinal cord lesions. At the thoracic level, the upper lesions were more detectable than the lower ones. In this study, no correlation was found between the disease duration, the rate of functional disturbance and the detectable rate of spinal cord lesions. The characteristic findings of the lesions were swelling and the enhancement effect of Gd-DTPA in the patient group with a disease duration of less than three years, and atrophic change in the patient group with a disease duration of greater than seven years. The period of the enhancement effect of Gd-DTPA varied in each case, and it may reflect the clinical course. Syrinx-like lesions were found in four cases. In one of them, atrophic change was found in the same region six months after the follow up study. Although the precise reason for the syrinx-like lesion was unclear, a relationship between syrinx-like lesion and atrophy of the spinal cord was suggested. The MRI findings of the spinal cord lesions in MS varied in each case and in each stage of the disease. (author)

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  13. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  15. Optimizing multiple sequence alignments using a genetic algorithm based on three objectives: structural information, non-gaps percentage and totally conserved columns.

    Science.gov (United States)

    Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio

    2013-09-01

    Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.

  16. Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus.

    Science.gov (United States)

    Alnæs, Dag; Sneve, Markus Handal; Espeseth, Thomas; Endestad, Tor; van de Pavert, Steven Harry Pieter; Laeng, Bruno

    2014-04-01

    Attentional effort relates to the allocation of limited-capacity attentional resources to meet current task demands and involves the activation of top-down attentional systems in the brain. Pupillometry is a sensitive measure of this intensity aspect of top-down attentional control. Studies relate pupillary changes in response to cognitive processing to activity in the locus coeruleus (LC), which is the main hub of the brain's noradrenergic system and it is thought to modulate the operations of the brain's attentional systems. In the present study, participants performed a visual divided attention task known as multiple object tracking (MOT) while their pupil sizes were recorded by use of an infrared eye tracker and then were tested again with the same paradigm while brain activity was recorded using fMRI. We hypothesized that the individual pupil dilations, as an index of individual differences in mental effort, as originally proposed by Kahneman (1973), would be a better predictor of LC activity than the number of tracked objects during MOT. The current results support our hypothesis, since we observed pupil-related activity in the LC. Moreover, the changes in the pupil correlated with activity in the superior colliculus and the right thalamus, as well as cortical activity in the dorsal attention network, which previous studies have shown to be strongly activated during visual tracking of multiple targets. Follow-up pupillometric analyses of the MOT task in the same individuals also revealed that individual differences to cognitive load can be remarkably stable over a lag of several years. To our knowledge this is the first study using pupil dilations as an index of attentional effort in the MOT task and also relating these to functional changes in the brain that directly implicate the LC-NE system in the allocation of processing resources.

  17. Magnetic resonance imaging, percentage of dense cells and serum prostanoids as tools for objective assessment of pain crisis

    International Nuclear Information System (INIS)

    Mankad, V.N.; Williams, J.P.; Harpen, M.; Longenecker, G.; Brogdon, B.; Moore, B.

    1987-01-01

    Magnetic resonance imaging (MRI) has added a new dimension to the identification of soft tissue abnormalities. Chemical and histological characteristics of the tissues can be separated by computerized reconstruction algorithms which produce images and quantitative data. This technique, which is now becoming available in many centers, determines the density of protons of hydrogen in various tissues. If the infarction of the tissues leads to changes in chemical composition of the cells, it may produce changes in the image or in the quantitative data about the resonance of protons. Studies correlating hematologic parameters, radiologic changes in the bones or bone marrow and pain crises are scarce. It is likely that presence of abnormal hemoglobin in the red cell, which produces changes in red cells and rheology of blood, would produce changes in hematological parameters and MRI during pain crisis. The authors, therefore, undertook an evaluation of MRI of bones in sickle cell patients during pain-free and painful periods and obtained measurements of dense sickle cells and prostanoids derived from platelets and endothelium

  18. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  19. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  20. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  1. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  2. Ionospheric Anomalies of the 2011 Tohoku Earthquake with Multiple Observations during Magnetic Storm Phase

    Science.gov (United States)

    Liu, Yang

    2017-04-01

    Ionospheric anomalies linked with devastating earthquakes have been widely investigated by scientists. It was confirmed that GNSS TECs suffered from drastically increase or decrease in some diurnal periods prior to the earthquakes. Liu et al (2008) applied a TECs anomaly calculation method to analyze M>=5.9 earthquakes in Indonesia and found TECs decadence within 2-7 days prior to the earthquakes. Nevertheless, strong TECs enhancement was observed before M8.0 Wenchuan earthquake (Zhao et al 2008). Moreover, the ionospheric plasma critical frequency (foF2) has been found diminished before big earthquakes (Pulinets et al 1998; Liu et al 2006). But little has been done regarding ionospheric irregularities and its association with earthquake. Still it is difficult to understand real mechanism between ionospheric anomalies activities and its precursor for the huge earthquakes. The M9.0 Tohoku earthquake, happened on 11 March 2011, at 05:46 UT time, was recognized as one of the most dominant events in related research field (Liu et al 2011). A median geomagnetic disturbance also occurred accompanied with the earthquake, which makes the ionospheric anomalies activities more sophisticated to study. Seismic-ionospheric disturbance was observed due to the drastic activities of earth. To further address the phenomenon, this paper investigates different categories of ionospheric anomalies induced by seismology activity, with multiple data sources. Several GNSS ground data were chosen along epicenter from IGS stations, to discuss the spatial-temporal correlations of ionospheric TECs in regard to the distance of epicenter. We also apply GIM TEC maps due to its global coverage to find diurnal differences of ionospheric anomalies compared with geomagnetic quiet day in the same month. The results in accordance with Liu's conclusions that TECs depletion occurred at days quite near the earthquake day, however the variation of TECs has special regulation contrast to the normal quiet

  3. Characteristics of objective daytime sleep among individuals with earthquake-related posttraumatic stress disorder: A pilot community-based polysomnographic and multiple sleep latency test study.

    Science.gov (United States)

    Zhang, Yan; Li, Yun; Zhu, Hongru; Cui, Haofei; Qiu, Changjian; Tang, Xiangdong; Zhang, Wei

    2017-01-01

    Little is known about the objective sleep characteristics of patients with posttraumatic stress disorder (PTSD). The present study examines the association between PTSD symptom severity and objective daytime sleep characteristics measured using the Multiple Sleep Latency Test (MSLT) in therapy-naïve patients with earthquake-related PTSD. A total of 23 PTSD patients and 13 trauma-exposed non-PTSD (TEN-PTSD) subjects completed one-night in-lab polysomnography (PSG) followed by a standard MSLT. 8 of the 23 PTSD patients received paroxetine treatment. Compared to the TEN-PTSD subjects, no significant nighttime sleep disturbances were detected by PSG in the subjects with PTSD; however, a shorter mean MSLT value was found in the subjects with PTSD. After adjustment for age, sex, and body mass index, PTSD symptoms, particularly hyperarousal, were found to be independently associated with a shorter MSLT value. Further, the mean MSLT value increased significantly after therapy in PTSD subjects. A shorter MSLT value may be a reliable index of the medical severity of PTSD, while an improvement in MSLT values might also be a reliable marker for evaluating therapeutic efficacy in PTSD patients. Copyright © 2016. Published by Elsevier Ireland Ltd.

  4. Functional magnetic resonance imaging of visual object construction and shape discrimination : relations among task, hemispheric lateralization, and gender.

    Science.gov (United States)

    Georgopoulos, A P; Whang, K; Georgopoulos, M A; Tagaris, G A; Amirikian, B; Richter, W; Kim, S G; Uğurbil, K

    2001-01-01

    We studied the brain activation patterns in two visual image processing tasks requiring judgements on object construction (FIT task) or object sameness (SAME task). Eight right-handed healthy human subjects (four women and four men) performed the two tasks in a randomized block design while 5-mm, multislice functional images of the whole brain were acquired using a 4-tesla system using blood oxygenation dependent (BOLD) activation. Pairs of objects were picked randomly from a set of 25 oriented fragments of a square and presented to the subjects approximately every 5 sec. In the FIT task, subjects had to indicate, by pushing one of two buttons, whether the two fragments could match to form a perfect square, whereas in the SAME task they had to decide whether they were the same or not. In a control task, preceding and following each of the two tasks above, a single square was presented at the same rate and subjects pushed any of the two keys at random. Functional activation maps were constructed based on a combination of conservative criteria. The areas with activated pixels were identified using Talairach coordinates and anatomical landmarks, and the number of activated pixels was determined for each area. Altogether, 379 pixels were activated. The counts of activated pixels did not differ significantly between the two tasks or between the two genders. However, there were significantly more activated pixels in the left (n = 218) than the right side of the brain (n = 161). Of the 379 activated pixels, 371 were located in the cerebral cortex. The Talairach coordinates of these pixels were analyzed with respect to their overall distribution in the two tasks. These distributions differed significantly between the two tasks. With respect to individual dimensions, the two tasks differed significantly in the anterior--posterior and superior--inferior distributions but not in the left--right (including mediolateral, within the left or right side) distribution. Specifically

  5. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  6. Lack of magnetic resonance imaging lesion activity as a treatment target in multiple sclerosis: An evaluation using electronically collected outcomes.

    Science.gov (United States)

    Conway, Devon S; Thompson, Nicolas R; Cohen, Jeffrey A

    2016-09-01

    The appropriate treatment target in multiple sclerosis (MS) is unclear. Lack of magnetic resonance imaging (MRI) lesion activity, a component of the no evidence of disease activity concept, has been proposed as a treatment target in MS. We used our MS database to investigate whether aggressively pursuing MRI stability by changing disease modifying therapy (DMT) when MRI activity is observed leads to better clinical and imaging outcomes. The Knowledge Program (KP) is a database linked to our electronic medical record allowing capture of patient and clinician reported outcomes. Through KP query and chart review, we identified all relapsing-remitting MS patients visiting between 1 January 2008 and 31 December 2014 with active MRIs despite DMT. Propensity modeling based on demographic and disease characteristics was used to match DMT switchers to non-switchers. KP and MRI outcomes were compared 18 months after the active MRI using mixed-effects linear regression models. We identified 417 patients who met criteria for our analysis. After propensity matching, 78 switchers and 91 non-switchers were analyzed. There was no difference in clinical or radiologic outcomes between these groups at 18 months. We did not find a short-term benefit of changing DMT to pursue MRI stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Current evidence on the potential therapeutic applications of transcranial magnetic stimulation in multiple sclerosis: A systematic review of the literature.

    Science.gov (United States)

    León Ruiz, M; Sospedra, M; Arce Arce, S; Tejeiro-Martínez, J; Benito-León, J

    2018-06-10

    A growing number of studies have evaluated the effects of transcranial magnetic stimulation (TMS) for the symptomatic treatment of multiple sclerosis (MS). We performed a PubMed search for articles, recent books, and recommendations from the most relevant clinical practice guidelines and scientific societies regarding the use of TMS as symptomatic treatment in MS. Excitatory electromagnetic pulses applied to the affected cerebral hemisphere allow us to optimise functional brain activity, including the transmission of nerve impulses through the demyelinated corticospinal pathway. Various studies into TMS have shown statistically significant improvements in spasticity, fatigue, lower urinary tract dysfunction, manual dexterity, gait, and cognitive deficits related to working memory in patients with MS; however, the exact level of evidence has not been defined as the results have not been replicated in a sufficient number of controlled studies. Further well-designed, randomised, controlled clinical trials involving a greater number of patients are warranted to attain a higher level of evidence in order to recommend the appropriate use of TMS in MS patients across the board. TMS acts as an adjuvant with other symptomatic and immunomodulatory treatments. Additional studies should specifically investigate the effect of conventional repetitive TMS on fatigue in these patients, something that has yet to see the light of day. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Association between magnetic resonance imaging patterns and baseline disease features in multiple myeloma: analyzing surrogates of tumour mass and biology

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Elias K.; Merz, Maximilian; Shah, Sofia; Hillengass, Michaela; Wagner, Barbara; Hose, Dirk; Raab, M.S. [University Hospital Heidelberg, Department of Internal Medicine V, Heidelberg (Germany); Hielscher, Thomas [German Cancer Research Center, Division of Biostatistics, Heidelberg (Germany); Kloth, Jost K.; Weber, Marc-Andre [University Hospital of Heidelberg, Clinic of Diagnostic and Interventional Radiology, Heidelberg (Germany); Jauch, Anna [University Hospital of Heidelberg, Institute of Human Genetics, Heidelberg (Germany); Delorme, Stefan [German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Goldschmidt, Hartmut [University Hospital Heidelberg, Department of Internal Medicine V, Heidelberg (Germany); National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg (Germany); Hillengass, Jens [University Hospital Heidelberg, Department of Internal Medicine V, Heidelberg (Germany); German Cancer Research Center, Department of Radiology, Heidelberg (Germany)

    2016-11-15

    To assess associations between bone marrow infiltration patterns and localization in magnetic resonance imaging (MRI) and baseline clinical/prognostic parameters in multiple myeloma (MM). We compared baseline MM parameters, MRI patterns and localization of focal lesions to the mineralized bone in 206 newly diagnosed MM patients. A high tumour mass (represented by International Staging System stage III) was significantly associated with severe diffuse infiltration (p = 0.015) and a higher number of focal lesions (p = 0.006). Elevated creatinine (p = 0.003), anaemia (p < 0.001) and high LDH (p = 0.001) correlated with severe diffuse infiltration. A salt and pepper diffuse pattern had a favourable prognosis. A higher degree of destruction of mineralized bone (assessed by X-ray or computed tomography) was associated with an increasing number of focal lesions on MRI (p < 0.001). Adverse cytogenetics (del17p/gain1q21/t(4;14)) were associated with diffuse infiltration (p = 0.008). The presence of intraosseous focal lesions exceeding the mineralized bone had a borderline significant impact on prognosis. Diffuse bone marrow infiltration on MRI correlates with adverse cytogenetics, lowered haemoglobin values and high tumour burden in newly diagnosed MM whereas an increasing number of focal lesions correlates with a higher degree of bone destruction. Focal lesions exceeding the cortical bone did not adversely affect the prognosis. (orig.)

  9. Correlation of cumulative corticosteroid treatment with magnetic resonance imaging assessment of avascular femoral head necrosis in patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Nilufer Kale

    2010-10-01

    Full Text Available Increased risk of osteoporosis, fractures, and avascular necrosis (AVN has been suggested in multiple sclerosis (MS. Patients with MS are often exposed to corticosteroid treatment (CST during the disease course and conflicting reports exist regarding complications of CST. Our study aims to investigate the association between cumulative doses of CST and radiographic evaluation of AVN of the femoral head in MS. Twenty-six MS patients (mean age, 38.4±10 yr were enrolled and prospectively evaluated for AVN by magnetic resonance imaging (MRI. The mean disease duration was 11.5±8.5 years and mean expanded disability status scale (EDSS score was 3±2. The cumulative dosage of CST varied between 20 g and 60 g; patients were grouped into two categories: 1 CST between 20-40 g, 17 (65% patients; 2 CST ≥40 g; 9 (35% patients. The relationship between cumulative CST dosage and MRI diagnosis of AVN was stat­istically insignificant (P>0.9. Clarification of the cumulative effect of CST in the development of AVN is of great importance for future long-term steroid treatment strategies.

  10. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.

    1996-01-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer's disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer's disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs

  11. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France); Nicoli, F. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France)]|[Hopital Sainte-Marguerite, 13 - Marseille (France); Gastaut, J.L. [Hopital Sainte-Marguerite, 13 - Marseille (France)

    1996-07-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer`s disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer`s disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs.

  12. One-Dimensional-Ratio Measures of Atrophy Progression in Multiple Sclerosis as Evaluated by Longitudinal Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Martola, J.; Wiberg Kristoffersen, M.; Aspelin, P.; Stawiarz, L.; Fredrikson, S.; Hillert, J.; Bergstroem, J.; Flodmark, O.

    2009-01-01

    Background: For decades, normalized one-dimensional (1D) measures have been used in the evaluation of brain atrophy. In multiple sclerosis (MS), the use of normalized linear measures over longitudinal follow-up remains insufficiently documented. Purpose: To evaluate the association between different regional atrophy measures and disability in MS patients over four decades in a longitudinal cross-sectional study. Material and Methods: 37 consecutively selected MS patients were included. At baseline, patients had a range of disease duration (1-33 years) and age (24-65 years). Each patient was followed by magnetic resonance imaging (MRI) for a mean of 9.25 years (range 7.3-10 years). Four 1D measures were applied at three time points on axial 5-mm T1-weighted images. Three clinical MS subgroups were represented: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS). Results: There were significant changes in all 1D ratios during follow-up. The Evans ratio (ER) and the bifrontal ratio (BFR) were associated with the development of disability. Changes of ER and BFR reflected more aggressive disease progression, as expressed by MS severity score (MSSS). Conclusion: All four normalized ratios showed uniform atrophy progression, suggesting a consistent rate of atrophy over long-term disease duration independent of MS course. Disability status correlated with 1D measures, suggesting that serial evaluation of Evans and bifrontal ratios might contribute to the radiological evaluation of MS patients

  13. Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries

    OpenAIRE

    Yu, Guoqiang; Akyol, Mustafa; Upadhyaya, Pramey; Li, Xiang; He, Congli; Fan, Yabin; Montazeri, Mohammad; Alzate, Juan G.; Lang, Murong; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.

    2016-01-01

    Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the in-plane magnetic field can be eliminated by introducing a new type of perpendicular field-like SOT via incorporating a lateral structural a...

  14. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  15. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  16. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  17. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  18. Association of Cortical Lesion Burden on 7-T Magnetic Resonance Imaging With Cognition and Disability in Multiple Sclerosis.

    Science.gov (United States)

    Harrison, Daniel M; Roy, Snehashis; Oh, Jiwon; Izbudak, Izlem; Pham, Dzung; Courtney, Susan; Caffo, Brian; Jones, Craig K; van Zijl, Peter; Calabresi, Peter A

    2015-09-01

    Cortical lesions (CLs) contribute to physical and cognitive disability in multiple sclerosis (MS). Accurate methods for visualization of CLs are necessary for future clinical studies and therapeutic trials in MS. To evaluate the clinical relevance of measures of CL burden derived from high-field magnetic resonance imaging (MRI) in MS. An observational clinical imaging study was conducted at an academic MS center. Participants included 36 individuals with MS (30 relapsing-remitting, 6 secondary or primary progressive) and 15 healthy individuals serving as controls. The study was conducted from March 10, 2010, to November 23, 2012, and analysis was performed from June 1, 2011, to September 30, 2014. Seven-Tesla MRI of the brain was performed with 0.5-mm isotropic resolution magnetization-prepared rapid acquisition gradient echo (MPRAGE) and whole-brain, 3-dimensional, 1.0-mm isotropic resolution magnetization-prepared, fluid-attenuated inversion recovery (MPFLAIR). Cortical lesions, seen as hypointensities on MPRAGE, were manually segmented. Lesions were classified as leukocortical, intracortical, or subpial. Images were segmented using the Lesion-TOADS (Topology-Preserving Anatomical Segmentation) algorithm, and brain structure volumes and white matter (WM) lesion volume were reported. Volumes were normalized to intracranial volume. Physical disability was measured by the Expanded Disability Status Scale (EDSS). Cognitive disability was measured with the Minimal Assessment of Cognitive Function in MS battery. Cortical lesions were noted in 35 of 36 participants (97%), with a median of 16 lesions per participant (range, 0-99). Leukocortical lesion volume correlated with WM lesion volume (ρ = 0.50; P = .003) but not with cortical volume; subpial lesion volume inversely correlated with cortical volume (ρ = -0.36; P = .04) but not with WM lesion volume. Total CL count and volume, measured as median (range), were significantly increased in participants

  19. The Optimization of Magnetic Resonance Imaging Pulse Sequences in Order to Better Detection of Multiple Sclerosis Plaques.

    Science.gov (United States)

    Farshidfar, Z; Faeghi, F; Haghighatkhah, H R; Abdolmohammadi, J

    2017-09-01

    Magnetic resonance imaging (MRI) is the most sensitive technique to detect multiple sclerosis (MS) plaques in central nervous system. In some cases, the patients who were suspected to MS, Whereas MRI images are normal, but whether patients don't have MS plaques or MRI images are not enough optimized enough in order to show MS plaques? The aim of the current study is evaluating the efficiency of different MRI sequences in order to better detection of MS plaques. In this cross-sectional study which was performed at Shohada-E Tajrish in Tehran - Iran hospital between October, 2011 to April, 2012, included 20 patients who suspected to MS disease were selected by the method of random sampling and underwent routine brain Pulse sequences (Axial T2w, Axial T1w, Coronal T2w, Sagittal T1w, Axial FLAIR) by Siemens, Avanto, 1.5 Tesla system. If any lesion which is suspected to the MS disease was observed, additional sequences such as: Sagittal FLAIR Fat Sat, Sagittal PDw-fat Sat, Sagittal PDw-water sat was also performed. This study was performed in about 52 lesions and the results in more than 19 lesions showed that, for the Subcortical and Infratentorial areas, PDWw sequence with fat suppression is the best choice, And in nearly 33 plaques located in Periventricular area, FLAIR Fat Sat was the most effective sequence than both PDw fat and water suppression pulse sequences. Although large plaques may visible in all images, but important problem in patients with suspected MS is screening the tiny MS plaques. This study showed that for revealing the MS plaques located in the Subcortical and Infratentorial areas, PDw-fat sat is the most effective sequence, and for MS plaques in the periventricular area, FLAIR fat Sat is the best choice.

  20. Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography

    Energy Technology Data Exchange (ETDEWEB)

    Sandroff, Brian M. [Kessler Foundation, Neuropsychology and Neuroscience Laboratory, East Hanover, NJ (United States); Johnson, Curtis L. [University of Delaware, Deparment of Biomedical Engineering, Newark, DE (United States); Motl, Robert W. [University of Illinois at Urbana-Champaign, Department of Kinesiology and Community Health, Urbana, IL (United States)

    2017-01-15

    Cognitive impairment is common and debilitating among persons with multiple sclerosis (MS) and might be managed with exercise training. However, the effects of exercise training on viscoelastic brain properties in this population are unknown. The present pilot study adopted a single-blind randomized controlled trial (RCT) design and is the first to examine the effect of an aerobic exercise training intervention on learning and memory and hippocampal viscoelasticity using magnetic resonance elastography (MRE) in persons with MS. Eight fully ambulatory females with MS were randomly assigned into exercise training intervention or waitlist control conditions. The intervention condition involved 12 weeks of supervised, progressive treadmill walking exercise training. All participants underwent measures of learning and memory (i.e., California Verbal Learning Test-II; CVLT-II) and further underwent MRE scans for measurement of shear stiffness (μ) and damping ratio (ξ) of the hippocampus before and after the 12-week period. Overall, there were small-to-moderate intervention effects on CVLT-II performance (d = 0.34) and large intervention effects on hippocampal μ (d = 0.94) and hippocampal ξ (d = -1.20). Change in CVLT-II scores was strongly associated with change in μ (r = 0.93, p < 0.01) and ξ (r = -.96, p < 0.01) of the hippocampus. This small pilot RCT provides exciting proof-of-concept data supporting progressive treadmill walking exercise training for potentially improving learning and memory and underlying hippocampal viscoelastic properties in persons with MS. This is important given the high prevalence and burden of MS-related memory impairment. (orig.)

  1. Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography

    International Nuclear Information System (INIS)

    Sandroff, Brian M.; Johnson, Curtis L.; Motl, Robert W.

    2017-01-01

    Cognitive impairment is common and debilitating among persons with multiple sclerosis (MS) and might be managed with exercise training. However, the effects of exercise training on viscoelastic brain properties in this population are unknown. The present pilot study adopted a single-blind randomized controlled trial (RCT) design and is the first to examine the effect of an aerobic exercise training intervention on learning and memory and hippocampal viscoelasticity using magnetic resonance elastography (MRE) in persons with MS. Eight fully ambulatory females with MS were randomly assigned into exercise training intervention or waitlist control conditions. The intervention condition involved 12 weeks of supervised, progressive treadmill walking exercise training. All participants underwent measures of learning and memory (i.e., California Verbal Learning Test-II; CVLT-II) and further underwent MRE scans for measurement of shear stiffness (μ) and damping ratio (ξ) of the hippocampus before and after the 12-week period. Overall, there were small-to-moderate intervention effects on CVLT-II performance (d = 0.34) and large intervention effects on hippocampal μ (d = 0.94) and hippocampal ξ (d = -1.20). Change in CVLT-II scores was strongly associated with change in μ (r = 0.93, p < 0.01) and ξ (r = -.96, p < 0.01) of the hippocampus. This small pilot RCT provides exciting proof-of-concept data supporting progressive treadmill walking exercise training for potentially improving learning and memory and underlying hippocampal viscoelastic properties in persons with MS. This is important given the high prevalence and burden of MS-related memory impairment. (orig.)

  2. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  3. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  4. Object-based 3D geomodel with multiple constraints for early Pliocene fan delta in the south of Lake Albert Basin, Uganda

    Science.gov (United States)

    Wei, Xu; Lei, Fang; Xinye, Zhang; Pengfei, Wang; Xiaoli, Yang; Xipu, Yang; Jun, Liu

    2017-01-01

    The early Pliocene fan delta complex developed in the south of Lake Albert Basin which is located at the northern end of the western branch in the East African Rift System. The stratigraphy of this succession is composed of distributary channels, overbank, mouthbar and lacustrine shales. Limited by the poor seismic quality and few wells, it is full of challenge to delineate the distribution area and patterns of reservoir sands. Sedimentary forward simulation and basin analogue were applied to analyze the spatial distribution of facies configuration and then a conceptual sedimentary model was constructed by combining with core, heavy mineral and palynology evidences. A 3D geological model of a 120 m thick stratigraphic succession was built using well logs and seismic surfaces based on the established sedimentary model. The facies modeling followed a hierarchical object-based approach conditioned to multiple trend constraints like channel intensity, channel azimuth and channel width. Lacustrine shales were modeled as background facies and then in turn eroded by distribute channels, overbank and mouthbar respectively. At the same time a body facies parameter was created to indicate the connectivity of the reservoir sands. The resultant 3D facies distributions showed that the distributary channels flowed from east bounding fault to west flank and overbank was adhered to the fringe of channels while mouthbar located at the end of channels. Furthermore, porosity and permeability were modeled using sequential Gaussian simulation (SGS) honoring core observations and petrophysical interpretation results. Despite the poor seismic is not supported to give enough information for fan delta sand distribution, creating a truly representative 3D geomodel is still able to be achieved. This paper highlights the integration of various data and comprehensive steps of building a consistent representative 3D geocellular fan delta model used for numeral simulation studies and field

  5. Multiple mini-interview as a predictor of performance in the objective structured clinical examination among Physician Associates in the United Kingdom: a cohort study

    Science.gov (United States)

    Kumar, Narendra; Bhardwaj, Shailaja; Rahman, Eqram

    2018-01-01

    Introduction Patient satisfaction and health care outcomes are directly linked to useful communication skills. Therefore, excellent interpersonal skills are imperative for health care professionals. Multiple mini-interview (MMI) is designed as a selection tool to assess the communication skills of applicants in medical schools during the admission process. However, objective structured clinical examination (OSCE) assesses students’ communication and clinical skills at the end of their academic terms. Recently, Anglia Ruskin University, Chelmsford, UK, adopted MMI in the selection process for the first cohort of MSc Physician Associate trainees for the academic year 2015–2016. This study aimed to determine the likelihood of MMI as a predictor of future performance of communication skills in the OSCE. Materials and methods The anonymous data of the average scores of communication skills attained in MMI and OSCE at the end of year 1 were collected for 30 students from the Physician Associate program team. Subsequently, Pearson’s correlation was computed to determine the relationship between the average scores of communication skills attained in MMI, and OSCE during trimester 2 and trimester 3 by the Physician Associate trainees. Results The study showed positive correlation between the scores of communication skills attained in MMI and OSCE during trimester 2 (r=0.956, n=30, p<0.001) and trimester 3 (r=0.966, n=30, p<0.001). Conclusion The study provides empirical evidence for the validity of MMI as a predictor of future performance of Physician Associate trainees’ communication skills during subsequent OSCEs. PMID:29695944

  6. The Multiple Object Test as a Performance Based Tool to Assess Cognitive Driven Activity of Daily Living Function in Parkinson's Disease.

    Science.gov (United States)

    Glonnegger, Hannah; Beyle, Aline; Cerff, Bernhard; Gräber, Susanne; Csoti, Ilona; Berg, Daniela; Liepelt-Scarfone, Inga

    2016-07-06

    There is need for multidimensional quantitative assessment of cognitive driven activities of daily living (ADL) functions in Parkinson's disease (PD). To determine whether there is an ADL profile related to cognitive impairment in PD assessed by the Multiple Object Test (MOT). We assumed MOT performance to be lower in PD patients versus controls and in PD patients with more severe cognitive impairment. 50 PD patients with no cognitive impairment (PD-NC), 54 patients with PD-mild cognitive impairment (PD-MCI), 29 with Parkinson's disease dementia (PDD), and 40 healthy controls (HC) were investigated. Besides comprehensive cognitive testing, the MOT, a performance based test consisting of five routine tasks (e.g., preparing a cup of coffee), was applied. Quantitative (total errors and time) and qualitative (error type) MOT parameters were analyzed. Total time and number of MOT errors was increased in PD patients compared to controls (p < 0.001). These parameters also differentiated PDD patients from other cognitive groups (p < 0.05). No control subject had ≥ 4 errors in the MOT, but 30% of PD patients, especially PDD, scored above this cut-off. Omission (p < 0.001) and mislocation (p < 0.03) errors were more prominent in PDD than other cognitive groups. Perplexity errors did not differ between PD-MCI and PDD but between PD-NC and PDD (p = 0.01). MOT parameters discriminating between cognitive groups correlated mainly with lower test performance in psychomotor speed and executive function. Performance based testing is promising to identify quantitative and qualitative ADL aspects differentiating between different cognitive groups which might be helpful for an early detection of PDD.

  7. Non-uniform 3He polarization formed by multiple collisions of a fast 3He+ ion with polarized Rb vapor in a strong magnetic field

    International Nuclear Information System (INIS)

    Arimoto, Y.; Yonehara, K.; Yamagata, T.; Tanaka, M.

    2001-01-01

    We investigated the spatial distribution of a polarization in 3 He beam expected from a novel polarized 3 He ion source based on electron pumping, i.e., multiple electron capture and stripping collisions of an incident fast 3 He + ion with a polarized Rb vapor in a strong axial magnetic field. For this purpose, a Monte Carlo simulation was carried out for 19 keV 3 He + ions with varying Rb vapor thickness, magnetic field, and beam emittance. The calculated results showed a distribution of the 3 He polarization that we call a 'polarization hole', which has a low polarization area around the beam axis. The parameters characterizing the polarization hole, i.e., the polarization and radius of the hole, were found to depend on the Rb vapor thickness, the magnetic field, the beam size, and the angular divergence of the initial beam. These parameters were successfully reproduced with analytical functions deduced from a probability density function prescription. This provides a powerful tool to treat complex phenomena of multiple collisions in strong magnetic fields without performing time-consuming Monte Carlo calculations

  8. Multiple sclerosis

    International Nuclear Information System (INIS)

    Grunwald, I.Q.; Kuehn, A.L.; Backens, M.; Papanagiotou, P.; Shariat, K.; Kostopoulos, P.

    2008-01-01

    Multiple sclerosis is the most common chronic inflammatory disease of myelin with interspersed lesions in the white matter of the central nervous system. Magnetic resonance imaging (MRI) plays a key role in the diagnosis and monitoring of white matter diseases. This article focuses on key findings in multiple sclerosis as detected by MRI. (orig.) [de

  9. Landau levels and shallow donor states in GaAs/AlGaAs multiple quantum wells at mega-gauss magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zybert, M. [Univ. of Rzeszow, Pigonia (Poland); Marchweka, M. [Univ. of Rzeszow, Pigonia (Poland); Sheregii, E. M. [Center for Microelectronics and Nanotechnology, University of Rzeszow; Rickel, Dwight Gene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Betts, Jonathan Bobby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gordon, Michael Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stier, Andreas V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mielke, Charles H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pfeffer, P. [Polish Academy of Sciences (PAS), Warsaw (Poland); Zawadski, W. [Polish Academy of Sciences (PAS), Warsaw (Poland)

    2017-03-06

    Landau levels and shallow donor states in multiple GaAs/AlGaAs quantum wells (MQWs) are investigated by means of the cyclotron resonance at mega-gauss magnetic fields. Measurements of magneto-optical transitions were performed in pulsed fields up to 140 T and temperatures from 6 to 300 K. The 14 x 14 P.p band model for GaAs is used to interpret free-electron transitions in a magnetic field. Temperature behavior of the observed resonant structure indicates, in addition to the free-electron Landau states, contributions of magneto-donor states in the GaAs wells and possibly in the AlGaAs barriers. The magneto-donor energies are calculated using a variational procedure suitable for high magnetic fields and accounting for conduction band nonparabolicity in GaAs. It is shown that the above states, including their spin splitting, allow one to interpret the observed mengeto-optical transitions in MQWs in the middle infrared region. Our experimental and theoretical results at very high magnetic fields are consistent with the picture used previously for GaAs/AlGaAs MQWs at lower magnetic fields.

  10. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering

    Science.gov (United States)

    Yin, Gang; Zhang, Yingtang; Fan, Hongbo; Ren, Guoquan; Li, Zhining

    2017-12-01

    We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field test was carried out to test the validity of the proposed method and the experimental results show that the prearranged magnets can be detected unambiguously and located precisely.

  11. The Combined Quantification and Interpretation of Multiple Quantitative Magnetic Resonance Imaging Metrics Enlightens Longitudinal Changes Compatible with Brain Repair in Relapsing-Remitting Multiple Sclerosis Patients

    NARCIS (Netherlands)

    Bonnier, G.; Marechal, B.; Fartaria, M.J.; Marques, J.P.; Simioni, S.; Schluep, M.; Du Pasquier, R.; Thiran, J.-P.; Krueger, G.; Granziera, C.

    2017-01-01

    Objective: Quantitative and semi-quantitative MRI (qMRI) metrics provide complementary specificity and differential sensitivity to pathological brain changes compatible with brain inflammation, degeneration and repair. Moreover, advanced MRI metrics with overlapping elements amplify the true

  12. Effect of the magnetic field on optical properties of GaN/AlN multiple quantum wells

    International Nuclear Information System (INIS)

    Solaimani, M.; Izadifard, Morteza; Arabshahi, H.; Mohammad Reza, Sarkardei

    2013-01-01

    In this paper, the effect of the magnetic field and well number on the optical properties of a GaN/AlN MQWs with different number of wells and the energy levels have been investigated. Our results showed that as the magnetic field increases the values of the absorption coefficient also increases while a blue shift in their peak positions is observed. The blue shift for MQWs with odd well number was larger than the system with the even well number and the biggest blue shifts were related to MQWs with three and four well numbers. As the magnetic field changed, the values of the refractive index changes have shifted towards higher energies. Finally, the effect of the magnetic field on the oscillator strength showed that as the magnetic field increases the oscillator strength decreases and it is also proportional to the number of wells. - Highlights: ► Increase of absorption coefficient by increase of magnetic field will show a blue shift. ► As the magnetic field increased the oscillator strength decreased. ► Total effective intersubband oscillator strength was proportional to the number of wells. ► Minibands form after 10 wells, thus our results are valid for systems with well width up to 3 nm.

  13. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  14. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  15. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  16. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  17. The mechanical properties of high speed GTAW weld and factors of nonlinear multiple regression model under external transverse magnetic field

    Science.gov (United States)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou

    2013-05-01

    A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.

  18. An Objective Short Sleep Insomnia Disorder Subtype Is Associated With Reduced Brain Metabolite Concentrations In Vivo: A Preliminary Magnetic Resonance Spectroscopy Assessment.

    Science.gov (United States)

    Miller, Christopher B; Rae, Caroline D; Green, Michael A; Yee, Brendon J; Gordon, Christopher J; D'Rozario, Angela L; Kyle, Simon D; Espie, Colin A; Grunstein, Ronald R; Bartlett, Delwyn J

    2017-11-01

    To evaluate brain metabolites in objective insomnia subtypes defined from polysomnography (PSG): insomnia with short sleep duration (I-SSD) and insomnia with normal sleep duration (I-NSD), relative to good sleeping controls (GSCs). PSG empirically grouped insomnia patients into I-SSD (n = 12: mean [SD] total sleep time [TST] = 294.7 minutes [30.5]) or I-NSD (n = 19: TST = 394.4 minutes [34.9]). 1H magnetic resonance spectroscopy (MRS) acquired in the left occipital cortex (LOCC), left prefrontal cortex, and anterior cingulate cortex was used to determine levels of creatine, aspartate, glutamate, and glutamine (referenced to water). Glutathione, glycerophosphocholine, lactate, myoinositol, and N-acetylaspartate measurements were also obtained. Sixteen GSCs were included for comparison. Multivariate analysis of variance was used to evaluate differences in creatine, aspartate, glutamate, and glutamine. Aspartate and glutamine concentrations were reduced in the LOCC in I-SSD compared with I-NSD (both p sleep onset (r = -.40, p sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR): https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12612000050853. 12612000050853. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  19. Nonlinear control of magnetic signatures

    Science.gov (United States)

    Niemoczynski, Bogdan

    Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and

  20. Evaluation of pulsing magnetic field effects on paresthesia in multiple sclerosis patients, a randomized, double-blind, parallel-group clinical trial.

    Science.gov (United States)

    Afshari, Daryoush; Moradian, Nasrin; Khalili, Majid; Razazian, Nazanin; Bostani, Arash; Hoseini, Jamal; Moradian, Mohamad; Ghiasian, Masoud

    2016-10-01

    Evidence is mounting that magnet therapy could alleviate the symptoms of multiple sclerosis (MS). This study was performed to test the effects of the pulsing magnetic fields on the paresthesia in MS patients. This study has been conducted as a randomized, double-blind, parallel-group clinical trial during the April 2012 to October 2013. The subjects were selected among patients referred to MS clinic of Imam Reza Hospital; affiliated to Kermanshah University of Medical Sciences, Iran. Sixty three patients with MS were included in the study and randomly were divided into two groups, 35 patients were exposed to a magnetic pulsing field of 4mT intensity and 15-Hz frequency sinusoidal wave for 20min per session 2 times per week over a period of 2 months involving 16 sessions and 28 patients was exposed to a magnetically inactive field (placebo) for 20min per session 2 times per week over a period of 2 months involving 16 sessions. The severity of paresthesia was measured by the numerical rating scale (NRS) at 30, 60days. The study primary end point was NRS change between baseline and 60days. The secondary outcome was NRS change between baseline and 30days. Patients exposing to magnetic field showed significant paresthesia improvement compared with the group of patients exposing to placebo. According to our results pulsed magnetic therapy could alleviate paresthesia in MS patients .But trials with more patients and longer duration are mandatory to describe long-term effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Object and Objective Lost?

    DEFF Research Database (Denmark)

    Lopdrup-Hjorth, Thomas

    2015-01-01

    This paper explores the erosion and problematization of ‘the organization’ as a demarcated entity. Utilizing Foucault's reflections on ‘state-phobia’ as a source of inspiration, I show how an organization-phobia has gained a hold within Organization Theory (OT). By attending to the history...... of this organization-phobia, the paper argues that OT has become increasingly incapable of speaking about its core object. I show how organizations went from being conceptualized as entities of major importance to becoming theoretically deconstructed and associated with all kinds of ills. Through this history......, organizations as distinct entities have been rendered so problematic that they have gradually come to be removed from the center of OT. The costs of this have been rather significant. Besides undermining the grounds that gave OT intellectual credibility and legitimacy to begin with, the organization-phobia...

  2. Early Magnetic Resonance Detection of Natalizumab-Related Progressive Multifocal Leukoencephalopathy in a Patient with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Guglielmo Manenti

    2013-01-01

    Full Text Available Diagnosis of progressive multifocal leukoencephalopathy is usually based on the clinical presentation, on the demonstration of the brain lesions at the magnetic resonance imaging examination, and on the detection of the JC virus DNA in the cerebrospinal fluid with high sensitive polymerase chain reaction. The role of magnetic resonance imaging specifically in natalizumab-associated progressive multifocal leukoencephalopathy is strengthening, and it is gaining importance not only as an irreplaceable diagnostic tool but also as a surveillance and risk stratifying tool in treated patients. While other imaging techniques such as computed tomography lack sensitivity and specificity, magnetic resonance performed with morphological and functional sequences offers clinicians the possibility to early identify the stage of the disease and the emergence of an immune reconstitution inflammatory syndrome after natalizumab blood removal plasmapheresis.

  3. Added value of multiple versus single sessions of repetitive transcranial magnetic stimulation in predicting motor cortex stimulation efficacy for refractory neuropathic pain.

    Science.gov (United States)

    Pommier, Benjamin; Quesada, Charles; Fauchon, Camille; Nuti, Christophe; Vassal, François; Peyron, Roland

    2018-05-18

    OBJECTIVE Selection criteria for offering patients motor cortex stimulation (MCS) for refractory neuropathic pain are a critical topic of research. A single session of repetitive transcranial magnetic stimulation (rTMS) has been advocated for selecting MCS candidates, but it has a low negative predictive value. Here the authors investigated whether multiple rTMS sessions would more accurately predict MCS efficacy. METHODS Patients included in this longitudinal study could access MCS after at least four rTMS sessions performed 3-4 weeks apart. The positive (PPV) and negative (NPV) predictive values of the four rTMS sessions and the correlation between the analgesic effects of the two treatments were assessed. RESULTS Twelve MCS patients underwent an average of 15.9 rTMS sessions prior to surgery; nine of the patients were rTMS responders. Postoperative follow-up was 57.8 ± 15.6 months (mean ± standard deviation). Mean percentage of pain relief (%R) was 21% and 40% after the first and fourth rTMS sessions, respectively. The corresponding mean durations of pain relief were respectively 2.4 and 12.9 days. A cumulative effect of the rTMS sessions was observed on both %R and duration of pain relief (p < 0.01). The %R value obtained with MCS was 35% after 6 months and 43% at the last follow-up. Both the PPV and NPV of rTMS were 100% after the fourth rTMS session (p = 0.0045). A significant correlation was found between %R or duration of pain relief after the fourth rTMS session and %R at the last MCS follow-up (R 2 = 0.83, p = 0.0003). CONCLUSIONS Four rTMS sessions predicted MCS efficacy better than a single session in neuropathic pain patients. Taking into account the cumulative effects of rTMS, the authors found a high-level correlation between the analgesic effects of rTMS and MCS.

  4. A bioinspired polydopamine approach toward the preparation of gold-modified magnetic nanoparticles for the magnetic solid-phase extraction of steroids in multiple samples.

    Science.gov (United States)

    An, Xuehan; Chai, Weibo; Deng, Xiaojuan; Chen, Hui; Ding, Guosheng

    2018-05-02

    In this work, a simple, facile, and sensitive magnetic solid-phase extraction method was developed for the extraction and enrichment of three representative steroid hormones before high-performance liquid chromatography analysis. Gold-modified Fe 3 O 4 nanoparticles, as novel magnetic adsorbents, were prepared by a rapid and environmentally friendly procedure in which polydopamine served as the reductant as well as the stabilizer for the gold nanoparticles, thus successfully avoiding the use of some toxic reagents. To obtain maximum extraction efficiency, several significant factors affecting the preconcentration steps, including the amount of adsorbent, extraction time, pH of the sample solution, and the desorption conditions, were optimized, and the enrichment factors for three steroids were all higher than 90. The validity of the established method was evaluated and good analytical characteristics were obtained. A wide linearity range (0.8-500 μg/L for all the analytes) was attained with good correlation (R 2  ≥ 0.991). The low limits of detection were 0.20-0.25 μg/L, and the relative standard deviations ranged from 0.83 to 4.63%, demonstrating a good precision. The proposed method was also successfully applied to the extraction and analysis of steroids in urine, milk, and water samples with satisfactory results, which showed its reliability and feasibility in real sample analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low field-low cost: Can low-field magnetic resonance systems replace high-field magnetic resonance systems in the diagnostic assessment of multiple sclerosis patients?

    International Nuclear Information System (INIS)

    Ertl-Wagner, B.B.; Reith, W.; Sartor, K.

    2001-01-01

    As low-field MR imaging is becoming a widely used imaging technique, we aimed at a prospective assessment of differences in imaging quality between low- and high-field MR imaging in multiple sclerosis patients possibly interfering with diagnostic or therapeutic decision making. Twenty patients with clinically proven multiple sclerosis were examined with optimized imaging protocols in a 1.5- and a 0.23-T MR scanner within 48 h. Images were assessed independently by two neuroradiologists. No statistically significant interrater discrepancies were observed. A significantly lower number of white matter lesions could be identified in low-field MR imaging both on T1- and on T2-weighted images (T2: high field 700, low field 481; T1: high field 253, low field 177). A total of 114 enhancing lesions were discerned in the high-field MR imaging as opposed to 45 enhancing lesions in low-field MR imaging. Blood-brain barrier disruption was identified in 11 of 20 patients in the high-field MR imaging, but only in 4 of 20 patients in low-field MR imaging. Since a significantly lower lesion load is identified in low-field MR imaging than in high-field MR imaging, and blood-brain barrier disruption is frequently missed, caution must be exercised in interpreting a normal low-field MR imaging scan in a patient with clinical signs of multiple sclerosis and in interpreting a scan without enhancing lesions in a patient with known multiple sclerosis and clinical signs of exacerbation. (orig.)

  6. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Brain MR post-gadolinium contrast in multiple sclerosis: the role of magnetization transfer and image subtraction in detecting more enhancing lesions

    Energy Technology Data Exchange (ETDEWEB)

    Gavra, M.M.; Gouliamos, A.D.; Vlahos, L.J. [Department of Radiology, ' ' Aretaieion' ' Hospital,University of Athens Medical School, Athens (Greece); Voumvourakis, C.; Sfagos, C. [Department of Neurology, ' ' Eginiteion' ' Hospital, University of Athens Medical School, Athens (Greece)

    2004-03-01

    Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS. (orig.)

  8. Brain MR post-gadolinium contrast in multiple sclerosis: the role of magnetization transfer and image subtraction in detecting more enhancing lesions

    International Nuclear Information System (INIS)

    Gavra, M.M.; Gouliamos, A.D.; Vlahos, L.J.; Voumvourakis, C.; Sfagos, C.

    2004-01-01

    Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS. (orig.)

  9. Too attractive: the growing problem of magnet ingestions in children.

    Science.gov (United States)

    Brown, Julie C; Otjen, Jeffrey P; Drugas, George T

    2013-11-01

    Small, powerful magnets are increasingly available in toys and other products and pose a health risk. Small spherical neodymium magnets marketed since 2008 are of particular concern. The objective of this study was to determine the incidence, characteristics, and management of single and multiple-magnet ingestions over time. Magnet ingestion cases at a tertiary children's hospital were identified using radiology reports from June 2002 to December 2012. Cases were verified by chart and imaging review. Relative risk regressions were used to determine changes in the incidence of ingestions and interventions over time. Of 56 cases of magnet ingestion, 98% occurred in 2006 or later, and 57% involved multiple magnets. Median age was 8 years (range, 0-18 years). Overall, 21% of single and 88% of multiple ingestions had 2 or more imaging series obtained, whereas no single and 56.3% of multiple ingestions required intervention (25.0% endoscopy, 18.8% surgery, 12.5% both). Magnet ingestions increased in 2010 to 2012 compared with 2007 to 2009 (relative risk, 1.9; 95% confidence interval, 1.2-3.0). Small, spherical magnets likely from magnet sets comprised 27% of ingestions, all ingested 2010 or later: 86% involved multiple magnets, 50% of which required intervention. Excluding these cases, ingestions of other magnets did not increase in 2010 to 2012 compared with 2007 to 2009 (relative risk, 0.94; 95% confidence interval, 0.6-1.4). The incidence of pediatric magnet ingestions and subsequent interventions has increased over time. Multiple-magnet ingestions result in high utilization of radiological imaging and surgical interventions. Recent increases parallel the increased availability of small, spherical magnet sets. Young and at-risk children should not have access to these and other small magnets. Improved regulation and magnet safety standards are needed.

  10. Intellectual Enrichment Is Linked to Cerebral Efficiency in Multiple Sclerosis: Functional Magnetic Resonance Imaging Evidence for Cognitive Reserve

    Science.gov (United States)

    Sumowski, James F.; Wylie, Glenn R.; DeLuca, John; Chiaravalloti, Nancy

    2010-01-01

    The cognitive reserve hypothesis helps to explain the incomplete relationship between brain disease and cognitive status in people with neurologic diseases, including Alzheimer's; disease and multiple sclerosis. Lifetime intellectual enrichment (estimated with education or vocabulary knowledge) lessens the negative impact of brain disease on…

  11. No association of abnormal cranial venous drainage with multiple sclerosis: a magnetic resonance venography and flow-quantification study

    NARCIS (Netherlands)

    Wattjes, M.P.; van Oosten, B.W.; de Graaf, W.L.; Seewann, A.M.; Bot, J.C.J.; van den Berg, R.; Uitdehaag, B.M.J.; Polman, C.H.; Barkhof, F.

    2011-01-01

    Background: Recent studies using colour-coded Doppler sonography showed that chronic impaired venous drainage from the central nervous system is almost exclusively found in multiple sclerosis (MS) patients. This study aimed to investigate the intracranial and extracranial venous anatomy and the

  12. No association of abnormal cranial venous drainage with multiple sclerosis: a magnetic resonance venography and flow-quantification study

    NARCIS (Netherlands)

    Wattjes, Mike P.; van Oosten, Bob W.; de Graaf, Wolter L.; Seewann, Alexandra; Bot, Joseph C. J.; van den Berg, René; Uitdehaag, Bernard M. J.; Polman, Chris H.; Barkhof, Frederik

    2011-01-01

    Recent studies using colour-coded Doppler sonography showed that chronic impaired venous drainage from the central nervous system is almost exclusively found in multiple sclerosis (MS) patients. This study aimed to investigate the intracranial and extracranial venous anatomy and the intracerebral

  13. Computed tomography synthesis from magnetic resonance images in the pelvis using multiple random forests and auto-context features

    DEFF Research Database (Denmark)

    Andreasen, Daniel; Morgenthaler Edmund, Jens; Zografos, Vasileios

    2016-01-01

    In radiotherapy treatment planning that is only based on magnetic resonance imaging (MRI), the electron density information usually obtained from computed tomography (CT) must be derived from the MRI by synthesizing a so-called pseudo CT (pCT). This is a non-trivial task since MRI intensities...... as measured by water-equivalent path lengths. We compare the performance of our method against two baseline pCT strategies, which either set all MRI voxels in the subject equal to the CT value of water, or in addition transfer the bone volume from the real CT. We show an improved performance compared to both...

  14. The SDSS-III DR12 MARVELS radial velocity data release: the first data release from the multiple object Doppler exoplanet survey

    Science.gov (United States)

    Ge, Jian; Thomas, Neil B.; Li, Rui; Senan Seieroe Grieves, Nolan; Ma, Bo; de Lee, Nathan M.; Lee, Brian C.; Liu, Jian; Bolton, Adam S.; Thakar, Aniruddha R.; Weaver, Benjamin; SDSS-Iii Marvels Team

    2015-01-01

    We present the first data release from the SDSS-III Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) through the SDSS-III DR12. The data include 181,198 radial velocity (RV) measurements for a total of 5520 different FGK stars with V~7.6-12, of which more than 80% are dwarfs and subdwarfs while remainders are GK giants, among a total of 92 fields nearly randomly spread out over the entire northern sky taken with a 60-object MARVELS dispersed fixed-delay interferometer instrument over four years (2008-2012). There were 55 fields with a total of 3300 FGK stars which had 14 or more observations over about 2-year survey window. The median number of observations for these plates is 27 RV measurements. This represents the largest homogeneous sample of precision RV measurements of relatively bright stars. In this first released data, a total of 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries with additional 96 targets having RV variability indicative of a giant planet companion are reported. The released data were produced by the MARVELS finalized 1D pipeline. We will also report preliminary statistical results from the MARVELS 2D data pipeline which has produced a median RV precision of ~30 m/s for stable stars.

  15. A thick-walled sphere rotating in a uniform magnetic field: The next step to de-spin a space object

    Science.gov (United States)

    Nurge, Mark A.; Youngquist, Robert C.; Caracciolo, Ryan A.; Peck, Mason; Leve, Frederick A.

    2017-08-01

    Modeling the interaction between a moving conductor and a static magnetic field is critical to understanding the operation of induction motors, eddy current braking, and the dynamics of satellites moving through Earth's magnetic field. Here, we develop the case of a thick-walled sphere rotating in a uniform magnetic field, which is the simplest, non-trivial, magneto-statics problem that leads to complete closed-form expressions for the resulting potentials, fields, and currents. This solution requires knowledge of all of Maxwell's time independent equations, scalar and vector potential equations, and the Lorentz force law. The paper presents four cases and their associated experimental results, making this topic appropriate for an advanced student lab project.

  16. Optimal Control of Objects on the Micro- and Nano-Scale by Electrokinetic and Electromagnetic Manipulation: for Bio-Sample Preparation, Quantum Information Devices and Magnetic Drug Delivery

    Science.gov (United States)

    2010-01-01

    frequencies) thus the magneto - static equations are appropriate. These are H j∇ × =   (31) 0B∇ ⋅ =  (32) ( ) ( ) ,o oB H M H Hµ µ χ...degree rotations of 1H  . Let 1u , 2u , 3u and 4u be the applied voltage of each of the four magnets. Then, by the linearity of the magneto -static...Hepatocellular Carcinoma: Regional Therapy with a Magnetic Targeted Carrier Bound to Doxorubicin in a Dual MR Imaging/ Conventional Angiography Suite

  17. Optimal Rule-Based Power Management for Online, Real-Time Applications in HEVs with Multiple Sources and Objectives: A Review

    Directory of Open Access Journals (Sweden)

    Bedatri Moulik

    2015-08-01

    Full Text Available The field of hybrid vehicles has undergone intensive research and development, primarily due to the increasing concern of depleting resources and increasing pollution. In order to investigate further options to optimize the performance of hybrid vehicles with regards to different criteria, such as fuel economy, battery aging, etc., a detailed state-of-the-art review is presented in this contribution. Different power management and optimization techniques are discussed focusing on rule-based power management and multi-objective optimization techniques. The extent of rule-based power management and optimization in solving battery aging issues is investigated along with an implementation in real-time driving scenarios where no pre-defined drive cycle is followed. The goal of this paper is to illustrate the significance and applications of rule-based power management optimization based on previous contributions.

  18. Transmesocolic double gastro-enteric fistulas due to ingestion of 28 magnets

    Directory of Open Access Journals (Sweden)

    Adrian Surd

    2018-05-01

    Full Text Available Introduction: Accidental ingestion of magnetic foreign bodies has become more common due to increased availability of objects and toys with magnetic elements. The majority of them traverse the gastrointestinal system spontaneously without complication. However, ingestion of multiple magnets may require surgical resolution. Magnet ingestion usually does not cause serious complications, but in case of multiple magnet ingestion or ingestion of magnet and a metal object, it could cause intestinal obstruction, fistula formation or even perforation. Case report: We report case of a transmesocolic double gastro-enteric fistula formation following ingestion of 28 small magnets in a 17 months old boy. No history of foreign body ingestion could be obtained from parents therefore the patient was treated conservatively in a pediatric clinic for vomiting, dehydration, upper respiratory tract infection and suspicion of upper digestive tract bleeding. After 48 h he was sent in our clinic for surgical evaluation. Intraoperatively double transmesocolic gastro-enteric fistula was found. After separation of de gastric and enteral walls, resection of gastric wall and intestinal segment containing the two perforations was performed, followed by gastric suture in two layers and entero-enteric anastomosis. A total of 28 magnets were removed from the stomach and small intestine. Conclusion: Single magnet ingestion is treated as non-magnetic foreign body. Multiple magnet ingestion should be closely monitored and surgical approach could be the best option to prevent or to cure its complications. Keywords: Ingestion, Magnetic foreign body, Multiple magnets, Intestinal fistula, Children

  19. ICP magnetic sector multiple collector mass spectrometry and the precise measurement of isotopic compositions using nebulization of solutions and laser ablation of solids

    International Nuclear Information System (INIS)

    Halliday, A.N.; Lee, D-C.; Christensen, J.N.; Yi, W.; Hall, C.M.; Jones, C.E.; Teagle, D.A.H.; Freedman, P.A.

    1996-01-01

    Inductively-coupled plasma (ICP) sources offer considerable advantages over thermal sources because the high ionization efficiency facilitates measurements of relatively high sensitivity for elements such as Hf or Sn, which can be difficult to measure precisely with thermal ionization mass spectrometry (TIMS). The mass discrimination (bias) is larger than for TIMS, favours the heavier ions, and decreases in magnitude with increasing mass. However, in contrast to TIMS, this discrimination is largely independent of the chemical or physical properties of the element or the duration of the analysis. This has been demonstrated to high precision with a double focussing multiple collector magnetic sector mass spectrometer with an ICP source. The principle of this instrument is briefly described. The potential of the instrument for high precision isotopic measurements of a very broad range of elements, using solution aspiration or laser ablation, is indicated. 15 refs

  20. Relationship of the Levitation Force Between Single and Multiple YBCO Bulks Above a Permanent Magnet Guideway Operating Dive-Lift Movement with Different Angles

    Science.gov (United States)

    Zeng, R.; Wang, S. Y.; Liao, X. L.; Deng, Z. G.; Wang, J. S.

    2013-04-01

    In practical applications, the acceleration and deceleration motions inevitably happen in the operation of high temperature superconducting (HTS) maglev trains. For further research of the maglev properties of YBaCuO bulk above a permanent magnet guideway (PMG), by moving a fixed vertical distance, this paper studies the relationship of the levitation force between single and multiple YBCO bulks above a PMG operating dive-lift movement with different angles. Experimental results show that the maximal levitation force increment of two bulks than one bulk is smaller than the maximal levitation force increment of three bulks than two bulks. With the degree decreasing, the maximal levitation force increment of three bulks is bigger than the maximal levitation force increment of two bulks and one bulk, and the hysteresis loop of the levitation force of the three-bulk arrangement is getting smaller.

  1. No Effects of Non-invasive Brain Stimulation on Multiple Sessions of Object-Location-Memory Training in Healthy Older Adults.

    Science.gov (United States)

    Külzow, Nadine; Cavalcanti de Sousa, Angelica Vieira; Cesarz, Magda; Hanke, Julie-Marie; Günsberg, Alida; Harder, Solvejg; Koblitz, Swantje; Grittner, Ulrike; Flöel, Agnes

    2017-01-01

    Object-location memory (OLM) is known to decline with normal aging, a process accelerated in pathological conditions like mild cognitive impairment (MCI). In order to maintain cognitive health and to delay the transition from healthy to pathological conditions, novel strategies are being explored. Tentative evidence suggests that combining cognitive training and anodal transcranial direct current stimulation (atDCS), both reported to induce small and often inconsistent behavioral improvements, could generate larger or more consistent improvements or both, compared to each intervention alone. Here, we explored the combined efficacy of these techniques on OLM. In a subject-blind sham-controlled cross-over design 32 healthy older adults underwent a 3-day visuospatial training paired with either anodal (20 min) or sham (30 s) atDCS (1 mA, temporoparietal). Subjects were asked to learn the correct object-location pairings on a street map, shown over five learning blocks on each training day. Acquisition performance was assessed by accuracy on a given learning block in terms of percentage of correct responses. Training success (performance on last training day) and delayed memory after 1-month were analyzed by mixed model analysis and were controlled for gender, age, education, sequence of stimulation and baseline performance. Exploratory analysis of atDCS effects on within-session (online) and between-session (offline) memory performance were conducted. Moreover, transfer effects on similar trained (visuospatial) and less similar (visuo-constructive, verbal) untrained memory tasks were explored, both immediately after training, and on follow-up. We found that atDCS paired with OLM-training did not enhance success in training or performance in 1-month delayed memory or transfer tasks. In sum, this study did not support the notion that the combined atDCS-training approach improves immediate or delayed OLM in older adults. However, specifics of the experimental design, and

  2. No Effects of Non-invasive Brain Stimulation on Multiple Sessions of Object-Location-Memory Training in Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Nadine Külzow

    2018-01-01

    Full Text Available Object-location memory (OLM is known to decline with normal aging, a process accelerated in pathological conditions like mild cognitive impairment (MCI. In order to maintain cognitive health and to delay the transition from healthy to pathological conditions, novel strategies are being explored. Tentative evidence suggests that combining cognitive training and anodal transcranial direct current stimulation (atDCS, both reported to induce small and often inconsistent behavioral improvements, could generate larger or more consistent improvements or both, compared to each intervention alone. Here, we explored the combined efficacy of these techniques on OLM. In a subject-blind sham-controlled cross-over design 32 healthy older adults underwent a 3-day visuospatial training paired with either anodal (20 min or sham (30 s atDCS (1 mA, temporoparietal. Subjects were asked to learn the correct object-location pairings on a street map, shown over five learning blocks on each training day. Acquisition performance was assessed by accuracy on a given learning block in terms of percentage of correct responses. Training success (performance on last training day and delayed memory after 1-month were analyzed by mixed model analysis and were controlled for gender, age, education, sequence of stimulation and baseline performance. Exploratory analysis of atDCS effects on within-session (online and between-session (offline memory performance were conducted. Moreover, transfer effects on similar trained (visuospatial and less similar (visuo-constructive, verbal untrained memory tasks were explored, both immediately after training, and on follow-up. We found that atDCS paired with OLM-training did not enhance success in training or performance in 1-month delayed memory or transfer tasks. In sum, this study did not support the notion that the combined atDCS-training approach improves immediate or delayed OLM in older adults. However, specifics of the experimental

  3. Utility of Diffusion Weighted Magnetic Resonance Imaging with Multiple B Values in Evaluation of Pancreatic Malignant and Benign Lesions and Pancreatitis.

    Science.gov (United States)

    Karadeli, Elif; Erbay, Gurcan; Parlakgumus, Alper; Koc, Zafer

    2018-02-01

    To determine the feasibility of diffusion-weighted imaging in evaluation of pancreatic lesions and in differentiation of benign from malignant lesions. Descriptive study. Baskent University Adana Teaching and Research Center, Adana, Turkey, between September 2013 and May 2015. Forty-three lesions [pancreas adenocarcinoma (n=25)], pancreatitis (n=10), benign lesion (n=8)] were utilized with diffusion-weighted magnetic resonance imaging with multiple b-values. Different ADC maps of diffusion weighted images by using b-values were acquired. The median ADC at all b values for malignant lesions was significantly different from that for benign lesions (pvalues were compared between benign lesions/normal parenchyma and malignant lesions/normal parenchyma, there was a significant statistical difference in all b values between benign and malignant lesions except at b 50 and b 200 (pvalue (AUC=0.804) was more effective than the lesion ADC for b 600 value (AUC=0.766) in differentiation of benign and malignant lesions. The specificity and sensitivity of the lesion/normal parenchyma ADC ratio were higher than those of ADC values of lesions. When the ADC was compared between benign lesions and pancreatitis, a significant difference was found at all b values (pvalue combinations (p>0.05). Diffusion-weighted magnetic resonance images can be helpful in differentiation of pancreatic carcinoma and benign lesions. Lesion ADC / normal parenchyma ADC ratios are more important than lesion ADC values in assessment of pancreatic lesions.

  4. In vivo quantification of response to treatment in patients with multiple myeloma by 1H magnetic resonance spectroscopy of bone marrow.

    Science.gov (United States)

    Oriol, Albert; Valverde, Daniel; Capellades, Jaume; Cabañas, Miquel E; Ribera, Josep-Maria; Arús, Carles

    2007-04-01

    Magnetic resonance imaging (MRI) is the gold standard non-invasive technique to detect malignant disease in the bone marrow. Proton magnetic resonance spectroscopy (MRS) can be performed as a quick adjunct to routine spinal MRI. We performed proton MRS to patients with multiple myeloma (MM) at diagnosis and after treatment to investigate the possible correlation of MRS data with response to therapy. Twenty-one patients with newly diagnosed MM underwent combined MRI/MRS explorations of a transverse center section in the fifth lumbar vertebral body. MRS was acquired with STEAM and 40 ms TE. Areas of unsuppressed water and lipid resonances were used to calculate the lipid-to-water ratio (LWR). No association was detected between initial LWRs and the clinical characteristics of patients. Post treatment MRS was available in 16 patients of whom 11 (69%) presented an LWR increase, this included all complete responders (8/8, 100%, P = 0.012). A post-treatment LWR value equal to or larger than one is proposed as a non-invasive marker of complete response to treatment. Only patients responding to treatment presented a significant increase in bone marrow LWR after therapy. MRS may provide an adequate quantification of response to chemotherapy in patients with MM.

  5. Comparative Study of Fluorodeoxyglucose Positron Emission Tomography and Magnetic Resonance Imaging for the Detection of Spinal Bone Marrow Infiltration in Untreated Patients with Multiple Myeloma

    International Nuclear Information System (INIS)

    Hur, J.; Yoon, C.S.; Hoon Ryu, Y.; Yun, M.J.; Suh, J.S.

    2008-01-01

    Background: The presence and extent of osteolytic bone lesions in untreated patients with multiple myeloma are important factors in the staging of the disease, and the extent of bone lesions in multiple myeloma cases significantly influences decisions regarding therapy. Recently, fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) have been used to detect bone marrow involvement in patients with multiple myeloma. Purpose: To compare the efficacy of FDG-PET and MRI for the detection of bone marrow infiltration into the spine in untreated patients with multiple myeloma. Material and Methods: Twenty-two patients with multiple myeloma underwent both FDG-PET and spine MRI. The examined spinal regions by MRI included 21 thoracic and lumbar spines, one lumbar spine, and 12 cervical spines. The following imaging sequences were performed: T1-weighted spin-echo MRI with and without fat suppression, and T2-weighted spin-echo MRI in the sagittal plane. In the patients with bone marrow abnormalities, an additional contrast-enhanced T1-weighted spin-echo MR image and a fat-suppressed T1-weighted spin-echo MR image were obtained. Patients were divided into three groups on the basis of the criteria defined by Durie and Salmon: stage I (n=9), stage II (n=3), and stage III (n=10). The number and location of lesions detected in both FGD-PET and MRI were recorded, and the lesions were compared using the McNemar test. Bone marrow biopsy results, the patient's clinical examinations, and other imaging findings (MRI, FDG-PET, etc.) were used as references. Results: In stages I and II (37 lesions in 12 patients), FDG-PET and MRI detected lesions in 78% (29 of 37 lesions) and 86% (32 of 37 lesions), respectively. However, the difference between the abilities of FDG-PET and MRI to detect lesions was not statistically significant (P=0.317). In stage III (101 lesions in 10 patients), FDG-PET and MRI detected lesions in 80% (81 of 101 lesions) and 92

  6. Comparative Study of Fluorodeoxyglucose Positron Emission Tomography and Magnetic Resonance Imaging for the Detection of Spinal Bone Marrow Infiltration in Untreated Patients with Multiple Myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Hur, J.; Yoon, C.S.; Hoon Ryu, Y.; Yun, M.J.; Suh, J.S. (Dept. of Diagnostic Radiology and Research Inst. of Radiological Science, and Dept. of Nuclear Medicine, Yonsei Univ. College of Medicine, Seoul (KR))

    2008-05-15

    Background: The presence and extent of osteolytic bone lesions in untreated patients with multiple myeloma are important factors in the staging of the disease, and the extent of bone lesions in multiple myeloma cases significantly influences decisions regarding therapy. Recently, fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) have been used to detect bone marrow involvement in patients with multiple myeloma. Purpose: To compare the efficacy of FDG-PET and MRI for the detection of bone marrow infiltration into the spine in untreated patients with multiple myeloma. Material and Methods: Twenty-two patients with multiple myeloma underwent both FDG-PET and spine MRI. The examined spinal regions by MRI included 21 thoracic and lumbar spines, one lumbar spine, and 12 cervical spines. The following imaging sequences were performed: T1-weighted spin-echo MRI with and without fat suppression, and T2-weighted spin-echo MRI in the sagittal plane. In the patients with bone marrow abnormalities, an additional contrast-enhanced T1-weighted spin-echo MR image and a fat-suppressed T1-weighted spin-echo MR image were obtained. Patients were divided into three groups on the basis of the criteria defined by Durie and Salmon: stage I (n=9), stage II (n=3), and stage III (n=10). The number and location of lesions detected in both FGD-PET and MRI were recorded, and the lesions were compared using the McNemar test. Bone marrow biopsy results, the patient's clinical examinations, and other imaging findings (MRI, FDG-PET, etc.) were used as references. Results: In stages I and II (37 lesions in 12 patients), FDG-PET and MRI detected lesions in 78% (29 of 37 lesions) and 86% (32 of 37 lesions), respectively. However, the difference between the abilities of FDG-PET and MRI to detect lesions was not statistically significant (P=0.317). In stage III (101 lesions in 10 patients), FDG-PET and MRI detected lesions in 80% (81 of 101 lesions) and

  7. Multiple criteria decision-making process to derive consensus desired genetic gains for a dairy cattle breeding objective for diverse production systems.

    Science.gov (United States)

    Kariuki, C M; van Arendonk, J A M; Kahi, A K; Komen, H

    2017-06-01

    Dairy cattle industries contribute to food and nutrition security and are a source of income for numerous households in many developing countries. Selective breeding can enhance efficiency in these industries. Developing dairy industries are characterized by diverse production and marketing systems. In this paper, we use weighted goal aggregating procedure to derive consensus trait preferences for different producer categories and processors. We based the study on the dairy industry in Kenya. The analytic hierarchy process was used to derive individual preferences for milk yield (MY), calving interval (CIN), production lifetime (PLT), mature body weight (MBW), and fat yield (FY). Results show that classical classification of production systems into large-scale and smallholder systems does not capture all differences in trait preferences. These differences became apparent when classification was based on productivity at the individual animal level, with high and low intensity producers and processors as the most important groups. High intensity producers had highest preferences for PLT and MY, whereas low intensity producers had highest preference for CIN and PLT; processors preferred MY and FY the most. The highest disagreements between the groups were observed for FY, PLT, and MY. Individual and group preferences were aggregated into consensus preferences using weighted goal programming. Desired gains were obtained as a product of consensus preferences and percentage genetic gains (G%). These were 2.42, 0.22, 2.51, 0.15, and 0.87 for MY, CIN, PLT, MBW, and FY, respectively. Consensus preferences can be used to derive a single compromise breeding objective for situations where the same genetic resources are used in diverse production and marketing circumstances. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license

  8. Magnetic resonance imaging in monitoring of treatment of multiple sclerosis; Zastosowanie metody rezonansu magnetycznego w monitorowaniu leczenia stwardnienia rozsianego

    Energy Technology Data Exchange (ETDEWEB)

    Bekiesinska-Figatowska, M.; Walecki, J.; Stelmasiak, Z. [Zaklad Diagnostyki Obrazowej, Centralny Szpital Kolejowy i Centrum Medyczne Ksztalcenia Podyplomowego, Miedzylesie (Poland)]|[Centrum Naukowo-Kliniczne and Zespol Naukowo Badawczy Chorob Demielinizacyjnych, Akademia Medyczna, Lublin (Poland)

    1996-12-31

    The purpose of the study was to establish the value of MR in monitoring of treatment of multiple sclerosis with new drug 2-CDA and placebo. 83 patients (51 women, 32 men) were examined - 81 of them twice, 66 - three times: before and after 6 and 12 courses of treatment. Toshiba MRT50A machine was used. After the first 6 courses of treatment the number of new plaques was twice as big in placebo group than in 2-CDA group. After 12 courses it turned out that a certain inhibitory influence of 2-CDA on new plaques` appearance was more evident after 15 than 3 months after the end of its administration. This may indicate the delayed action of 2-CDA but requires further investigation. (author) 8 refs, 2 figs, 7 tabs

  9. Multiple magnetic transitions, dynamical magnetic liquid and magnetic glass in La{sub 1−x−y}Pr{sub y}Ca{sub x}MnO{sub 3} (x≈0.42, y≈0.40) thin films: A thickness dependent study

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vasudha; Kandpal, Lalit M.; Siwach, P.K.; Awana, V.P.S. [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); AcSIR at CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, H.K., E-mail: hks65@nplindia.org [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); AcSIR at CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2015-11-15

    The influence of substrate induced strain and its relaxation on the evolution of the multiple magnetic transitions and ensuing modifications in the degree of phase separation, the nature of the dynamical magnetic liquid, the randomly frozen glass and insulator–metal transitions have been investigated in single crystalline La{sub 1−x−y}Pr{sub y}Ca{sub x}MnO{sub 3} (x≈0.42, y≈0.40) in t~20–140 nm thick films deposited on LaAlO{sub 3} (001) substrates. The ferromagnetic (FM) transition temperature (T{sub C}) first decreases as the film thickness is increased from t~20 nm to t~60 nm and then increases with increasing film thickness. In contrast the charge ordering (CO), antiferromagnetic (AFM) and glass transition temperatures shift towards higher values with increasing film thickness. The field cooled cooling (FCC) and field cooled warming (FCW) magnetization (M–T) of films having t≥60 nm shows pronounced hysteresis and ΔT{sub C}=T{sub C}{sup FCW}−T{sub C}{sup FCC} decreases concomitantly from 46 K to 35 K as the thickness increases from ~60 to ~140 nm. The thinnest film shows insulator to metal transitions (IMT) only at magnetic field H>40 kOe. Films with t≥T{sub C} show sharp hysteretic IMT, with ΔT{sub IM}=T{sub IM}{sup W}−T{sub IM}{sup C} decreasing from ~70 K to ~50 K as the thickness increases from ~60 nm to ~140 nm. Such strong hysteresis is a characteristic of first order phase transition and also a signature of magnetic liquid like phase created by the magnetic frustration created by the delicate balance between FM and AFM/CO phases. The H induced AFM/CO to FM transition reduces ΔT{sub IM} and at higher fields the phase transition appears akin to the second order. The observed difference in the magnetic and transport properties have been explained in terms of the substrate induced strain at lower film thickness and its relaxation at higher thickness. - Highlights: • Different thickness La{sub 1−x−y}Pr{sub y}Ca{sub x}MnO{sub 3

  10. On Objects and Events

    DEFF Research Database (Denmark)

    Eugster, Patrick Thomas; Guerraoui, Rachid; Damm, Christian Heide

    2001-01-01

    This paper presents linguistic primitives for publish/subscribe programming using events and objects. We integrate our primitives into a strongly typed object-oriented language through four mechanisms: (1) serialization, (2) multiple sub typing, (3) closures, and (4) deferred code evaluation. We...

  11. Floating Chip Mounting System Driven by Repulsive Force of Permanent Magnets for Multiple On-Site SPR Immunoassay Measurements

    Science.gov (United States)

    Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi

    2012-01-01

    We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing. PMID:23202030

  12. Effects of Multi-Session Repetitive Transcranial Magnetic Stimulation on Motor Control and Spontaneous Brain Activity in Multiple System Atrophy: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Zhu Liu

    2018-05-01

    Full Text Available Background: Impaired motor control is one of the most common symptoms of multiple system atrophy (MSA. It arises from dysfunction of the cerebellum and its connected neural networks, including the primary motor cortex (M1, and is associated with altered spontaneous (i.e., resting-state brain network activity. Non-invasive repetitive transcranial magnetic stimulation (rTMS selectively facilitates the excitability of supraspinal networks. Repeated rTMS sessions have been shown to induce long-term changes to both resting-state brain dynamics and behavior in several neurodegenerative diseases. Here, we hypothesized that a multi-session rTMS intervention would improve motor control in patients with MSA, and that such improvements would correlate with changes in resting-state brain activity.Methods: Nine participants with MSA received daily sessions of 5 Hz rTMS for 5 days. rTMS targeted both the cerebellum and the bilateral M1. Before and within 3 days after the intervention, motor control was assessed by the motor item of the Unified Multiple System Atrophy Rating Scale (UMSARS. Resting-state brain activity was recorded by blood-oxygen-level dependency (BOLD functional magnetic resonance imaging. The “complexity” of resting-state brain activity fluctuations was quantified within seven well-known functional cortical networks using multiscale entropy, a technique that estimates the degree of irregularity of the BOLD time-series across multiple scales of time.Results: The rTMS intervention was well-attended and was not associated with any adverse events. Average motor scores were lower (i.e., better performance following the rTMS intervention as compared to baseline (t8 = 2.3, p = 0.003. Seven of nine participants exhibited such pre-to-post intervention improvements. A trend toward an increase in resting-state complexity was observed within the motor network (t8 = 1.86, p = 0.07. Participants who exhibited greater increases in motor network resting

  13. Determination of multiple pesticides in fruits and vegetables using a modified quick, easy, cheap, effective, rugged and safe method with magnetic nanoparticles and gas chromatography tandem mass spectrometry.

    Science.gov (United States)

    Li, Yan-Fei; Qiao, Lu-Qin; Li, Fang-Wei; Ding, Yi; Yang, Zi-Jun; Wang, Ming-Lin

    2014-09-26

    Based on a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation method with Fe3O4 magnetic nanoparticles (MNPs) as the adsorbing material and gas chromatography-tandem mass spectrometry (GC-MS/MS) determination in multiple reaction monitoring (MRM) mode, we established a new method for the determination of multiple pesticides in vegetables and fruits. It was determined that bare MNPs have excellent function as adsorbent when purified, and it is better to be separated from the extract. The amount of MNPs influenced the clean-up performance and recoveries. To achieve the optimum performance of modified QuEChERS towards the target analytes, several parameters including the amount of the adsorbents and purification time were investigated. Under the optimum conditions, recoveries were evaluated in four representative matrices (tomato, cucumber, orange and apple) with the spiked concentrations of 10 μg kg(-1), 50 μg kg(-1)and 200 μg kg(-1) in all cases. The results showed that the recovery of 101 pesticides ranged between 71.5 and 111.7%, and the relative standard deviation was less than 10.5%. The optimum clean-up system improved the purification efficiency and simultaneously obtained satisfactory recoveries of multiple pesticides, including planar-ring pesticides. In short, the modified QuEChERS method in addition to MNPs used for removing impurities improved the speed of sample pre-treatment and exhibited an enhanced performance and purifying effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Ferromagnetic Objects Magnetovision Detection System.

    Science.gov (United States)

    Nowicki, Michał; Szewczyk, Roman

    2013-12-02

    This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth's field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  15. Ferromagnetic Objects Magnetovision Detection System

    Directory of Open Access Journals (Sweden)

    Michał Nowicki

    2013-12-01

    Full Text Available This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth’s field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  16. Magnetic resonance imaging of lumbar spine. Comparison of multiple spin echo and low flip angle gradient echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1989-07-01

    Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).

  17. Magnet sorting algorithms for insertion devices for the Advanced Light Source

    International Nuclear Information System (INIS)

    Humphries, D.; Hoyer, E.; Kincaid, B.; Marks, S.; Schlueter, R.

    1994-01-01

    Insertion devices for the Advanced Light Source (ALS) incorporate up to 3,000 magnet blocks each for pole energization. In order to minimize field errors, these magnets must be measured, sorted and assigned appropriate locations and orientation in the magnetic structures. Sorting must address multiple objectives, including pole excitation and minimization of integrated multipole fields from minor field components in the magnets. This is equivalent to a combinatorial minimization problem with a large configuration space. Multi-stage sorting algorithms use ordering and pairing schemes in conjunction with other combinatorial methods to solve the minimization problem. This paper discusses objective functions, solution algorithms and results of application to magnet block measurement data

  18. Passive Aerial Grasping of Ferrous Objects

    KAUST Repository

    Fiaz, Usman Amin

    2017-10-19

    Aerial transportation is probably the most efficient way to supply quick and effective aid especially in cases of emergency like search and rescue operations. Thus the ability to grasp and deliver objects is of vital importance in all sorts of unmanned and autonomous aerial operations. We detail a simple yet novel approach for aerial grasping of ferrous objects using a passive magnetic pickup and an impulse based drop mechanism. The design enables our gripper to grasp ferrous objects using single as well as multiple gripping pads, with visual as well as pickup and drop feedback. We describe the various components of the gripper with emphasis on its low mass and high lift capability since weight is a matter of high consideration in all aerial applications. In addition, we investigate and address the issues that may cause our design to fail. We demonstrate by experiments that the proposed design is robust and effective, based on its high payload capability, its sturdiness against possible slide during aggressive aerial maneuvers, and optimum performance of the drop mechanism for the designed range of payloads. We also show that the gripper is able to pick up and drop a single as well as multiple ferrous objects of different shapes, curvature, and inclination, which also involves picking up an object and then grasping the next, while keeping hold of the previous one.

  19. Passive Aerial Grasping of Ferrous Objects

    KAUST Repository

    Fiaz, Usman; Toumi, Noureddine; Shamma, Jeff S.

    2017-01-01

    Aerial transportation is probably the most efficient way to supply quick and effective aid especially in cases of emergency like search and rescue operations. Thus the ability to grasp and deliver objects is of vital importance in all sorts of unmanned and autonomous aerial operations. We detail a simple yet novel approach for aerial grasping of ferrous objects using a passive magnetic pickup and an impulse based drop mechanism. The design enables our gripper to grasp ferrous objects using single as well as multiple gripping pads, with visual as well as pickup and drop feedback. We describe the various components of the gripper with emphasis on its low mass and high lift capability since weight is a matter of high consideration in all aerial applications. In addition, we investigate and address the issues that may cause our design to fail. We demonstrate by experiments that the proposed design is robust and effective, based on its high payload capability, its sturdiness against possible slide during aggressive aerial maneuvers, and optimum performance of the drop mechanism for the designed range of payloads. We also show that the gripper is able to pick up and drop a single as well as multiple ferrous objects of different shapes, curvature, and inclination, which also involves picking up an object and then grasping the next, while keeping hold of the previous one.

  20. Elegant objects

    CERN Document Server

    Bugayenko, Yegor

    2017-01-01

    There are 23 practical recommendations for object-oriented programmers. Most of them are completely against everything you've read in other books. For example, static methods, NULL references, getters, setters, and mutable classes are called evil. Compound variable names, validators, private static literals, configurable objects, inheritance, annotations, MVC, dependency injection containers, reflection, ORM and even algorithms are our enemies.